diff options
author | dos-reis <gdr@axiomatics.org> | 2010-10-27 15:14:30 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2010-10-27 15:14:30 +0000 |
commit | 977f775f6a923edd1eb52b7b1c3a3d963e62049d (patch) | |
tree | 2cbe0bbadc6910d347864f6eec26aec25fd5f7f4 /src/share | |
parent | fcf66dc98318f5ced7ba150f04aef50b69d8cd48 (diff) | |
download | open-axiom-977f775f6a923edd1eb52b7b1c3a3d963e62049d.tar.gz |
* algebra/boolean.spad.pamphlet (BooleanLogic) [~]: Add defaut.
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3688 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 7234 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1392 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10908 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32538 |
5 files changed, 27884 insertions, 27876 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index cc76cb4b..2d83dd0c 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2299821 . 3497162534) +(2300174 . 3497168580) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4496 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4492 . T) (-4497 . T) (-4491 . T)) +((-4497 . T) (-4495 . T) (-4494 . T) ((-4502 "*") . T) (-4493 . T) (-4498 . T) (-4492 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2154) +(-32 R -2155) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) +((|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4499))) +((|HasAttribute| |#1| (QUOTE -4500))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2154 UP UPUP -2305) +(-40 -2155 UP UPUP -2703) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2229 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2229 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2229 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2229 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2229 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2229 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) -(-41 R -2154) +((-4493 |has| (-421 |#2|) (-376)) (-4498 |has| (-421 |#2|) (-376)) (-4492 |has| (-421 |#2|) (-376)) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-362))) (-2230 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2230 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2230 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2230 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-362))))) (-2230 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-578)))) (-2230 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +(-41 R -2155) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -443) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -444) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-318)))) +((|HasCategory| |#1| (QUOTE (-319)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4496 |has| |#1| (-569)) (-4494 . T) (-4493 . T)) -((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) +((-4497 |has| |#1| (-570)) (-4495 . T) (-4494 . T)) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4499 . T) (-4500 . T)) -((-2229 (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|))))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|))))))) +((-4500 . T) (-4501 . T)) +((-2230 (-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|))))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-871))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4496 . T)) +((-4497 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2154) +(-54 |Base| R -2155) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -4105) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -4107) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -4105) +(-62 -4107) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -4105) +(-63 -4107) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -4105) +(-64 -4107) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -4105) +(-65 -4107) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -4105) +(-66 -4107) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -4105) +(-67 -4107) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -4105) +(-68 -4107) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -4105) +(-69 -4107) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -4105) +(-70 -4107) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -4105) +(-71 -4107) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -4105) +(-72 -4107) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -4105) +(-73 -4107) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -4105) +(-74 -4107) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -4105) +(-77 -4107) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -4105) +(-78 -4107) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -4105) +(-79 -4107) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4105) +(-80 -4107) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -4105) +(-81 -4107) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -4105) +(-82 -4107) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4105) +(-83 -4107) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4105) +(-84 -4107) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4105) +(-85 -4107) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4105) +(-86 -4107) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -4105) +(-87 -4107) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -4105) +(-88 -4107) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -4105) +(-89 -4107) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-375)))) +((|HasCategory| |#1| (QUOTE (-376)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4499 . T)) +((-4500 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4499 . T) ((-4501 "*") . T) (-4500 . T) (-4496 . T) (-4494 . T) (-4493 . T) (-4492 . T) (-4497 . T) (-4491 . T) (-4490 . T) (-4489 . T) (-4488 . T) (-4487 . T) (-4495 . T) (-4498 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4486 . T)) +((-4500 . T) ((-4502 "*") . T) (-4501 . T) (-4497 . T) (-4495 . T) (-4494 . T) (-4493 . T) (-4498 . T) (-4492 . T) (-4491 . T) (-4490 . T) (-4489 . T) (-4488 . T) (-4496 . T) (-4499 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4487 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4496 . T)) +((-4497 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4501 "*")))) +((|HasAttribute| |#1| (QUOTE (-4502 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4499 . T)) +((-4500 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,4883 +358,4887 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4500 . T)) +((-4501 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2229 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2230 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-870))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -321) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-112) (QUOTE (-871))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-112) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) NIL NIL -(-113) +(-113 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) NIL NIL -(-114 A) +(-114) +((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) +NIL +NIL +(-115 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-115) +(-116) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -2154 UP) +(-117 -2155 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-117 |p|) +(-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-118 |p|) +(-119 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-937))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-117 |#1|) (QUOTE (-1052))) (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870))) (-2229 (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-1182))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-318))) (|HasCategory| (-117 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) -(-119 A S) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-118 |#1|) (QUOTE (-938))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-118 |#1|) (QUOTE (-1053))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2230 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (QUOTE (-1183))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -118) (|devaluate| |#1|)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) +(-120 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4500))) -(-120 S) +((|HasAttribute| |#1| (QUOTE -4501))) +(-121 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL NIL -(-121 UP) +(-122 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-122 S) -((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-124 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL -(-124) +(-125) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-125 A S) +(-126 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-126 S) +(-127 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL -(-127 S) -((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-129 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-129) -((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-2229 (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-130) (QUOTE (-870))) (-2229 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) (-130) +((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131)))))) (-2230 (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))) (|HasCategory| (-131) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-131) (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131)))) (|HasCategory| (-131) (QUOTE (-871))) (-2230 (|HasCategory| (-131) (QUOTE (-102))) (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-131) (QUOTE (-102))) (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131)))))) +(-131) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL -(-131) +(-132) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL NIL -(-132) +(-133) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-133) +(-134) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-134) +(-135) ((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}."))) NIL NIL -(-135) +(-136) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4501 "*") . T)) +(((-4502 "*") . T)) NIL -(-136 |minix| -3754 S T$) +(-137 |minix| -3755 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -3754 R) +(-138 |minix| -3755 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-138) +(-139) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-139) +(-140) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax \\spad{`c'}.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-140) +(-141) ((|constructor| (NIL "This domain provides representations for category constructors."))) NIL NIL -(-141) +(-142) ((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category \\spad{`c'}.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category \\spad{`c'}.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category \\spad{`c'},{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object \\spad{`c'}."))) NIL NIL -(-142) +(-143) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4499 . T) (-4489 . T) (-4500 . T)) -((-2229 (-12 (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) -(-143 R Q A) +((-4500 . T) (-4490 . T) (-4501 . T)) +((-2230 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) +(-144 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-144) +(-145) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient (often denoted in the literature by \\spad{C(n,r)}). Note: \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-145) +(-146) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-146) +(-147) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4496 . T)) +((-4497 . T)) NIL -(-147 R) +(-148 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-148) +(-149) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4496 . T)) +((-4497 . T)) NIL -(-149 -2154 UP UPUP) +(-150 -2155 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL -(-150 R CR) +(-151 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-151 A S) +(-152 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasAttribute| |#1| (QUOTE -4499))) -(-152 S) +((|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasAttribute| |#1| (QUOTE -4500))) +(-153 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL -(-153 |n| K Q) +(-154 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4494 . T) (-4493 . T) (-4496 . T)) +((-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-154) +(-155) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-155) +(-156) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-156 UP |Par|) +(-157 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-157) +(-158) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-158) +(-159) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -2154) +(-160 R -2155) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-160 I) +(-161 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\spad{C(n,r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-161) +(-162) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-162) +(-163) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-163) +(-164) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-164) +(-165) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-165 R UP UPUP) +(-166 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-166 S R) +(-167 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4495)) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569)))) -(-167 R) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4496)) (|HasAttribute| |#2| (QUOTE -4499)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-570)))) +(-168 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4492 -2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-3920 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 -2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4496 |has| |#1| (-6 -4496)) (-4499 |has| |#1| (-6 -4499)) (-3921 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-168 RR PR) +(-169 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-169) +(-170) ((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution."))) NIL NIL -(-170 R S) +(-171 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-171 R) +(-172 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4492 -2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-3920 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2229 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-361)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasAttribute| |#1| (QUOTE -4495)) (|HasAttribute| |#1| (QUOTE -4498)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-361))))) -(-172 R S CS) +((-4493 -2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4496 |has| |#1| (-6 -4496)) (-4499 |has| |#1| (-6 -4499)) (-3921 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-362))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2230 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-362)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-938))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-938))))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasAttribute| |#1| (QUOTE -4496)) (|HasAttribute| |#1| (QUOTE -4499)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-362))))) +(-173 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-173) +(-174) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-174) +(-175) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-175) +(-176) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-176 R) +(-177 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4501 "*") . T) (-4492 . T) (-4497 . T) (-4491 . T) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") . T) (-4493 . T) (-4498 . T) (-4492 . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-177) +(-178) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-178 R) +(-179 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-179 R |PolR| E) +(-180 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-180 R S CS) +(-181 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-980 |#2|) (LIST (QUOTE -910) (|devaluate| |#1|)))) -(-181 R) +((|HasCategory| (-981 |#2|) (LIST (QUOTE -911) (|devaluate| |#1|)))) +(-182 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL -(-182) +(-183) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-183 R UP) +(-184 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-184 S ST) +(-185 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-185 C) +(-186 C) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-186 S) +(-187 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-187) +(-188) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-188) +(-189) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-189) +(-190) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -2154) +(-191 R -2155) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-191 R) +(-192 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-192) +(-193) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|PositiveInteger|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-193) +(-194) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-194) +(-195) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,t,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-195) +(-196) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-196) +(-197) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-197) +(-198) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-198) +(-199) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-199) +(-200) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-200) +(-201) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-201) +(-202) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-202) +(-203) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-203) +(-204) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-204) +(-205) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-205) +(-206) NIL NIL NIL -(-206) +(-207) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-207) +(-208) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes"))) NIL NIL -(-208) +(-209) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-209) +(-210) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-210) +(-211) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-211) +(-212) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-212) +(-213) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,g,l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,n)} \\undocumented{}"))) NIL NIL -(-213) +(-214) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-214) +(-215) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-215 N T$) +(-216 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-216 S) +(-217 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 |vars|) +(-218 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-218 -2154 UP UPUP R) +(-219 -2155 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-219 -2154 FP) +(-220 -2155 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-220) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2229 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-221) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2230 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147))))) +(-222) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-222 R -2154) +(-223 R -2155) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-223 R) +(-224 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-224 R1 R2) +(-225 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-225 S) +(-226 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-226 |CoefRing| |listIndVar|) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-227 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4496 . T)) +((-4497 . T)) NIL -(-227 R -2154) +(-228 R -2155) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-228) +(-229) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3908 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-3909 . T) (-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-229) +(-230) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-230 R) +(-231 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-231 A S) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4502 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-232 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-232 S) +(-233 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4500 . T)) +((-4501 . T)) NIL -(-233 R) +(-234 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4496 . T)) +((-4497 . T)) NIL -(-234 S T$) +(-235 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-235 T$) +(-236 T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-236 R) +(-237 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-237 S) +(-238 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-238) +(-239) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-239) +(-240) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4496 . T)) +((-4497 . T)) NIL -(-240 A S) +(-241 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4499))) -(-241 S) +((|HasAttribute| |#1| (QUOTE -4500))) +(-242 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4500 . T)) +((-4501 . T)) NIL -(-242) +(-243) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-243 S -3754 R) +(-244 S -3755 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasAttribute| |#3| (QUOTE -4496)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) -(-244 -3754 R) +((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4497)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) +(-245 -3755 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) +((-4494 |has| |#2| (-1080)) (-4495 |has| |#2| (-1080)) (-4497 |has| |#2| (-6 -4497)) (-4500 . T)) NIL -(-245 -3754 A B) +(-246 -3755 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-246 -3754 R) +(-247 -3755 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2229 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2229 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2229 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) -(-247) +((-4494 |has| |#2| (-1080)) (-4495 |has| |#2| (-1080)) (-4497 |has| |#2| (-6 -4497)) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2230 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2230 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2230 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4497)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))))) +(-248) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-248 S) +(-249 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-249) +(-250) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4492 . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-250 S) +(-251 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-251 S) +(-252 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-252 M) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-253 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-253 R) +(-254 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-254 |vl| R) +(-255 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-255) +(((-4502 "*") |has| |#2| (-175)) (-4493 |has| |#2| (-570)) (-4498 |has| |#2| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-256) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-256) +(-257) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-257) +(-258) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-258 |n| R M S) +(-259 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4496 -2229 (-2319 (|has| |#4| (-1079)) (|has| |#4| (-239))) (|has| |#4| (-6 -4496)) (-2319 (|has| |#4| (-1079)) (|has| |#4| (-926 (-1206))))) (-4493 |has| |#4| (-1079)) (-4494 |has| |#4| (-1079)) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-375))) (-2229 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-1079)))) (-2229 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (QUOTE (-814))) (-2229 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (QUOTE (-870)))) (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (QUOTE (-380))) (-2229 (-12 (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (|HasCategory| |#4| (QUOTE (-239))) (-2229 (|HasCategory| |#4| (QUOTE (-239))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-2229 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-1130))) (-2229 (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-380)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-747)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-814)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-870)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130))))) (-2229 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2229 (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130)))) (-2229 (|HasAttribute| |#4| (QUOTE -4496)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))))) -(-259 |n| R S) +((-4497 -2230 (-2320 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4497)) (-2320 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4494 |has| |#4| (-1080)) (-4495 |has| |#4| (-1080)) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2230 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2230 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2230 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2230 (-12 (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2230 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2230 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1131))) (-2230 (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131))))) (-2230 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-2230 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2230 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131)))) (-2230 (|HasAttribute| |#4| (QUOTE -4497)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))))) +(-260 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4496 -2229 (-2319 (|has| |#3| (-1079)) (|has| |#3| (-239))) (|has| |#3| (-6 -4496)) (-2319 (|has| |#3| (-1079)) (|has| |#3| (-926 (-1206))))) (-4493 |has| |#3| (-1079)) (-4494 |has| |#3| (-1079)) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-375))) (-2229 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2229 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2229 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2229 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2229 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2229 (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) -(-260 A R S V E) +((-4497 -2230 (-2320 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4497)) (-2320 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4494 |has| |#3| (-1080)) (-4495 |has| |#3| (-1080)) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2230 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2230 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2230 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2230 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-2230 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2230 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2230 (|HasAttribute| |#3| (QUOTE -4497)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) +(-261 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-239)))) -(-261 R S V E) +((|HasCategory| |#2| (QUOTE (-240)))) +(-262 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-262 S) +(-263 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL -(-263) +(-264) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-264 R |Ex|) +(-265 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-265) +(-266) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-266 R) +(-267 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-267 |Ex|) +(-268 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-268) +(-269) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-269) +(-270) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-270 S) +(-271 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-271) +(-272) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-272 S R) +(-273 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-238)))) -(-273 R) +((|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239)))) +(-274 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL -(-274 R S V) +(-275 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-275 A S) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-276 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-276 S) +(-277 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-277) +(-278) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-278) +(-279) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-279) +(-280) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-280) +(-281) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-281) +(-282) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-282) +(-283) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-283) +(-284) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-284) +(-285) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-285) +(-286) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-286 R -2154) +(-287 R -2155) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-287 R -2154) +(-288 R -2155) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-288 |Coef| UTS ULS) +(-289 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-375)))) -(-289 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-376)))) +(-290 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-375)))) -(-290) +((|HasCategory| |#1| (QUOTE (-376)))) +(-291) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-291) +(-292) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-292 A S) +(-293 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130)))) -(-293 S) +((|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131)))) +(-294 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4500 . T)) +((-4501 . T)) NIL -(-294 S) +(-295 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-295) +(-296) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-296 |Coef| UTS) +(-297 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-297 S T$) +(-298 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-298 S |Dom| |Im|) +(-299 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4500))) -(-299 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4501))) +(-300 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-300 S R |Mod| -4442 -2223 |exactQuo|) +(-301 S R |Mod| -1336 -3176 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-301) +(-302) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4492 . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-302) +(-303) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-303 R) +(-304 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-304 S R) +(-305 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-305 S) +(-306 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4496 -2229 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4493 |has| |#1| (-1079)) (-4494 |has| |#1| (-1079))) -((|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747)))) (|HasCategory| |#1| (QUOTE (-486))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-313))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486)))) (-2229 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747)))) (-2229 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-747)))) -(-306 |Key| |Entry|) +((-4497 -2230 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4494 |has| |#1| (-1080)) (-4495 |has| |#1| (-1080))) +((|HasCategory| |#1| (QUOTE (-376))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-314))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2230 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2230 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748)))) +(-307 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102)))) -(-307) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102)))) +(-308) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-308 -2154 S) +(-309 -2155 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-309 E -2154) +(-310 E -2155) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-310 A B) +(-311 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-311) +(-312) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-312 S) +(-313 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1079)))) -(-313) +((|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-1080)))) +(-314) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-314 R1) +(-315 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-315 R1 R2) +(-316 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-316) +(-317) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-317 S) +(-318 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-318) +(-319) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-319 S R) +(-320 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 R) +(-321 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-321 -2154) +(-322 -2155) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-322) +(-323) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-323) +(-324) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-324 R FE |var| |cen|) +(-325 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1052))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870))) (-2229 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -320) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -297) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-558))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))) (-2229 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))))) -(-325 R S) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1053))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2230 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1183))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -321) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -298) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-2230 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))))) +(-326 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-326 R FE) +(-327 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-327 R) +(-328 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4496 -2229 (-12 (|has| |#1| (-569)) (-2229 (|has| |#1| (-1079)) (|has| |#1| (-486)))) (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) -((-2229 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-21))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-1079))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2229 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2229 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-2229 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2229 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1142)))) (-2229 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2229 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) -(-328 R -2154) +((-4497 -2230 (-12 (|has| |#1| (-570)) (-2230 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4495 |has| |#1| (-175)) (-4494 |has| |#1| (-175)) ((-4502 "*") |has| |#1| (-570)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-570)) (-4492 |has| |#1| (-570))) +((-2230 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (-2230 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2230 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2230 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-2230 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2230 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2230 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2230 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578))))) +(-329 R -2155) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-329) +(-330) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-330 FE |var| |cen|) +(-331 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) -(-331 M) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-332 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-332 E OV R P) +(-333 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-333 S) +(-334 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4494 . T) (-4493 . T)) -((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| (-577) (QUOTE (-813)))) -(-334 S E) +((-4495 . T) (-4494 . T)) +((|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| (-578) (QUOTE (-814)))) +(-335 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-335 S) +(-336 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-792) (QUOTE (-813)))) -(-336 S R E) +((|HasCategory| (-793) (QUOTE (-814)))) +(-337 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174)))) -(-337 R E) +((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175)))) +(-338 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-338 S) +(-339 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-339 S -2154) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-340 S -2155) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-380)))) -(-340 -2154) +((|HasCategory| |#2| (QUOTE (-381)))) +(-341 -2155) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-341) +(-342) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-342 E) +(-343 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-343) +(-344) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-344) +(-345) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-345 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-346 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-346 S -2154 UP UPUP R) +(-347 S -2155 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -2154 UP UPUP R) +(-348 -2155 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-348 -2154 UP UPUP R) +(-349 -2155 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-349 S R) +(-350 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-350 R) +((|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-351 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-351 |basicSymbols| |subscriptedSymbols| R) +(-352 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) -(-352 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-392)))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578))))) +(-353 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-353 S -2154 UP UPUP) +(-354 S -2155 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-375)))) -(-354 -2154 UP UPUP) +((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376)))) +(-355 -2155 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 |has| (-421 |#2|) (-376)) (-4498 |has| (-421 |#2|) (-376)) (-4492 |has| (-421 |#2|) (-376)) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-355 |p| |extdeg|) +(-356 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) -(-356 GF |defpol|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147)))) +(-357 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-357 GF |extdeg|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +(-358 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-358 GF) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +(-359 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-359 F1 GF F2) +(-360 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-360 S) +(-361 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-361) +(-362) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-362 R UP -2154) +(-363 R UP -2155) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-363 |p| |extdeg|) +(-364 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) -(-364 GF |uni|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147)))) +(-365 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-365 GF |extdeg|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +(-366 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-366 |p| |n|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +(-367 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) -(-367 GF |defpol|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147)))) +(-368 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-368 -2154 GF) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +(-369 -2155 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-369 GF) +(-370 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-370 -2154 FP FPP) +(-371 -2155 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-371 GF |n|) +(-372 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-372 R |ls|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +(-373 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-373 S) +(-374 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4496 . T)) +((-4497 . T)) NIL -(-374 S) +(-375 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-375) +(-376) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-376 |Name| S) +(-377 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-377 S) +(-378 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-378 S R) +(-379 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-569)))) -(-379 R) +((|HasCategory| |#2| (QUOTE (-570)))) +(-380 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4496 |has| |#1| (-569)) (-4494 . T) (-4493 . T)) +((-4497 |has| |#1| (-570)) (-4495 . T) (-4494 . T)) NIL -(-380) +(-381) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-381 S R UP) +(-382 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-375)))) -(-382 R UP) +((|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-376)))) +(-383 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-383 S A R B) +(-384 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-384 A S) +(-385 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130)))) -(-385 S) +((|HasAttribute| |#1| (QUOTE -4501)) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131)))) +(-386 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4499 . T)) +((-4500 . T)) NIL -(-386 |VarSet| R) +(-387 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4494 . T) (-4493 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4495 . T) (-4494 . T)) NIL -(-387 S V) +(-388 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-388 S R) +(-389 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) -(-389 R) +((|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) +(-390 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-390 |Par|) +(-391 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-391) +(-392) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4482 . T) (-4490 . T) (-3908 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4483 . T) (-4491 . T) (-3909 . T) (-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-392 |Par|) +(-393 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-393 R S) +(-394 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4494 . T) (-4493 . T)) -((|HasCategory| |#1| (QUOTE (-174)))) -(-394 R |Basis|) +((-4495 . T) (-4494 . T)) +((|HasCategory| |#1| (QUOTE (-175)))) +(-395 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-395) +(-396) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-396) +(-397) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-397 R S) +(-398 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4494 . T) (-4493 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) -(-398 S) +((-4495 . T) (-4494 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-399 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-399 S) +(-400 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-870)))) -(-400) +((|HasCategory| |#1| (QUOTE (-871)))) +(-401) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-401) +(-402) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-402) +(-403) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-403 |n| |class| R) +(-404 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-404) +(-405) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-405 -2154 UP UPUP R) +(-406 -2155 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-406 S) +(-407 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-407) +(-408) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-408) +(-409) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-409) +(-410) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-410) +(-411) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-411 -4105 |returnType| -4085 |symbols|) +(-412 -4107 |returnType| -4086 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-412 -2154 UP) +(-413 -2155 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-413 R) +(-414 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-414 S) +(-415 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-415) +(-416) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-416 S) +(-417 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4482)) (|HasAttribute| |#1| (QUOTE -4490))) -(-417) +((|HasAttribute| |#1| (QUOTE -4483)) (|HasAttribute| |#1| (QUOTE -4491))) +(-418) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3908 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-3909 . T) (-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-418 R S) +(-419 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-419 A B) +(-420 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-420 S) +(-421 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4486 -12 (|has| |#1| (-6 -4497)) (|has| |#1| (-465)) (|has| |#1| (-6 -4486))) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-558))) (-12 (|HasAttribute| |#1| (QUOTE -4497)) (|HasAttribute| |#1| (QUOTE -4486)) (|HasCategory| |#1| (QUOTE (-465)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-421 S R UP) +((-4487 -12 (|has| |#1| (-6 -4498)) (|has| |#1| (-466)) (|has| |#1| (-6 -4487))) (-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850))))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4498)) (|HasAttribute| |#1| (QUOTE -4487)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-422 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-422 R UP) +(-423 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-423 A S) +(-424 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) -(-424 S) +((|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) +(-425 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-425 R1 F1 U1 A1 R2 F2 U2 A2) +(-426 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-426 R -2154 UP A) +(-427 R -2155 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4496 . T)) +((-4497 . T)) NIL -(-427 R -2154 UP A |ibasis|) +(-428 R -2155 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1068) (|devaluate| |#2|)))) -(-428 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1069) (|devaluate| |#2|)))) +(-429 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-429 S R) +(-430 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-375)))) -(-430 R) +((|HasCategory| |#2| (QUOTE (-376)))) +(-431 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4496 |has| |#1| (-569)) (-4494 . T) (-4493 . T)) +((-4497 |has| |#1| (-570)) (-4495 . T) (-4494 . T)) NIL -(-431 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -320) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -297) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1251))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1251)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-465)))) (-432 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) +(-433 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-433 R FE |x| |cen|) +(-434 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-434 R A S B) +(-435 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-435 R FE |Expon| UPS TRAN |x|) +(-436 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-436 S A R B) +(-437 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-437 A S) +(-438 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380)))) -(-438 S) +((|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381)))) +(-439 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4499 . T) (-4489 . T) (-4500 . T)) +((-4500 . T) (-4490 . T) (-4501 . T)) NIL -(-439 R -2154) +(-440 R -2155) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-440 R E) +(-441 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4486 -12 (|has| |#1| (-6 -4486)) (|has| |#2| (-6 -4486))) (-4493 . T) (-4494 . T) (-4496 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4486)) (|HasAttribute| |#2| (QUOTE -4486)))) -(-441 R -2154) +((-4487 -12 (|has| |#1| (-6 -4487)) (|has| |#2| (-6 -4487))) (-4494 . T) (-4495 . T) (-4497 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4487)) (|HasAttribute| |#2| (QUOTE -4487)))) +(-442 R -2155) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-442 S R) +(-443 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-1142))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) -(-443 R) +((|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) +(-444 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4496 -2229 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) +((-4497 -2230 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4495 |has| |#1| (-175)) (-4494 |has| |#1| (-175)) ((-4502 "*") |has| |#1| (-570)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-570)) (-4492 |has| |#1| (-570))) NIL -(-444 R -2154) +(-445 R -2155) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-445 R -2154) +(-446 R -2155) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-446 R -2154) +(-447 R -2155) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-447) +(-448) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-448 R -2154 UP) +(-449 R -2155 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-48))))) -(-449) +((|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-48))))) +(-450) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-450) +(-451) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-451 |f|) +(-452 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-452) +(-453) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-453) +(-454) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-454) +(-455) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-455 UP) +(-456 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-456 R UP -2154) +(-457 R UP -2155) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-457 R UP) +(-458 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-458 R) +(-459 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-417)))) -(-459) +((|HasCategory| |#1| (QUOTE (-418)))) +(-460) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-460 |Dom| |Expon| |VarSet| |Dpol|) +(-461 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-461 |Dom| |Expon| |VarSet| |Dpol|) +(-462 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-462 |Dom| |Expon| |VarSet| |Dpol|) +(-463 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-463 |Dom| |Expon| |VarSet| |Dpol|) +(-464 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-375)))) -(-464 S) +((|HasCategory| |#1| (QUOTE (-376)))) +(-465 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-465) +(-466) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-466 R |n| |ls| |gamma|) +(-467 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4496 |has| (-420 (-980 |#1|)) (-569)) (-4494 . T) (-4493 . T)) -((|HasCategory| (-420 (-980 |#1|)) (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-420 (-980 |#1|)) (QUOTE (-569)))) -(-467 |vl| R E) +((-4497 |has| (-421 (-981 |#1|)) (-570)) (-4495 . T) (-4494 . T)) +((|HasCategory| (-421 (-981 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| (-421 (-981 |#1|)) (QUOTE (-570)))) +(-468 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-468 R BP) +(((-4502 "*") |has| |#2| (-175)) (-4493 |has| |#2| (-570)) (-4498 |has| |#2| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-469 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-469 OV E S R P) +(-470 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-470 E OV R P) +(-471 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-471 R) +(-472 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-472 R FE) +(-473 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-473 RP TP) +(-474 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-474 |vl| R IS E |ff| P) +(-475 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-475 E V R P Q) +(-476 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-476 R E |VarSet| P) +(-477 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-477 S R E) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-478 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-478 R E) +(-479 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-479) +(-480) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-480) +(-481) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-481) +(-482) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-482 S R E) +(-483 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 R E) +(-484 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-484 |lv| -2154 R) +(-485 |lv| -2155 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-485 S) +(-486 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-486) +(-487) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4496 . T)) +((-4497 . T)) NIL -(-487 |Coef| |var| |cen|) +(-488 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) -(-488 |Key| |Entry| |Tbl| |dent|) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-489 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130)))) -(-489 R E V P) +((-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131)))) +(-490 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-490) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-491) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-491) +(-492) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-492 |Key| |Entry| |hashfn|) +(-493 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102)))) -(-493) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102)))) +(-494) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-494 |vl| R) +(-495 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-495 -3754 S) +(((-4502 "*") |has| |#2| (-175)) (-4493 |has| |#2| (-570)) (-4498 |has| |#2| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-496 -3755 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2229 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2229 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2229 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) -(-496) +((-4494 |has| |#2| (-1080)) (-4495 |has| |#2| (-1080)) (-4497 |has| |#2| (-6 -4497)) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2230 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2230 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2230 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4497)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))))) +(-497) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-497 S) +(-498 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-498 -2154 UP UPUP R) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-499 -2155 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-499 BP) +(-500 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-500) +(-501) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2229 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) -(-501 A S) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2230 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147))))) +(-502 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4499)) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) -(-502 S) +((|HasAttribute| |#1| (QUOTE -4500)) (|HasAttribute| |#1| (QUOTE -4501)) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) +(-503 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-503 S) +(-504 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-504) +(-505) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-505 S) +(-506 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506) +(-507) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-507 -2154 UP |AlExt| |AlPol|) +(-508 -2155 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-508) +(-509) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) -(-509 S |mn|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578))))) +(-510 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-510 R |mnRow| |mnCol|) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-511 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-511 K R UP) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-512 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-512 R UP -2154) +(-513 R UP -2155) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-513 |mn|) +(-514 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-870))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-112) (QUOTE (-1130))) (|HasCategory| (-112) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-112) (QUOTE (-102)))) -(-514 K R UP L) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -321) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-112) (QUOTE (-871))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-112) (QUOTE (-102)))) +(-515 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-515) +(-516) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-516 R Q A B) +(-517 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-517 -2154 |Expon| |VarSet| |DPoly|) +(-518 -2155 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-1206))))) -(-518 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-1207))))) +(-519 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-519) +(-520) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-520 A S) +(-521 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) -(-521 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-522 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) -(-522 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-523 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-523 A S) +(-524 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) -(-524 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-525 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) -(-525 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-526 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) -(-526 S A B) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131))))) +(-527 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-527 A B) +(-528 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-528 S E |un|) +(-529 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-813)))) -(-529 S |mn|) +((|HasCategory| |#2| (QUOTE (-814)))) +(-530 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-530) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-531) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-531 |p| |n|) +(-532 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| (-594 |#1|) (QUOTE (-146))) (|HasCategory| (-594 |#1|) (QUOTE (-380)))) (|HasCategory| (-594 |#1|) (QUOTE (-148))) (|HasCategory| (-594 |#1|) (QUOTE (-380))) (|HasCategory| (-594 |#1|) (QUOTE (-146)))) -(-532 R |mnRow| |mnCol| |Row| |Col|) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) +(-533 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-533 S |mn|) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-534 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-534 R |Row| |Col| M) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-535 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4500))) -(-535 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4501))) +(-536 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4500))) -(-536 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4501))) +(-537 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-537) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4502 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-538) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-538) +(-539) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-539 S) +(-540 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-540) +(-541) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-541 GF) +(-542 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-542) +(-543) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-543 R) +(-544 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-544 |Varset|) +(-545 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| (-792) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130))))) -(-545 K -2154 |Par|) +((-12 (|HasCategory| (-793) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131))))) +(-546 K -2155 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-546) +(-547) NIL NIL NIL -(-547) +(-548) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-548 R) +(-549 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-549) +(-550) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-550 |Coef| UTS) +(-551 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-551 K -2154 |Par|) +(-552 K -2155 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-552 R BP |pMod| |nextMod|) +(-553 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-553 OV E R P) +(-554 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-554 K UP |Coef| UTS) +(-555 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-555 |Coef| UTS) +(-556 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-556 R UP) +(-557 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-557 S) +(-558 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-558) +(-559) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4498 . T) (-4499 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-559) +(-560) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-560) +(-561) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-561) +(-562) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-562) +(-563) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-563 |Key| |Entry| |addDom|) +(-564 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102)))) -(-564 R -2154) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102)))) +(-565 R -2155) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-565 R0 -2154 UP UPUP R) +(-566 R0 -2155 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-566) +(-567) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-567 R) +(-568 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3908 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-3909 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-568 S) +(-569 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-569) +(-570) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-570 R -2154) +(-571 R -2155) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-571 I) +(-572 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-572) +(-573) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-573 R -2154 L) +(-574 R -2155 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -677) (|devaluate| |#2|)))) -(-574) +((|HasCategory| |#3| (LIST (QUOTE -678) (|devaluate| |#2|)))) +(-575) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-575 -2154 UP UPUP R) +(-576 -2155 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-576 -2154 UP) +(-577 -2155 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-577) +(-578) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4481 . T) (-4487 . T) (-4491 . T) (-4486 . T) (-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4482 . T) (-4488 . T) (-4492 . T) (-4487 . T) (-4498 . T) (-4499 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-578) +(-579) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-579 R -2154 L) +(-580 R -2155 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -677) (|devaluate| |#2|)))) -(-580 R -2154) +((|HasCategory| |#3| (LIST (QUOTE -678) (|devaluate| |#2|)))) +(-581 R -2155) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-647))))) -(-581 -2154 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-648))))) +(-582 -2155 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-582 S) +(-583 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-583 -2154) +(-584 -2155) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-584 R) +(-585 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3908 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-3909 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-585) +(-586) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-586 R -2154) +(-587 R -2155) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-647))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-569)))) -(-587 -2154 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-648))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-570)))) +(-588 -2155 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-588 R -2154) +(-589 R -2155) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-589) +(-590) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-590) +(-591) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-591) +(-592) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-592) +(-593) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-593 |p| |unBalanced?|) +(-594 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-594 |p|) +(-595 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-380)))) -(-595) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) +(-596) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-596 R -2154) +(-597 R -2155) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-597 E -2154) +(-598 E -2155) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-598) +(-599) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-599 -2154) +(-600 -2155) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4494 . T) (-4493 . T)) -((|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-1206))))) -(-600 I) +((-4495 . T) (-4494 . T)) +((|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207))))) +(-601 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-601 GF) +(-602 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-602 R) +(-603 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-148)))) -(-603) +((|HasCategory| |#1| (QUOTE (-149)))) +(-604) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-604 R E V P TS) +(-605 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-605) +(-606) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-606 |mn|) +(-607 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2229 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2229 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) -(-607 E V R P) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2230 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-871))) (-2230 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) +(-608 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-608 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))) (|HasCategory| (-577) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577)))))) (-609 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))) (|HasCategory| (-578) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578)))))) +(-610 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-569)))) -(-610) +(((-4502 "*") |has| |#1| (-570)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-570)))) +(-611) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-611 A B) +(-612 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-612 A B C) +(-613 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-613 R -2154 FG) +(-614 R -2155 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-614 S) +(-615 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-615 R |mn|) +(-616 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-616 S |Index| |Entry|) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-617 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-870))) (|HasAttribute| |#1| (QUOTE -4499)) (|HasCategory| |#3| (QUOTE (-1130)))) -(-617 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4501)) (|HasCategory| |#2| (QUOTE (-871))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#3| (QUOTE (-1131)))) +(-618 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-618) +(-619) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-619 R A) +(-620 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4496 -2229 (-2319 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) -((-2229 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) -(-620) +((-4497 -2230 (-2320 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4495 . T) (-4494 . T)) +((-2230 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) +(-621) ((|constructor| (NIL "This is the datatype for the \\spad{JVM} bytecodes."))) NIL NIL -(-621) +(-622) ((|constructor| (NIL "\\spad{JVM} class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the \\spad{JVM} to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-622) +(-623) ((|constructor| (NIL "\\spad{JVM} class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java UTF8 string constant."))) NIL NIL -(-623) +(-624) ((|constructor| (NIL "\\spad{JVM} class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-624) +(-625) ((|constructor| (NIL "\\spad{JVM} class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is \\spad{FP}-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-625) +(-626) ((|constructor| (NIL "This is the datatype for the \\spad{JVM} opcodes."))) NIL NIL -(-626 |Entry|) +(-627 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102)))) -(-627 S |Key| |Entry|) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-102)))) +(-628 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-628 |Key| |Entry|) +(-629 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4500 . T)) +((-4501 . T)) NIL -(-629 R S) +(-630 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-630 S) +(-631 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) -(-631 S) +((|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) +(-632 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-632 S) +(-633 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-633 -2154 UP) +(-634 -2155 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-634 S) +(-635 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-635) +(-636) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-636 S) +(-637 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-637 S R) +(-638 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-638 R) +(-639 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4496 . T)) +((-4497 . T)) NIL -(-639 A R S) +(-640 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-869)))) -(-640 R -2154) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-870)))) +(-641 R -2155) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-641 R UP) +(-642 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4492 . T) (-4496 . T)) -((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) -(-642 R E V P TS ST) +((-4495 . T) (-4494 . T) ((-4502 "*") . T) (-4493 . T) (-4497 . T)) +((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) +(-643 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-643 OV E Z P) +(-644 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-644) +(-645) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-645 |VarSet| R |Order|) +(-646 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4496 . T)) +((-4497 . T)) NIL -(-646 R |ls|) +(-647 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-647) +(-648) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-648 R -2154) +(-649 R -2155) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-649 |lv| -2154) +(-650 |lv| -2155) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-650) +(-651) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2753) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1188) (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130)))) -(-651 S R) +((-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2754) (QUOTE (-52))))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (QUOTE (-1131)))) +(-652 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-375)))) -(-652 R) +((|HasCategory| |#2| (QUOTE (-376)))) +(-653 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4494 . T) (-4493 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4495 . T) (-4494 . T)) NIL -(-653 R A) +(-654 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4496 -2229 (-2319 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) -((-2229 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) -(-654 R FE) +((-4497 -2230 (-2320 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4495 . T) (-4494 . T)) +((-2230 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) +(-655 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-655 R) +(-656 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-656 |vars|) +(-657 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-657 S R) +(-658 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2308 (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-375)))) -(-658 K B) +((-2309 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) +(-659 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-4494 . T) (-4493 . T)) -((-12 (|HasCategory| (-656 |#2|) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130))))) -(-659 R) +((-4495 . T) (-4494 . T)) +((-12 (|HasCategory| (-657 |#2|) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131))))) +(-660 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-660 K B) +(-661 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-661 S) +(-662 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-662 A B) +(-663 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-663 A B) +(-664 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-664 A B C) +(-665 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-665 S) +(-666 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-666 T$) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-667 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-667 S) +(-668 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-668 S) +(-669 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-669 R) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-670 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-670 S E |un|) +(-671 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-671 A S) +(-672 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4500))) -(-672 S) +((|HasAttribute| |#1| (QUOTE -4501))) +(-673 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-673 R -2154 L) +(-674 R -2155 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-674 A) +(-675 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-675 A M) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +(-676 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-676 S A) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +(-677 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-375)))) -(-677 A) +((|HasCategory| |#2| (QUOTE (-376)))) +(-678 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-678 -2154 UP) +(-679 -2155 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-679 A -3320) +(-680 A -3305) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-680 A L) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +(-681 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-681 S) +(-682 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-682) +(-683) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-683 M R S) +(-684 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4494 . T) (-4493 . T)) -((|HasCategory| |#1| (QUOTE (-812)))) -(-684 R) +((-4495 . T) (-4494 . T)) +((|HasCategory| |#1| (QUOTE (-813)))) +(-685 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-685 |VarSet| R) +(-686 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4494 . T) (-4493 . T)) -((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-174)))) -(-686 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4495 . T) (-4494 . T)) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-175)))) +(-687 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-687 S) +(-688 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-688 -2154) +(-689 -2155) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-689 -2154 |Row| |Col| M) +(-690 -2155 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-690 R E OV P) +(-691 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-691 |n| R) +(-692 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4496 . T) (-4499 . T) (-4493 . T) (-4494 . T)) -((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569))) (-2229 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-692) +((-4497 . T) (-4500 . T) (-4494 . T) (-4495 . T)) +((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4502 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-570))) (-2230 (|HasAttribute| |#2| (QUOTE (-4502 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +(-693) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-693 |VarSet|) +(-694 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-694 A S) +(-695 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-695 S) +(-696 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-696 R) +(-697 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-697) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-698) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-698 |VarSet|) +(-699 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-699 A) +(-700 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-700 A C) +(-701 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-701 A B C) +(-702 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-702) +(-703) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-703 A) +(-704 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-704 A C) +(-705 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-705 A B C) +(-706 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-706 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-707 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-707 S R |Row| |Col|) +(-708 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569)))) -(-708 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4502 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-570)))) +(-709 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL -(-709 R |Row| |Col| M) +(-710 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569)))) -(-710 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4499 . T) (-4500 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570)))) (-711 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4500 . T) (-4501 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4502 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-712 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-712 T$) +(-713 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-713 S -2154 FLAF FLAS) +(-714 S -2155 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-714 R Q) +(-715 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-715) +(-716) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4492 . T) (-4497 |has| (-720) (-375)) (-4491 |has| (-720) (-375)) (-3920 . T) (-4498 |has| (-720) (-6 -4498)) (-4495 |has| (-720) (-6 -4495)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-720) (QUOTE (-148))) (|HasCategory| (-720) (QUOTE (-146))) (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-380))) (|HasCategory| (-720) (QUOTE (-375))) (-2229 (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-238))) (-2229 (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206))))) (-2229 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (LIST (QUOTE -297) (QUOTE (-720)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -320) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2229 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-720) (QUOTE (-1052))) (|HasCategory| (-720) (QUOTE (-1232))) (-12 (|HasCategory| (-720) (QUOTE (-1032))) (|HasCategory| (-720) (QUOTE (-1232)))) (-2229 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (-2229 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (|HasCategory| (-720) (QUOTE (-558))) (-12 (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-1232)))) (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937))) (-2229 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375)))) (-2229 (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (QUOTE (-238)))) (-2229 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-569)))) (-12 (|HasCategory| (-720) (QUOTE (-238))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-569))) (|HasAttribute| (-720) (QUOTE -4498)) (|HasAttribute| (-720) (QUOTE -4495)) (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-146)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-361))))) -(-716 S) +((-4493 . T) (-4498 |has| (-721) (-376)) (-4492 |has| (-721) (-376)) (-3921 . T) (-4499 |has| (-721) (-6 -4499)) (-4496 |has| (-721) (-6 -4496)) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-721) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2230 (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2230 (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207))))) (-2230 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-362)))) (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (LIST (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (-2230 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-362)))) (|HasCategory| (-721) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-721) (QUOTE (-1053))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2230 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (QUOTE (-938))))) (-2230 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-938)))) (-12 (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (QUOTE (-938))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938))) (-2230 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2230 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2230 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-570)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-721) (QUOTE (-570))) (|HasAttribute| (-721) (QUOTE -4499)) (|HasAttribute| (-721) (QUOTE -4496)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-362))))) +(-717 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4500 . T)) +((-4501 . T)) NIL -(-717 U) +(-718 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-718) +(-719) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-719 OV E -2154 PG) +(-720 OV E -2155 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-720) +(-721) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3908 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-3909 . T) (-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-721 R) +(-722 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-722) +(-723) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4498 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4499 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-723 S D1 D2 I) +(-724 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-724 S) +(-725 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-725 S) +(-726 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-726 S T$) +(-727 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-727 S -1675 I) +(-728 S -1676 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-728 E OV R P) +(-729 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-729 R) +(-730 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-730 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-731 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-731) +(-732) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-732 R |Mod| -4442 -2223 |exactQuo|) +(-733 R |Mod| -1336 -3176 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-733 R |Rep|) +(-734 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-734 IS E |ff|) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4496 |has| |#1| (-376)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-735 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-735 R M) +(-736 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-736 R |Mod| -4442 -2223 |exactQuo|) +((-4495 |has| |#1| (-175)) (-4494 |has| |#1| (-175)) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) +(-737 R |Mod| -1336 -3176 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4496 . T)) +((-4497 . T)) NIL -(-737 S R) +(-738 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-738 R) +(-739 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-739 -2154) +(-740 -2155) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4496 . T)) +((-4497 . T)) NIL -(-740 S) +(-741 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-741) +(-742) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-742 S) +(-743 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-743) +(-744) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-744 S R UP) +(-745 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380)))) -(-745 R UP) +((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381)))) +(-746 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4492 |has| |#1| (-375)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-746 S) +(-747 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-748 -2154 UP) +(-749 -2155 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-749 |VarSet| E1 E2 R S PR PS) +(-750 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented "))) NIL NIL -(-750 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-751 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-751 E OV R PPR) +(-752 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-752 |vl| R) +(-753 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-753 E OV R PRF) +(((-4502 "*") |has| |#2| (-175)) (-4493 |has| |#2| (-570)) (-4498 |has| |#2| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-754 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-754 E OV R P) +(-755 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-755 R S M) +(-756 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-756 R M) +(-757 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-870)))) -(-757 S) +((-4495 |has| |#1| (-175)) (-4494 |has| |#1| (-175)) (-4497 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-871)))) +(-758 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4489 . T) (-4500 . T)) +((-4490 . T) (-4501 . T)) NIL -(-758 S) +(-759 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4499 . T) (-4489 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-759) +((-4500 . T) (-4490 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-760) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-760 S) +(-761 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-761 |Coef| |Var|) +(-762 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4494 . T) (-4493 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-762 OV E R P) +(-763 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-763 E OV R P) +(-764 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-764 S R) +(-765 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-765 R) +(-766 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-766) +(-767) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-767) +(-768) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-768) +(-769) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-769) +(-770) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-770) +(-771) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-771) +(-772) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-772) +(-773) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-773) +(-774) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-774) +(-775) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-775) +(-776) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-776) +(-777) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-777) +(-778) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-778) +(-779) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-779) +(-780) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-780) +(-781) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-781 S) +(-782 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-782) +(-783) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-783 S) +(-784 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-784) +(-785) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-785 |Par|) +(-786 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-786 -2154) +(-787 -2155) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-787 P -2154) +(-788 P -2155) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-788 T$) +(-789 T$) NIL NIL NIL -(-789 UP -2154) +(-790 UP -2155) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-790) +(-791) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-791 R) +(-792 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-792) +(-793) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4501 "*") . T)) +(((-4502 "*") . T)) NIL -(-793 R -2154) +(-794 R -2155) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-794 S) +(-795 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-795) +(-796) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-796 R |PolR| E |PolE|) +(-797 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-797 R E V P TS) +(-798 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-798 -2154 |ExtF| |SUEx| |ExtP| |n|) +(-799 -2155 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-799 BP E OV R P) +(-800 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-800 |Par|) +(-801 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-801 R |VarSet|) +(-802 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2308 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2308 (|HasCategory| |#1| (QUOTE (-558)))) (-2308 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2308 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577))))) (-2308 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2308 (|HasCategory| |#1| (LIST (QUOTE -1022) (QUOTE (-577))))))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-802 R S) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-2309 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-2309 (|HasCategory| |#1| (QUOTE (-559)))) (-2309 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-2309 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578))))) (-2309 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-2309 (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-578))))))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-803 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-803 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-804 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4496 |has| |#1| (-376)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-805 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-805 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) +(-806 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-806 S) +(-807 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-174)))) -(-807) +((-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-175)))) +(-808) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-808) +(-809) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-809) +(-810) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-810) +(-811) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-811 |Curve|) +(-812 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-812) +(-813) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-813) +(-814) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-814) +(-815) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-815) +(-816) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-816) +(-817) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-817 S R) +(-818 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380)))) -(-818 R) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381)))) +(-819 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-819 -2229 R OS S) +(-820 -2230 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-820 R) +(-821 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-2229 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) -(-821) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2230 (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) +(-822) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-822 R -2154 L) +(-823 R -2155 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-823 R -2154) +(-824 R -2155) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-824) +(-825) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-825 R -2154) +(-826 R -2155) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-826) +(-827) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-827 -2154 UP UPUP R) +(-828 -2155 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-828 -2154 UP L LQ) +(-829 -2155 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-829) +(-830) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-830 -2154 UP L LQ) +(-831 -2155 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-831 -2154 UP) +(-832 -2155 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-832 -2154 L UP A LO) +(-833 -2155 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-833 -2154 UP) +(-834 -2155 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-834 -2154 LO) +(-835 -2155 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-835 -2154 LODO) +(-836 -2155 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-836 -3754 S |f|) +(-837 -3755 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2229 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2229 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2229 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) -(-837 R) +((-4494 |has| |#2| (-1080)) (-4495 |has| |#2| (-1080)) (-4497 |has| |#2| (-6 -4497)) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2230 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2230 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2230 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4497)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))))) +(-838 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-838 |Kernels| R |var|) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-839 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4501 "*") |has| |#2| (-375)) (-4492 |has| |#2| (-375)) (-4497 |has| |#2| (-375)) (-4491 |has| |#2| (-375)) (-4496 . T) (-4494 . T) (-4493 . T)) -((|HasCategory| |#2| (QUOTE (-375)))) -(-839 S) +(((-4502 "*") |has| |#2| (-376)) (-4493 |has| |#2| (-376)) (-4498 |has| |#2| (-376)) (-4492 |has| |#2| (-376)) (-4497 . T) (-4495 . T) (-4494 . T)) +((|HasCategory| |#2| (QUOTE (-376)))) +(-840 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-840 S) +(-841 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-870)))) -(-841) +((|HasCategory| |#1| (QUOTE (-871)))) +(-842) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-842) +(-843) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-843) +(-844) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-844) +(-845) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-845) +(-846) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-846) +(-847) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-847 R) +(-848 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-848 P R) +(-849 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239)))) -(-849) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-240)))) +(-850) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-850) +(-851) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-851 S) +(-852 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4499 . T) (-4489 . T) (-4500 . T)) +((-4500 . T) (-4490 . T) (-4501 . T)) NIL -(-852) +(-853) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-853 R S) +(-854 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-854 R) +(-855 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4496 |has| |#1| (-869))) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2229 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2229 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) -(-855 A S) +((-4497 |has| |#1| (-870))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2230 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2230 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-559)))) +(-856 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-856 S) +(-857 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-857 R) +(-858 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-858) +((-4495 |has| |#1| (-175)) (-4494 |has| |#1| (-175)) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) +(-859) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-859) +(-860) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-860) +(-861) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-861) +(-862) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-862) +(-863) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-863 R S) +(-864 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-864 R) +(-865 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4496 |has| |#1| (-869))) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2229 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2229 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) -(-865) +((-4497 |has| |#1| (-870))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2230 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2230 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-559)))) +(-866) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-866 -3754 S) +(-867 -3755 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-867) +(-868) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-868 S) +(-869 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-869) +(-870) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4496 . T)) +((-4497 . T)) NIL -(-870) +(-871) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-871 T$ |f|) +(-872 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) -(-872 S) +((|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) +(-873 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-873) +(-874) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-874 S R) +(-875 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174)))) -(-875 R) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175)))) +(-876 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-876 R C) +(-877 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) -(-877 R |sigma| -2956) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) +(-878 R |sigma| -2957) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-878 |x| R |sigma| -2956) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +(-879 |x| R |sigma| -2957) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-375)))) -(-879 R) +((-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376)))) +(-880 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-880) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) +(-881) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-881) +(-882) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-882 S) +(-883 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-883) +(-884) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-884) +(-885) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-885) +(-886) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-886) +(-887) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-887 |VariableList|) +(-888 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-888) +(-889) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-889 R |vl| |wl| |wtlevel|) +(-890 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) -(-890 R PS UP) +((-4495 |has| |#1| (-175)) (-4494 |has| |#1| (-175)) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) +(-891 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-891 R |x| |pt|) +(-892 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-892 |p|) +(-893 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-893 |p|) +(-894 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-894 |p|) +(-895 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-893 |#1|) (QUOTE (-937))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-148))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1052))) (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870))) (-2229 (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-238))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -893) (|devaluate| |#1|)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-318))) (|HasCategory| (-893 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))))) -(-895 |p| PADIC) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-894 |#1|) (QUOTE (-938))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-149))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-894 |#1|) (QUOTE (-1053))) (|HasCategory| (-894 |#1|) (QUOTE (-842))) (|HasCategory| (-894 |#1|) (QUOTE (-871))) (-2230 (|HasCategory| (-894 |#1|) (QUOTE (-842))) (|HasCategory| (-894 |#1|) (QUOTE (-871)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (QUOTE (-1183))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (QUOTE (-239))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (QUOTE (-240))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -894) (|devaluate| |#1|)) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (QUOTE (-319))) (|HasCategory| (-894 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-938)))) (|HasCategory| (-894 |#1|) (QUOTE (-147))))) +(-896 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870))) (-2229 (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-896 S T$) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2230 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-897 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) -(-897) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))))) +(-898) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-898) +(-899) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-899) +(-900) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-900 CF1 CF2) +(-901 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-901 |ComponentFunction|) +(-902 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-902 CF1 CF2) +(-903 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-903 |ComponentFunction|) +(-904 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-904) +(-905) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-905 CF1 CF2) +(-906 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-906 |ComponentFunction|) +(-907 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-907) +(-908) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-908 R) +(-909 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-909 R S L) +(-910 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-910 S) +(-911 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-911 |Base| |Subject| |Pat|) +(-912 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2308 (|HasCategory| |#2| (QUOTE (-1079)))) (-2308 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (-2308 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) -(-912 R A B) +((-12 (-2309 (|HasCategory| |#2| (QUOTE (-1080)))) (-2309 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-2309 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) +(-913 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-913 R S) +(-914 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-914 R -1675) +(-915 R -1676) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-915 R S) +(-916 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-916 R) +(-917 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-917 |VarSet|) +(-918 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-918 UP R) +(-919 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-919 A T$ S) +(-920 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-920 T$ S) +(-921 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-921) +(-922) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-922 UP -2154) +(-923 UP -2155) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-923) +(-924) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-924) +(-925) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-925 R S) +(-926 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-926 S) +(-927 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4496 . T)) +((-4497 . T)) NIL -(-927 A S) +(-928 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-928 S) +(-929 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-929 S) +(-930 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-930 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-931 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-931 S) +(-932 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4496 . T)) +((-4497 . T)) NIL -(-932 S) +(-933 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-933 S) +(-934 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4496 . T)) -((-2229 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) -(-934 R E |VarSet| S) +((-4497 . T)) +((-2230 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) +(-935 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-935 R S) +(-936 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-936 S) +(-937 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-146)))) -(-937) +((|HasCategory| |#1| (QUOTE (-147)))) +(-938) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-938 |p|) +(-939 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-380)))) -(-939 R0 -2154 UP UPUP R) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) +(-940 R0 -2155 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-940 UP UPUP R) +(-941 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-941 UP UPUP) +(-942 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-942 R) +(-943 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-943 R) +(-944 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-944 E OV R P) +(-945 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-945) +(-946) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-946 -2154) +(-947 -2155) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-947 R) +(-948 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-948) +(-949) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-949) +(-950) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4501 "*") . T)) +(((-4502 "*") . T)) NIL -(-950 -2154 P) +(-951 -2155 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-951 |xx| -2154) +(-952 |xx| -2155) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-952 R |Var| |Expon| GR) +(-953 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-953 S) +(-954 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-954) +(-955) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-955) +(-956) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-956) +(-957) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-957 R -2154) +(-958 R -2155) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-958) +(-959) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-959 S A B) +(-960 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-960 S R -2154) +(-961 S R -2155) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-961 I) +(-962 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-962 S E) +(-963 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-963 S R L) +(-964 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-964 S E V R P) +(-965 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -910) (|devaluate| |#1|)))) -(-965 R -2154 -1675) +((|HasCategory| |#3| (LIST (QUOTE -911) (|devaluate| |#1|)))) +(-966 R -2155 -1676) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-966 -1675) +(-967 -1676) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-967 S R Q) +(-968 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-968 S) +(-969 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-969 S R P) +(-970 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-970) +(-971) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-971 R) +(-972 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-972 |lv| R) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-973 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-973 |TheField| |ThePols|) +(-974 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-869)))) -(-974 R S) +((|HasCategory| |#1| (QUOTE (-870)))) +(-975 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-975 |x| R) +(-976 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-976 S R E |VarSet|) +(-977 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-937))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#4| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#4| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) -(-977 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-938))) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) +(-978 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-978 E V R P -2154) +(-979 E V R P -2155) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-979 E |Vars| R P S) +(-980 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-980 R) +(-981 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-981 E V R P -2154) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-982 E V R P -2155) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-465)))) -(-982) +((|HasCategory| |#3| (QUOTE (-466)))) +(-983) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-983) +(-984) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-984 R L) +(-985 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-985 A B) +(-986 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-986 S) +(-987 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-987) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-988) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-988 -2154) +(-989 -2155) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-989 I) +(-990 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-990) +(-991) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-991 R E) +(-992 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4497))) -(-992 A B) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4498))) +(-993 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4496 -12 (|has| |#2| (-486)) (|has| |#1| (-486)))) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747))))) (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) -(-993) +((-4497 -12 (|has| |#2| (-487)) (|has| |#1| (-487)))) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) +(-994) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-994 T$) +(-995 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-995 T$) +(-996 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-996 S T$) +(-997 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-997) +(-998) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-998 S) +(-999 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL -(-999 R |polR|) +(-1000 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-465)))) -(-1000) +((|HasCategory| |#1| (QUOTE (-466)))) +(-1001) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1001) +(-1002) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-1002 S |Coef| |Expon| |Var|) +(-1003 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-1003 |Coef| |Expon| |Var|) +(-1004 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1004) +(-1005) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-1005 S R E |VarSet| P) +(-1006 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-569)))) -(-1006 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-570)))) +(-1007 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4499 . T)) +((-4500 . T)) NIL -(-1007 R E V P) +(-1008 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-465)))) -(-1008 K) +((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-466)))) +(-1009 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-1009 |VarSet| E RC P) +(-1010 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-1010 R) +(-1011 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-1011 R1 R2) +(-1012 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1012 R) +(-1013 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1013 K) +(-1014 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1014 R E OV PPR) +(-1015 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1015 K R UP -2154) +(-1016 K R UP -2155) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1016 |vl| |nv|) +(-1017 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1017 R |Var| |Expon| |Dpoly|) +(-1018 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-318))))) -(-1018 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319))))) +(-1019 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1019) +(-1020) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1020 A B R S) +(-1021 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1021 A S) +(-1022 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1182)))) -(-1022 S) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-1183)))) +(-1023 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1023 |n| K) +(-1024 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1024) +(-1025) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1025 S) +(-1026 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL -(-1026 S R) +(-1027 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-301)))) -(-1027 R) +((|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-302)))) +(-1028 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4492 |has| |#1| (-301)) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 |has| |#1| (-302)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1028 QR R QS S) +(-1029 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1029 R) +(-1030 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4492 |has| |#1| (-301)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558)))) -(-1030 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4493 |has| |#1| (-302)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559)))) (-1031 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1032 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1032) +(-1033) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1033 -2154 UP UPUP |radicnd| |n|) +(-1034 -2155 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2229 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2229 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2229 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2229 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2229 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2229 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) -(-1034 |bb|) +((-4493 |has| (-421 |#2|) (-376)) (-4498 |has| (-421 |#2|) (-376)) (-4492 |has| (-421 |#2|) (-376)) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-362))) (-2230 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2230 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2230 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2230 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-362))))) (-2230 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-578)))) (-2230 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +(-1035 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2229 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) -(-1035) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2230 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147))))) +(-1036) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1036) +(-1037) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1037 RP) +(-1038 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1038 S) +(-1039 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1039 A S) +(-1040 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-1130)))) -(-1040 S) +((|HasAttribute| |#1| (QUOTE -4501)) (|HasCategory| |#2| (QUOTE (-1131)))) +(-1041 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1041 S) +(-1042 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1042) +(-1043) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4492 . T) (-4497 . T) (-4491 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4496 . T)) +((-4493 . T) (-4498 . T) (-4492 . T) (-4495 . T) (-4494 . T) ((-4502 "*") . T) (-4497 . T)) NIL -(-1043 R -2154) +(-1044 R -2155) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1044 R -2154) +(-1045 R -2155) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1045 -2154 UP) +(-1046 -2155 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1046 -2154 UP) +(-1047 -2155 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1047 S) +(-1048 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1048 F1 UP UPUP R F2) +(-1049 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1049) +(-1050) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1050 |Pol|) +(-1051 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1051 |Pol|) +(-1052 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1052) +(-1053) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1053) +(-1054) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1054 |TheField|) +(-1055 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4492 . T) (-4497 . T) (-4491 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4496 . T)) -((-2229 (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577))))) -(-1055 -2154 L) +((-4493 . T) (-4498 . T) (-4492 . T) (-4495 . T) (-4494 . T) ((-4502 "*") . T) (-4497 . T)) +((-2230 (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (QUOTE (-578))))) +(-1056 -2155 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1056 S) +(-1057 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1130)))) -(-1057 R E V P) +((|HasCategory| |#1| (QUOTE (-1131)))) +(-1058 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1058 R) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1059 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4501 "*")))) -(-1059 R) +((|HasAttribute| |#1| (QUOTE (-4502 "*")))) +(-1060 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-318)))) -(-1060 S) +((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319)))) +(-1061 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1061) +(-1062) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1062 S) +(-1063 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1063 S) +(-1064 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1064 -2154 |Expon| |VarSet| |FPol| |LFPol|) +(-1065 -2155 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1065) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2753) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102)))) (-1066) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2754) (QUOTE (-52))))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-52) (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-102)))) +(-1067) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1067 A S) +(-1068 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1068 S) +(-1069 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1069 Q R) +(-1070 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1070) +(-1071) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1071 UP) +(-1072 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1072 R) +(-1073 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1073 R) +(-1074 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1074 T$) +(-1075 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1075 T$) +(-1076 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1076 R |ls|) +(-1077 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| (-801 |#1| (-887 |#2|)) (QUOTE (-1130))) (|HasCategory| (-801 |#1| (-887 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -801) (|devaluate| |#1|) (LIST (QUOTE -887) (|devaluate| |#2|)))))) (|HasCategory| (-801 |#1| (-887 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-801 |#1| (-887 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-887 |#2|) (QUOTE (-380))) (|HasCategory| (-801 |#1| (-887 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-801 |#1| (-887 |#2|)) (QUOTE (-102)))) -(-1077) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1131))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -802) (|devaluate| |#1|) (LIST (QUOTE -888) (|devaluate| |#2|)))))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| (-888 |#2|) (QUOTE (-381))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-102)))) +(-1078) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1078 S) +(-1079 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1079) +(-1080) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4496 . T)) +((-4497 . T)) NIL -(-1080 |xx| -2154) +(-1081 |xx| -2155) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1081 S) +(-1082 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1082 S |m| |n| R |Row| |Col|) +(-1083 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-569))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1083 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-570))) (|HasCategory| |#4| (QUOTE (-175)))) +(-1084 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4499 . T) (-4494 . T) (-4493 . T)) +((-4500 . T) (-4495 . T) (-4494 . T)) NIL -(-1084 |m| |n| R) +(-1085 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4499 . T) (-4494 . T) (-4493 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2229 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) -(-1085 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4500 . T) (-4495 . T) (-4494 . T)) +((|HasCategory| |#3| (QUOTE (-175))) (-2230 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-570))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886))))) +(-1086 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1086 R) +(-1087 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1087 S T$) +(-1088 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1130)))) -(-1088) +((|HasCategory| |#1| (QUOTE (-1131)))) +(-1089) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1089 S) +(-1090 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1090) +(-1091) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1091 |TheField| |ThePolDom|) +(-1092 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1092) +(-1093) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4487 . T) (-4491 . T) (-4486 . T) (-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4488 . T) (-4492 . T) (-4487 . T) (-4498 . T) (-4499 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1093) +(-1094) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2753) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102)))) -(-1094 S R E V) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2754) (QUOTE (-52))))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-52) (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (QUOTE (-102)))) +(-1095 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1022) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-1206))))) -(-1095 R E V) +((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-1207))))) +(-1096 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-1096) +(-1097) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1097 S |TheField| |ThePols|) +(-1098 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1098 |TheField| |ThePols|) +(-1099 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1099 R E V P TS) +(-1100 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1100 S R E V P) +(-1101 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1101 R E V P) +(-1102 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-1102 R E V P TS) +(-1103 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1103) +(-1104) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1104) +(-1105) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1105 |f|) +(-1106 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1106 |Base| R -2154) +(-1107 |Base| R -2155) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1107 |Base| R -2154) +(-1108 |Base| R -2155) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1108 R |ls|) +(-1109 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1109 UP SAE UPA) +(-1110 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1110 R UP M) +(-1111 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4492 |has| |#1| (-375)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) -(-1111 UP SAE UPA) +((-4493 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-362))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) +(-1112 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1112) +(-1113) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1113) +(-1114) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1114 S) +(-1115 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1115) +(-1116) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1116 R) +(-1117 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1117 R) +(-1118 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1118 S) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1119 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1119 R S) +(-1120 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-869)))) -(-1120) +((|HasCategory| |#1| (QUOTE (-870)))) +(-1121) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1121 R S) +(-1122 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1122 S) +(-1123 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1124 |#1|) (QUOTE (-1130)))) -(-1123 S) +((|HasCategory| (-1125 |#1|) (QUOTE (-1131)))) +(-1124 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1124 S) +(-1125 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) -(-1125 S L) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) +(-1126 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1126) +(-1127) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1127 A S) +(-1128 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1128 S) +(-1129 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4489 . T)) +((-4490 . T)) NIL -(-1129 S) +(-1130 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1130) +(-1131) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1131 |m| |n|) +(-1132 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1132 S) +(-1133 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4499 . T) (-4489 . T) (-4500 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-1133 |Str| |Sym| |Int| |Flt| |Expr|) +((-4500 . T) (-4490 . T) (-4501 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-1134 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1134) +(-1135) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1135 |Str| |Sym| |Int| |Flt| |Expr|) +(-1136 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1136 R FS) +(-1137 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1137 R E V P TS) +(-1138 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1138 R E V P TS) +(-1139 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1139 R E V P) +(-1140 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-1140) +(-1141) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1141 S) +(-1142 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1142) +(-1143) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1143 |dimtot| |dim1| S) +(-1144 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4493 |has| |#3| (-1079)) (-4494 |has| |#3| (-1079)) (-4496 |has| |#3| (-6 -4496)) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#3| (QUOTE (-375))) (-2229 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2229 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2229 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2229 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2229 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2229 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) -(-1144 R |x|) +((-4494 |has| |#3| (-1080)) (-4495 |has| |#3| (-1080)) (-4497 |has| |#3| (-6 -4497)) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#3| (QUOTE (-376))) (-2230 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2230 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2230 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2230 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2230 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2230 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (|HasAttribute| |#3| (QUOTE -4497)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) +(-1145 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-465)))) -(-1145) +((|HasCategory| |#1| (QUOTE (-466)))) +(-1146) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1146 R -2154) +(-1147 R -2155) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1147 R) +(-1148 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1148) +(-1149) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1149) +(-1150) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1150) +(-1151) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4487 . T) (-4491 . T) (-4486 . T) (-4497 . T) (-4498 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4488 . T) (-4492 . T) (-4487 . T) (-4498 . T) (-4499 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1151 S) +(-1152 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4499 . T) (-4500 . T)) +((-4500 . T) (-4501 . T)) NIL -(-1152 S |ndim| R |Row| |Col|) +(-1153 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-375))) (|HasAttribute| |#3| (QUOTE (-4501 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1153 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4502 "*"))) (|HasCategory| |#3| (QUOTE (-175)))) +(-1154 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4499 . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4500 . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1154 R |Row| |Col| M) +(-1155 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1155 R |VarSet|) +(-1156 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1156 |Coef| |Var| SMP) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1157 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) -(-1157 R E V P) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376)))) +(-1158 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-1158 UP -2154) +(-1159 UP -2155) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1159 R) +(-1160 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1160 R) +(-1161 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1161 R) +(-1162 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1162 S A) +(-1163 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-870)))) -(-1163 R) +((|HasCategory| |#1| (QUOTE (-871)))) +(-1164 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1164 R) +(-1165 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1165) +(-1166) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1166) +(-1167) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1167) +(-1168) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1168) +(-1169) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1169) +(-1170) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1170 V C) +(-1171 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1171 V C) +(-1172 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))) (-2229 (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (-2229 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))))) (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102)))) -(-1172 |ndim| R) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131))) (-2230 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131)))) (-2230 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131))))) (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102)))) +(-1173 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4496 . T) (-4488 |has| |#2| (-6 (-4501 "*"))) (-4499 . T) (-4493 . T) (-4494 . T)) -((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (-2229 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1173 S) +((-4497 . T) (-4489 |has| |#2| (-6 (-4502 "*"))) (-4500 . T) (-4494 . T) (-4495 . T)) +((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4502 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (-2230 (|HasAttribute| |#2| (QUOTE (-4502 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +(-1174 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1174) +(-1175) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-1175 R E V P TS) +(-1176 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1176 R E V P) +(-1177 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1177 S) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1178 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1178 A S) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1179 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1179 S) +(-1180 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1180 |Key| |Ent| |dent|) +(-1181 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130)))) -(-1181) +((-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131)))) +(-1182) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1182) +(-1183) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1183 |Coef|) +(-1184 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1184 S) +(-1185 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1185 A B) +(-1186 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1186 A B C) +(-1187 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1187 S) +(-1188 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1188) +((-4501 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1189) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2229 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2229 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) -(-1189 |Entry|) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2230 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-871))) (-2230 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) +(-1190 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#1|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102)))) -(-1190 A) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#1|)))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (QUOTE (-102)))) +(-1191 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-1191 |Coef|) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) +(-1192 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1192 |Coef|) +(-1193 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1193 R UP) +(-1194 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-318)))) -(-1194 |n| R) +((|HasCategory| |#1| (QUOTE (-319)))) +(-1195 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1195 S1 S2) +(-1196 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1196) +(-1197) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1197 |Coef| |var| |cen|) +(-1198 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4501 "*") -2229 (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4492 -2229 (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1198 R -2154) +(((-4502 "*") -2230 (-2320 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2320 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4493 -2230 (-2320 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-2320 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1199 R -2155) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1199 R) +(-1200 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1200 R S) +(-1201 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1201 E OV R P) +(-1202 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1202 R) +(-1203 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1203 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4496 |has| |#1| (-376)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1204 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1205 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) -(-1205) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1206) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1206) +(-1207) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1207 R) +(-1208 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1208 R) +(-1209 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| (-1001) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasAttribute| |#1| (QUOTE -4497))) -(-1209) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-6 -4498)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| (-1002) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasAttribute| |#1| (QUOTE -4498))) +(-1210) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1210) +(-1211) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1211) +(-1212) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1212 N) +(-1213 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1213 N) +(-1214 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1214) +(-1215) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1215 R) +(-1216 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1216) +(-1217) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1217 S) +(-1218 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1218 S) +(-1219 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1219 |Key| |Entry|) +(-1220 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102)))) -(-1220 S) +((-4500 . T) (-4501 . T)) +((-12 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3173) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2230 (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (QUOTE (-102)))) +(-1221 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1221 R) +(-1222 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1222 S |Key| |Entry|) +(-1223 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1223 |Key| |Entry|) +(-1224 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4500 . T)) +((-4501 . T)) NIL -(-1224 |Key| |Entry|) +(-1225 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1225) +(-1226) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1226 S) +(-1227 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1227) +(-1228) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1228) +(-1229) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1229 R) +(-1230 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1230) +(-1231) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1231 S) +(-1232 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1232) +(-1233) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1233 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1234 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1235 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1235) +(-1236) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1236 R -2154) +(-1237 R -2155) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1237 R |Row| |Col| M) +(-1238 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1238 R -2154) +(-1239 R -2155) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -910) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -910) (|devaluate| |#1|))))) -(-1239 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -911) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -911) (|devaluate| |#1|))))) +(-1240 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-380)))) -(-1240 R E V P) +((|HasCategory| |#4| (QUOTE (-381)))) +(-1241 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-1241 |Coef|) +(-1242 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) -(-1242 |Curve|) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376)))) +(-1243 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1243) +(-1244) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1244 S) +(-1245 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) -(-1245 -2154) +((|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) +(-1246 -2155) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1246) +(-1247) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1247) +(-1248) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1248 S) +(-1249 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-870)))) -(-1249) +((|HasCategory| |#1| (QUOTE (-871)))) +(-1250) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1250 S) +(-1251 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1251) +(-1252) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1252) +(-1253) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1253) +(-1254) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1254) +(-1255) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1255) +(-1256) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1256 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1257 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1257 |Coef|) +(-1258 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1258 S |Coef| UTS) +(-1259 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-375)))) -(-1259 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-376)))) +(-1260 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1260 |Coef| UTS) +(-1261 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))) (-2229 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-148))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870))))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-937))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1261 |Coef| |var| |cen|) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2230 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2230 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-938))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) +(-1262 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4501 "*") -2229 (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-937)))) (-4492 -2229 (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1262 ZP) +(((-4502 "*") -2230 (-2320 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2320 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4493 -2230 (-2320 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-2320 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1263 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1263 R S) +(-1264 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-869)))) -(-1264 S) +((|HasCategory| |#1| (QUOTE (-870)))) +(-1265 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) -(-1265 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) +(-1266 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1266 R Q UP) +(-1267 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1267 R UP) +(-1268 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1268 R UP) +(-1269 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1269 R U) +(-1270 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1270 |x| R) +(-1271 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4495 |has| |#2| (-375)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2229 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2229 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1271 R PR S PS) +(((-4502 "*") |has| |#2| (-175)) (-4493 |has| |#2| (-570)) (-4496 |has| |#2| (-376)) (-4498 |has| |#2| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2230 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2230 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2230 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-1272 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1272 S R) +(-1273 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1182)))) -(-1273 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1183)))) +(-1274 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4496 |has| |#1| (-376)) (-4498 |has| |#1| (-6 -4498)) (-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-1274 S |Coef| |Expon|) +(-1275 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1142))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2410) (LIST (|devaluate| |#2|) (QUOTE (-1206)))))) -(-1275 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2411) (LIST (|devaluate| |#2|) (QUOTE (-1207)))))) +(-1276 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1276 RC P) +(-1277 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1277 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1278 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1278 |Coef|) +(-1279 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1279 S |Coef| ULS) +(-1280 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1280 |Coef| ULS) +(-1281 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1281 |Coef| ULS) +(-1282 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) -(-1282 |Coef| |var| |cen|) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) +(-1283 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) -(-1283 R FE |var| |cen|) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4498 |has| |#1| (-376)) (-4492 |has| |#1| (-376)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2230 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1284 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4501 "*") |has| (-1282 |#2| |#3| |#4|) (-174)) (-4492 |has| (-1282 |#2| |#3| |#4|) (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-174))) (-2229 (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-375))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-465))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-569)))) -(-1284 A S) +(((-4502 "*") |has| (-1283 |#2| |#3| |#4|) (-175)) (-4493 |has| (-1283 |#2| |#3| |#4|) (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-175))) (-2230 (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-570)))) +(-1285 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4500))) -(-1285 S) +((|HasAttribute| |#1| (QUOTE -4501))) +(-1286 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1286 |Coef1| |Coef2| UTS1 UTS2) +(-1287 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1287 S |Coef|) +(-1288 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasSignature| |#2| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3491) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) -(-1288 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-988))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4371) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) +(-1289 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1289 |Coef| |var| |cen|) +(-1290 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) -(-1290 |Coef| UTS) +(((-4502 "*") |has| |#1| (-175)) (-4493 |has| |#1| (-570)) (-4494 . T) (-4495 . T) (-4497 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2230 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2411) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2230 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -4371) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -2949) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|))))))) +(-1291 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1291 -2154 UP L UTS) +(-1292 -2155 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-569)))) -(-1292) +((|HasCategory| |#1| (QUOTE (-570)))) +(-1293) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1293 |sym|) +(-1294 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1294 S R) +(-1295 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1295 R) +((|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1296 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4500 . T) (-4499 . T)) +((-4501 . T) (-4500 . T)) NIL -(-1296 A B) +(-1297 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1297 R) +(-1298 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4500 . T) (-4499 . T)) -((-2229 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2229 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-1298) +((-4501 . T) (-4500 . T)) +((-2230 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2230 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2230 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2230 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) +(-1299) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1299) +(-1300) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1300) +(-1301) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1301) +(-1302) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1302) +(-1303) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1303 A S) +(-1304 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1304 S) +(-1305 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4494 . T) (-4493 . T)) +((-4495 . T) (-4494 . T)) NIL -(-1305 R) +(-1306 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1306 K R UP -2154) +(-1307 K R UP -2155) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1307) +(-1308) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1308) +(-1309) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1309 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1310 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) -(-1310 R E V P) +((-4495 |has| |#1| (-175)) (-4494 |has| |#1| (-175)) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) +(-1311 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4500 . T) (-4499 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1311 R) +((-4501 . T) (-4500 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1312 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4493 . T) (-4494 . T) (-4496 . T)) +((-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1312 |vl| R) +(-1313 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4496 . T) (-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4492))) -(-1313 R |VarSet| XPOLY) +((-4497 . T) (-4493 |has| |#2| (-6 -4493)) (-4495 . T) (-4494 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4493))) +(-1314 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1314 |vl| R) +(-1315 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) +((-4493 |has| |#2| (-6 -4493)) (-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-1315 S -2154) +(-1316 S -2155) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1316 -2154) +((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149)))) +(-1317 -2155) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 . T) (-4498 . T) (-4493 . T) ((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL -(-1317 |VarSet| R) +(-1318 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -738) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasAttribute| |#2| (QUOTE -4492))) -(-1318 |vl| R) +((-4493 |has| |#2| (-6 -4493)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -739) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasAttribute| |#2| (QUOTE -4493))) +(-1319 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) +((-4493 |has| |#2| (-6 -4493)) (-4495 . T) (-4494 . T) (-4497 . T)) NIL -(-1319 R) +(-1320 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4492 |has| |#1| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4492))) -(-1320 R E) +((-4493 |has| |#1| (-6 -4493)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4493))) +(-1321 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4496 . T) (-4497 |has| |#1| (-6 -4497)) (-4492 |has| |#1| (-6 -4492)) (-4494 . T) (-4493 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4496)) (|HasAttribute| |#1| (QUOTE -4497)) (|HasAttribute| |#1| (QUOTE -4492))) -(-1321 |VarSet| R) +((-4497 . T) (-4498 |has| |#1| (-6 -4498)) (-4493 |has| |#1| (-6 -4493)) (-4495 . T) (-4494 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasAttribute| |#1| (QUOTE -4498)) (|HasAttribute| |#1| (QUOTE -4493))) +(-1322 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4492))) -(-1322) +((-4493 |has| |#2| (-6 -4493)) (-4495 . T) (-4494 . T) (-4497 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4493))) +(-1323) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1323 A) +(-1324 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1324 R |ls| |ls2|) +(-1325 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1325 R) +(-1326 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1326 |p|) +(-1327 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +(((-4502 "*") . T) (-4494 . T) (-4495 . T) (-4497 . T)) NIL NIL NIL @@ -5252,4 +5256,4 @@ NIL NIL NIL NIL -((-3 NIL 2299801 2299806 2299811 2299816) (-2 NIL 2299781 2299786 2299791 2299796) (-1 NIL 2299761 2299766 2299771 2299776) (0 NIL 2299741 2299746 2299751 2299756) (-1326 "ZMOD.spad" 2299550 2299563 2299679 2299736) (-1325 "ZLINDEP.spad" 2298616 2298627 2299540 2299545) (-1324 "ZDSOLVE.spad" 2288560 2288582 2298606 2298611) (-1323 "YSTREAM.spad" 2288055 2288066 2288550 2288555) (-1322 "YDIAGRAM.spad" 2287689 2287698 2288045 2288050) (-1321 "XRPOLY.spad" 2286909 2286929 2287545 2287614) (-1320 "XPR.spad" 2284704 2284717 2286627 2286726) (-1319 "XPOLY.spad" 2284259 2284270 2284560 2284629) (-1318 "XPOLYC.spad" 2283578 2283594 2284185 2284254) (-1317 "XPBWPOLY.spad" 2282015 2282035 2283358 2283427) (-1316 "XF.spad" 2280478 2280493 2281917 2282010) (-1315 "XF.spad" 2278921 2278938 2280362 2280367) (-1314 "XFALG.spad" 2275969 2275985 2278847 2278916) (-1313 "XEXPPKG.spad" 2275220 2275246 2275959 2275964) (-1312 "XDPOLY.spad" 2274834 2274850 2275076 2275145) (-1311 "XALG.spad" 2274494 2274505 2274790 2274829) (-1310 "WUTSET.spad" 2270297 2270314 2274104 2274131) (-1309 "WP.spad" 2269496 2269540 2270155 2270222) (-1308 "WHILEAST.spad" 2269294 2269303 2269486 2269491) (-1307 "WHEREAST.spad" 2268965 2268974 2269284 2269289) (-1306 "WFFINTBS.spad" 2266628 2266650 2268955 2268960) (-1305 "WEIER.spad" 2264850 2264861 2266618 2266623) (-1304 "VSPACE.spad" 2264523 2264534 2264818 2264845) (-1303 "VSPACE.spad" 2264216 2264229 2264513 2264518) (-1302 "VOID.spad" 2263893 2263902 2264206 2264211) (-1301 "VIEW.spad" 2261573 2261582 2263883 2263888) (-1300 "VIEWDEF.spad" 2256774 2256783 2261563 2261568) (-1299 "VIEW3D.spad" 2240735 2240744 2256764 2256769) (-1298 "VIEW2D.spad" 2228626 2228635 2240725 2240730) (-1297 "VECTOR.spad" 2227147 2227158 2227398 2227425) (-1296 "VECTOR2.spad" 2225786 2225799 2227137 2227142) (-1295 "VECTCAT.spad" 2223690 2223701 2225754 2225781) (-1294 "VECTCAT.spad" 2221401 2221414 2223467 2223472) (-1293 "VARIABLE.spad" 2221181 2221196 2221391 2221396) (-1292 "UTYPE.spad" 2220825 2220834 2221171 2221176) (-1291 "UTSODETL.spad" 2220120 2220144 2220781 2220786) (-1290 "UTSODE.spad" 2218336 2218356 2220110 2220115) (-1289 "UTS.spad" 2213283 2213311 2216803 2216900) (-1288 "UTSCAT.spad" 2210762 2210778 2213181 2213278) (-1287 "UTSCAT.spad" 2207885 2207903 2210306 2210311) (-1286 "UTS2.spad" 2207480 2207515 2207875 2207880) (-1285 "URAGG.spad" 2202153 2202164 2207470 2207475) (-1284 "URAGG.spad" 2196790 2196803 2202109 2202114) (-1283 "UPXSSING.spad" 2194435 2194461 2195871 2196004) (-1282 "UPXS.spad" 2191731 2191759 2192567 2192716) (-1281 "UPXSCONS.spad" 2189490 2189510 2189863 2190012) (-1280 "UPXSCCA.spad" 2188061 2188081 2189336 2189485) (-1279 "UPXSCCA.spad" 2186774 2186796 2188051 2188056) (-1278 "UPXSCAT.spad" 2185363 2185379 2186620 2186769) (-1277 "UPXS2.spad" 2184906 2184959 2185353 2185358) (-1276 "UPSQFREE.spad" 2183320 2183334 2184896 2184901) (-1275 "UPSCAT.spad" 2181107 2181131 2183218 2183315) (-1274 "UPSCAT.spad" 2178600 2178626 2180713 2180718) (-1273 "UPOLYC.spad" 2173640 2173651 2178442 2178595) (-1272 "UPOLYC.spad" 2168572 2168585 2173376 2173381) (-1271 "UPOLYC2.spad" 2168043 2168062 2168562 2168567) (-1270 "UP.spad" 2165149 2165164 2165536 2165689) (-1269 "UPMP.spad" 2164049 2164062 2165139 2165144) (-1268 "UPDIVP.spad" 2163614 2163628 2164039 2164044) (-1267 "UPDECOMP.spad" 2161859 2161873 2163604 2163609) (-1266 "UPCDEN.spad" 2161068 2161084 2161849 2161854) (-1265 "UP2.spad" 2160432 2160453 2161058 2161063) (-1264 "UNISEG.spad" 2159785 2159796 2160351 2160356) (-1263 "UNISEG2.spad" 2159282 2159295 2159741 2159746) (-1262 "UNIFACT.spad" 2158385 2158397 2159272 2159277) (-1261 "ULS.spad" 2148169 2148197 2149114 2149543) (-1260 "ULSCONS.spad" 2139303 2139323 2139673 2139822) (-1259 "ULSCCAT.spad" 2137040 2137060 2139149 2139298) (-1258 "ULSCCAT.spad" 2134885 2134907 2136996 2137001) (-1257 "ULSCAT.spad" 2133117 2133133 2134731 2134880) (-1256 "ULS2.spad" 2132631 2132684 2133107 2133112) (-1255 "UINT8.spad" 2132508 2132517 2132621 2132626) (-1254 "UINT64.spad" 2132384 2132393 2132498 2132503) (-1253 "UINT32.spad" 2132260 2132269 2132374 2132379) (-1252 "UINT16.spad" 2132136 2132145 2132250 2132255) (-1251 "UFD.spad" 2131201 2131210 2132062 2132131) (-1250 "UFD.spad" 2130328 2130339 2131191 2131196) (-1249 "UDVO.spad" 2129209 2129218 2130318 2130323) (-1248 "UDPO.spad" 2126702 2126713 2129165 2129170) (-1247 "TYPE.spad" 2126634 2126643 2126692 2126697) (-1246 "TYPEAST.spad" 2126553 2126562 2126624 2126629) (-1245 "TWOFACT.spad" 2125205 2125220 2126543 2126548) (-1244 "TUPLE.spad" 2124691 2124702 2125104 2125109) (-1243 "TUBETOOL.spad" 2121558 2121567 2124681 2124686) (-1242 "TUBE.spad" 2120205 2120222 2121548 2121553) (-1241 "TS.spad" 2118804 2118820 2119770 2119867) (-1240 "TSETCAT.spad" 2105931 2105948 2118772 2118799) (-1239 "TSETCAT.spad" 2093044 2093063 2105887 2105892) (-1238 "TRMANIP.spad" 2087410 2087427 2092750 2092755) (-1237 "TRIMAT.spad" 2086373 2086398 2087400 2087405) (-1236 "TRIGMNIP.spad" 2084900 2084917 2086363 2086368) (-1235 "TRIGCAT.spad" 2084412 2084421 2084890 2084895) (-1234 "TRIGCAT.spad" 2083922 2083933 2084402 2084407) (-1233 "TREE.spad" 2082380 2082391 2083412 2083439) (-1232 "TRANFUN.spad" 2082219 2082228 2082370 2082375) (-1231 "TRANFUN.spad" 2082056 2082067 2082209 2082214) (-1230 "TOPSP.spad" 2081730 2081739 2082046 2082051) (-1229 "TOOLSIGN.spad" 2081393 2081404 2081720 2081725) (-1228 "TEXTFILE.spad" 2079954 2079963 2081383 2081388) (-1227 "TEX.spad" 2077100 2077109 2079944 2079949) (-1226 "TEX1.spad" 2076656 2076667 2077090 2077095) (-1225 "TEMUTL.spad" 2076211 2076220 2076646 2076651) (-1224 "TBCMPPK.spad" 2074304 2074327 2076201 2076206) (-1223 "TBAGG.spad" 2073354 2073377 2074284 2074299) (-1222 "TBAGG.spad" 2072412 2072437 2073344 2073349) (-1221 "TANEXP.spad" 2071820 2071831 2072402 2072407) (-1220 "TALGOP.spad" 2071544 2071555 2071810 2071815) (-1219 "TABLE.spad" 2069513 2069536 2069783 2069810) (-1218 "TABLEAU.spad" 2068994 2069005 2069503 2069508) (-1217 "TABLBUMP.spad" 2065797 2065808 2068984 2068989) (-1216 "SYSTEM.spad" 2065025 2065034 2065787 2065792) (-1215 "SYSSOLP.spad" 2062508 2062519 2065015 2065020) (-1214 "SYSPTR.spad" 2062407 2062416 2062498 2062503) (-1213 "SYSNNI.spad" 2061598 2061609 2062397 2062402) (-1212 "SYSINT.spad" 2061002 2061013 2061588 2061593) (-1211 "SYNTAX.spad" 2057208 2057217 2060992 2060997) (-1210 "SYMTAB.spad" 2055276 2055285 2057198 2057203) (-1209 "SYMS.spad" 2051299 2051308 2055266 2055271) (-1208 "SYMPOLY.spad" 2050305 2050316 2050387 2050514) (-1207 "SYMFUNC.spad" 2049806 2049817 2050295 2050300) (-1206 "SYMBOL.spad" 2047309 2047318 2049796 2049801) (-1205 "SWITCH.spad" 2044080 2044089 2047299 2047304) (-1204 "SUTS.spad" 2041128 2041156 2042547 2042644) (-1203 "SUPXS.spad" 2038411 2038439 2039260 2039409) (-1202 "SUP.spad" 2035131 2035142 2035904 2036057) (-1201 "SUPFRACF.spad" 2034236 2034254 2035121 2035126) (-1200 "SUP2.spad" 2033628 2033641 2034226 2034231) (-1199 "SUMRF.spad" 2032602 2032613 2033618 2033623) (-1198 "SUMFS.spad" 2032239 2032256 2032592 2032597) (-1197 "SULS.spad" 2022010 2022038 2022968 2023397) (-1196 "SUCHTAST.spad" 2021779 2021788 2022000 2022005) (-1195 "SUCH.spad" 2021461 2021476 2021769 2021774) (-1194 "SUBSPACE.spad" 2013576 2013591 2021451 2021456) (-1193 "SUBRESP.spad" 2012746 2012760 2013532 2013537) (-1192 "STTF.spad" 2008845 2008861 2012736 2012741) (-1191 "STTFNC.spad" 2005313 2005329 2008835 2008840) (-1190 "STTAYLOR.spad" 1997948 1997959 2005194 2005199) (-1189 "STRTBL.spad" 1995999 1996016 1996148 1996175) (-1188 "STRING.spad" 1994786 1994795 1995007 1995034) (-1187 "STREAM.spad" 1991587 1991598 1994194 1994209) (-1186 "STREAM3.spad" 1991160 1991175 1991577 1991582) (-1185 "STREAM2.spad" 1990288 1990301 1991150 1991155) (-1184 "STREAM1.spad" 1989994 1990005 1990278 1990283) (-1183 "STINPROD.spad" 1988930 1988946 1989984 1989989) (-1182 "STEP.spad" 1988131 1988140 1988920 1988925) (-1181 "STEPAST.spad" 1987365 1987374 1988121 1988126) (-1180 "STBL.spad" 1985449 1985477 1985616 1985631) (-1179 "STAGG.spad" 1984524 1984535 1985439 1985444) (-1178 "STAGG.spad" 1983597 1983610 1984514 1984519) (-1177 "STACK.spad" 1982837 1982848 1983087 1983114) (-1176 "SREGSET.spad" 1980505 1980522 1982447 1982474) (-1175 "SRDCMPK.spad" 1979066 1979086 1980495 1980500) (-1174 "SRAGG.spad" 1974209 1974218 1979034 1979061) (-1173 "SRAGG.spad" 1969372 1969383 1974199 1974204) (-1172 "SQMATRIX.spad" 1966915 1966933 1967831 1967918) (-1171 "SPLTREE.spad" 1961311 1961324 1966195 1966222) (-1170 "SPLNODE.spad" 1957899 1957912 1961301 1961306) (-1169 "SPFCAT.spad" 1956708 1956717 1957889 1957894) (-1168 "SPECOUT.spad" 1955260 1955269 1956698 1956703) (-1167 "SPADXPT.spad" 1946855 1946864 1955250 1955255) (-1166 "spad-parser.spad" 1946320 1946329 1946845 1946850) (-1165 "SPADAST.spad" 1946021 1946030 1946310 1946315) (-1164 "SPACEC.spad" 1930220 1930231 1946011 1946016) (-1163 "SPACE3.spad" 1929996 1930007 1930210 1930215) (-1162 "SORTPAK.spad" 1929545 1929558 1929952 1929957) (-1161 "SOLVETRA.spad" 1927308 1927319 1929535 1929540) (-1160 "SOLVESER.spad" 1925836 1925847 1927298 1927303) (-1159 "SOLVERAD.spad" 1921862 1921873 1925826 1925831) (-1158 "SOLVEFOR.spad" 1920324 1920342 1921852 1921857) (-1157 "SNTSCAT.spad" 1919924 1919941 1920292 1920319) (-1156 "SMTS.spad" 1918196 1918222 1919489 1919586) (-1155 "SMP.spad" 1915671 1915691 1916061 1916188) (-1154 "SMITH.spad" 1914516 1914541 1915661 1915666) (-1153 "SMATCAT.spad" 1912626 1912656 1914460 1914511) (-1152 "SMATCAT.spad" 1910668 1910700 1912504 1912509) (-1151 "SKAGG.spad" 1909631 1909642 1910636 1910663) (-1150 "SINT.spad" 1908571 1908580 1909497 1909626) (-1149 "SIMPAN.spad" 1908299 1908308 1908561 1908566) (-1148 "SIG.spad" 1907629 1907638 1908289 1908294) (-1147 "SIGNRF.spad" 1906747 1906758 1907619 1907624) (-1146 "SIGNEF.spad" 1906026 1906043 1906737 1906742) (-1145 "SIGAST.spad" 1905411 1905420 1906016 1906021) (-1144 "SHP.spad" 1903339 1903354 1905367 1905372) (-1143 "SHDP.spad" 1891017 1891044 1891526 1891625) (-1142 "SGROUP.spad" 1890625 1890634 1891007 1891012) (-1141 "SGROUP.spad" 1890231 1890242 1890615 1890620) (-1140 "SGCF.spad" 1883370 1883379 1890221 1890226) (-1139 "SFRTCAT.spad" 1882300 1882317 1883338 1883365) (-1138 "SFRGCD.spad" 1881363 1881383 1882290 1882295) (-1137 "SFQCMPK.spad" 1876000 1876020 1881353 1881358) (-1136 "SFORT.spad" 1875439 1875453 1875990 1875995) (-1135 "SEXOF.spad" 1875282 1875322 1875429 1875434) (-1134 "SEX.spad" 1875174 1875183 1875272 1875277) (-1133 "SEXCAT.spad" 1872946 1872986 1875164 1875169) (-1132 "SET.spad" 1871234 1871245 1872331 1872370) (-1131 "SETMN.spad" 1869684 1869701 1871224 1871229) (-1130 "SETCAT.spad" 1869169 1869178 1869674 1869679) (-1129 "SETCAT.spad" 1868652 1868663 1869159 1869164) (-1128 "SETAGG.spad" 1865201 1865212 1868632 1868647) (-1127 "SETAGG.spad" 1861758 1861771 1865191 1865196) (-1126 "SEQAST.spad" 1861461 1861470 1861748 1861753) (-1125 "SEGXCAT.spad" 1860617 1860630 1861451 1861456) (-1124 "SEG.spad" 1860430 1860441 1860536 1860541) (-1123 "SEGCAT.spad" 1859355 1859366 1860420 1860425) (-1122 "SEGBIND.spad" 1859113 1859124 1859302 1859307) (-1121 "SEGBIND2.spad" 1858811 1858824 1859103 1859108) (-1120 "SEGAST.spad" 1858525 1858534 1858801 1858806) (-1119 "SEG2.spad" 1857960 1857973 1858481 1858486) (-1118 "SDVAR.spad" 1857236 1857247 1857950 1857955) (-1117 "SDPOL.spad" 1854569 1854580 1854860 1854987) (-1116 "SCPKG.spad" 1852658 1852669 1854559 1854564) (-1115 "SCOPE.spad" 1851811 1851820 1852648 1852653) (-1114 "SCACHE.spad" 1850507 1850518 1851801 1851806) (-1113 "SASTCAT.spad" 1850416 1850425 1850497 1850502) (-1112 "SAOS.spad" 1850288 1850297 1850406 1850411) (-1111 "SAERFFC.spad" 1850001 1850021 1850278 1850283) (-1110 "SAE.spad" 1847471 1847487 1848082 1848217) (-1109 "SAEFACT.spad" 1847172 1847192 1847461 1847466) (-1108 "RURPK.spad" 1844831 1844847 1847162 1847167) (-1107 "RULESET.spad" 1844284 1844308 1844821 1844826) (-1106 "RULE.spad" 1842524 1842548 1844274 1844279) (-1105 "RULECOLD.spad" 1842376 1842389 1842514 1842519) (-1104 "RTVALUE.spad" 1842111 1842120 1842366 1842371) (-1103 "RSTRCAST.spad" 1841828 1841837 1842101 1842106) (-1102 "RSETGCD.spad" 1838206 1838226 1841818 1841823) (-1101 "RSETCAT.spad" 1828142 1828159 1838174 1838201) (-1100 "RSETCAT.spad" 1818098 1818117 1828132 1828137) (-1099 "RSDCMPK.spad" 1816550 1816570 1818088 1818093) (-1098 "RRCC.spad" 1814934 1814964 1816540 1816545) (-1097 "RRCC.spad" 1813316 1813348 1814924 1814929) (-1096 "RPTAST.spad" 1813018 1813027 1813306 1813311) (-1095 "RPOLCAT.spad" 1792378 1792393 1812886 1813013) (-1094 "RPOLCAT.spad" 1771451 1771468 1791961 1791966) (-1093 "ROUTINE.spad" 1766872 1766881 1769636 1769663) (-1092 "ROMAN.spad" 1766200 1766209 1766738 1766867) (-1091 "ROIRC.spad" 1765280 1765312 1766190 1766195) (-1090 "RNS.spad" 1764183 1764192 1765182 1765275) (-1089 "RNS.spad" 1763172 1763183 1764173 1764178) (-1088 "RNG.spad" 1762907 1762916 1763162 1763167) (-1087 "RNGBIND.spad" 1762067 1762081 1762862 1762867) (-1086 "RMODULE.spad" 1761832 1761843 1762057 1762062) (-1085 "RMCAT2.spad" 1761252 1761309 1761822 1761827) (-1084 "RMATRIX.spad" 1760040 1760059 1760383 1760422) (-1083 "RMATCAT.spad" 1755619 1755650 1759996 1760035) (-1082 "RMATCAT.spad" 1751088 1751121 1755467 1755472) (-1081 "RLINSET.spad" 1750792 1750803 1751078 1751083) (-1080 "RINTERP.spad" 1750680 1750700 1750782 1750787) (-1079 "RING.spad" 1750150 1750159 1750660 1750675) (-1078 "RING.spad" 1749628 1749639 1750140 1750145) (-1077 "RIDIST.spad" 1749020 1749029 1749618 1749623) (-1076 "RGCHAIN.spad" 1747548 1747564 1748450 1748477) (-1075 "RGBCSPC.spad" 1747329 1747341 1747538 1747543) (-1074 "RGBCMDL.spad" 1746859 1746871 1747319 1747324) (-1073 "RF.spad" 1744501 1744512 1746849 1746854) (-1072 "RFFACTOR.spad" 1743963 1743974 1744491 1744496) (-1071 "RFFACT.spad" 1743698 1743710 1743953 1743958) (-1070 "RFDIST.spad" 1742694 1742703 1743688 1743693) (-1069 "RETSOL.spad" 1742113 1742126 1742684 1742689) (-1068 "RETRACT.spad" 1741541 1741552 1742103 1742108) (-1067 "RETRACT.spad" 1740967 1740980 1741531 1741536) (-1066 "RETAST.spad" 1740779 1740788 1740957 1740962) (-1065 "RESULT.spad" 1738377 1738386 1738964 1738991) (-1064 "RESRING.spad" 1737724 1737771 1738315 1738372) (-1063 "RESLATC.spad" 1737048 1737059 1737714 1737719) (-1062 "REPSQ.spad" 1736779 1736790 1737038 1737043) (-1061 "REP.spad" 1734333 1734342 1736769 1736774) (-1060 "REPDB.spad" 1734040 1734051 1734323 1734328) (-1059 "REP2.spad" 1723698 1723709 1733882 1733887) (-1058 "REP1.spad" 1717894 1717905 1723648 1723653) (-1057 "REGSET.spad" 1715655 1715672 1717504 1717531) (-1056 "REF.spad" 1714990 1715001 1715610 1715615) (-1055 "REDORDER.spad" 1714196 1714213 1714980 1714985) (-1054 "RECLOS.spad" 1712979 1712999 1713683 1713776) (-1053 "REALSOLV.spad" 1712119 1712128 1712969 1712974) (-1052 "REAL.spad" 1711991 1712000 1712109 1712114) (-1051 "REAL0Q.spad" 1709289 1709304 1711981 1711986) (-1050 "REAL0.spad" 1706133 1706148 1709279 1709284) (-1049 "RDUCEAST.spad" 1705854 1705863 1706123 1706128) (-1048 "RDIV.spad" 1705509 1705534 1705844 1705849) (-1047 "RDIST.spad" 1705076 1705087 1705499 1705504) (-1046 "RDETRS.spad" 1703940 1703958 1705066 1705071) (-1045 "RDETR.spad" 1702079 1702097 1703930 1703935) (-1044 "RDEEFS.spad" 1701178 1701195 1702069 1702074) (-1043 "RDEEF.spad" 1700188 1700205 1701168 1701173) (-1042 "RCFIELD.spad" 1697374 1697383 1700090 1700183) (-1041 "RCFIELD.spad" 1694646 1694657 1697364 1697369) (-1040 "RCAGG.spad" 1692574 1692585 1694636 1694641) (-1039 "RCAGG.spad" 1690429 1690442 1692493 1692498) (-1038 "RATRET.spad" 1689789 1689800 1690419 1690424) (-1037 "RATFACT.spad" 1689481 1689493 1689779 1689784) (-1036 "RANDSRC.spad" 1688800 1688809 1689471 1689476) (-1035 "RADUTIL.spad" 1688556 1688565 1688790 1688795) (-1034 "RADIX.spad" 1685380 1685394 1686926 1687019) (-1033 "RADFF.spad" 1683119 1683156 1683238 1683394) (-1032 "RADCAT.spad" 1682714 1682723 1683109 1683114) (-1031 "RADCAT.spad" 1682307 1682318 1682704 1682709) (-1030 "QUEUE.spad" 1681538 1681549 1681797 1681824) (-1029 "QUAT.spad" 1680026 1680037 1680369 1680434) (-1028 "QUATCT2.spad" 1679646 1679665 1680016 1680021) (-1027 "QUATCAT.spad" 1677816 1677827 1679576 1679641) (-1026 "QUATCAT.spad" 1675737 1675750 1677499 1677504) (-1025 "QUAGG.spad" 1674564 1674575 1675705 1675732) (-1024 "QQUTAST.spad" 1674332 1674341 1674554 1674559) (-1023 "QFORM.spad" 1673950 1673965 1674322 1674327) (-1022 "QFCAT.spad" 1672652 1672663 1673852 1673945) (-1021 "QFCAT.spad" 1670945 1670958 1672147 1672152) (-1020 "QFCAT2.spad" 1670637 1670654 1670935 1670940) (-1019 "QEQUAT.spad" 1670195 1670204 1670627 1670632) (-1018 "QCMPACK.spad" 1664941 1664961 1670185 1670190) (-1017 "QALGSET.spad" 1661019 1661052 1664855 1664860) (-1016 "QALGSET2.spad" 1659014 1659033 1661009 1661014) (-1015 "PWFFINTB.spad" 1656429 1656451 1659004 1659009) (-1014 "PUSHVAR.spad" 1655767 1655787 1656419 1656424) (-1013 "PTRANFN.spad" 1651894 1651905 1655757 1655762) (-1012 "PTPACK.spad" 1648981 1648992 1651884 1651889) (-1011 "PTFUNC2.spad" 1648803 1648818 1648971 1648976) (-1010 "PTCAT.spad" 1648057 1648068 1648771 1648798) (-1009 "PSQFR.spad" 1647363 1647388 1648047 1648052) (-1008 "PSEUDLIN.spad" 1646248 1646259 1647353 1647358) (-1007 "PSETPK.spad" 1631680 1631697 1646126 1646131) (-1006 "PSETCAT.spad" 1625599 1625623 1631660 1631675) (-1005 "PSETCAT.spad" 1619492 1619518 1625555 1625560) (-1004 "PSCURVE.spad" 1618474 1618483 1619482 1619487) (-1003 "PSCAT.spad" 1617256 1617286 1618372 1618469) (-1002 "PSCAT.spad" 1616128 1616160 1617246 1617251) (-1001 "PRTITION.spad" 1614825 1614834 1616118 1616123) (-1000 "PRTDAST.spad" 1614543 1614552 1614815 1614820) (-999 "PRS.spad" 1604105 1604122 1614499 1614504) (-998 "PRQAGG.spad" 1603540 1603550 1604073 1604100) (-997 "PROPLOG.spad" 1603112 1603120 1603530 1603535) (-996 "PROPFUN2.spad" 1602735 1602748 1603102 1603107) (-995 "PROPFUN1.spad" 1602133 1602144 1602725 1602730) (-994 "PROPFRML.spad" 1600701 1600712 1602123 1602128) (-993 "PROPERTY.spad" 1600189 1600197 1600691 1600696) (-992 "PRODUCT.spad" 1597871 1597883 1598155 1598210) (-991 "PR.spad" 1596263 1596275 1596962 1597089) (-990 "PRINT.spad" 1596015 1596023 1596253 1596258) (-989 "PRIMES.spad" 1594268 1594278 1596005 1596010) (-988 "PRIMELT.spad" 1592349 1592363 1594258 1594263) (-987 "PRIMCAT.spad" 1591976 1591984 1592339 1592344) (-986 "PRIMARR.spad" 1590828 1590838 1591006 1591033) (-985 "PRIMARR2.spad" 1589595 1589607 1590818 1590823) (-984 "PREASSOC.spad" 1588977 1588989 1589585 1589590) (-983 "PPCURVE.spad" 1588114 1588122 1588967 1588972) (-982 "PORTNUM.spad" 1587889 1587897 1588104 1588109) (-981 "POLYROOT.spad" 1586738 1586760 1587845 1587850) (-980 "POLY.spad" 1584073 1584083 1584588 1584715) (-979 "POLYLIFT.spad" 1583338 1583361 1584063 1584068) (-978 "POLYCATQ.spad" 1581456 1581478 1583328 1583333) (-977 "POLYCAT.spad" 1574926 1574947 1581324 1581451) (-976 "POLYCAT.spad" 1567734 1567757 1574134 1574139) (-975 "POLY2UP.spad" 1567186 1567200 1567724 1567729) (-974 "POLY2.spad" 1566783 1566795 1567176 1567181) (-973 "POLUTIL.spad" 1565724 1565753 1566739 1566744) (-972 "POLTOPOL.spad" 1564472 1564487 1565714 1565719) (-971 "POINT.spad" 1563157 1563167 1563244 1563271) (-970 "PNTHEORY.spad" 1559859 1559867 1563147 1563152) (-969 "PMTOOLS.spad" 1558634 1558648 1559849 1559854) (-968 "PMSYM.spad" 1558183 1558193 1558624 1558629) (-967 "PMQFCAT.spad" 1557774 1557788 1558173 1558178) (-966 "PMPRED.spad" 1557253 1557267 1557764 1557769) (-965 "PMPREDFS.spad" 1556707 1556729 1557243 1557248) (-964 "PMPLCAT.spad" 1555787 1555805 1556639 1556644) (-963 "PMLSAGG.spad" 1555372 1555386 1555777 1555782) (-962 "PMKERNEL.spad" 1554951 1554963 1555362 1555367) (-961 "PMINS.spad" 1554531 1554541 1554941 1554946) (-960 "PMFS.spad" 1554108 1554126 1554521 1554526) (-959 "PMDOWN.spad" 1553398 1553412 1554098 1554103) (-958 "PMASS.spad" 1552408 1552416 1553388 1553393) (-957 "PMASSFS.spad" 1551375 1551391 1552398 1552403) (-956 "PLOTTOOL.spad" 1551155 1551163 1551365 1551370) (-955 "PLOT.spad" 1546078 1546086 1551145 1551150) (-954 "PLOT3D.spad" 1542542 1542550 1546068 1546073) (-953 "PLOT1.spad" 1541699 1541709 1542532 1542537) (-952 "PLEQN.spad" 1528989 1529016 1541689 1541694) (-951 "PINTERP.spad" 1528611 1528630 1528979 1528984) (-950 "PINTERPA.spad" 1528395 1528411 1528601 1528606) (-949 "PI.spad" 1528004 1528012 1528369 1528390) (-948 "PID.spad" 1526974 1526982 1527930 1527999) (-947 "PICOERCE.spad" 1526631 1526641 1526964 1526969) (-946 "PGROEB.spad" 1525232 1525246 1526621 1526626) (-945 "PGE.spad" 1516849 1516857 1525222 1525227) (-944 "PGCD.spad" 1515739 1515756 1516839 1516844) (-943 "PFRPAC.spad" 1514888 1514898 1515729 1515734) (-942 "PFR.spad" 1511551 1511561 1514790 1514883) (-941 "PFOTOOLS.spad" 1510809 1510825 1511541 1511546) (-940 "PFOQ.spad" 1510179 1510197 1510799 1510804) (-939 "PFO.spad" 1509598 1509625 1510169 1510174) (-938 "PF.spad" 1509172 1509184 1509403 1509496) (-937 "PFECAT.spad" 1506854 1506862 1509098 1509167) (-936 "PFECAT.spad" 1504564 1504574 1506810 1506815) (-935 "PFBRU.spad" 1502452 1502464 1504554 1504559) (-934 "PFBR.spad" 1500012 1500035 1502442 1502447) (-933 "PERM.spad" 1495819 1495829 1499842 1499857) (-932 "PERMGRP.spad" 1490589 1490599 1495809 1495814) (-931 "PERMCAT.spad" 1489250 1489260 1490569 1490584) (-930 "PERMAN.spad" 1487782 1487796 1489240 1489245) (-929 "PENDTREE.spad" 1487006 1487016 1487294 1487299) (-928 "PDSPC.spad" 1485819 1485829 1486996 1487001) (-927 "PDSPC.spad" 1484630 1484642 1485809 1485814) (-926 "PDRING.spad" 1484472 1484482 1484610 1484625) (-925 "PDMOD.spad" 1484288 1484300 1484440 1484467) (-924 "PDEPROB.spad" 1483303 1483311 1484278 1484283) (-923 "PDEPACK.spad" 1477343 1477351 1483293 1483298) (-922 "PDECOMP.spad" 1476813 1476830 1477333 1477338) (-921 "PDECAT.spad" 1475169 1475177 1476803 1476808) (-920 "PDDOM.spad" 1474607 1474620 1475159 1475164) (-919 "PDDOM.spad" 1474043 1474058 1474597 1474602) (-918 "PCOMP.spad" 1473896 1473909 1474033 1474038) (-917 "PBWLB.spad" 1472484 1472501 1473886 1473891) (-916 "PATTERN.spad" 1467023 1467033 1472474 1472479) (-915 "PATTERN2.spad" 1466761 1466773 1467013 1467018) (-914 "PATTERN1.spad" 1465097 1465113 1466751 1466756) (-913 "PATRES.spad" 1462672 1462684 1465087 1465092) (-912 "PATRES2.spad" 1462344 1462358 1462662 1462667) (-911 "PATMATCH.spad" 1460541 1460572 1462052 1462057) (-910 "PATMAB.spad" 1459970 1459980 1460531 1460536) (-909 "PATLRES.spad" 1459056 1459070 1459960 1459965) (-908 "PATAB.spad" 1458820 1458830 1459046 1459051) (-907 "PARTPERM.spad" 1456828 1456836 1458810 1458815) (-906 "PARSURF.spad" 1456262 1456290 1456818 1456823) (-905 "PARSU2.spad" 1456059 1456075 1456252 1456257) (-904 "script-parser.spad" 1455579 1455587 1456049 1456054) (-903 "PARSCURV.spad" 1455013 1455041 1455569 1455574) (-902 "PARSC2.spad" 1454804 1454820 1455003 1455008) (-901 "PARPCURV.spad" 1454266 1454294 1454794 1454799) (-900 "PARPC2.spad" 1454057 1454073 1454256 1454261) (-899 "PARAMAST.spad" 1453185 1453193 1454047 1454052) (-898 "PAN2EXPR.spad" 1452597 1452605 1453175 1453180) (-897 "PALETTE.spad" 1451567 1451575 1452587 1452592) (-896 "PAIR.spad" 1450554 1450567 1451155 1451160) (-895 "PADICRC.spad" 1447795 1447813 1448966 1449059) (-894 "PADICRAT.spad" 1445703 1445715 1445924 1446017) (-893 "PADIC.spad" 1445398 1445410 1445629 1445698) (-892 "PADICCT.spad" 1443947 1443959 1445324 1445393) (-891 "PADEPAC.spad" 1442636 1442655 1443937 1443942) (-890 "PADE.spad" 1441388 1441404 1442626 1442631) (-889 "OWP.spad" 1440628 1440658 1441246 1441313) (-888 "OVERSET.spad" 1440201 1440209 1440618 1440623) (-887 "OVAR.spad" 1439982 1440005 1440191 1440196) (-886 "OUT.spad" 1439068 1439076 1439972 1439977) (-885 "OUTFORM.spad" 1428460 1428468 1439058 1439063) (-884 "OUTBFILE.spad" 1427878 1427886 1428450 1428455) (-883 "OUTBCON.spad" 1426884 1426892 1427868 1427873) (-882 "OUTBCON.spad" 1425888 1425898 1426874 1426879) (-881 "OSI.spad" 1425363 1425371 1425878 1425883) (-880 "OSGROUP.spad" 1425281 1425289 1425353 1425358) (-879 "ORTHPOL.spad" 1423766 1423776 1425198 1425203) (-878 "OREUP.spad" 1423219 1423247 1423446 1423485) (-877 "ORESUP.spad" 1422520 1422544 1422899 1422938) (-876 "OREPCTO.spad" 1420377 1420389 1422440 1422445) (-875 "OREPCAT.spad" 1414524 1414534 1420333 1420372) (-874 "OREPCAT.spad" 1408561 1408573 1414372 1414377) (-873 "ORDTYPE.spad" 1407798 1407806 1408551 1408556) (-872 "ORDTYPE.spad" 1407033 1407043 1407788 1407793) (-871 "ORDSTRCT.spad" 1406806 1406821 1406969 1406974) (-870 "ORDSET.spad" 1406506 1406514 1406796 1406801) (-869 "ORDRING.spad" 1405896 1405904 1406486 1406501) (-868 "ORDRING.spad" 1405294 1405304 1405886 1405891) (-867 "ORDMON.spad" 1405149 1405157 1405284 1405289) (-866 "ORDFUNS.spad" 1404281 1404297 1405139 1405144) (-865 "ORDFIN.spad" 1404101 1404109 1404271 1404276) (-864 "ORDCOMP.spad" 1402566 1402576 1403648 1403677) (-863 "ORDCOMP2.spad" 1401859 1401871 1402556 1402561) (-862 "OPTPROB.spad" 1400497 1400505 1401849 1401854) (-861 "OPTPACK.spad" 1392906 1392914 1400487 1400492) (-860 "OPTCAT.spad" 1390585 1390593 1392896 1392901) (-859 "OPSIG.spad" 1390239 1390247 1390575 1390580) (-858 "OPQUERY.spad" 1389788 1389796 1390229 1390234) (-857 "OP.spad" 1389530 1389540 1389610 1389677) (-856 "OPERCAT.spad" 1388996 1389006 1389520 1389525) (-855 "OPERCAT.spad" 1388460 1388472 1388986 1388991) (-854 "ONECOMP.spad" 1387205 1387215 1388007 1388036) (-853 "ONECOMP2.spad" 1386629 1386641 1387195 1387200) (-852 "OMSERVER.spad" 1385635 1385643 1386619 1386624) (-851 "OMSAGG.spad" 1385423 1385433 1385591 1385630) (-850 "OMPKG.spad" 1384039 1384047 1385413 1385418) (-849 "OM.spad" 1383012 1383020 1384029 1384034) (-848 "OMLO.spad" 1382437 1382449 1382898 1382937) (-847 "OMEXPR.spad" 1382271 1382281 1382427 1382432) (-846 "OMERR.spad" 1381816 1381824 1382261 1382266) (-845 "OMERRK.spad" 1380850 1380858 1381806 1381811) (-844 "OMENC.spad" 1380194 1380202 1380840 1380845) (-843 "OMDEV.spad" 1374503 1374511 1380184 1380189) (-842 "OMCONN.spad" 1373912 1373920 1374493 1374498) (-841 "OINTDOM.spad" 1373675 1373683 1373838 1373907) (-840 "OFMONOID.spad" 1371798 1371808 1373631 1373636) (-839 "ODVAR.spad" 1371059 1371069 1371788 1371793) (-838 "ODR.spad" 1370703 1370729 1370871 1371020) (-837 "ODPOL.spad" 1367992 1368002 1368332 1368459) (-836 "ODP.spad" 1355806 1355826 1356179 1356278) (-835 "ODETOOLS.spad" 1354455 1354474 1355796 1355801) (-834 "ODESYS.spad" 1352149 1352166 1354445 1354450) (-833 "ODERTRIC.spad" 1348158 1348175 1352106 1352111) (-832 "ODERED.spad" 1347557 1347581 1348148 1348153) (-831 "ODERAT.spad" 1345172 1345189 1347547 1347552) (-830 "ODEPRRIC.spad" 1342209 1342231 1345162 1345167) (-829 "ODEPROB.spad" 1341466 1341474 1342199 1342204) (-828 "ODEPRIM.spad" 1338800 1338822 1341456 1341461) (-827 "ODEPAL.spad" 1338186 1338210 1338790 1338795) (-826 "ODEPACK.spad" 1324852 1324860 1338176 1338181) (-825 "ODEINT.spad" 1324287 1324303 1324842 1324847) (-824 "ODEIFTBL.spad" 1321682 1321690 1324277 1324282) (-823 "ODEEF.spad" 1317173 1317189 1321672 1321677) (-822 "ODECONST.spad" 1316710 1316728 1317163 1317168) (-821 "ODECAT.spad" 1315308 1315316 1316700 1316705) (-820 "OCT.spad" 1313444 1313454 1314158 1314197) (-819 "OCTCT2.spad" 1313090 1313111 1313434 1313439) (-818 "OC.spad" 1310886 1310896 1313046 1313085) (-817 "OC.spad" 1308407 1308419 1310569 1310574) (-816 "OCAMON.spad" 1308255 1308263 1308397 1308402) (-815 "OASGP.spad" 1308070 1308078 1308245 1308250) (-814 "OAMONS.spad" 1307592 1307600 1308060 1308065) (-813 "OAMON.spad" 1307453 1307461 1307582 1307587) (-812 "OAGROUP.spad" 1307315 1307323 1307443 1307448) (-811 "NUMTUBE.spad" 1306906 1306922 1307305 1307310) (-810 "NUMQUAD.spad" 1294882 1294890 1306896 1306901) (-809 "NUMODE.spad" 1286236 1286244 1294872 1294877) (-808 "NUMINT.spad" 1283802 1283810 1286226 1286231) (-807 "NUMFMT.spad" 1282642 1282650 1283792 1283797) (-806 "NUMERIC.spad" 1274756 1274766 1282447 1282452) (-805 "NTSCAT.spad" 1273264 1273280 1274724 1274751) (-804 "NTPOLFN.spad" 1272815 1272825 1273181 1273186) (-803 "NSUP.spad" 1265768 1265778 1270308 1270461) (-802 "NSUP2.spad" 1265160 1265172 1265758 1265763) (-801 "NSMP.spad" 1261390 1261409 1261698 1261825) (-800 "NREP.spad" 1259768 1259782 1261380 1261385) (-799 "NPCOEF.spad" 1259014 1259034 1259758 1259763) (-798 "NORMRETR.spad" 1258612 1258651 1259004 1259009) (-797 "NORMPK.spad" 1256514 1256533 1258602 1258607) (-796 "NORMMA.spad" 1256202 1256228 1256504 1256509) (-795 "NONE.spad" 1255943 1255951 1256192 1256197) (-794 "NONE1.spad" 1255619 1255629 1255933 1255938) (-793 "NODE1.spad" 1255106 1255122 1255609 1255614) (-792 "NNI.spad" 1254001 1254009 1255080 1255101) (-791 "NLINSOL.spad" 1252627 1252637 1253991 1253996) (-790 "NIPROB.spad" 1251168 1251176 1252617 1252622) (-789 "NFINTBAS.spad" 1248728 1248745 1251158 1251163) (-788 "NETCLT.spad" 1248702 1248713 1248718 1248723) (-787 "NCODIV.spad" 1246918 1246934 1248692 1248697) (-786 "NCNTFRAC.spad" 1246560 1246574 1246908 1246913) (-785 "NCEP.spad" 1244726 1244740 1246550 1246555) (-784 "NASRING.spad" 1244322 1244330 1244716 1244721) (-783 "NASRING.spad" 1243916 1243926 1244312 1244317) (-782 "NARNG.spad" 1243268 1243276 1243906 1243911) (-781 "NARNG.spad" 1242618 1242628 1243258 1243263) (-780 "NAGSP.spad" 1241695 1241703 1242608 1242613) (-779 "NAGS.spad" 1231356 1231364 1241685 1241690) (-778 "NAGF07.spad" 1229787 1229795 1231346 1231351) (-777 "NAGF04.spad" 1224189 1224197 1229777 1229782) (-776 "NAGF02.spad" 1218258 1218266 1224179 1224184) (-775 "NAGF01.spad" 1214019 1214027 1218248 1218253) (-774 "NAGE04.spad" 1207719 1207727 1214009 1214014) (-773 "NAGE02.spad" 1198379 1198387 1207709 1207714) (-772 "NAGE01.spad" 1194381 1194389 1198369 1198374) (-771 "NAGD03.spad" 1192385 1192393 1194371 1194376) (-770 "NAGD02.spad" 1185132 1185140 1192375 1192380) (-769 "NAGD01.spad" 1179425 1179433 1185122 1185127) (-768 "NAGC06.spad" 1175300 1175308 1179415 1179420) (-767 "NAGC05.spad" 1173801 1173809 1175290 1175295) (-766 "NAGC02.spad" 1173068 1173076 1173791 1173796) (-765 "NAALG.spad" 1172609 1172619 1173036 1173063) (-764 "NAALG.spad" 1172170 1172182 1172599 1172604) (-763 "MULTSQFR.spad" 1169128 1169145 1172160 1172165) (-762 "MULTFACT.spad" 1168511 1168528 1169118 1169123) (-761 "MTSCAT.spad" 1166605 1166626 1168409 1168506) (-760 "MTHING.spad" 1166264 1166274 1166595 1166600) (-759 "MSYSCMD.spad" 1165698 1165706 1166254 1166259) (-758 "MSET.spad" 1163620 1163630 1165368 1165407) (-757 "MSETAGG.spad" 1163465 1163475 1163588 1163615) (-756 "MRING.spad" 1160442 1160454 1163173 1163240) (-755 "MRF2.spad" 1160012 1160026 1160432 1160437) (-754 "MRATFAC.spad" 1159558 1159575 1160002 1160007) (-753 "MPRFF.spad" 1157598 1157617 1159548 1159553) (-752 "MPOLY.spad" 1155069 1155084 1155428 1155555) (-751 "MPCPF.spad" 1154333 1154352 1155059 1155064) (-750 "MPC3.spad" 1154150 1154190 1154323 1154328) (-749 "MPC2.spad" 1153795 1153828 1154140 1154145) (-748 "MONOTOOL.spad" 1152146 1152163 1153785 1153790) (-747 "MONOID.spad" 1151465 1151473 1152136 1152141) (-746 "MONOID.spad" 1150782 1150792 1151455 1151460) (-745 "MONOGEN.spad" 1149530 1149543 1150642 1150777) (-744 "MONOGEN.spad" 1148300 1148315 1149414 1149419) (-743 "MONADWU.spad" 1146330 1146338 1148290 1148295) (-742 "MONADWU.spad" 1144358 1144368 1146320 1146325) (-741 "MONAD.spad" 1143518 1143526 1144348 1144353) (-740 "MONAD.spad" 1142676 1142686 1143508 1143513) (-739 "MOEBIUS.spad" 1141412 1141426 1142656 1142671) (-738 "MODULE.spad" 1141282 1141292 1141380 1141407) (-737 "MODULE.spad" 1141172 1141184 1141272 1141277) (-736 "MODRING.spad" 1140507 1140546 1141152 1141167) (-735 "MODOP.spad" 1139172 1139184 1140329 1140396) (-734 "MODMONOM.spad" 1138903 1138921 1139162 1139167) (-733 "MODMON.spad" 1135605 1135621 1136324 1136477) (-732 "MODFIELD.spad" 1134967 1135006 1135507 1135600) (-731 "MMLFORM.spad" 1133827 1133835 1134957 1134962) (-730 "MMAP.spad" 1133569 1133603 1133817 1133822) (-729 "MLO.spad" 1132028 1132038 1133525 1133564) (-728 "MLIFT.spad" 1130640 1130657 1132018 1132023) (-727 "MKUCFUNC.spad" 1130175 1130193 1130630 1130635) (-726 "MKRECORD.spad" 1129779 1129792 1130165 1130170) (-725 "MKFUNC.spad" 1129186 1129196 1129769 1129774) (-724 "MKFLCFN.spad" 1128154 1128164 1129176 1129181) (-723 "MKBCFUNC.spad" 1127649 1127667 1128144 1128149) (-722 "MINT.spad" 1127088 1127096 1127551 1127644) (-721 "MHROWRED.spad" 1125599 1125609 1127078 1127083) (-720 "MFLOAT.spad" 1124119 1124127 1125489 1125594) (-719 "MFINFACT.spad" 1123519 1123541 1124109 1124114) (-718 "MESH.spad" 1121301 1121309 1123509 1123514) (-717 "MDDFACT.spad" 1119512 1119522 1121291 1121296) (-716 "MDAGG.spad" 1118803 1118813 1119492 1119507) (-715 "MCMPLX.spad" 1114234 1114242 1114848 1115049) (-714 "MCDEN.spad" 1113444 1113456 1114224 1114229) (-713 "MCALCFN.spad" 1110566 1110592 1113434 1113439) (-712 "MAYBE.spad" 1109850 1109861 1110556 1110561) (-711 "MATSTOR.spad" 1107158 1107168 1109840 1109845) (-710 "MATRIX.spad" 1105745 1105755 1106229 1106256) (-709 "MATLIN.spad" 1103089 1103113 1105629 1105634) (-708 "MATCAT.spad" 1094611 1094633 1103057 1103084) (-707 "MATCAT.spad" 1086005 1086029 1094453 1094458) (-706 "MATCAT2.spad" 1085287 1085335 1085995 1086000) (-705 "MAPPKG3.spad" 1084202 1084216 1085277 1085282) (-704 "MAPPKG2.spad" 1083540 1083552 1084192 1084197) (-703 "MAPPKG1.spad" 1082368 1082378 1083530 1083535) (-702 "MAPPAST.spad" 1081683 1081691 1082358 1082363) (-701 "MAPHACK3.spad" 1081495 1081509 1081673 1081678) (-700 "MAPHACK2.spad" 1081264 1081276 1081485 1081490) (-699 "MAPHACK1.spad" 1080908 1080918 1081254 1081259) (-698 "MAGMA.spad" 1078698 1078715 1080898 1080903) (-697 "MACROAST.spad" 1078277 1078285 1078688 1078693) (-696 "M3D.spad" 1075880 1075890 1077538 1077543) (-695 "LZSTAGG.spad" 1073118 1073128 1075870 1075875) (-694 "LZSTAGG.spad" 1070354 1070366 1073108 1073113) (-693 "LWORD.spad" 1067059 1067076 1070344 1070349) (-692 "LSTAST.spad" 1066843 1066851 1067049 1067054) (-691 "LSQM.spad" 1065000 1065014 1065394 1065445) (-690 "LSPP.spad" 1064535 1064552 1064990 1064995) (-689 "LSMP.spad" 1063385 1063413 1064525 1064530) (-688 "LSMP1.spad" 1061203 1061217 1063375 1063380) (-687 "LSAGG.spad" 1060872 1060882 1061171 1061198) (-686 "LSAGG.spad" 1060561 1060573 1060862 1060867) (-685 "LPOLY.spad" 1059515 1059534 1060417 1060486) (-684 "LPEFRAC.spad" 1058786 1058796 1059505 1059510) (-683 "LO.spad" 1058187 1058201 1058720 1058747) (-682 "LOGIC.spad" 1057789 1057797 1058177 1058182) (-681 "LOGIC.spad" 1057389 1057399 1057779 1057784) (-680 "LODOOPS.spad" 1056319 1056331 1057379 1057384) (-679 "LODO.spad" 1055703 1055719 1055999 1056038) (-678 "LODOF.spad" 1054749 1054766 1055660 1055665) (-677 "LODOCAT.spad" 1053415 1053425 1054705 1054744) (-676 "LODOCAT.spad" 1052079 1052091 1053371 1053376) (-675 "LODO2.spad" 1051352 1051364 1051759 1051798) (-674 "LODO1.spad" 1050752 1050762 1051032 1051071) (-673 "LODEEF.spad" 1049554 1049572 1050742 1050747) (-672 "LNAGG.spad" 1045701 1045711 1049544 1049549) (-671 "LNAGG.spad" 1041812 1041824 1045657 1045662) (-670 "LMOPS.spad" 1038580 1038597 1041802 1041807) (-669 "LMODULE.spad" 1038348 1038358 1038570 1038575) (-668 "LMDICT.spad" 1037518 1037528 1037782 1037809) (-667 "LLINSET.spad" 1037225 1037235 1037508 1037513) (-666 "LITERAL.spad" 1037131 1037142 1037215 1037220) (-665 "LIST.spad" 1034713 1034723 1036125 1036152) (-664 "LIST3.spad" 1034024 1034038 1034703 1034708) (-663 "LIST2.spad" 1032726 1032738 1034014 1034019) (-662 "LIST2MAP.spad" 1029629 1029641 1032716 1032721) (-661 "LINSET.spad" 1029408 1029418 1029619 1029624) (-660 "LINFORM.spad" 1028871 1028883 1029376 1029403) (-659 "LINEXP.spad" 1027614 1027624 1028861 1028866) (-658 "LINELT.spad" 1026985 1026997 1027497 1027524) (-657 "LINDEP.spad" 1025794 1025806 1026897 1026902) (-656 "LINBASIS.spad" 1025430 1025445 1025784 1025789) (-655 "LIMITRF.spad" 1023358 1023368 1025420 1025425) (-654 "LIMITPS.spad" 1022261 1022274 1023348 1023353) (-653 "LIE.spad" 1020277 1020289 1021551 1021696) (-652 "LIECAT.spad" 1019753 1019763 1020203 1020272) (-651 "LIECAT.spad" 1019257 1019269 1019709 1019714) (-650 "LIB.spad" 1017008 1017016 1017454 1017469) (-649 "LGROBP.spad" 1014361 1014380 1016998 1017003) (-648 "LF.spad" 1013316 1013332 1014351 1014356) (-647 "LFCAT.spad" 1012375 1012383 1013306 1013311) (-646 "LEXTRIPK.spad" 1007878 1007893 1012365 1012370) (-645 "LEXP.spad" 1005881 1005908 1007858 1007873) (-644 "LETAST.spad" 1005580 1005588 1005871 1005876) (-643 "LEADCDET.spad" 1003978 1003995 1005570 1005575) (-642 "LAZM3PK.spad" 1002682 1002704 1003968 1003973) (-641 "LAUPOL.spad" 1001282 1001295 1002182 1002251) (-640 "LAPLACE.spad" 1000865 1000881 1001272 1001277) (-639 "LA.spad" 1000305 1000319 1000787 1000826) (-638 "LALG.spad" 1000081 1000091 1000285 1000300) (-637 "LALG.spad" 999865 999877 1000071 1000076) (-636 "KVTFROM.spad" 999600 999610 999855 999860) (-635 "KTVLOGIC.spad" 999112 999120 999590 999595) (-634 "KRCFROM.spad" 998850 998860 999102 999107) (-633 "KOVACIC.spad" 997573 997590 998840 998845) (-632 "KONVERT.spad" 997295 997305 997563 997568) (-631 "KOERCE.spad" 997032 997042 997285 997290) (-630 "KERNEL.spad" 995687 995697 996816 996821) (-629 "KERNEL2.spad" 995390 995402 995677 995682) (-628 "KDAGG.spad" 994499 994521 995370 995385) (-627 "KDAGG.spad" 993616 993640 994489 994494) (-626 "KAFILE.spad" 992470 992486 992705 992732) (-625 "JVMOP.spad" 992375 992383 992460 992465) (-624 "JVMMDACC.spad" 991413 991421 992365 992370) (-623 "JVMFDACC.spad" 990721 990729 991403 991408) (-622 "JVMCSTTG.spad" 989450 989458 990711 990716) (-621 "JVMCFACC.spad" 988880 988888 989440 989445) (-620 "JVMBCODE.spad" 988783 988791 988870 988875) (-619 "JORDAN.spad" 986612 986624 988073 988218) (-618 "JOINAST.spad" 986306 986314 986602 986607) (-617 "IXAGG.spad" 984439 984463 986296 986301) (-616 "IXAGG.spad" 982427 982453 984286 984291) (-615 "IVECTOR.spad" 981044 981059 981199 981226) (-614 "ITUPLE.spad" 980205 980215 981034 981039) (-613 "ITRIGMNP.spad" 979044 979063 980195 980200) (-612 "ITFUN3.spad" 978550 978564 979034 979039) (-611 "ITFUN2.spad" 978294 978306 978540 978545) (-610 "ITFORM.spad" 977649 977657 978284 978289) (-609 "ITAYLOR.spad" 975643 975658 977513 977610) (-608 "ISUPS.spad" 968080 968095 974617 974714) (-607 "ISUMP.spad" 967581 967597 968070 968075) (-606 "ISTRING.spad" 966508 966521 966589 966616) (-605 "ISAST.spad" 966227 966235 966498 966503) (-604 "IRURPK.spad" 964944 964963 966217 966222) (-603 "IRSN.spad" 962916 962924 964934 964939) (-602 "IRRF2F.spad" 961401 961411 962872 962877) (-601 "IRREDFFX.spad" 961002 961013 961391 961396) (-600 "IROOT.spad" 959341 959351 960992 960997) (-599 "IR.spad" 957142 957156 959196 959223) (-598 "IRFORM.spad" 956466 956474 957132 957137) (-597 "IR2.spad" 955494 955510 956456 956461) (-596 "IR2F.spad" 954700 954716 955484 955489) (-595 "IPRNTPK.spad" 954460 954468 954690 954695) (-594 "IPF.spad" 954025 954037 954265 954358) (-593 "IPADIC.spad" 953786 953812 953951 954020) (-592 "IP4ADDR.spad" 953343 953351 953776 953781) (-591 "IOMODE.spad" 952865 952873 953333 953338) (-590 "IOBFILE.spad" 952226 952234 952855 952860) (-589 "IOBCON.spad" 952091 952099 952216 952221) (-588 "INVLAPLA.spad" 951740 951756 952081 952086) (-587 "INTTR.spad" 945122 945139 951730 951735) (-586 "INTTOOLS.spad" 942877 942893 944696 944701) (-585 "INTSLPE.spad" 942197 942205 942867 942872) (-584 "INTRVL.spad" 941763 941773 942111 942192) (-583 "INTRF.spad" 940187 940201 941753 941758) (-582 "INTRET.spad" 939619 939629 940177 940182) (-581 "INTRAT.spad" 938346 938363 939609 939614) (-580 "INTPM.spad" 936731 936747 937989 937994) (-579 "INTPAF.spad" 934595 934613 936663 936668) (-578 "INTPACK.spad" 924969 924977 934585 934590) (-577 "INT.spad" 924417 924425 924823 924964) (-576 "INTHERTR.spad" 923691 923708 924407 924412) (-575 "INTHERAL.spad" 923361 923385 923681 923686) (-574 "INTHEORY.spad" 919800 919808 923351 923356) (-573 "INTG0.spad" 913533 913551 919732 919737) (-572 "INTFTBL.spad" 907562 907570 913523 913528) (-571 "INTFACT.spad" 906621 906631 907552 907557) (-570 "INTEF.spad" 905006 905022 906611 906616) (-569 "INTDOM.spad" 903629 903637 904932 905001) (-568 "INTDOM.spad" 902314 902324 903619 903624) (-567 "INTCAT.spad" 900573 900583 902228 902309) (-566 "INTBIT.spad" 900080 900088 900563 900568) (-565 "INTALG.spad" 899268 899295 900070 900075) (-564 "INTAF.spad" 898768 898784 899258 899263) (-563 "INTABL.spad" 896844 896875 897007 897034) (-562 "INT8.spad" 896724 896732 896834 896839) (-561 "INT64.spad" 896603 896611 896714 896719) (-560 "INT32.spad" 896482 896490 896593 896598) (-559 "INT16.spad" 896361 896369 896472 896477) (-558 "INS.spad" 893864 893872 896263 896356) (-557 "INS.spad" 891453 891463 893854 893859) (-556 "INPSIGN.spad" 890901 890914 891443 891448) (-555 "INPRODPF.spad" 889997 890016 890891 890896) (-554 "INPRODFF.spad" 889085 889109 889987 889992) (-553 "INNMFACT.spad" 888060 888077 889075 889080) (-552 "INMODGCD.spad" 887548 887578 888050 888055) (-551 "INFSP.spad" 885845 885867 887538 887543) (-550 "INFPROD0.spad" 884925 884944 885835 885840) (-549 "INFORM.spad" 882124 882132 884915 884920) (-548 "INFORM1.spad" 881749 881759 882114 882119) (-547 "INFINITY.spad" 881301 881309 881739 881744) (-546 "INETCLTS.spad" 881278 881286 881291 881296) (-545 "INEP.spad" 879816 879838 881268 881273) (-544 "INDE.spad" 879465 879482 879726 879731) (-543 "INCRMAPS.spad" 878886 878896 879455 879460) (-542 "INBFILE.spad" 877958 877966 878876 878881) (-541 "INBFF.spad" 873752 873763 877948 877953) (-540 "INBCON.spad" 872042 872050 873742 873747) (-539 "INBCON.spad" 870330 870340 872032 872037) (-538 "INAST.spad" 869991 869999 870320 870325) (-537 "IMPTAST.spad" 869699 869707 869981 869986) (-536 "IMATRIX.spad" 868527 868553 869039 869066) (-535 "IMATQF.spad" 867621 867665 868483 868488) (-534 "IMATLIN.spad" 866226 866250 867577 867582) (-533 "ILIST.spad" 864731 864746 865256 865283) (-532 "IIARRAY2.spad" 864002 864040 864221 864248) (-531 "IFF.spad" 863412 863428 863683 863776) (-530 "IFAST.spad" 863026 863034 863402 863407) (-529 "IFARRAY.spad" 860366 860381 862056 862083) (-528 "IFAMON.spad" 860228 860245 860322 860327) (-527 "IEVALAB.spad" 859633 859645 860218 860223) (-526 "IEVALAB.spad" 859036 859050 859623 859628) (-525 "IDPO.spad" 858771 858783 858948 858953) (-524 "IDPOAMS.spad" 858449 858461 858683 858688) (-523 "IDPOAM.spad" 858091 858103 858361 858366) (-522 "IDPC.spad" 856820 856832 858081 858086) (-521 "IDPAM.spad" 856487 856499 856732 856737) (-520 "IDPAG.spad" 856156 856168 856399 856404) (-519 "IDENT.spad" 855806 855814 856146 856151) (-518 "IDECOMP.spad" 853045 853063 855796 855801) (-517 "IDEAL.spad" 847994 848033 852980 852985) (-516 "ICDEN.spad" 847183 847199 847984 847989) (-515 "ICARD.spad" 846374 846382 847173 847178) (-514 "IBPTOOLS.spad" 844981 844998 846364 846369) (-513 "IBITS.spad" 844146 844159 844579 844606) (-512 "IBATOOL.spad" 841123 841142 844136 844141) (-511 "IBACHIN.spad" 839630 839645 841113 841118) (-510 "IARRAY2.spad" 838501 838527 839120 839147) (-509 "IARRAY1.spad" 837393 837408 837531 837558) (-508 "IAN.spad" 835616 835624 837209 837302) (-507 "IALGFACT.spad" 835219 835252 835606 835611) (-506 "HYPCAT.spad" 834643 834651 835209 835214) (-505 "HYPCAT.spad" 834065 834075 834633 834638) (-504 "HOSTNAME.spad" 833873 833881 834055 834060) (-503 "HOMOTOP.spad" 833616 833626 833863 833868) (-502 "HOAGG.spad" 830898 830908 833606 833611) (-501 "HOAGG.spad" 827919 827931 830629 830634) (-500 "HEXADEC.spad" 825924 825932 826289 826382) (-499 "HEUGCD.spad" 824959 824970 825914 825919) (-498 "HELLFDIV.spad" 824549 824573 824949 824954) (-497 "HEAP.spad" 823824 823834 824039 824066) (-496 "HEADAST.spad" 823357 823365 823814 823819) (-495 "HDP.spad" 811167 811183 811544 811643) (-494 "HDMP.spad" 808381 808396 808997 809124) (-493 "HB.spad" 806632 806640 808371 808376) (-492 "HASHTBL.spad" 804660 804691 804871 804898) (-491 "HASAST.spad" 804376 804384 804650 804655) (-490 "HACKPI.spad" 803867 803875 804278 804371) (-489 "GTSET.spad" 802770 802786 803477 803504) (-488 "GSTBL.spad" 800847 800882 801021 801036) (-487 "GSERIES.spad" 798160 798187 798979 799128) (-486 "GROUP.spad" 797433 797441 798140 798155) (-485 "GROUP.spad" 796714 796724 797423 797428) (-484 "GROEBSOL.spad" 795208 795229 796704 796709) (-483 "GRMOD.spad" 793779 793791 795198 795203) (-482 "GRMOD.spad" 792348 792362 793769 793774) (-481 "GRIMAGE.spad" 785237 785245 792338 792343) (-480 "GRDEF.spad" 783616 783624 785227 785232) (-479 "GRAY.spad" 782079 782087 783606 783611) (-478 "GRALG.spad" 781156 781168 782069 782074) (-477 "GRALG.spad" 780231 780245 781146 781151) (-476 "GPOLSET.spad" 779649 779672 779877 779904) (-475 "GOSPER.spad" 778918 778936 779639 779644) (-474 "GMODPOL.spad" 778066 778093 778886 778913) (-473 "GHENSEL.spad" 777149 777163 778056 778061) (-472 "GENUPS.spad" 773442 773455 777139 777144) (-471 "GENUFACT.spad" 773019 773029 773432 773437) (-470 "GENPGCD.spad" 772605 772622 773009 773014) (-469 "GENMFACT.spad" 772057 772076 772595 772600) (-468 "GENEEZ.spad" 770008 770021 772047 772052) (-467 "GDMP.spad" 767064 767081 767838 767965) (-466 "GCNAALG.spad" 760987 761014 766858 766925) (-465 "GCDDOM.spad" 760163 760171 760913 760982) (-464 "GCDDOM.spad" 759401 759411 760153 760158) (-463 "GB.spad" 756927 756965 759357 759362) (-462 "GBINTERN.spad" 752947 752985 756917 756922) (-461 "GBF.spad" 748714 748752 752937 752942) (-460 "GBEUCLID.spad" 746596 746634 748704 748709) (-459 "GAUSSFAC.spad" 745909 745917 746586 746591) (-458 "GALUTIL.spad" 744235 744245 745865 745870) (-457 "GALPOLYU.spad" 742689 742702 744225 744230) (-456 "GALFACTU.spad" 740862 740881 742679 742684) (-455 "GALFACT.spad" 731051 731062 740852 740857) (-454 "FVFUN.spad" 728074 728082 731041 731046) (-453 "FVC.spad" 727126 727134 728064 728069) (-452 "FUNDESC.spad" 726804 726812 727116 727121) (-451 "FUNCTION.spad" 726653 726665 726794 726799) (-450 "FT.spad" 724950 724958 726643 726648) (-449 "FTEM.spad" 724115 724123 724940 724945) (-448 "FSUPFACT.spad" 723015 723034 724051 724056) (-447 "FST.spad" 721101 721109 723005 723010) (-446 "FSRED.spad" 720581 720597 721091 721096) (-445 "FSPRMELT.spad" 719463 719479 720538 720543) (-444 "FSPECF.spad" 717554 717570 719453 719458) (-443 "FS.spad" 711822 711832 717329 717549) (-442 "FS.spad" 705868 705880 711377 711382) (-441 "FSINT.spad" 705528 705544 705858 705863) (-440 "FSERIES.spad" 704719 704731 705348 705447) (-439 "FSCINT.spad" 704036 704052 704709 704714) (-438 "FSAGG.spad" 703153 703163 703992 704031) (-437 "FSAGG.spad" 702232 702244 703073 703078) (-436 "FSAGG2.spad" 700975 700991 702222 702227) (-435 "FS2UPS.spad" 695466 695500 700965 700970) (-434 "FS2.spad" 695113 695129 695456 695461) (-433 "FS2EXPXP.spad" 694238 694261 695103 695108) (-432 "FRUTIL.spad" 693192 693202 694228 694233) (-431 "FR.spad" 686815 686825 692123 692192) (-430 "FRNAALG.spad" 682084 682094 686757 686810) (-429 "FRNAALG.spad" 677365 677377 682040 682045) (-428 "FRNAAF2.spad" 676821 676839 677355 677360) (-427 "FRMOD.spad" 676231 676261 676752 676757) (-426 "FRIDEAL.spad" 675456 675477 676211 676226) (-425 "FRIDEAL2.spad" 675060 675092 675446 675451) (-424 "FRETRCT.spad" 674571 674581 675050 675055) (-423 "FRETRCT.spad" 673948 673960 674429 674434) (-422 "FRAMALG.spad" 672296 672309 673904 673943) (-421 "FRAMALG.spad" 670676 670691 672286 672291) (-420 "FRAC.spad" 667682 667692 668085 668258) (-419 "FRAC2.spad" 667287 667299 667672 667677) (-418 "FR2.spad" 666623 666635 667277 667282) (-417 "FPS.spad" 663438 663446 666513 666618) (-416 "FPS.spad" 660281 660291 663358 663363) (-415 "FPC.spad" 659327 659335 660183 660276) (-414 "FPC.spad" 658459 658469 659317 659322) (-413 "FPATMAB.spad" 658221 658231 658449 658454) (-412 "FPARFRAC.spad" 657071 657088 658211 658216) (-411 "FORTRAN.spad" 655577 655620 657061 657066) (-410 "FORT.spad" 654526 654534 655567 655572) (-409 "FORTFN.spad" 651696 651704 654516 654521) (-408 "FORTCAT.spad" 651380 651388 651686 651691) (-407 "FORMULA.spad" 648854 648862 651370 651375) (-406 "FORMULA1.spad" 648333 648343 648844 648849) (-405 "FORDER.spad" 648024 648048 648323 648328) (-404 "FOP.spad" 647225 647233 648014 648019) (-403 "FNLA.spad" 646649 646671 647193 647220) (-402 "FNCAT.spad" 645244 645252 646639 646644) (-401 "FNAME.spad" 645136 645144 645234 645239) (-400 "FMTC.spad" 644934 644942 645062 645131) (-399 "FMONOID.spad" 644599 644609 644890 644895) (-398 "FMONCAT.spad" 641752 641762 644589 644594) (-397 "FM.spad" 641367 641379 641606 641633) (-396 "FMFUN.spad" 638397 638405 641357 641362) (-395 "FMC.spad" 637449 637457 638387 638392) (-394 "FMCAT.spad" 635117 635135 637417 637444) (-393 "FM1.spad" 634474 634486 635051 635078) (-392 "FLOATRP.spad" 632209 632223 634464 634469) (-391 "FLOAT.spad" 625523 625531 632075 632204) (-390 "FLOATCP.spad" 622954 622968 625513 625518) (-389 "FLINEXP.spad" 622676 622686 622944 622949) (-388 "FLINEXP.spad" 622342 622354 622612 622617) (-387 "FLASORT.spad" 621668 621680 622332 622337) (-386 "FLALG.spad" 619314 619333 621594 621663) (-385 "FLAGG.spad" 616356 616366 619294 619309) (-384 "FLAGG.spad" 613299 613311 616239 616244) (-383 "FLAGG2.spad" 612024 612040 613289 613294) (-382 "FINRALG.spad" 610085 610098 611980 612019) (-381 "FINRALG.spad" 608072 608087 609969 609974) (-380 "FINITE.spad" 607224 607232 608062 608067) (-379 "FINAALG.spad" 596345 596355 607166 607219) (-378 "FINAALG.spad" 585478 585490 596301 596306) (-377 "FILE.spad" 585061 585071 585468 585473) (-376 "FILECAT.spad" 583587 583604 585051 585056) (-375 "FIELD.spad" 582993 583001 583489 583582) (-374 "FIELD.spad" 582485 582495 582983 582988) (-373 "FGROUP.spad" 581132 581142 582465 582480) (-372 "FGLMICPK.spad" 579919 579934 581122 581127) (-371 "FFX.spad" 579294 579309 579635 579728) (-370 "FFSLPE.spad" 578797 578818 579284 579289) (-369 "FFPOLY.spad" 570059 570070 578787 578792) (-368 "FFPOLY2.spad" 569119 569136 570049 570054) (-367 "FFP.spad" 568516 568536 568835 568928) (-366 "FF.spad" 567964 567980 568197 568290) (-365 "FFNBX.spad" 566476 566496 567680 567773) (-364 "FFNBP.spad" 564989 565006 566192 566285) (-363 "FFNB.spad" 563454 563475 564670 564763) (-362 "FFINTBAS.spad" 560968 560987 563444 563449) (-361 "FFIELDC.spad" 558545 558553 560870 560963) (-360 "FFIELDC.spad" 556208 556218 558535 558540) (-359 "FFHOM.spad" 554956 554973 556198 556203) (-358 "FFF.spad" 552391 552402 554946 554951) (-357 "FFCGX.spad" 551238 551258 552107 552200) (-356 "FFCGP.spad" 550127 550147 550954 551047) (-355 "FFCG.spad" 548919 548940 549808 549901) (-354 "FFCAT.spad" 542092 542114 548758 548914) (-353 "FFCAT.spad" 535344 535368 542012 542017) (-352 "FFCAT2.spad" 535091 535131 535334 535339) (-351 "FEXPR.spad" 526808 526854 534847 534886) (-350 "FEVALAB.spad" 526516 526526 526798 526803) (-349 "FEVALAB.spad" 526009 526021 526293 526298) (-348 "FDIV.spad" 525451 525475 525999 526004) (-347 "FDIVCAT.spad" 523515 523539 525441 525446) (-346 "FDIVCAT.spad" 521577 521603 523505 523510) (-345 "FDIV2.spad" 521233 521273 521567 521572) (-344 "FCTRDATA.spad" 520241 520249 521223 521228) (-343 "FCPAK1.spad" 518808 518816 520231 520236) (-342 "FCOMP.spad" 518187 518197 518798 518803) (-341 "FC.spad" 508194 508202 518177 518182) (-340 "FAXF.spad" 501165 501179 508096 508189) (-339 "FAXF.spad" 494188 494204 501121 501126) (-338 "FARRAY.spad" 492185 492195 493218 493245) (-337 "FAMR.spad" 490321 490333 492083 492180) (-336 "FAMR.spad" 488441 488455 490205 490210) (-335 "FAMONOID.spad" 488109 488119 488395 488400) (-334 "FAMONC.spad" 486405 486417 488099 488104) (-333 "FAGROUP.spad" 486029 486039 486301 486328) (-332 "FACUTIL.spad" 484233 484250 486019 486024) (-331 "FACTFUNC.spad" 483427 483437 484223 484228) (-330 "EXPUPXS.spad" 480260 480283 481559 481708) (-329 "EXPRTUBE.spad" 477548 477556 480250 480255) (-328 "EXPRODE.spad" 474708 474724 477538 477543) (-327 "EXPR.spad" 469883 469893 470597 470892) (-326 "EXPR2UPS.spad" 466005 466018 469873 469878) (-325 "EXPR2.spad" 465710 465722 465995 466000) (-324 "EXPEXPAN.spad" 462511 462536 463143 463236) (-323 "EXIT.spad" 462182 462190 462501 462506) (-322 "EXITAST.spad" 461918 461926 462172 462177) (-321 "EVALCYC.spad" 461378 461392 461908 461913) (-320 "EVALAB.spad" 460950 460960 461368 461373) (-319 "EVALAB.spad" 460520 460532 460940 460945) (-318 "EUCDOM.spad" 458094 458102 460446 460515) (-317 "EUCDOM.spad" 455730 455740 458084 458089) (-316 "ESTOOLS.spad" 447576 447584 455720 455725) (-315 "ESTOOLS2.spad" 447179 447193 447566 447571) (-314 "ESTOOLS1.spad" 446864 446875 447169 447174) (-313 "ES.spad" 439679 439687 446854 446859) (-312 "ES.spad" 432400 432410 439577 439582) (-311 "ESCONT.spad" 429193 429201 432390 432395) (-310 "ESCONT1.spad" 428942 428954 429183 429188) (-309 "ES2.spad" 428447 428463 428932 428937) (-308 "ES1.spad" 428017 428033 428437 428442) (-307 "ERROR.spad" 425344 425352 428007 428012) (-306 "EQTBL.spad" 423374 423396 423583 423610) (-305 "EQ.spad" 418179 418189 420966 421078) (-304 "EQ2.spad" 417897 417909 418169 418174) (-303 "EP.spad" 414223 414233 417887 417892) (-302 "ENV.spad" 412901 412909 414213 414218) (-301 "ENTIRER.spad" 412569 412577 412845 412896) (-300 "EMR.spad" 411857 411898 412495 412564) (-299 "ELTAGG.spad" 410111 410130 411847 411852) (-298 "ELTAGG.spad" 408329 408350 410067 410072) (-297 "ELTAB.spad" 407804 407817 408319 408324) (-296 "ELFUTS.spad" 407191 407210 407794 407799) (-295 "ELEMFUN.spad" 406880 406888 407181 407186) (-294 "ELEMFUN.spad" 406567 406577 406870 406875) (-293 "ELAGG.spad" 404538 404548 406547 406562) (-292 "ELAGG.spad" 402446 402458 404457 404462) (-291 "ELABOR.spad" 401792 401800 402436 402441) (-290 "ELABEXPR.spad" 400724 400732 401782 401787) (-289 "EFUPXS.spad" 397500 397530 400680 400685) (-288 "EFULS.spad" 394336 394359 397456 397461) (-287 "EFSTRUC.spad" 392351 392367 394326 394331) (-286 "EF.spad" 387127 387143 392341 392346) (-285 "EAB.spad" 385403 385411 387117 387122) (-284 "E04UCFA.spad" 384939 384947 385393 385398) (-283 "E04NAFA.spad" 384516 384524 384929 384934) (-282 "E04MBFA.spad" 384096 384104 384506 384511) (-281 "E04JAFA.spad" 383632 383640 384086 384091) (-280 "E04GCFA.spad" 383168 383176 383622 383627) (-279 "E04FDFA.spad" 382704 382712 383158 383163) (-278 "E04DGFA.spad" 382240 382248 382694 382699) (-277 "E04AGNT.spad" 378090 378098 382230 382235) (-276 "DVARCAT.spad" 374980 374990 378080 378085) (-275 "DVARCAT.spad" 371868 371880 374970 374975) (-274 "DSMP.spad" 369242 369256 369547 369674) (-273 "DSEXT.spad" 368544 368554 369232 369237) (-272 "DSEXT.spad" 367753 367765 368443 368448) (-271 "DROPT.spad" 361712 361720 367743 367748) (-270 "DROPT1.spad" 361377 361387 361702 361707) (-269 "DROPT0.spad" 356234 356242 361367 361372) (-268 "DRAWPT.spad" 354407 354415 356224 356229) (-267 "DRAW.spad" 347283 347296 354397 354402) (-266 "DRAWHACK.spad" 346591 346601 347273 347278) (-265 "DRAWCX.spad" 344061 344069 346581 346586) (-264 "DRAWCURV.spad" 343608 343623 344051 344056) (-263 "DRAWCFUN.spad" 333140 333148 343598 343603) (-262 "DQAGG.spad" 331318 331328 333108 333135) (-261 "DPOLCAT.spad" 326667 326683 331186 331313) (-260 "DPOLCAT.spad" 322102 322120 326623 326628) (-259 "DPMO.spad" 313862 313878 314000 314213) (-258 "DPMM.spad" 305635 305653 305760 305973) (-257 "DOMTMPLT.spad" 305406 305414 305625 305630) (-256 "DOMCTOR.spad" 305161 305169 305396 305401) (-255 "DOMAIN.spad" 304248 304256 305151 305156) (-254 "DMP.spad" 301508 301523 302078 302205) (-253 "DMEXT.spad" 301375 301385 301476 301503) (-252 "DLP.spad" 300727 300737 301365 301370) (-251 "DLIST.spad" 299153 299163 299757 299784) (-250 "DLAGG.spad" 297570 297580 299143 299148) (-249 "DIVRING.spad" 297112 297120 297514 297565) (-248 "DIVRING.spad" 296698 296708 297102 297107) (-247 "DISPLAY.spad" 294888 294896 296688 296693) (-246 "DIRPROD.spad" 282435 282451 283075 283174) (-245 "DIRPROD2.spad" 281253 281271 282425 282430) (-244 "DIRPCAT.spad" 280446 280462 281149 281248) (-243 "DIRPCAT.spad" 279266 279284 279971 279976) (-242 "DIOSP.spad" 278091 278099 279256 279261) (-241 "DIOPS.spad" 277087 277097 278071 278086) (-240 "DIOPS.spad" 276057 276069 277043 277048) (-239 "DIFRING.spad" 275895 275903 276037 276052) (-238 "DIFFSPC.spad" 275474 275482 275885 275890) (-237 "DIFFSPC.spad" 275051 275061 275464 275469) (-236 "DIFFMOD.spad" 274540 274550 275019 275046) (-235 "DIFFDOM.spad" 273705 273716 274530 274535) (-234 "DIFFDOM.spad" 272868 272881 273695 273700) (-233 "DIFEXT.spad" 272687 272697 272848 272863) (-232 "DIAGG.spad" 272317 272327 272667 272682) (-231 "DIAGG.spad" 271955 271967 272307 272312) (-230 "DHMATRIX.spad" 270150 270160 271295 271322) (-229 "DFSFUN.spad" 263790 263798 270140 270145) (-228 "DFLOAT.spad" 260521 260529 263680 263785) (-227 "DFINTTLS.spad" 258752 258768 260511 260516) (-226 "DERHAM.spad" 256666 256698 258732 258747) (-225 "DEQUEUE.spad" 255873 255883 256156 256183) (-224 "DEGRED.spad" 255490 255504 255863 255868) (-223 "DEFINTRF.spad" 253027 253037 255480 255485) (-222 "DEFINTEF.spad" 251537 251553 253017 253022) (-221 "DEFAST.spad" 250905 250913 251527 251532) (-220 "DECIMAL.spad" 248914 248922 249275 249368) (-219 "DDFACT.spad" 246727 246744 248904 248909) (-218 "DBLRESP.spad" 246327 246351 246717 246722) (-217 "DBASIS.spad" 245953 245968 246317 246322) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2300154 2300159 2300164 2300169) (-2 NIL 2300134 2300139 2300144 2300149) (-1 NIL 2300114 2300119 2300124 2300129) (0 NIL 2300094 2300099 2300104 2300109) (-1327 "ZMOD.spad" 2299903 2299916 2300032 2300089) (-1326 "ZLINDEP.spad" 2298969 2298980 2299893 2299898) (-1325 "ZDSOLVE.spad" 2288913 2288935 2298959 2298964) (-1324 "YSTREAM.spad" 2288408 2288419 2288903 2288908) (-1323 "YDIAGRAM.spad" 2288042 2288051 2288398 2288403) (-1322 "XRPOLY.spad" 2287262 2287282 2287898 2287967) (-1321 "XPR.spad" 2285057 2285070 2286980 2287079) (-1320 "XPOLY.spad" 2284612 2284623 2284913 2284982) (-1319 "XPOLYC.spad" 2283931 2283947 2284538 2284607) (-1318 "XPBWPOLY.spad" 2282368 2282388 2283711 2283780) (-1317 "XF.spad" 2280831 2280846 2282270 2282363) (-1316 "XF.spad" 2279274 2279291 2280715 2280720) (-1315 "XFALG.spad" 2276322 2276338 2279200 2279269) (-1314 "XEXPPKG.spad" 2275573 2275599 2276312 2276317) (-1313 "XDPOLY.spad" 2275187 2275203 2275429 2275498) (-1312 "XALG.spad" 2274847 2274858 2275143 2275182) (-1311 "WUTSET.spad" 2270650 2270667 2274457 2274484) (-1310 "WP.spad" 2269849 2269893 2270508 2270575) (-1309 "WHILEAST.spad" 2269647 2269656 2269839 2269844) (-1308 "WHEREAST.spad" 2269318 2269327 2269637 2269642) (-1307 "WFFINTBS.spad" 2266981 2267003 2269308 2269313) (-1306 "WEIER.spad" 2265203 2265214 2266971 2266976) (-1305 "VSPACE.spad" 2264876 2264887 2265171 2265198) (-1304 "VSPACE.spad" 2264569 2264582 2264866 2264871) (-1303 "VOID.spad" 2264246 2264255 2264559 2264564) (-1302 "VIEW.spad" 2261926 2261935 2264236 2264241) (-1301 "VIEWDEF.spad" 2257127 2257136 2261916 2261921) (-1300 "VIEW3D.spad" 2241088 2241097 2257117 2257122) (-1299 "VIEW2D.spad" 2228979 2228988 2241078 2241083) (-1298 "VECTOR.spad" 2227500 2227511 2227751 2227778) (-1297 "VECTOR2.spad" 2226139 2226152 2227490 2227495) (-1296 "VECTCAT.spad" 2224043 2224054 2226107 2226134) (-1295 "VECTCAT.spad" 2221754 2221767 2223820 2223825) (-1294 "VARIABLE.spad" 2221534 2221549 2221744 2221749) (-1293 "UTYPE.spad" 2221178 2221187 2221524 2221529) (-1292 "UTSODETL.spad" 2220473 2220497 2221134 2221139) (-1291 "UTSODE.spad" 2218689 2218709 2220463 2220468) (-1290 "UTS.spad" 2213636 2213664 2217156 2217253) (-1289 "UTSCAT.spad" 2211115 2211131 2213534 2213631) (-1288 "UTSCAT.spad" 2208238 2208256 2210659 2210664) (-1287 "UTS2.spad" 2207833 2207868 2208228 2208233) (-1286 "URAGG.spad" 2202506 2202517 2207823 2207828) (-1285 "URAGG.spad" 2197143 2197156 2202462 2202467) (-1284 "UPXSSING.spad" 2194788 2194814 2196224 2196357) (-1283 "UPXS.spad" 2192084 2192112 2192920 2193069) (-1282 "UPXSCONS.spad" 2189843 2189863 2190216 2190365) (-1281 "UPXSCCA.spad" 2188414 2188434 2189689 2189838) (-1280 "UPXSCCA.spad" 2187127 2187149 2188404 2188409) (-1279 "UPXSCAT.spad" 2185716 2185732 2186973 2187122) (-1278 "UPXS2.spad" 2185259 2185312 2185706 2185711) (-1277 "UPSQFREE.spad" 2183673 2183687 2185249 2185254) (-1276 "UPSCAT.spad" 2181460 2181484 2183571 2183668) (-1275 "UPSCAT.spad" 2178953 2178979 2181066 2181071) (-1274 "UPOLYC.spad" 2173993 2174004 2178795 2178948) (-1273 "UPOLYC.spad" 2168925 2168938 2173729 2173734) (-1272 "UPOLYC2.spad" 2168396 2168415 2168915 2168920) (-1271 "UP.spad" 2165502 2165517 2165889 2166042) (-1270 "UPMP.spad" 2164402 2164415 2165492 2165497) (-1269 "UPDIVP.spad" 2163967 2163981 2164392 2164397) (-1268 "UPDECOMP.spad" 2162212 2162226 2163957 2163962) (-1267 "UPCDEN.spad" 2161421 2161437 2162202 2162207) (-1266 "UP2.spad" 2160785 2160806 2161411 2161416) (-1265 "UNISEG.spad" 2160138 2160149 2160704 2160709) (-1264 "UNISEG2.spad" 2159635 2159648 2160094 2160099) (-1263 "UNIFACT.spad" 2158738 2158750 2159625 2159630) (-1262 "ULS.spad" 2148522 2148550 2149467 2149896) (-1261 "ULSCONS.spad" 2139656 2139676 2140026 2140175) (-1260 "ULSCCAT.spad" 2137393 2137413 2139502 2139651) (-1259 "ULSCCAT.spad" 2135238 2135260 2137349 2137354) (-1258 "ULSCAT.spad" 2133470 2133486 2135084 2135233) (-1257 "ULS2.spad" 2132984 2133037 2133460 2133465) (-1256 "UINT8.spad" 2132861 2132870 2132974 2132979) (-1255 "UINT64.spad" 2132737 2132746 2132851 2132856) (-1254 "UINT32.spad" 2132613 2132622 2132727 2132732) (-1253 "UINT16.spad" 2132489 2132498 2132603 2132608) (-1252 "UFD.spad" 2131554 2131563 2132415 2132484) (-1251 "UFD.spad" 2130681 2130692 2131544 2131549) (-1250 "UDVO.spad" 2129562 2129571 2130671 2130676) (-1249 "UDPO.spad" 2127055 2127066 2129518 2129523) (-1248 "TYPE.spad" 2126987 2126996 2127045 2127050) (-1247 "TYPEAST.spad" 2126906 2126915 2126977 2126982) (-1246 "TWOFACT.spad" 2125558 2125573 2126896 2126901) (-1245 "TUPLE.spad" 2125044 2125055 2125457 2125462) (-1244 "TUBETOOL.spad" 2121911 2121920 2125034 2125039) (-1243 "TUBE.spad" 2120558 2120575 2121901 2121906) (-1242 "TS.spad" 2119157 2119173 2120123 2120220) (-1241 "TSETCAT.spad" 2106284 2106301 2119125 2119152) (-1240 "TSETCAT.spad" 2093397 2093416 2106240 2106245) (-1239 "TRMANIP.spad" 2087763 2087780 2093103 2093108) (-1238 "TRIMAT.spad" 2086726 2086751 2087753 2087758) (-1237 "TRIGMNIP.spad" 2085253 2085270 2086716 2086721) (-1236 "TRIGCAT.spad" 2084765 2084774 2085243 2085248) (-1235 "TRIGCAT.spad" 2084275 2084286 2084755 2084760) (-1234 "TREE.spad" 2082733 2082744 2083765 2083792) (-1233 "TRANFUN.spad" 2082572 2082581 2082723 2082728) (-1232 "TRANFUN.spad" 2082409 2082420 2082562 2082567) (-1231 "TOPSP.spad" 2082083 2082092 2082399 2082404) (-1230 "TOOLSIGN.spad" 2081746 2081757 2082073 2082078) (-1229 "TEXTFILE.spad" 2080307 2080316 2081736 2081741) (-1228 "TEX.spad" 2077453 2077462 2080297 2080302) (-1227 "TEX1.spad" 2077009 2077020 2077443 2077448) (-1226 "TEMUTL.spad" 2076564 2076573 2076999 2077004) (-1225 "TBCMPPK.spad" 2074657 2074680 2076554 2076559) (-1224 "TBAGG.spad" 2073707 2073730 2074637 2074652) (-1223 "TBAGG.spad" 2072765 2072790 2073697 2073702) (-1222 "TANEXP.spad" 2072173 2072184 2072755 2072760) (-1221 "TALGOP.spad" 2071897 2071908 2072163 2072168) (-1220 "TABLE.spad" 2069866 2069889 2070136 2070163) (-1219 "TABLEAU.spad" 2069347 2069358 2069856 2069861) (-1218 "TABLBUMP.spad" 2066150 2066161 2069337 2069342) (-1217 "SYSTEM.spad" 2065378 2065387 2066140 2066145) (-1216 "SYSSOLP.spad" 2062861 2062872 2065368 2065373) (-1215 "SYSPTR.spad" 2062760 2062769 2062851 2062856) (-1214 "SYSNNI.spad" 2061951 2061962 2062750 2062755) (-1213 "SYSINT.spad" 2061355 2061366 2061941 2061946) (-1212 "SYNTAX.spad" 2057561 2057570 2061345 2061350) (-1211 "SYMTAB.spad" 2055629 2055638 2057551 2057556) (-1210 "SYMS.spad" 2051652 2051661 2055619 2055624) (-1209 "SYMPOLY.spad" 2050658 2050669 2050740 2050867) (-1208 "SYMFUNC.spad" 2050159 2050170 2050648 2050653) (-1207 "SYMBOL.spad" 2047662 2047671 2050149 2050154) (-1206 "SWITCH.spad" 2044433 2044442 2047652 2047657) (-1205 "SUTS.spad" 2041481 2041509 2042900 2042997) (-1204 "SUPXS.spad" 2038764 2038792 2039613 2039762) (-1203 "SUP.spad" 2035484 2035495 2036257 2036410) (-1202 "SUPFRACF.spad" 2034589 2034607 2035474 2035479) (-1201 "SUP2.spad" 2033981 2033994 2034579 2034584) (-1200 "SUMRF.spad" 2032955 2032966 2033971 2033976) (-1199 "SUMFS.spad" 2032592 2032609 2032945 2032950) (-1198 "SULS.spad" 2022363 2022391 2023321 2023750) (-1197 "SUCHTAST.spad" 2022132 2022141 2022353 2022358) (-1196 "SUCH.spad" 2021814 2021829 2022122 2022127) (-1195 "SUBSPACE.spad" 2013929 2013944 2021804 2021809) (-1194 "SUBRESP.spad" 2013099 2013113 2013885 2013890) (-1193 "STTF.spad" 2009198 2009214 2013089 2013094) (-1192 "STTFNC.spad" 2005666 2005682 2009188 2009193) (-1191 "STTAYLOR.spad" 1998301 1998312 2005547 2005552) (-1190 "STRTBL.spad" 1996352 1996369 1996501 1996528) (-1189 "STRING.spad" 1995139 1995148 1995360 1995387) (-1188 "STREAM.spad" 1991940 1991951 1994547 1994562) (-1187 "STREAM3.spad" 1991513 1991528 1991930 1991935) (-1186 "STREAM2.spad" 1990641 1990654 1991503 1991508) (-1185 "STREAM1.spad" 1990347 1990358 1990631 1990636) (-1184 "STINPROD.spad" 1989283 1989299 1990337 1990342) (-1183 "STEP.spad" 1988484 1988493 1989273 1989278) (-1182 "STEPAST.spad" 1987718 1987727 1988474 1988479) (-1181 "STBL.spad" 1985802 1985830 1985969 1985984) (-1180 "STAGG.spad" 1984877 1984888 1985792 1985797) (-1179 "STAGG.spad" 1983950 1983963 1984867 1984872) (-1178 "STACK.spad" 1983190 1983201 1983440 1983467) (-1177 "SREGSET.spad" 1980858 1980875 1982800 1982827) (-1176 "SRDCMPK.spad" 1979419 1979439 1980848 1980853) (-1175 "SRAGG.spad" 1974562 1974571 1979387 1979414) (-1174 "SRAGG.spad" 1969725 1969736 1974552 1974557) (-1173 "SQMATRIX.spad" 1967268 1967286 1968184 1968271) (-1172 "SPLTREE.spad" 1961664 1961677 1966548 1966575) (-1171 "SPLNODE.spad" 1958252 1958265 1961654 1961659) (-1170 "SPFCAT.spad" 1957061 1957070 1958242 1958247) (-1169 "SPECOUT.spad" 1955613 1955622 1957051 1957056) (-1168 "SPADXPT.spad" 1947208 1947217 1955603 1955608) (-1167 "spad-parser.spad" 1946673 1946682 1947198 1947203) (-1166 "SPADAST.spad" 1946374 1946383 1946663 1946668) (-1165 "SPACEC.spad" 1930573 1930584 1946364 1946369) (-1164 "SPACE3.spad" 1930349 1930360 1930563 1930568) (-1163 "SORTPAK.spad" 1929898 1929911 1930305 1930310) (-1162 "SOLVETRA.spad" 1927661 1927672 1929888 1929893) (-1161 "SOLVESER.spad" 1926189 1926200 1927651 1927656) (-1160 "SOLVERAD.spad" 1922215 1922226 1926179 1926184) (-1159 "SOLVEFOR.spad" 1920677 1920695 1922205 1922210) (-1158 "SNTSCAT.spad" 1920277 1920294 1920645 1920672) (-1157 "SMTS.spad" 1918549 1918575 1919842 1919939) (-1156 "SMP.spad" 1916024 1916044 1916414 1916541) (-1155 "SMITH.spad" 1914869 1914894 1916014 1916019) (-1154 "SMATCAT.spad" 1912979 1913009 1914813 1914864) (-1153 "SMATCAT.spad" 1911021 1911053 1912857 1912862) (-1152 "SKAGG.spad" 1909984 1909995 1910989 1911016) (-1151 "SINT.spad" 1908924 1908933 1909850 1909979) (-1150 "SIMPAN.spad" 1908652 1908661 1908914 1908919) (-1149 "SIG.spad" 1907982 1907991 1908642 1908647) (-1148 "SIGNRF.spad" 1907100 1907111 1907972 1907977) (-1147 "SIGNEF.spad" 1906379 1906396 1907090 1907095) (-1146 "SIGAST.spad" 1905764 1905773 1906369 1906374) (-1145 "SHP.spad" 1903692 1903707 1905720 1905725) (-1144 "SHDP.spad" 1891370 1891397 1891879 1891978) (-1143 "SGROUP.spad" 1890978 1890987 1891360 1891365) (-1142 "SGROUP.spad" 1890584 1890595 1890968 1890973) (-1141 "SGCF.spad" 1883723 1883732 1890574 1890579) (-1140 "SFRTCAT.spad" 1882653 1882670 1883691 1883718) (-1139 "SFRGCD.spad" 1881716 1881736 1882643 1882648) (-1138 "SFQCMPK.spad" 1876353 1876373 1881706 1881711) (-1137 "SFORT.spad" 1875792 1875806 1876343 1876348) (-1136 "SEXOF.spad" 1875635 1875675 1875782 1875787) (-1135 "SEX.spad" 1875527 1875536 1875625 1875630) (-1134 "SEXCAT.spad" 1873299 1873339 1875517 1875522) (-1133 "SET.spad" 1871587 1871598 1872684 1872723) (-1132 "SETMN.spad" 1870037 1870054 1871577 1871582) (-1131 "SETCAT.spad" 1869522 1869531 1870027 1870032) (-1130 "SETCAT.spad" 1869005 1869016 1869512 1869517) (-1129 "SETAGG.spad" 1865554 1865565 1868985 1869000) (-1128 "SETAGG.spad" 1862111 1862124 1865544 1865549) (-1127 "SEQAST.spad" 1861814 1861823 1862101 1862106) (-1126 "SEGXCAT.spad" 1860970 1860983 1861804 1861809) (-1125 "SEG.spad" 1860783 1860794 1860889 1860894) (-1124 "SEGCAT.spad" 1859708 1859719 1860773 1860778) (-1123 "SEGBIND.spad" 1859466 1859477 1859655 1859660) (-1122 "SEGBIND2.spad" 1859164 1859177 1859456 1859461) (-1121 "SEGAST.spad" 1858878 1858887 1859154 1859159) (-1120 "SEG2.spad" 1858313 1858326 1858834 1858839) (-1119 "SDVAR.spad" 1857589 1857600 1858303 1858308) (-1118 "SDPOL.spad" 1854922 1854933 1855213 1855340) (-1117 "SCPKG.spad" 1853011 1853022 1854912 1854917) (-1116 "SCOPE.spad" 1852164 1852173 1853001 1853006) (-1115 "SCACHE.spad" 1850860 1850871 1852154 1852159) (-1114 "SASTCAT.spad" 1850769 1850778 1850850 1850855) (-1113 "SAOS.spad" 1850641 1850650 1850759 1850764) (-1112 "SAERFFC.spad" 1850354 1850374 1850631 1850636) (-1111 "SAE.spad" 1847824 1847840 1848435 1848570) (-1110 "SAEFACT.spad" 1847525 1847545 1847814 1847819) (-1109 "RURPK.spad" 1845184 1845200 1847515 1847520) (-1108 "RULESET.spad" 1844637 1844661 1845174 1845179) (-1107 "RULE.spad" 1842877 1842901 1844627 1844632) (-1106 "RULECOLD.spad" 1842729 1842742 1842867 1842872) (-1105 "RTVALUE.spad" 1842464 1842473 1842719 1842724) (-1104 "RSTRCAST.spad" 1842181 1842190 1842454 1842459) (-1103 "RSETGCD.spad" 1838559 1838579 1842171 1842176) (-1102 "RSETCAT.spad" 1828495 1828512 1838527 1838554) (-1101 "RSETCAT.spad" 1818451 1818470 1828485 1828490) (-1100 "RSDCMPK.spad" 1816903 1816923 1818441 1818446) (-1099 "RRCC.spad" 1815287 1815317 1816893 1816898) (-1098 "RRCC.spad" 1813669 1813701 1815277 1815282) (-1097 "RPTAST.spad" 1813371 1813380 1813659 1813664) (-1096 "RPOLCAT.spad" 1792731 1792746 1813239 1813366) (-1095 "RPOLCAT.spad" 1771804 1771821 1792314 1792319) (-1094 "ROUTINE.spad" 1767225 1767234 1769989 1770016) (-1093 "ROMAN.spad" 1766553 1766562 1767091 1767220) (-1092 "ROIRC.spad" 1765633 1765665 1766543 1766548) (-1091 "RNS.spad" 1764536 1764545 1765535 1765628) (-1090 "RNS.spad" 1763525 1763536 1764526 1764531) (-1089 "RNG.spad" 1763260 1763269 1763515 1763520) (-1088 "RNGBIND.spad" 1762420 1762434 1763215 1763220) (-1087 "RMODULE.spad" 1762185 1762196 1762410 1762415) (-1086 "RMCAT2.spad" 1761605 1761662 1762175 1762180) (-1085 "RMATRIX.spad" 1760393 1760412 1760736 1760775) (-1084 "RMATCAT.spad" 1755972 1756003 1760349 1760388) (-1083 "RMATCAT.spad" 1751441 1751474 1755820 1755825) (-1082 "RLINSET.spad" 1751145 1751156 1751431 1751436) (-1081 "RINTERP.spad" 1751033 1751053 1751135 1751140) (-1080 "RING.spad" 1750503 1750512 1751013 1751028) (-1079 "RING.spad" 1749981 1749992 1750493 1750498) (-1078 "RIDIST.spad" 1749373 1749382 1749971 1749976) (-1077 "RGCHAIN.spad" 1747901 1747917 1748803 1748830) (-1076 "RGBCSPC.spad" 1747682 1747694 1747891 1747896) (-1075 "RGBCMDL.spad" 1747212 1747224 1747672 1747677) (-1074 "RF.spad" 1744854 1744865 1747202 1747207) (-1073 "RFFACTOR.spad" 1744316 1744327 1744844 1744849) (-1072 "RFFACT.spad" 1744051 1744063 1744306 1744311) (-1071 "RFDIST.spad" 1743047 1743056 1744041 1744046) (-1070 "RETSOL.spad" 1742466 1742479 1743037 1743042) (-1069 "RETRACT.spad" 1741894 1741905 1742456 1742461) (-1068 "RETRACT.spad" 1741320 1741333 1741884 1741889) (-1067 "RETAST.spad" 1741132 1741141 1741310 1741315) (-1066 "RESULT.spad" 1738730 1738739 1739317 1739344) (-1065 "RESRING.spad" 1738077 1738124 1738668 1738725) (-1064 "RESLATC.spad" 1737401 1737412 1738067 1738072) (-1063 "REPSQ.spad" 1737132 1737143 1737391 1737396) (-1062 "REP.spad" 1734686 1734695 1737122 1737127) (-1061 "REPDB.spad" 1734393 1734404 1734676 1734681) (-1060 "REP2.spad" 1724051 1724062 1734235 1734240) (-1059 "REP1.spad" 1718247 1718258 1724001 1724006) (-1058 "REGSET.spad" 1716008 1716025 1717857 1717884) (-1057 "REF.spad" 1715343 1715354 1715963 1715968) (-1056 "REDORDER.spad" 1714549 1714566 1715333 1715338) (-1055 "RECLOS.spad" 1713332 1713352 1714036 1714129) (-1054 "REALSOLV.spad" 1712472 1712481 1713322 1713327) (-1053 "REAL.spad" 1712344 1712353 1712462 1712467) (-1052 "REAL0Q.spad" 1709642 1709657 1712334 1712339) (-1051 "REAL0.spad" 1706486 1706501 1709632 1709637) (-1050 "RDUCEAST.spad" 1706207 1706216 1706476 1706481) (-1049 "RDIV.spad" 1705862 1705887 1706197 1706202) (-1048 "RDIST.spad" 1705429 1705440 1705852 1705857) (-1047 "RDETRS.spad" 1704293 1704311 1705419 1705424) (-1046 "RDETR.spad" 1702432 1702450 1704283 1704288) (-1045 "RDEEFS.spad" 1701531 1701548 1702422 1702427) (-1044 "RDEEF.spad" 1700541 1700558 1701521 1701526) (-1043 "RCFIELD.spad" 1697727 1697736 1700443 1700536) (-1042 "RCFIELD.spad" 1694999 1695010 1697717 1697722) (-1041 "RCAGG.spad" 1692927 1692938 1694989 1694994) (-1040 "RCAGG.spad" 1690782 1690795 1692846 1692851) (-1039 "RATRET.spad" 1690142 1690153 1690772 1690777) (-1038 "RATFACT.spad" 1689834 1689846 1690132 1690137) (-1037 "RANDSRC.spad" 1689153 1689162 1689824 1689829) (-1036 "RADUTIL.spad" 1688909 1688918 1689143 1689148) (-1035 "RADIX.spad" 1685733 1685747 1687279 1687372) (-1034 "RADFF.spad" 1683472 1683509 1683591 1683747) (-1033 "RADCAT.spad" 1683067 1683076 1683462 1683467) (-1032 "RADCAT.spad" 1682660 1682671 1683057 1683062) (-1031 "QUEUE.spad" 1681891 1681902 1682150 1682177) (-1030 "QUAT.spad" 1680379 1680390 1680722 1680787) (-1029 "QUATCT2.spad" 1679999 1680018 1680369 1680374) (-1028 "QUATCAT.spad" 1678169 1678180 1679929 1679994) (-1027 "QUATCAT.spad" 1676090 1676103 1677852 1677857) (-1026 "QUAGG.spad" 1674917 1674928 1676058 1676085) (-1025 "QQUTAST.spad" 1674685 1674694 1674907 1674912) (-1024 "QFORM.spad" 1674303 1674318 1674675 1674680) (-1023 "QFCAT.spad" 1673005 1673016 1674205 1674298) (-1022 "QFCAT.spad" 1671298 1671311 1672500 1672505) (-1021 "QFCAT2.spad" 1670990 1671007 1671288 1671293) (-1020 "QEQUAT.spad" 1670548 1670557 1670980 1670985) (-1019 "QCMPACK.spad" 1665294 1665314 1670538 1670543) (-1018 "QALGSET.spad" 1661372 1661405 1665208 1665213) (-1017 "QALGSET2.spad" 1659367 1659386 1661362 1661367) (-1016 "PWFFINTB.spad" 1656782 1656804 1659357 1659362) (-1015 "PUSHVAR.spad" 1656120 1656140 1656772 1656777) (-1014 "PTRANFN.spad" 1652247 1652258 1656110 1656115) (-1013 "PTPACK.spad" 1649334 1649345 1652237 1652242) (-1012 "PTFUNC2.spad" 1649156 1649171 1649324 1649329) (-1011 "PTCAT.spad" 1648410 1648421 1649124 1649151) (-1010 "PSQFR.spad" 1647716 1647741 1648400 1648405) (-1009 "PSEUDLIN.spad" 1646601 1646612 1647706 1647711) (-1008 "PSETPK.spad" 1632033 1632050 1646479 1646484) (-1007 "PSETCAT.spad" 1625952 1625976 1632013 1632028) (-1006 "PSETCAT.spad" 1619845 1619871 1625908 1625913) (-1005 "PSCURVE.spad" 1618827 1618836 1619835 1619840) (-1004 "PSCAT.spad" 1617609 1617639 1618725 1618822) (-1003 "PSCAT.spad" 1616481 1616513 1617599 1617604) (-1002 "PRTITION.spad" 1615178 1615187 1616471 1616476) (-1001 "PRTDAST.spad" 1614896 1614905 1615168 1615173) (-1000 "PRS.spad" 1604457 1604475 1614852 1614857) (-999 "PRQAGG.spad" 1603892 1603902 1604425 1604452) (-998 "PROPLOG.spad" 1603464 1603472 1603882 1603887) (-997 "PROPFUN2.spad" 1603087 1603100 1603454 1603459) (-996 "PROPFUN1.spad" 1602485 1602496 1603077 1603082) (-995 "PROPFRML.spad" 1601053 1601064 1602475 1602480) (-994 "PROPERTY.spad" 1600541 1600549 1601043 1601048) (-993 "PRODUCT.spad" 1598223 1598235 1598507 1598562) (-992 "PR.spad" 1596615 1596627 1597314 1597441) (-991 "PRINT.spad" 1596367 1596375 1596605 1596610) (-990 "PRIMES.spad" 1594620 1594630 1596357 1596362) (-989 "PRIMELT.spad" 1592701 1592715 1594610 1594615) (-988 "PRIMCAT.spad" 1592328 1592336 1592691 1592696) (-987 "PRIMARR.spad" 1591180 1591190 1591358 1591385) (-986 "PRIMARR2.spad" 1589947 1589959 1591170 1591175) (-985 "PREASSOC.spad" 1589329 1589341 1589937 1589942) (-984 "PPCURVE.spad" 1588466 1588474 1589319 1589324) (-983 "PORTNUM.spad" 1588241 1588249 1588456 1588461) (-982 "POLYROOT.spad" 1587090 1587112 1588197 1588202) (-981 "POLY.spad" 1584425 1584435 1584940 1585067) (-980 "POLYLIFT.spad" 1583690 1583713 1584415 1584420) (-979 "POLYCATQ.spad" 1581808 1581830 1583680 1583685) (-978 "POLYCAT.spad" 1575278 1575299 1581676 1581803) (-977 "POLYCAT.spad" 1568086 1568109 1574486 1574491) (-976 "POLY2UP.spad" 1567538 1567552 1568076 1568081) (-975 "POLY2.spad" 1567135 1567147 1567528 1567533) (-974 "POLUTIL.spad" 1566076 1566105 1567091 1567096) (-973 "POLTOPOL.spad" 1564824 1564839 1566066 1566071) (-972 "POINT.spad" 1563509 1563519 1563596 1563623) (-971 "PNTHEORY.spad" 1560211 1560219 1563499 1563504) (-970 "PMTOOLS.spad" 1558986 1559000 1560201 1560206) (-969 "PMSYM.spad" 1558535 1558545 1558976 1558981) (-968 "PMQFCAT.spad" 1558126 1558140 1558525 1558530) (-967 "PMPRED.spad" 1557605 1557619 1558116 1558121) (-966 "PMPREDFS.spad" 1557059 1557081 1557595 1557600) (-965 "PMPLCAT.spad" 1556139 1556157 1556991 1556996) (-964 "PMLSAGG.spad" 1555724 1555738 1556129 1556134) (-963 "PMKERNEL.spad" 1555303 1555315 1555714 1555719) (-962 "PMINS.spad" 1554883 1554893 1555293 1555298) (-961 "PMFS.spad" 1554460 1554478 1554873 1554878) (-960 "PMDOWN.spad" 1553750 1553764 1554450 1554455) (-959 "PMASS.spad" 1552760 1552768 1553740 1553745) (-958 "PMASSFS.spad" 1551727 1551743 1552750 1552755) (-957 "PLOTTOOL.spad" 1551507 1551515 1551717 1551722) (-956 "PLOT.spad" 1546430 1546438 1551497 1551502) (-955 "PLOT3D.spad" 1542894 1542902 1546420 1546425) (-954 "PLOT1.spad" 1542051 1542061 1542884 1542889) (-953 "PLEQN.spad" 1529341 1529368 1542041 1542046) (-952 "PINTERP.spad" 1528963 1528982 1529331 1529336) (-951 "PINTERPA.spad" 1528747 1528763 1528953 1528958) (-950 "PI.spad" 1528356 1528364 1528721 1528742) (-949 "PID.spad" 1527326 1527334 1528282 1528351) (-948 "PICOERCE.spad" 1526983 1526993 1527316 1527321) (-947 "PGROEB.spad" 1525584 1525598 1526973 1526978) (-946 "PGE.spad" 1517201 1517209 1525574 1525579) (-945 "PGCD.spad" 1516091 1516108 1517191 1517196) (-944 "PFRPAC.spad" 1515240 1515250 1516081 1516086) (-943 "PFR.spad" 1511903 1511913 1515142 1515235) (-942 "PFOTOOLS.spad" 1511161 1511177 1511893 1511898) (-941 "PFOQ.spad" 1510531 1510549 1511151 1511156) (-940 "PFO.spad" 1509950 1509977 1510521 1510526) (-939 "PF.spad" 1509524 1509536 1509755 1509848) (-938 "PFECAT.spad" 1507206 1507214 1509450 1509519) (-937 "PFECAT.spad" 1504916 1504926 1507162 1507167) (-936 "PFBRU.spad" 1502804 1502816 1504906 1504911) (-935 "PFBR.spad" 1500364 1500387 1502794 1502799) (-934 "PERM.spad" 1496171 1496181 1500194 1500209) (-933 "PERMGRP.spad" 1490941 1490951 1496161 1496166) (-932 "PERMCAT.spad" 1489602 1489612 1490921 1490936) (-931 "PERMAN.spad" 1488134 1488148 1489592 1489597) (-930 "PENDTREE.spad" 1487358 1487368 1487646 1487651) (-929 "PDSPC.spad" 1486171 1486181 1487348 1487353) (-928 "PDSPC.spad" 1484982 1484994 1486161 1486166) (-927 "PDRING.spad" 1484824 1484834 1484962 1484977) (-926 "PDMOD.spad" 1484640 1484652 1484792 1484819) (-925 "PDEPROB.spad" 1483655 1483663 1484630 1484635) (-924 "PDEPACK.spad" 1477695 1477703 1483645 1483650) (-923 "PDECOMP.spad" 1477165 1477182 1477685 1477690) (-922 "PDECAT.spad" 1475521 1475529 1477155 1477160) (-921 "PDDOM.spad" 1474959 1474972 1475511 1475516) (-920 "PDDOM.spad" 1474395 1474410 1474949 1474954) (-919 "PCOMP.spad" 1474248 1474261 1474385 1474390) (-918 "PBWLB.spad" 1472836 1472853 1474238 1474243) (-917 "PATTERN.spad" 1467375 1467385 1472826 1472831) (-916 "PATTERN2.spad" 1467113 1467125 1467365 1467370) (-915 "PATTERN1.spad" 1465449 1465465 1467103 1467108) (-914 "PATRES.spad" 1463024 1463036 1465439 1465444) (-913 "PATRES2.spad" 1462696 1462710 1463014 1463019) (-912 "PATMATCH.spad" 1460893 1460924 1462404 1462409) (-911 "PATMAB.spad" 1460322 1460332 1460883 1460888) (-910 "PATLRES.spad" 1459408 1459422 1460312 1460317) (-909 "PATAB.spad" 1459172 1459182 1459398 1459403) (-908 "PARTPERM.spad" 1457180 1457188 1459162 1459167) (-907 "PARSURF.spad" 1456614 1456642 1457170 1457175) (-906 "PARSU2.spad" 1456411 1456427 1456604 1456609) (-905 "script-parser.spad" 1455931 1455939 1456401 1456406) (-904 "PARSCURV.spad" 1455365 1455393 1455921 1455926) (-903 "PARSC2.spad" 1455156 1455172 1455355 1455360) (-902 "PARPCURV.spad" 1454618 1454646 1455146 1455151) (-901 "PARPC2.spad" 1454409 1454425 1454608 1454613) (-900 "PARAMAST.spad" 1453537 1453545 1454399 1454404) (-899 "PAN2EXPR.spad" 1452949 1452957 1453527 1453532) (-898 "PALETTE.spad" 1451919 1451927 1452939 1452944) (-897 "PAIR.spad" 1450906 1450919 1451507 1451512) (-896 "PADICRC.spad" 1448147 1448165 1449318 1449411) (-895 "PADICRAT.spad" 1446055 1446067 1446276 1446369) (-894 "PADIC.spad" 1445750 1445762 1445981 1446050) (-893 "PADICCT.spad" 1444299 1444311 1445676 1445745) (-892 "PADEPAC.spad" 1442988 1443007 1444289 1444294) (-891 "PADE.spad" 1441740 1441756 1442978 1442983) (-890 "OWP.spad" 1440980 1441010 1441598 1441665) (-889 "OVERSET.spad" 1440553 1440561 1440970 1440975) (-888 "OVAR.spad" 1440334 1440357 1440543 1440548) (-887 "OUT.spad" 1439420 1439428 1440324 1440329) (-886 "OUTFORM.spad" 1428812 1428820 1439410 1439415) (-885 "OUTBFILE.spad" 1428230 1428238 1428802 1428807) (-884 "OUTBCON.spad" 1427236 1427244 1428220 1428225) (-883 "OUTBCON.spad" 1426240 1426250 1427226 1427231) (-882 "OSI.spad" 1425715 1425723 1426230 1426235) (-881 "OSGROUP.spad" 1425633 1425641 1425705 1425710) (-880 "ORTHPOL.spad" 1424118 1424128 1425550 1425555) (-879 "OREUP.spad" 1423571 1423599 1423798 1423837) (-878 "ORESUP.spad" 1422872 1422896 1423251 1423290) (-877 "OREPCTO.spad" 1420729 1420741 1422792 1422797) (-876 "OREPCAT.spad" 1414876 1414886 1420685 1420724) (-875 "OREPCAT.spad" 1408913 1408925 1414724 1414729) (-874 "ORDTYPE.spad" 1408150 1408158 1408903 1408908) (-873 "ORDTYPE.spad" 1407385 1407395 1408140 1408145) (-872 "ORDSTRCT.spad" 1407158 1407173 1407321 1407326) (-871 "ORDSET.spad" 1406858 1406866 1407148 1407153) (-870 "ORDRING.spad" 1406248 1406256 1406838 1406853) (-869 "ORDRING.spad" 1405646 1405656 1406238 1406243) (-868 "ORDMON.spad" 1405501 1405509 1405636 1405641) (-867 "ORDFUNS.spad" 1404633 1404649 1405491 1405496) (-866 "ORDFIN.spad" 1404453 1404461 1404623 1404628) (-865 "ORDCOMP.spad" 1402918 1402928 1404000 1404029) (-864 "ORDCOMP2.spad" 1402211 1402223 1402908 1402913) (-863 "OPTPROB.spad" 1400849 1400857 1402201 1402206) (-862 "OPTPACK.spad" 1393258 1393266 1400839 1400844) (-861 "OPTCAT.spad" 1390937 1390945 1393248 1393253) (-860 "OPSIG.spad" 1390591 1390599 1390927 1390932) (-859 "OPQUERY.spad" 1390140 1390148 1390581 1390586) (-858 "OP.spad" 1389882 1389892 1389962 1390029) (-857 "OPERCAT.spad" 1389348 1389358 1389872 1389877) (-856 "OPERCAT.spad" 1388812 1388824 1389338 1389343) (-855 "ONECOMP.spad" 1387557 1387567 1388359 1388388) (-854 "ONECOMP2.spad" 1386981 1386993 1387547 1387552) (-853 "OMSERVER.spad" 1385987 1385995 1386971 1386976) (-852 "OMSAGG.spad" 1385775 1385785 1385943 1385982) (-851 "OMPKG.spad" 1384391 1384399 1385765 1385770) (-850 "OM.spad" 1383364 1383372 1384381 1384386) (-849 "OMLO.spad" 1382789 1382801 1383250 1383289) (-848 "OMEXPR.spad" 1382623 1382633 1382779 1382784) (-847 "OMERR.spad" 1382168 1382176 1382613 1382618) (-846 "OMERRK.spad" 1381202 1381210 1382158 1382163) (-845 "OMENC.spad" 1380546 1380554 1381192 1381197) (-844 "OMDEV.spad" 1374855 1374863 1380536 1380541) (-843 "OMCONN.spad" 1374264 1374272 1374845 1374850) (-842 "OINTDOM.spad" 1374027 1374035 1374190 1374259) (-841 "OFMONOID.spad" 1372150 1372160 1373983 1373988) (-840 "ODVAR.spad" 1371411 1371421 1372140 1372145) (-839 "ODR.spad" 1371055 1371081 1371223 1371372) (-838 "ODPOL.spad" 1368344 1368354 1368684 1368811) (-837 "ODP.spad" 1356158 1356178 1356531 1356630) (-836 "ODETOOLS.spad" 1354807 1354826 1356148 1356153) (-835 "ODESYS.spad" 1352501 1352518 1354797 1354802) (-834 "ODERTRIC.spad" 1348510 1348527 1352458 1352463) (-833 "ODERED.spad" 1347909 1347933 1348500 1348505) (-832 "ODERAT.spad" 1345524 1345541 1347899 1347904) (-831 "ODEPRRIC.spad" 1342561 1342583 1345514 1345519) (-830 "ODEPROB.spad" 1341818 1341826 1342551 1342556) (-829 "ODEPRIM.spad" 1339152 1339174 1341808 1341813) (-828 "ODEPAL.spad" 1338538 1338562 1339142 1339147) (-827 "ODEPACK.spad" 1325204 1325212 1338528 1338533) (-826 "ODEINT.spad" 1324639 1324655 1325194 1325199) (-825 "ODEIFTBL.spad" 1322034 1322042 1324629 1324634) (-824 "ODEEF.spad" 1317525 1317541 1322024 1322029) (-823 "ODECONST.spad" 1317062 1317080 1317515 1317520) (-822 "ODECAT.spad" 1315660 1315668 1317052 1317057) (-821 "OCT.spad" 1313796 1313806 1314510 1314549) (-820 "OCTCT2.spad" 1313442 1313463 1313786 1313791) (-819 "OC.spad" 1311238 1311248 1313398 1313437) (-818 "OC.spad" 1308759 1308771 1310921 1310926) (-817 "OCAMON.spad" 1308607 1308615 1308749 1308754) (-816 "OASGP.spad" 1308422 1308430 1308597 1308602) (-815 "OAMONS.spad" 1307944 1307952 1308412 1308417) (-814 "OAMON.spad" 1307805 1307813 1307934 1307939) (-813 "OAGROUP.spad" 1307667 1307675 1307795 1307800) (-812 "NUMTUBE.spad" 1307258 1307274 1307657 1307662) (-811 "NUMQUAD.spad" 1295234 1295242 1307248 1307253) (-810 "NUMODE.spad" 1286588 1286596 1295224 1295229) (-809 "NUMINT.spad" 1284154 1284162 1286578 1286583) (-808 "NUMFMT.spad" 1282994 1283002 1284144 1284149) (-807 "NUMERIC.spad" 1275108 1275118 1282799 1282804) (-806 "NTSCAT.spad" 1273616 1273632 1275076 1275103) (-805 "NTPOLFN.spad" 1273167 1273177 1273533 1273538) (-804 "NSUP.spad" 1266120 1266130 1270660 1270813) (-803 "NSUP2.spad" 1265512 1265524 1266110 1266115) (-802 "NSMP.spad" 1261742 1261761 1262050 1262177) (-801 "NREP.spad" 1260120 1260134 1261732 1261737) (-800 "NPCOEF.spad" 1259366 1259386 1260110 1260115) (-799 "NORMRETR.spad" 1258964 1259003 1259356 1259361) (-798 "NORMPK.spad" 1256866 1256885 1258954 1258959) (-797 "NORMMA.spad" 1256554 1256580 1256856 1256861) (-796 "NONE.spad" 1256295 1256303 1256544 1256549) (-795 "NONE1.spad" 1255971 1255981 1256285 1256290) (-794 "NODE1.spad" 1255458 1255474 1255961 1255966) (-793 "NNI.spad" 1254353 1254361 1255432 1255453) (-792 "NLINSOL.spad" 1252979 1252989 1254343 1254348) (-791 "NIPROB.spad" 1251520 1251528 1252969 1252974) (-790 "NFINTBAS.spad" 1249080 1249097 1251510 1251515) (-789 "NETCLT.spad" 1249054 1249065 1249070 1249075) (-788 "NCODIV.spad" 1247270 1247286 1249044 1249049) (-787 "NCNTFRAC.spad" 1246912 1246926 1247260 1247265) (-786 "NCEP.spad" 1245078 1245092 1246902 1246907) (-785 "NASRING.spad" 1244674 1244682 1245068 1245073) (-784 "NASRING.spad" 1244268 1244278 1244664 1244669) (-783 "NARNG.spad" 1243620 1243628 1244258 1244263) (-782 "NARNG.spad" 1242970 1242980 1243610 1243615) (-781 "NAGSP.spad" 1242047 1242055 1242960 1242965) (-780 "NAGS.spad" 1231708 1231716 1242037 1242042) (-779 "NAGF07.spad" 1230139 1230147 1231698 1231703) (-778 "NAGF04.spad" 1224541 1224549 1230129 1230134) (-777 "NAGF02.spad" 1218610 1218618 1224531 1224536) (-776 "NAGF01.spad" 1214371 1214379 1218600 1218605) (-775 "NAGE04.spad" 1208071 1208079 1214361 1214366) (-774 "NAGE02.spad" 1198731 1198739 1208061 1208066) (-773 "NAGE01.spad" 1194733 1194741 1198721 1198726) (-772 "NAGD03.spad" 1192737 1192745 1194723 1194728) (-771 "NAGD02.spad" 1185484 1185492 1192727 1192732) (-770 "NAGD01.spad" 1179777 1179785 1185474 1185479) (-769 "NAGC06.spad" 1175652 1175660 1179767 1179772) (-768 "NAGC05.spad" 1174153 1174161 1175642 1175647) (-767 "NAGC02.spad" 1173420 1173428 1174143 1174148) (-766 "NAALG.spad" 1172961 1172971 1173388 1173415) (-765 "NAALG.spad" 1172522 1172534 1172951 1172956) (-764 "MULTSQFR.spad" 1169480 1169497 1172512 1172517) (-763 "MULTFACT.spad" 1168863 1168880 1169470 1169475) (-762 "MTSCAT.spad" 1166957 1166978 1168761 1168858) (-761 "MTHING.spad" 1166616 1166626 1166947 1166952) (-760 "MSYSCMD.spad" 1166050 1166058 1166606 1166611) (-759 "MSET.spad" 1163972 1163982 1165720 1165759) (-758 "MSETAGG.spad" 1163817 1163827 1163940 1163967) (-757 "MRING.spad" 1160794 1160806 1163525 1163592) (-756 "MRF2.spad" 1160364 1160378 1160784 1160789) (-755 "MRATFAC.spad" 1159910 1159927 1160354 1160359) (-754 "MPRFF.spad" 1157950 1157969 1159900 1159905) (-753 "MPOLY.spad" 1155421 1155436 1155780 1155907) (-752 "MPCPF.spad" 1154685 1154704 1155411 1155416) (-751 "MPC3.spad" 1154502 1154542 1154675 1154680) (-750 "MPC2.spad" 1154147 1154180 1154492 1154497) (-749 "MONOTOOL.spad" 1152498 1152515 1154137 1154142) (-748 "MONOID.spad" 1151817 1151825 1152488 1152493) (-747 "MONOID.spad" 1151134 1151144 1151807 1151812) (-746 "MONOGEN.spad" 1149882 1149895 1150994 1151129) (-745 "MONOGEN.spad" 1148652 1148667 1149766 1149771) (-744 "MONADWU.spad" 1146682 1146690 1148642 1148647) (-743 "MONADWU.spad" 1144710 1144720 1146672 1146677) (-742 "MONAD.spad" 1143870 1143878 1144700 1144705) (-741 "MONAD.spad" 1143028 1143038 1143860 1143865) (-740 "MOEBIUS.spad" 1141764 1141778 1143008 1143023) (-739 "MODULE.spad" 1141634 1141644 1141732 1141759) (-738 "MODULE.spad" 1141524 1141536 1141624 1141629) (-737 "MODRING.spad" 1140859 1140898 1141504 1141519) (-736 "MODOP.spad" 1139524 1139536 1140681 1140748) (-735 "MODMONOM.spad" 1139255 1139273 1139514 1139519) (-734 "MODMON.spad" 1135957 1135973 1136676 1136829) (-733 "MODFIELD.spad" 1135319 1135358 1135859 1135952) (-732 "MMLFORM.spad" 1134179 1134187 1135309 1135314) (-731 "MMAP.spad" 1133921 1133955 1134169 1134174) (-730 "MLO.spad" 1132380 1132390 1133877 1133916) (-729 "MLIFT.spad" 1130992 1131009 1132370 1132375) (-728 "MKUCFUNC.spad" 1130527 1130545 1130982 1130987) (-727 "MKRECORD.spad" 1130131 1130144 1130517 1130522) (-726 "MKFUNC.spad" 1129538 1129548 1130121 1130126) (-725 "MKFLCFN.spad" 1128506 1128516 1129528 1129533) (-724 "MKBCFUNC.spad" 1128001 1128019 1128496 1128501) (-723 "MINT.spad" 1127440 1127448 1127903 1127996) (-722 "MHROWRED.spad" 1125951 1125961 1127430 1127435) (-721 "MFLOAT.spad" 1124471 1124479 1125841 1125946) (-720 "MFINFACT.spad" 1123871 1123893 1124461 1124466) (-719 "MESH.spad" 1121653 1121661 1123861 1123866) (-718 "MDDFACT.spad" 1119864 1119874 1121643 1121648) (-717 "MDAGG.spad" 1119155 1119165 1119844 1119859) (-716 "MCMPLX.spad" 1114586 1114594 1115200 1115401) (-715 "MCDEN.spad" 1113796 1113808 1114576 1114581) (-714 "MCALCFN.spad" 1110918 1110944 1113786 1113791) (-713 "MAYBE.spad" 1110202 1110213 1110908 1110913) (-712 "MATSTOR.spad" 1107510 1107520 1110192 1110197) (-711 "MATRIX.spad" 1106097 1106107 1106581 1106608) (-710 "MATLIN.spad" 1103441 1103465 1105981 1105986) (-709 "MATCAT.spad" 1094963 1094985 1103409 1103436) (-708 "MATCAT.spad" 1086357 1086381 1094805 1094810) (-707 "MATCAT2.spad" 1085639 1085687 1086347 1086352) (-706 "MAPPKG3.spad" 1084554 1084568 1085629 1085634) (-705 "MAPPKG2.spad" 1083892 1083904 1084544 1084549) (-704 "MAPPKG1.spad" 1082720 1082730 1083882 1083887) (-703 "MAPPAST.spad" 1082035 1082043 1082710 1082715) (-702 "MAPHACK3.spad" 1081847 1081861 1082025 1082030) (-701 "MAPHACK2.spad" 1081616 1081628 1081837 1081842) (-700 "MAPHACK1.spad" 1081260 1081270 1081606 1081611) (-699 "MAGMA.spad" 1079050 1079067 1081250 1081255) (-698 "MACROAST.spad" 1078629 1078637 1079040 1079045) (-697 "M3D.spad" 1076232 1076242 1077890 1077895) (-696 "LZSTAGG.spad" 1073470 1073480 1076222 1076227) (-695 "LZSTAGG.spad" 1070706 1070718 1073460 1073465) (-694 "LWORD.spad" 1067411 1067428 1070696 1070701) (-693 "LSTAST.spad" 1067195 1067203 1067401 1067406) (-692 "LSQM.spad" 1065352 1065366 1065746 1065797) (-691 "LSPP.spad" 1064887 1064904 1065342 1065347) (-690 "LSMP.spad" 1063737 1063765 1064877 1064882) (-689 "LSMP1.spad" 1061555 1061569 1063727 1063732) (-688 "LSAGG.spad" 1061224 1061234 1061523 1061550) (-687 "LSAGG.spad" 1060913 1060925 1061214 1061219) (-686 "LPOLY.spad" 1059867 1059886 1060769 1060838) (-685 "LPEFRAC.spad" 1059138 1059148 1059857 1059862) (-684 "LO.spad" 1058539 1058553 1059072 1059099) (-683 "LOGIC.spad" 1058141 1058149 1058529 1058534) (-682 "LOGIC.spad" 1057741 1057751 1058131 1058136) (-681 "LODOOPS.spad" 1056671 1056683 1057731 1057736) (-680 "LODO.spad" 1056055 1056071 1056351 1056390) (-679 "LODOF.spad" 1055101 1055118 1056012 1056017) (-678 "LODOCAT.spad" 1053767 1053777 1055057 1055096) (-677 "LODOCAT.spad" 1052431 1052443 1053723 1053728) (-676 "LODO2.spad" 1051704 1051716 1052111 1052150) (-675 "LODO1.spad" 1051104 1051114 1051384 1051423) (-674 "LODEEF.spad" 1049906 1049924 1051094 1051099) (-673 "LNAGG.spad" 1046053 1046063 1049896 1049901) (-672 "LNAGG.spad" 1042164 1042176 1046009 1046014) (-671 "LMOPS.spad" 1038932 1038949 1042154 1042159) (-670 "LMODULE.spad" 1038700 1038710 1038922 1038927) (-669 "LMDICT.spad" 1037870 1037880 1038134 1038161) (-668 "LLINSET.spad" 1037577 1037587 1037860 1037865) (-667 "LITERAL.spad" 1037483 1037494 1037567 1037572) (-666 "LIST.spad" 1035065 1035075 1036477 1036504) (-665 "LIST3.spad" 1034376 1034390 1035055 1035060) (-664 "LIST2.spad" 1033078 1033090 1034366 1034371) (-663 "LIST2MAP.spad" 1029981 1029993 1033068 1033073) (-662 "LINSET.spad" 1029760 1029770 1029971 1029976) (-661 "LINFORM.spad" 1029223 1029235 1029728 1029755) (-660 "LINEXP.spad" 1027966 1027976 1029213 1029218) (-659 "LINELT.spad" 1027337 1027349 1027849 1027876) (-658 "LINDEP.spad" 1026146 1026158 1027249 1027254) (-657 "LINBASIS.spad" 1025782 1025797 1026136 1026141) (-656 "LIMITRF.spad" 1023710 1023720 1025772 1025777) (-655 "LIMITPS.spad" 1022613 1022626 1023700 1023705) (-654 "LIE.spad" 1020629 1020641 1021903 1022048) (-653 "LIECAT.spad" 1020105 1020115 1020555 1020624) (-652 "LIECAT.spad" 1019609 1019621 1020061 1020066) (-651 "LIB.spad" 1017360 1017368 1017806 1017821) (-650 "LGROBP.spad" 1014713 1014732 1017350 1017355) (-649 "LF.spad" 1013668 1013684 1014703 1014708) (-648 "LFCAT.spad" 1012727 1012735 1013658 1013663) (-647 "LEXTRIPK.spad" 1008230 1008245 1012717 1012722) (-646 "LEXP.spad" 1006233 1006260 1008210 1008225) (-645 "LETAST.spad" 1005932 1005940 1006223 1006228) (-644 "LEADCDET.spad" 1004330 1004347 1005922 1005927) (-643 "LAZM3PK.spad" 1003034 1003056 1004320 1004325) (-642 "LAUPOL.spad" 1001634 1001647 1002534 1002603) (-641 "LAPLACE.spad" 1001217 1001233 1001624 1001629) (-640 "LA.spad" 1000657 1000671 1001139 1001178) (-639 "LALG.spad" 1000433 1000443 1000637 1000652) (-638 "LALG.spad" 1000217 1000229 1000423 1000428) (-637 "KVTFROM.spad" 999952 999962 1000207 1000212) (-636 "KTVLOGIC.spad" 999464 999472 999942 999947) (-635 "KRCFROM.spad" 999202 999212 999454 999459) (-634 "KOVACIC.spad" 997925 997942 999192 999197) (-633 "KONVERT.spad" 997647 997657 997915 997920) (-632 "KOERCE.spad" 997384 997394 997637 997642) (-631 "KERNEL.spad" 996039 996049 997168 997173) (-630 "KERNEL2.spad" 995742 995754 996029 996034) (-629 "KDAGG.spad" 994851 994873 995722 995737) (-628 "KDAGG.spad" 993968 993992 994841 994846) (-627 "KAFILE.spad" 992822 992838 993057 993084) (-626 "JVMOP.spad" 992727 992735 992812 992817) (-625 "JVMMDACC.spad" 991765 991773 992717 992722) (-624 "JVMFDACC.spad" 991073 991081 991755 991760) (-623 "JVMCSTTG.spad" 989802 989810 991063 991068) (-622 "JVMCFACC.spad" 989232 989240 989792 989797) (-621 "JVMBCODE.spad" 989135 989143 989222 989227) (-620 "JORDAN.spad" 986964 986976 988425 988570) (-619 "JOINAST.spad" 986658 986666 986954 986959) (-618 "IXAGG.spad" 984791 984815 986648 986653) (-617 "IXAGG.spad" 982779 982805 984638 984643) (-616 "IVECTOR.spad" 981396 981411 981551 981578) (-615 "ITUPLE.spad" 980557 980567 981386 981391) (-614 "ITRIGMNP.spad" 979396 979415 980547 980552) (-613 "ITFUN3.spad" 978902 978916 979386 979391) (-612 "ITFUN2.spad" 978646 978658 978892 978897) (-611 "ITFORM.spad" 978001 978009 978636 978641) (-610 "ITAYLOR.spad" 975995 976010 977865 977962) (-609 "ISUPS.spad" 968432 968447 974969 975066) (-608 "ISUMP.spad" 967933 967949 968422 968427) (-607 "ISTRING.spad" 966860 966873 966941 966968) (-606 "ISAST.spad" 966579 966587 966850 966855) (-605 "IRURPK.spad" 965296 965315 966569 966574) (-604 "IRSN.spad" 963268 963276 965286 965291) (-603 "IRRF2F.spad" 961753 961763 963224 963229) (-602 "IRREDFFX.spad" 961354 961365 961743 961748) (-601 "IROOT.spad" 959693 959703 961344 961349) (-600 "IR.spad" 957494 957508 959548 959575) (-599 "IRFORM.spad" 956818 956826 957484 957489) (-598 "IR2.spad" 955846 955862 956808 956813) (-597 "IR2F.spad" 955052 955068 955836 955841) (-596 "IPRNTPK.spad" 954812 954820 955042 955047) (-595 "IPF.spad" 954377 954389 954617 954710) (-594 "IPADIC.spad" 954138 954164 954303 954372) (-593 "IP4ADDR.spad" 953695 953703 954128 954133) (-592 "IOMODE.spad" 953217 953225 953685 953690) (-591 "IOBFILE.spad" 952578 952586 953207 953212) (-590 "IOBCON.spad" 952443 952451 952568 952573) (-589 "INVLAPLA.spad" 952092 952108 952433 952438) (-588 "INTTR.spad" 945474 945491 952082 952087) (-587 "INTTOOLS.spad" 943229 943245 945048 945053) (-586 "INTSLPE.spad" 942549 942557 943219 943224) (-585 "INTRVL.spad" 942115 942125 942463 942544) (-584 "INTRF.spad" 940539 940553 942105 942110) (-583 "INTRET.spad" 939971 939981 940529 940534) (-582 "INTRAT.spad" 938698 938715 939961 939966) (-581 "INTPM.spad" 937083 937099 938341 938346) (-580 "INTPAF.spad" 934947 934965 937015 937020) (-579 "INTPACK.spad" 925321 925329 934937 934942) (-578 "INT.spad" 924769 924777 925175 925316) (-577 "INTHERTR.spad" 924043 924060 924759 924764) (-576 "INTHERAL.spad" 923713 923737 924033 924038) (-575 "INTHEORY.spad" 920152 920160 923703 923708) (-574 "INTG0.spad" 913885 913903 920084 920089) (-573 "INTFTBL.spad" 907914 907922 913875 913880) (-572 "INTFACT.spad" 906973 906983 907904 907909) (-571 "INTEF.spad" 905358 905374 906963 906968) (-570 "INTDOM.spad" 903981 903989 905284 905353) (-569 "INTDOM.spad" 902666 902676 903971 903976) (-568 "INTCAT.spad" 900925 900935 902580 902661) (-567 "INTBIT.spad" 900432 900440 900915 900920) (-566 "INTALG.spad" 899620 899647 900422 900427) (-565 "INTAF.spad" 899120 899136 899610 899615) (-564 "INTABL.spad" 897196 897227 897359 897386) (-563 "INT8.spad" 897076 897084 897186 897191) (-562 "INT64.spad" 896955 896963 897066 897071) (-561 "INT32.spad" 896834 896842 896945 896950) (-560 "INT16.spad" 896713 896721 896824 896829) (-559 "INS.spad" 894216 894224 896615 896708) (-558 "INS.spad" 891805 891815 894206 894211) (-557 "INPSIGN.spad" 891253 891266 891795 891800) (-556 "INPRODPF.spad" 890349 890368 891243 891248) (-555 "INPRODFF.spad" 889437 889461 890339 890344) (-554 "INNMFACT.spad" 888412 888429 889427 889432) (-553 "INMODGCD.spad" 887900 887930 888402 888407) (-552 "INFSP.spad" 886197 886219 887890 887895) (-551 "INFPROD0.spad" 885277 885296 886187 886192) (-550 "INFORM.spad" 882476 882484 885267 885272) (-549 "INFORM1.spad" 882101 882111 882466 882471) (-548 "INFINITY.spad" 881653 881661 882091 882096) (-547 "INETCLTS.spad" 881630 881638 881643 881648) (-546 "INEP.spad" 880168 880190 881620 881625) (-545 "INDE.spad" 879817 879834 880078 880083) (-544 "INCRMAPS.spad" 879238 879248 879807 879812) (-543 "INBFILE.spad" 878310 878318 879228 879233) (-542 "INBFF.spad" 874104 874115 878300 878305) (-541 "INBCON.spad" 872394 872402 874094 874099) (-540 "INBCON.spad" 870682 870692 872384 872389) (-539 "INAST.spad" 870343 870351 870672 870677) (-538 "IMPTAST.spad" 870051 870059 870333 870338) (-537 "IMATRIX.spad" 868879 868905 869391 869418) (-536 "IMATQF.spad" 867973 868017 868835 868840) (-535 "IMATLIN.spad" 866578 866602 867929 867934) (-534 "ILIST.spad" 865083 865098 865608 865635) (-533 "IIARRAY2.spad" 864354 864392 864573 864600) (-532 "IFF.spad" 863764 863780 864035 864128) (-531 "IFAST.spad" 863378 863386 863754 863759) (-530 "IFARRAY.spad" 860718 860733 862408 862435) (-529 "IFAMON.spad" 860580 860597 860674 860679) (-528 "IEVALAB.spad" 859985 859997 860570 860575) (-527 "IEVALAB.spad" 859388 859402 859975 859980) (-526 "IDPO.spad" 859123 859135 859300 859305) (-525 "IDPOAMS.spad" 858801 858813 859035 859040) (-524 "IDPOAM.spad" 858443 858455 858713 858718) (-523 "IDPC.spad" 857172 857184 858433 858438) (-522 "IDPAM.spad" 856839 856851 857084 857089) (-521 "IDPAG.spad" 856508 856520 856751 856756) (-520 "IDENT.spad" 856158 856166 856498 856503) (-519 "IDECOMP.spad" 853397 853415 856148 856153) (-518 "IDEAL.spad" 848346 848385 853332 853337) (-517 "ICDEN.spad" 847535 847551 848336 848341) (-516 "ICARD.spad" 846726 846734 847525 847530) (-515 "IBPTOOLS.spad" 845333 845350 846716 846721) (-514 "IBITS.spad" 844498 844511 844931 844958) (-513 "IBATOOL.spad" 841475 841494 844488 844493) (-512 "IBACHIN.spad" 839982 839997 841465 841470) (-511 "IARRAY2.spad" 838853 838879 839472 839499) (-510 "IARRAY1.spad" 837745 837760 837883 837910) (-509 "IAN.spad" 835968 835976 837561 837654) (-508 "IALGFACT.spad" 835571 835604 835958 835963) (-507 "HYPCAT.spad" 834995 835003 835561 835566) (-506 "HYPCAT.spad" 834417 834427 834985 834990) (-505 "HOSTNAME.spad" 834225 834233 834407 834412) (-504 "HOMOTOP.spad" 833968 833978 834215 834220) (-503 "HOAGG.spad" 831250 831260 833958 833963) (-502 "HOAGG.spad" 828271 828283 830981 830986) (-501 "HEXADEC.spad" 826276 826284 826641 826734) (-500 "HEUGCD.spad" 825311 825322 826266 826271) (-499 "HELLFDIV.spad" 824901 824925 825301 825306) (-498 "HEAP.spad" 824176 824186 824391 824418) (-497 "HEADAST.spad" 823709 823717 824166 824171) (-496 "HDP.spad" 811519 811535 811896 811995) (-495 "HDMP.spad" 808733 808748 809349 809476) (-494 "HB.spad" 806984 806992 808723 808728) (-493 "HASHTBL.spad" 805012 805043 805223 805250) (-492 "HASAST.spad" 804728 804736 805002 805007) (-491 "HACKPI.spad" 804219 804227 804630 804723) (-490 "GTSET.spad" 803122 803138 803829 803856) (-489 "GSTBL.spad" 801199 801234 801373 801388) (-488 "GSERIES.spad" 798512 798539 799331 799480) (-487 "GROUP.spad" 797785 797793 798492 798507) (-486 "GROUP.spad" 797066 797076 797775 797780) (-485 "GROEBSOL.spad" 795560 795581 797056 797061) (-484 "GRMOD.spad" 794131 794143 795550 795555) (-483 "GRMOD.spad" 792700 792714 794121 794126) (-482 "GRIMAGE.spad" 785589 785597 792690 792695) (-481 "GRDEF.spad" 783968 783976 785579 785584) (-480 "GRAY.spad" 782431 782439 783958 783963) (-479 "GRALG.spad" 781508 781520 782421 782426) (-478 "GRALG.spad" 780583 780597 781498 781503) (-477 "GPOLSET.spad" 780001 780024 780229 780256) (-476 "GOSPER.spad" 779270 779288 779991 779996) (-475 "GMODPOL.spad" 778418 778445 779238 779265) (-474 "GHENSEL.spad" 777501 777515 778408 778413) (-473 "GENUPS.spad" 773794 773807 777491 777496) (-472 "GENUFACT.spad" 773371 773381 773784 773789) (-471 "GENPGCD.spad" 772957 772974 773361 773366) (-470 "GENMFACT.spad" 772409 772428 772947 772952) (-469 "GENEEZ.spad" 770360 770373 772399 772404) (-468 "GDMP.spad" 767416 767433 768190 768317) (-467 "GCNAALG.spad" 761339 761366 767210 767277) (-466 "GCDDOM.spad" 760515 760523 761265 761334) (-465 "GCDDOM.spad" 759753 759763 760505 760510) (-464 "GB.spad" 757279 757317 759709 759714) (-463 "GBINTERN.spad" 753299 753337 757269 757274) (-462 "GBF.spad" 749066 749104 753289 753294) (-461 "GBEUCLID.spad" 746948 746986 749056 749061) (-460 "GAUSSFAC.spad" 746261 746269 746938 746943) (-459 "GALUTIL.spad" 744587 744597 746217 746222) (-458 "GALPOLYU.spad" 743041 743054 744577 744582) (-457 "GALFACTU.spad" 741214 741233 743031 743036) (-456 "GALFACT.spad" 731403 731414 741204 741209) (-455 "FVFUN.spad" 728426 728434 731393 731398) (-454 "FVC.spad" 727478 727486 728416 728421) (-453 "FUNDESC.spad" 727156 727164 727468 727473) (-452 "FUNCTION.spad" 727005 727017 727146 727151) (-451 "FT.spad" 725302 725310 726995 727000) (-450 "FTEM.spad" 724467 724475 725292 725297) (-449 "FSUPFACT.spad" 723367 723386 724403 724408) (-448 "FST.spad" 721453 721461 723357 723362) (-447 "FSRED.spad" 720933 720949 721443 721448) (-446 "FSPRMELT.spad" 719815 719831 720890 720895) (-445 "FSPECF.spad" 717906 717922 719805 719810) (-444 "FS.spad" 712174 712184 717681 717901) (-443 "FS.spad" 706220 706232 711729 711734) (-442 "FSINT.spad" 705880 705896 706210 706215) (-441 "FSERIES.spad" 705071 705083 705700 705799) (-440 "FSCINT.spad" 704388 704404 705061 705066) (-439 "FSAGG.spad" 703505 703515 704344 704383) (-438 "FSAGG.spad" 702584 702596 703425 703430) (-437 "FSAGG2.spad" 701327 701343 702574 702579) (-436 "FS2UPS.spad" 695818 695852 701317 701322) (-435 "FS2.spad" 695465 695481 695808 695813) (-434 "FS2EXPXP.spad" 694590 694613 695455 695460) (-433 "FRUTIL.spad" 693544 693554 694580 694585) (-432 "FR.spad" 687167 687177 692475 692544) (-431 "FRNAALG.spad" 682436 682446 687109 687162) (-430 "FRNAALG.spad" 677717 677729 682392 682397) (-429 "FRNAAF2.spad" 677173 677191 677707 677712) (-428 "FRMOD.spad" 676583 676613 677104 677109) (-427 "FRIDEAL.spad" 675808 675829 676563 676578) (-426 "FRIDEAL2.spad" 675412 675444 675798 675803) (-425 "FRETRCT.spad" 674923 674933 675402 675407) (-424 "FRETRCT.spad" 674300 674312 674781 674786) (-423 "FRAMALG.spad" 672648 672661 674256 674295) (-422 "FRAMALG.spad" 671028 671043 672638 672643) (-421 "FRAC.spad" 668034 668044 668437 668610) (-420 "FRAC2.spad" 667639 667651 668024 668029) (-419 "FR2.spad" 666975 666987 667629 667634) (-418 "FPS.spad" 663790 663798 666865 666970) (-417 "FPS.spad" 660633 660643 663710 663715) (-416 "FPC.spad" 659679 659687 660535 660628) (-415 "FPC.spad" 658811 658821 659669 659674) (-414 "FPATMAB.spad" 658573 658583 658801 658806) (-413 "FPARFRAC.spad" 657423 657440 658563 658568) (-412 "FORTRAN.spad" 655929 655972 657413 657418) (-411 "FORT.spad" 654878 654886 655919 655924) (-410 "FORTFN.spad" 652048 652056 654868 654873) (-409 "FORTCAT.spad" 651732 651740 652038 652043) (-408 "FORMULA.spad" 649206 649214 651722 651727) (-407 "FORMULA1.spad" 648685 648695 649196 649201) (-406 "FORDER.spad" 648376 648400 648675 648680) (-405 "FOP.spad" 647577 647585 648366 648371) (-404 "FNLA.spad" 647001 647023 647545 647572) (-403 "FNCAT.spad" 645596 645604 646991 646996) (-402 "FNAME.spad" 645488 645496 645586 645591) (-401 "FMTC.spad" 645286 645294 645414 645483) (-400 "FMONOID.spad" 644951 644961 645242 645247) (-399 "FMONCAT.spad" 642104 642114 644941 644946) (-398 "FM.spad" 641719 641731 641958 641985) (-397 "FMFUN.spad" 638749 638757 641709 641714) (-396 "FMC.spad" 637801 637809 638739 638744) (-395 "FMCAT.spad" 635469 635487 637769 637796) (-394 "FM1.spad" 634826 634838 635403 635430) (-393 "FLOATRP.spad" 632561 632575 634816 634821) (-392 "FLOAT.spad" 625875 625883 632427 632556) (-391 "FLOATCP.spad" 623306 623320 625865 625870) (-390 "FLINEXP.spad" 623028 623038 623296 623301) (-389 "FLINEXP.spad" 622694 622706 622964 622969) (-388 "FLASORT.spad" 622020 622032 622684 622689) (-387 "FLALG.spad" 619666 619685 621946 622015) (-386 "FLAGG.spad" 616708 616718 619646 619661) (-385 "FLAGG.spad" 613651 613663 616591 616596) (-384 "FLAGG2.spad" 612376 612392 613641 613646) (-383 "FINRALG.spad" 610437 610450 612332 612371) (-382 "FINRALG.spad" 608424 608439 610321 610326) (-381 "FINITE.spad" 607576 607584 608414 608419) (-380 "FINAALG.spad" 596697 596707 607518 607571) (-379 "FINAALG.spad" 585830 585842 596653 596658) (-378 "FILE.spad" 585413 585423 585820 585825) (-377 "FILECAT.spad" 583939 583956 585403 585408) (-376 "FIELD.spad" 583345 583353 583841 583934) (-375 "FIELD.spad" 582837 582847 583335 583340) (-374 "FGROUP.spad" 581484 581494 582817 582832) (-373 "FGLMICPK.spad" 580271 580286 581474 581479) (-372 "FFX.spad" 579646 579661 579987 580080) (-371 "FFSLPE.spad" 579149 579170 579636 579641) (-370 "FFPOLY.spad" 570411 570422 579139 579144) (-369 "FFPOLY2.spad" 569471 569488 570401 570406) (-368 "FFP.spad" 568868 568888 569187 569280) (-367 "FF.spad" 568316 568332 568549 568642) (-366 "FFNBX.spad" 566828 566848 568032 568125) (-365 "FFNBP.spad" 565341 565358 566544 566637) (-364 "FFNB.spad" 563806 563827 565022 565115) (-363 "FFINTBAS.spad" 561320 561339 563796 563801) (-362 "FFIELDC.spad" 558897 558905 561222 561315) (-361 "FFIELDC.spad" 556560 556570 558887 558892) (-360 "FFHOM.spad" 555308 555325 556550 556555) (-359 "FFF.spad" 552743 552754 555298 555303) (-358 "FFCGX.spad" 551590 551610 552459 552552) (-357 "FFCGP.spad" 550479 550499 551306 551399) (-356 "FFCG.spad" 549271 549292 550160 550253) (-355 "FFCAT.spad" 542444 542466 549110 549266) (-354 "FFCAT.spad" 535696 535720 542364 542369) (-353 "FFCAT2.spad" 535443 535483 535686 535691) (-352 "FEXPR.spad" 527160 527206 535199 535238) (-351 "FEVALAB.spad" 526868 526878 527150 527155) (-350 "FEVALAB.spad" 526361 526373 526645 526650) (-349 "FDIV.spad" 525803 525827 526351 526356) (-348 "FDIVCAT.spad" 523867 523891 525793 525798) (-347 "FDIVCAT.spad" 521929 521955 523857 523862) (-346 "FDIV2.spad" 521585 521625 521919 521924) (-345 "FCTRDATA.spad" 520593 520601 521575 521580) (-344 "FCPAK1.spad" 519160 519168 520583 520588) (-343 "FCOMP.spad" 518539 518549 519150 519155) (-342 "FC.spad" 508546 508554 518529 518534) (-341 "FAXF.spad" 501517 501531 508448 508541) (-340 "FAXF.spad" 494540 494556 501473 501478) (-339 "FARRAY.spad" 492537 492547 493570 493597) (-338 "FAMR.spad" 490673 490685 492435 492532) (-337 "FAMR.spad" 488793 488807 490557 490562) (-336 "FAMONOID.spad" 488461 488471 488747 488752) (-335 "FAMONC.spad" 486757 486769 488451 488456) (-334 "FAGROUP.spad" 486381 486391 486653 486680) (-333 "FACUTIL.spad" 484585 484602 486371 486376) (-332 "FACTFUNC.spad" 483779 483789 484575 484580) (-331 "EXPUPXS.spad" 480612 480635 481911 482060) (-330 "EXPRTUBE.spad" 477900 477908 480602 480607) (-329 "EXPRODE.spad" 475060 475076 477890 477895) (-328 "EXPR.spad" 470235 470245 470949 471244) (-327 "EXPR2UPS.spad" 466357 466370 470225 470230) (-326 "EXPR2.spad" 466062 466074 466347 466352) (-325 "EXPEXPAN.spad" 462863 462888 463495 463588) (-324 "EXIT.spad" 462534 462542 462853 462858) (-323 "EXITAST.spad" 462270 462278 462524 462529) (-322 "EVALCYC.spad" 461730 461744 462260 462265) (-321 "EVALAB.spad" 461302 461312 461720 461725) (-320 "EVALAB.spad" 460872 460884 461292 461297) (-319 "EUCDOM.spad" 458446 458454 460798 460867) (-318 "EUCDOM.spad" 456082 456092 458436 458441) (-317 "ESTOOLS.spad" 447928 447936 456072 456077) (-316 "ESTOOLS2.spad" 447531 447545 447918 447923) (-315 "ESTOOLS1.spad" 447216 447227 447521 447526) (-314 "ES.spad" 440031 440039 447206 447211) (-313 "ES.spad" 432752 432762 439929 439934) (-312 "ESCONT.spad" 429545 429553 432742 432747) (-311 "ESCONT1.spad" 429294 429306 429535 429540) (-310 "ES2.spad" 428799 428815 429284 429289) (-309 "ES1.spad" 428369 428385 428789 428794) (-308 "ERROR.spad" 425696 425704 428359 428364) (-307 "EQTBL.spad" 423726 423748 423935 423962) (-306 "EQ.spad" 418531 418541 421318 421430) (-305 "EQ2.spad" 418249 418261 418521 418526) (-304 "EP.spad" 414575 414585 418239 418244) (-303 "ENV.spad" 413253 413261 414565 414570) (-302 "ENTIRER.spad" 412921 412929 413197 413248) (-301 "EMR.spad" 412209 412250 412847 412916) (-300 "ELTAGG.spad" 410463 410482 412199 412204) (-299 "ELTAGG.spad" 408681 408702 410419 410424) (-298 "ELTAB.spad" 408156 408169 408671 408676) (-297 "ELFUTS.spad" 407543 407562 408146 408151) (-296 "ELEMFUN.spad" 407232 407240 407533 407538) (-295 "ELEMFUN.spad" 406919 406929 407222 407227) (-294 "ELAGG.spad" 404890 404900 406899 406914) (-293 "ELAGG.spad" 402798 402810 404809 404814) (-292 "ELABOR.spad" 402144 402152 402788 402793) (-291 "ELABEXPR.spad" 401076 401084 402134 402139) (-290 "EFUPXS.spad" 397852 397882 401032 401037) (-289 "EFULS.spad" 394688 394711 397808 397813) (-288 "EFSTRUC.spad" 392703 392719 394678 394683) (-287 "EF.spad" 387479 387495 392693 392698) (-286 "EAB.spad" 385755 385763 387469 387474) (-285 "E04UCFA.spad" 385291 385299 385745 385750) (-284 "E04NAFA.spad" 384868 384876 385281 385286) (-283 "E04MBFA.spad" 384448 384456 384858 384863) (-282 "E04JAFA.spad" 383984 383992 384438 384443) (-281 "E04GCFA.spad" 383520 383528 383974 383979) (-280 "E04FDFA.spad" 383056 383064 383510 383515) (-279 "E04DGFA.spad" 382592 382600 383046 383051) (-278 "E04AGNT.spad" 378442 378450 382582 382587) (-277 "DVARCAT.spad" 375332 375342 378432 378437) (-276 "DVARCAT.spad" 372220 372232 375322 375327) (-275 "DSMP.spad" 369594 369608 369899 370026) (-274 "DSEXT.spad" 368896 368906 369584 369589) (-273 "DSEXT.spad" 368105 368117 368795 368800) (-272 "DROPT.spad" 362064 362072 368095 368100) (-271 "DROPT1.spad" 361729 361739 362054 362059) (-270 "DROPT0.spad" 356586 356594 361719 361724) (-269 "DRAWPT.spad" 354759 354767 356576 356581) (-268 "DRAW.spad" 347635 347648 354749 354754) (-267 "DRAWHACK.spad" 346943 346953 347625 347630) (-266 "DRAWCX.spad" 344413 344421 346933 346938) (-265 "DRAWCURV.spad" 343960 343975 344403 344408) (-264 "DRAWCFUN.spad" 333492 333500 343950 343955) (-263 "DQAGG.spad" 331670 331680 333460 333487) (-262 "DPOLCAT.spad" 327019 327035 331538 331665) (-261 "DPOLCAT.spad" 322454 322472 326975 326980) (-260 "DPMO.spad" 314214 314230 314352 314565) (-259 "DPMM.spad" 305987 306005 306112 306325) (-258 "DOMTMPLT.spad" 305758 305766 305977 305982) (-257 "DOMCTOR.spad" 305513 305521 305748 305753) (-256 "DOMAIN.spad" 304600 304608 305503 305508) (-255 "DMP.spad" 301860 301875 302430 302557) (-254 "DMEXT.spad" 301727 301737 301828 301855) (-253 "DLP.spad" 301079 301089 301717 301722) (-252 "DLIST.spad" 299505 299515 300109 300136) (-251 "DLAGG.spad" 297922 297932 299495 299500) (-250 "DIVRING.spad" 297464 297472 297866 297917) (-249 "DIVRING.spad" 297050 297060 297454 297459) (-248 "DISPLAY.spad" 295240 295248 297040 297045) (-247 "DIRPROD.spad" 282787 282803 283427 283526) (-246 "DIRPROD2.spad" 281605 281623 282777 282782) (-245 "DIRPCAT.spad" 280798 280814 281501 281600) (-244 "DIRPCAT.spad" 279618 279636 280323 280328) (-243 "DIOSP.spad" 278443 278451 279608 279613) (-242 "DIOPS.spad" 277439 277449 278423 278438) (-241 "DIOPS.spad" 276409 276421 277395 277400) (-240 "DIFRING.spad" 276247 276255 276389 276404) (-239 "DIFFSPC.spad" 275826 275834 276237 276242) (-238 "DIFFSPC.spad" 275403 275413 275816 275821) (-237 "DIFFMOD.spad" 274892 274902 275371 275398) (-236 "DIFFDOM.spad" 274057 274068 274882 274887) (-235 "DIFFDOM.spad" 273220 273233 274047 274052) (-234 "DIFEXT.spad" 273039 273049 273200 273215) (-233 "DIAGG.spad" 272669 272679 273019 273034) (-232 "DIAGG.spad" 272307 272319 272659 272664) (-231 "DHMATRIX.spad" 270502 270512 271647 271674) (-230 "DFSFUN.spad" 264142 264150 270492 270497) (-229 "DFLOAT.spad" 260873 260881 264032 264137) (-228 "DFINTTLS.spad" 259104 259120 260863 260868) (-227 "DERHAM.spad" 257018 257050 259084 259099) (-226 "DEQUEUE.spad" 256225 256235 256508 256535) (-225 "DEGRED.spad" 255842 255856 256215 256220) (-224 "DEFINTRF.spad" 253379 253389 255832 255837) (-223 "DEFINTEF.spad" 251889 251905 253369 253374) (-222 "DEFAST.spad" 251257 251265 251879 251884) (-221 "DECIMAL.spad" 249266 249274 249627 249720) (-220 "DDFACT.spad" 247079 247096 249256 249261) (-219 "DBLRESP.spad" 246679 246703 247069 247074) (-218 "DBASIS.spad" 246305 246320 246669 246674) (-217 "DBASE.spad" 244969 244979 246295 246300) (-216 "DATAARY.spad" 244431 244444 244959 244964) (-215 "D03FAFA.spad" 244259 244267 244421 244426) (-214 "D03EEFA.spad" 244079 244087 244249 244254) (-213 "D03AGNT.spad" 243165 243173 244069 244074) (-212 "D02EJFA.spad" 242627 242635 243155 243160) (-211 "D02CJFA.spad" 242105 242113 242617 242622) (-210 "D02BHFA.spad" 241595 241603 242095 242100) (-209 "D02BBFA.spad" 241085 241093 241585 241590) (-208 "D02AGNT.spad" 235899 235907 241075 241080) (-207 "D01WGTS.spad" 234218 234226 235889 235894) (-206 "D01TRNS.spad" 234195 234203 234208 234213) (-205 "D01GBFA.spad" 233717 233725 234185 234190) (-204 "D01FCFA.spad" 233239 233247 233707 233712) (-203 "D01ASFA.spad" 232707 232715 233229 233234) (-202 "D01AQFA.spad" 232153 232161 232697 232702) (-201 "D01APFA.spad" 231577 231585 232143 232148) (-200 "D01ANFA.spad" 231071 231079 231567 231572) (-199 "D01AMFA.spad" 230581 230589 231061 231066) (-198 "D01ALFA.spad" 230121 230129 230571 230576) (-197 "D01AKFA.spad" 229647 229655 230111 230116) (-196 "D01AJFA.spad" 229170 229178 229637 229642) (-195 "D01AGNT.spad" 225237 225245 229160 229165) (-194 "CYCLOTOM.spad" 224743 224751 225227 225232) (-193 "CYCLES.spad" 221535 221543 224733 224738) (-192 "CVMP.spad" 220952 220962 221525 221530) (-191 "CTRIGMNP.spad" 219452 219468 220942 220947) (-190 "CTOR.spad" 219143 219151 219442 219447) (-189 "CTORKIND.spad" 218746 218754 219133 219138) (-188 "CTORCAT.spad" 217995 218003 218736 218741) (-187 "CTORCAT.spad" 217242 217252 217985 217990) (-186 "CTORCALL.spad" 216831 216841 217232 217237) (-185 "CSTTOOLS.spad" 216076 216089 216821 216826) (-184 "CRFP.spad" 209800 209813 216066 216071) (-183 "CRCEAST.spad" 209520 209528 209790 209795) (-182 "CRAPACK.spad" 208571 208581 209510 209515) (-181 "CPMATCH.spad" 208075 208090 208496 208501) (-180 "CPIMA.spad" 207780 207799 208065 208070) (-179 "COORDSYS.spad" 202789 202799 207770 207775) (-178 "CONTOUR.spad" 202200 202208 202779 202784) (-177 "CONTFRAC.spad" 197950 197960 202102 202195) (-176 "CONDUIT.spad" 197708 197716 197940 197945) (-175 "COMRING.spad" 197382 197390 197646 197703) (-174 "COMPPROP.spad" 196900 196908 197372 197377) (-173 "COMPLPAT.spad" 196667 196682 196890 196895) (-172 "COMPLEX.spad" 192044 192054 192288 192549) (-171 "COMPLEX2.spad" 191759 191771 192034 192039) (-170 "COMPILER.spad" 191308 191316 191749 191754) (-169 "COMPFACT.spad" 190910 190924 191298 191303) (-168 "COMPCAT.spad" 188982 188992 190644 190905) (-167 "COMPCAT.spad" 186782 186794 188446 188451) (-166 "COMMUPC.spad" 186530 186548 186772 186777) (-165 "COMMONOP.spad" 186063 186071 186520 186525) (-164 "COMM.spad" 185874 185882 186053 186058) (-163 "COMMAAST.spad" 185637 185645 185864 185869) (-162 "COMBOPC.spad" 184552 184560 185627 185632) (-161 "COMBINAT.spad" 183319 183329 184542 184547) (-160 "COMBF.spad" 180701 180717 183309 183314) (-159 "COLOR.spad" 179538 179546 180691 180696) (-158 "COLONAST.spad" 179204 179212 179528 179533) (-157 "CMPLXRT.spad" 178915 178932 179194 179199) (-156 "CLLCTAST.spad" 178577 178585 178905 178910) (-155 "CLIP.spad" 174685 174693 178567 178572) (-154 "CLIF.spad" 173340 173356 174641 174680) (-153 "CLAGG.spad" 169845 169855 173330 173335) (-152 "CLAGG.spad" 166221 166233 169708 169713) (-151 "CINTSLPE.spad" 165552 165565 166211 166216) (-150 "CHVAR.spad" 163690 163712 165542 165547) (-149 "CHARZ.spad" 163605 163613 163670 163685) (-148 "CHARPOL.spad" 163115 163125 163595 163600) (-147 "CHARNZ.spad" 162868 162876 163095 163110) (-146 "CHAR.spad" 160742 160750 162858 162863) (-145 "CFCAT.spad" 160070 160078 160732 160737) (-144 "CDEN.spad" 159266 159280 160060 160065) (-143 "CCLASS.spad" 157377 157385 158639 158678) (-142 "CATEGORY.spad" 156419 156427 157367 157372) (-141 "CATCTOR.spad" 156310 156318 156409 156414) (-140 "CATAST.spad" 155928 155936 156300 156305) (-139 "CASEAST.spad" 155642 155650 155918 155923) (-138 "CARTEN.spad" 151009 151033 155632 155637) (-137 "CARTEN2.spad" 150399 150426 150999 151004) (-136 "CARD.spad" 147694 147702 150373 150394) (-135 "CAPSLAST.spad" 147468 147476 147684 147689) (-134 "CACHSET.spad" 147092 147100 147458 147463) (-133 "CABMON.spad" 146647 146655 147082 147087) (-132 "BYTEORD.spad" 146322 146330 146637 146642) (-131 "BYTE.spad" 145749 145757 146312 146317) (-130 "BYTEBUF.spad" 143447 143455 144757 144784) (-129 "BTREE.spad" 142403 142413 142937 142964) (-128 "BTOURN.spad" 141291 141301 141893 141920) (-127 "BTCAT.spad" 140683 140693 141259 141286) (-126 "BTCAT.spad" 140095 140107 140673 140678) (-125 "BTAGG.spad" 139561 139569 140063 140090) (-124 "BTAGG.spad" 139047 139057 139551 139556) (-123 "BSTREE.spad" 137671 137681 138537 138564) (-122 "BRILL.spad" 135868 135879 137661 137666) (-121 "BRAGG.spad" 134808 134818 135858 135863) (-120 "BRAGG.spad" 133712 133724 134764 134769) (-119 "BPADICRT.spad" 131586 131598 131841 131934) (-118 "BPADIC.spad" 131250 131262 131512 131581) (-117 "BOUNDZRO.spad" 130906 130923 131240 131245) (-116 "BOP.spad" 126088 126096 130896 130901) (-115 "BOP1.spad" 123554 123564 126078 126083) (-114 "BOOLE.spad" 123204 123212 123544 123549) (-113 "BOOLE.spad" 122852 122862 123194 123199) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 62e42175..06f8b0d6 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1162 +1,1162 @@ -(205732 . 3497162540) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) #0#) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -((((-577)) . T) (($) -2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T)) +(205732 . 3497168586) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) #0#) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +((((-578)) . T) (($) -2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-1069 (-421 (-578))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-577)) . T)) -((($ $) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2| |#2|) . T) ((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577))))) +((((-578)) . T)) +((($ $) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) ((|#2| |#2|) . T) ((#0=(-421 (-578)) #0#) |has| |#2| (-38 (-421 (-578))))) ((($) . T)) (((|#1|) . T)) -((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) (((|#2|) . T)) -((($) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -(|has| |#1| (-937)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -(((|#1|) . T) (((-577)) . T)) -((($) . T) (((-420 (-577))) . T)) +((($) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) ((|#2|) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578))))) +(|has| |#1| (-938)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-578)) . T)) +((($) . T) (((-421 (-578))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-145)) . T)) -((((-549)) . T) (((-1188)) . T) (((-228)) . T) (((-391)) . T) (((-916 (-391))) . T)) -(((|#1|) . T)) -((((-228)) . T) (((-885)) . T)) -(-2229 (|has| |#2| (-814)) (|has| |#2| (-870))) -(-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) -((($ $) . T) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) -(-2229 (|has| |#1| (-841)) (|has| |#1| (-870))) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) -((((-885)) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(|has| |#1| (-869)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-327 |#1|)) . T) (((-577)) . T) (($) . T)) +((((-146)) . T)) +((((-550)) . T) (((-1189)) . T) (((-229)) . T) (((-392)) . T) (((-917 (-392))) . T)) +(((|#1|) . T)) +((((-229)) . T) (((-886)) . T)) +(-2230 (|has| |#2| (-815)) (|has| |#2| (-871))) +(-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) +((($ $) . T) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1| |#1|) . T)) +(-2230 (|has| |#1| (-842)) (|has| |#1| (-871))) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(|has| |#1| (-870)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-328 |#1|)) . T) (((-578)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-577)) . T) (((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-420 (-577))) . T) (((-720)) . T) (($) . T)) -((((-885)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) +((((-578)) . T) (((-894 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +((((-421 (-578))) . T) (((-721)) . T) (($) . T)) +((((-886)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) (((|#4|) . T)) -((((-420 (-577))) . T) (((-720)) . T) (($) . T)) -((((-885)) . T)) -((((-885)) |has| (-1124 |#1|) (-1130))) -((((-885)) . T) (((-1211)) . T)) +((((-421 (-578))) . T) (((-721)) . T) (($) . T)) +((((-886)) . T)) +((((-886)) |has| (-1125 |#1|) (-1131))) +((((-886)) . T) (((-1212)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1211)) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -(-2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(((|#2| (-495 (-3224 |#1|) (-792))) . T)) -((((-1206)) -2229 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) -(((|#1| (-544 (-1206))) . T)) -((((-1188)) . T) (((-986 (-130))) . T) (((-885)) . T)) -((((-885)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((#0=(-893 |#1|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(|has| |#4| (-380)) -(|has| |#3| (-380)) -(((|#1|) . T)) -((((-1206)) . T)) -((((-519)) . T)) -((((-893 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-1212)) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +(-2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(((|#2| (-496 (-3226 |#1|) (-793))) . T)) +((((-1207)) -2230 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207))))) +(((|#1| (-545 (-1207))) . T)) +((((-1189)) . T) (((-987 (-131))) . T) (((-886)) . T)) +((((-886)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((#0=(-894 |#1|) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +(|has| |#4| (-381)) +(|has| |#3| (-381)) +(((|#1|) . T)) +((((-1207)) . T)) +((((-520)) . T)) +((((-894 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) +((((-886)) . T)) ((($) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(|has| |#1| (-569)) -((((-577)) . T) (((-420 (-577))) -2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-2 (|:| -2085 |#1|) (|:| -2182 |#2|))) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(|has| |#1| (-570)) +((((-578)) . T) (((-421 (-578))) -2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ((|#2|) . T) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) (((-888 |#1|)) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +((((-2 (|:| -2087 |#1|) (|:| -2764 |#2|))) . T)) ((($) . T)) -((((-885)) |has| |#1| (-631 (-885))) ((|#1|) . T)) -((((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1206)) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -((((-1206)) . T)) -(((|#1|) . T)) -((((-577)) . T) (($) . T)) -((((-594 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +((((-886)) |has| |#1| (-632 (-886))) ((|#1|) . T)) +((((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ((|#1|) . T) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) (((-1207)) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +((((-1207)) . T)) +(((|#1|) . T)) +((((-578)) . T) (($) . T)) +((((-595 |#1|)) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((($) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) . T) (((-577)) . T) (($) . T)) -((((-885)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) . T) (((-578)) . T) (($) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -(|has| |#1| (-1130)) -(((|#1|) . T)) -((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((((-117 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) -(((|#2|) . T) (((-577)) . T) ((|#6|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +(((#0=(-421 (-578)) #0#) |has| |#2| (-38 (-421 (-578)))) ((|#2| |#2|) . T) (($ $) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +((((-118 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((((-118 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T) (((-578)) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T)) +(((|#2|) . T) (((-578)) . T) ((|#6|) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (((-578)) . T) (($) . T)) +((((-578)) . T) (($) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) +(((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578)))) ((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) ((($ $) . T)) ((($) . T)) -((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-578)) . T) (($) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-380)) +(|has| |#1| (-381)) (((|#1|) . T)) -((((-885)) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1290 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -((((-577)) . T)) -((((-885)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (($) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +((((-578)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) -((($) -2229 (|has| |#1| (-239)) (|has| |#1| (-238)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#1| (-569)) -(((|#1|) . T) (((-577)) . T) (($) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -(|has| |#1| (-1130)) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -(|has| |#1| (-1130)) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -(|has| |#1| (-869)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) +((($) -2230 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-570)) +(((|#1|) . T) (((-578)) . T) (($) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +(|has| |#1| (-1131)) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +(|has| |#1| (-1131)) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +(|has| |#1| (-870)) (((|#1| |#1|) . T)) -((($) . T) (((-420 (-577))) . T)) -(((|#1|) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-577) (-130)) . T)) -((((-885)) . T)) -((($) . T) (((-420 (-577))) . T)) -((((-130)) . T)) -(|has| |#4| (-814)) -(|has| |#4| (-814)) -(|has| |#3| (-814)) -(|has| |#3| (-814)) +((($) . T) (((-421 (-578))) . T)) +(((|#1|) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-578) (-131)) . T)) +((((-886)) . T)) +((($) . T) (((-421 (-578))) . T)) +((((-131)) . T)) +(|has| |#4| (-815)) +(|has| |#4| (-815)) +(|has| |#3| (-815)) +(|has| |#3| (-815)) (((|#1| |#2|) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1211)) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +((((-1212)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) (((-1206) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1206) |#2|)))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -((((-577)) . T) (((-420 (-577))) . T)) -(((|#1| (-1206) (-1118 (-1206)) (-544 (-1118 (-1206)))) . T)) -((((-577) |#1|) . T)) -((((-577)) . T)) -((((-577)) . T)) -((((-938 |#1|)) . T)) -(((|#1| (-544 |#2|)) . T)) -((((-577)) . T)) -((((-577)) . T)) -(((|#1|) . T)) -(|has| |#2| (-1079)) -(((|#1| (-792)) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) +(((|#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) (((-1207) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1207) |#2|)))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-578)) . T) (((-421 (-578))) . T)) +(((|#1| (-1207) (-1119 (-1207)) (-545 (-1119 (-1207)))) . T)) +((((-578) |#1|) . T)) +((((-578)) . T)) +((((-578)) . T)) +((((-939 |#1|)) . T)) +(((|#1| (-545 |#2|)) . T)) +((((-578)) . T)) +((((-578)) . T)) +(((|#1|) . T)) +(|has| |#2| (-1080)) +(((|#1| (-793)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1188) |#1|) . T)) -((((-1264 (-577)) $) . T) (((-577) (-130)) . T)) -(((|#1|) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -(((|#3| (-792)) . T)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -((($) . T) (((-420 (-577))) . T)) +((((-1189) |#1|) . T)) +((((-1265 (-578)) $) . T) (((-578) (-131)) . T)) +(((|#1|) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +(((|#3| (-793)) . T)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) +((($) . T) (((-421 (-578))) . T)) ((($) . T)) ((($) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-420 (-577))) . T) (($) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +((((-421 (-578))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1130)) -((((-420 (-577))) . T) (((-577)) . T)) -((((-577)) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#2|) . T)) -((((-1206) |#2|) |has| |#2| (-527 (-1206) |#2|)) ((|#2| |#2|) |has| |#2| (-320 |#2|))) -((((-420 (-577))) . T) (((-577)) . T)) -((((-577)) . T) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1112)) . T) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) +(|has| |#1| (-1131)) +((((-421 (-578))) . T) (((-578)) . T)) +((((-578)) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ((|#1|) . T) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#2|) . T)) +((((-1207) |#2|) |has| |#2| (-528 (-1207) |#2|)) ((|#2| |#2|) |has| |#2| (-321 |#2|))) +((((-421 (-578))) . T) (((-578)) . T)) +((((-578)) . T) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) (((-1113)) . T) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578)))))) (((|#1|) . T) (($) . T)) -((((-577)) . T)) -((((-577)) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -((((-577)) . T)) -((((-577)) . T)) -((((-420 (-577))) . T) (($) . T)) -(((#0=(-720) (-1202 #0#)) . T)) -((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-375)) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -((($) -2229 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-578)) . T)) +((((-578)) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((((-578)) . T)) +((((-578)) . T)) +((((-421 (-578))) . T) (($) . T)) +(((#0=(-721) (-1203 #0#)) . T)) +((((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-376)) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +((($) -2230 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) +((((-886)) . T)) (((|#1|) . T)) -((((-1188) |#1|) . T)) +((((-1189) |#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-577) |#1|) . T)) -((((-885)) . T)) -((((-171 (-228))) |has| |#1| (-1052)) (((-171 (-391))) |has| |#1| (-1052)) (((-549)) |has| |#1| (-632 (-549))) (((-1202 |#1|)) . T) (((-916 (-577))) |has| |#1| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -(|has| |#1| (-375)) -((((-885)) . T)) +(((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578)))) ((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-578)) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080)))) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-578) |#1|) . T)) +((((-886)) . T)) +((((-172 (-229))) |has| |#1| (-1053)) (((-172 (-392))) |has| |#1| (-1053)) (((-550)) |has| |#1| (-633 (-550))) (((-1203 |#1|)) . T) (((-917 (-578))) |has| |#1| (-633 (-917 (-578)))) (((-917 (-392))) |has| |#1| (-633 (-917 (-392))))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +(|has| |#1| (-376)) +((((-886)) . T)) ((($) . T)) ((($) . T)) -((((-130)) . T)) -(-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) -((($) -2229 (|has| |#2| (-239)) (|has| |#2| (-238)))) -(|has| |#4| (-1079)) -(|has| |#3| (-1079)) -((((-885)) . T) (((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -(((|#2|) . T) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -(|has| |#1| (-569)) -((((-577)) -2229 (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) (|has| |#4| (-1079))) ((|#4|) |has| |#4| (-1130)) (((-420 (-577))) -12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130)))) -((((-577)) -2229 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ((|#3|) |has| |#3| (-1130)) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#1| (-569)) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -(((|#1|) . T)) -(|has| |#1| (-569)) -((((-887 |#1|)) . T)) -(|has| |#1| (-569)) -(|has| |#1| (-569)) +((((-131)) . T)) +(-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) +(-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) +((($) -2230 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(|has| |#4| (-1080)) +(|has| |#3| (-1080)) +((((-886)) . T) (((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +(((|#2|) . T) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +(|has| |#1| (-570)) +((((-578)) -2230 (-12 (|has| |#4| (-1069 (-578))) (|has| |#4| (-1131))) (|has| |#4| (-1080))) ((|#4|) |has| |#4| (-1131)) (((-421 (-578))) -12 (|has| |#4| (-1069 (-421 (-578)))) (|has| |#4| (-1131)))) +((((-578)) -2230 (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) (|has| |#3| (-1080))) ((|#3|) |has| |#3| (-1131)) (((-421 (-578))) -12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-570)) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +(((|#1|) . T)) +(|has| |#1| (-570)) +((((-888 |#1|)) . T)) +(|has| |#1| (-570)) +(|has| |#1| (-570)) (((|#2|) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1112)) . T)) -((((-720)) . T)) -(((|#1|) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1118 (-1206))) . T)) -(-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-420 (-577))) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) -((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) -(((|#4| |#4|) -2229 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1079)))) -(((|#3| |#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T)) +((((-721)) . T)) +(((|#1|) . T)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1119 (-1207))) . T)) +(-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-421 (-578))) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +(-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) +((($) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (($) . T)) +(((|#4| |#4|) -2230 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080)))) +(((|#3| |#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080)))) (((|#2|) . T)) (((|#1|) . T)) -((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) -((((-885)) . T)) +((((-550)) |has| |#2| (-633 (-550))) (((-917 (-392))) |has| |#2| (-633 (-917 (-392)))) (((-917 (-578))) |has| |#2| (-633 (-917 (-578))))) +((((-886)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2085 |#1|) (|:| -2182 |#2|))) . T) (((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577))))) -(((|#4|) -2229 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1079)))) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) -((((-2 (|:| -2085 |#1|) (|:| -2182 |#2|))) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-665 |#1|)) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((((-420 $) (-420 $)) |has| |#2| (-569)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) -((((-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-937)) -((((-1188) (-52)) . T)) -((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T)) -((((-549)) . T) (((-228)) . T) (((-391)) . T) (((-916 (-391))) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) -(((|#1|) |has| |#1| (-174))) -(((|#1| $) |has| |#1| (-297 |#1| |#1|))) -((((-885)) . T)) -((((-885)) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -(((|#1|) . T)) -((((-885)) . T)) +((((-2 (|:| -2087 |#1|) (|:| -2764 |#2|))) . T) (((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550))) (((-917 (-392))) |has| |#1| (-633 (-917 (-392)))) (((-917 (-578))) |has| |#1| (-633 (-917 (-578))))) +(((|#4|) -2230 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080)))) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080)))) +((((-2 (|:| -2087 |#1|) (|:| -2764 |#2|))) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-550)) . T) (((-578)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) +((((-666 |#1|)) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((($) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((((-421 $) (-421 $)) |has| |#2| (-570)) (($ $) . T) ((|#2| |#2|) . T)) +((($ (-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) +((((-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-938)) +((((-1189) (-52)) . T)) +((((-578)) |has| #0=(-421 |#2|) (-660 (-578))) ((#0#) . T)) +((((-550)) . T) (((-229)) . T) (((-392)) . T) (((-917 (-392))) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) +(((|#1|) |has| |#1| (-175))) +(((|#1| $) |has| |#1| (-298 |#1| |#1|))) +((((-886)) . T)) +((((-886)) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(|has| |#1| (-871)) +(((|#2|) . T) (((-578)) . T) (((-841 |#1|)) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-1131)) +((((-939 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) . T) (((-1212)) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((((-1212)) . T)) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| |#1| (-240)) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1| (-545 (-840 (-1207)))) . T)) +(((|#1| (-1002)) . T)) +((((-578)) . T) ((|#2|) . T)) (|has| |#1| (-870)) -(((|#2|) . T) (((-577)) . T) (((-840 |#1|)) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-1130)) -((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) . T) (((-1211)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((((-1211)) . T)) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#1| (-239)) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1| (-544 (-839 (-1206)))) . T)) -(((|#1| (-1001)) . T)) -((((-577)) . T) ((|#2|) . T)) -(|has| |#1| (-869)) -((((-1206)) . T)) -(((#0=(-893 |#1|) $) |has| #0# (-297 #0# #0#))) -((((-577) |#4|) . T)) -((((-577) |#3|) . T)) +((((-1207)) . T)) +(((#0=(-894 |#1|) $) |has| #0# (-298 #0# #0#))) +((((-578) |#4|) . T)) +((((-578) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1182)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -(|has| (-1283 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1283 |#1| |#2| |#3| |#4|) (-148)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -((((-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) -(((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1130)) -((((-1188) |#1|) . T)) +(|has| |#1| (-1183)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +(|has| (-1284 |#1| |#2| |#3| |#4|) (-147)) +(|has| (-1284 |#1| |#2| |#3| |#4|) (-149)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +((((-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) +(((|#1|) |has| |#1| (-175))) +(|has| |#1| (-1131)) +((((-1189) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((((-1155 |#1| (-1206))) . T) (((-577)) . T) (((-839 (-1206))) . T) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-1206)) . T)) -(|has| |#2| (-380)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((((-1156 |#1| (-1207))) . T) (((-578)) . T) (((-840 (-1207))) . T) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) (((-1207)) . T)) +(|has| |#2| (-381)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1079))) -((((-885)) . T)) -(|has| |#1| (-869)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) #0#) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -(((|#1|) . T)) -((((-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((#0=(-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) #0#) |has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))))) -((((-885)) . T)) -((((-577) |#1|) . T)) -((((-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549)))) (((-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) (((-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577)))))) +(((|#2|) |has| |#2| (-1080))) +((((-886)) . T)) +(|has| |#1| (-870)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) #0#) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +(((|#1|) . T)) +((((-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((#0=(-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) #0#) |has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))))) +((((-886)) . T)) +((((-578) |#1|) . T)) +((((-550)) -12 (|has| |#1| (-633 (-550))) (|has| |#2| (-633 (-550)))) (((-917 (-392))) -12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) (((-917 (-578))) -12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578)))))) ((($) . T)) -((((-885)) . T)) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T)) +((((-886)) . T)) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T)) -((((-885)) . T)) -(|has| (-1282 |#2| |#3| |#4|) (-148)) -(|has| (-1282 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1130)) (((-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T)) +((((-886)) . T)) +(|has| (-1283 |#2| |#3| |#4|) (-149)) +(|has| (-1283 |#2| |#3| |#4|) (-147)) +(((|#2|) |has| |#2| (-1131)) (((-578)) -12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (((-421 (-578))) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131)))) (((|#1|) . T)) -(|has| |#1| (-1130)) -((((-885)) . T)) +(|has| |#1| (-1131)) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) (((|#1|) . T)) ((($) . T)) -((((-577) |#1|) . T)) -(((|#2|) |has| |#2| (-174))) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-174))) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) -((((-885)) |has| |#1| (-1130))) -((($) -2229 (|has| |#1| (-239)) (|has| |#1| (-238)))) -(-2229 (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-938 |#1|)) . T)) -((((-420 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-577) |#1|))) -((((-420 (-577))) . T) (($) . T)) +((((-578) |#1|) . T)) +(((|#2|) |has| |#2| (-175))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-175))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) +((((-886)) |has| |#1| (-1131))) +((($) -2230 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(-2230 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +((((-939 |#1|)) . T)) +((((-421 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-578) |#1|))) +((((-421 (-578))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -(|has| |#1| (-375)) -(-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-375)) -(|has| |#1| (-15 * (|#1| (-792) |#1|))) -((((-577)) . T)) -((((-577)) . T)) -((((-1172 |#2| (-420 (-980 |#1|)))) . T) (((-420 (-980 |#1|))) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +(|has| |#1| (-376)) +(-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-376)) +(|has| |#1| (-15 * (|#1| (-793) |#1|))) +((((-578)) . T)) +((((-578)) . T)) +((((-1173 |#2| (-421 (-981 |#1|)))) . T) (((-421 (-981 |#1|))) . T)) ((($) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (($) . T)) (((|#1|) . T)) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -((((-885)) . T)) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +((((-886)) . T)) (((|#2|) . T)) -(-2229 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((($) |has| |#1| (-569)) (((-577)) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -((((-1289 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) -((((-1293 |#2|)) . T) (((-1289 |#1| |#2| |#3|)) . T) (((-1261 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T)) -(((|#1|) . T)) -((((-1206)) -12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079)))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) -(-2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($ $) |has| |#1| (-569)) ((|#1| |#1|) . T)) -((($ (-1206)) -2229 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) -(((#0=(-720) (-1202 #0#)) . T)) -((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-885)) . T) (((-1297 |#4|)) . T)) -((((-885)) . T) (((-1297 |#3|)) . T)) -((((-594 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) . T)) -((((-885)) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +(-2230 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +((((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((($) |has| |#1| (-570)) (((-578)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-1290 |#1| |#2| |#3|)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-578)) . T) ((|#1|) |has| |#1| (-175))) +((((-1294 |#2|)) . T) (((-1290 |#1| |#2| |#3|)) . T) (((-1262 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-578)) . T) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (((-578)) . T)) +(((|#1|) . T)) +((((-1207)) -12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080)))) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-570))) +(((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578)))) ((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((($ $) |has| |#1| (-570)) ((|#1| |#1|) . T)) +((($ (-1207)) -2230 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207))))) +(((#0=(-721) (-1203 #0#)) . T)) +((((-595 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-886)) . T) (((-1298 |#4|)) . T)) +((((-886)) . T) (((-1298 |#3|)) . T)) +((((-595 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((($) . T) (((-421 (-578))) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) . T)) +((((-886)) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) ((($) . T)) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1289 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -(((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -(((|#3|) |has| |#3| (-1079))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -(|has| (-1124 |#1|) (-1130)) -(((|#2| (-840 |#1|)) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) -((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((#1=(-1290 |#1| |#2| |#3|) #1#) |has| |#1| (-376)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1290 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +(((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +(((|#3|) |has| |#3| (-1080))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +(|has| (-1125 |#1|) (-1131)) +(((|#2| (-841 |#1|)) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T)) +((((-578)) . T) (($) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) (((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-375)) -((((-577)) . T) ((|#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +(|has| |#1| (-376)) +((((-578)) . T) ((|#2|) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T)) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((#0=(-1112) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-885)) . T)) -((((-938 |#1|)) . T)) -((((-145)) . T)) -((((-145)) . T)) -((((-246 |#1| |#2|) |#2|) . T)) -((((-885)) . T)) -(((|#3|) |has| |#3| (-1130)) (((-577)) -12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1|) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -(((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) -(|has| |#1| (-375)) -((((-1211)) . T)) -(((|#1|) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T)) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-421 $) (-421 $)) |has| |#1| (-570)) (($ $) . T) ((|#1| |#1|) . T)) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((#0=(-1113) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-886)) . T)) +((((-939 |#1|)) . T)) +((((-146)) . T)) +((((-146)) . T)) +((((-247 |#1| |#2|) |#2|) . T)) +((((-886)) . T)) +(((|#3|) |has| |#3| (-1131)) (((-578)) -12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) (((-421 (-578))) -12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131)))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1|) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +(((|#1|) |has| |#1| (-175))) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) +(|has| |#1| (-376)) +((((-1212)) . T)) +(((|#1|) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) ((($) . T)) -((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) -(|has| |#2| (-841)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-869)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +(|has| |#2| (-842)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-870)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#1| |#2|) . T)) -(((|#1| |#2| |#3| (-544 |#3|)) . T)) -((((-885)) . T)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -((((-420 (-577))) . T)) -(((|#1|) . T)) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -((((-420 (-577))) . T)) -((((-1188) |#1|) . T)) -(|has| |#1| (-380)) -((((-577)) . T)) -((((-577)) . T)) -(((|#1|) . T) (((-577)) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -((((-885)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-1206)) -12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))))) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-885)) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) -((((-1206) #0=(-893 |#1|)) |has| #0# (-527 (-1206) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) -(((|#1|) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-577) |#4|) . T)) -((((-577) |#3|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -(|has| |#2| (-1079)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(-2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -((((-885)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -((((-420 (-577))) . T) (((-577)) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +(((|#1| |#2| |#3| (-545 |#3|)) . T)) +((((-886)) . T)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +((((-421 (-578))) . T)) +(((|#1|) . T)) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +((((-421 (-578))) . T)) +((((-1189) |#1|) . T)) +(|has| |#1| (-381)) +((((-578)) . T)) +((((-578)) . T)) +(((|#1|) . T) (((-578)) . T)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +((((-886)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((((-1207)) -12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))))) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-886)) . T)) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) +((((-1207) #0=(-894 |#1|)) |has| #0# (-528 (-1207) #0#)) ((#0# #0#) |has| #0# (-321 #0#))) +(((|#1|) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-578) |#4|) . T)) +((((-578) |#3|) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +(|has| |#2| (-1080)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(-2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +((((-886)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-421 (-578))) . T) (((-578)) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-577)) . T)) -((((-577)) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-577)) -2229 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1130)) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((((-578)) . T)) +((((-578)) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((((-578)) -2230 (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1131)) (((-421 (-578))) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-420 (-577))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((($) . T) (((-420 (-577))) . T)) -(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +((($) . T) (((-421 (-578))) . T)) +(((#0=(-578) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) |has| |#1| (-569))) -((((-577) |#4|) . T)) -((((-577) |#3|) . T)) -((((-885)) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((((-885)) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((((-577) |#1|) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) |has| |#1| (-570))) +((((-578) |#4|) . T)) +((((-578) |#3|) . T)) +((((-886)) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((((-886)) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((((-578) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-888 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1206) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-174))) -((($) -2229 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -(((|#2| |#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) -((((-145)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-380)) (|has| |#2| (-380))) -((((-885)) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) -(((|#1|) . T)) -((((-885)) . T)) -(|has| |#1| (-1130)) -(|has| $ (-148)) -((((-1211)) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -((($) -2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -(|has| |#1| (-375)) -(-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-375)) -(|has| |#1| (-15 * (|#1| (-792) |#1|))) -(((|#1|) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -((((-885)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(-2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -(((|#2| (-544 (-887 |#1|))) . T)) -((((-885)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-594 |#1|)) . T)) +((($ $) . T) ((#0=(-1207) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-175))) +((($) -2230 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) ((|#2|) |has| |#2| (-175)) (((-421 (-578))) |has| |#2| (-38 (-421 (-578))))) +(((|#2| |#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))) +((((-146)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-381)) (|has| |#2| (-381))) +((((-886)) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))) +(((|#1|) . T)) +((((-886)) . T)) +(|has| |#1| (-1131)) +(|has| $ (-149)) +((((-1212)) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-578)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-578)) . T) (($) . T)) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +((($) -2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +(|has| |#1| (-376)) +(-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-376)) +(|has| |#1| (-15 * (|#1| (-793) |#1|))) +(((|#1|) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +((((-886)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +(((|#2| (-545 (-888 |#1|))) . T)) +((((-886)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-595 |#1|)) . T)) ((($) . T)) -((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) (((|#1|) . T) (($) . T)) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) -((((-1204 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) -((((-1293 |#2|)) . T) (((-1204 |#1| |#2| |#3|)) . T) (((-1197 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T)) +((((-1205 |#1| |#2| |#3|)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-578)) . T) ((|#1|) |has| |#1| (-175))) +((((-1294 |#2|)) . T) (((-1205 |#1| |#2| |#3|)) . T) (((-1198 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-578)) . T) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) (((|#4|) . T)) (((|#3|) . T)) -((((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T)) -((((-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) -(-2229 (|has| |#2| (-239)) (|has| |#2| (-238))) +((((-894 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (((-578)) . T)) +((((-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) +(-2230 (|has| |#2| (-240)) (|has| |#2| (-239))) (((|#1|) . T)) -((((-887 |#1|)) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) ((|#3|) . T)) +((((-888 |#1|)) . T)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) ((|#3|) . T)) ((($) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-577)) . T) (((-420 (-577))) -2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) -((((-577) |#2|) . T)) -((((-885)) . T)) -((($) . T) (((-577)) . T) ((|#2|) . T) (((-420 (-577))) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-578)) . T) (((-421 (-578))) -2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ((|#2|) . T) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) (((-888 |#1|)) . T)) +((((-578) |#2|) . T)) +((((-886)) . T)) +((($) . T) (((-578)) . T) ((|#2|) . T) (((-421 (-578))) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1204 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T)) -(((|#2|) |has| |#2| (-1079))) -(|has| |#1| (-1130)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -(((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) |has| |#1| (-174)) (($) . T)) -(((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((((-885)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($ (-887 |#1|)) . T)) +(((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578)))) ((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((#1=(-1205 |#1| |#2| |#3|) #1#) |has| |#1| (-376)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T)) +(((|#2|) |has| |#2| (-1080))) +(|has| |#1| (-1131)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +(((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) |has| |#1| (-175)) (($) . T)) +(((|#1|) . T)) +(((#0=(-421 (-578)) #0#) |has| |#2| (-38 (-421 (-578)))) ((|#2| |#2|) . T) (($ $) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((((-886)) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($ (-888 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) ((($ |#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1112)) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T)) ((($) . T)) -(((#0=(-1112) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1118 (-1206))) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1130)) (((-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) -(|has| |#1| (-1130)) -(((|#2|) |has| |#1| (-375))) -(((|#2|) |has| |#1| (-375))) -((((-577) |#1|) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) -((((-885)) . T)) -((((-420 |#2|) |#3|) . T)) -(((|#1| (-420 (-577))) . T)) -(((|#1|) . T) (((-577)) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-885)) . T) (((-1211)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -((((-1211)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -(((|#2| |#3| (-887 |#1|)) . T)) -((((-1206)) |has| |#2| (-926 (-1206)))) -(((|#1|) . T)) -(((|#1| (-544 |#2|) |#2|) . T)) -(((|#1| (-792) (-1112)) . T)) -((((-420 (-577))) |has| |#2| (-375)) (($) . T)) -(((|#1| (-544 (-1118 (-1206))) (-1118 (-1206))) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +(((#0=(-1113) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1119 (-1207))) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1131)) (((-578)) -12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (((-421 (-578))) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131)))) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (($) . T)) +(|has| |#1| (-1131)) +(((|#2|) |has| |#1| (-376))) +(((|#2|) |has| |#1| (-376))) +((((-578) |#1|) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-578)) . T)) +((((-886)) . T)) +((((-421 |#2|) |#3|) . T)) +(((|#1| (-421 (-578))) . T)) +(((|#1|) . T) (((-578)) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-886)) . T) (((-1212)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +((((-1212)) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) +(((|#2| |#3| (-888 |#1|)) . T)) +((((-1207)) |has| |#2| (-927 (-1207)))) +(((|#1|) . T)) +(((|#1| (-545 |#2|) |#2|) . T)) +(((|#1| (-793) (-1113)) . T)) +((((-421 (-578))) |has| |#2| (-376)) (($) . T)) +(((|#1| (-545 (-1119 (-1207))) (-1119 (-1207))) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) (((|#2|) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) (((|#1|) . T)) (((|#2|) . T)) -((((-1029 |#1|)) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2229 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) -(|has| |#2| (-1079)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -((((-917 |#1|)) . T) (((-840 |#1|)) . T)) -((((-840 (-1206))) . T)) +((((-1030 |#1|)) . T) (((-578)) . T) ((|#1|) . T) (((-421 (-578))) -2230 (|has| (-1030 |#1|) (-1069 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578)))))) +(|has| |#2| (-1080)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +((((-918 |#1|)) . T) (((-841 |#1|)) . T)) +((((-841 (-1207))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-665 (-949))) . T) (((-885)) . T)) -((((-420 (-577))) . T) (((-885)) . T)) -((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) -(|has| |#1| (-239)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((($ $) . T) (((-577) |#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-666 (-950))) . T) (((-886)) . T)) +((((-421 (-578))) . T) (((-886)) . T)) +((((-550)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) +(|has| |#1| (-240)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((($ $) . T) (((-578) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-1289 |#1| |#2| |#3|) $) -12 (|has| (-1289 |#1| |#2| |#3|) (-297 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) -((($ $) . T) (((-420 (-577)) |#1|) . T)) -((((-792) |#1|) . T) (($ $) . T)) -(((|#1|) . T)) -((($ (-1206)) . T)) -(-2229 (|has| |#1| (-841)) (|has| |#1| (-870))) -((((-1170 |#1| |#2|)) |has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -(((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) -(|has| |#1| (-869)) -(((|#1|) . T)) -((((-1206)) -2229 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-1290 |#1| |#2| |#3|) $) -12 (|has| (-1290 |#1| |#2| |#3|) (-298 (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) (($ $) . T) (((-578) |#1|) . T)) +((($ $) . T) (((-421 (-578)) |#1|) . T)) +((((-793) |#1|) . T) (($ $) . T)) +(((|#1|) . T)) +((($ (-1207)) . T)) +(-2230 (|has| |#1| (-842)) (|has| |#1| (-871))) +((((-1171 |#1| |#2|)) |has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +(((|#2|) . T) (((-578)) |has| |#2| (-1069 (-578))) (((-421 (-578))) |has| |#2| (-1069 (-421 (-578))))) +(|has| |#1| (-870)) +(((|#1|) . T)) +((((-1207)) -2230 (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))))) (((|#1| |#2|) . T)) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) (((|#2|) . T)) -((((-885)) -2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-631 (-885))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) (((-1297 |#2|)) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T) (($) . T)) -(((|#1|) |has| |#1| (-174))) -((((-577)) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) -(|has| |#1| (-1130)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-577) (-145)) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) -((((-577)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-577)) . T)) -((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-577)) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) -(((|#1|) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) -((($) . T) (((-577)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) -(((|#2|) |has| |#1| (-375))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-886)) -2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-886))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) (((-1298 |#2|)) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((|#1|) . T) (((-578)) . T) (($) . T)) +(((|#1|) |has| |#1| (-175))) +((((-578)) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) +(|has| |#1| (-1131)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-578) (-146)) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-578)) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080)))) +((((-578)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-578)) . T)) +((($) |has| |#1| (-570)) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) (((-578)) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) +(((|#1|) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) +((($) . T) (((-578)) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-578)) . T)) +(((|#2|) |has| |#1| (-376))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-1211)) . T)) -((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1| (-544 #0=(-1206)) #0#) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-1212)) . T)) +((((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1| (-545 #0=(-1207)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-577)) . T)) -(((#0=(-420 (-980 |#1|)) #0#) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -(((|#1| |#1|) |has| |#1| (-174))) -(-2229 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-420 (-980 |#1|))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-577)) . T) (($) . T)) -(((|#1|) |has| |#1| (-174))) -((((-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-885)) . T)) -((((-885)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1079)) (((-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) +((((-578)) . T)) +(((#0=(-421 (-981 |#1|)) #0#) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(((|#1| |#1|) |has| |#1| (-175))) +(-2230 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-421 (-981 |#1|))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-578)) . T) (($) . T)) +(((|#1|) |has| |#1| (-175))) +((((-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-886)) . T)) +((((-886)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1080)) (((-578)) -12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) (((|#1| |#2|) . T)) -(|has| |#3| (-1079)) -(|has| |#3| (-814)) -(|has| |#3| (-814)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(|has| |#3| (-1080)) +(|has| |#3| (-815)) +(|has| |#3| (-815)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) (((|#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -(((|#1| (-1187 |#1|)) |has| |#1| (-869))) -((((-577) |#2|) . T)) -(|has| |#1| (-1130)) -(((|#1|) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-1182))) -((((-420 (-577))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((($) . T) (((-420 (-577))) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1| (-1188 |#1|)) |has| |#1| (-870))) +((((-578) |#2|) . T)) +(|has| |#1| (-1131)) +(((|#1|) . T)) +(-12 (|has| |#1| (-376)) (|has| |#2| (-1183))) +((((-421 (-578))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((($) . T) (((-421 (-578))) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) (((|#2|) . T)) -((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) -(((|#4|) -2229 (|has| |#4| (-174)) (|has| |#4| (-375)))) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)))) -((((-885)) . T)) -(((|#1|) . T)) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-937))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-937))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +((((-550)) |has| |#2| (-633 (-550))) (((-917 (-392))) |has| |#2| (-633 (-917 (-392)))) (((-917 (-578))) |has| |#2| (-633 (-917 (-578))))) +(((|#4|) -2230 (|has| |#4| (-175)) (|has| |#4| (-376)))) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)))) +((((-886)) . T)) +(((|#1|) . T)) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-938))) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-938))) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-937))) -((($ $) . T) ((#0=(-1206) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-839 (-1206)) |#1|) . T) ((#1# $) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-937))) -((((-577) |#2|) . T)) -((((-885)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) -((((-577) |#1|) . T)) -(|has| (-420 |#2|) (-148)) -(|has| (-420 |#2|) (-146)) -(((|#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|)))) -(|has| |#1| (-38 (-420 (-577)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-420 (-577))) . T)) -((((-885)) . T)) -(|has| |#1| (-569)) -(|has| |#1| (-569)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-885)) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -(|has| |#1| (-38 (-420 (-577)))) -((((-401) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#2| (-1182)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-885)) . T) (((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-1246)) . T) (((-885)) . T) (((-1211)) . T)) -((((-117 |#1|)) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -(((|#1|) . T)) -((((-401) (-1188)) . T)) -(|has| |#1| (-569)) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-938))) +((($ $) . T) ((#0=(-1207) $) |has| |#1| (-240)) ((#0# |#1|) |has| |#1| (-240)) ((#1=(-840 (-1207)) |#1|) . T) ((#1# $) . T)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-938))) +((((-578) |#2|) . T)) +((((-886)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)) (((-578)) -12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080)))) +((((-578) |#1|) . T)) +(|has| (-421 |#2|) (-149)) +(|has| (-421 |#2|) (-147)) +(((|#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|)))) +(|has| |#1| (-38 (-421 (-578)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-421 (-578))) . T)) +((((-886)) . T)) +(|has| |#1| (-570)) +(|has| |#1| (-570)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-886)) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +(|has| |#1| (-38 (-421 (-578)))) +((((-402) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#2| (-1183)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +((((-886)) . T) (((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1247)) . T) (((-886)) . T) (((-1212)) . T)) +((((-118 |#1|)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(((|#1|) . T)) +((((-402) (-1189)) . T)) +(|has| |#1| (-570)) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) (((|#2|) . T)) -((((-792) (-1211)) . T)) -((((-885)) . T)) -((((-840 |#1|)) . T)) +((((-793) (-1212)) . T)) +((((-886)) . T)) +((((-841 |#1|)) . T)) ((($) . T)) -((((-1206) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-569)) -(((|#1|) |has| |#1| (-174))) -(((|#2|) |has| |#2| (-174))) -((((-665 |#1|)) . T)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -(((|#2|) |has| |#2| (-320 |#2|))) -(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1202 |#1|)) . T)) -(|has| $ (-148)) +((((-1207) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-570)) +(((|#1|) |has| |#1| (-175))) +(((|#2|) |has| |#2| (-175))) +((((-666 |#1|)) . T)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +(((|#2|) |has| |#2| (-321 |#2|))) +(((#0=(-578) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1203 |#1|)) . T)) +(|has| $ (-149)) (((|#2|) . T)) ((($) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -(|has| |#2| (-380)) -(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +(|has| |#2| (-381)) +(((#0=(-578) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) (((|#1| |#2|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#1|) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -((((-885)) . T)) -((((-1204 |#1| |#2| |#3|) $) -12 (|has| (-1204 |#1| |#2| |#3|) (-297 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) -((($ $) . T) (((-420 (-577)) |#1|) . T)) -((((-792) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((#0=(-1289 |#1| |#2| |#3|) #0#) -12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1206) #0#) -12 (|has| (-1289 |#1| |#2| |#3|) (-527 (-1206) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375)))) -(-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-577)) . T) (($) . T)) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) . T) (((-577)) . T) ((|#2|) . T)) -((((-577)) . T) (($) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -((((-420 (-577))) . T) (((-577)) . T)) -((((-577) (-145)) . T)) -((((-145)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +((((-886)) . T)) +((((-1205 |#1| |#2| |#3|) $) -12 (|has| (-1205 |#1| |#2| |#3|) (-298 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) (($ $) . T) (((-578) |#1|) . T)) +((($ $) . T) (((-421 (-578)) |#1|) . T)) +((((-793) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((#0=(-1290 |#1| |#2| |#3|) #0#) -12 (|has| (-1290 |#1| |#2| |#3|) (-321 (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) (((-1207) #0#) -12 (|has| (-1290 |#1| |#2| |#3|) (-528 (-1207) (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376)))) +(-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-578)) . T) (($) . T)) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) . T) (((-578)) . T) ((|#2|) . T)) +((((-578)) . T) (($) . T) ((|#2|) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578))))) +((((-421 (-578))) . T) (((-578)) . T)) +((((-578) (-146)) . T)) +((((-146)) . T)) (((|#1|) . T)) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) ((((-112)) . T)) -((((-549)) |has| |#1| (-632 (-549))) (((-228)) . #0=(|has| |#1| (-1052))) (((-391)) . #0#)) -((((-885)) . T)) -(((|#1|) . T)) -((((-1211)) . T)) -(|has| |#1| (-841)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-569))) -(|has| |#1| (-569)) -(((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) . T) (((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) -(|has| |#1| (-937)) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -(((|#1|) . T)) -(|has| |#1| (-1130)) -((((-885)) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-569))) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -(|has| |#1| (-870)) -(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) -((((-577) (-145)) . T) (((-1264 (-577)) $) . T)) +((((-550)) |has| |#1| (-633 (-550))) (((-229)) . #0=(|has| |#1| (-1053))) (((-392)) . #0#)) +((((-886)) . T)) +(((|#1|) . T)) +((((-1212)) . T)) +(|has| |#1| (-842)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-570))) +(|has| |#1| (-570)) +(((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +((($) . T) (((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((|#1|) . T) (((-578)) . T)) +(|has| |#1| (-938)) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +(((|#1|) . T)) +(|has| |#1| (-1131)) +((((-886)) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-570))) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(|has| |#1| (-871)) +(((|#1| (-1298 |#1|) (-1298 |#1|)) . T)) +((((-578) (-146)) . T) (((-1265 (-578)) $) . T)) ((($) . T)) -(|has| |#4| (-1079)) -(|has| |#3| (-1079)) -((((-1211)) . T) (((-885)) . T)) -((((-1211)) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(((|#1| (-1001)) . T)) +(|has| |#4| (-1080)) +(|has| |#3| (-1080)) +((((-1212)) . T) (((-886)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#1| (-1002)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -(-12 (|has| |#1| (-486)) (|has| |#2| (-486))) -(|has| |#2| (-1079)) -((($) . T) (((-577)) . T) (((-893 |#1|)) . T) (((-420 (-577))) . T)) -(((|#1|) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +(-12 (|has| |#1| (-487)) (|has| |#2| (-487))) +(|has| |#2| (-1080)) +((($) . T) (((-578)) . T) (((-894 |#1|)) . T) (((-421 (-578))) . T)) +(((|#1|) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) -(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) -(-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-577)) . T)) -(((|#2|) |has| |#2| (-174))) -(((|#1|) |has| |#1| (-174))) -((((-885)) . T)) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-238))) -(|has| |#1| (-361)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-420 (-577))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-420 (-577))) . T)) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) -(|has| |#1| (-849)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(((|#1| $) |has| |#1| (-297 |#1| |#1|))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((($) |has| |#1| (-569))) -(((|#2|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1130))) -(((|#3|) |has| |#3| (-1130))) -(|has| |#3| (-380)) -((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-577)) . T)) -((((-885)) . T)) +(((|#1|) |has| |#1| (-175)) ((|#4|) . T) (((-578)) . T)) +(((|#2|) |has| |#2| (-175))) +(((|#1|) |has| |#1| (-175))) +((((-886)) . T)) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-239))) +(|has| |#1| (-362)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-421 (-578))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-421 (-578))) . T)) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) . T)) +(|has| |#1| (-850)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#1| $) |has| |#1| (-298 |#1| |#1|))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((($) |has| |#1| (-570))) +(((|#2|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1131))) +(((|#3|) |has| |#3| (-1131))) +(|has| |#3| (-381)) +((($) |has| |#1| (-570)) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) (((-578)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) -(|has| |#1| (-870)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +((((-886)) . T)) +(|has| |#1| (-871)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-1290 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) (((|#2|) . T)) -(|has| |#2| (-375)) -((((-420 (-577))) . T) (((-577)) . T)) -((($) -2229 (|has| |#2| (-239)) (|has| |#2| (-238)))) -((($ (-887 |#1|)) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ |#3|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) -(((|#1|) . T)) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(|has| |#2| (-376)) +((((-421 (-578))) . T) (((-578)) . T)) +((($) -2230 (|has| |#2| (-240)) (|has| |#2| (-239)))) +((($ (-888 |#1|)) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ |#3|) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T)) +(((|#1|) . T)) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) (((|#2|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($) . T) (((-577)) . T)) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) |has| |#1| (-174))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((((-145)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) -((((-145)) . T)) -((((-145)) . T)) -((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#) ((|#2|) . T) (((-577)) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($) . T) (((-578)) . T)) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) |has| |#1| (-175))) +(((|#1| |#1|) |has| |#1| (-175))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((((-146)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-578)) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080)))) +((((-146)) . T)) +((((-146)) . T)) +((((-421 (-578))) . #0=(|has| |#2| (-376))) (($) . #0#) ((|#2|) . T) (((-578)) . T)) (((|#1| |#2| |#3|) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) -(((|#1|) |has| |#1| (-174))) -(|has| $ (-148)) -(|has| $ (-148)) -((((-1211)) . T)) -(((|#1|) |has| |#1| (-174))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -((((-885)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1079)) (|has| |#1| (-1142))) -((($ $) |has| |#1| (-297 $ $)) ((|#1| $) |has| |#1| (-297 |#1| |#1|))) -(((|#1| (-420 (-577))) . T)) -(((|#1|) . T)) -((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1206)) . T)) -(|has| |#1| (-569)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(|has| |#1| (-569)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-885)) . T)) -(|has| |#2| (-146)) -(|has| |#2| (-148)) -((((-577) (-420 (-980 |#1|))) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) +(((|#1|) |has| |#1| (-175))) +(|has| $ (-149)) +(|has| $ (-149)) +((((-1212)) . T)) +(((|#1|) |has| |#1| (-175))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-570)) (|has| |#1| (-1080)) (|has| |#1| (-1143))) +((($ $) |has| |#1| (-298 $ $)) ((|#1| $) |has| |#1| (-298 |#1| |#1|))) +(((|#1| (-421 (-578))) . T)) +(((|#1|) . T)) +((((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1207)) . T)) +(|has| |#1| (-570)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(|has| |#1| (-570)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-886)) . T)) +(|has| |#2| (-147)) +(|has| |#2| (-149)) +((((-578) (-421 (-981 |#1|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(((|#2| (-246 (-3224 |#1|) (-792)) (-887 |#1|)) . T)) -(((|#1| (-544 |#3|) |#3|) . T)) -(|has| |#1| (-146)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-375)) (($ $) . T)) -((((-893 |#1|)) . T)) -((((-893 |#1|)) . T)) -(|has| |#1| (-148)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -((((-885)) . T)) -(|has| |#1| (-146)) -((((-420 (-577))) |has| |#2| (-375)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -(-2229 (|has| |#1| (-361)) (|has| |#1| (-380))) -((((-1172 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(((|#2| (-247 (-3226 |#1|) (-793)) (-888 |#1|)) . T)) +(((|#1| (-545 |#3|) |#3|) . T)) +(|has| |#1| (-147)) +(((#0=(-421 (-578)) #0#) |has| |#2| (-376)) (($ $) . T)) +((((-894 |#1|)) . T)) +((((-894 |#1|)) . T)) +(|has| |#1| (-149)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +((((-886)) . T)) +(|has| |#1| (-147)) +((((-421 (-578))) |has| |#2| (-376)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +(-2230 (|has| |#1| (-362)) (|has| |#1| (-381))) +((((-1173 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) -(((|#2|) . T) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(|has| |#3| (-814)) -(|has| |#3| (-814)) -((((-885)) . T)) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) +(((|#2|) . T) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(|has| |#3| (-815)) +(|has| |#3| (-815)) +((((-886)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-720)) . T)) -(|has| |#2| (-1079)) -(|has| |#1| (-569)) +((((-721)) . T)) +(|has| |#2| (-1080)) +(|has| |#1| (-570)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1166,3061 +1166,3061 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1206) (-52)) . T)) -((((-1034 10)) . T) (((-420 (-577))) . T) (((-885)) . T)) -((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-1207) (-52)) . T)) +((((-1035 10)) . T) (((-421 (-578))) . T) (((-886)) . T)) +((((-550)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) (((|#1|) . T)) -((((-1034 16)) . T) (((-420 (-577))) . T) (((-885)) . T)) -((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) -(((|#1| (-577)) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-1035 16)) . T) (((-421 (-578))) . T) (((-886)) . T)) +((((-550)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) +(((|#1| (-578)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((((-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206)))) (((-1112)) . T)) +((((-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))) (((-1113)) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-630 $)) . T)) -(((|#1| (-420 (-577))) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +(((|#3|) . T) (((-631 $)) . T)) +(((|#1| (-421 (-578))) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-577)) -2229 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1130)) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-578)) -2230 (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1131)) (((-421 (-578))) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131)))) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -(((#0=(-1204 |#1| |#2| |#3|) #0#) -12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1206) #0#) -12 (|has| (-1204 |#1| |#2| |#3|) (-527 (-1206) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375)))) -((((-885)) . T)) -((((-885)) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +(((#0=(-1205 |#1| |#2| |#3|) #0#) -12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) (((-1207) #0#) -12 (|has| (-1205 |#1| |#2| |#3|) (-528 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376)))) +((((-886)) . T)) +((((-886)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) |has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))))) -((((-885)) . T)) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) |has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))))) +((((-886)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((((-1206) (-52)) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) +((($) . T) ((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((((-1207) (-52)) . T)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) (((|#3|) . T)) -((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-849)) -((($) . T) (((-577)) . T) ((|#1|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| (-1124 |#1|) (-1130)) -(((|#2| |#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)))) -((((-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) -((((-577)) . T)) -((((-1211)) . T)) -((((-792)) . T)) -(((|#2|) |has| |#2| (-174))) -(((|#1|) |has| |#1| (-174))) -(|has| |#1| (-569)) -((((-577)) . T)) +((($ $) . T) ((#0=(-888 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-850)) +((($) . T) (((-578)) . T) ((|#1|) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) +((((-578)) . T) (($) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| (-1125 |#1|) (-1131)) +(((|#2| |#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)))) +((((-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))) +((((-578)) . T)) +((((-1212)) . T)) +((((-793)) . T)) +(((|#2|) |has| |#2| (-175))) +(((|#1|) |has| |#1| (-175))) +(|has| |#1| (-570)) +((((-578)) . T)) (((|#2|) . T)) -((((-885)) . T)) -(((|#1| (-420 (-577)) (-1112)) . T)) -(((|#1|) |has| |#1| (-174))) -(((|#1|) . T)) -(|has| |#1| (-569)) -((((-577)) . T)) -((((-117 |#1|)) . T)) -(((|#1|) . T)) -((((-420 (-577))) . T) (($) . T)) -((($) . T) (((-420 (-577))) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-569))) -((((-1211)) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-577)) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-569))) -(|has| |#1| (-146)) -((((-577)) . T)) -(|has| |#1| (-148)) -((($ (-1206)) -2229 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))))) -((($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-916 (-577))) . T) (((-916 (-391))) . T) (((-549)) . T) (((-1206)) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) +((((-886)) . T)) +(((|#1| (-421 (-578)) (-1113)) . T)) +(((|#1|) |has| |#1| (-175))) +(((|#1|) . T)) +(|has| |#1| (-570)) +((((-578)) . T)) +((((-118 |#1|)) . T)) +(((|#1|) . T)) +((((-421 (-578))) . T) (($) . T)) +((($) . T) (((-421 (-578))) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-570))) +((((-1212)) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +((((-578)) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-570))) +(|has| |#1| (-147)) +((((-578)) . T)) +(|has| |#1| (-149)) +((($ (-1207)) -2230 (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))))) +((($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-917 (-578))) . T) (((-917 (-392))) . T) (((-550)) . T) (((-1207)) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) ((($) . T)) (((|#1|) . T)) -((((-885)) . T)) -(-2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +((((-886)) . T)) +(-2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) (((|#1|) . T) (($) . T)) -(((|#2|) |has| |#2| (-174))) -((($) -2229 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -((((-893 |#1|)) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) -(-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) -(|has| |#2| (-1182)) -(((#0=(-52)) . T) (((-2 (|:| -3171 (-1206)) (|:| -2753 #0#))) . T)) +(((|#2|) |has| |#2| (-175))) +((($) -2230 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) ((|#2|) |has| |#2| (-175)) (((-421 (-578))) |has| |#2| (-38 (-421 (-578))))) +((((-894 |#1|)) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) +(-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) +(|has| |#2| (-1183)) +(((#0=(-52)) . T) (((-2 (|:| -3173 (-1207)) (|:| -2754 #0#))) . T)) (((|#1| |#2|) . T)) -(((|#1| (-656 |#2|)) . T)) -(|has| |#3| (-1079)) -((((-887 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| (-577) (-1112)) . T)) -(((|#1| (-420 (-577)) (-1112)) . T)) -((((-1206)) . T)) -((($) -2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((($) -2229 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) -((((-577) |#2|) . T)) -((($ (-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) +(((|#1| (-657 |#2|)) . T)) +(|has| |#3| (-1080)) +((((-888 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| (-578) (-1113)) . T)) +(((|#1| (-421 (-578)) (-1113)) . T)) +((((-1207)) . T)) +((($) -2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +((($) -2230 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))) +((((-578) |#2|) . T)) +((($ (-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-380)) +(|has| |#2| (-381)) (((|#1| |#1|) . T)) -((((-885)) . T)) -((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) -(-12 (|has| |#1| (-380)) (|has| |#2| (-380))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -(|has| |#1| (-361)) -((((-577)) -2229 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ((|#3|) |has| |#3| (-1130)) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) -(((|#1|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-886)) . T)) +((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +(-12 (|has| |#1| (-381)) (|has| |#2| (-381))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +(|has| |#1| (-362)) +((((-578)) -2230 (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) (|has| |#3| (-1080))) ((|#3|) |has| |#3| (-1131)) (((-421 (-578))) -12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131)))) +(((|#1|) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) (((|#4|) . T)) -(((|#3|) . T) ((|#2|) . T) (((-577)) . T) ((|#4|) -2229 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-747)) (|has| |#4| (-1079))) (($) |has| |#4| (-1079))) -(((|#2|) . T) (((-577)) . T) ((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) #0#) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -(((|#4|) . T) (((-885)) . T)) -(|has| |#1| (-569)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-885)) . T)) +(((|#3|) . T) ((|#2|) . T) (((-578)) . T) ((|#4|) -2230 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1080))) (($) |has| |#4| (-1080))) +(((|#2|) . T) (((-578)) . T) ((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) #0#) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +(((|#4|) . T) (((-886)) . T)) +(|has| |#1| (-570)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) . T)) (((|#1| |#2|) . T)) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-937))) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-937))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-938))) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-938))) (((|#1|) . T)) -((((-420 (-577))) . T) (((-577)) . T)) -((((-577)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-421 (-578))) . T) (((-578)) . T)) +((((-578)) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) ((($) . T)) -((((-885)) -12 (|has| |#1| (-1130)) (|has| |#2| (-1130)))) -(((|#1|) . T)) -((((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-885)) . T)) -(((|#3| |#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) -(|has| |#1| (-1052)) -((((-885)) . T)) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079)))) -((((-577) (-112)) . T)) -((((-1211)) . T)) -(((|#1|) |has| |#1| (-320 |#1|))) -((((-1211)) . T)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -((((-1206) $) |has| |#1| (-527 (-1206) $)) (($ $) |has| |#1| (-320 $)) ((|#1| |#1|) |has| |#1| (-320 |#1|)) (((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|))) -((((-1206)) |has| |#1| (-926 (-1206)))) -(-2229 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-361))) +((((-886)) -12 (|has| |#1| (-1131)) (|has| |#2| (-1131)))) +(((|#1|) . T)) +((((-894 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((((-886)) . T)) +(((|#3| |#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080)))) +(|has| |#1| (-1053)) +((((-886)) . T)) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080)))) +((((-578) (-112)) . T)) +((((-1212)) . T)) +(((|#1|) |has| |#1| (-321 |#1|))) +((((-1212)) . T)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +((((-1207) $) |has| |#1| (-528 (-1207) $)) (($ $) |has| |#1| (-321 $)) ((|#1| |#1|) |has| |#1| (-321 |#1|)) (((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|))) +((((-1207)) |has| |#1| (-927 (-1207)))) +(-2230 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-362))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) -((((-401) |#1|) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(((|#2|) . T) (((-885)) . T)) -((((-885)) . T)) +((((-402) |#1|) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#2|) . T) (((-886)) . T)) +((((-886)) . T)) (((|#2|) . T)) -((((-938 |#1|)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((((-939 |#1|)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) (((|#1| |#1|) . T)) -(((#0=(-893 |#1|)) |has| #0# (-320 #0#))) -((((-577)) . T) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1068 (-420 (-577))))) ((|#1|) . T)) +(((#0=(-894 |#1|)) |has| #0# (-321 #0#))) +((((-578)) . T) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-1069 (-421 (-578))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -(((|#1|) . T)) -(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) -(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) -(|has| |#2| (-1079)) -((($) . T) (((-577)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +(((|#1|) . T)) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(|has| |#2| (-1080)) +((($) . T) (((-578)) . T) ((|#2|) . T)) +(((|#2|) . T) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1232)) -(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -((((-420 (-577))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1079))) -(((|#4|) |has| |#4| (-1079))) -(((|#3|) |has| |#3| (-1079))) -(((|#3|) |has| |#3| (-1079))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(|has| |#1| (-375)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -((((-885)) . T)) -((((-885)) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T)) -((((-885)) . T)) -((($ $) . T) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) -((((-549)) |has| |#3| (-632 (-549)))) +(|has| |#1| (-1233)) +(((#0=(-578) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +((((-421 (-578))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1080))) +(((|#4|) |has| |#4| (-1080))) +(((|#3|) |has| |#3| (-1080))) +(((|#3|) |has| |#3| (-1080))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +(|has| |#1| (-376)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((($ $) . T) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1| |#1|) . T)) +((((-550)) |has| |#3| (-633 (-550)))) (((|#1| |#2|) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-710 |#3|)) . T) (((-885)) . T)) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +((((-711 |#3|)) . T) (((-886)) . T)) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) (((|#1|) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-569))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((($) . T)) -(((#0=(-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) #0#) |has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))))) -((((-577) |#3|) . T)) +(((#0=(-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) #0#) |has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))))) +((((-578) |#3|) . T)) (((|#2|) . T)) ((($) . T)) ((($) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1112)) . T)) -(((|#2|) |has| |#2| (-1130))) -((((-885)) -2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-631 (-885))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) (((-1297 |#2|)) . T)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T)) +(((|#2|) |has| |#2| (-1131))) +((((-886)) -2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-886))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) (((-1298 |#2|)) . T)) ((($) . T)) -((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-1188) (-52)) . T)) -(((|#2|) |has| |#2| (-174))) -((($) -2229 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -((((-885)) . T)) +((((-578)) . T) (($) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-1189) (-52)) . T)) +(((|#2|) |has| |#2| (-175))) +((($) -2230 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) ((|#2|) |has| |#2| (-175)) (((-421 (-578))) |has| |#2| (-38 (-421 (-578))))) +((((-886)) . T)) (((|#2|) . T)) -((($) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T)) -((($) . T) (((-577)) . T)) -((((-577) (-145)) . T)) -((((-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) ((|#1| |#2|) . T)) -((((-420 (-577))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-885)) . T)) -((((-938 |#1|)) . T)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-869)) -((($) -2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -(|has| |#1| (-375)) +((($) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) ((|#2|) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578))))) +((((-578)) |has| #0=(-421 |#2|) (-660 (-578))) ((#0#) . T)) +((($) . T) (((-578)) . T)) +((((-578) (-146)) . T)) +((((-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) ((|#1| |#2|) . T)) +((((-421 (-578))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-886)) . T)) +((((-939 |#1|)) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-870)) +((($) -2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +(|has| |#1| (-376)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-869)) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-1206)) |has| |#1| (-926 (-1206)))) -(|has| |#1| (-869)) -((((-519)) . T)) -(((|#1| (-1206)) . T)) -(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) -((((-885)) . T) (((-1211)) . T)) +(|has| |#1| (-870)) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +((((-1207)) |has| |#1| (-927 (-1207)))) +(|has| |#1| (-870)) +((((-520)) . T)) +(((|#1| (-1207)) . T)) +(((|#1| (-1298 |#1|) (-1298 |#1|)) . T)) +((((-886)) . T) (((-1212)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1211)) . T)) -(|has| |#1| (-1130)) -(((|#1| (-1206) (-839 (-1206)) (-544 (-839 (-1206)))) . T)) -((((-420 (-980 |#1|))) . T)) -((((-549)) . T)) -((((-885)) . T)) +((((-1212)) . T)) +(|has| |#1| (-1131)) +(((|#1| (-1207) (-840 (-1207)) (-545 (-840 (-1207)))) . T)) +((((-421 (-981 |#1|))) . T)) +((((-550)) . T)) +((((-886)) . T)) ((($) . T)) -((((-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) (((-1264 (-577)) $) . T) ((|#1| |#2|) . T)) +((((-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) (((-1265 (-578)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -(((|#1|) |has| |#1| (-174))) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1|) |has| |#1| (-175))) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-174))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-549)) |has| |#1| (-632 (-549))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577))))) -((((-885)) . T)) -((((-893 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#2|) . T) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-519)) . T)) -((((-519)) . T)) -((((-1206)) -2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079))))) -((((-1206)) -2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) -(|has| |#1| (-569)) -(-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-238))) -((((-893 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#2| (-1079)) -((((-1188) |#1|) . T)) -(|has| |#1| (-1182)) -((((-986 |#1|)) . T)) -(((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-577))) (((-577)) |has| |#1| (-1068 (-577))) (((-1206)) |has| |#1| (-1068 (-1206))) ((|#1|) . T)) +(((|#1|) |has| |#1| (-175))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-550)) |has| |#1| (-633 (-550))) (((-917 (-392))) |has| |#1| (-633 (-917 (-392)))) (((-917 (-578))) |has| |#1| (-633 (-917 (-578))))) +((((-886)) . T)) +((((-894 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +(((|#2|) . T) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-520)) . T)) +((((-520)) . T)) +((((-1207)) -2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080))))) +((((-1207)) -2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))))) +(|has| |#1| (-570)) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-239))) +((((-894 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#2| (-1080)) +((((-1189) |#1|) . T)) +(|has| |#1| (-1183)) +((((-987 |#1|)) . T)) +(((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#1| |#1|) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-578))) (((-578)) |has| |#1| (-1069 (-578))) (((-1207)) |has| |#1| (-1069 (-1207))) ((|#1|) . T)) ((($) . T)) ((($) . T)) -((((-577) |#2|) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -((((-577)) |has| |#1| (-910 (-577))) (((-391)) |has| |#1| (-910 (-391)))) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-577)) . T)) -((((-665 |#4|)) . T) (((-885)) . T)) -((((-549)) |has| |#4| (-632 (-549)))) -((((-549)) |has| |#4| (-632 (-549)))) -((((-885)) . T) (((-665 |#4|)) . T)) -((($) |has| |#1| (-869))) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) -((((-577)) -2229 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ((|#2|) |has| |#2| (-1130)) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-665 |#4|)) . T) (((-885)) . T)) -((((-549)) |has| |#4| (-632 (-549)))) -(((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -((((-1206)) |has| (-420 |#2|) (-926 (-1206)))) +((((-578) |#2|) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) +((((-578)) |has| |#1| (-911 (-578))) (((-392)) |has| |#1| (-911 (-392)))) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-578)) . T)) +((((-666 |#4|)) . T) (((-886)) . T)) +((((-550)) |has| |#4| (-633 (-550)))) +((((-550)) |has| |#4| (-633 (-550)))) +((((-886)) . T) (((-666 |#4|)) . T)) +((($) |has| |#1| (-870))) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1290 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-578)) . T) (($) . T) ((|#1|) . T)) +((((-578)) -2230 (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1131)) (((-421 (-578))) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-666 |#4|)) . T) (((-886)) . T)) +((((-550)) |has| |#4| (-633 (-550)))) +(((|#1|) . T)) +(((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (((-578)) . T) (($) . T)) +((((-1207)) |has| (-421 |#2|) (-927 (-1207)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) #0#) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) #0#) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) ((($) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($) -2229 (|has| |#1| (-239)) (|has| |#1| (-238)))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($) -2230 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) ((($) . T)) ((($) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) ((($) . T)) ((($) . T)) -((((-885)) -2229 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-631 (-885))) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-747)) (|has| |#3| (-814)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1130))) (((-1297 |#3|)) . T)) +((((-886)) -2230 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-632 (-886))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1131))) (((-1298 |#3|)) . T)) (((|#2|) . T)) -((((-577) |#2|) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -(((|#2| |#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) -(((|#2|) . T) (((-577)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) ((|#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-1188) (-1206) (-577) (-228) (-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-885)) . T)) -((((-577) (-112)) . T)) -(((|#1|) . T)) -((((-885)) . T)) +((((-578) |#2|) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +(((|#2| |#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))) +(((|#2|) . T) (((-578)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) ((|#2|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1189) (-1207) (-578) (-229) (-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-886)) . T)) +((((-578) (-112)) . T)) +(((|#1|) . T)) +((((-886)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-886)) . T)) +((((-886)) . T)) ((((-112)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((($) . T) (((-420 (-577))) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079)))) -(|has| $ (-148)) -((((-420 |#2|)) . T)) -((((-420 (-577))) |has| #0=(-420 |#2|) (-1068 (-420 (-577)))) (((-577)) |has| #0# (-1068 (-577))) ((#0#) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((($) . T) (((-421 (-578))) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))) +(|has| $ (-149)) +((((-421 |#2|)) . T)) +((((-421 (-578))) |has| #0=(-421 |#2|) (-1069 (-421 (-578)))) (((-578)) |has| #0# (-1069 (-578))) ((#0#) . T)) (((|#2| |#2|) . T)) -(|has| |#2| (-146)) -(|has| |#2| (-148)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(|has| |#1| (-148)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(|has| |#1| (-148)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(|has| |#1| (-148)) -(((|#1|) . T)) -(|has| |#2| (-239)) -((((-885)) . T) (((-1211)) . T)) +(|has| |#2| (-147)) +(|has| |#2| (-149)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(|has| |#1| (-149)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(|has| |#1| (-149)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(|has| |#1| (-149)) +(((|#1|) . T)) +(|has| |#2| (-240)) +((((-886)) . T) (((-1212)) . T)) (((|#2|) . T)) -((((-1211)) . T)) -((((-1206) (-52)) . T)) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -((((-885)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) +((((-1212)) . T)) +((((-1207) (-52)) . T)) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +((((-886)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#1| |#1|) . T)) -((((-1206)) |has| |#2| (-926 (-1206)))) -((((-130)) . T)) -((((-577) (-112)) . T) (((-1264 (-577)) $) . T)) -(|has| |#1| (-569)) +((((-1207)) |has| |#2| (-927 (-1207)))) +((((-131)) . T)) +((((-578) (-112)) . T) (((-1265 (-578)) $) . T)) +(|has| |#1| (-570)) (((|#2|) . T)) (((|#2|) . T)) -((((-917 |#1|)) . T) ((|#2|) . T) (((-577)) . T) (((-840 |#1|)) . T)) -(((|#1|) . T) (((-577)) . T) (((-840 (-1206))) . T)) +((((-918 |#1|)) . T) ((|#2|) . T) (((-578)) . T) (((-841 |#1|)) . T)) +(((|#1|) . T) (((-578)) . T) (((-841 (-1207))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) (((|#3|) . T)) -(|has| |#1| (-38 (-420 (-577)))) -((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) -(((|#1|) . T)) -((((-1034 2)) . T) (((-420 (-577))) . T) (((-885)) . T)) -((((-549)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-1029 |#1|)) . T) ((|#1|) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-839 (-1206))) . T)) -((((-885)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1202 |#1|)) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-38 (-421 (-578)))) +((((-578)) . T) ((|#2|) . T) (((-421 (-578))) |has| |#2| (-1069 (-421 (-578))))) +(((|#1|) . T)) +((((-1035 2)) . T) (((-421 (-578))) . T) (((-886)) . T)) +((((-550)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1030 |#1|)) . T) ((|#1|) . T)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-840 (-1207))) . T)) +((((-886)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-421 (-578))) . T) (((-421 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1203 |#1|)) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-870)) -(((|#1|) . T) (((-577)) . T) (($) . T)) +(|has| |#1| (-871)) +(((|#1|) . T) (((-578)) . T) (($) . T)) (((|#2|) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-577) |#2|) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-885)) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-578) |#2|) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((((-886)) . T)) (((|#2|) . T)) -((((-577) |#3|) . T)) +((((-578) |#3|) . T)) (((|#2|) . T)) -((((-885)) . T)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) -(-2229 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238)))) -(|has| |#1| (-38 (-420 (-577)))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) #0#) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) +((((-886)) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(-2230 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239)))) +(|has| |#1| (-38 (-421 (-578)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) #0#) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#2| (-375)) -(((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#2| (-376)) +(((|#2|) . T) (((-578)) |has| |#2| (-1069 (-578))) (((-421 (-578))) |has| |#2| (-1069 (-421 (-578))))) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) (((|#2|) . T)) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) -(((|#1|) |has| |#1| (-174))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#1| (-1130)) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-38 (-420 (-577)))) -((((-1188) (-52)) . T)) -(((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($ (-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206)))) (($ (-1112)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(((|#2|) |has| |#2| (-174))) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) +(((|#1|) |has| |#1| (-175))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| |#1| (-1131)) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-38 (-421 (-578)))) +((((-1189) (-52)) . T)) +(((|#1|) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($ (-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))) (($ (-1113)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(((|#2|) |has| |#2| (-175))) (((|#2|) . T)) -((((-577)) -2229 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) ((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) +((((-578)) -2230 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080))) (((|#1|) . T)) -((((-577) |#3|) . T)) -((((-577) (-145)) . T)) -((((-145)) . T)) -((((-885)) . T)) -((((-1211)) . T)) +((((-578) |#3|) . T)) +((((-578) (-146)) . T)) +((((-146)) . T)) +((((-886)) . T)) +((((-1212)) . T)) ((((-112)) . T)) -(|has| |#1| (-148)) +(|has| |#1| (-149)) (((|#1|) . T)) -(|has| |#1| (-146)) +(|has| |#1| (-147)) ((($) . T)) -(|has| |#1| (-569)) -((((-577)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) -(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((((-145)) . T)) -((((-885)) . T)) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) -((((-1206) (-52)) . T) (((-1188) (-52)) . T)) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(|has| |#1| (-570)) +((((-578)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) +(((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((((-146)) . T)) +((((-886)) . T)) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T)) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T)) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T)) +((((-1207) (-52)) . T) (((-1189) (-52)) . T)) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#1| |#2|) . T)) -(-2229 (|has| |#2| (-239)) (|has| |#2| (-238))) -((((-577) (-145)) . T) (((-1264 (-577)) $) . T)) -(((#0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) #0#) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#1| (-870)) -(((|#2| (-792) (-1112)) . T)) +(-2230 (|has| |#2| (-240)) (|has| |#2| (-239))) +((((-578) (-146)) . T) (((-1265 (-578)) $) . T)) +(((#0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) #0#) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| |#1| (-871)) +(((|#2| (-793) (-1113)) . T)) (((|#1| |#2|) . T)) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) -(|has| |#1| (-812)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-569))) -((((-1206)) -2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) -(((|#1|) |has| |#1| (-174))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) +(|has| |#1| (-813)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-570))) +((((-1207)) -2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207))))) +(((|#1|) |has| |#1| (-175))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2229 (|has| |#1| (-148)) (-12 (|has| |#1| (-375)) (|has| |#2| (-148)))) +(-2230 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149)))) (((|#4|) . T)) -(-2229 (|has| |#1| (-146)) (-12 (|has| |#1| (-375)) (|has| |#2| (-146)))) -((((-1188) |#1|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(((|#1|) . T)) -((((-577)) . T)) -((((-885)) . T)) -((((-577)) . T)) +(-2230 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) +((((-1189) |#1|) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(((|#1|) . T)) +((((-578)) . T)) +((((-886)) . T)) +((((-578)) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-886)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#3|) . T)) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -(((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130))) (((-986 |#1|)) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-986 |#1|)) . T)) -(((|#4|) -2229 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-747)))) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)))) -(|has| |#2| (-375)) -(((|#1|) |has| |#1| (-174))) -(((|#4|) -2229 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-747)) (|has| |#4| (-1079)))) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079)))) -(((|#2|) |has| |#2| (-1079))) -(((|#2|) |has| |#2| (-1079))) -((((-1188) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) -(((|#2| (-917 |#1|)) . T)) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-578)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-578)) . T) (($) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +(((|#1|) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (((-578)) . T) (($) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131))) (((-987 |#1|)) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-987 |#1|)) . T)) +(((|#4|) -2230 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)))) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)))) +(|has| |#2| (-376)) +(((|#1|) |has| |#1| (-175))) +(((|#4|) -2230 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1080)))) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080)))) +(((|#2|) |has| |#2| (-1080))) +(((|#2|) |has| |#2| (-1080))) +((((-1189) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#2| (-918 |#1|)) . T)) ((($) . T)) -((($ (-887 |#1|)) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) -((((-401) (-1188)) . T)) -((($ (-1206)) . T)) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) -2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-631 (-885))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) (((-1297 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3171 (-1188)) (|:| -2753 #0#))) . T)) -(((|#1|) . T)) -((((-885)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((((-145)) . T)) -(|has| |#2| (-146)) -((((-577)) . T)) -(|has| |#2| (-148)) -(|has| |#1| (-486)) -(-2229 (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) -(|has| |#1| (-375)) -((((-885)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((($) |has| |#1| (-569))) -((((-1211)) . T)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -((((-885)) . T)) +((($ (-888 |#1|)) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T)) +((((-402) (-1189)) . T)) +((($ (-1207)) . T)) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) -2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-886))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) (((-1298 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3173 (-1189)) (|:| -2754 #0#))) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((((-146)) . T)) +(|has| |#2| (-147)) +((((-578)) . T)) +(|has| |#2| (-149)) +(|has| |#1| (-487)) +(-2230 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) +(|has| |#1| (-376)) +((((-886)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((($) |has| |#1| (-570))) +((((-1212)) . T)) +(|has| |#1| (-870)) +(|has| |#1| (-870)) +((((-886)) . T)) (((|#2|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) . T) (((-577)) . T) (((-840 |#1|)) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-1290 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#2|) . T) (((-578)) . T) (((-841 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1206)) |has| |#1| (-926 (-1206)))) +((((-1207)) |has| |#1| (-927 (-1207)))) (((|#2| |#2|) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(((|#2| (-495 (-3224 |#1|) (-792)) (-887 |#1|)) . T)) -((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) -(((|#1| (-544 (-1206)) (-1206)) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#2| (-496 (-3226 |#1|) (-793)) (-888 |#1|)) . T)) +((((-421 (-578))) . #0=(|has| |#2| (-376))) (($) . #0#)) +(((|#1| (-545 (-1207)) (-1207)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) +(-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(((|#2|) |has| |#2| (-174))) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(((|#2|) |has| |#2| (-175))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-1206) (-52)) . T)) -((((-420 (-577)) |#1|) . T) (($ $) . T)) -(((|#1| (-577)) . T)) -((((-938 |#1|)) . T)) -(((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079))) (($) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)))) -((((-1206)) -2229 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) -(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-1207) (-52)) . T)) +((((-421 (-578)) |#1|) . T) (($ $) . T)) +(((|#1| (-578)) . T)) +((((-939 |#1|)) . T)) +(((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))) (($) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))) +((((-1207)) -2230 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))))) +(((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +(|has| |#1| (-871)) +(|has| |#1| (-871)) +((((-578) |#2|) . T)) +((($) . T) (((-578)) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-578)) . T)) +(|has| |#1| (-871)) +((((-711 |#2|)) . T) (((-886)) . T)) +((((-1290 |#1| |#2| |#3|)) -12 (|has| (-1290 |#1| |#2| |#3|) (-321 (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376)))) +((((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(|has| |#1| (-240)) +(|has| |#1| (-871)) +(((|#1| |#2|) . T)) +((((-421 (-981 |#1|))) . T)) +((((-1002)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#1|) |has| |#1| (-175))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)))) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(-2230 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-938))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($ |#2|) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T)) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +((((-578) |#2|) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)))) +(|has| |#1| (-362)) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#2|) . T) (((-578)) . T)) +((($) . T) (((-421 (-578))) . T)) +((((-578) (-112)) . T)) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +(((|#1|) . T)) +(-2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362))) (|has| |#1| (-870)) (|has| |#1| (-870)) -((((-577) |#2|) . T)) -((($) . T) (((-577)) . T) ((|#1|) . T)) -((((-885)) . T)) -((((-577)) . T)) (|has| |#1| (-870)) -((((-710 |#2|)) . T) (((-885)) . T)) -((((-1289 |#1| |#2| |#3|)) -12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375)))) -((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(|has| |#1| (-239)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-578)) . T) (($) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-1207)) |has| |#1| (-927 (-1207))) (((-1113)) . T)) +(((|#1|) . T)) (|has| |#1| (-870)) -(((|#1| |#2|) . T)) -((((-420 (-980 |#1|))) . T)) -((((-1001)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#1|) |has| |#1| (-174))) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)))) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(-2229 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-937))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($ |#2|) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1112)) . T)) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-577) |#2|) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)))) -(|has| |#1| (-361)) -(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) -(((|#2|) . T) (((-577)) . T)) -((($) . T) (((-420 (-577))) . T)) -((((-577) (-112)) . T)) -(|has| |#1| (-841)) -(|has| |#1| (-841)) -(((|#1|) . T)) -(-2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-577)) . T) (($) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-1206)) |has| |#1| (-926 (-1206))) (((-1112)) . T)) -(((|#1|) . T)) -(|has| |#1| (-869)) -(((#0=(-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) #0#) |has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#1| (-1130)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) +(((#0=(-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) #0#) |has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-1131)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1172 |#2| (-420 (-980 |#1|)))) . T) (((-420 (-980 |#1|))) . T) (((-577)) . T)) -(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) +((((-1173 |#2| (-421 (-981 |#1|)))) . T) (((-421 (-981 |#1|))) . T) (((-578)) . T)) +(((|#1| |#2| |#3| (-247 |#2| |#3|) (-247 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) -((($) . T) (((-577)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) +((($) . T) (((-578)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-578)) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (((-578)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-885)) . T)) -((((-145)) . T) (((-885)) . T)) -((((-577) |#1|) . T)) -(((|#1| (-544 |#2|) |#2|) . T)) +((((-886)) . T)) +((((-146)) . T) (((-886)) . T)) +((((-578) |#1|) . T)) +(((|#1| (-545 |#2|) |#2|) . T)) (((|#3|) . T)) -(((|#1| (-792) (-1112)) . T)) -((((-145)) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) -2229 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ((|#1|) . T)) +(((|#1| (-793) (-1113)) . T)) +((((-146)) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) -2230 (|has| |#1| (-870)) (|has| |#1| (-1069 (-578)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) -((((-145)) . T)) -((((-1206)) -2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) -(((|#1|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(((|#4|) |has| |#4| (-375))) -(((|#3|) |has| |#3| (-375))) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-375))) -((((-885)) . T)) -((((-885)) . T)) -((((-887 |#1|)) . T)) +((((-146)) . T)) +((((-1207)) -2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207))))) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) +(((|#1|) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(((|#4|) |has| |#4| (-376))) +(((|#3|) |has| |#3| (-376))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-376))) +((((-886)) . T)) +((((-886)) . T)) +((((-888 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1202 |#1|)) . T)) -((((-1112)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((($) . T) ((|#1|) . T) (((-420 (-577))) . T) (((-577)) |has| |#1| (-659 (-577)))) +(((|#1| (-1203 |#1|)) . T)) +((((-1113)) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((($) . T) ((|#1|) . T) (((-421 (-578))) . T) (((-578)) |has| |#1| (-660 (-578)))) ((($) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((($) |has| |#1| (-569))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((($) |has| |#1| (-570))) (((|#2|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) . T)) -((($) |has| |#1| (-869))) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) -(|has| |#1| (-937)) -((((-1206)) . T)) -((((-885)) . T)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1289 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-577) |#2|) . T)) -((($ (-1206)) -2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079))))) -((($ (-1206)) -2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) -((($) -2229 (|has| |#1| (-239)) (|has| |#1| (-238)))) -((($) |has| |#1| (-380))) -((($) |has| |#1| (-380))) -((($) |has| |#1| (-380))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) . T)) +((($) |has| |#1| (-870))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +(|has| |#1| (-938)) +((((-1207)) . T)) +((((-886)) . T)) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1290 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-1290 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-578) |#2|) . T)) +((($ (-1207)) -2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080))))) +((($ (-1207)) -2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))))) +((($) -2230 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((($) |has| |#1| (-381))) +((($) |has| |#1| (-381))) +((($) |has| |#1| (-381))) (((|#1| |#2|) . T)) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-937))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((#0=(-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) #0#) |has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-937))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-938))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((#0=(-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) #0#) |has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-938))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)))) -(|has| |#1| (-870)) -(|has| |#1| (-569)) -((((-594 |#1|)) . T)) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(|has| |#1| (-871)) +(|has| |#1| (-570)) +((((-595 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-841))) (-12 (|has| |#1| (-375)) (|has| |#2| (-870)))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-938 |#1|)) . T)) -(((|#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) . T)) +(-2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-871)))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +((((-939 |#1|)) . T)) +(((|#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-792)) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) -((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) -((((-693 |#1|)) . T)) +(((|#1| (-793)) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) +((((-578)) |has| #0=(-421 |#2|) (-660 (-578))) ((#0#) . T) (((-421 (-578))) . T) (($) . T)) +((((-694 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-549)) . T)) -((((-885)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-885)) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((((-1211)) . T)) -((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T) (((-577)) . T)) -(((|#3|) . T) (((-577)) . T) (((-630 $)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-550)) . T)) +((((-886)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((((-1212)) . T)) +((((-421 (-578))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T) (((-578)) . T)) +(((|#3|) . T) (((-578)) . T) (((-631 $)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#2|) . T)) -(-2229 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-747)) (|has| |#3| (-814)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1130))) -(|has| |#2| (-1079)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) -(|has| |#1| (-1232)) -(|has| |#1| (-1232)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) -(|has| |#1| (-1232)) -(|has| |#1| (-1232)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T) ((#1=(-420 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T)) +(-2230 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1131))) +(|has| |#2| (-1080)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T)) +(|has| |#1| (-1233)) +(|has| |#1| (-1233)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) +(|has| |#1| (-1233)) +(|has| |#1| (-1233)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T) ((#1=(-421 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-421 (-578))) . T) (((-421 |#1|)) . T) ((|#1|) . T)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-1188) (-52)) . T)) -(|has| |#1| (-1130)) -(((|#1|) |has| |#1| (-174)) (($) . T)) -(-2229 (|has| |#2| (-841)) (|has| |#2| (-870))) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-577)) . T) (($) . T)) -((((-792)) . T)) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361))) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -((((-885)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#2| (-937)) -(|has| |#1| (-375)) -(((|#2|) |has| |#2| (-1130))) -((($) . T) (((-577)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((((-1189) (-52)) . T)) +(|has| |#1| (-1131)) +(((|#1|) |has| |#1| (-175)) (($) . T)) +(-2230 (|has| |#2| (-842)) (|has| |#2| (-871))) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-578)) . T) (($) . T)) +((((-793)) . T)) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-362))) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +((((-886)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#2| (-938)) +(|has| |#1| (-376)) +(((|#2|) |has| |#2| (-1131))) +((($) . T) (((-578)) . T)) ((($) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-549)) . T) (((-420 (-1202 (-577)))) . T) (((-228)) . T) (((-391)) . T)) -((((-391)) . T) (((-228)) . T) (((-885)) . T)) -(|has| |#1| (-937)) -(|has| |#1| (-937)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-839 (-1206))) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-870)) (|has| |#1| (-1130))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -(|has| |#1| (-937)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-937))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-550)) . T) (((-421 (-1203 (-578)))) . T) (((-229)) . T) (((-392)) . T)) +((((-392)) . T) (((-229)) . T) (((-886)) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-840 (-1207))) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1131))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +(|has| |#1| (-938)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-938))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079)))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((((-1204 |#1| |#2| |#3|)) -12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375)))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-937))) -((((-885)) . T)) -((((-885)) . T)) +((($) . T) ((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((((-1205 |#1| |#2| |#3|)) -12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376)))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-938))) +((((-886)) . T)) +((((-886)) . T)) ((($ $) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((($) -2229 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238))))) -((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -((((-1001)) . T)) -((((-1001)) . T) (((-885)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((($) -2230 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))))) +((($) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) +((((-1002)) . T)) +((((-1002)) . T) (((-886)) . T)) ((($ $) . T)) -((((-577) (-112)) . T)) +((((-578) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) -((((-577)) . T)) -(((|#1| (-577)) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) +((((-578)) . T)) +(((|#1| (-578)) . T)) ((($) . T)) -(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) +(((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1206)) |has| |#1| (-1079))) -((((-577)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-885)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(((|#1|) . T)) -(((|#1| (-577)) . T)) -(((|#1| (-1289 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-420 (-577))) . T)) -(((|#1| (-1261 |#1| |#2| |#3|)) . T)) -((((-885)) . T)) -(|has| |#1| (-1130)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1| (-792)) . T)) -((((-1188) |#1|) . T)) +((((-1207)) |has| |#1| (-1080))) +((((-578)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-886)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(((|#1|) . T)) +(((|#1| (-578)) . T)) +(((|#1| (-1290 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-421 (-578))) . T)) +(((|#1| (-1262 |#1| |#2| |#3|)) . T)) +((((-886)) . T)) +(|has| |#1| (-1131)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1| (-793)) . T)) +((((-1189) |#1|) . T)) (((|#1|) . T)) ((($) . T)) -(|has| |#2| (-148)) -(|has| |#2| (-146)) -(((|#1| (-544 (-839 (-1206))) (-839 (-1206))) . T)) -((((-885)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1079))) -((((-577) (-112)) . T) (((-1264 (-577)) $) . T)) -((((-885)) |has| |#1| (-1130))) -(((|#1|) . T) (((-577)) . T) (($) . T)) -((((-577)) . T)) -((((-577)) . T)) -(((|#1|) . T)) -((((-577)) . T)) -((((-577)) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-361))) -((((-885)) . T)) -(|has| |#1| (-148)) +(|has| |#2| (-149)) +(|has| |#2| (-147)) +(((|#1| (-545 (-840 (-1207))) (-840 (-1207))) . T)) +((((-886)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1080))) +((((-578) (-112)) . T) (((-1265 (-578)) $) . T)) +((((-886)) |has| |#1| (-1131))) +(((|#1|) . T) (((-578)) . T) (($) . T)) +((((-578)) . T)) +((((-578)) . T)) +(((|#1|) . T)) +((((-578)) . T)) +((((-578)) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-362))) +((((-886)) . T)) +(|has| |#1| (-149)) (((|#3|) . T)) -((((-885)) . T)) -(|has| |#3| (-1079)) -((($) -2229 (|has| |#2| (-239)) (|has| |#2| (-238)))) -((((-1282 |#2| |#3| |#4|)) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T)) -((((-885)) . T)) -((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (((-630 $)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) -2229 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-420 (-980 |#1|))) |has| |#1| (-569)) (((-980 |#1|)) |has| |#1| (-1079)) (((-1206)) . T)) +((((-886)) . T)) +(|has| |#3| (-1080)) +((($) -2230 (|has| |#2| (-240)) (|has| |#2| (-239)))) +((((-1283 |#2| |#3| |#4|)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-886)) . T)) +((((-48)) -12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) (((-631 $)) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) -2230 (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) (((-421 (-981 |#1|))) |has| |#1| (-570)) (((-981 |#1|)) |has| |#1| (-1080)) (((-1207)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-792)) . T)) -(((|#1|) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-320 |#1|))) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -((((-577)) |has| |#1| (-910 (-577))) (((-391)) |has| |#1| (-910 (-391)))) -(((|#1|) . T)) -((($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) -(((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -(((|#1|) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1204 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) -(((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -(((|#1|) |has| |#1| (-174))) -((((-885)) . T)) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#1| (-569)) -((($ (-1293 |#2|)) . T) (($ (-1206)) -2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) -(((|#1|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1130))) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)))) -((((-887 |#1|)) . T)) -((((-1282 |#2| |#3| |#4|)) . T)) +(((|#1| (-793)) . T)) +(((|#1|) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-321 |#1|))) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-578)) |has| |#1| (-911 (-578))) (((-392)) |has| |#1| (-911 (-392)))) +(((|#1|) . T)) +((($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) +(((|#1|) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +(((|#1|) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +(((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +(((|#1|) |has| |#1| (-175))) +((((-886)) . T)) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-570)) +((($ (-1294 |#2|)) . T) (($ (-1207)) -2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207))))) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-578)) . T)) +(((|#1|) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (((-578)) . T) (($) . T)) +(((|#3|) |has| |#3| (-1131))) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)))) +((((-888 |#1|)) . T)) +((((-1283 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-841)) -(|has| |#1| (-841)) -(((|#1| (-577) (-1112)) . T)) -((($) |has| |#1| (-320 $)) ((|#1|) |has| |#1| (-320 |#1|))) -(|has| |#1| (-869)) -(|has| |#1| (-869)) -(((|#1| (-577) (-1112)) . T)) -(-2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1| (-420 (-577)) (-1112)) . T)) -(((|#1| (-792) (-1112)) . T)) +(|has| |#1| (-842)) +(|has| |#1| (-842)) +(((|#1| (-578) (-1113)) . T)) +((($) |has| |#1| (-321 $)) ((|#1|) |has| |#1| (-321 |#1|))) (|has| |#1| (-870)) -(((#0=(-938 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) -(|has| |#2| (-146)) -(|has| |#2| (-148)) -(((|#2|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(|has| |#1| (-1130)) -((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(|has| |#1| (-1130)) -((((-420 (-577))) |has| |#2| (-375)) (($) . T) (((-577)) . T)) -((((-577)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)))) -(((|#1|) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) ((|#2|) |has| |#1| (-375))) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) -((((-710 (-351 (-2422) (-2422 (QUOTE X) (QUOTE HESS)) (-720)))) . T)) -(((|#2|) |has| |#2| (-174))) -(((|#1|) |has| |#1| (-174))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079)))) -(((|#1|) . T)) -((((-577)) . T)) -((((-577)) . T)) -(((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079)))) -(((|#2|) |has| |#2| (-375))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-375)) (((-577)) |has| |#1| (-659 (-577)))) (|has| |#1| (-870)) -(((|#1|) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1|) . T) (((-577)) . T)) +(((|#1| (-578) (-1113)) . T)) +(-2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1| (-421 (-578)) (-1113)) . T)) +(((|#1| (-793) (-1113)) . T)) +(|has| |#1| (-871)) +(((#0=(-939 |#1|) #0#) . T) (($ $) . T) ((#1=(-421 (-578)) #1#) . T)) +(|has| |#2| (-147)) +(|has| |#2| (-149)) (((|#2|) . T)) -((((-577)) . T) ((|#3|) . T)) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) |has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-937))) -(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((((-885)) . T)) -((((-885)) . T)) -((($ (-1206)) -2229 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) -((((-577)) -2229 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) ((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) -((((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-885)) . T)) -((($) |has| |#1| (-239))) -(|has| |#1| (-38 (-420 (-577)))) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(|has| |#1| (-1131)) +((((-939 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +(|has| |#1| (-1131)) +((((-421 (-578))) |has| |#2| (-376)) (($) . T) (((-578)) . T)) +((((-578)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))) +(((|#1|) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-578)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-578)))) ((|#2|) |has| |#1| (-376))) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) +((((-711 (-352 (-2423) (-2423 (QUOTE X) (QUOTE HESS)) (-721)))) . T)) +(((|#2|) |has| |#2| (-175))) +(((|#1|) |has| |#1| (-175))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1283 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080)))) +(((|#1|) . T)) +((((-578)) . T)) +((((-578)) . T)) +(((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080)))) +(((|#2|) |has| |#2| (-376))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-376)) (((-578)) |has| |#1| (-660 (-578)))) +(|has| |#1| (-871)) +(((|#1|) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1|) . T) (((-578)) . T)) +(((|#2|) . T)) +((((-578)) . T) ((|#3|) . T)) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) |has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-938))) +(((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((((-886)) . T)) +((((-886)) . T)) +((($ (-1207)) -2230 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))))) +((((-578)) -2230 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080))) +((((-550)) . T) (((-578)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) +((((-886)) . T)) +((($) |has| |#1| (-240))) +(|has| |#1| (-38 (-421 (-578)))) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) ((($) . T)) -(|has| |#1| (-239)) +(|has| |#1| (-240)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-869)) -(((|#1| (-577)) . T)) +(|has| |#1| (-870)) +(((|#1| (-578)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1204 |#1| |#2| |#3|)) . T)) +(((|#1| (-1205 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-420 (-577))) . T)) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#1| (-1197 |#1| |#2| |#3|)) . T)) -(((|#1| (-792)) . T)) +(((|#1| (-421 (-578))) . T)) +(((|#1| |#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) . T)) +(((|#1| (-1198 |#1| |#2| |#3|)) . T)) +(((|#1| (-793)) . T)) (((|#1|) . T)) -((((-420 (-980 |#1|))) . T)) +((((-421 (-981 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(|has| |#1| (-148)) -((((-420 (-980 |#1|))) . T)) -(((|#1|) |has| |#1| (-174))) -(|has| |#1| (-146)) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) |has| |#1| (-174))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-577)) . T) ((|#1|) . T) (($) . T) (((-420 (-577))) . T) (((-1206)) |has| |#1| (-1068 (-1206)))) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(|has| |#1| (-149)) +((((-421 (-981 |#1|))) . T)) +(((|#1|) |has| |#1| (-175))) +(|has| |#1| (-147)) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) |has| |#1| (-175))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-578)) . T) ((|#1|) . T) (($) . T) (((-421 (-578))) . T) (((-1207)) |has| |#1| (-1069 (-1207)))) (((|#1| |#2|) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) -2229 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ((|#1|) . T)) -(-2229 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) -(-2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) -((((-145)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(((|#1|) . T)) -(|has| |#2| (-1079)) -(((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-577)) . T)) -((((-885)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -(|has| |#1| (-375)) -(|has| |#1| (-375)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) -2230 (|has| |#1| (-870)) (|has| |#1| (-1069 (-578)))) ((|#1|) . T)) +(-2230 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) +(-2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) +((((-146)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(((|#1|) . T)) +(|has| |#2| (-1080)) +(((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-578)) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((($) . T) (((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +(|has| |#1| (-376)) +(|has| |#1| (-376)) ((($ |#2|) . T)) -(|has| (-420 |#2|) (-239)) -((((-665 |#1|)) . T)) -((($ (-1293 |#2|)) . T) (($ (-1206)) -2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) -((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((($ (-1293 |#2|)) . T) (($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) -(|has| |#1| (-937)) -(((|#2|) |has| |#2| (-1079))) -(((|#2|) |has| |#2| (-1079))) -(|has| |#1| (-375)) +(|has| (-421 |#2|) (-240)) +((((-666 |#1|)) . T)) +((($ (-1294 |#2|)) . T) (($ (-1207)) -2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207))))) +(|has| |#1| (-938)) +(((|#2|) |has| |#2| (-1080))) +(((|#2|) |has| |#2| (-1080))) +(|has| |#1| (-376)) ((($) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -(((|#1|) |has| |#1| (-174))) -((($ (-887 |#1|)) . T)) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +(((|#1|) |has| |#1| (-175))) +((($ (-888 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-893 |#1|)) . T)) -((((-885)) . T)) +((((-894 |#1|)) . T)) +((((-886)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1130))) +(((|#2|) |has| |#2| (-1131))) (((|#1|) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-665 $)) . T) (((-1188)) . T) (((-1206)) . T) (((-577)) . T) (((-228)) . T) (((-885)) . T)) -((((-577)) -2229 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) ((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079))) -((((-420 (-577))) . T) (((-577)) . T) (((-630 $)) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +((((-666 $)) . T) (((-1189)) . T) (((-1207)) . T) (((-578)) . T) (((-229)) . T) (((-886)) . T)) +((((-578)) -2230 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) ((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080))) +((((-421 (-578))) . T) (((-578)) . T) (((-631 $)) . T)) (((|#1|) . T)) -((((-885)) . T)) +((((-886)) . T)) ((($) . T)) -(((|#1| (-544 |#2|) |#2|) . T)) -((((-885)) . T)) -(((|#1| (-577) (-1112)) . T)) -((((-938 |#1|)) . T)) -((((-885)) . T)) +(((|#1| (-545 |#2|) |#2|) . T)) +((((-886)) . T)) +(((|#1| (-578) (-1113)) . T)) +((((-939 |#1|)) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-420 (-577)) (-1112)) . T)) -(((|#1| (-792) (-1112)) . T)) -((((-885)) . T)) -(((#0=(-420 |#2|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-577)) -2229 (|has| (-420 (-577)) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) (((-420 (-577))) . T)) -(((|#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-174))) +(((|#1| (-421 (-578)) (-1113)) . T)) +(((|#1| (-793) (-1113)) . T)) +((((-886)) . T)) +(((#0=(-421 |#2|) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-578)) -2230 (|has| (-421 (-578)) (-1069 (-578))) (|has| |#1| (-1069 (-578)))) (((-421 (-578))) . T)) +(((|#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-175))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-870)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#2| (-239)) -(((|#2| (-544 (-887 |#1|)) (-887 |#1|)) . T)) -((((-885)) . T)) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T)) +(|has| |#1| (-871)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +(|has| |#2| (-240)) +(((|#2| (-545 (-888 |#1|)) (-888 |#1|)) . T)) +((((-886)) . T)) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T)) (((|#1| |#3|) . T)) -((((-885)) . T)) -(((|#1|) |has| |#1| (-174)) (((-980 |#1|)) . T) (((-577)) . T)) -(((|#1|) |has| |#1| (-174))) -((((-720)) . T)) -((((-720)) . T)) -(((|#2|) |has| |#2| (-174))) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-238))) -((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) -((((-112)) |has| |#1| (-1130)) (((-885)) -2229 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1130)))) +((((-886)) . T)) +(((|#1|) |has| |#1| (-175)) (((-981 |#1|)) . T) (((-578)) . T)) +(((|#1|) |has| |#1| (-175))) +((((-721)) . T)) +((((-721)) . T)) +(((|#2|) |has| |#2| (-175))) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-239))) +((((-578)) . T) ((|#2|) . T) (((-421 (-578))) |has| |#2| (-1069 (-421 (-578))))) +((((-112)) |has| |#1| (-1131)) (((-886)) -2230 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1131)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-1206)) -2229 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-720)) . T) (((-420 (-577))) . T) (((-577)) . T)) -(((|#1| |#1|) |has| |#1| (-174))) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-1207)) -2230 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))))) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-721)) . T) (((-421 (-578))) . T) (((-578)) . T)) +(((|#1| |#1|) |has| |#1| (-175))) (((|#2|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-577) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -((((-391)) . T)) -((((-720)) . T)) -((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) -(((|#1|) |has| |#1| (-174))) -((((-420 (-980 |#1|))) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +((((-578) |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +((((-392)) . T)) +((((-721)) . T)) +((((-421 (-578))) . #0=(|has| |#2| (-376))) (($) . #0#)) +(((|#1|) |has| |#1| (-175))) +((((-421 (-981 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1079))) -(|has| |#2| (-937)) -(|has| |#1| (-937)) -(|has| |#1| (-375)) -(((|#3|) |has| |#3| (-1079))) +(((|#3|) |has| |#3| (-1080))) +(|has| |#2| (-938)) +(|has| |#1| (-938)) +(|has| |#1| (-376)) +(((|#3|) |has| |#3| (-1080))) ((($) . T)) -((((-1206)) |has| |#2| (-926 (-1206)))) -(|has| |#1| (-870)) -((((-885)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(|has| |#1| (-812)) -((((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-486)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-375)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1079)) (|has| |#1| (-1142))) -((($) -2229 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361)))) -((((-117 |#1|)) . T)) -((((-117 |#1|)) . T)) -(|has| |#1| (-361)) -((((-145)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -((($) . T) (((-577)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(((|#2|) . T) (((-885)) . T)) -(((|#2|) . T) (((-885)) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-870)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) +((((-1207)) |has| |#2| (-927 (-1207)))) +(|has| |#1| (-871)) +((((-886)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(|has| |#1| (-813)) +((((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-487)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-376)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-570)) (|has| |#1| (-1080)) (|has| |#1| (-1143))) +((($) -2230 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-362)))) +((((-118 |#1|)) . T)) +((((-118 |#1|)) . T)) +(|has| |#1| (-362)) +((((-146)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +((($) . T) (((-578)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(((|#2|) . T) (((-886)) . T)) +(((|#2|) . T) (((-886)) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-871)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-577)) . T)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) ((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) +((($) . T) (((-578)) . T)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) (((|#2|) . T)) -(|has| |#1| (-15 * (|#1| (-577) |#1|))) +(|has| |#1| (-15 * (|#1| (-578) |#1|))) (((|#3|) . T)) -((((-117 |#1|)) . T)) -(|has| |#1| (-380)) -(-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-870)) -(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-792) |#1|))) -((((-117 |#1|)) . T)) -(((|#1|) |has| |#1| (-174))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-577)) . T)) -((((-577)) . T)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -((((-885)) . T)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391)))) (((-391)) . #0=(|has| |#1| (-1052))) (((-228)) . #0#)) -(((|#1|) |has| |#1| (-375))) -(((|#1|) |has| |#1| (-375))) -((((-885)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((($ $) . T) (((-630 $) $) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -((($) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) -((($) -2229 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-1079))) (((-420 (-577))) |has| |#1| (-569)) (((-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) -((($) . T) (((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -((((-391)) . T) (((-577)) . T) (((-420 (-577))) . T)) -((((-1206)) -2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) -((((-665 (-801 |#1| (-887 |#2|)))) . T) (((-885)) . T)) -((((-549)) |has| (-801 |#1| (-887 |#2|)) (-632 (-549)))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-391)) . T)) -(((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) -(((|#1|) |has| |#1| (-174))) -((((-885)) . T)) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-937))) +((((-118 |#1|)) . T)) +(|has| |#1| (-381)) +(-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-871)) +(((|#2|) . T) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-793) |#1|))) +((((-118 |#1|)) . T)) +(((|#1|) |has| |#1| (-175))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-578)) . T)) +((((-578)) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-886)) . T)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550))) (((-917 (-578))) |has| |#1| (-633 (-917 (-578)))) (((-917 (-392))) |has| |#1| (-633 (-917 (-392)))) (((-392)) . #0=(|has| |#1| (-1053))) (((-229)) . #0#)) +(((|#1|) |has| |#1| (-376))) +(((|#1|) |has| |#1| (-376))) +((((-886)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((($ $) . T) (((-631 $) $) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +((($) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (((-421 (-578))) . T)) +((($) -2230 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) ((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-1080))) (((-421 (-578))) |has| |#1| (-570)) (((-578)) -12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) +((($) . T) (((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-392)) . T) (((-578)) . T) (((-421 (-578))) . T)) +((((-1207)) -2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))))) +((((-666 (-802 |#1| (-888 |#2|)))) . T) (((-886)) . T)) +((((-550)) |has| (-802 |#1| (-888 |#2|)) (-633 (-550)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-392)) . T)) +(((|#1|) |has| |#1| (-175))) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +(((|#1|) |has| |#1| (-175))) +((((-886)) . T)) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-938))) (((|#1|) . T)) ((($) . T)) -((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((((-792)) . T)) -(|has| |#1| (-1130)) -((((-577)) -2229 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) ((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079))) (($) |has| |#2| (-1079))) -((((-885)) . T)) -((((-1188)) . T) (((-1206)) . T) (((-885)) . T)) -((((-577)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-420 (-577))) . T) (((-577)) . T) (((-630 $)) . T)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -((((-577)) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (($) . T)) -((((-577)) . T)) +((($) |has| |#1| (-570)) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((((-793)) . T)) +(|has| |#1| (-1131)) +((((-578)) -2230 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080))) +((((-886)) . T)) +((((-1189)) . T) (((-1207)) . T) (((-886)) . T)) +((((-578)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-421 (-578))) . T) (((-578)) . T) (((-631 $)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +((((-578)) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(((#0=(-1283 |#2| |#3| |#4|)) . T) (((-421 (-578))) |has| #0# (-38 (-421 (-578)))) (($) . T)) +((((-578)) . T)) ((($) . T)) -(|has| |#1| (-375)) -(-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) -(-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) -(|has| |#1| (-375)) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(|has| |#1| (-148)) -(|has| |#1| (-239)) -(|has| |#1| (-375)) +(|has| |#1| (-376)) +(-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-149)) (|has| |#1| (-376))) (|has| |#1| (-149))) +(-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) +(|has| |#1| (-376)) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(|has| |#1| (-149)) +(|has| |#1| (-240)) +(|has| |#1| (-376)) (((|#3|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-577)) |has| |#2| (-659 (-577))) ((|#2|) . T)) -(|has| |#1| (-146)) -((((-577) |#1|) |has| |#2| (-430 |#1|))) -((((-577) |#1|) |has| |#2| (-430 |#1|))) -(((|#2|) . T) (($) . T) (((-577)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-578)) |has| |#2| (-660 (-578))) ((|#2|) . T)) +(|has| |#1| (-147)) +((((-578) |#1|) |has| |#2| (-431 |#1|))) +((((-578) |#1|) |has| |#2| (-431 |#1|))) +(((|#2|) . T) (($) . T) (((-578)) . T)) (((|#2|) . T)) -(|has| |#1| (-870)) -(|has| |#1| (-870)) -((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) -(|has| |#1| (-870)) -((((-420 (-577))) |has| |#2| (-375)) (($) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -((((-1172 |#2| |#1|)) . T) ((|#1|) . T) (((-577)) . T)) +(|has| |#1| (-871)) +(|has| |#1| (-871)) +((((-421 (-578))) . #0=(|has| |#2| (-376))) (($) . #0#)) +(|has| |#1| (-871)) +((((-421 (-578))) |has| |#2| (-376)) (($) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-1173 |#2| |#1|)) . T) ((|#1|) . T) (((-578)) . T)) (((|#1| |#2|) . T)) -((((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577)))))) -((((-1206)) -2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))))) -(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -(((|#2|) . T) (($) . T) (((-577)) . T)) -(((|#1|) . T) (($) . T) (((-577)) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) -((((-885)) . T)) -((((-577)) . T)) -(-2229 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079)))) -(((|#1| $) |has| |#1| (-297 |#1| |#1|))) -((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) -((((-980 |#1|)) . T) (((-885)) . T)) +((((-578)) . T) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-578)))))) +((((-1207)) -2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))))) +(((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +(((|#2|) . T) (($) . T) (((-578)) . T)) +(((|#1|) . T) (($) . T) (((-578)) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) +((((-886)) . T)) +((((-578)) . T)) +(-2230 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))) +(((|#1| $) |has| |#1| (-298 |#1| |#1|))) +((((-421 (-578))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T)) +((((-981 |#1|)) . T) (((-886)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-301)) (|has| |#1| (-375))) ((#0=(-420 (-577)) #0#) |has| |#1| (-375))) -((((-980 |#1|)) . T)) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-302)) (|has| |#1| (-376))) ((#0=(-421 (-578)) #0#) |has| |#1| (-376))) +((((-981 |#1|)) . T)) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) ((($) . T)) -((((-577) |#1|) . T)) -((((-1206)) |has| (-420 |#2|) (-926 (-1206)))) -(((|#1|) . T) (($) -2229 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) -((((-549)) |has| |#2| (-632 (-549)))) -((((-710 |#2|)) . T) (((-885)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -((((-893 |#1|)) . T)) -(((|#1|) |has| |#1| (-174))) -(-2229 (|has| |#4| (-814)) (|has| |#4| (-870))) -(-2229 (|has| |#3| (-814)) (|has| |#3| (-870))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-885)) . T)) -(((|#1|) . T)) -((($) . T) (((-577)) . T) ((|#2|) . T)) -((((-885)) . T)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)))) -(((|#2|) |has| |#2| (-1079))) -(((|#2|) |has| |#2| (-1079))) +((((-578) |#1|) . T)) +((((-1207)) |has| (-421 |#2|) (-927 (-1207)))) +(((|#1|) . T) (($) -2230 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-578))) |has| |#1| (-376))) +((((-550)) |has| |#2| (-633 (-550)))) +((((-711 |#2|)) . T) (((-886)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +((((-894 |#1|)) . T)) +(((|#1|) |has| |#1| (-175))) +(-2230 (|has| |#4| (-815)) (|has| |#4| (-871))) +(-2230 (|has| |#3| (-815)) (|has| |#3| (-871))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-886)) . T)) +(((|#1|) . T)) +((($) . T) (((-578)) . T) ((|#2|) . T)) +((((-886)) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(((|#2|) |has| |#2| (-1080))) +(((|#2|) |has| |#2| (-1080))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) -((((-420 |#2|)) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)))) +((((-421 |#2|)) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)))) (((|#1|) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079)))) -(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130)))) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080)))) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131)))) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (($) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-1251))) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (($) . T)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-1252))) ((($) . T)) -((((-420 (-577))) |has| #0=(-420 |#2|) (-1068 (-420 (-577)))) (((-577)) |has| #0# (-1068 (-577))) ((#0#) . T)) -(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -(((|#1| (-792)) . T)) +((((-421 (-578))) |has| #0=(-421 |#2|) (-1069 (-421 (-578)))) (((-578)) |has| #0# (-1069 (-578))) ((#0#) . T)) +(((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +(((|#1| (-793)) . T)) +(|has| |#1| (-871)) +(((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +((((-578)) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) |has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (|has| |#1| (-870)) -(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -((((-577)) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) |has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#1| (-869)) -((((-577) $) . T) (((-665 (-577)) $) . T)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-361)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -(-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-15 * (|#1| (-792) |#1|))) -((((-1188)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) -((((-885)) . T)) -(((|#2|) . T) (((-577)) . T) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1112)) . T) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) +((((-578) $) . T) (((-666 (-578)) $) . T)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-362)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +(-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-15 * (|#1| (-793) |#1|))) +((((-1189)) . T) (((-520)) . T) (((-229)) . T) (((-578)) . T)) +((((-886)) . T)) +(((|#2|) . T) (((-578)) . T) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) (((-1113)) . T) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578)))))) (((|#1| |#2|) . T)) -((((-145)) . T)) -((((-801 |#1| (-887 |#2|))) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -(|has| |#1| (-1232)) -((((-885)) . T)) -(((|#1|) . T)) -(-2229 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-747)) (|has| |#3| (-814)) (|has| |#3| (-870)) (|has| |#3| (-1079)) (|has| |#3| (-1130))) -((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|))) +((((-146)) . T)) +((((-802 |#1| (-888 |#2|))) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +(|has| |#1| (-1233)) +((((-886)) . T)) +(((|#1|) . T)) +(-2230 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1131))) +((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|))) (((|#2|) . T)) (((|#2|) . T)) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-938 |#1|)) . T)) -((($) -2229 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079))))) -((($) -2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +((((-939 |#1|)) . T)) +((($) -2230 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080))))) +((($) -2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))))) ((($) . T)) -((((-420 (-980 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +((((-421 (-981 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-871)) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-1207)) -2230 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))))) +(|has| |#1| (-870)) +((((-550)) |has| |#4| (-633 (-550)))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-886)) . T) (((-666 |#4|)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-376)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) |has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))))) +(-2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-871)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)))) +((((-694 |#1|)) . T)) +(((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080)))) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-149)) (|has| |#1| (-376))) (|has| |#1| (-149))) +(-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) (|has| |#1| (-870)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-1206)) -2229 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) -(|has| |#1| (-869)) -((((-549)) |has| |#4| (-632 (-549)))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -((((-885)) . T) (((-665 |#4|)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-375)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) |has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))))) -(-2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-841))) (-12 (|has| |#1| (-375)) (|has| |#2| (-870)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)))) -((((-693 |#1|)) . T)) -(((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-747)) (|has| |#3| (-1079)))) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) -(-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) -(|has| |#1| (-869)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-1130)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T) (((-577)) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) -(|has| |#2| (-146)) -(|has| |#2| (-148)) -(-2229 (|has| |#2| (-841)) (|has| |#2| (-870))) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -((((-577)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-577)) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-1131)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T) (((-578)) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((|#1|) . T) (((-578)) . T)) +(|has| |#2| (-147)) +(|has| |#2| (-149)) +(-2230 (|has| |#2| (-842)) (|has| |#2| (-871))) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +((((-578)) . T) ((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-578)) . T)) (((|#2|) . T)) -((((-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) +((((-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-375))) -((((-420 |#2|)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) -(((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)))) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((((-327 |#1|)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#2|) |has| |#2| (-375))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(((|#3|) |has| |#3| (-376))) +((((-421 |#2|)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +(((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)))) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((((-328 |#1|)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#2|) |has| |#2| (-376))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) (((|#2|) . T)) -((((-420 (-577))) . T) (((-720)) . T) (($) . T)) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-238))) -(((#0=(-801 |#1| (-887 |#2|)) #0#) |has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|))))) -((($) -2229 (|has| |#1| (-239)) (|has| |#1| (-238)))) -((((-577)) . T) (($) . T)) -((((-887 |#1|)) . T)) -(((|#2|) |has| |#2| (-174))) -(((|#1|) |has| |#1| (-174))) +((((-421 (-578))) . T) (((-721)) . T) (($) . T)) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-239))) +(((#0=(-802 |#1| (-888 |#2|)) #0#) |has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|))))) +((($) -2230 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-578)) . T) (($) . T)) +((((-888 |#1|)) . T)) +(((|#2|) |has| |#2| (-175))) +(((|#1|) |has| |#1| (-175))) (((|#2|) . T)) -((((-1206)) |has| |#1| (-926 (-1206))) (((-1112)) . T)) -((((-1206)) |has| |#1| (-926 (-1206))) (((-1118 (-1206))) . T)) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((($ (-1206)) -2229 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) -((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#1| (-38 (-420 (-577)))) -(((|#4|) |has| |#4| (-1079)) (((-577)) -12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079)))) -(((|#3|) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) -(|has| |#1| (-146)) -(|has| |#1| (-148)) +((((-1207)) |has| |#1| (-927 (-1207))) (((-1113)) . T)) +((((-1207)) |has| |#1| (-927 (-1207))) (((-1119 (-1207))) . T)) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((($ (-1207)) -2230 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))))) +((((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-38 (-421 (-578)))) +(((|#4|) |has| |#4| (-1080)) (((-578)) -12 (|has| |#4| (-660 (-578))) (|has| |#4| (-1080)))) +(((|#3|) |has| |#3| (-1080)) (((-578)) -12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080)))) +(|has| |#1| (-147)) +(|has| |#1| (-149)) ((($ $) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1130))) -(|has| |#1| (-569)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1131))) +(|has| |#1| (-570)) (((|#2|) . T)) -((((-577)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +((((-578)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#1|) . T)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) -((((-594 |#1|)) . T)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) +((((-595 |#1|)) . T)) ((($) . T)) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-885)) . T)) +((((-886)) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-6 (-4501 "*")))) +(((|#2|) |has| |#2| (-6 (-4502 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) . T) (((-577)) . T)) -((((-1282 |#2| |#3| |#4|)) . T) (((-577)) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (((-577)) -2229 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1068 (-577))) (|has| |#1| (-1079))) ((|#1|) . T) (((-630 $)) . T) (($) |has| |#1| (-569)) (((-420 (-577))) -2229 (|has| |#1| (-569)) (|has| |#1| (-1068 (-420 (-577))))) (((-420 (-980 |#1|))) |has| |#1| (-569)) (((-980 |#1|)) |has| |#1| (-1079)) (((-1206)) . T)) -((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) -((($) . T) (((-117 |#1|)) . T) (((-420 (-577))) . T)) -((((-1155 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((((-1202 |#1|)) . T) (((-1112)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((((-1155 |#1| (-1206))) . T) (((-1118 (-1206))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-1206)) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) +(((|#2|) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) . T) (((-578)) . T)) +((((-1283 |#2| |#3| |#4|)) . T) (((-578)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-578))) . T)) +((((-48)) -12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) (((-578)) -2230 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1069 (-578))) (|has| |#1| (-1080))) ((|#1|) . T) (((-631 $)) . T) (($) |has| |#1| (-570)) (((-421 (-578))) -2230 (|has| |#1| (-570)) (|has| |#1| (-1069 (-421 (-578))))) (((-421 (-981 |#1|))) |has| |#1| (-570)) (((-981 |#1|)) |has| |#1| (-1080)) (((-1207)) . T)) +((((-421 (-578))) |has| |#2| (-1069 (-421 (-578)))) (((-578)) |has| |#2| (-1069 (-578))) ((|#2|) . T) (((-888 |#1|)) . T)) +((($) . T) (((-118 |#1|)) . T) (((-421 (-578))) . T)) +((((-1156 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((((-1203 |#1|)) . T) (((-1113)) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((((-1156 |#1| (-1207))) . T) (((-1119 (-1207))) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-1207)) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) ((($) . T)) -(|has| |#1| (-1130)) -((((-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577)))) (((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391))))) +(|has| |#1| (-1131)) +((((-578)) -12 (|has| |#1| (-911 (-578))) (|has| |#2| (-911 (-578)))) (((-392)) -12 (|has| |#1| (-911 (-392))) (|has| |#2| (-911 (-392))))) (((|#1| |#2|) . T)) -((((-1206) |#1|) . T)) +((((-1207) |#1|) . T)) (((|#4|) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1206) (-52)) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T)) -((((-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) -((((-885)) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-747)) (|has| |#2| (-814)) (|has| |#2| (-870)) (|has| |#2| (-1079)) (|has| |#2| (-1130))) -(((#0=(-1283 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-420 (-577)) #0#) |has| |#1| (-569)) (($ $) |has| |#1| (-569))) -((($) |has| |#1| (-15 * (|#1| (-577) |#1|)))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1| $) |has| |#1| (-297 |#1| |#1|))) -((((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-569)) (($) |has| |#1| (-569))) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) -(|has| |#1| (-375)) -((($) |has| |#1| (-869)) (((-577)) -2229 (|has| |#1| (-21)) (|has| |#1| (-869)))) -((($) -2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) -((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -((((-420 (-577))) . T) (($) . T)) -(((|#3|) |has| |#3| (-375))) -((($) |has| |#1| (-15 * (|#1| (-792) |#1|)))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -((((-1206)) . T)) -((($) . T) (((-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) (((-577)) . T)) -(((|#1|) . T)) -((((-130)) . T) (((-885)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -(|has| |#1| (-870)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +((((-1207) (-52)) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T)) +((((-1283 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) +((((-886)) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1131))) +(((#0=(-1284 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-175)) ((#0=(-421 (-578)) #0#) |has| |#1| (-570)) (($ $) |has| |#1| (-570))) +((($) |has| |#1| (-15 * (|#1| (-578) |#1|)))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1| $) |has| |#1| (-298 |#1| |#1|))) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-570)) (($) |has| |#1| (-570))) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#1|) . T)) +(|has| |#1| (-376)) +((($) |has| |#1| (-870)) (((-578)) -2230 (|has| |#1| (-21)) (|has| |#1| (-870)))) +((($) -2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) +((($) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) +((((-421 (-578))) . T) (($) . T)) +(((|#3|) |has| |#3| (-376))) +((($) |has| |#1| (-15 * (|#1| (-793) |#1|)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +((((-1207)) . T)) +((($) . T) (((-1283 |#2| |#3| |#4|)) . T) (((-421 (-578))) |has| (-1283 |#2| |#3| |#4|) (-38 (-421 (-578)))) (((-578)) . T)) +(((|#1|) . T)) +((((-131)) . T) (((-886)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +(|has| |#1| (-871)) (((|#2| |#3|) . T)) -(((|#1| (-544 |#2|)) . T)) -(((|#1| (-792)) . T)) -(-2229 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -(((|#1| (-544 (-1118 (-1206)))) . T)) -(((|#1|) |has| |#1| (-174))) -(((|#1|) . T)) -(|has| |#2| (-937)) -(-2229 (|has| |#2| (-814)) (|has| |#2| (-870))) -((((-885)) . T)) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)))) -(((|#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-747)) (|has| |#2| (-1079)))) -((($ (-1206)) -2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))))) -((($ $) . T) ((#0=(-1282 |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) |has| #0# (-38 (-420 (-577))))) -((((-938 |#1|)) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) -((((-577)) . T) (($) . T) (((-420 (-577))) . T)) -((((-885)) . T)) -((($) . T) (((-577)) . T)) +(((|#1| (-545 |#2|)) . T)) +(((|#1| (-793)) . T)) +(-2230 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +(((|#1| (-545 (-1119 (-1207)))) . T)) +(((|#1|) |has| |#1| (-175))) +(((|#1|) . T)) +(|has| |#2| (-938)) +(-2230 (|has| |#2| (-815)) (|has| |#2| (-871))) +((((-886)) . T)) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)))) +(((|#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080)))) +((($ (-1207)) -2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))))) +((($ $) . T) ((#0=(-1283 |#2| |#3| |#4|) #0#) . T) ((#1=(-421 (-578)) #1#) |has| #0# (-38 (-421 (-578))))) +((((-939 |#1|)) . T)) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +((((-578)) . T) (($) . T) (((-421 (-578))) . T)) +((((-886)) . T)) +((($) . T) (((-578)) . T)) ((($) . T)) -(-2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) -(|has| |#1| (-375)) -(|has| |#1| (-375)) +(-2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362)) (|has| |#1| (-570))) +(|has| |#1| (-376)) +(|has| |#1| (-376)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) -(-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375)) (|has| |#1| (-361))) -(-2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T)) +((($) . T) ((#0=(-1283 |#2| |#3| |#4|)) . T) (((-421 (-578))) |has| #0# (-38 (-421 (-578))))) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +(-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376)) (|has| |#1| (-362))) +(-2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-886)) . T)) +((((-886)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) . T)) +(((|#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) . T)) (((|#2|) . T)) -(|has| |#2| (-375)) -(|has| |#1| (-870)) -(|has| |#1| (-870)) +(|has| |#2| (-376)) +(|has| |#1| (-871)) +(|has| |#1| (-871)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-577)) . T)) +((((-578)) . T)) (((|#1|) . T)) -((((-885)) . T)) -(((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1130)) -(((|#1|) |has| |#1| (-174))) +((((-886)) . T)) +(((|#2|) |has| |#2| (-175))) +(|has| |#1| (-1131)) +(((|#1|) |has| |#1| (-175))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T) (((-577)) . T) (($) . T)) -(((|#3|) . T) (((-577)) . T) (($) . T)) -((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-841)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-421 (-578))) . T) (((-421 |#1|)) . T) ((|#1|) . T) (((-578)) . T) (($) . T)) +(((|#3|) . T) (((-578)) . T) (($) . T)) +((((-421 $) (-421 $)) |has| |#1| (-570)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-842)) ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1206)) -2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))))) -((((-885)) . T)) -(((|#1| (-544 (-1206))) . T)) +((($ (-1207)) -2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))))) +((((-886)) . T)) +(((|#1| (-545 (-1207))) . T)) ((($ $) . T)) -(((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-175))) ((($) . T)) -((((-885)) . T)) +((((-886)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) (((|#2|) . T)) -(((|#2|) -2229 (|has| |#2| (-6 (-4501 "*"))) (|has| |#2| (-174)))) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(|has| |#2| (-937)) -(|has| |#1| (-937)) -((($) -2229 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))))) -(((|#2|) |has| |#2| (-174))) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-885)) . T)) -((((-885)) . T)) -((((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) +(((|#2|) -2230 (|has| |#2| (-6 (-4502 "*"))) (|has| |#2| (-175)))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(|has| |#2| (-938)) +(|has| |#1| (-938)) +((($) -2230 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))) +(((|#2|) |has| |#2| (-175))) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-886)) . T)) +((((-886)) . T)) +((((-550)) . T) (((-578)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-577)) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) . T)) +((($) . T) (((-578)) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-885)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-886)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-577)) . T)) -(((|#1| (-420 (-577))) . T)) +((($) . T) (((-578)) . T)) +(((|#1| (-421 (-578))) . T)) (((|#1|) . T)) -(-2229 (|has| |#1| (-301)) (|has| |#1| (-375))) -((((-145)) . T)) -((((-577)) |has| #0=(-420 |#2|) (-659 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-869)) -((((-885)) . T)) -((((-885)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +(-2230 (|has| |#1| (-302)) (|has| |#1| (-376))) +((((-146)) . T)) +((((-578)) |has| #0=(-421 |#2|) (-660 (-578))) ((#0#) . T) (((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-870)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-189)) . T) (((-885)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-190)) . T) (((-886)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549))) (((-916 (-577))) |has| |#1| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#1| (-632 (-916 (-391))))) -((((-1206) (-52)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550))) (((-917 (-578))) |has| |#1| (-633 (-917 (-578)))) (((-917 (-392))) |has| |#1| (-633 (-917 (-392))))) +((((-1207) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ (-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-665 (-145))) . T) (((-1188)) . T)) -((((-885)) . T)) -((((-1188)) . T)) -((((-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) -(|has| |#1| (-870)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -((($) -2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) -((((-885)) . T)) -(((|#2|) |has| |#2| (-375))) -((((-885)) . T)) -((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-792) |#1|)))) +((($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-666 (-146))) . T) (((-1189)) . T)) +((((-886)) . T)) +((((-1189)) . T)) +((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +(|has| |#1| (-871)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +((($) -2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) +((((-886)) . T)) +(((|#2|) |has| |#2| (-376))) +((((-886)) . T)) +((($) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-793) |#1|)))) (((|#2|) . T)) -((((-549)) |has| |#4| (-632 (-549)))) -((((-885)) . T) (((-665 |#4|)) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-630 $)) . T)) -(|has| |#4| (-1079)) -(|has| |#3| (-1079)) -(|has| |#1| (-1130)) -((((-1206) (-52)) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) -(|has| |#1| (-937)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(|has| |#1| (-937)) -(((|#1|) . T) (((-577)) . T) (((-420 (-577))) . T) (($) . T)) +((((-550)) |has| |#4| (-633 (-550)))) +((((-886)) . T) (((-666 |#4|)) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T) (((-631 $)) . T)) +(|has| |#4| (-1080)) +(|has| |#3| (-1080)) +(|has| |#1| (-1131)) +((((-1207) (-52)) . T)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) +(|has| |#1| (-938)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +(|has| |#1| (-938)) +(((|#1|) . T) (((-578)) . T) (((-421 (-578))) . T) (($) . T)) (((|#2|) . T)) -((($ (-1206)) -2229 (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))))) -(((#0=(-420 (-577)) #0#) . T) (($ $) . T)) -((((-577)) . T)) -(((|#1|) . T)) -((((-885)) . T)) -((((-420 (-577))) . T) (($) . T)) -(((|#1| (-420 (-577)) (-1112)) . T)) -(|has| |#1| (-1130)) -(|has| |#1| (-569)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(|has| |#1| (-841)) -(((#0=(-938 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) -((((-420 |#2|)) . T)) -(|has| |#1| (-869)) -((((-1233 |#1|)) . T) (((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -(((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) . T) ((#1=(-577) #1#) . T) (($ $) . T)) -((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#2|) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((($ (-1207)) -2230 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))))) +(((#0=(-421 (-578)) #0#) . T) (($ $) . T)) +((((-578)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-421 (-578))) . T) (($) . T)) +(((|#1| (-421 (-578)) (-1113)) . T)) +(|has| |#1| (-1131)) +(|has| |#1| (-570)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(|has| |#1| (-842)) +(((#0=(-939 |#1|) #0#) . T) (($ $) . T) ((#1=(-421 (-578)) #1#) . T)) +((((-421 |#2|)) . T)) +(|has| |#1| (-870)) +((((-1234 |#1|)) . T) (((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +(((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) . T) ((#1=(-578) #1#) . T) (($ $) . T)) +((((-939 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +(((|#2|) |has| |#2| (-1080)) (((-578)) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080)))) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) (((|#2|) . T)) -((((-885)) . T)) -((((-1206)) . T)) -((((-130)) . T)) -((((-130)) . T) (((-620)) . T)) -((((-420 (-577))) . T) (((-720)) . T) (($) . T) (((-577)) . T)) -(((|#1|) |has| |#1| (-174))) -(((|#2|) |has| |#2| (-174))) +((((-886)) . T)) +((((-1207)) . T)) +((((-131)) . T)) +((((-131)) . T) (((-621)) . T)) +((((-421 (-578))) . T) (((-721)) . T) (($) . T) (((-578)) . T)) +(((|#1|) |has| |#1| (-175))) +(((|#2|) |has| |#2| (-175))) (((|#1|) . T)) (((|#2|) . T)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) -((((-577) |#3|) . T)) -(((|#1|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3171 (-1206)) (|:| -2753 #0#))) . T)) -(|has| |#1| (-361)) -((((-577)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -(((#0=(-1283 |#1| |#2| |#3| |#4|) $) |has| #0# (-297 #0# #0#))) -(|has| |#1| (-375)) -(-2229 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079)))) -(((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079))) (($) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079))) (((-577)) -2229 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)))) -(((#0=(-1112) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -(((#0=(-420 (-577)) #0#) . T) ((#1=(-720) #1#) . T) (($ $) . T)) -((((-327 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) -((((-885)) . T)) -(|has| |#1| (-1130)) -(((|#1|) . T)) -(((|#1|) -2229 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) -(((|#1|) -2229 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) +((((-578) |#3|) . T)) +(((|#1|) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3173 (-1207)) (|:| -2754 #0#))) . T)) +(|has| |#1| (-362)) +((((-578)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +(((#0=(-1284 |#1| |#2| |#3| |#4|) $) |has| #0# (-298 #0# #0#))) +(|has| |#1| (-376)) +(-2230 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))) +(((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))) (($) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) (((-578)) -2230 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))) +(((#0=(-1113) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +(((#0=(-421 (-578)) #0#) . T) ((#1=(-721) #1#) . T) (($ $) . T)) +((((-328 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-376))) +((((-886)) . T)) +(|has| |#1| (-1131)) +(((|#1|) . T)) +(((|#1|) -2230 (|has| |#2| (-380 |#1|)) (|has| |#2| (-431 |#1|)))) +(((|#1|) -2230 (|has| |#2| (-380 |#1|)) (|has| |#2| (-431 |#1|)))) (((|#2|) . T)) -((((-420 (-577))) . T) (((-720)) . T) (($) . T)) -((((-592)) . T)) +((((-421 (-578))) . T) (((-721)) . T) (($) . T)) +((((-593)) . T)) (((|#3| |#3|) . T)) -((($ (-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) -(|has| |#1| (-870)) -(|has| |#2| (-239)) -((((-887 |#1|)) . T)) -((((-1206)) |has| |#1| (-926 (-1206))) ((|#3|) . T)) -((((-665 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-1052))) -(|has| |#1| (-870)) -((((-420 (-577))) . T) (($) . T)) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) -((($) . T) (((-420 (-577))) . T)) -((((-885)) . T)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) -((((-577)) . T) (((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-577)) . T)) +((($ (-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) +(|has| |#1| (-871)) +(|has| |#2| (-240)) +((((-888 |#1|)) . T)) +((((-1207)) |has| |#1| (-927 (-1207))) ((|#3|) . T)) +((((-666 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-376)) (|has| |#2| (-1053))) +(|has| |#1| (-871)) +((((-421 (-578))) . T) (($) . T)) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((($) . T) (((-421 (-578))) . T)) +((((-886)) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-421 (-578))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T)) +((((-578)) . T) (((-118 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((((-578)) . T)) (((|#3|) . T)) -(|has| |#1| (-1130)) +(|has| |#1| (-1131)) (((|#2|) . T)) (((|#1|) . T)) -((($) -2229 (|has| |#1| (-239)) (|has| |#1| (-238)))) -((((-577)) . T)) -(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (($) . T) (((-577)) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) +((($) -2230 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-578)) . T)) +(((|#2|) . T) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((|#1|) . T) (($) . T) (((-578)) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-420 (-577))) . T)) +((((-595 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((($) . T) (((-421 (-578))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-577)) . T)) -(((|#1|) . T) (((-577)) . T)) -(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) +(((|#1|) . T) (((-578)) . T)) +(((|#1|) . T) (((-578)) . T)) +(((|#1| (-1298 |#1|) (-1298 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-885)) . T)) -((((-885)) . T)) +((((-886)) . T)) +((((-886)) . T)) (((|#2|) . T)) (((|#3|) . T)) -(((#0=(-117 |#1|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) -((((-1155 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#2|) . T)) +(((#0=(-118 |#1|) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +((((-421 (-578))) |has| |#2| (-1069 (-421 (-578)))) (((-578)) |has| |#2| (-1069 (-578))) ((|#2|) . T) (((-888 |#1|)) . T)) +((((-1156 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-693 |#1|)) . T)) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((((-117 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) (((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391))))) +((((-694 |#1|)) . T)) +((($) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((((-118 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((((-578)) -12 (|has| |#1| (-911 (-578))) (|has| |#3| (-911 (-578)))) (((-392)) -12 (|has| |#1| (-911 (-392))) (|has| |#3| (-911 (-392))))) (((|#2|) . T) ((|#6|) . T)) -((((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) -((((-145)) . T)) +((((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) (($) . T)) +((((-146)) . T)) ((($) . T)) -((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-391)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T)) -(|has| |#2| (-937)) -(|has| |#1| (-937)) -(|has| |#1| (-937)) -(|has| |#2| (-1052)) +((($) . T) (((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-392)) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +((($) . T) (((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T)) +(|has| |#2| (-938)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +(|has| |#2| (-1053)) ((($) . T)) -(|has| |#1| (-937)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +(|has| |#1| (-938)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#4|) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-375)) -((((-938 |#1|)) . T)) -((($) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) |has| |#1| (-869)) (((-577)) -2229 (|has| |#1| (-21)) (|has| |#1| (-869)))) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(-2229 (|has| |#1| (-380)) (|has| |#1| (-870))) -(((|#1|) . T)) -((((-792)) . T)) -((((-885)) . T)) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-420 |#2|) |#3|) . T)) -(-2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) -((($) . T) (((-420 (-577))) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-630 $)) . T)) -((((-577)) . T) (($) . T)) -((((-577)) . T) (($) . T)) -((((-792) |#1|) . T)) -(((|#2| (-246 (-3224 |#1|) (-792))) . T)) -(((|#1| (-544 |#3|)) . T)) -((((-420 (-577))) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-1188)) . T) (((-885)) . T)) -(((#0=(-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) #0#) |has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))))) -((((-1188)) . T)) -(|has| |#1| (-937)) -(|has| |#2| (-375)) -(((|#1|) . T) (($) . T) (((-577)) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) -((((-171 (-391))) . T) (((-228)) . T) (((-391)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-391)) . T) (((-577)) . T)) -(((#0=(-420 (-577)) #0#) . T) (($ $) . T)) +(|has| |#1| (-376)) +((((-939 |#1|)) . T)) +((($) . T) (((-578)) . T) ((|#1|) . T) (((-421 (-578))) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) |has| |#1| (-870)) (((-578)) -2230 (|has| |#1| (-21)) (|has| |#1| (-870)))) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +(-2230 (|has| |#1| (-381)) (|has| |#1| (-871))) +(((|#1|) . T)) +((((-793)) . T)) +((((-886)) . T)) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-421 |#2|) |#3|) . T)) +(-2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) +((($) . T) (((-421 (-578))) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T) (((-631 $)) . T)) +((((-578)) . T) (($) . T)) +((((-578)) . T) (($) . T)) +((((-793) |#1|) . T)) +(((|#2| (-247 (-3226 |#1|) (-793))) . T)) +(((|#1| (-545 |#3|)) . T)) +((((-421 (-578))) . T)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-1189)) . T) (((-886)) . T)) +(((#0=(-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) #0#) |has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))))) +((((-1189)) . T)) +(|has| |#1| (-938)) +(|has| |#2| (-376)) +(((|#1|) . T) (($) . T) (((-578)) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) +((((-172 (-392))) . T) (((-229)) . T) (((-392)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-392)) . T) (((-578)) . T)) +(((#0=(-421 (-578)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-885)) . T)) -(|has| |#1| (-569)) -((((-420 (-577))) . T) (($) . T)) +((((-886)) . T)) +(|has| |#1| (-570)) +((((-421 (-578))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -(-2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) -(|has| |#1| (-38 (-420 (-577)))) -(-12 (|has| |#1| (-558)) (|has| |#1| (-849))) -((((-885)) . T)) -((((-1206)) -2229 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))))) -(|has| |#1| (-375)) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -(|has| |#1| (-375)) -((((-420 (-577))) . T) (($) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -((((-577) |#1|) . T)) -((((-1206)) |has| |#1| (-926 (-1206)))) -(((|#1|) . T)) -(-2229 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) -(((|#2|) |has| |#1| (-375))) -(((|#2|) |has| |#1| (-375))) -(-2229 (|has| |#4| (-814)) (|has| |#4| (-870))) -(-2229 (|has| |#3| (-814)) (|has| |#3| (-870))) -((((-577)) . T) (($) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-174))) -((((-130)) . T) (((-885)) . T)) -((((-130)) . T) (((-620)) . T) (((-885)) . T)) -((((-130)) . T)) -((((-130)) . T) (((-620)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +(-2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362))) +(|has| |#1| (-38 (-421 (-578)))) +(-12 (|has| |#1| (-559)) (|has| |#1| (-850))) +((((-886)) . T)) +((((-1207)) -2230 (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))))) +(|has| |#1| (-376)) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +(|has| |#1| (-376)) +((((-421 (-578))) . T) (($) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((($) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +((((-578) |#1|) . T)) +((((-1207)) |has| |#1| (-927 (-1207)))) +(((|#1|) . T)) +(-2230 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) +(((|#2|) |has| |#1| (-376))) +(((|#2|) |has| |#1| (-376))) +(-2230 (|has| |#4| (-815)) (|has| |#4| (-871))) +(-2230 (|has| |#3| (-815)) (|has| |#3| (-871))) +((((-578)) . T) (($) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-175))) +((((-131)) . T) (((-886)) . T)) +((((-131)) . T) (((-621)) . T) (((-886)) . T)) +((((-131)) . T)) +((((-131)) . T) (((-621)) . T)) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1206)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577)))) (((-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577))))) +(((|#2|) . T) (((-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) (((-578)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-578)))) (((-421 (-578))) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-578))))) (((|#2|) . T)) ((($) . T)) -((((-1206) #0=(-1283 |#1| |#2| |#3| |#4|)) |has| #0# (-527 (-1206) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) -((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) -((((-630 $) $) . T) (($ $) . T)) -((((-171 (-228))) . T) (((-171 (-391))) . T) (((-1202 (-720))) . T) (((-916 (-391))) . T)) +((((-1207) #0=(-1284 |#1| |#2| |#3| |#4|)) |has| #0# (-528 (-1207) #0#)) ((#0# #0#) |has| #0# (-321 #0#))) +((((-421 (-578))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T)) +((((-631 $) $) . T) (($ $) . T)) +((((-172 (-229))) . T) (((-172 (-392))) . T) (((-1203 (-721))) . T) (((-917 (-392))) . T)) (((|#3|) . T)) -(|has| |#1| (-569)) -(|has| (-420 |#2|) (-239)) -(((|#1| (-420 (-577))) . T)) -((($) . T) (((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-570)) +(|has| (-421 |#2|) (-240)) +(((|#1| (-421 (-578))) . T)) +((($) . T) (((-421 (-578))) . T) (((-421 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(|has| |#1| (-569)) -((((-885)) . T)) +(|has| |#1| (-570)) +((((-886)) . T)) ((($ $) . T)) -((((-885)) . T)) +((((-886)) . T)) ((($) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-1206)) |has| |#2| (-926 (-1206)))) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#1| (-870)) -((((-885)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#2|) |has| |#1| (-375))) -((((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-391)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-577))))) -(((|#1|) . T)) -((($) . T) (((-577)) . T) ((|#2|) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-421 (-578))) . T) (($) . T)) +((((-1207)) |has| |#2| (-927 (-1207)))) +(((|#1|) |has| |#1| (-175)) (($) . T) (((-578)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#1| (-871)) +((((-886)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#2|) |has| |#1| (-376))) +((((-392)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-392)))) (((-578)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-578))))) +(((|#1|) . T)) +((($) . T) (((-578)) . T) ((|#2|) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((|#3|) . T)) -((((-1188)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) -(((|#1|) . T)) -(|has| |#1| (-375)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(|has| |#1| (-375)) -(|has| |#1| (-569)) -(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) +((((-1189)) . T) (((-520)) . T) (((-229)) . T) (((-578)) . T)) +(((|#1|) . T)) +(|has| |#1| (-376)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(|has| |#1| (-376)) +(|has| |#1| (-570)) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) (((|#2|) . T)) (((|#2|) . T)) -(|has| |#2| (-1079)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(|has| |#1| (-38 (-420 (-577)))) +(|has| |#2| (-1080)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(|has| |#1| (-38 (-421 (-578)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) +(|has| |#1| (-38 (-421 (-578)))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ((($) . T)) -(|has| |#1| (-148)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(|has| |#1| (-148)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) -(|has| |#1| (-148)) +(|has| |#1| (-149)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(|has| |#1| (-149)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) +(|has| |#1| (-149)) ((($) . T)) -((((-594 |#1|)) . T)) +((((-595 |#1|)) . T)) ((($) . T)) -((((-1188) |#1|) . T)) -(|has| |#1| (-569)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) +((((-1189) |#1|) . T)) +(|has| |#1| (-570)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) ((($) . T)) ((($) . T)) -((((-420 |#2|)) . T)) -((((-420 |#2|)) . T)) -((((-420 (-577))) |has| |#2| (-1068 (-577))) (((-577)) |has| |#2| (-1068 (-577))) (((-1206)) |has| |#2| (-1068 (-1206))) ((|#2|) . T)) -(((#0=(-420 |#2|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-361))) -(|has| |#1| (-148)) -((((-885)) . T)) +((((-421 |#2|)) . T)) +((((-421 |#2|)) . T)) +((((-421 (-578))) |has| |#2| (-1069 (-578))) (((-578)) |has| |#2| (-1069 (-578))) (((-1207)) |has| |#2| (-1069 (-1207))) ((|#2|) . T)) +(((#0=(-421 |#2|) #0#) . T) ((#1=(-421 (-578)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-362))) +(|has| |#1| (-149)) +((((-886)) . T)) ((($) . T)) -((((-1170 |#1| |#2|)) . T)) -(((|#1| (-577)) . T)) -(((|#1| (-420 (-577))) . T)) -((((-577)) |has| |#2| (-910 (-577))) (((-391)) |has| |#2| (-910 (-391)))) +((((-1171 |#1| |#2|)) . T)) +(((|#1| (-578)) . T)) +(((|#1| (-421 (-578))) . T)) +((((-578)) |has| |#2| (-911 (-578))) (((-392)) |has| |#2| (-911 (-392)))) (((|#2|) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +(((|#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-885)) . T)) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-1206) (-52)) . T)) -((((-420 |#2|)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(|has| |#1| (-812)) -(|has| |#1| (-812)) -((((-885)) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-885)) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-115)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-228)) . T) (((-391)) . T) (((-916 (-391))) . T)) -((((-885)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) -((((-885)) . T)) -((((-885)) . T)) -(-2229 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079)))) -(((#0=(-938 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) +((((-886)) . T)) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-1207) (-52)) . T)) +((((-421 |#2|)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(|has| |#1| (-813)) +(|has| |#1| (-813)) +((((-886)) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +((((-886)) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-116)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-229)) . T) (((-392)) . T) (((-917 (-392))) . T)) +((((-886)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570)) (((-421 (-578))) |has| |#1| (-570))) +((((-886)) . T)) +((((-886)) . T)) +(-2230 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))) +(((#0=(-939 |#1|) #0#) . T) (($ $) . T) ((#1=(-421 (-578)) #1#) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T)) -((((-885)) . T)) +((((-886)) . T)) (((|#1|) . T)) -((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -(|has| |#1| (-375)) -((((-885)) . T)) +((((-939 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +(|has| |#1| (-376)) +((((-886)) . T)) (((|#2|) . T)) -((((-577)) . T)) -((((-1206)) -2229 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) -((((-885)) . T)) -((((-577)) . T)) -(-2229 (|has| |#2| (-814)) (|has| |#2| (-870))) -((((-171 (-391))) . T) (((-228)) . T) (((-391)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-1188)) . T) (((-549)) . T) (((-577)) . T) (((-916 (-577))) . T) (((-391)) . T) (((-228)) . T)) -((((-885)) . T)) -(|has| |#1| (-148)) -(|has| |#1| (-146)) -((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-885)) . T)) -((((-577) $) . T) (((-665 (-577)) $) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-747)) (|has| |#1| (-926 (-1206))) (|has| |#1| (-1079)) (|has| |#1| (-1142)) (|has| |#1| (-1130))) -(|has| |#1| (-1182)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-578)) . T)) +((((-1207)) -2230 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207))))) +((((-886)) . T)) +((((-578)) . T)) +(-2230 (|has| |#2| (-815)) (|has| |#2| (-871))) +((((-172 (-392))) . T) (((-229)) . T) (((-392)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-1189)) . T) (((-550)) . T) (((-578)) . T) (((-917 (-578))) . T) (((-392)) . T) (((-229)) . T)) +((((-886)) . T)) +(|has| |#1| (-149)) +(|has| |#1| (-147)) +((($) . T) ((#0=(-1283 |#2| |#3| |#4|)) |has| #0# (-175)) (((-421 (-578))) |has| #0# (-38 (-421 (-578))))) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-886)) . T)) +((((-578) $) . T) (((-666 (-578)) $) . T)) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1131))) +(|has| |#1| (-1183)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) ((($) . T)) -((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-577) |#1|) . T)) +((((-939 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((((-578) |#1|) . T)) (((|#1|) . T)) -(((#0=(-117 |#1|) $) |has| #0# (-297 #0# #0#))) -(((|#1|) |has| |#1| (-174))) -((((-327 |#1|)) . T) (((-577)) . T)) -(-2229 (|has| |#2| (-239)) (|has| |#2| (-238))) +(((#0=(-118 |#1|) $) |has| #0# (-298 #0# #0#))) +(((|#1|) |has| |#1| (-175))) +((((-328 |#1|)) . T) (((-578)) . T)) +(-2230 (|has| |#2| (-240)) (|has| |#2| (-239))) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-885)) . T)) +((((-886)) . T)) (((|#1|) . T)) -((((-115)) . T) ((|#1|) . T)) -((((-885)) . T)) -((((-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) -(((|#1|) |has| |#1| (-320 |#1|))) -((((-577) |#1|) . T) (((-1264 (-577)) $) . T)) +((((-116)) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) +(((|#1|) |has| |#1| (-321 |#1|))) +((((-578) |#1|) . T) (((-1265 (-578)) $) . T)) (((|#1| |#2|) . T)) -((((-1206) |#1|) . T)) -(((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)))) +((((-1207) |#1|) . T)) +(((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)))) (((|#1|) . T)) -((($ (-1206)) . T)) -(((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1079)))) -((((-577)) . T) (((-420 (-577))) . T)) +((($ (-1207)) . T)) +(((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080)))) +((((-578)) . T) (((-421 (-578))) . T)) (((|#1|) . T)) -(|has| |#1| (-569)) -((((-391)) . T)) -((($) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) +(|has| |#1| (-570)) +((((-392)) . T)) +((($) . T) (((-578)) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-376))) (((|#1|) . T)) (((|#1|) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(|has| |#1| (-375)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(|has| |#1| (-375)) -(|has| |#1| (-569)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(|has| |#1| (-376)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(|has| |#1| (-376)) +(|has| |#1| (-570)) ((($) . T)) -(|has| |#1| (-1130)) -((((-801 |#1| (-887 |#2|))) |has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|))))) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) +(|has| |#1| (-1131)) +((((-802 |#1| (-888 |#2|))) |has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|))))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-937)) -(((|#1| (-544 |#2|)) . T)) -(((|#1| (-792)) . T)) -(|has| |#1| (-239)) -(((|#1| (-544 (-1118 (-1206)))) . T)) -((($) -2229 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))))) -((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-577)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(|has| |#2| (-375)) -((((-885)) . T)) -((((-885)) . T)) -(-2229 (|has| |#3| (-814)) (|has| |#3| (-870))) -((((-885)) . T)) -((((-1150)) . T) (((-885)) . T)) -((((-549)) . T) (((-885)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-630 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-577)) . T)) +(|has| |#2| (-938)) +(((|#1| (-545 |#2|)) . T)) +(((|#1| (-793)) . T)) +(|has| |#1| (-240)) +(((|#1| (-545 (-1119 (-1207)))) . T)) +((($) -2230 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))) +((((-595 |#1|)) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-578)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(|has| |#2| (-376)) +((((-886)) . T)) +((((-886)) . T)) +(-2230 (|has| |#3| (-815)) (|has| |#3| (-871))) +((((-886)) . T)) +((((-1151)) . T) (((-886)) . T)) +((((-550)) . T) (((-886)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-631 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-578)) . T)) (((|#3|) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-577)) . T) (((-420 (-577))) -2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) -((((-1155 |#1| |#2|)) . T) ((|#2|) . T) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-577)) . T)) -((((-1202 |#1|)) . T) (((-577)) . T) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) (((-1112)) . T) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) -(-2229 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) -(((#0=(-594 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-1155 |#1| (-1206))) . T) (((-577)) . T) (((-1118 (-1206))) . T) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) (((-1206)) . T)) -(((|#1|) |has| |#1| (-174))) -(((|#1| (-1297 |#1|) (-1297 |#1|)) . T)) -((((-594 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((($) . T) (((-420 (-577))) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-362))) +((((-578)) . T) (((-421 (-578))) -2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ((|#2|) . T) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) (((-888 |#1|)) . T)) +((((-1156 |#1| |#2|)) . T) ((|#2|) . T) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) (((-578)) . T)) +((((-1203 |#1|)) . T) (((-578)) . T) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) (((-1113)) . T) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578)))))) +(-2230 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) +(((#0=(-595 |#1|) #0#) . T) (($ $) . T) ((#1=(-421 (-578)) #1#) . T)) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +((((-1156 |#1| (-1207))) . T) (((-578)) . T) (((-1119 (-1207))) . T) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) (((-1207)) . T)) +(((|#1|) |has| |#1| (-175))) +(((|#1| (-1298 |#1|) (-1298 |#1|)) . T)) +((((-595 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((($) . T) (((-421 (-578))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-420 (-577))) . T)) -(((|#2|) |has| |#2| (-6 (-4501 "*")))) +((($) . T) (((-421 (-578))) . T)) +(((|#2|) |has| |#2| (-6 (-4502 "*")))) (((|#1|) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((|#1|) . T) (((-578)) . T)) (((|#1|) . T)) -((((-885)) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-886)) . T)) +(((#0=(-421 (-578)) #0#) |has| |#2| (-38 (-421 (-578)))) ((|#2| |#2|) . T) (($ $) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) -((((-305 |#3|)) . T)) -(((|#1|) . T)) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-306 |#3|)) . T)) +(((|#1|) . T)) +((($) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((($) . T) (((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) (((|#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#2| (-937)) -(|has| |#1| (-937)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T)) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T)) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| |#2| (-938)) +(|has| |#1| (-938)) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) . T)) +((((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2229 (|has| |#2| (-814)) (|has| |#2| (-870))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -((((-1206)) . T) ((|#1|) . T)) -((((-885)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130)))) -(((#0=(-420 (-577)) #0#) . T)) -((((-420 (-577))) . T)) -(((|#1|) |has| |#1| (-174))) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) -(((|#1|) . T)) -((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-549)) . T)) -((((-885)) . T)) -((($) -2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))))) -(|has| |#1| (-870)) -((((-885)) . T)) -((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((((-938 |#1|)) . T)) -((((-1206)) |has| |#2| (-926 (-1206))) (((-1112)) . T)) -((((-1282 |#2| |#3| |#4|)) . T)) -((($) . T) (((-420 (-577))) . T)) -(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) -((((-885)) . T)) -(|has| |#1| (-1251)) +(-2230 (|has| |#2| (-815)) (|has| |#2| (-871))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +((((-1207)) . T) ((|#1|) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-578)) . T) (($) . T) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131)))) +(((#0=(-421 (-578)) #0#) . T)) +((((-421 (-578))) . T)) +(((|#1|) |has| |#1| (-175))) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) +(((|#1|) . T)) +((((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((((-550)) . T)) +((((-886)) . T)) +((($) -2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))))) +(|has| |#1| (-871)) +((((-886)) . T)) +((((-578)) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((((-939 |#1|)) . T)) +((((-1207)) |has| |#2| (-927 (-1207))) (((-1113)) . T)) +((((-1283 |#2| |#3| |#4|)) . T)) +((($) . T) (((-421 (-578))) . T)) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +((((-886)) . T)) +(|has| |#1| (-1252)) (((|#2|) . T)) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-1206)) |has| |#1| (-926 (-1206)))) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -((($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-569)))) -(|has| |#1| (-569)) -(((|#1|) |has| |#1| (-375))) -((((-577)) . T)) -((((-1206) #0=(-117 |#1|)) |has| #0# (-527 (-1206) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) -(|has| |#1| (-812)) -(|has| |#1| (-812)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) -(((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) -((((-1112)) . T) ((|#2|) . T) (((-577)) |has| |#2| (-1068 (-577))) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-885)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-577)) . T) (($) . T)) -((((-577) (-792)) . T) ((|#3| (-792)) . T)) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +((((-1207)) |has| |#1| (-927 (-1207)))) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) . T)) +(((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578)))) ((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +((($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1080)) (((-578)) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080)))) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-570)))) +(|has| |#1| (-570)) +(((|#1|) |has| |#1| (-376))) +((((-578)) . T)) +((((-1207) #0=(-118 |#1|)) |has| #0# (-528 (-1207) #0#)) ((#0# #0#) |has| #0# (-321 #0#))) +(|has| |#1| (-813)) +(|has| |#1| (-813)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) +(((|#2|) . T) (((-578)) |has| |#2| (-1069 (-578))) (((-421 (-578))) |has| |#2| (-1069 (-421 (-578))))) +((((-1113)) . T) ((|#2|) . T) (((-578)) |has| |#2| (-1069 (-578))) (((-421 (-578))) |has| |#2| (-1069 (-421 (-578))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-578)) . T) (($) . T)) +((((-578) (-793)) . T) ((|#3| (-793)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-885)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((($) |has| |#1| (-380))) -((($) |has| |#1| (-380))) -((($) |has| |#1| (-380))) -(|has| |#2| (-841)) -(|has| |#2| (-841)) -((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) -((($ (-1206)) |has| |#1| (-926 (-1206)))) -(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((($) -2229 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) -(((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-577)) |has| |#1| (-910 (-577))) (((-391)) |has| |#1| (-910 (-391)))) -(((|#1|) . T)) -((((-893 |#1|)) . T)) -((((-893 |#1|)) . T)) -((((-420 (-577))) . T) (((-720)) . T) (($) . T)) -(((|#1|) |has| |#1| (-174))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-937))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-174))) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#2|) -2229 (|has| |#2| (-6 (-4501 "*"))) (|has| |#2| (-174)))) +((((-886)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((($) |has| |#1| (-381))) +((($) |has| |#1| (-381))) +((($) |has| |#1| (-381))) +(|has| |#2| (-842)) +(|has| |#2| (-842)) +((((-578)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-578)))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +((($ (-1207)) |has| |#1| (-927 (-1207)))) +(((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((($) -2230 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362)))) +(((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-578)) |has| |#1| (-911 (-578))) (((-392)) |has| |#1| (-911 (-392)))) +(((|#1|) . T)) +((((-894 |#1|)) . T)) +((((-894 |#1|)) . T)) +((((-421 (-578))) . T) (((-721)) . T) (($) . T)) +(((|#1|) |has| |#1| (-175))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-938))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-175))) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#2|) -2230 (|has| |#2| (-6 (-4502 "*"))) (|has| |#2| (-175)))) (((|#2|) . T)) -(|has| |#1| (-375)) +(|has| |#1| (-376)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-887 |#1|)) . T)) +((((-888 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-792)) . T)) -((((-1206)) . T)) -((((-893 |#1|)) . T)) -(-2229 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) -(-2229 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-814)) (|has| |#3| (-1079))) -((((-885)) . T)) +(((|#2| (-793)) . T)) +((((-1207)) . T)) +((((-894 |#1|)) . T)) +(-2230 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) +(-2230 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080))) +((((-886)) . T)) (((|#1|) . T)) -(-2229 (|has| |#2| (-814)) (|has| |#2| (-870))) -(-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) -((((-893 |#1|)) . T)) +(-2230 (|has| |#2| (-815)) (|has| |#2| (-871))) +(-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) +((((-894 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -((($ $) . T) (((-630 $) $) . T)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +((($ $) . T) (((-631 $) $) . T)) ((($) . T)) -((((-885)) . T)) -((((-577)) . T)) +((((-886)) . T)) +((((-578)) . T)) (((|#2|) . T)) -((((-885)) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) -((($) . T) (((-577)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-885)) . T)) -((($) . T) ((|#2|) . T) (((-420 (-577))) . T) (((-577)) |has| |#2| (-659 (-577)))) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-885)) . T)) -(|has| |#2| (-937)) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) -((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) -((((-885)) . T)) -((((-885)) . T)) -(|has| |#1| (-870)) -(((|#3|) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) -((((-1155 |#1| |#2|)) . T) (((-980 |#1|)) |has| |#2| (-632 (-1206))) (((-885)) . T)) -((((-980 |#1|)) |has| |#2| (-632 (-1206))) (((-1188)) -12 (|has| |#1| (-1068 (-577))) (|has| |#2| (-632 (-1206)))) (((-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) (((-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) (((-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549))))) -((((-1202 |#1|)) . T) (((-885)) . T)) -((((-885)) . T)) -((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) -((((-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (((-1112)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T) (((-1206)) . T)) -((((-885)) . T)) -((((-577)) . T)) +((((-886)) . T)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-376))) +((($) . T) (((-578)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((($) . T) ((|#2|) . T) (((-421 (-578))) . T) (((-578)) |has| |#2| (-660 (-578)))) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(|has| |#2| (-938)) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) +((((-550)) |has| |#2| (-633 (-550))) (((-917 (-392))) |has| |#2| (-633 (-917 (-392)))) (((-917 (-578))) |has| |#2| (-633 (-917 (-578))))) +((((-886)) . T)) +((((-886)) . T)) +(|has| |#1| (-871)) +(((|#3|) |has| |#3| (-1080)) (((-578)) -12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080)))) +((((-1156 |#1| |#2|)) . T) (((-981 |#1|)) |has| |#2| (-633 (-1207))) (((-886)) . T)) +((((-981 |#1|)) |has| |#2| (-633 (-1207))) (((-1189)) -12 (|has| |#1| (-1069 (-578))) (|has| |#2| (-633 (-1207)))) (((-917 (-578))) -12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) (((-917 (-392))) -12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) (((-550)) -12 (|has| |#1| (-633 (-550))) (|has| |#2| (-633 (-550))))) +((((-1203 |#1|)) . T) (((-886)) . T)) +((((-886)) . T)) +((((-421 (-578))) |has| |#2| (-1069 (-421 (-578)))) (((-578)) |has| |#2| (-1069 (-578))) ((|#2|) . T) (((-888 |#1|)) . T)) +((((-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T)) +((((-118 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T) (((-1207)) . T)) +((((-886)) . T)) +((((-578)) . T)) (((|#1|) . T)) ((($) . T)) -((((-391)) |has| |#1| (-910 (-391))) (((-577)) |has| |#1| (-910 (-577)))) -((((-577)) . T)) -(((|#1|) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-885)) . T)) -((((-658 |#1| |#2|) |#1|) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-665 |#1|)) . T)) -((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) -((($) . T) (((-577)) . T) (((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) -((((-577)) -2229 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) (($) -2229 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1079))) ((|#1|) -2229 (|has| |#1| (-174)) (|has| |#1| (-1079))) (((-420 (-577))) |has| |#1| (-569))) -((((-1211)) . T)) -((((-577)) . T) (((-420 (-577))) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) -(((|#1|) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1211)) . T)) -(((|#1|) |has| |#1| (-320 |#1|))) -((((-391)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-885)) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-420 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(((|#2| (-495 (-3224 |#1|) (-792))) . T)) -((((-577) |#1|) . T)) -((((-1188)) . T) (((-885)) . T)) +((((-392)) |has| |#1| (-911 (-392))) (((-578)) |has| |#1| (-911 (-578)))) +((((-578)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-659 |#1| |#2|) |#1|) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-666 |#1|)) . T)) +((($) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) +((($) . T) (((-578)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (((-421 (-578))) . T)) +((((-578)) -2230 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) (($) -2230 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-570)) (|has| |#1| (-1080))) ((|#1|) -2230 (|has| |#1| (-175)) (|has| |#1| (-1080))) (((-421 (-578))) |has| |#1| (-570))) +((((-1212)) . T)) +((((-578)) . T) (((-421 (-578))) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) +(((|#1|) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T)) +((((-1212)) . T)) +(((|#1|) |has| |#1| (-321 |#1|))) +((((-392)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-421 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(((|#2| (-496 (-3226 |#1|) (-793))) . T)) +((((-578) |#1|) . T)) +((((-1189)) . T) (((-886)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-544 (-1206))) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) -((((-577)) . T)) +(((|#1| (-545 (-1207))) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) +((((-578)) . T)) (((|#2|) . T)) -((($) -2229 (-12 (|has| |#2| (-239)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))))) +((($) -2230 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))) (((|#2|) . T)) -((((-1206)) |has| |#1| (-926 (-1206))) (((-1112)) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -(|has| |#1| (-569)) -(((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) -((($) . T) (((-420 (-577))) . T)) +((((-1207)) |has| |#1| (-927 (-1207))) (((-1113)) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +(|has| |#1| (-570)) +(((#0=(-1283 |#2| |#3| |#4|)) . T) (((-421 (-578))) |has| #0# (-38 (-421 (-578)))) (((-578)) . T) (($) . T)) +((($) . T) (((-421 (-578))) . T)) ((($) . T)) ((($) . T)) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) (((|#1|) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-885)) . T)) -((((-145)) . T)) -(((|#1|) . T) (((-420 (-577))) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-886)) . T)) +((((-146)) . T)) +(((|#1|) . T) (((-421 (-578))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-885)) . T)) +((((-886)) . T)) (((|#1|) . T)) -(|has| |#1| (-1182)) -((($ (-1206)) -2229 (|has| (-420 |#2|) (-926 (-1206))) (|has| (-420 |#2|) (-928 (-1206))))) +(|has| |#1| (-1183)) +((($ (-1207)) -2230 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207))))) (((|#1|) . T)) -(((|#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) . T)) -((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((((-885)) . T)) -((((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-577)) |has| |#1| (-1068 (-577))) ((|#1|) . T) ((|#2|) . T)) -((((-1112)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577))))) -((((-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) (((-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577))))) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -((((-577) |#1|) . T)) +(((|#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) . T)) +((((-421 $) (-421 $)) |has| |#1| (-570)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((((-886)) . T)) +((((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-578)) |has| |#1| (-1069 (-578))) ((|#1|) . T) ((|#2|) . T)) +((((-1113)) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578))))) +((((-392)) -12 (|has| |#1| (-911 (-392))) (|has| |#2| (-911 (-392)))) (((-578)) -12 (|has| |#1| (-911 (-578))) (|has| |#2| (-911 (-578))))) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +((((-578) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T)) +(((|#1|) |has| |#1| (-175)) (($) . T)) ((($) . T)) -((((-720)) . T)) -((((-801 |#1| (-887 |#2|))) . T)) -((((-577)) . T) (($) . T)) +((((-721)) . T)) +((((-802 |#1| (-888 |#2|))) . T)) +((((-578)) . T) (($) . T)) ((($) . T)) -(((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) -((((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-1130)) -(|has| |#1| (-1130)) -(|has| |#2| (-375)) -(((|#1|) . T) (($) -2229 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -((($) -2229 (|has| |#2| (-239)) (|has| |#2| (-238)))) -((((-577)) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-1130)) -((($ (-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) -((((-1206)) -12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079)))) -((((-1206)) -12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079)))) -(((|#1|) . T)) -(|has| |#1| (-239)) -(((|#2| (-246 (-3224 |#1|) (-792))) . T)) -(((|#1| (-544 |#3|)) . T)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) -(|has| |#1| (-380)) +(((|#1|) . T) (((-421 (-578))) |has| |#1| (-376))) +((((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-1131)) +(|has| |#1| (-1131)) +(|has| |#2| (-376)) +(((|#1|) . T) (($) -2230 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-578))) |has| |#1| (-376))) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +((($) -2230 (|has| |#2| (-240)) (|has| |#2| (-239)))) +((((-578)) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-1131)) +((($ (-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) +((((-1207)) -12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080)))) +((((-1207)) -12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080)))) +(((|#1|) . T)) +(|has| |#1| (-240)) +(((|#2| (-247 (-3226 |#1|) (-793))) . T)) +(((|#1| (-545 |#3|)) . T)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) +(|has| |#1| (-381)) (((|#1|) . T) (($) . T)) -(((|#1| (-544 |#2|)) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) -(((|#1| (-792)) . T)) -(|has| |#1| (-569)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1079))) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) +(((|#1| (-545 |#2|)) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) +(((|#1| (-793)) . T)) +(|has| |#1| (-570)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-885)) . T)) -((((-577)) . T) (((-420 (-577))) . T) (($) . T)) -(-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) -(-2229 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-814)) (|has| |#3| (-1079))) -(|has| |#2| (-1079)) -(((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1079))) -(((|#3|) |has| |#3| (-1079))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) -(-12 (|has| |#1| (-375)) (|has| |#2| (-841))) -((((-577)) . T) (((-420 (-577))) -2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ((|#2|) . T) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-887 |#1|)) . T)) -((((-1155 |#1| |#2|)) . T) (((-577)) . T) ((|#3|) . T) (($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ((|#2|) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-1211)) . T)) -((((-693 |#1|)) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-885)) . T)) -((((-665 $)) . T) (((-1188)) . T) (((-1206)) . T) (((-577)) . T) (((-228)) . T) (((-885)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((($) . T) (((-420 (-577))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1130)) (((-577)) -12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) (((-420 (-577))) -12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130)))) -(((|#3|) |has| |#3| (-1130)) (((-577)) -12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (((-420 (-577))) -12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130)))) -(|has| |#2| (-375)) -(((|#2|) |has| |#2| (-1079)) (((-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079)))) -(-2229 (|has| |#1| (-380)) (|has| |#1| (-870))) -(((|#1|) . T)) -(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((((-1206)) |has| |#1| (-1079))) -(|has| |#2| (-375)) +((((-886)) . T)) +((((-578)) . T) (((-421 (-578))) . T) (($) . T)) +(-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) +(-2230 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080))) +(|has| |#2| (-1080)) +(((|#1|) |has| |#1| (-175))) +(((|#4|) |has| |#4| (-1080))) +(((|#3|) |has| |#3| (-1080))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) +((((-578)) . T) (((-421 (-578))) -2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ((|#2|) . T) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) (((-888 |#1|)) . T)) +((((-1156 |#1| |#2|)) . T) (((-578)) . T) ((|#3|) . T) (($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ((|#2|) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (($) . T) (((-578)) . T)) +((((-1212)) . T)) +((((-694 |#1|)) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (($) . T)) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +((((-886)) . T)) +((((-666 $)) . T) (((-1189)) . T) (((-1207)) . T) (((-578)) . T) (((-229)) . T) (((-886)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((($) . T) (((-421 (-578))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1131)) (((-578)) -12 (|has| |#4| (-1069 (-578))) (|has| |#4| (-1131))) (((-421 (-578))) -12 (|has| |#4| (-1069 (-421 (-578)))) (|has| |#4| (-1131)))) +(((|#3|) |has| |#3| (-1131)) (((-578)) -12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) (((-421 (-578))) -12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131)))) +(|has| |#2| (-376)) +(((|#2|) |has| |#2| (-1080)) (((-578)) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080)))) +(-2230 (|has| |#1| (-381)) (|has| |#1| (-871))) +(((|#1|) . T)) +(((#0=(-421 (-578)) #0#) |has| |#2| (-38 (-421 (-578)))) ((|#2| |#2|) . T) (($ $) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1| |#1|) . T) ((#0=(-421 (-578)) #0#) |has| |#1| (-38 (-421 (-578))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +((((-1207)) |has| |#1| (-1080))) +(|has| |#2| (-376)) (((|#2| |#2|) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (($) -2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) . T) (($) . T) (((-421 (-578))) . T)) (((|#2|) . T)) -((((-885)) |has| |#1| (-1130))) +((((-886)) |has| |#1| (-1131))) ((($) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-841)) -(|has| |#2| (-841)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#1| (-375)) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-375)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#1| (-375)) -(((|#1|) |has| |#2| (-430 |#1|))) -(((|#1|) |has| |#2| (-430 |#1|))) -((((-1188)) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-665 |#1|)) . T) (((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-665 |#1|)) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1246)) . T) (((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) |has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))))) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -((((-577) |#1|) . T)) -((((-577) |#1|) . T)) -((((-577) |#1|) . T)) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-577) |#1|) . T)) -(((|#1|) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) -((((-1206)) |has| |#1| (-926 (-1206))) (((-839 (-1206))) . T)) -(-2229 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-814)) (|has| |#3| (-1079))) -((((-840 |#1|)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-842)) +(|has| |#2| (-842)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| |#1| (-376)) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-376)) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| |#1| (-376)) +(((|#1|) |has| |#2| (-431 |#1|))) +(((|#1|) |has| |#2| (-431 |#1|))) +((((-1189)) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-666 |#1|)) . T) (((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-666 |#1|)) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1247)) . T) (((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) |has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))))) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +((((-578) |#1|) . T)) +((((-578) |#1|) . T)) +((((-578) |#1|) . T)) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-578) |#1|) . T)) +(((|#1|) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-578)) . T) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((((-1207)) |has| |#1| (-927 (-1207))) (((-840 (-1207))) . T)) +(-2230 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080))) +((((-841 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-885)) . T)) -(|has| |#3| (-1079)) +((((-886)) . T)) +(|has| |#3| (-1080)) (((|#1| |#2|) . T)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -(|has| |#1| (-38 (-420 (-577)))) -((((-885)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) -(((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -(|has| |#1| (-375)) -(-2229 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239)))) -(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) -(|has| |#1| (-375)) -(((|#1|) . T)) -(((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -((((-327 |#1|)) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((#0=(-720) (-1202 #0#)) . T)) -((((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +(|has| |#1| (-38 (-421 (-578)))) +((((-886)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570)) (((-421 (-578))) |has| |#1| (-570))) +(((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +(|has| |#1| (-376)) +(-2230 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) +(|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) +(|has| |#1| (-376)) +(((|#1|) . T)) +(((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#1| |#1|) . T)) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +((((-328 |#1|)) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((#0=(-721) (-1203 #0#)) . T)) +((((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-578)) . T) (((-421 (-578))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-869)) -(((|#2|) . T) (((-1206)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2229 (|has| |#1| (-375)) (|has| |#1| (-569)))) -((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1155 |#1| (-1206))) . T) (((-839 (-1206))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1068 (-577))) (((-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) (((-1206)) . T)) +(|has| |#1| (-870)) +(((|#2|) . T) (((-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570))) (((-578)) . T) ((|#1|) |has| |#1| (-175))) +(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) (((-578)) . T) (($) -2230 (|has| |#1| (-376)) (|has| |#1| (-570)))) +((($ $) . T) ((#0=(-888 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1156 |#1| (-1207))) . T) (((-840 (-1207))) . T) ((|#1|) . T) (((-578)) |has| |#1| (-1069 (-578))) (((-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) (((-1207)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1112) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1206) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1118 (-1206)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1113) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1207) $) |has| |#1| (-240)) ((#0# |#1|) |has| |#1| (-240)) ((#1=(-1119 (-1207)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-577)) |has| |#2| (-659 (-577))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) -(|has| |#2| (-937)) -((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) -(((|#1|) |has| |#1| (-174))) +((($) . T) (((-578)) |has| |#2| (-660 (-578))) ((|#2|) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578))))) +(|has| |#2| (-938)) +((($) . T) ((#0=(-1283 |#2| |#3| |#4|)) |has| #0# (-175)) (((-421 (-578))) |has| #0# (-38 (-421 (-578))))) +(((|#1|) |has| |#1| (-175))) (((|#1|) . T)) -((((-577) |#1|) . T)) +((((-578) |#1|) . T)) (((|#1|) . T)) -((((-1211)) . T)) -(((#0=(-1283 |#1| |#2| |#3| |#4|)) |has| #0# (-320 #0#))) +((((-1212)) . T)) +(((#0=(-1284 |#1| |#2| |#3| |#4|)) |has| #0# (-321 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2| |#2|) |has| |#1| (-375)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -(|has| |#2| (-239)) -(|has| $ (-148)) -((((-885)) . T)) -((($) . T) (((-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -((((-885)) . T)) -(|has| |#1| (-869)) -((((-130)) . T)) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-420 (-577))) . T) (((-720)) . T) (($) . T) (((-577)) . T)) -(((|#1|) . T)) -((((-130)) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206))))) -((((-885)) . T)) -(-12 (|has| |#1| (-318)) (|has| |#1| (-937))) -(((|#2| (-693 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-420 |#2|) |#3|) . T)) -((((-885)) |has| |#1| (-1130))) +((($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) ((#0=(-421 (-578)) #0#) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +(|has| |#2| (-240)) +(|has| $ (-149)) +((((-886)) . T)) +((($) . T) (((-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-362))) ((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +((((-886)) . T)) +(|has| |#1| (-870)) +((((-131)) . T)) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-421 (-578))) . T) (((-721)) . T) (($) . T) (((-578)) . T)) +(((|#1|) . T)) +((((-131)) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207))))) +((((-886)) . T)) +(-12 (|has| |#1| (-319)) (|has| |#1| (-938))) +(((|#2| (-694 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-421 |#2|) |#3|) . T)) +((((-886)) |has| |#1| (-1131))) (((|#4|) . T)) -(|has| |#1| (-569)) -((($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) -((((-1206)) -2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) -(((|#1|) . T) (($) -2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -(-2229 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) -(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130)))) -(((|#1|) . T)) -(((|#1| (-544 (-839 (-1206)))) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -((((-577)) . T) ((|#2|) . T) (($) . T) (((-420 (-577))) . T) (((-1206)) |has| |#2| (-1068 (-1206)))) -(((|#1|) . T)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) -(((|#1|) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) -(-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) -((($) . T) (((-893 |#1|)) . T) (((-420 (-577))) . T)) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) -(|has| |#1| (-569)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-420 |#2|)) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-420 (-577)) #0#) . T) (($ $) . T)) -(((|#2|) . T) (((-420 (-577))) . T) (($) . T)) -((((-577)) . T)) -((((-885)) . T)) -((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -((((-885)) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-577) |#1|) . T)) +(|has| |#1| (-570)) +((($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) +((((-1207)) -2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))))) +(((|#1|) . T) (($) -2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-570))) (((-421 (-578))) -2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-376)))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +(-2230 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207))))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131)))) +(((|#1|) . T)) +(((|#1| (-545 (-840 (-1207)))) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +((((-578)) . T) ((|#2|) . T) (($) . T) (((-421 (-578))) . T) (((-1207)) |has| |#2| (-1069 (-1207)))) +(((|#1|) . T)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) +(((|#1|) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) +(-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) +((($) . T) (((-894 |#1|)) . T) (((-421 (-578))) . T)) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) +(|has| |#1| (-570)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-421 |#2|)) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-421 (-578)) #0#) . T) (($ $) . T)) +(((|#2|) . T) (((-421 (-578))) . T) (($) . T)) +((((-578)) . T)) +((((-886)) . T)) +((((-595 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +((((-886)) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-578) |#1|) . T)) ((($) . T)) ((($) . T)) -((((-885)) . T)) -((((-549)) |has| |#2| (-632 (-549))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577))))) -((((-885)) . T)) -((((-885)) . T)) -((((-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) (((-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) (((-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549))))) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-238))) -(((|#1|) . T) (((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T)) -((((-115)) . T) ((|#1|) . T) (((-577)) . T)) -((($) . T) (((-577)) . T) (((-117 |#1|)) . T) (((-420 (-577))) . T)) -((((-656 |#2|)) . T)) -(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) . T)) -((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937)))) +((((-886)) . T)) +((((-550)) |has| |#2| (-633 (-550))) (((-917 (-392))) |has| |#2| (-633 (-917 (-392)))) (((-917 (-578))) |has| |#2| (-633 (-917 (-578))))) +((((-886)) . T)) +((((-886)) . T)) +((((-917 (-578))) -12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#3| (-633 (-917 (-578))))) (((-917 (-392))) -12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#3| (-633 (-917 (-392))))) (((-550)) -12 (|has| |#1| (-633 (-550))) (|has| |#3| (-633 (-550))))) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-239))) +(((|#1|) . T) (((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T)) +((((-116)) . T) ((|#1|) . T) (((-578)) . T)) +((($) . T) (((-578)) . T) (((-118 |#1|)) . T) (((-421 (-578))) . T)) +((((-657 |#2|)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) . T)) +((((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) |has| |#2| (-175)) (($) -2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-659 (-577)))) -((($) . T) (((-577)) . T)) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((((-1134)) . T)) -((((-885)) . T)) -((((-1211)) . T) (((-885)) . T)) -((((-1211)) . T) (((-885)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((($) -2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -((($) . T) (((-577)) . T)) -((($) -2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(|has| |#2| (-937)) -(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-1206) $) . T)) -((((-1289 |#1| |#2| |#3|)) . T)) -((((-1289 |#1| |#2| |#3|)) |has| |#1| (-375))) -(|has| |#1| (-937)) -((((-1289 |#1| |#2| |#3|)) . T) (((-1261 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -((((-1206)) . T) (((-885)) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-174))) -((((-720)) . T)) -((((-720)) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-1211)) . T)) -(-2229 (|has| |#2| (-814)) (|has| |#2| (-870))) -(((|#1|) |has| |#1| (-174))) -((((-1211)) . T)) +((($) . T) (((-421 (-578))) |has| |#2| (-38 (-421 (-578)))) ((|#2|) . T) (((-578)) |has| |#2| (-660 (-578)))) +((($) . T) (((-578)) . T)) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((((-1135)) . T)) +((((-886)) . T)) +((((-1212)) . T) (((-886)) . T)) +((((-1212)) . T) (((-886)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((($) -2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +((($) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +((($) . T) (((-578)) . T)) +((($) -2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(|has| |#2| (-938)) +(((|#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-1207) $) . T)) +((((-1290 |#1| |#2| |#3|)) . T)) +((((-1290 |#1| |#2| |#3|)) |has| |#1| (-376))) +(|has| |#1| (-938)) +((((-1290 |#1| |#2| |#3|)) . T) (((-1262 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +((((-1207)) . T) (((-886)) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-175))) +((((-721)) . T)) +((((-721)) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-1212)) . T)) +(-2230 (|has| |#2| (-815)) (|has| |#2| (-871))) +(((|#1|) |has| |#1| (-175))) +((((-1212)) . T)) (((|#1| |#1|) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) -((((-1211)) . T)) -((((-1283 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-569)) (($) |has| |#1| (-569))) -((((-420 (-577))) . T) (($) . T)) -(((|#1| (-577)) . T)) -(((|#1|) . T)) -((((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((($ (-1206)) -2229 (|has| |#1| (-926 (-1206))) (|has| |#1| (-928 (-1206)))) (($ (-1112)) . T)) -(((|#1|) |has| |#1| (-174))) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1211)) . T)) -((((-1211)) . T)) -(|has| |#1| (-375)) -(|has| |#1| (-375)) -(-2229 (|has| |#1| (-174)) (|has| |#1| (-569))) -(((|#1| (-577)) . T)) -(((|#1| (-420 (-577))) . T)) -(((|#1| (-792)) . T)) -((((-420 (-577))) . T)) -(((|#1| (-544 |#2|) |#2|) . T)) -((((-577) |#1|) . T)) -((((-577) |#1|) . T)) -(-2229 (|has| |#1| (-102)) (|has| |#1| (-1130))) -(-2229 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) -((((-577) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-916 (-391))) . T) (((-916 (-577))) . T) (((-1206)) . T) (((-549)) . T)) -(-2229 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-814)) (|has| |#2| (-1079))) -(-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) -((((-885)) . T)) -((((-577)) . T)) -((((-577)) . T)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-578))) . T)) +(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570)) (((-421 (-578))) |has| |#1| (-570))) +((((-1212)) . T)) +((((-1284 |#1| |#2| |#3| |#4|)) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1|) |has| |#1| (-175)) (((-421 (-578))) |has| |#1| (-570)) (($) |has| |#1| (-570))) +((((-421 (-578))) . T) (($) . T)) +(((|#1| (-578)) . T)) +(((|#1|) . T)) +((((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((($ (-1207)) -2230 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T)) +(((|#1|) |has| |#1| (-175))) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +((((-1212)) . T)) +((((-1212)) . T)) +(|has| |#1| (-376)) +(|has| |#1| (-376)) +(-2230 (|has| |#1| (-175)) (|has| |#1| (-570))) +(((|#1| (-578)) . T)) +(((|#1| (-421 (-578))) . T)) +(((|#1| (-793)) . T)) +((((-421 (-578))) . T)) +(((|#1| (-545 |#2|) |#2|) . T)) +((((-578) |#1|) . T)) +((((-578) |#1|) . T)) +(-2230 (|has| |#1| (-102)) (|has| |#1| (-1131))) +(-2230 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))) +((((-578) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-917 (-392))) . T) (((-917 (-578))) . T) (((-1207)) . T) (((-550)) . T)) +(-2230 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080))) +(-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) +((((-886)) . T)) +((((-578)) . T)) +((((-578)) . T)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) -(|has| |#2| (-1079)) -(-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) -(|has| |#1| (-146)) -(|has| |#1| (-148)) -(|has| |#1| (-375)) +((((-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) +(|has| |#2| (-1080)) +(-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) +(|has| |#1| (-147)) +(|has| |#1| (-149)) +(|has| |#1| (-376)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) -(|has| |#1| (-239)) -((($) . T) (((-577)) . T) (((-420 (-577))) . T)) -((($) . T) (((-577)) . T)) -((($) . T) (((-577)) . T)) -((($) . T) ((#0=(-1282 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) -((((-885)) . T)) -(((|#1| (-792) (-1112)) . T)) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -((((-1264 (-577)) $) . T) (((-577) |#1|) . T)) -((((-117 |#1|)) . T)) -((((-117 |#1|)) . T)) -(((|#2|) |has| |#2| (-1079))) -((((-420 (-577))) . T) (($) . T)) -((((-420 (-577))) . T) (((-577)) . T)) +((($) . T) ((#0=(-1283 |#2| |#3| |#4|)) |has| #0# (-175)) (((-421 (-578))) |has| #0# (-38 (-421 (-578))))) +(|has| |#1| (-240)) +((($) . T) (((-578)) . T) (((-421 (-578))) . T)) +((($) . T) (((-578)) . T)) +((($) . T) (((-578)) . T)) +((($) . T) ((#0=(-1283 |#2| |#3| |#4|)) . T) (((-421 (-578))) |has| #0# (-38 (-421 (-578))))) +((((-886)) . T)) +(((|#1| (-793) (-1113)) . T)) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +((((-1265 (-578)) $) . T) (((-578) |#1|) . T)) +((((-118 |#1|)) . T)) +((((-118 |#1|)) . T)) +(((|#2|) |has| |#2| (-1080))) +((((-421 (-578))) . T) (($) . T)) +((((-421 (-578))) . T) (((-578)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-577)) . T)) -((((-577)) . T)) -((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) -((((-1188) (-1206) (-577) (-228) (-885)) . T)) +((((-578)) . T)) +((((-578)) . T)) +((((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-570))) +((((-1189) (-1207) (-578) (-229) (-886)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-577)) . T) ((|#2|) |has| |#2| (-174))) -((((-115)) . T) ((|#1|) . T) (((-577)) . T)) -(-2229 (|has| |#1| (-361)) (|has| |#1| (-380))) +((((-578)) . T) ((|#2|) |has| |#2| (-175))) +((((-116)) . T) ((|#1|) . T) (((-578)) . T)) +(-2230 (|has| |#1| (-362)) (|has| |#1| (-381))) (((|#1| |#2|) . T)) -((((-228)) . T)) -((((-420 (-577))) . T) (($) . T) (((-577)) . T)) -((((-885)) . T)) +((((-229)) . T)) +((((-421 (-578))) . T) (($) . T) (((-578)) . T)) +((((-886)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-659 (-577)))) -((($) . T) (((-577)) |has| |#1| (-659 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) -(((|#2|) |has| |#2| (-1130)) (((-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (((-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130)))) -(-2229 (|has| |#2| (-239)) (|has| |#2| (-238))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-549)) |has| |#1| (-632 (-549)))) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-870)) (|has| |#1| (-1130)))) -((((-577) $) . T) (((-665 (-577)) $) . T)) -((($) . T) (((-420 (-577))) . T)) -(|has| |#1| (-937)) -(|has| |#1| (-937)) -((((-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) (((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) (((-916 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-391))))) (((-916 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-577))))) (((-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-549))))) -((((-885)) . T)) -((((-885)) . T)) +((($) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((|#1|) . T) (((-578)) |has| |#1| (-660 (-578)))) +((($) . T) (((-578)) |has| |#1| (-660 (-578))) ((|#1|) . T) (((-421 (-578))) |has| |#1| (-38 (-421 (-578))))) +(((|#2|) |has| |#2| (-1131)) (((-578)) -12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (((-421 (-578))) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131)))) +(-2230 (|has| |#2| (-240)) (|has| |#2| (-239))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-550)) |has| |#1| (-633 (-550)))) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-871)) (|has| |#1| (-1131)))) +((((-578) $) . T) (((-666 (-578)) $) . T)) +((($) . T) (((-421 (-578))) . T)) +(|has| |#1| (-938)) +(|has| |#1| (-938)) +((((-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1053))) (((-392)) -12 (|has| |#1| (-376)) (|has| |#2| (-1053))) (((-917 (-392))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-917 (-392))))) (((-917 (-578))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-917 (-578))))) (((-550)) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-550))))) +((((-886)) . T)) +((((-886)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-174))) -(((|#1|) . T) (((-577)) . T)) -((((-1211)) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-569))) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) +(((|#1| |#1|) |has| |#1| (-175))) +(((|#1|) . T) (((-578)) . T)) +((((-1212)) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-570))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) (((|#2|) . T)) -(-2229 (|has| |#1| (-21)) (|has| |#1| (-869))) -(((|#1|) |has| |#1| (-174))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-885)) -2229 (-12 (|has| |#1| (-631 (-885))) (|has| |#2| (-631 (-885)))) (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))))) -((((-420 |#2|) |#3|) . T)) -((((-420 (-577))) . T) (($) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-375)) -((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) -((($) . T) (((-577)) . T)) -(|has| (-420 |#2|) (-148)) -(|has| (-420 |#2|) (-146)) -(-2229 (|has| |#3| (-814)) (|has| |#3| (-870))) +(-2230 (|has| |#1| (-21)) (|has| |#1| (-870))) +(((|#1|) |has| |#1| (-175))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-886)) -2230 (-12 (|has| |#1| (-632 (-886))) (|has| |#2| (-632 (-886)))) (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))))) +((((-421 |#2|) |#3|) . T)) +((((-421 (-578))) . T) (($) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-376)) +((($ $) . T) ((#0=(-421 (-578)) #0#) . T)) +((($) . T) (((-578)) . T)) +(|has| (-421 |#2|) (-149)) +(|has| (-421 |#2|) (-147)) +(-2230 (|has| |#3| (-815)) (|has| |#3| (-871))) ((($) . T)) -((((-720)) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((#0=(-577) #0#) . T)) -((($) . T) (((-420 (-577))) . T)) -(|has| |#4| (-1079)) -(|has| |#3| (-1079)) -((((-885)) . T) (((-1211)) . T)) -(|has| |#4| (-814)) -(|has| |#4| (-814)) -(|has| |#3| (-814)) -(|has| |#3| (-814)) -((((-1211)) . T)) -((((-577)) . T)) +((((-721)) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((#0=(-578) #0#) . T)) +((($) . T) (((-421 (-578))) . T)) +(|has| |#4| (-1080)) +(|has| |#3| (-1080)) +((((-886)) . T) (((-1212)) . T)) +(|has| |#4| (-815)) +(|has| |#4| (-815)) +(|has| |#3| (-815)) +(|has| |#3| (-815)) +((((-1212)) . T)) +((((-578)) . T)) (((|#2|) . T)) -((((-1206)) -2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206))))) -((((-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206))))) +((((-1207)) -2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207))))) +((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-887 |#1|)) . T)) +((((-888 |#1|)) . T)) (((|#1|) . T)) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) -((((-1170 |#1| |#2|)) . T)) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) -(((|#2|) . T) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1171 |#1| |#2|)) . T)) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) +(((|#2|) . T) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1052)) -(((|#2|) . T) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) +(|has| |#1| (-1053)) +(((|#2|) . T) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) ((($) . T)) -((((-885)) . T)) -((((-549)) |has| |#2| (-632 (-549))) (((-916 (-577))) |has| |#2| (-632 (-916 (-577)))) (((-916 (-391))) |has| |#2| (-632 (-916 (-391)))) (((-391)) . #0=(|has| |#2| (-1052))) (((-228)) . #0#)) -((((-305 |#3|)) . T)) -((((-1206) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-420 (-577)))) -(|has| |#1| (-38 (-420 (-577)))) -((((-1206)) -2229 (|has| |#2| (-926 (-1206))) (|has| |#2| (-928 (-1206))))) -((((-885)) . T)) +((((-886)) . T)) +((((-550)) |has| |#2| (-633 (-550))) (((-917 (-578))) |has| |#2| (-633 (-917 (-578)))) (((-917 (-392))) |has| |#2| (-633 (-917 (-392)))) (((-392)) . #0=(|has| |#2| (-1053))) (((-229)) . #0#)) +((((-306 |#3|)) . T)) +((((-1207) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-421 (-578)))) +(|has| |#1| (-38 (-421 (-578)))) +((((-1207)) -2230 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207))))) +((((-886)) . T)) (((|#2|) . T)) -((((-885)) . T)) -((((-420 (-577)) |#1|) . T) (($ $) . T)) -((((-420 |#2|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-420 (-577))) . T) (((-720)) . T) (($) . T)) -((((-1204 |#1| |#2| |#3|)) . T)) -((((-1204 |#1| |#2| |#3|)) . T) (((-1197 |#1| |#2| |#3|)) . T)) -((((-885)) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-577) |#1|) . T)) -((((-1204 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-886)) . T)) +((((-421 (-578)) |#1|) . T) (($ $) . T)) +((((-421 |#2|)) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((((-421 (-578))) . T) (((-721)) . T) (($) . T)) +((((-1205 |#1| |#2| |#3|)) . T)) +((((-1205 |#1| |#2| |#3|)) . T) (((-1198 |#1| |#2| |#3|)) . T)) +((((-886)) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-578) |#1|) . T)) +((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-375)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -2229 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1079))) (($) |has| |#4| (-1079)) (((-577)) -12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079)))) -(((|#2|) . T) ((|#3|) -2229 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1079))) (($) |has| |#3| (-1079)) (((-577)) -12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-117 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) (((-577)) |has| |#2| (-1068 (-577))) ((|#2|) . T) (((-887 |#1|)) . T)) -((((-1206)) . T) ((|#1|) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -((((-189)) . T) (((-885)) . T)) -((((-885)) . T)) -(((|#1|) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) -((((-577) |#1|) . T) (((-1264 (-577)) $) . T)) -((((-885)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-375)) (|has| |#2| (-297 |#2| |#2|))) (($ $) . T) (((-577) |#1|) . T)) -((($ $) . T) (((-420 (-577)) |#1|) . T)) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-937))) -((($ (-1206)) |has| |#1| (-1079))) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -((((-885)) . T)) -((((-885)) . T)) -((((-885)) . T)) -(((|#1| (-544 |#2|)) . T)) -((((-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) . T)) -((((-577) (-130)) . T)) -(((|#1| (-577)) . T)) -(((|#1| (-420 (-577))) . T)) -(((|#1| (-792)) . T)) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -(-2229 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) -(-2229 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-937))) +(|has| |#2| (-376)) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -2230 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080))) (($) |has| |#4| (-1080)) (((-578)) -12 (|has| |#4| (-660 (-578))) (|has| |#4| (-1080)))) +(((|#2|) . T) ((|#3|) -2230 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)) (((-578)) -12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-118 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-421 (-578))) |has| |#2| (-1069 (-421 (-578)))) (((-578)) |has| |#2| (-1069 (-578))) ((|#2|) . T) (((-888 |#1|)) . T)) +((((-1207)) . T) ((|#1|) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +((((-190)) . T) (((-886)) . T)) +((((-886)) . T)) +(((|#1|) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) +((((-578) |#1|) . T) (((-1265 (-578)) $) . T)) +((((-886)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) (($ $) . T) (((-578) |#1|) . T)) +((($ $) . T) (((-421 (-578)) |#1|) . T)) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-938))) +((($ (-1207)) |has| |#1| (-1080))) +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +((((-886)) . T)) +((((-886)) . T)) +((((-886)) . T)) +(((|#1| (-545 |#2|)) . T)) +((((-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) . T)) +((((-578) (-131)) . T)) +(((|#1| (-578)) . T)) +(((|#1| (-421 (-578))) . T)) +(((|#1| (-793)) . T)) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-118 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +(-2230 (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) +(-2230 (|has| |#1| (-466)) (|has| |#1| (-570)) (|has| |#1| (-938))) ((($) . T)) -(((|#2| (-544 (-887 |#1|))) . T)) -((((-1211)) . T)) -((((-1211)) . T)) -((((-577) |#1|) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) +(((|#2| (-545 (-888 |#1|))) . T)) +((((-1212)) . T)) +((((-1212)) . T)) +((((-578) |#1|) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) (((|#2|) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-885)) . T) (((-1211)) . T)) -((((-1211)) . T)) -((((-885)) -2229 (|has| |#1| (-631 (-885))) (|has| |#1| (-1130)))) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) . T) (((-1212)) . T)) +((((-1212)) . T)) +((((-886)) -2230 (|has| |#1| (-632 (-886))) (|has| |#1| (-1131)))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1188) |#1|) . T)) -((((-420 |#2|)) . T)) -((((-420 |#2|)) . T)) -(|has| |#1| (-569)) -(|has| |#1| (-569)) -((((-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T)) -(((|#2| (-792)) . T)) +((((-1189) |#1|) . T)) +((((-421 |#2|)) . T)) +((((-421 |#2|)) . T)) +(|has| |#1| (-570)) +(|has| |#1| (-570)) +((((-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T)) +(((|#2| (-793)) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-420 (-577))) . T)) -((((-420 (-577))) . T) (($) . T)) +((($) . T) (((-421 (-578))) . T)) +((((-421 (-578))) . T) (($) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-577)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-297 |#2| |#2|))) -(((|#1| (-665 |#1|)) |has| |#1| (-869))) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-361))) -(-2229 (|has| |#1| (-375)) (|has| |#1| (-361))) -((((-1293 |#1|)) . T) (((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1068 (-420 (-577))))) -(|has| |#1| (-1130)) -(((|#1|) . T)) -((((-420 (-577))) . T) (($) . T)) -((((-1293 |#1|)) . T) (((-577)) . T) (($) -2229 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-937))) (((-1112)) . T) ((|#2|) . T) (((-420 (-577))) -2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577)))))) -((((-1029 |#1|)) . T) ((|#1|) . T) (((-577)) -2229 (|has| (-1029 |#1|) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) (((-420 (-577))) -2229 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577)))))) -((((-938 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-1206)) |has| |#1| (-926 (-1206)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -((((-938 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-578)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-298 |#2| |#2|))) +(((|#1| (-666 |#1|)) |has| |#1| (-870))) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-362))) +(-2230 (|has| |#1| (-376)) (|has| |#1| (-362))) +((((-1294 |#1|)) . T) (((-578)) . T) ((|#2|) . T) (((-421 (-578))) |has| |#2| (-1069 (-421 (-578))))) +(|has| |#1| (-1131)) +(((|#1|) . T)) +((((-421 (-578))) . T) (($) . T)) +((((-1294 |#1|)) . T) (((-578)) . T) (($) -2230 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-570)) (|has| |#2| (-938))) (((-1113)) . T) ((|#2|) . T) (((-421 (-578))) -2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578)))))) +((((-1030 |#1|)) . T) ((|#1|) . T) (((-578)) -2230 (|has| (-1030 |#1|) (-1069 (-578))) (|has| |#1| (-1069 (-578)))) (((-421 (-578))) -2230 (|has| (-1030 |#1|) (-1069 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578)))))) +((((-939 |#1|)) . T) (((-421 (-578))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-1207)) |has| |#1| (-927 (-1207)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +((((-939 |#1|)) . T) (($) . T) (((-421 (-578))) . T)) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130)))) -(((|#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131)))) +(((|#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) -(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) +(((|#1|) . T) (((-421 (-578))) . T) (((-578)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1170 |#1| |#2|) #0#) |has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|)))) +(((#0=(-1171 |#1| |#2|) #0#) |has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((#0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) #0#) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) -(-2229 (|has| |#1| (-239)) (|has| |#1| (-238))) -(((#0=(-117 |#1|)) |has| #0# (-320 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((#0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) #0#) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) +(-2230 (|has| |#1| (-240)) (|has| |#1| (-239))) +(((#0=(-118 |#1|)) |has| #0# (-321 #0#))) ((($ $) . T)) -(-2229 (|has| |#1| (-870)) (|has| |#1| (-1130))) -((($ $) . T) ((#0=(-887 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-491 . -1130) T) ((-274 . -527) 205623) ((-254 . -527) 205566) ((-251 . -1130) 205516) ((-584 . -111) 205501) ((-544 . -23) T) ((-139 . -1130) T) ((-138 . -1130) T) ((-118 . -320) 205458) ((-134 . -1130) T) ((-1029 . -238) 205409) ((-820 . -1247) T) ((-492 . -527) 205201) ((-698 . -634) 205185) ((-715 . -102) T) ((-1171 . -527) 205104) ((-412 . -238) T) ((-403 . -132) T) ((-1310 . -1006) 205073) ((-1054 . -1081) 205010) ((-330 . -873) T) ((-1054 . -661) 204947) ((-31 . -93) T) ((-615 . -502) 204931) ((-840 . -867) T) ((-639 . -132) T) ((-625 . -102) T) ((-536 . -57) 204881) ((-620 . -102) T) ((-532 . -527) 204814) ((-363 . -235) 204801) ((-366 . -1081) 204746) ((-59 . -527) 204679) ((-529 . -527) 204612) ((-431 . -926) 204571) ((-171 . -1079) T) ((-510 . -527) 204504) ((-509 . -527) 204437) ((-366 . -661) 204382) ((-820 . -1068) 204162) ((-1270 . -634) 203910) ((-720 . -38) 203875) ((-1124 . -1123) 203859) ((-355 . -361) T) ((-481 . -1247) T) ((-1124 . -1130) 203837) ((-878 . -634) 203734) ((-171 . -249) 203685) ((-171 . -239) 203636) ((-1124 . -1125) 203594) ((-895 . -297) 203552) ((-228 . -816) T) ((-228 . -813) T) ((-715 . -295) NIL) ((-584 . -634) 203524) ((-1180 . -1223) 203503) ((-420 . -1022) 203487) ((-48 . -1081) 203452) ((-722 . -21) T) ((-722 . -25) T) ((-48 . -661) 203417) ((-1312 . -669) 203391) ((-1270 . -337) 203368) ((-1180 . -107) 203318) ((-327 . -161) 203297) ((-327 . -144) 203276) ((-117 . -21) T) ((-40 . -233) 203253) ((-40 . -273) 203230) ((-135 . -25) T) ((-117 . -25) T) ((-1270 . -239) T) ((-1270 . -1079) T) ((-626 . -299) 203206) ((-878 . -1079) T) ((-618 . -1247) T) ((-820 . -350) 203190) ((-488 . -299) 203169) ((-692 . -1247) T) ((-182 . -1247) T) ((-162 . -1247) T) ((-157 . -1247) T) ((-155 . -1247) T) ((-140 . -187) T) ((-118 . -1182) NIL) ((-91 . -631) 203101) ((-490 . -132) T) ((-1195 . -1247) T) ((-1126 . -503) 203082) ((-1126 . -631) 203048) ((-1120 . -503) 203029) ((-1120 . -631) 202995) ((-606 . -1247) T) ((-1103 . -503) 202976) ((-584 . -1079) T) ((-1103 . -631) 202942) ((-683 . -738) 202926) ((-1096 . -503) 202907) ((-1096 . -631) 202873) ((-986 . -299) 202850) ((-60 . -34) T) ((-1092 . -816) T) ((-1092 . -813) T) ((-1066 . -503) 202831) ((-1049 . -503) 202812) ((-837 . -747) T) ((-752 . -47) 202777) ((-641 . -38) 202764) ((-367 . -301) T) ((-364 . -301) T) ((-356 . -301) T) ((-274 . -301) 202695) ((-254 . -301) 202626) ((-1066 . -631) 202592) ((-1054 . -102) T) ((-1049 . -631) 202558) ((-644 . -503) 202539) ((-426 . -747) T) ((-118 . -38) 202484) ((-496 . -503) 202465) ((-644 . -631) 202431) ((-426 . -486) T) ((-221 . -503) 202412) ((-496 . -631) 202378) ((-366 . -102) T) ((-221 . -631) 202344) ((-1241 . -1088) T) ((-355 . -667) 202274) ((-732 . -1088) T) ((-1204 . -47) 202251) ((-1203 . -47) 202221) ((-1197 . -47) 202198) ((-129 . -299) 202173) ((-1065 . -152) 202119) ((-938 . -301) T) ((-1156 . -47) 202091) ((-715 . -320) NIL) ((-528 . -631) 202073) ((-523 . -631) 202055) ((-521 . -631) 202037) ((-498 . -1247) T) ((-338 . -1130) 201987) ((-327 . -920) 201951) ((-324 . -920) NIL) ((-733 . -465) 201882) ((-48 . -102) T) ((-1281 . -297) 201840) ((-1260 . -297) 201740) ((-665 . -687) 201724) ((-665 . -672) 201708) ((-351 . -21) T) ((-351 . -25) T) ((-40 . -361) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-665 . -385) 201692) ((-658 . -631) 201674) ((-615 . -297) 201626) ((-401 . -102) T) ((-1150 . -144) T) ((-127 . -631) 201558) ((-897 . -1130) T) ((-679 . -424) 201542) ((-752 . -1247) T) ((-735 . -631) 201524) ((-256 . -631) 201491) ((-189 . -631) 201473) ((-163 . -631) 201455) ((-158 . -631) 201437) ((-1312 . -747) T) ((-1132 . -34) T) ((-894 . -816) NIL) ((-894 . -813) NIL) ((-881 . -870) T) ((-752 . -910) NIL) ((-1321 . -132) T) ((-393 . -132) T) ((-916 . -634) 201405) ((-932 . -102) T) ((-752 . -1068) 201281) ((-1204 . -1247) T) ((-1203 . -1247) T) ((-544 . -132) T) ((-1197 . -1247) T) ((-1117 . -424) 201265) ((-1030 . -502) 201249) ((-118 . -413) 201226) ((-1156 . -1247) T) ((-803 . -424) 201210) ((-801 . -424) 201194) ((-971 . -34) T) ((-715 . -1182) NIL) ((-259 . -669) 201014) ((-258 . -669) 200821) ((-838 . -948) 200800) ((-467 . -424) 200784) ((-656 . -870) T) ((-615 . -19) 200768) ((-1176 . -1240) 200737) ((-1197 . -910) NIL) ((-1197 . -908) 200689) ((-615 . -617) 200666) ((-108 . -873) T) ((-1233 . -631) 200598) ((-1205 . -631) 200580) ((-62 . -408) T) ((-1203 . -1068) 200515) ((-1197 . -1068) 200481) ((-715 . -38) 200431) ((-40 . -667) 200361) ((-487 . -297) 200319) ((-1253 . -631) 200301) ((-752 . -389) 200285) ((-859 . -631) 200267) ((-679 . -1088) T) ((-641 . -928) 200190) ((-1281 . -1032) 200156) ((-449 . -1247) T) ((-1260 . -1032) 200122) ((-257 . -1247) T) ((-1118 . -634) 200106) ((-1093 . -1223) 200081) ((-1106 . -634) 200058) ((-895 . -632) 199865) ((-895 . -631) 199847) ((-118 . -928) NIL) ((-722 . -235) 199834) ((-1219 . -502) 199771) ((-431 . -1052) 199749) ((-48 . -320) 199736) ((-1093 . -107) 199682) ((-492 . -502) 199619) ((-538 . -1247) T) ((-533 . -1247) T) ((-1197 . -350) 199571) ((-1171 . -502) 199542) ((-1197 . -389) 199494) ((-1117 . -1088) T) ((-450 . -102) T) ((-185 . -1130) T) ((-259 . -34) T) ((-258 . -34) T) ((-1188 . -873) T) ((-871 . -634) 199478) ((-803 . -1088) T) ((-801 . -1088) T) ((-752 . -926) 199455) ((-467 . -1088) T) ((-59 . -502) 199439) ((-1064 . -1086) 199413) ((-532 . -502) 199397) ((-529 . -502) 199381) ((-510 . -502) 199365) ((-509 . -502) 199349) ((-251 . -527) 199282) ((-1064 . -111) 199249) ((-1204 . -926) 199162) ((-1203 . -926) 199068) ((-691 . -1142) T) ((-1197 . -926) 198901) ((-666 . -93) T) ((-1156 . -926) 198885) ((-366 . -1182) T) ((-333 . -1086) 198867) ((-31 . -503) 198848) ((-259 . -815) 198827) ((-259 . -814) 198806) ((-258 . -815) 198785) ((-258 . -814) 198764) ((-31 . -631) 198730) ((-50 . -1088) T) ((-259 . -747) 198708) ((-258 . -747) 198686) ((-1241 . -1130) T) ((-691 . -23) T) ((-594 . -1088) T) ((-531 . -1088) T) ((-391 . -1086) 198651) ((-333 . -111) 198626) ((-73 . -395) T) ((-73 . -408) T) ((-1054 . -38) 198563) ((-715 . -413) 198545) ((-99 . -102) T) ((-1326 . -1081) 198532) ((-732 . -1130) T) ((-1143 . -873) 198483) ((-1033 . -146) 198455) ((-1033 . -148) 198427) ((-893 . -667) 198399) ((-391 . -111) 198355) ((-330 . -1251) 198334) ((-487 . -1032) 198300) ((-366 . -38) 198265) ((-40 . -382) 198237) ((-896 . -631) 198109) ((-128 . -126) 198093) ((-122 . -126) 198077) ((-857 . -1086) 198047) ((-854 . -21) 197999) ((-848 . -1086) 197983) ((-854 . -25) 197935) ((-330 . -569) 197886) ((-530 . -634) 197867) ((-577 . -849) T) ((-246 . -1247) T) ((-1064 . -634) 197836) ((-857 . -111) 197801) ((-848 . -111) 197780) ((-1281 . -631) 197762) ((-1260 . -631) 197744) ((-1260 . -632) 197415) ((-1202 . -937) 197394) ((-1155 . -937) 197373) ((-48 . -38) 197338) ((-1319 . -1142) T) ((-549 . -297) 197294) ((-615 . -631) 197206) ((-615 . -632) 197167) ((-1317 . -1142) T) ((-373 . -634) 197151) ((-333 . -634) 197135) ((-1172 . -238) 197086) ((-246 . -1068) 196913) ((-1202 . -669) 196802) ((-1155 . -669) 196691) ((-877 . -669) 196665) ((-739 . -631) 196647) ((-559 . -380) T) ((-1319 . -23) T) ((-715 . -928) NIL) ((-1317 . -23) T) ((-504 . -1130) T) ((-391 . -634) 196597) ((-391 . -636) 196579) ((-1064 . -1079) T) ((-888 . -102) T) ((-1219 . -297) 196558) ((-171 . -380) 196509) ((-1034 . -1247) T) ((-1001 . -1247) T) ((-942 . -1247) T) ((-857 . -634) 196463) ((-848 . -634) 196418) ((-44 . -23) T) ((-1326 . -102) T) ((-492 . -297) 196397) ((-599 . -1130) T) ((-1176 . -1139) 196366) ((-440 . -1247) T) ((-1134 . -1133) 196318) ((-403 . -21) T) ((-403 . -25) T) ((-153 . -1142) T) ((-1241 . -738) 196215) ((-1227 . -1130) T) ((-1034 . -908) 196197) ((-1034 . -910) 196179) ((-641 . -233) 196163) ((-641 . -273) 196147) ((-639 . -21) T) ((-300 . -569) T) ((-639 . -25) T) ((-1034 . -1068) 196107) ((-732 . -738) 196072) ((-246 . -389) 196041) ((-391 . -1079) T) ((-226 . -1088) T) ((-118 . -273) 196018) ((-118 . -233) 195995) ((-59 . -297) 195947) ((-153 . -23) T) ((-529 . -297) 195899) ((-338 . -527) 195832) ((-509 . -297) 195784) ((-391 . -249) T) ((-391 . -239) T) ((-857 . -1079) T) ((-848 . -1079) T) ((-733 . -977) 195753) ((-722 . -870) T) ((-630 . -873) T) ((-487 . -631) 195735) ((-1283 . -1081) 195640) ((-593 . -667) 195612) ((-577 . -667) 195584) ((-508 . -667) 195534) ((-848 . -239) 195513) ((-135 . -870) T) ((-1283 . -661) 195405) ((-679 . -1130) T) ((-1219 . -617) 195384) ((-563 . -1223) 195363) ((-348 . -1130) T) ((-330 . -375) 195342) ((-420 . -148) 195321) ((-420 . -146) 195300) ((-992 . -1142) 195199) ((-836 . -1142) 195177) ((-246 . -926) 195109) ((-675 . -875) 195093) ((-492 . -617) 195072) ((-110 . -873) T) ((-537 . -1247) T) ((-563 . -107) 195022) ((-1034 . -389) 195004) ((-1034 . -350) 194986) ((-1206 . -631) 194968) ((-97 . -1130) T) ((-992 . -23) 194779) ((-490 . -21) T) ((-490 . -25) T) ((-836 . -23) 194631) ((-1206 . -632) 194553) ((-59 . -19) 194537) ((-1202 . -747) T) ((-1155 . -747) T) ((-1117 . -1130) T) ((-529 . -19) 194521) ((-509 . -19) 194505) ((-59 . -617) 194482) ((-1033 . -238) 194419) ((-929 . -102) 194369) ((-877 . -747) T) ((-803 . -1130) T) ((-529 . -617) 194346) ((-509 . -617) 194323) ((-801 . -1130) T) ((-801 . -1095) 194290) ((-474 . -1130) T) ((-467 . -1130) T) ((-599 . -738) 194265) ((-670 . -1130) T) ((-1289 . -47) 194242) ((-1283 . -102) T) ((-1282 . -47) 194212) ((-1261 . -47) 194189) ((-1241 . -174) 194140) ((-1203 . -318) 194119) ((-1197 . -318) 194098) ((-1126 . -634) 194079) ((-1120 . -634) 194060) ((-1110 . -569) 194011) ((-1110 . -1251) 193962) ((-1103 . -634) 193943) ((-1034 . -926) NIL) ((-1096 . -634) 193924) ((-691 . -132) T) ((-645 . -1142) T) ((-1066 . -634) 193905) ((-1049 . -634) 193886) ((-735 . -1086) 193856) ((-733 . -920) 193759) ((-720 . -667) 193709) ((-285 . -1130) T) ((-85 . -454) T) ((-85 . -408) T) ((-732 . -174) T) ((-658 . -1086) 193693) ((-50 . -1130) T) ((-608 . -47) 193670) ((-228 . -669) 193635) ((-594 . -1130) T) ((-531 . -1130) T) ((-500 . -841) T) ((-500 . -948) T) ((-371 . -1251) T) ((-365 . -1251) T) ((-357 . -1251) T) ((-330 . -1142) T) ((-327 . -1081) 193545) ((-324 . -1081) 193474) ((-108 . -1251) T) ((-644 . -634) 193455) ((-371 . -569) T) ((-220 . -948) T) ((-220 . -841) T) ((-327 . -661) 193365) ((-324 . -661) 193294) ((-365 . -569) T) ((-357 . -569) T) ((-658 . -111) 193273) ((-496 . -634) 193254) ((-108 . -569) T) ((-1197 . -1052) NIL) ((-679 . -738) 193224) ((-495 . -873) 193175) ((-221 . -634) 193156) ((-330 . -23) T) ((-67 . -1247) T) ((-1030 . -631) 193088) ((-1326 . -1182) T) ((-715 . -273) 193070) ((-715 . -233) 193052) ((-1321 . -21) T) ((-735 . -111) 193017) ((-1321 . -25) T) ((-665 . -34) T) ((-251 . -502) 193001) ((-1319 . -132) T) ((-1317 . -132) T) ((-1310 . -102) T) ((-1293 . -631) 192967) ((-1132 . -1128) 192951) ((-173 . -1130) T) ((-1289 . -1247) T) ((-1282 . -1247) T) ((-1282 . -1068) 192886) ((-1261 . -1247) T) ((-1261 . -910) NIL) ((-980 . -937) 192865) ((-1261 . -908) 192817) ((-1261 . -1068) 192783) ((-1241 . -527) 192750) ((-528 . -634) 192734) ((-1219 . -632) NIL) ((-1219 . -631) 192716) ((-1172 . -1153) 192661) ((-494 . -937) 192640) ((-1117 . -738) 192489) ((-1092 . -669) 192461) ((-980 . -669) 192350) ((-839 . -873) T) ((-803 . -738) 192179) ((-610 . -503) 192160) ((-598 . -503) 192141) ((-610 . -631) 192107) ((-598 . -631) 192073) ((-549 . -631) 192055) ((-592 . -1247) T) ((-549 . -632) 192036) ((-801 . -738) 191885) ((-1107 . -102) T) ((-641 . -667) 191857) ((-393 . -25) T) ((-393 . -21) T) ((-494 . -669) 191746) ((-474 . -738) 191717) ((-467 . -738) 191566) ((-1017 . -102) T) ((-1076 . -1240) 191495) ((-929 . -320) 191433) ((-758 . -102) T) ((-658 . -634) 191410) ((-118 . -667) 191340) ((-899 . -93) T) ((-735 . -634) 191294) ((-702 . -93) T) ((-544 . -25) T) ((-697 . -93) T) ((-685 . -631) 191276) ((-666 . -503) 191257) ((-666 . -631) 191210) ((-142 . -102) T) ((-44 . -132) T) ((-609 . -1247) T) ((-608 . -1247) T) ((-355 . -1088) T) ((-300 . -1142) T) ((-491 . -93) T) ((-420 . -238) 191161) ((-367 . -631) 191143) ((-364 . -631) 191125) ((-356 . -631) 191107) ((-274 . -632) 190855) ((-274 . -631) 190837) ((-254 . -631) 190819) ((-254 . -632) 190680) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1171 . -631) 190662) ((-1150 . -661) 190649) ((-1150 . -1081) 190636) ((-840 . -747) T) ((-840 . -880) T) ((-615 . -299) 190613) ((-594 . -738) 190578) ((-492 . -632) NIL) ((-492 . -631) 190560) ((-531 . -738) 190505) ((-327 . -102) T) ((-324 . -102) T) ((-300 . -23) T) ((-153 . -132) T) ((-938 . -631) 190487) ((-938 . -632) 190469) ((-399 . -747) T) ((-895 . -1086) 190421) ((-895 . -111) 190359) ((-735 . -1079) T) ((-733 . -1273) 190343) ((-715 . -361) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-532 . -631) 190275) ((-391 . -816) T) ((-169 . -1247) T) ((-226 . -1130) T) ((-391 . -813) T) ((-59 . -632) 190236) ((-228 . -815) T) ((-228 . -812) T) ((-59 . -631) 190148) ((-228 . -747) T) ((-529 . -632) 190109) ((-529 . -631) 190021) ((-510 . -631) 189953) ((-509 . -632) 189914) ((-509 . -631) 189826) ((-1110 . -375) 189777) ((-40 . -424) 189754) ((-77 . -1247) T) ((-894 . -937) NIL) ((-371 . -340) 189738) ((-371 . -375) T) ((-365 . -340) 189722) ((-365 . -375) T) ((-357 . -340) 189706) ((-357 . -375) T) ((-327 . -295) 189685) ((-108 . -375) T) ((-70 . -1247) T) ((-660 . -1130) T) ((-1261 . -350) 189637) ((-894 . -669) 189582) ((-1261 . -389) 189534) ((-992 . -132) 189389) ((-836 . -132) 189260) ((-45 . -873) NIL) ((-986 . -672) 189244) ((-1255 . -682) T) ((-1117 . -174) 189155) ((-986 . -385) 189139) ((-1092 . -815) T) ((-1092 . -812) T) ((-895 . -634) 189037) ((-803 . -174) 188928) ((-801 . -174) 188839) ((-837 . -47) 188801) ((-1092 . -747) T) ((-338 . -502) 188785) ((-980 . -747) T) ((-1310 . -320) 188723) ((-1289 . -926) 188636) ((-467 . -174) 188547) ((-251 . -297) 188499) ((-1282 . -926) 188405) ((-1281 . -1086) 188240) ((-1261 . -926) 188073) ((-494 . -747) T) ((-1260 . -1086) 187881) ((-1241 . -301) 187860) ((-1216 . -1247) T) ((-1213 . -380) T) ((-1212 . -380) T) ((-1176 . -152) 187844) ((-1150 . -102) T) ((-1148 . -1130) T) ((-1110 . -23) T) ((-1110 . -1142) T) ((-1105 . -102) T) ((-1087 . -631) 187811) ((-1033 . -422) 187783) ((-955 . -983) T) ((-758 . -320) 187721) ((-75 . -1247) T) ((-685 . -394) 187693) ((-171 . -937) 187646) ((-30 . -983) T) ((-112 . -865) T) ((-1 . -631) 187628) ((-1029 . -920) 187549) ((-129 . -672) 187531) ((-50 . -638) 187515) ((-715 . -667) 187450) ((-608 . -926) 187363) ((-451 . -102) T) ((-129 . -385) 187345) ((-142 . -320) NIL) ((-895 . -1079) T) ((-854 . -870) 187324) ((-81 . -1247) T) ((-732 . -301) T) ((-40 . -1088) T) ((-594 . -174) T) ((-531 . -174) T) ((-524 . -631) 187306) ((-171 . -669) 187180) ((-520 . -631) 187162) ((-363 . -148) 187144) ((-363 . -146) T) ((-371 . -1142) T) ((-365 . -1142) T) ((-357 . -1142) T) ((-1034 . -318) T) ((-942 . -318) T) ((-895 . -249) T) ((-108 . -1142) T) ((-895 . -239) 187123) ((-1281 . -111) 186944) ((-1260 . -111) 186733) ((-251 . -1285) 186717) ((-577 . -869) T) ((-371 . -23) T) ((-366 . -361) T) ((-327 . -320) 186704) ((-324 . -320) 186645) ((-365 . -23) T) ((-330 . -132) T) ((-357 . -23) T) ((-1034 . -1052) T) ((-31 . -634) 186626) ((-108 . -23) T) ((-675 . -1081) 186610) ((-251 . -617) 186587) ((-660 . -738) 186571) ((-344 . -1130) T) ((-675 . -661) 186541) ((-1283 . -38) 186433) ((-1270 . -937) 186412) ((-112 . -1130) T) ((-837 . -1247) T) ((-426 . -1247) T) ((-1065 . -102) T) ((-1270 . -669) 186301) ((-894 . -815) NIL) ((-878 . -669) 186275) ((-894 . -812) NIL) ((-837 . -910) NIL) ((-894 . -747) T) ((-1117 . -527) 186148) ((-803 . -527) 186095) ((-801 . -527) 186047) ((-584 . -669) 186034) ((-837 . -1068) 185862) ((-467 . -527) 185805) ((-401 . -402) T) ((-1281 . -634) 185618) ((-1260 . -634) 185366) ((-60 . -1247) T) ((-639 . -870) 185345) ((-513 . -682) T) ((-1176 . -1006) 185314) ((-1054 . -667) 185251) ((-1033 . -465) T) ((-720 . -869) T) ((-523 . -813) T) ((-487 . -1086) 185086) ((-513 . -113) T) ((-355 . -1130) T) ((-324 . -1182) NIL) ((-300 . -132) T) ((-407 . -1130) T) ((-893 . -1088) T) ((-715 . -382) 185053) ((-366 . -667) 184983) ((-226 . -638) 184960) ((-338 . -297) 184912) ((-487 . -111) 184733) ((-1281 . -1079) T) ((-1260 . -1079) T) ((-837 . -389) 184717) ((-845 . -1247) T) ((-171 . -747) T) ((-1312 . -1247) T) ((-675 . -102) T) ((-1281 . -249) 184696) ((-1281 . -239) 184648) ((-1260 . -239) 184553) ((-1260 . -249) 184532) ((-1033 . -415) NIL) ((-691 . -659) 184480) ((-327 . -38) 184390) ((-324 . -38) 184319) ((-69 . -631) 184301) ((-330 . -506) 184267) ((-48 . -667) 184217) ((-1219 . -299) 184196) ((-1255 . -870) T) ((-1143 . -1142) 184174) ((-83 . -1247) T) ((-61 . -631) 184156) ((-887 . -873) T) ((-492 . -299) 184135) ((-1312 . -1068) 184112) ((-1194 . -1130) T) ((-1143 . -23) 183964) ((-837 . -926) 183900) ((-1270 . -747) T) ((-1132 . -1247) T) ((-487 . -634) 183726) ((-363 . -238) T) ((-1117 . -301) 183657) ((-994 . -1130) T) ((-917 . -102) T) ((-803 . -301) 183568) ((-338 . -19) 183552) ((-59 . -299) 183529) ((-801 . -301) 183460) ((-878 . -747) T) ((-118 . -869) NIL) ((-529 . -299) 183437) ((-338 . -617) 183414) ((-509 . -299) 183391) ((-467 . -301) 183322) ((-1065 . -320) 183173) ((-899 . -503) 183154) ((-899 . -631) 183120) ((-702 . -503) 183101) ((-584 . -747) T) ((-697 . -503) 183082) ((-702 . -631) 183032) ((-697 . -631) 182998) ((-683 . -631) 182980) ((-491 . -503) 182961) ((-491 . -631) 182927) ((-251 . -632) 182888) ((-251 . -503) 182865) ((-139 . -503) 182846) ((-138 . -503) 182827) ((-134 . -503) 182808) ((-251 . -631) 182700) ((-215 . -102) T) ((-139 . -631) 182666) ((-138 . -631) 182632) ((-134 . -631) 182598) ((-1177 . -34) T) ((-971 . -1247) T) ((-355 . -738) 182543) ((-691 . -25) T) ((-691 . -21) T) ((-1206 . -634) 182524) ((-342 . -1247) T) ((-487 . -1079) T) ((-653 . -430) 182489) ((-619 . -430) 182454) ((-1150 . -1182) T) ((-1282 . -318) 182433) ((-733 . -1081) 182256) ((-594 . -301) T) ((-531 . -301) T) ((-1261 . -318) 182235) ((-487 . -239) 182187) ((-487 . -249) 182166) ((-452 . -1247) T) ((-733 . -661) 181995) ((-1261 . -1052) NIL) ((-1110 . -132) T) ((-895 . -816) 181974) ((-145 . -102) T) ((-40 . -1130) T) ((-895 . -813) 181953) ((-665 . -1040) 181937) ((-593 . -1088) T) ((-577 . -1088) T) ((-508 . -1088) T) ((-420 . -465) T) ((-371 . -132) T) ((-327 . -413) 181921) ((-324 . -413) 181882) ((-365 . -132) T) ((-357 . -132) T) ((-1211 . -1130) T) ((-1150 . -38) 181869) ((-1124 . -631) 181836) ((-108 . -132) T) ((-982 . -1130) T) ((-949 . -1130) T) ((-792 . -1130) T) ((-693 . -1130) T) ((-722 . -148) T) ((-622 . -102) T) ((-117 . -148) T) ((-1319 . -21) T) ((-1319 . -25) T) ((-1317 . -21) T) ((-1317 . -25) T) ((-685 . -1086) 181820) ((-544 . -870) T) ((-513 . -870) T) ((-377 . -1247) T) ((-367 . -1086) 181772) ((-364 . -1086) 181724) ((-356 . -1086) 181676) ((-259 . -1247) T) ((-258 . -1247) T) ((-274 . -1086) 181519) ((-254 . -1086) 181362) ((-685 . -111) 181341) ((-838 . -1251) 181320) ((-560 . -865) T) ((-327 . -928) 181286) ((-367 . -111) 181224) ((-364 . -111) 181162) ((-356 . -111) 181100) ((-274 . -111) 180929) ((-254 . -111) 180758) ((-324 . -928) NIL) ((-641 . -424) 180742) ((-44 . -21) T) ((-44 . -25) T) ((-933 . -873) 180693) ((-130 . -682) T) ((-836 . -659) 180599) ((-838 . -569) 180578) ((-500 . -873) T) ((-259 . -1068) 180405) ((-258 . -1068) 180232) ((-127 . -120) 180216) ((-220 . -873) T) ((-938 . -1086) 180181) ((-733 . -102) T) ((-720 . -1088) T) ((-610 . -634) 180162) ((-598 . -634) 180143) ((-549 . -636) 180046) ((-355 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -631) 180028) ((-938 . -111) 179984) ((-40 . -738) 179929) ((-893 . -1130) T) ((-685 . -634) 179906) ((-666 . -634) 179887) ((-367 . -634) 179824) ((-364 . -634) 179761) ((-356 . -634) 179698) ((-560 . -1130) T) ((-338 . -632) 179659) ((-338 . -631) 179571) ((-274 . -634) 179324) ((-254 . -634) 179109) ((-188 . -1247) T) ((-1260 . -813) 179062) ((-1260 . -816) 179015) ((-259 . -389) 178984) ((-258 . -389) 178953) ((-562 . -873) T) ((-675 . -38) 178923) ((-626 . -34) T) ((-495 . -1142) 178901) ((-488 . -34) T) ((-1143 . -132) 178772) ((-992 . -25) 178583) ((-938 . -634) 178533) ((-897 . -631) 178515) ((-217 . -865) T) ((-992 . -21) 178470) ((-836 . -25) 178303) ((-836 . -21) 178214) ((-1253 . -380) T) ((-641 . -1088) T) ((-1208 . -569) 178193) ((-1202 . -47) 178170) ((-367 . -1079) T) ((-364 . -1079) T) ((-495 . -23) 178022) ((-356 . -1079) T) ((-274 . -1079) T) ((-254 . -1079) T) ((-1155 . -47) 177994) ((-118 . -1088) T) ((-1064 . -669) 177968) ((-986 . -34) T) ((-367 . -239) 177947) ((-367 . -249) T) ((-364 . -239) 177926) ((-364 . -249) T) ((-356 . -239) 177905) ((-356 . -249) T) ((-274 . -337) 177877) ((-254 . -337) 177834) ((-274 . -239) 177813) ((-1187 . -152) 177797) ((-259 . -926) 177729) ((-258 . -926) 177661) ((-1172 . -920) 177582) ((-1112 . -870) T) ((-1264 . -1247) 177560) ((-427 . -1142) T) ((-1241 . -1032) 177526) ((-1084 . -23) T) ((-1054 . -869) T) ((-938 . -1079) T) ((-333 . -669) 177508) ((-722 . -238) T) ((-691 . -235) 177453) ((-1203 . -948) 177432) ((-1197 . -948) 177411) ((-1197 . -841) NIL) ((-1029 . -1081) 177307) ((-995 . -1247) T) ((-938 . -249) T) ((-838 . -375) 177286) ((-217 . -1130) T) ((-397 . -23) T) ((-128 . -1130) 177264) ((-122 . -1130) 177242) ((-938 . -239) T) ((-129 . -34) T) ((-391 . -669) 177207) ((-1029 . -661) 177155) ((-893 . -738) 177142) ((-1326 . -667) 177114) ((-1076 . -152) 177079) ((-1023 . -1247) T) ((-885 . -1247) T) ((-40 . -174) T) ((-715 . -424) 177061) ((-733 . -320) 177048) ((-857 . -669) 177008) ((-848 . -669) 176982) ((-330 . -25) T) ((-330 . -21) T) ((-679 . -297) 176961) ((-593 . -1130) T) ((-577 . -1130) T) ((-508 . -1130) T) ((-1202 . -1247) T) ((-251 . -299) 176938) ((-1155 . -1247) T) ((-877 . -1247) T) ((-324 . -273) 176899) ((-324 . -233) 176860) ((-1252 . -873) T) ((-1202 . -910) NIL) ((-55 . -1130) T) ((-1155 . -910) 176719) ((-130 . -870) T) ((-1202 . -1068) 176599) ((-1155 . -1068) 176482) ((-185 . -631) 176464) ((-877 . -1068) 176360) ((-803 . -297) 176287) ((-838 . -1142) T) ((-1064 . -747) T) ((-1076 . -1006) 176216) ((-615 . -672) 176200) ((-1033 . -920) 176107) ((-1029 . -102) T) ((-838 . -23) T) ((-733 . -1182) 176085) ((-715 . -1088) T) ((-615 . -385) 176069) ((-363 . -465) T) ((-355 . -301) T) ((-1298 . -1130) T) ((-255 . -1130) T) ((-412 . -102) T) ((-300 . -21) T) ((-300 . -25) T) ((-373 . -747) T) ((-731 . -1130) T) ((-720 . -1130) T) ((-373 . -486) T) ((-1241 . -631) 176051) ((-1202 . -389) 176035) ((-1155 . -389) 176019) ((-1054 . -424) 175981) ((-142 . -232) 175963) ((-391 . -815) T) ((-391 . -812) T) ((-893 . -174) T) ((-391 . -747) T) ((-732 . -631) 175945) ((-733 . -38) 175774) ((-1297 . -1295) 175758) ((-363 . -415) T) ((-1297 . -1130) 175708) ((-1220 . -1130) T) ((-593 . -738) 175695) ((-577 . -738) 175682) ((-508 . -738) 175647) ((-1283 . -667) 175537) ((-327 . -647) 175516) ((-857 . -747) T) ((-848 . -747) T) ((-1145 . -1247) T) ((-665 . -1247) T) ((-1110 . -659) 175464) ((-1202 . -926) 175407) ((-1155 . -926) 175391) ((-836 . -235) 175282) ((-683 . -1086) 175266) ((-108 . -659) 175248) ((-495 . -132) 175119) ((-1208 . -1142) T) ((-840 . -1247) T) ((-980 . -47) 175088) ((-641 . -1130) T) ((-683 . -111) 175067) ((-504 . -631) 175033) ((-338 . -299) 175010) ((-399 . -1247) T) ((-335 . -1247) T) ((-494 . -47) 174967) ((-1208 . -23) T) ((-118 . -1130) T) ((-103 . -102) 174917) ((-1309 . -1142) T) ((-561 . -870) T) ((-228 . -1247) T) ((-1084 . -132) T) ((-1054 . -1088) T) ((-1309 . -23) T) ((-1227 . -631) 174899) ((-840 . -1068) 174883) ((-1150 . -849) T) ((-1033 . -745) 174855) ((-1135 . -1130) T) ((-720 . -738) 174820) ((-599 . -631) 174802) ((-399 . -1068) 174786) ((-366 . -1088) T) ((-397 . -132) T) ((-335 . -1068) 174770) ((-1110 . -21) T) ((-1110 . -25) T) ((-1034 . -841) T) ((-228 . -910) 174752) ((-1034 . -948) T) ((-91 . -34) T) ((-1029 . -320) 174717) ((-942 . -948) T) ((-899 . -634) 174698) ((-735 . -669) 174658) ((-500 . -1251) T) ((-702 . -634) 174639) ((-697 . -634) 174620) ((-658 . -669) 174604) ((-220 . -1251) T) ((-420 . -920) 174525) ((-228 . -1068) 174485) ((-40 . -301) T) ((-500 . -569) T) ((-491 . -634) 174466) ((-371 . -25) T) ((-327 . -667) 174121) ((-324 . -667) 174035) ((-371 . -21) T) ((-365 . -25) T) ((-365 . -21) T) ((-220 . -569) T) ((-357 . -25) T) ((-357 . -21) T) ((-330 . -235) 173981) ((-251 . -634) 173958) ((-139 . -634) 173939) ((-138 . -634) 173920) ((-134 . -634) 173901) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1088) T) ((-593 . -174) T) ((-577 . -174) T) ((-508 . -174) T) ((-1092 . -1247) T) ((-980 . -1247) T) ((-734 . -1247) T) ((-660 . -297) 173868) ((-679 . -631) 173850) ((-494 . -1247) T) ((-758 . -757) 173834) ((-348 . -631) 173816) ((-68 . -395) T) ((-68 . -408) T) ((-1132 . -107) 173800) ((-1092 . -910) 173782) ((-980 . -910) 173707) ((-674 . -1142) T) ((-641 . -738) 173694) ((-494 . -910) NIL) ((-1176 . -102) T) ((-1124 . -636) 173678) ((-1092 . -1068) 173660) ((-97 . -631) 173642) ((-490 . -148) T) ((-980 . -1068) 173522) ((-118 . -738) 173467) ((-733 . -928) 173374) ((-674 . -23) T) ((-494 . -1068) 173250) ((-1117 . -632) NIL) ((-1117 . -631) 173232) ((-803 . -632) NIL) ((-803 . -631) 173193) ((-801 . -632) 172827) ((-801 . -631) 172741) ((-1143 . -659) 172647) ((-820 . -873) 172626) ((-474 . -631) 172608) ((-467 . -631) 172590) ((-467 . -632) 172451) ((-1065 . -232) 172397) ((-895 . -937) 172376) ((-127 . -34) T) ((-838 . -132) T) ((-670 . -631) 172358) ((-591 . -102) T) ((-367 . -1316) 172342) ((-364 . -1316) 172326) ((-356 . -1316) 172310) ((-122 . -527) 172243) ((-128 . -527) 172176) ((-524 . -813) T) ((-524 . -816) T) ((-523 . -815) T) ((-103 . -320) 172114) ((-225 . -102) 172064) ((-720 . -174) T) ((-715 . -1130) T) ((-895 . -669) 171980) ((-65 . -396) T) ((-285 . -631) 171962) ((-65 . -408) T) ((-980 . -389) 171946) ((-893 . -301) T) ((-50 . -631) 171928) ((-1150 . -667) 171900) ((-1029 . -38) 171848) ((-625 . -1130) T) ((-620 . -1130) T) ((-594 . -631) 171830) ((-494 . -389) 171814) ((-594 . -632) 171796) ((-531 . -631) 171778) ((-938 . -1316) 171765) ((-894 . -1247) T) ((-722 . -465) T) ((-508 . -527) 171731) ((-1308 . -1247) T) ((-1307 . -1247) T) ((-500 . -375) T) ((-367 . -380) 171710) ((-364 . -380) 171689) ((-356 . -380) 171668) ((-735 . -747) T) ((-220 . -375) T) ((-117 . -465) T) ((-1320 . -1311) 171652) ((-894 . -908) 171629) ((-894 . -910) NIL) ((-992 . -870) 171528) ((-836 . -870) 171479) ((-1254 . -102) T) ((-675 . -677) 171463) ((-1233 . -34) T) ((-173 . -631) 171445) ((-1143 . -25) 171278) ((-1143 . -21) 171189) ((-894 . -1068) 171166) ((-980 . -926) 171147) ((-1270 . -47) 171124) ((-938 . -380) T) ((-606 . -873) T) ((-59 . -672) 171108) ((-529 . -672) 171092) ((-494 . -926) 171069) ((-71 . -454) T) ((-71 . -408) T) ((-509 . -672) 171053) ((-59 . -385) 171037) ((-641 . -174) T) ((-529 . -385) 171021) ((-509 . -385) 171005) ((-559 . -1247) T) ((-848 . -729) 170989) ((-1202 . -318) 170968) ((-1208 . -132) T) ((-1172 . -1081) 170952) ((-118 . -174) T) ((-1172 . -661) 170884) ((-1176 . -320) 170822) ((-171 . -1247) T) ((-1309 . -132) T) ((-1282 . -948) 170801) ((-1261 . -948) 170780) ((-1261 . -841) NIL) ((-889 . -1081) 170750) ((-653 . -765) 170734) ((-619 . -765) 170718) ((-1260 . -937) 170671) ((-1054 . -1130) T) ((-933 . -1142) T) ((-889 . -661) 170641) ((-715 . -738) 170591) ((-924 . -1247) T) ((-894 . -389) 170568) ((-894 . -350) 170545) ((-862 . -1247) T) ((-829 . -1247) T) ((-171 . -908) 170529) ((-171 . -910) 170454) ((-790 . -1247) T) ((-698 . -1247) T) ((-1297 . -527) 170387) ((-1281 . -669) 170284) ((-1110 . -235) 170157) ((-500 . -1142) T) ((-366 . -1130) T) ((-220 . -1142) T) ((-76 . -454) T) ((-76 . -408) T) ((-171 . -1068) 170053) ((-305 . -920) 170010) ((-330 . -870) T) ((-1260 . -669) 169818) ((-895 . -815) 169797) ((-895 . -812) 169776) ((-895 . -747) T) ((-500 . -23) T) ((-371 . -235) 169749) ((-365 . -235) 169722) ((-357 . -235) 169695) ((-176 . -465) T) ((-86 . -454) T) ((-225 . -320) 169633) ((-86 . -408) T) ((-226 . -631) 169615) ((-108 . -235) 169602) ((-220 . -23) T) ((-1321 . -1314) 169581) ((-698 . -1068) 169565) ((-593 . -301) T) ((-577 . -301) T) ((-508 . -301) T) ((-1270 . -1247) T) ((-137 . -483) 169520) ((-878 . -1247) T) ((-675 . -667) 169479) ((-48 . -1130) T) ((-733 . -273) 169463) ((-733 . -233) 169447) ((-894 . -926) NIL) ((-584 . -1247) T) ((-1270 . -910) NIL) ((-913 . -102) T) ((-909 . -102) T) ((-660 . -631) 169429) ((-401 . -1130) T) ((-171 . -389) 169413) ((-171 . -350) 169397) ((-1270 . -1068) 169277) ((-878 . -1068) 169173) ((-1172 . -102) T) ((-1029 . -928) 169096) ((-683 . -813) 169075) ((-674 . -132) T) ((-683 . -816) 169054) ((-118 . -527) 168962) ((-584 . -1068) 168944) ((-305 . -1304) 168914) ((-1197 . -873) NIL) ((-889 . -102) T) ((-991 . -569) 168893) ((-1241 . -1086) 168776) ((-1033 . -1081) 168721) ((-495 . -659) 168627) ((-932 . -1130) T) ((-1054 . -738) 168564) ((-732 . -1086) 168529) ((-1033 . -661) 168474) ((-635 . -102) T) ((-615 . -34) T) ((-1177 . -1247) T) ((-1241 . -111) 168343) ((-487 . -669) 168240) ((-366 . -738) 168185) ((-171 . -926) 168144) ((-720 . -301) T) ((-715 . -174) T) ((-732 . -111) 168100) ((-1326 . -1088) T) ((-1270 . -389) 168084) ((-431 . -1251) 168062) ((-1148 . -631) 168044) ((-324 . -869) NIL) ((-431 . -569) T) ((-228 . -318) T) ((-1260 . -812) 167997) ((-1260 . -815) 167950) ((-1281 . -747) T) ((-1260 . -747) T) ((-48 . -738) 167915) ((-228 . -1052) T) ((-1283 . -424) 167881) ((-1270 . -926) 167824) ((-363 . -1304) 167801) ((-1241 . -634) 167683) ((-739 . -747) T) ((-344 . -631) 167665) ((-533 . -873) 167644) ((-1143 . -235) 167535) ((-112 . -631) 167517) ((-112 . -632) 167499) ((-739 . -486) T) ((-732 . -634) 167449) ((-1320 . -1081) 167433) ((-495 . -25) 167266) ((-128 . -502) 167250) ((-122 . -502) 167234) ((-495 . -21) 167145) ((-1320 . -661) 167115) ((-641 . -301) T) ((-599 . -1086) 167090) ((-450 . -1130) T) ((-1092 . -318) T) ((-118 . -301) T) ((-1134 . -102) T) ((-1033 . -102) T) ((-599 . -111) 167058) ((-1241 . -1079) T) ((-1172 . -320) 166996) ((-1092 . -1052) T) ((-1084 . -25) T) ((-66 . -1247) T) ((-916 . -1247) T) ((-1084 . -21) T) ((-732 . -1079) T) ((-397 . -21) T) ((-397 . -25) T) ((-715 . -527) NIL) ((-1054 . -174) T) ((-732 . -249) T) ((-1092 . -558) T) ((-733 . -667) 166906) ((-519 . -102) T) ((-515 . -102) T) ((-366 . -174) T) ((-355 . -631) 166888) ((-420 . -1081) 166840) ((-407 . -631) 166822) ((-1150 . -869) T) ((-487 . -747) T) ((-916 . -1068) 166790) ((-420 . -661) 166742) ((-108 . -870) T) ((-679 . -1086) 166726) ((-500 . -132) T) ((-1283 . -1088) T) ((-220 . -132) T) ((-1187 . -102) 166676) ((-99 . -1130) T) ((-246 . -873) 166627) ((-251 . -687) 166611) ((-251 . -672) 166595) ((-679 . -111) 166574) ((-599 . -634) 166558) ((-327 . -424) 166542) ((-251 . -385) 166526) ((-1189 . -241) 166473) ((-1029 . -273) 166457) ((-1029 . -233) 166441) ((-74 . -1247) T) ((-48 . -174) T) ((-722 . -400) T) ((-722 . -144) T) ((-1320 . -102) T) ((-1228 . -1247) T) ((-1227 . -634) 166423) ((-1118 . -1247) T) ((-1117 . -1086) 166266) ((-1106 . -1247) T) ((-274 . -937) 166245) ((-254 . -937) 166224) ((-803 . -1086) 166047) ((-801 . -1086) 165890) ((-626 . -1247) T) ((-1194 . -631) 165872) ((-1117 . -111) 165701) ((-1076 . -102) T) ((-488 . -1247) T) ((-474 . -1086) 165672) ((-467 . -1086) 165515) ((-685 . -669) 165499) ((-894 . -318) T) ((-803 . -111) 165308) ((-801 . -111) 165137) ((-367 . -669) 165089) ((-364 . -669) 165041) ((-356 . -669) 164993) ((-274 . -669) 164882) ((-254 . -669) 164771) ((-1188 . -870) T) ((-1118 . -1068) 164755) ((-1106 . -1068) 164732) ((-1034 . -873) T) ((-1030 . -34) T) ((-474 . -111) 164693) ((-467 . -111) 164522) ((-1001 . -873) T) ((-994 . -631) 164504) ((-991 . -1142) T) ((-986 . -1247) T) ((-127 . -1040) 164488) ((-871 . -1247) T) ((-894 . -1052) NIL) ((-756 . -1142) T) ((-736 . -1142) T) ((-679 . -634) 164406) ((-1297 . -502) 164390) ((-1214 . -1247) T) ((-1213 . -1247) T) ((-1172 . -38) 164350) ((-991 . -23) T) ((-938 . -669) 164315) ((-888 . -1130) T) ((-864 . -102) T) ((-838 . -21) T) ((-653 . -1081) 164299) ((-619 . -1081) 164283) ((-838 . -25) T) ((-756 . -23) T) ((-736 . -23) T) ((-653 . -661) 164267) ((-110 . -682) T) ((-619 . -661) 164251) ((-594 . -1086) 164216) ((-531 . -1086) 164161) ((-230 . -57) 164119) ((-466 . -23) T) ((-420 . -102) T) ((-1212 . -1247) T) ((-271 . -102) T) ((-110 . -113) T) ((-715 . -301) T) ((-889 . -38) 164089) ((-1117 . -634) 163825) ((-594 . -111) 163781) ((-531 . -111) 163710) ((-431 . -1142) T) ((-327 . -1088) 163600) ((-324 . -1088) T) ((-129 . -1247) T) ((-131 . -1247) T) ((-803 . -634) 163348) ((-801 . -634) 163114) ((-679 . -1079) T) ((-1326 . -1130) T) ((-467 . -634) 162899) ((-171 . -318) 162830) ((-431 . -23) T) ((-40 . -631) 162812) ((-40 . -632) 162796) ((-108 . -1022) 162778) ((-117 . -892) 162762) ((-670 . -634) 162746) ((-48 . -527) 162712) ((-1233 . -1040) 162696) ((-1211 . -631) 162663) ((-1219 . -34) T) ((-982 . -631) 162629) ((-949 . -631) 162611) ((-1143 . -870) 162562) ((-792 . -631) 162544) ((-693 . -631) 162526) ((-530 . -1247) T) ((-1270 . -318) 162505) ((-1187 . -320) 162443) ((-1171 . -34) T) ((-492 . -34) T) ((-1122 . -1247) T) ((-490 . -465) T) ((-1064 . -1247) T) ((-1117 . -1079) T) ((-50 . -634) 162412) ((-803 . -1079) T) ((-801 . -1079) T) ((-668 . -241) 162396) ((-650 . -241) 162342) ((-1208 . -21) T) ((-594 . -634) 162292) ((-531 . -634) 162222) ((-495 . -235) 162113) ((-1208 . -25) T) ((-1117 . -337) 162074) ((-467 . -1079) T) ((-1117 . -239) 162053) ((-803 . -337) 162030) ((-803 . -239) T) ((-801 . -337) 162002) ((-752 . -1251) 161981) ((-532 . -34) T) ((-338 . -672) 161965) ((-529 . -34) T) ((-59 . -34) T) ((-510 . -34) T) ((-509 . -34) T) ((-467 . -337) 161944) ((-338 . -385) 161928) ((-373 . -1247) T) ((-333 . -1247) T) ((-1033 . -1182) NIL) ((-752 . -569) 161859) ((-653 . -102) T) ((-619 . -102) T) ((-367 . -747) T) ((-364 . -747) T) ((-356 . -747) T) ((-274 . -747) T) ((-254 . -747) T) ((-391 . -1247) T) ((-1309 . -21) T) ((-1076 . -320) 161767) ((-1309 . -25) T) ((-929 . -1130) 161745) ((-839 . -235) 161732) ((-50 . -1079) T) ((-1204 . -569) 161711) ((-1203 . -1251) 161690) ((-1203 . -569) 161641) ((-1197 . -1251) 161620) ((-1197 . -569) 161571) ((-1054 . -301) T) ((-594 . -1079) T) ((-531 . -1079) T) ((-1033 . -38) 161516) ((-373 . -1068) 161500) ((-333 . -1068) 161484) ((-1029 . -667) 161407) ((-391 . -910) 161389) ((-857 . -1247) T) ((-848 . -1247) T) ((-846 . -1247) T) ((-820 . -1142) T) ((-938 . -747) T) ((-594 . -249) T) ((-594 . -239) T) ((-531 . -239) T) ((-531 . -249) T) ((-1156 . -569) 161368) ((-366 . -301) T) ((-668 . -716) 161352) ((-391 . -1068) 161312) ((-305 . -1081) 161233) ((-351 . -920) 161212) ((-1150 . -1088) T) ((-103 . -126) 161196) ((-305 . -661) 161138) ((-820 . -23) T) ((-1319 . -1314) 161114) ((-1317 . -1314) 161093) ((-1297 . -297) 161045) ((-1283 . -1130) T) ((-420 . -320) 161010) ((-1172 . -928) 160933) ((-893 . -631) 160915) ((-857 . -1068) 160884) ((-660 . -1086) 160868) ((-205 . -808) T) ((-204 . -808) T) ((-203 . -808) T) ((-202 . -808) T) ((-201 . -808) T) ((-200 . -808) T) ((-199 . -808) T) ((-198 . -808) T) ((-197 . -808) T) ((-196 . -808) T) ((-560 . -631) 160850) ((-508 . -1032) T) ((-284 . -860) T) ((-283 . -860) T) ((-282 . -860) T) ((-281 . -860) T) ((-48 . -301) T) ((-280 . -860) T) ((-279 . -860) T) ((-278 . -860) T) ((-195 . -808) T) ((-660 . -111) 160829) ((-630 . -870) T) ((-675 . -424) 160813) ((-691 . -238) 160764) ((-226 . -634) 160726) ((-110 . -870) T) ((-674 . -21) T) ((-674 . -25) T) ((-1320 . -38) 160696) ((-118 . -297) 160647) ((-1297 . -19) 160631) ((-1261 . -873) NIL) ((-1297 . -617) 160608) ((-1310 . -1130) T) ((-363 . -1081) 160553) ((-1107 . -1130) T) ((-1017 . -1130) T) ((-991 . -132) T) ((-838 . -235) 160540) ((-758 . -1130) T) ((-363 . -661) 160485) ((-756 . -132) T) ((-736 . -132) T) ((-524 . -814) T) ((-524 . -815) T) ((-466 . -132) T) ((-420 . -1182) 160463) ((-226 . -1079) T) ((-305 . -102) 160245) ((-142 . -1130) T) ((-720 . -1032) T) ((-1135 . -297) 160201) ((-91 . -1247) T) ((-217 . -631) 160183) ((-128 . -631) 160115) ((-122 . -631) 160047) ((-1326 . -174) T) ((-1203 . -375) 160026) ((-1197 . -375) 160005) ((-327 . -1130) T) ((-431 . -132) T) ((-324 . -1130) T) ((-420 . -38) 159957) ((-1163 . -102) T) ((-1283 . -738) 159849) ((-1165 . -1292) T) ((-1126 . -1247) T) ((-1120 . -1247) T) ((-675 . -1088) T) ((-1103 . -1247) T) ((-1096 . -1247) T) ((-1066 . -1247) T) ((-1049 . -1247) T) ((-330 . -146) 159828) ((-330 . -148) 159807) ((-140 . -1130) T) ((-137 . -1130) T) ((-115 . -1130) T) ((-881 . -102) T) ((-644 . -1247) T) ((-496 . -1247) T) ((-593 . -631) 159789) ((-577 . -632) 159688) ((-577 . -631) 159670) ((-508 . -631) 159652) ((-508 . -632) 159597) ((-498 . -23) T) ((-221 . -1247) T) ((-495 . -870) 159548) ((-500 . -659) 159530) ((-993 . -631) 159512) ((-1033 . -928) 159421) ((-220 . -659) 159403) ((-228 . -417) T) ((-683 . -669) 159387) ((-55 . -631) 159369) ((-1202 . -948) 159348) ((-752 . -1142) T) ((-656 . -102) T) ((-528 . -1247) T) ((-523 . -1247) T) ((-521 . -1247) T) ((-363 . -102) T) ((-1246 . -1113) T) ((-1150 . -865) T) ((-839 . -870) T) ((-752 . -23) T) ((-355 . -1086) 159293) ((-1177 . -107) 159277) ((-1298 . -631) 159259) ((-1204 . -23) T) ((-1204 . -1142) T) ((-1203 . -1142) T) ((-658 . -1247) T) ((-1203 . -23) T) ((-1197 . -1142) T) ((-1197 . -23) T) ((-1172 . -273) 159243) ((-528 . -1068) 159227) ((-1172 . -233) 159211) ((-1156 . -1142) T) ((-355 . -111) 159140) ((-1034 . -1251) T) ((-127 . -1247) T) ((-942 . -1251) T) ((-1156 . -23) T) ((-1105 . -1130) T) ((-715 . -297) NIL) ((-735 . -1247) T) ((-1034 . -569) T) ((-942 . -569) T) ((-836 . -238) 159037) ((-624 . -682) T) ((-623 . -682) T) ((-256 . -1247) T) ((-189 . -1247) T) ((-163 . -1247) T) ((-158 . -1247) T) ((-255 . -631) 159019) ((-621 . -682) T) ((-820 . -132) T) ((-731 . -631) 159001) ((-327 . -738) 158911) ((-324 . -738) 158840) ((-720 . -631) 158822) ((-720 . -632) 158767) ((-420 . -413) 158751) ((-451 . -1130) T) ((-500 . -25) T) ((-500 . -21) T) ((-1150 . -1130) T) ((-220 . -25) T) ((-220 . -21) T) ((-733 . -424) 158735) ((-735 . -1068) 158704) ((-1297 . -631) 158616) ((-1297 . -632) 158577) ((-1283 . -174) T) ((-1220 . -631) 158559) ((-251 . -34) T) ((-355 . -634) 158489) ((-407 . -634) 158471) ((-954 . -1004) T) ((-1233 . -1247) T) ((-683 . -812) 158450) ((-683 . -815) 158429) ((-411 . -408) T) ((-536 . -102) 158379) ((-1253 . -1247) T) ((-1065 . -1130) T) ((-420 . -928) 158302) ((-225 . -1025) 158286) ((-859 . -1247) T) ((-517 . -102) T) ((-641 . -631) 158268) ((-45 . -870) NIL) ((-641 . -632) 158245) ((-1065 . -628) 158220) ((-929 . -527) 158153) ((-330 . -238) 158105) ((-355 . -1079) T) ((-118 . -632) NIL) ((-118 . -631) 158087) ((-895 . -1247) T) ((-691 . -430) 158071) ((-691 . -1153) 158016) ((-513 . -152) 157998) ((-355 . -239) T) ((-355 . -249) T) ((-40 . -1086) 157943) ((-895 . -908) 157927) ((-895 . -910) 157852) ((-733 . -1088) T) ((-715 . -1032) NIL) ((-1281 . -47) 157822) ((-1260 . -47) 157799) ((-1171 . -1040) 157770) ((-1150 . -738) 157757) ((-3 . |UnionCategory|) T) ((-1135 . -631) 157739) ((-1110 . -148) 157718) ((-1110 . -146) 157669) ((-1034 . -375) T) ((-994 . -634) 157653) ((-228 . -948) T) ((-40 . -111) 157582) ((-895 . -1068) 157446) ((-1033 . -233) 157423) ((-1033 . -273) 157400) ((-722 . -1081) 157387) ((-942 . -375) T) ((-722 . -661) 157374) ((-330 . -1235) 157340) ((-391 . -318) T) ((-330 . -1232) 157306) ((-327 . -174) 157285) ((-324 . -174) T) ((-626 . -1223) 157261) ((-594 . -1316) 157248) ((-531 . -1316) 157225) ((-117 . -1081) 157212) ((-371 . -148) 157191) ((-371 . -146) 157142) ((-365 . -148) 157121) ((-365 . -146) 157072) ((-357 . -148) 157051) ((-117 . -661) 157038) ((-357 . -146) 156989) ((-330 . -35) 156955) ((-488 . -1223) 156934) ((0 . |EnumerationCategory|) T) ((-330 . -95) 156900) ((-391 . -1052) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 156850) ((-675 . -1130) T) ((-626 . -107) 156797) ((-498 . -132) T) ((-488 . -107) 156747) ((-246 . -1142) 156725) ((-31 . -1247) T) ((-895 . -389) 156709) ((-895 . -350) 156693) ((-246 . -23) 156545) ((-40 . -634) 156475) ((-1310 . -527) 156408) ((-1092 . -948) T) ((-1092 . -841) T) ((-594 . -380) T) ((-531 . -380) T) ((-1289 . -569) 156387) ((-1282 . -1251) 156366) ((-1282 . -569) 156317) ((-1281 . -1247) T) ((-1261 . -1251) 156296) ((-363 . -1182) T) ((-338 . -34) T) ((-44 . -430) 156280) ((-1211 . -634) 156216) ((-896 . -1247) T) ((-403 . -765) 156200) ((-1261 . -569) 156151) ((-1260 . -1247) T) ((-1172 . -667) 156110) ((-752 . -132) T) ((-693 . -634) 156094) ((-1260 . -910) 155967) ((-1260 . -908) 155937) ((-1204 . -132) T) ((-1203 . -132) T) ((-1197 . -132) T) ((-1156 . -132) T) ((-322 . -1113) T) ((-1054 . -1032) T) ((-758 . -527) 155870) ((-1034 . -23) T) ((-1034 . -1142) T) ((-917 . -1130) T) ((-145 . -865) T) ((-1033 . -361) NIL) ((-712 . -631) 155852) ((-971 . -873) 155831) ((-536 . -320) 155769) ((-1001 . -23) T) ((-142 . -527) NIL) ((-889 . -667) 155714) ((-942 . -1142) T) ((-942 . -23) T) ((-895 . -926) 155673) ((-363 . -38) 155638) ((-893 . -1086) 155625) ((-342 . -873) T) ((-82 . -631) 155607) ((-40 . -1079) T) ((-893 . -111) 155592) ((-739 . -1247) T) ((-722 . -102) T) ((-715 . -631) 155574) ((-615 . -1247) T) ((-609 . -569) 155553) ((-440 . -1142) T) ((-351 . -1081) 155537) ((-215 . -1130) T) ((-176 . -1081) 155469) ((-487 . -47) 155439) ((-40 . -239) 155411) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-608 . -569) 155390) ((-351 . -661) 155374) ((-715 . -632) 155282) ((-327 . -527) 155248) ((-176 . -661) 155180) ((-324 . -527) 155072) ((-500 . -235) 155059) ((-1281 . -1068) 155043) ((-1260 . -1068) 154829) ((-1029 . -424) 154813) ((-220 . -235) 154800) ((-440 . -23) T) ((-1150 . -174) T) ((-625 . -503) 154767) ((-620 . -503) 154749) ((-625 . -631) 154701) ((-620 . -631) 154668) ((-1283 . -301) T) ((-675 . -738) 154638) ((-145 . -1130) T) ((-48 . -1032) T) ((-420 . -273) 154622) ((-420 . -233) 154606) ((-306 . -241) 154556) ((-894 . -948) T) ((-894 . -841) NIL) ((-893 . -634) 154528) ((-259 . -873) 154479) ((-258 . -873) 154430) ((-887 . -870) T) ((-622 . -1130) T) ((-1260 . -350) 154400) ((-1260 . -389) 154370) ((-1110 . -238) 154249) ((-225 . -1151) 154233) ((-305 . -928) 154192) ((-1297 . -299) 154169) ((-371 . -238) 154148) ((-365 . -238) 154127) ((-487 . -1247) T) ((-357 . -238) 154106) ((-108 . -238) T) ((-1241 . -669) 154031) ((-1033 . -667) 153961) ((-991 . -21) T) ((-991 . -25) T) ((-756 . -21) T) ((-756 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-732 . -669) 153926) ((-466 . -21) T) ((-466 . -25) T) ((-351 . -102) T) ((-176 . -102) T) ((-1029 . -1088) T) ((-893 . -1079) T) ((-795 . -102) T) ((-1282 . -375) 153905) ((-1281 . -926) 153811) ((-1261 . -375) 153790) ((-1260 . -926) 153641) ((-1206 . -1247) T) ((-1054 . -631) 153623) ((-420 . -849) 153576) ((-1204 . -506) 153542) ((-171 . -948) 153473) ((-1203 . -506) 153439) ((-1197 . -506) 153405) ((-733 . -1130) T) ((-1156 . -506) 153371) ((-593 . -1086) 153358) ((-577 . -1086) 153345) ((-508 . -1086) 153310) ((-327 . -301) 153289) ((-324 . -301) T) ((-366 . -631) 153271) ((-431 . -25) T) ((-431 . -21) T) ((-99 . -297) 153250) ((-593 . -111) 153235) ((-577 . -111) 153220) ((-508 . -111) 153176) ((-1206 . -910) 153143) ((-929 . -502) 153127) ((-48 . -631) 153109) ((-48 . -632) 153054) ((-246 . -132) 152925) ((-1320 . -667) 152884) ((-1270 . -948) 152863) ((-837 . -1251) 152842) ((-401 . -503) 152823) ((-1065 . -527) 152667) ((-401 . -631) 152633) ((-837 . -569) 152564) ((-599 . -669) 152539) ((-274 . -47) 152511) ((-254 . -47) 152468) ((-544 . -522) 152445) ((-593 . -634) 152417) ((-577 . -634) 152389) ((-508 . -634) 152322) ((-1289 . -23) T) ((-1104 . -1247) T) ((-1030 . -1247) T) ((-1289 . -1142) T) ((-1282 . -1142) T) ((-1282 . -23) T) ((-1261 . -1142) T) ((-1261 . -23) T) ((-720 . -1086) 152287) ((-1252 . -682) T) ((-1241 . -747) T) ((-1150 . -301) T) ((-1143 . -238) 152184) ((-1034 . -132) T) ((-1033 . -382) 152156) ((-112 . -380) T) ((-487 . -926) 152062) ((-1001 . -132) T) ((-932 . -631) 152044) ((-55 . -634) 152026) ((-91 . -107) 152010) ((-942 . -132) T) ((-933 . -870) 151961) ((-722 . -1182) T) ((-720 . -111) 151917) ((-864 . -667) 151834) ((-609 . -1142) T) ((-608 . -1142) T) ((-733 . -738) 151663) ((-732 . -747) T) ((-820 . -25) T) ((-820 . -21) T) ((-500 . -870) T) ((-610 . -1247) T) ((-609 . -23) T) ((-598 . -1247) T) ((-220 . -870) T) ((-420 . -667) 151600) ((-593 . -1079) T) ((-577 . -1079) T) ((-549 . -1247) T) ((-508 . -1079) T) ((-355 . -1316) 151577) ((-330 . -465) 151556) ((-351 . -320) 151543) ((-608 . -23) T) ((-440 . -132) T) ((-679 . -669) 151517) ((-251 . -1040) 151501) ((-895 . -318) T) ((-1321 . -1311) 151485) ((-792 . -813) T) ((-792 . -816) T) ((-722 . -38) 151472) ((-577 . -239) T) ((-508 . -249) T) ((-508 . -239) T) ((-1310 . -502) 151456) ((-1293 . -1247) T) ((-1180 . -241) 151406) ((-1117 . -937) 151385) ((-117 . -38) 151372) ((-211 . -821) T) ((-210 . -821) T) ((-209 . -821) T) ((-208 . -821) T) ((-895 . -1052) 151350) ((-685 . -1247) T) ((-666 . -1247) T) ((-803 . -937) 151329) ((-801 . -937) 151308) ((-1219 . -1247) T) ((-367 . -1247) T) ((-364 . -1247) T) ((-356 . -1247) T) ((-274 . -1247) T) ((-254 . -1247) T) ((-467 . -937) 151287) ((-758 . -502) 151271) ((-1117 . -669) 151160) ((-720 . -634) 151095) ((-803 . -669) 150984) ((-641 . -1086) 150971) ((-492 . -1247) T) ((-355 . -380) T) ((-142 . -502) 150953) ((-801 . -669) 150842) ((-1171 . -1247) T) ((-562 . -870) T) ((-474 . -669) 150813) ((-274 . -910) 150672) ((-254 . -910) NIL) ((-118 . -1086) 150617) ((-467 . -669) 150506) ((-685 . -1068) 150483) ((-641 . -111) 150468) ((-403 . -1081) 150452) ((-367 . -1068) 150436) ((-364 . -1068) 150420) ((-356 . -1068) 150404) ((-274 . -1068) 150248) ((-254 . -1068) 150124) ((-938 . -1247) T) ((-118 . -111) 150053) ((-59 . -1247) T) ((-403 . -661) 150037) ((-639 . -1081) 150021) ((-532 . -1247) T) ((-529 . -1247) T) ((-510 . -1247) T) ((-509 . -1247) T) ((-450 . -631) 150003) ((-447 . -631) 149985) ((-639 . -661) 149969) ((-3 . -102) T) ((-1057 . -1240) 149938) ((-854 . -102) T) ((-710 . -57) 149896) ((-720 . -1079) T) ((-653 . -667) 149865) ((-619 . -667) 149834) ((-50 . -669) 149808) ((-300 . -465) T) ((-489 . -1240) 149777) ((0 . -102) T) ((-594 . -669) 149742) ((-531 . -669) 149687) ((-49 . -102) T) ((-938 . -1068) 149674) ((-720 . -249) T) ((-1110 . -422) 149653) ((-752 . -659) 149601) ((-1029 . -1130) T) ((-733 . -174) 149492) ((-641 . -634) 149387) ((-500 . -1022) 149369) ((-431 . -235) 149314) ((-274 . -389) 149298) ((-254 . -389) 149282) ((-412 . -1130) T) ((-1056 . -102) 149260) ((-351 . -38) 149244) ((-220 . -1022) 149226) ((-118 . -634) 149156) ((-176 . -38) 149088) ((-1281 . -318) 149067) ((-1260 . -318) 149046) ((-679 . -747) T) ((-99 . -631) 149028) ((-490 . -1081) 148993) ((-1197 . -659) 148945) ((-490 . -661) 148910) ((-665 . -873) 148889) ((-498 . -25) T) ((-498 . -21) T) ((-1260 . -1052) 148841) ((-1087 . -1247) T) ((-1 . -1247) T) ((-641 . -1079) T) ((-391 . -417) T) ((-403 . -102) T) ((-1135 . -636) 148756) ((-274 . -926) 148702) ((-254 . -926) 148679) ((-118 . -1079) T) ((-1117 . -747) T) ((-837 . -1142) T) ((-840 . -873) T) ((-641 . -239) 148658) ((-639 . -102) T) ((-524 . -1247) T) ((-520 . -1247) T) ((-803 . -747) T) ((-801 . -747) T) ((-1252 . -870) T) ((-426 . -1142) T) ((-118 . -249) T) ((-40 . -380) NIL) ((-118 . -239) NIL) ((-399 . -873) 148637) ((-467 . -747) T) ((-837 . -23) T) ((-752 . -25) T) ((-752 . -21) T) ((-691 . -920) 148558) ((-1107 . -297) 148537) ((-78 . -409) T) ((-78 . -408) T) ((-546 . -788) 148519) ((-228 . -873) T) ((-715 . -1086) 148469) ((-1322 . -102) T) ((-1289 . -132) T) ((-1282 . -132) T) ((-1261 . -132) T) ((-1204 . -25) T) ((-1172 . -424) 148453) ((-653 . -379) 148385) ((-619 . -379) 148317) ((-1187 . -1179) 148301) ((-103 . -1130) 148279) ((-1204 . -21) T) ((-1203 . -21) T) ((-888 . -631) 148261) ((-1029 . -738) 148209) ((-226 . -669) 148176) ((-715 . -111) 148110) ((-50 . -747) T) ((-1203 . -25) T) ((-363 . -361) T) ((-1197 . -21) T) ((-1110 . -465) 148061) ((-1197 . -25) T) ((-733 . -527) 148008) ((-594 . -747) T) ((-531 . -747) T) ((-1156 . -21) T) ((-1156 . -25) T) ((-609 . -132) T) ((-608 . -132) T) ((-305 . -667) 147743) ((-495 . -238) 147640) ((-371 . -465) T) ((-365 . -465) T) ((-357 . -465) T) ((-487 . -318) 147619) ((-1255 . -102) T) ((-324 . -297) 147554) ((-108 . -465) T) ((-79 . -454) T) ((-79 . -408) T) ((-490 . -102) T) ((-712 . -634) 147538) ((-1326 . -631) 147520) ((-1326 . -632) 147502) ((-1110 . -415) 147481) ((-1065 . -502) 147412) ((-660 . -669) 147396) ((-137 . -297) 147373) ((-577 . -816) T) ((-577 . -813) T) ((-1093 . -241) 147319) ((-1092 . -873) T) ((-734 . -873) T) ((-371 . -415) 147270) ((-365 . -415) 147221) ((-357 . -415) 147172) ((-1312 . -1142) T) ((-1321 . -1081) 147156) ((-393 . -1081) 147140) ((-1321 . -661) 147110) ((-839 . -238) T) ((-393 . -661) 147080) ((-715 . -634) 147015) ((-1312 . -23) T) ((-625 . -634) 146982) ((-620 . -634) 146964) ((-1299 . -102) T) ((-351 . -928) 146945) ((-177 . -631) 146927) ((-1172 . -1088) T) ((-560 . -380) T) ((-691 . -765) 146911) ((-1208 . -146) 146890) ((-1208 . -148) 146869) ((-1176 . -1130) T) ((-1176 . -1101) 146838) ((-69 . -1247) T) ((-1054 . -1086) 146775) ((-363 . -667) 146705) ((-889 . -1088) T) ((-246 . -659) 146611) ((-715 . -1079) T) ((-366 . -1086) 146556) ((-61 . -1247) T) ((-1054 . -111) 146472) ((-929 . -631) 146383) ((-715 . -249) T) ((-715 . -239) NIL) ((-864 . -869) 146362) ((-720 . -816) T) ((-720 . -813) T) ((-1033 . -424) 146339) ((-366 . -111) 146268) ((-391 . -948) T) ((-420 . -869) 146247) ((-733 . -301) 146158) ((-226 . -747) T) ((-1289 . -506) 146124) ((-1282 . -506) 146090) ((-1261 . -506) 146056) ((-591 . -1130) T) ((-327 . -1032) 146035) ((-225 . -1130) 146013) ((-1254 . -865) T) ((-330 . -1003) 145975) ((-105 . -102) T) ((-48 . -1086) 145940) ((-894 . -873) NIL) ((-1321 . -102) T) ((-393 . -102) T) ((-1283 . -631) 145922) ((-1163 . -1164) 145906) ((-1034 . -659) 145888) ((-899 . -1247) T) ((-48 . -111) 145844) ((-702 . -1247) T) ((-697 . -1247) T) ((-683 . -1247) T) ((-836 . -920) 145711) ((-491 . -1247) T) ((-251 . -1247) T) ((-544 . -102) T) ((-513 . -102) T) ((-153 . -1304) 145695) ((-139 . -1247) T) ((-138 . -1247) T) ((-134 . -1247) T) ((-1246 . -102) T) ((-1054 . -634) 145632) ((-838 . -238) T) ((-1202 . -1251) 145611) ((-217 . -380) T) ((-366 . -634) 145541) ((-1155 . -1251) 145520) ((-246 . -25) 145353) ((-246 . -21) 145264) ((-128 . -120) 145248) ((-122 . -120) 145232) ((-44 . -765) 145216) ((-1202 . -569) 145127) ((-1155 . -569) 145058) ((-1254 . -1130) T) ((-559 . -873) T) ((-1065 . -297) 145033) ((-1196 . -1113) T) ((-1024 . -1113) T) ((-837 . -132) T) ((-118 . -816) NIL) ((-118 . -813) NIL) ((-367 . -318) T) ((-364 . -318) T) ((-356 . -318) T) ((-1124 . -1247) 145011) ((-259 . -1142) 144989) ((-258 . -1142) 144967) ((-1054 . -1079) T) ((-1033 . -1088) T) ((-48 . -634) 144900) ((-355 . -669) 144845) ((-1310 . -631) 144807) ((-1310 . -632) 144768) ((-639 . -38) 144752) ((-1204 . -235) 144705) ((-1203 . -235) 144651) ((-1107 . -631) 144633) ((-1054 . -249) T) ((-366 . -1079) T) ((-836 . -1304) 144603) ((-259 . -23) T) ((-258 . -23) T) ((-1017 . -631) 144585) ((-1197 . -235) 144402) ((-1189 . -152) 144349) ((-758 . -632) 144310) ((-758 . -631) 144292) ((-1034 . -25) T) ((-820 . -870) 144271) ((-1029 . -527) 144183) ((-698 . -873) T) ((-366 . -239) T) ((-366 . -249) T) ((-401 . -634) 144164) ((-938 . -318) T) ((-142 . -631) 144146) ((-142 . -632) 144105) ((-330 . -920) 144009) ((-1034 . -21) T) ((-1001 . -25) T) ((-942 . -21) T) ((-942 . -25) T) ((-440 . -21) T) ((-440 . -25) T) ((-864 . -424) 143993) ((-48 . -1079) T) ((-1319 . -1311) 143977) ((-1317 . -1311) 143961) ((-1065 . -617) 143936) ((-327 . -632) 143797) ((-327 . -631) 143779) ((-324 . -632) NIL) ((-324 . -631) 143761) ((-48 . -249) T) ((-48 . -239) T) ((-675 . -297) 143722) ((-563 . -241) 143672) ((-584 . -873) T) ((-140 . -631) 143639) ((-137 . -631) 143621) ((-115 . -631) 143603) ((-490 . -38) 143568) ((-1321 . -1318) 143547) ((-1312 . -132) T) ((-1320 . -1088) T) ((-1112 . -102) T) ((-88 . -1247) T) ((-513 . -320) NIL) ((-1030 . -107) 143531) ((-913 . -1130) T) ((-909 . -1130) T) ((-1297 . -672) 143515) ((-1297 . -385) 143499) ((-338 . -1247) T) ((-606 . -870) T) ((-1172 . -1130) T) ((-1172 . -1083) 143439) ((-103 . -527) 143372) ((-955 . -631) 143354) ((-355 . -747) T) ((-30 . -631) 143336) ((-889 . -1130) T) ((-864 . -1088) 143315) ((-40 . -669) 143222) ((-228 . -1251) T) ((-420 . -1088) T) ((-1188 . -152) 143204) ((-1029 . -301) 143155) ((-897 . -1247) T) ((-635 . -1130) T) ((-228 . -569) T) ((-330 . -1278) 143139) ((-330 . -1275) 143109) ((-722 . -667) 143081) ((-1219 . -1223) 143060) ((-1105 . -631) 143042) ((-1219 . -107) 142992) ((-668 . -152) 142976) ((-650 . -152) 142922) ((-117 . -667) 142894) ((-492 . -1223) 142873) ((-500 . -148) T) ((-500 . -146) NIL) ((-1150 . -632) 142788) ((-451 . -631) 142770) ((-220 . -148) T) ((-220 . -146) NIL) ((-1150 . -631) 142752) ((-130 . -102) T) ((-52 . -102) T) ((-1261 . -659) 142704) ((-492 . -107) 142654) ((-1023 . -23) T) ((-1321 . -38) 142624) ((-1202 . -1142) T) ((-1155 . -1142) T) ((-1092 . -1251) T) ((-246 . -235) 142515) ((-322 . -102) T) ((-877 . -1142) T) ((-980 . -1251) 142494) ((-494 . -1251) 142473) ((-1092 . -569) T) ((-980 . -569) 142404) ((-1202 . -23) T) ((-1181 . -1113) T) ((-1155 . -23) T) ((-877 . -23) T) ((-494 . -569) 142335) ((-1172 . -738) 142267) ((-691 . -1081) 142251) ((-1176 . -527) 142184) ((-691 . -661) 142168) ((-1065 . -632) NIL) ((-1065 . -631) 142150) ((-96 . -1113) T) ((-1326 . -1086) 142137) ((-889 . -738) 142107) ((-1326 . -111) 142092) ((-1241 . -47) 142061) ((-1197 . -870) NIL) ((-259 . -132) T) ((-258 . -132) T) ((-1134 . -1130) T) ((-1033 . -1130) T) ((-62 . -631) 142043) ((-1110 . -920) 141912) ((-1054 . -813) T) ((-1054 . -816) T) ((-1289 . -25) T) ((-1289 . -21) T) ((-1282 . -21) T) ((-1282 . -25) T) ((-893 . -669) 141899) ((-1261 . -21) T) ((-1261 . -25) T) ((-1057 . -152) 141883) ((-1034 . -235) 141870) ((-895 . -841) 141849) ((-895 . -948) T) ((-733 . -297) 141776) ((-609 . -21) T) ((-351 . -667) 141735) ((-108 . -920) NIL) ((-609 . -25) T) ((-608 . -21) T) ((-176 . -667) 141652) ((-40 . -747) T) ((-225 . -527) 141585) ((-608 . -25) T) ((-489 . -152) 141569) ((-476 . -152) 141553) ((-185 . -1247) T) ((-949 . -815) T) ((-949 . -747) T) ((-792 . -814) T) ((-792 . -815) T) ((-519 . -1130) T) ((-515 . -1130) T) ((-792 . -747) T) ((-228 . -375) T) ((-1319 . -1081) 141537) ((-1317 . -1081) 141521) ((-1319 . -661) 141491) ((-1187 . -1130) 141469) ((-894 . -1251) T) ((-1317 . -661) 141439) ((-1118 . -873) T) ((-675 . -631) 141421) ((-894 . -569) T) ((-715 . -380) NIL) ((-44 . -1081) 141405) ((-1326 . -634) 141387) ((-1320 . -1130) T) ((-691 . -102) T) ((-371 . -1304) 141371) ((-365 . -1304) 141355) ((-44 . -661) 141339) ((-357 . -1304) 141323) ((-561 . -102) T) ((-1241 . -1247) T) ((-533 . -870) 141302) ((-732 . -1247) T) ((-986 . -873) 141281) ((-871 . -873) T) ((-500 . -238) T) ((-220 . -238) T) ((-1076 . -1130) T) ((-838 . -465) 141260) ((-153 . -1081) 141244) ((-1076 . -1101) 141173) ((-1057 . -1006) 141142) ((-840 . -1142) T) ((-1033 . -738) 141087) ((-153 . -661) 141071) ((-399 . -1142) T) ((-489 . -1006) 141040) ((-476 . -1006) 141009) ((-1213 . -873) T) ((-110 . -152) 140991) ((-73 . -631) 140973) ((-917 . -631) 140955) ((-1212 . -873) T) ((-1110 . -745) 140934) ((-1326 . -1079) T) ((-837 . -659) 140882) ((-305 . -1088) 140824) ((-171 . -1251) 140729) ((-228 . -1142) T) ((-335 . -23) T) ((-1197 . -1022) 140681) ((-1283 . -1086) 140586) ((-864 . -1130) T) ((-129 . -873) T) ((-1156 . -761) 140565) ((-1281 . -948) 140544) ((-1260 . -948) 140523) ((-893 . -747) T) ((-171 . -569) 140434) ((-593 . -669) 140421) ((-577 . -669) 140393) ((-420 . -1130) T) ((-271 . -1130) T) ((-215 . -631) 140375) ((-508 . -669) 140325) ((-228 . -23) T) ((-1260 . -841) 140278) ((-1319 . -102) T) ((-504 . -1247) T) ((-366 . -1316) 140255) ((-1317 . -102) T) ((-1283 . -111) 140147) ((-1143 . -920) 140014) ((-836 . -1081) 139915) ((-836 . -661) 139837) ((-145 . -631) 139819) ((-1023 . -132) T) ((-44 . -102) T) ((-246 . -870) 139770) ((-599 . -1247) T) ((-1270 . -1251) 139749) ((-103 . -502) 139733) ((-1320 . -738) 139703) ((-1117 . -47) 139664) ((-1092 . -1142) T) ((-980 . -1142) T) ((-128 . -34) T) ((-122 . -34) T) ((-1270 . -569) 139575) ((-803 . -47) 139552) ((-801 . -47) 139524) ((-1227 . -1247) T) ((-1202 . -132) T) ((-366 . -380) T) ((-494 . -1142) T) ((-1155 . -132) T) ((-894 . -375) T) ((-467 . -47) 139503) ((-877 . -132) T) ((-333 . -873) 139482) ((-153 . -102) T) ((-1092 . -23) T) ((-980 . -23) T) ((-584 . -569) T) ((-837 . -25) T) ((-837 . -21) T) ((-1172 . -527) 139415) ((-622 . -631) 139382) ((-605 . -1113) T) ((-599 . -1068) 139366) ((-1283 . -634) 139240) ((-494 . -23) T) ((-363 . -1088) T) ((-391 . -873) T) ((-1241 . -926) 139221) ((-691 . -320) 139159) ((-1289 . -235) 139112) ((-1143 . -1304) 139082) ((-720 . -669) 139047) ((-1034 . -870) T) ((-1033 . -174) T) ((-991 . -146) 139026) ((-653 . -1130) T) ((-619 . -1130) T) ((-991 . -148) 139005) ((-756 . -148) 138984) ((-756 . -146) 138963) ((-679 . -1247) T) ((-1001 . -870) T) ((-1282 . -235) 138909) ((-1261 . -235) 138726) ((-854 . -667) 138643) ((-487 . -948) 138622) ((-348 . -1247) T) ((-330 . -1081) 138457) ((-327 . -1086) 138367) ((-324 . -1086) 138296) ((-1029 . -297) 138254) ((-420 . -738) 138206) ((-330 . -661) 138047) ((-608 . -235) 138000) ((-722 . -869) T) ((-1283 . -1079) T) ((-327 . -111) 137896) ((-324 . -111) 137809) ((-97 . -1247) T) ((-992 . -102) T) ((-836 . -102) 137541) ((-733 . -632) NIL) ((-733 . -631) 137523) ((-1283 . -337) 137467) ((-679 . -1068) 137363) ((-1117 . -1247) T) ((-1065 . -299) 137338) ((-593 . -747) T) ((-577 . -815) T) ((-171 . -375) 137289) ((-577 . -812) T) ((-577 . -747) T) ((-508 . -747) T) ((-803 . -1247) T) ((-801 . -1247) T) ((-1176 . -502) 137273) ((-474 . -1247) T) ((-467 . -1247) T) ((-1319 . -1318) 137249) ((-1117 . -910) NIL) ((-894 . -1142) T) ((-118 . -937) NIL) ((-1317 . -1318) 137228) ((-670 . -1247) T) ((-803 . -910) NIL) ((-801 . -910) 137087) ((-1312 . -25) T) ((-1312 . -21) T) ((-1244 . -102) 137065) ((-1136 . -408) T) ((-641 . -669) 137052) ((-467 . -910) NIL) ((-696 . -102) 137002) ((-1117 . -1068) 136829) ((-894 . -23) T) ((-803 . -1068) 136688) ((-801 . -1068) 136545) ((-118 . -669) 136490) ((-467 . -1068) 136366) ((-285 . -1247) T) ((-327 . -634) 135930) ((-324 . -634) 135813) ((-50 . -1247) T) ((-403 . -667) 135782) ((-670 . -1068) 135766) ((-645 . -102) T) ((-594 . -1247) T) ((-531 . -1247) T) ((-225 . -502) 135750) ((-1297 . -34) T) ((-639 . -667) 135709) ((-300 . -1081) 135696) ((-137 . -634) 135680) ((-300 . -661) 135667) ((-653 . -738) 135651) ((-619 . -738) 135635) ((-691 . -38) 135595) ((-330 . -102) T) ((-1150 . -1086) 135582) ((-85 . -631) 135564) ((-50 . -1068) 135548) ((-1117 . -389) 135532) ((-803 . -389) 135516) ((-720 . -747) T) ((-720 . -815) T) ((-720 . -812) T) ((-60 . -57) 135478) ((-594 . -1068) 135465) ((-531 . -1068) 135442) ((-173 . -1247) T) ((-335 . -132) T) ((-327 . -1079) 135332) ((-324 . -1079) T) ((-171 . -1142) T) ((-801 . -389) 135316) ((-45 . -152) 135266) ((-1034 . -1022) 135248) ((-467 . -389) 135232) ((-420 . -174) T) ((-327 . -249) 135211) ((-324 . -249) T) ((-324 . -239) NIL) ((-305 . -1130) 134993) ((-228 . -132) T) ((-1150 . -111) 134978) ((-171 . -23) T) ((-820 . -148) 134957) ((-820 . -146) 134936) ((-259 . -659) 134842) ((-258 . -659) 134748) ((-330 . -295) 134714) ((-1187 . -527) 134647) ((-490 . -667) 134597) ((-656 . -865) T) ((-495 . -920) 134464) ((-1163 . -1130) T) ((-228 . -1090) T) ((-836 . -320) 134402) ((-1117 . -926) 134337) ((-803 . -926) 134280) ((-801 . -926) 134264) ((-1319 . -38) 134234) ((-1317 . -38) 134204) ((-1270 . -1142) T) ((-878 . -1142) T) ((-467 . -926) 134181) ((-881 . -1130) T) ((-1270 . -23) T) ((-1150 . -634) 134153) ((-1092 . -132) T) ((-878 . -23) T) ((-584 . -1142) T) ((-641 . -747) T) ((-523 . -873) T) ((-367 . -948) T) ((-364 . -948) T) ((-300 . -102) T) ((-356 . -948) T) ((-1000 . -1113) T) ((-980 . -132) T) ((-837 . -235) 134098) ((-118 . -815) NIL) ((-118 . -812) NIL) ((-118 . -747) T) ((-1076 . -527) 133999) ((-715 . -937) NIL) ((-584 . -23) T) ((-494 . -132) T) ((-431 . -238) 133950) ((-696 . -320) 133888) ((-226 . -1247) T) ((-656 . -1130) T) ((-653 . -782) T) ((-619 . -782) T) ((-1261 . -870) NIL) ((-1110 . -1081) 133798) ((-1033 . -301) T) ((-715 . -669) 133748) ((-259 . -25) T) ((-363 . -1130) T) ((-259 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-153 . -38) 133732) ((-2 . -102) T) ((-938 . -948) T) ((-1110 . -661) 133600) ((-495 . -1304) 133570) ((-1150 . -1079) T) ((-732 . -318) T) ((-722 . -1088) T) ((-371 . -1081) 133522) ((-365 . -1081) 133474) ((-357 . -1081) 133426) ((-371 . -661) 133378) ((-226 . -1068) 133355) ((-365 . -661) 133307) ((-108 . -1081) 133257) ((-357 . -661) 133209) ((-305 . -738) 133151) ((-660 . -1247) T) ((-500 . -465) T) ((-420 . -527) 133063) ((-108 . -661) 133013) ((-220 . -465) T) ((-1150 . -239) T) ((-306 . -152) 132963) ((-1029 . -632) 132924) ((-1029 . -631) 132906) ((-1019 . -631) 132888) ((-117 . -1088) T) ((-675 . -1086) 132872) ((-228 . -506) T) ((-412 . -631) 132854) ((-412 . -632) 132831) ((-1084 . -1304) 132801) ((-675 . -111) 132780) ((-691 . -928) 132703) ((-1172 . -502) 132687) ((-1321 . -667) 132646) ((-393 . -667) 132615) ((-63 . -454) T) ((-63 . -408) T) ((-1189 . -102) T) ((-894 . -132) T) ((-497 . -102) 132565) ((-1148 . -1247) T) ((-1253 . -873) T) ((-1326 . -380) T) ((-1110 . -102) T) ((-1091 . -102) T) ((-363 . -738) 132510) ((-895 . -873) 132461) ((-752 . -148) 132440) ((-752 . -146) 132419) ((-675 . -634) 132337) ((-1054 . -669) 132274) ((-536 . -1130) 132252) ((-371 . -102) T) ((-365 . -102) T) ((-357 . -102) T) ((-108 . -102) T) ((-517 . -1130) T) ((-366 . -669) 132197) ((-1202 . -659) 132145) ((-1155 . -659) 132093) ((-397 . -522) 132072) ((-854 . -869) 132051) ((-715 . -747) T) ((-391 . -1251) T) ((-344 . -1247) T) ((-1261 . -1022) 132003) ((-351 . -1088) T) ((-112 . -1247) T) ((-176 . -1088) T) ((-103 . -631) 131935) ((-1204 . -146) 131914) ((-1204 . -148) 131893) ((-391 . -569) T) ((-1203 . -148) 131872) ((-1203 . -146) 131851) ((-1197 . -146) 131758) ((-420 . -301) T) ((-1197 . -148) 131665) ((-1156 . -148) 131644) ((-1156 . -146) 131623) ((-330 . -38) 131464) ((-171 . -132) T) ((-324 . -816) NIL) ((-324 . -813) NIL) ((-675 . -1079) T) ((-48 . -669) 131414) ((-1143 . -1081) 131315) ((-917 . -634) 131292) ((-1143 . -661) 131214) ((-1196 . -102) T) ((-1024 . -102) T) ((-1023 . -21) T) ((-128 . -1040) 131198) ((-122 . -1040) 131182) ((-1023 . -25) T) ((-929 . -120) 131166) ((-1188 . -102) T) ((-1270 . -132) T) ((-1260 . -873) 131065) ((-1202 . -25) T) ((-1202 . -21) T) ((-1189 . -320) 130860) ((-355 . -1247) T) ((-1155 . -25) T) ((-878 . -132) T) ((-407 . -1247) T) ((-1155 . -21) T) ((-877 . -25) T) ((-877 . -21) T) ((-803 . -318) 130839) ((-1187 . -502) 130823) ((-1180 . -152) 130773) ((-1176 . -631) 130735) ((-668 . -102) 130685) ((-650 . -102) T) ((-1176 . -632) 130646) ((-584 . -132) T) ((-639 . -869) 130625) ((-1054 . -812) T) ((-1054 . -815) T) ((-1054 . -747) T) ((-836 . -928) 130494) ((-733 . -1086) 130317) ((-615 . -873) 130296) ((-497 . -320) 130234) ((-466 . -430) 130204) ((-363 . -174) T) ((-300 . -38) 130191) ((-259 . -235) 130082) ((-258 . -235) 129973) ((-284 . -102) T) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-355 . -1068) 129950) ((-278 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-733 . -111) 129759) ((-366 . -747) T) ((-691 . -273) 129743) ((-691 . -233) 129727) ((-594 . -318) T) ((-531 . -318) T) ((-305 . -527) 129676) ((-1194 . -1247) T) ((-108 . -320) NIL) ((-72 . -408) T) ((-1143 . -102) 129408) ((-854 . -424) 129392) ((-1150 . -816) T) ((-1150 . -813) T) ((-722 . -1130) T) ((-591 . -631) 129374) ((-391 . -375) T) ((-171 . -506) 129352) ((-225 . -631) 129284) ((-135 . -1130) T) ((-117 . -1130) T) ((-994 . -1247) T) ((-48 . -747) T) ((-1076 . -502) 129249) ((-142 . -438) 129231) ((-142 . -380) T) ((-1057 . -102) T) ((-525 . -522) 129210) ((-733 . -634) 128966) ((-1254 . -631) 128948) ((-1211 . -1247) T) ((-1211 . -1068) 128884) ((-1204 . -238) 128843) ((-489 . -102) T) ((-476 . -102) T) ((-1203 . -238) 128795) ((-1197 . -238) 128618) ((-1064 . -1142) T) ((-330 . -928) 128524) ((-1206 . -873) T) ((-1204 . -35) 128490) ((-1204 . -95) 128456) ((-1204 . -1235) 128422) ((-1204 . -1232) 128388) ((-1203 . -1232) 128354) ((-1203 . -1235) 128320) ((-1203 . -95) 128286) ((-1203 . -35) 128252) ((-1197 . -1232) 128218) ((-1197 . -1235) 128184) ((-1188 . -320) NIL) ((-89 . -409) T) ((-89 . -408) T) ((-1110 . -1182) 128163) ((-40 . -1247) T) ((-1197 . -95) 128129) ((-1064 . -23) T) ((-1197 . -35) 128095) ((-584 . -506) T) ((-1156 . -35) 128061) ((-1156 . -95) 128027) ((-1156 . -1235) 127993) ((-1156 . -1232) 127959) ((-373 . -1142) T) ((-371 . -1182) 127938) ((-365 . -1182) 127917) ((-357 . -1182) 127896) ((-1134 . -297) 127852) ((-982 . -1247) T) ((-949 . -1247) T) ((-108 . -1182) T) ((-854 . -1088) 127831) ((-792 . -1247) T) ((-668 . -320) 127769) ((-650 . -320) 127620) ((-693 . -1247) T) ((-733 . -1079) T) ((-1092 . -659) 127602) ((-1110 . -38) 127470) ((-980 . -659) 127418) ((-1034 . -148) T) ((-1034 . -146) NIL) ((-391 . -1142) T) ((-335 . -25) T) ((-333 . -23) T) ((-971 . -870) 127397) ((-733 . -337) 127374) ((-494 . -659) 127322) ((-40 . -1068) 127210) ((-733 . -239) T) ((-722 . -738) 127197) ((-351 . -1130) T) ((-176 . -1130) T) ((-342 . -870) T) ((-431 . -465) 127147) ((-391 . -23) T) ((-371 . -38) 127112) ((-365 . -38) 127077) ((-357 . -38) 127042) ((-80 . -454) T) ((-80 . -408) T) ((-228 . -25) T) ((-228 . -21) T) ((-857 . -1142) T) ((-108 . -38) 126992) ((-848 . -1142) T) ((-795 . -1130) T) ((-117 . -738) 126979) ((-693 . -1068) 126963) ((-630 . -102) T) ((-857 . -23) T) ((-848 . -23) T) ((-1187 . -297) 126915) ((-1143 . -320) 126853) ((-495 . -1081) 126754) ((-1132 . -241) 126738) ((-64 . -409) T) ((-64 . -408) T) ((-1181 . -102) T) ((-110 . -102) T) ((-495 . -661) 126660) ((-40 . -389) 126637) ((-96 . -102) T) ((-674 . -875) 126621) ((-1202 . -235) 126608) ((-1165 . -1113) T) ((-1092 . -21) T) ((-1092 . -25) T) ((-1084 . -1081) 126592) ((-836 . -273) 126561) ((-836 . -233) 126530) ((-980 . -25) T) ((-980 . -21) T) ((-1150 . -380) T) ((-1084 . -661) 126472) ((-639 . -1088) T) ((-1057 . -320) 126410) ((-913 . -631) 126392) ((-691 . -667) 126351) ((-494 . -25) T) ((-494 . -21) T) ((-397 . -1081) 126335) ((-909 . -631) 126317) ((-893 . -1247) T) ((-536 . -527) 126250) ((-259 . -870) 126201) ((-258 . -870) 126152) ((-397 . -661) 126122) ((-894 . -659) 126099) ((-489 . -320) 126037) ((-560 . -1247) T) ((-476 . -320) 125975) ((-363 . -301) T) ((-1187 . -1285) 125959) ((-1172 . -631) 125921) ((-1172 . -632) 125882) ((-1170 . -102) T) ((-1029 . -1086) 125778) ((-40 . -926) 125730) ((-1187 . -617) 125707) ((-1326 . -669) 125694) ((-1093 . -152) 125640) ((-500 . -920) NIL) ((-889 . -503) 125617) ((-1029 . -111) 125499) ((-895 . -1251) T) ((-220 . -920) NIL) ((-351 . -738) 125483) ((-889 . -631) 125445) ((-176 . -738) 125377) ((-895 . -569) T) ((-420 . -297) 125335) ((-246 . -238) 125232) ((-108 . -413) 125214) ((-84 . -396) T) ((-84 . -408) T) ((-722 . -174) T) ((-635 . -631) 125196) ((-99 . -747) T) ((-495 . -102) 124928) ((-99 . -486) T) ((-117 . -174) T) ((-1319 . -667) 124887) ((-1317 . -667) 124846) ((-171 . -659) 124794) ((-1110 . -928) 124665) ((-1084 . -102) T) ((-1029 . -634) 124555) ((-894 . -25) T) ((-836 . -244) 124534) ((-894 . -21) T) ((-839 . -102) T) ((-1034 . -238) T) ((-44 . -667) 124477) ((-427 . -102) T) ((-397 . -102) T) ((-110 . -320) NIL) ((-230 . -102) 124427) ((-217 . -1247) T) ((-128 . -1247) T) ((-122 . -1247) T) ((-108 . -928) NIL) ((-838 . -1081) 124378) ((-59 . -873) 124357) ((-838 . -661) 124299) ((-529 . -873) 124278) ((-509 . -873) 124257) ((-1064 . -132) T) ((-691 . -379) 124241) ((-153 . -667) 124200) ((-1326 . -747) T) ((-653 . -297) 124158) ((-619 . -297) 124116) ((-1289 . -146) 124095) ((-1270 . -659) 124043) ((-1029 . -1079) T) ((-1134 . -631) 124025) ((-1033 . -631) 124007) ((-593 . -1247) T) ((-577 . -1247) T) ((-508 . -1247) T) ((-528 . -23) T) ((-523 . -23) T) ((-355 . -318) T) ((-521 . -23) T) ((-333 . -132) T) ((-3 . -1130) T) ((-1033 . -632) 123991) ((-1029 . -249) 123970) ((-1029 . -239) 123949) ((-1289 . -148) 123928) ((-1282 . -148) 123907) ((-854 . -1130) T) ((-1282 . -146) 123886) ((-1281 . -1251) 123865) ((-1261 . -146) 123772) ((-1261 . -148) 123679) ((-1260 . -1251) 123658) ((-391 . -132) T) ((-228 . -235) 123645) ((-176 . -174) T) ((-577 . -910) 123627) ((0 . -1130) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1247) T) ((-49 . -1130) T) ((-1283 . -669) 123532) ((-1281 . -569) 123483) ((-1260 . -569) 123434) ((-735 . -1142) T) ((-658 . -23) T) ((-577 . -1068) 123416) ((-608 . -148) 123395) ((-608 . -146) 123374) ((-508 . -1068) 123317) ((-1165 . -1167) T) ((-87 . -396) T) ((-87 . -408) T) ((-895 . -375) T) ((-857 . -132) T) ((-848 . -132) T) ((-992 . -667) 123261) ((-735 . -23) T) ((-519 . -631) 123211) ((-515 . -631) 123193) ((-836 . -667) 122972) ((-1321 . -1088) T) ((-391 . -1090) T) ((-1056 . -1130) 122950) ((-55 . -1068) 122932) ((-929 . -34) T) ((-495 . -320) 122870) ((-605 . -102) T) ((-1187 . -632) 122831) ((-1187 . -631) 122763) ((-1208 . -1081) 122646) ((-45 . -102) T) ((-838 . -102) T) ((-1208 . -661) 122543) ((-1298 . -1247) T) ((-1270 . -25) T) ((-1270 . -21) T) ((-1092 . -235) 122530) ((-878 . -25) T) ((-524 . -873) T) ((-255 . -1247) T) ((-44 . -379) 122514) ((-878 . -21) T) ((-752 . -465) 122465) ((-1320 . -631) 122447) ((-731 . -1247) T) ((-720 . -1247) T) ((-1309 . -1081) 122417) ((-1084 . -320) 122355) ((-692 . -1113) T) ((-618 . -1113) T) ((-403 . -1130) T) ((-584 . -25) T) ((-584 . -21) T) ((-182 . -1113) T) ((-162 . -1113) T) ((-157 . -1113) T) ((-155 . -1113) T) ((-1309 . -661) 122325) ((-639 . -1130) T) ((-720 . -910) 122307) ((-1297 . -1247) T) ((-230 . -320) 122245) ((-145 . -380) T) ((-1220 . -1247) T) ((-1076 . -632) 122187) ((-1076 . -631) 122130) ((-324 . -937) NIL) ((-1255 . -865) T) ((-1143 . -928) 121999) ((-720 . -1068) 121944) ((-732 . -948) T) ((-487 . -1251) 121923) ((-1203 . -465) 121902) ((-1197 . -465) 121881) ((-341 . -102) T) ((-895 . -1142) T) ((-330 . -667) 121763) ((-327 . -669) 121492) ((-324 . -669) 121421) ((-487 . -569) 121372) ((-351 . -527) 121338) ((-563 . -152) 121288) ((-40 . -318) T) ((-864 . -631) 121270) ((-722 . -301) T) ((-895 . -23) T) ((-391 . -506) T) ((-1110 . -273) 121240) ((-1110 . -233) 121210) ((-525 . -102) T) ((-420 . -632) 121017) ((-420 . -631) 120999) ((-271 . -631) 120981) ((-117 . -301) T) ((-1283 . -747) T) ((-641 . -1247) T) ((-1322 . -1130) T) ((-1281 . -375) 120960) ((-1260 . -375) 120939) ((-1310 . -34) T) ((-1255 . -1130) T) ((-118 . -1247) T) ((-108 . -273) 120921) ((-108 . -233) 120903) ((-1208 . -102) T) ((-490 . -1130) T) ((-536 . -502) 120887) ((-758 . -34) T) ((-674 . -1081) 120871) ((-674 . -661) 120841) ((-894 . -235) NIL) ((-142 . -34) T) ((-118 . -908) 120818) ((-118 . -910) NIL) ((-1309 . -102) T) ((-1289 . -238) 120777) ((-641 . -1068) 120660) ((-624 . -102) T) ((-623 . -102) T) ((-621 . -102) T) ((-665 . -870) 120639) ((-1282 . -238) 120591) ((-1261 . -238) 120414) ((-306 . -102) T) ((-733 . -380) 120393) ((-118 . -1068) 120370) ((-403 . -738) 120354) ((-608 . -238) 120313) ((-639 . -738) 120297) ((-1135 . -1247) T) ((-45 . -320) 120101) ((-837 . -146) 120080) ((-837 . -148) 120059) ((-300 . -667) 120031) ((-1320 . -394) 120010) ((-840 . -870) T) ((-1299 . -1130) T) ((-1189 . -232) 119957) ((-399 . -870) 119936) ((-1289 . -35) 119902) ((-1289 . -1235) 119868) ((-1289 . -1232) 119834) ((-1282 . -1232) 119800) ((-528 . -132) T) ((-1282 . -1235) 119766) ((-1261 . -1232) 119732) ((-1261 . -1235) 119698) ((-1289 . -95) 119664) ((-1282 . -95) 119630) ((-431 . -920) 119551) ((-653 . -631) 119520) ((-619 . -631) 119489) ((-228 . -870) T) ((-1282 . -35) 119455) ((-1281 . -1142) T) ((-1261 . -95) 119421) ((-1150 . -669) 119393) ((-1261 . -35) 119359) ((-1260 . -1142) T) ((-606 . -152) 119341) ((-1110 . -361) 119320) ((-176 . -301) T) ((-118 . -389) 119297) ((-118 . -350) 119274) ((-171 . -235) 119199) ((-893 . -318) T) ((-324 . -815) NIL) ((-324 . -812) NIL) ((-327 . -747) 119048) ((-324 . -747) T) ((-658 . -132) T) ((-487 . -375) 119027) ((-371 . -361) 119006) ((-365 . -361) 118985) ((-357 . -361) 118964) ((-327 . -486) 118943) ((-1281 . -23) T) ((-1260 . -23) T) ((-739 . -1142) T) ((-735 . -132) T) ((-674 . -102) T) ((-490 . -738) 118908) ((-683 . -873) 118887) ((-45 . -293) 118837) ((-105 . -1130) T) ((-68 . -631) 118819) ((-251 . -873) 118798) ((-1000 . -102) T) ((-887 . -102) T) ((-641 . -926) 118757) ((-1321 . -1130) T) ((-393 . -1130) T) ((-1270 . -235) 118744) ((-1246 . -1130) T) ((-82 . -1247) T) ((-1143 . -273) 118713) ((-1092 . -870) T) ((-118 . -926) NIL) ((-803 . -948) 118692) ((-734 . -870) T) ((-544 . -1130) T) ((-513 . -1130) T) ((-367 . -1251) T) ((-364 . -1251) T) ((-356 . -1251) T) ((-274 . -1251) 118671) ((-254 . -1251) 118650) ((-546 . -883) T) ((-1143 . -233) 118619) ((-1188 . -849) T) ((-1172 . -1086) 118603) ((-403 . -782) T) ((-715 . -1247) T) ((-712 . -1068) 118587) ((-367 . -569) T) ((-364 . -569) T) ((-356 . -569) T) ((-274 . -569) 118518) ((-254 . -569) 118449) ((-538 . -1113) T) ((-1172 . -111) 118428) ((-466 . -765) 118398) ((-889 . -1086) 118368) ((-838 . -38) 118310) ((-715 . -908) 118292) ((-625 . -1247) T) ((-620 . -1247) T) ((-715 . -910) 118274) ((-306 . -320) 118078) ((-1187 . -299) 118055) ((-938 . -1251) T) ((-1110 . -667) 117950) ((-1034 . -465) T) ((-691 . -424) 117934) ((-889 . -111) 117899) ((-942 . -465) T) ((-715 . -1068) 117844) ((-938 . -569) T) ((-546 . -631) 117826) ((-594 . -948) T) ((-500 . -1081) 117776) ((-487 . -1142) T) ((-531 . -948) T) ((-495 . -928) 117645) ((-65 . -631) 117627) ((-220 . -1081) 117577) ((-500 . -661) 117527) ((-371 . -667) 117464) ((-365 . -667) 117401) ((-357 . -667) 117338) ((-650 . -232) 117284) ((-220 . -661) 117234) ((-108 . -667) 117184) ((-487 . -23) T) ((-1150 . -815) T) ((-895 . -132) T) ((-1150 . -812) T) ((-1312 . -1314) 117163) ((-1150 . -747) T) ((-675 . -669) 117137) ((-305 . -631) 116878) ((-1172 . -634) 116796) ((-1065 . -34) T) ((-837 . -238) 116747) ((-593 . -318) T) ((-577 . -318) T) ((-508 . -318) T) ((-1321 . -738) 116717) ((-715 . -389) 116699) ((-715 . -350) 116681) ((-490 . -174) T) ((-393 . -738) 116651) ((-889 . -634) 116586) ((-894 . -870) NIL) ((-577 . -1052) T) ((-508 . -1052) T) ((-1163 . -631) 116568) ((-1143 . -244) 116547) ((-216 . -102) T) ((-1180 . -102) T) ((-71 . -631) 116529) ((-1054 . -1247) T) ((-1172 . -1079) T) ((-1208 . -38) 116426) ((-881 . -631) 116408) ((-577 . -558) T) ((-691 . -1088) T) ((-752 . -977) 116361) ((-1172 . -239) 116340) ((-366 . -1247) T) ((-1112 . -1130) T) ((-1064 . -25) T) ((-1064 . -21) T) ((-1033 . -1086) 116285) ((-338 . -873) 116264) ((-933 . -102) T) ((-889 . -1079) T) ((-715 . -926) NIL) ((-367 . -340) 116248) ((-367 . -375) T) ((-364 . -340) 116232) ((-364 . -375) T) ((-356 . -340) 116216) ((-356 . -375) T) ((-500 . -102) T) ((-1309 . -38) 116186) ((-559 . -870) T) ((-536 . -708) 116136) ((-220 . -102) T) ((-1054 . -1068) 116016) ((-1033 . -111) 115945) ((-656 . -631) 115927) ((-1204 . -1003) 115896) ((-1203 . -1003) 115858) ((-533 . -152) 115842) ((-1110 . -382) 115821) ((-363 . -631) 115803) ((-333 . -21) T) ((-366 . -1068) 115780) ((-333 . -25) T) ((-1197 . -1003) 115749) ((-48 . -1247) T) ((-76 . -631) 115731) ((-1156 . -1003) 115698) ((-720 . -318) T) ((-130 . -865) T) ((-938 . -375) T) ((-391 . -25) T) ((-391 . -21) T) ((-938 . -340) 115685) ((-86 . -631) 115667) ((-720 . -1052) T) ((-698 . -870) T) ((-401 . -1247) T) ((-1281 . -132) T) ((-1260 . -132) T) ((-929 . -1040) 115651) ((-857 . -21) T) ((-48 . -1068) 115594) ((-857 . -25) T) ((-848 . -25) T) ((-848 . -21) T) ((-1143 . -667) 115373) ((-1319 . -1088) T) ((-562 . -102) T) ((-1317 . -1088) T) ((-675 . -747) T) ((-1134 . -636) 115276) ((-1033 . -634) 115206) ((-1320 . -1086) 115190) ((-932 . -1247) T) ((-836 . -424) 115159) ((-103 . -120) 115143) ((-130 . -1130) T) ((-52 . -1130) T) ((-954 . -631) 115125) ((-894 . -1022) 115102) ((-844 . -102) T) ((-1320 . -111) 115081) ((-752 . -920) 115056) ((-674 . -38) 115026) ((-584 . -870) T) ((-367 . -1142) T) ((-364 . -1142) T) ((-356 . -1142) T) ((-274 . -1142) T) ((-254 . -1142) T) ((-1180 . -320) 114830) ((-1118 . -235) 114817) ((-641 . -318) 114796) ((-685 . -23) T) ((-537 . -1113) T) ((-322 . -1130) T) ((-495 . -273) 114765) ((-495 . -233) 114734) ((-153 . -1088) T) ((-367 . -23) T) ((-364 . -23) T) ((-356 . -23) T) ((-118 . -318) T) ((-274 . -23) T) ((-254 . -23) T) ((-1033 . -1079) T) ((-733 . -937) 114713) ((-1204 . -920) 114601) ((-1203 . -920) 114482) ((-1197 . -920) 114218) ((-1187 . -634) 114195) ((-1033 . -239) 114167) ((-1033 . -249) T) ((-1156 . -920) 114149) ((-118 . -1052) NIL) ((-938 . -1142) T) ((-1282 . -465) 114128) ((-1261 . -465) 114107) ((-536 . -631) 114039) ((-733 . -669) 113928) ((-420 . -1086) 113880) ((-517 . -631) 113862) ((-938 . -23) T) ((-500 . -320) NIL) ((-1320 . -634) 113818) ((-487 . -132) T) ((-220 . -320) NIL) ((-420 . -111) 113756) ((-836 . -1088) 113734) ((-758 . -1128) 113718) ((-1281 . -506) 113684) ((-1260 . -506) 113650) ((-450 . -1247) T) ((-561 . -865) T) ((-142 . -1128) 113632) ((-490 . -301) T) ((-1213 . -682) T) ((-1320 . -1079) T) ((-259 . -238) 113529) ((-258 . -238) 113426) ((-1252 . -102) T) ((-1093 . -102) T) ((-864 . -634) 113294) ((-513 . -527) NIL) ((-495 . -244) 113273) ((-420 . -634) 113171) ((-991 . -1081) 113054) ((-756 . -1081) 113024) ((-991 . -661) 112921) ((-1202 . -146) 112900) ((-756 . -661) 112870) ((-466 . -1081) 112840) ((-1202 . -148) 112819) ((-1155 . -148) 112798) ((-1155 . -146) 112777) ((-653 . -1086) 112761) ((-619 . -1086) 112745) ((-466 . -661) 112715) ((-1204 . -1288) 112699) ((-1204 . -1275) 112676) ((-1203 . -1280) 112637) ((-691 . -1130) T) ((-691 . -1083) 112577) ((-1203 . -1275) 112547) ((-561 . -1130) T) ((-500 . -1182) T) ((-1203 . -1278) 112531) ((-1197 . -1259) 112492) ((-839 . -276) 112476) ((-220 . -1182) T) ((-355 . -948) T) ((-99 . -1247) T) ((-653 . -111) 112455) ((-619 . -111) 112434) ((-1197 . -1275) 112411) ((-864 . -1079) 112390) ((-1197 . -1257) 112374) ((-528 . -25) T) ((-508 . -313) T) ((-524 . -23) T) ((-523 . -25) T) ((-521 . -25) T) ((-520 . -23) T) ((-431 . -1081) 112348) ((-420 . -1079) T) ((-330 . -1088) T) ((-715 . -318) T) ((-431 . -661) 112322) ((-108 . -869) T) ((-733 . -747) T) ((-420 . -249) T) ((-420 . -239) 112301) ((-391 . -235) 112288) ((-500 . -38) 112238) ((-220 . -38) 112188) ((-487 . -506) 112154) ((-658 . -21) T) ((-658 . -25) T) ((-1254 . -380) T) ((-1188 . -1174) T) ((-1131 . -102) T) ((-848 . -235) 112127) ((-722 . -631) 112109) ((-722 . -632) 112024) ((-735 . -21) T) ((-735 . -25) T) ((-1165 . -102) T) ((-495 . -667) 111803) ((-246 . -920) 111670) ((-135 . -631) 111652) ((-117 . -631) 111634) ((-158 . -25) T) ((-1319 . -1130) T) ((-895 . -659) 111582) ((-1317 . -1130) T) ((-888 . -1247) T) ((-991 . -102) T) ((-756 . -102) T) ((-736 . -102) T) ((-466 . -102) T) ((-837 . -465) 111533) ((-44 . -1130) T) ((-1118 . -870) T) ((-1093 . -320) 111384) ((-685 . -132) T) ((-1084 . -667) 111353) ((-691 . -738) 111337) ((-300 . -1088) T) ((-367 . -132) T) ((-364 . -132) T) ((-356 . -132) T) ((-274 . -132) T) ((-254 . -132) T) ((-397 . -667) 111306) ((-1326 . -1247) T) ((-431 . -102) T) ((-153 . -1130) T) ((-45 . -232) 111256) ((-1034 . -920) NIL) ((-820 . -1081) 111240) ((-986 . -870) 111219) ((-1029 . -669) 111121) ((-820 . -661) 111105) ((-246 . -1304) 111075) ((-1054 . -318) T) ((-305 . -1086) 110996) ((-938 . -132) T) ((-40 . -948) T) ((-500 . -413) 110978) ((-366 . -318) T) ((-220 . -413) 110960) ((-1110 . -424) 110944) ((-305 . -111) 110860) ((-1213 . -870) T) ((-1212 . -870) T) ((-895 . -25) T) ((-895 . -21) T) ((-1283 . -47) 110804) ((-351 . -631) 110786) ((-1202 . -238) T) ((-228 . -148) T) ((-176 . -631) 110768) ((-795 . -631) 110750) ((-129 . -870) T) ((-626 . -241) 110697) ((-488 . -241) 110647) ((-1319 . -738) 110617) ((-48 . -318) T) ((-1317 . -738) 110587) ((-65 . -634) 110516) ((-992 . -1130) T) ((-836 . -1130) 110268) ((-323 . -102) T) ((-929 . -1247) T) ((-48 . -1052) T) ((-1260 . -659) 110176) ((-710 . -102) 110126) ((-44 . -738) 110110) ((-563 . -102) T) ((-305 . -634) 110041) ((-67 . -395) T) ((-500 . -928) NIL) ((-67 . -408) T) ((-285 . -873) T) ((-220 . -928) NIL) ((-683 . -23) T) ((-838 . -667) 109977) ((-691 . -782) T) ((-1244 . -1130) 109955) ((-363 . -1086) 109900) ((-696 . -1130) 109878) ((-1092 . -148) T) ((-980 . -148) 109857) ((-980 . -146) 109836) ((-820 . -102) T) ((-153 . -738) 109820) ((-494 . -148) 109799) ((-494 . -146) 109778) ((-363 . -111) 109707) ((-1110 . -1088) T) ((-333 . -870) 109686) ((-1289 . -1003) 109655) ((-1283 . -1247) T) ((-645 . -1130) T) ((-1282 . -1003) 109617) ((-524 . -132) T) ((-520 . -132) T) ((-306 . -232) 109567) ((-371 . -1088) T) ((-365 . -1088) T) ((-357 . -1088) T) ((-305 . -1079) 109509) ((-1261 . -1003) 109478) ((-391 . -870) T) ((-108 . -1088) T) ((-1029 . -747) T) ((-893 . -948) T) ((-864 . -816) 109457) ((-864 . -813) 109436) ((-431 . -320) 109375) ((-481 . -102) T) ((-608 . -1003) 109344) ((-330 . -1130) T) ((-420 . -816) 109323) ((-420 . -813) 109302) ((-513 . -502) 109284) ((-1283 . -1068) 109250) ((-1281 . -21) T) ((-1281 . -25) T) ((-1260 . -21) T) ((-1260 . -25) T) ((-656 . -634) 109227) ((-836 . -738) 109169) ((-363 . -634) 109099) ((-720 . -417) T) ((-1310 . -1247) T) ((-1143 . -424) 109068) ((-1107 . -1247) T) ((-618 . -102) T) ((-1033 . -380) NIL) ((-1017 . -1247) T) ((-692 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1208 . -667) 108978) ((-758 . -1247) T) ((-752 . -1081) 108821) ((-44 . -782) T) ((-752 . -661) 108670) ((-606 . -102) T) ((-674 . -677) 108654) ((-77 . -409) T) ((-77 . -408) T) ((-142 . -1247) T) ((-894 . -148) T) ((-894 . -146) NIL) ((-1309 . -667) 108599) ((-1289 . -920) 108487) ((-1282 . -920) 108368) ((-1246 . -93) T) ((-363 . -1079) T) ((-228 . -238) T) ((-70 . -395) T) ((-70 . -408) T) ((-1195 . -102) T) ((-691 . -527) 108301) ((-1261 . -920) 108037) ((-1241 . -569) 108016) ((-710 . -320) 107954) ((-991 . -38) 107851) ((-1210 . -631) 107833) ((-756 . -38) 107803) ((-563 . -320) 107607) ((-1204 . -1081) 107490) ((-327 . -1247) T) ((-363 . -239) T) ((-363 . -249) T) ((-324 . -1247) T) ((-300 . -1130) T) ((-1203 . -1081) 107325) ((-1197 . -1081) 107115) ((-1156 . -1081) 106998) ((-1204 . -661) 106895) ((-1203 . -661) 106736) ((-732 . -1251) T) ((-1197 . -661) 106532) ((-1187 . -672) 106516) ((-1156 . -661) 106413) ((-840 . -398) 106397) ((-732 . -569) T) ((-608 . -920) 106308) ((-327 . -908) 106292) ((-327 . -910) 106217) ((-324 . -908) 106178) ((-140 . -1247) T) ((-137 . -1247) T) ((-115 . -1247) T) ((-324 . -910) NIL) ((-820 . -320) 106143) ((-1253 . -682) T) ((-330 . -738) 105984) ((-399 . -398) 105968) ((-335 . -334) 105945) ((-498 . -102) T) ((-487 . -25) T) ((-487 . -21) T) ((-431 . -38) 105919) ((-327 . -1068) 105582) ((-228 . -1232) T) ((-228 . -1235) T) ((-3 . -631) 105564) ((-324 . -1068) 105494) ((-895 . -235) 105439) ((-2 . -1130) T) ((-2 . |RecordCategory|) T) ((-1143 . -1088) 105417) ((-854 . -631) 105399) ((-1092 . -238) T) ((-593 . -948) T) ((-577 . -841) T) ((-577 . -948) T) ((-508 . -948) T) ((-137 . -1068) 105383) ((-228 . -95) T) ((-171 . -148) 105362) ((-75 . -454) T) ((0 . -631) 105344) ((-75 . -408) T) ((-171 . -146) 105295) ((-228 . -35) T) ((-49 . -631) 105277) ((-490 . -1088) T) ((-500 . -273) 105259) ((-500 . -233) 105241) ((-497 . -998) 105225) ((-220 . -273) 105207) ((-220 . -233) 105189) ((-81 . -454) T) ((-81 . -408) T) ((-1176 . -34) T) ((-752 . -102) T) ((-674 . -667) 105148) ((-1056 . -631) 105115) ((-513 . -297) 105065) ((-327 . -389) 105034) ((-324 . -389) 104995) ((-324 . -350) 104956) ((-1115 . -631) 104938) ((-837 . -977) 104885) ((-683 . -132) T) ((-1270 . -146) 104864) ((-1270 . -148) 104843) ((-1204 . -102) T) ((-1203 . -102) T) ((-1197 . -102) T) ((-1189 . -1130) T) ((-1156 . -102) T) ((-1105 . -1247) T) ((-225 . -34) T) ((-300 . -738) 104830) ((-1289 . -1288) 104814) ((-1189 . -628) 104790) ((-606 . -320) NIL) ((-1289 . -1275) 104767) ((-1180 . -232) 104717) ((-497 . -1130) 104695) ((-451 . -1247) T) ((-403 . -631) 104677) ((-523 . -870) T) ((-1150 . -1247) T) ((-1282 . -1280) 104638) ((-1282 . -1275) 104608) ((-1282 . -1278) 104592) ((-1261 . -1259) 104553) ((-1261 . -1275) 104530) ((-1261 . -1257) 104514) ((-1204 . -295) 104480) ((-639 . -631) 104462) ((-1203 . -295) 104428) ((-720 . -948) T) ((-1197 . -295) 104394) ((-1156 . -295) 104360) ((-1150 . -910) 104342) ((-1110 . -1130) T) ((-1091 . -1130) T) ((-48 . -313) T) ((-327 . -926) 104308) ((-324 . -926) NIL) ((-1091 . -1098) 104287) ((-820 . -38) 104271) ((-274 . -659) 104219) ((-112 . -873) T) ((-254 . -659) 104167) ((-722 . -1086) 104154) ((-608 . -1275) 104131) ((-1150 . -1068) 104113) ((-330 . -174) 104044) ((-371 . -1130) T) ((-365 . -1130) T) ((-357 . -1130) T) ((-513 . -19) 104026) ((-1132 . -152) 104010) ((-894 . -238) NIL) ((-108 . -1130) T) ((-117 . -1086) 103997) ((-732 . -375) T) ((-513 . -617) 103972) ((-722 . -111) 103957) ((-1322 . -631) 103923) ((-1322 . -503) 103904) ((-1281 . -235) 103850) ((-1260 . -235) 103703) ((-449 . -102) T) ((-899 . -1292) T) ((-257 . -102) T) ((-45 . -1179) 103653) ((-117 . -111) 103638) ((-1299 . -631) 103620) ((-1270 . -238) T) ((-1255 . -631) 103602) ((-1253 . -870) T) ((-653 . -741) T) ((-619 . -741) T) ((-1241 . -1142) T) ((-1241 . -23) T) ((-1202 . -465) 103533) ((-1197 . -320) 103418) ((-1196 . -1130) T) ((-836 . -527) 103351) ((-1065 . -1247) T) ((-246 . -1081) 103252) ((-1188 . -1130) T) ((-1172 . -669) 103190) ((-971 . -152) 103174) ((-1156 . -320) 103161) ((-1155 . -465) 103112) ((-246 . -661) 103034) ((-1117 . -569) 102965) ((-1117 . -1251) 102944) ((-1110 . -738) 102812) ((-538 . -102) T) ((-533 . -102) 102742) ((-1034 . -1081) 102692) ((-1024 . -1130) T) ((-837 . -920) 102588) ((-803 . -1251) 102567) ((-801 . -1251) 102546) ((-62 . -1247) T) ((-490 . -631) 102498) ((-490 . -632) 102420) ((-803 . -569) 102331) ((-801 . -569) 102262) ((-752 . -320) 102249) ((-722 . -634) 102221) ((-495 . -424) 102190) ((-641 . -948) 102169) ((-467 . -1251) 102148) ((-696 . -527) 102081) ((-685 . -25) T) ((-411 . -631) 102063) ((-685 . -21) T) ((-467 . -569) 101994) ((-431 . -928) 101917) ((-367 . -25) T) ((-367 . -21) T) ((-364 . -25) T) ((-118 . -948) T) ((-118 . -841) NIL) ((-364 . -21) T) ((-356 . -25) T) ((-356 . -21) T) ((-274 . -25) T) ((-274 . -21) T) ((-254 . -25) T) ((-254 . -21) T) ((-171 . -238) 101848) ((-83 . -396) T) ((-83 . -408) T) ((-135 . -634) 101830) ((-117 . -634) 101802) ((-1034 . -661) 101752) ((-971 . -1010) 101736) ((-942 . -661) 101688) ((-942 . -1081) 101640) ((-938 . -21) T) ((-938 . -25) T) ((-895 . -870) 101591) ((-889 . -669) 101551) ((-732 . -1142) T) ((-732 . -23) T) ((-722 . -1079) T) ((-722 . -239) T) ((-300 . -174) T) ((-675 . -1247) T) ((-322 . -93) T) ((-668 . -1130) 101529) ((-650 . -628) 101504) ((-650 . -1130) T) ((-594 . -1251) T) ((-594 . -569) T) ((-531 . -1251) T) ((-531 . -569) T) ((-500 . -667) 101454) ((-487 . -235) 101400) ((-440 . -1081) 101384) ((-440 . -661) 101368) ((-371 . -738) 101320) ((-365 . -738) 101272) ((-351 . -1086) 101256) ((-357 . -738) 101208) ((-351 . -111) 101187) ((-176 . -1086) 101119) ((-176 . -111) 101030) ((-108 . -738) 100980) ((-220 . -667) 100930) ((-284 . -1130) T) ((-283 . -1130) T) ((-282 . -1130) T) ((-281 . -1130) T) ((-280 . -1130) T) ((-279 . -1130) T) ((-278 . -1130) T) ((-214 . -1130) T) ((-213 . -1130) T) ((-171 . -1235) 100908) ((-171 . -1232) 100886) ((-211 . -1130) T) ((-210 . -1130) T) ((-117 . -1079) T) ((-209 . -1130) T) ((-208 . -1130) T) ((-205 . -1130) T) ((-204 . -1130) T) ((-203 . -1130) T) ((-202 . -1130) T) ((-201 . -1130) T) ((-200 . -1130) T) ((-199 . -1130) T) ((-198 . -1130) T) ((-197 . -1130) T) ((-196 . -1130) T) ((-195 . -1130) T) ((-246 . -102) 100618) ((-171 . -35) 100596) ((-171 . -95) 100574) ((-675 . -1068) 100470) ((-495 . -1088) 100448) ((-1143 . -1130) 100200) ((-1172 . -34) T) ((-691 . -502) 100184) ((-73 . -1247) T) ((-105 . -631) 100166) ((-917 . -1247) T) ((-1321 . -631) 100148) ((-393 . -631) 100130) ((-351 . -634) 100082) ((-176 . -634) 99999) ((-1246 . -503) 99980) ((-752 . -38) 99829) ((-584 . -1235) T) ((-584 . -1232) T) ((-544 . -631) 99811) ((-533 . -320) 99749) ((-513 . -631) 99731) ((-513 . -632) 99713) ((-1246 . -631) 99679) ((-1197 . -1182) NIL) ((-215 . -1247) T) ((-1057 . -1101) 99648) ((-1057 . -1130) T) ((-1034 . -102) T) ((-1001 . -102) T) ((-942 . -102) T) ((-917 . -1068) 99625) ((-1172 . -747) T) ((-1033 . -669) 99532) ((-489 . -1130) T) ((-476 . -1130) T) ((-599 . -23) T) ((-584 . -35) T) ((-584 . -95) T) ((-440 . -102) T) ((-1093 . -232) 99478) ((-1204 . -38) 99375) ((-1203 . -38) 99216) ((-949 . -873) T) ((-889 . -747) T) ((-792 . -873) T) ((-715 . -948) T) ((-693 . -873) T) ((-524 . -25) T) ((-520 . -21) T) ((-520 . -25) T) ((-1197 . -38) 99012) ((-351 . -1079) T) ((-145 . -1247) T) ((-1110 . -174) T) ((-176 . -1079) T) ((-1156 . -38) 98909) ((-733 . -47) 98886) ((-371 . -174) T) ((-365 . -174) T) ((-532 . -57) 98860) ((-510 . -57) 98810) ((-363 . -1316) 98787) ((-228 . -465) T) ((-330 . -301) 98738) ((-357 . -174) T) ((-176 . -249) T) ((-1260 . -870) 98637) ((-108 . -174) T) ((-895 . -1022) 98621) ((-679 . -1142) T) ((-594 . -375) T) ((-594 . -340) 98608) ((-531 . -340) 98585) ((-531 . -375) T) ((-327 . -318) 98564) ((-324 . -318) T) ((-615 . -870) 98543) ((-1143 . -738) 98485) ((-622 . -1247) T) ((-533 . -293) 98469) ((-679 . -23) T) ((-431 . -233) 98453) ((-431 . -273) 98437) ((-324 . -1052) NIL) ((-348 . -23) T) ((-103 . -1040) 98421) ((-656 . -380) T) ((-45 . -36) 98400) ((-630 . -1130) T) ((-363 . -380) T) ((-537 . -102) T) ((-508 . -27) T) ((-246 . -320) 98338) ((-1117 . -1142) T) ((-1320 . -669) 98312) ((-803 . -1142) T) ((-801 . -1142) T) ((-1208 . -424) 98296) ((-467 . -1142) T) ((-1092 . -465) T) ((-1181 . -1130) T) ((-980 . -465) 98247) ((-1145 . -1113) T) ((-110 . -1130) T) ((-1117 . -23) T) ((-1189 . -527) 98030) ((-838 . -1088) T) ((-803 . -23) T) ((-801 . -23) T) ((-494 . -465) 97981) ((-474 . -23) T) ((-393 . -394) 97960) ((-367 . -235) 97933) ((-364 . -235) 97906) ((-356 . -235) 97879) ((-467 . -23) T) ((-274 . -235) 97824) ((-259 . -920) 97691) ((-258 . -920) 97558) ((-96 . -1130) T) ((-733 . -1247) T) ((-691 . -297) 97535) ((-497 . -527) 97468) ((-1289 . -1081) 97351) ((-1289 . -661) 97248) ((-1282 . -661) 97089) ((-1282 . -1081) 96924) ((-1261 . -661) 96720) ((-1261 . -1081) 96510) ((-300 . -301) T) ((-1112 . -631) 96492) ((-560 . -873) T) ((-1112 . -632) 96473) ((-420 . -937) 96452) ((-1241 . -132) T) ((-50 . -1142) T) ((-1197 . -413) 96404) ((-1054 . -948) T) ((-1033 . -747) T) ((-864 . -669) 96377) ((-733 . -910) NIL) ((-609 . -1081) 96337) ((-594 . -1142) T) ((-531 . -1142) T) ((-608 . -1081) 96220) ((-1187 . -34) T) ((-1034 . -320) NIL) ((-836 . -502) 96204) ((-609 . -661) 96177) ((-366 . -948) T) ((-608 . -661) 96074) ((-938 . -235) 96061) ((-420 . -669) 95977) ((-50 . -23) T) ((-732 . -132) T) ((-733 . -1068) 95857) ((-594 . -23) T) ((-108 . -527) NIL) ((-531 . -23) T) ((-171 . -422) 95828) ((-1170 . -1130) T) ((-1312 . -1311) 95812) ((-752 . -928) 95789) ((-722 . -816) T) ((-722 . -813) T) ((-1150 . -318) T) ((-391 . -148) T) ((-291 . -631) 95771) ((-290 . -631) 95753) ((-1260 . -1022) 95723) ((-48 . -948) T) ((-696 . -502) 95707) ((-259 . -1304) 95677) ((-258 . -1304) 95647) ((-1118 . -238) T) ((-1206 . -870) T) ((-1150 . -1052) T) ((-1076 . -34) T) ((-857 . -148) 95626) ((-857 . -146) 95605) ((-758 . -107) 95589) ((-630 . -133) T) ((-1208 . -1088) T) ((-495 . -1130) 95341) ((-1204 . -928) 95254) ((-1203 . -928) 95160) ((-1197 . -928) 94921) ((-894 . -465) T) ((-85 . -1247) T) ((-142 . -107) 94903) ((-1156 . -928) 94887) ((-733 . -389) 94871) ((-854 . -634) 94739) ((-1320 . -747) T) ((-1309 . -1088) T) ((-1289 . -102) T) ((-1282 . -102) T) ((-1150 . -558) T) ((-592 . -102) T) ((-130 . -503) 94721) ((-1202 . -977) 94690) ((-403 . -1086) 94674) ((-1155 . -977) 94641) ((-44 . -297) 94618) ((-130 . -631) 94585) ((-52 . -631) 94567) ((-217 . -873) T) ((-674 . -424) 94551) ((-1261 . -102) T) ((-1188 . -527) NIL) ((-683 . -25) T) ((-639 . -1086) 94535) ((-683 . -21) T) ((-991 . -667) 94445) ((-756 . -667) 94390) ((-736 . -667) 94362) ((-403 . -111) 94341) ((-225 . -262) 94325) ((-1084 . -1083) 94265) ((-1084 . -1130) T) ((-1034 . -1182) T) ((-839 . -1130) T) ((-466 . -667) 94180) ((-653 . -669) 94164) ((-639 . -111) 94143) ((-619 . -669) 94127) ((-609 . -102) T) ((-355 . -1251) T) ((-322 . -503) 94108) ((-599 . -132) T) ((-608 . -102) T) ((-427 . -1130) T) ((-397 . -1130) T) ((-322 . -631) 94074) ((-230 . -1130) 94052) ((-668 . -527) 93985) ((-650 . -527) 93829) ((-854 . -1079) 93808) ((-665 . -152) 93792) ((-355 . -569) T) ((-733 . -926) 93735) ((-563 . -232) 93685) ((-1289 . -295) 93651) ((-1282 . -295) 93617) ((-1110 . -301) 93568) ((-577 . -873) T) ((-500 . -869) T) ((-226 . -1142) T) ((-1261 . -295) 93534) ((-1241 . -506) 93500) ((-1034 . -38) 93450) ((-220 . -869) T) ((-431 . -667) 93409) ((-942 . -38) 93361) ((-864 . -815) 93340) ((-864 . -812) 93319) ((-864 . -747) 93298) ((-371 . -301) T) ((-365 . -301) T) ((-357 . -301) T) ((-171 . -465) 93229) ((-440 . -38) 93213) ((-226 . -23) T) ((-108 . -301) T) ((-420 . -815) 93192) ((-420 . -812) 93171) ((-420 . -747) T) ((-513 . -299) 93146) ((-490 . -1086) 93111) ((-679 . -132) T) ((-639 . -634) 93080) ((-1143 . -527) 93013) ((-348 . -132) T) ((-171 . -415) 92992) ((-495 . -738) 92934) ((-836 . -297) 92911) ((-490 . -111) 92867) ((-674 . -1088) T) ((-660 . -23) T) ((-1202 . -920) 92770) ((-1155 . -920) 92752) ((-837 . -1081) 92595) ((-1308 . -1113) T) ((-1270 . -465) 92526) ((-837 . -661) 92375) ((-1307 . -1113) T) ((-1117 . -132) T) ((-1084 . -738) 92317) ((-1057 . -527) 92250) ((-803 . -132) T) ((-801 . -132) T) ((-720 . -873) T) ((-584 . -465) T) ((-639 . -1079) T) ((-605 . -1130) T) ((-546 . -175) T) ((-474 . -132) T) ((-467 . -132) T) ((-391 . -238) T) ((-1029 . -1247) T) ((-45 . -1130) T) ((-397 . -738) 92220) ((-838 . -1130) T) ((-489 . -527) 92153) ((-476 . -527) 92086) ((-1322 . -634) 92067) ((-466 . -379) 92037) ((-45 . -628) 92016) ((-412 . -1247) T) ((-327 . -313) T) ((-1297 . -873) 91995) ((-848 . -238) 91974) ((-490 . -634) 91924) ((-1261 . -320) 91809) ((-691 . -631) 91771) ((-59 . -870) 91750) ((-1034 . -413) 91732) ((-561 . -631) 91714) ((-820 . -667) 91673) ((-836 . -617) 91650) ((-529 . -870) 91629) ((-509 . -870) 91608) ((-1029 . -1068) 91504) ((-40 . -1251) T) ((-246 . -928) 91373) ((-50 . -132) T) ((-594 . -132) T) ((-531 . -132) T) ((-305 . -669) 91233) ((-355 . -340) 91210) ((-355 . -375) T) ((-333 . -334) 91187) ((-330 . -297) 91145) ((-40 . -569) T) ((-391 . -1232) T) ((-391 . -1235) T) ((-1065 . -1223) 91120) ((-1219 . -241) 91070) ((-1197 . -233) 91022) ((-1197 . -273) 90974) ((-341 . -1130) T) ((-391 . -95) T) ((-391 . -35) T) ((-1065 . -107) 90920) ((-490 . -1079) T) ((-1321 . -1086) 90904) ((-492 . -241) 90854) ((-1189 . -502) 90788) ((-1312 . -1081) 90772) ((-393 . -1086) 90756) ((-1312 . -661) 90726) ((-837 . -102) T) ((-490 . -249) T) ((-735 . -148) 90705) ((-735 . -146) 90684) ((-118 . -873) NIL) ((-497 . -502) 90668) ((-498 . -347) 90637) ((-525 . -1130) 90588) ((-1321 . -111) 90567) ((-1029 . -389) 90551) ((-426 . -102) T) ((-393 . -111) 90530) ((-1029 . -350) 90514) ((-289 . -1013) 90498) ((-288 . -1013) 90482) ((-1034 . -928) NIL) ((-1319 . -631) 90464) ((-1317 . -631) 90446) ((-110 . -527) NIL) ((-1202 . -1273) 90430) ((-877 . -875) 90414) ((-1208 . -1130) T) ((-103 . -1247) T) ((-980 . -977) 90375) ((-838 . -738) 90317) ((-1261 . -1182) NIL) ((-494 . -977) 90262) ((-1092 . -144) T) ((-60 . -102) 90212) ((-44 . -631) 90194) ((-78 . -631) 90176) ((-363 . -669) 90121) ((-624 . -1130) T) ((-623 . -1130) T) ((-621 . -1130) T) ((-1309 . -1130) T) ((-524 . -870) T) ((-300 . -297) 90100) ((-355 . -1142) T) ((-306 . -1130) T) ((-1029 . -926) 90059) ((-306 . -628) 90038) ((-1321 . -634) 89987) ((-1289 . -38) 89884) ((-1282 . -38) 89725) ((-1261 . -38) 89521) ((-500 . -1088) T) ((-393 . -634) 89505) ((-220 . -1088) T) ((-355 . -23) T) ((-153 . -631) 89487) ((-854 . -816) 89466) ((-854 . -813) 89445) ((-1246 . -634) 89426) ((-609 . -38) 89399) ((-608 . -38) 89296) ((-893 . -569) T) ((-226 . -132) T) ((-330 . -1032) 89262) ((-79 . -631) 89244) ((-733 . -318) 89223) ((-305 . -747) 89125) ((-845 . -102) T) ((-887 . -865) T) ((-305 . -486) 89104) ((-1312 . -102) T) ((-40 . -375) T) ((-895 . -148) 89083) ((-498 . -667) 89065) ((-895 . -146) 89044) ((-1188 . -502) 89026) ((-1321 . -1079) T) ((-495 . -527) 88959) ((-660 . -132) T) ((-1176 . -1247) T) ((-992 . -631) 88941) ((-668 . -502) 88925) ((-650 . -502) 88856) ((-836 . -631) 88549) ((-48 . -27) T) ((-1208 . -738) 88446) ((-980 . -920) 88425) ((-674 . -1130) T) ((-884 . -883) T) ((-449 . -376) 88399) ((-752 . -667) 88309) ((-494 . -920) 88284) ((-1132 . -102) T) ((-1000 . -1130) T) ((-887 . -1130) T) ((-837 . -320) 88271) ((-546 . -540) T) ((-546 . -589) T) ((-1317 . -394) 88243) ((-715 . -873) T) ((-1084 . -527) 88176) ((-1189 . -297) 88152) ((-246 . -273) 88121) ((-246 . -233) 88090) ((-259 . -1081) 87991) ((-258 . -1081) 87892) ((-1309 . -738) 87862) ((-1196 . -93) T) ((-1024 . -93) T) ((-838 . -174) 87841) ((-259 . -661) 87763) ((-258 . -661) 87685) ((-1244 . -503) 87662) ((-591 . -1247) T) ((-230 . -527) 87595) ((-639 . -816) 87574) ((-639 . -813) 87553) ((-1244 . -631) 87465) ((-225 . -1247) T) ((-696 . -631) 87397) ((-1204 . -667) 87307) ((-1187 . -1040) 87291) ((-971 . -102) 87221) ((-363 . -747) T) ((-884 . -631) 87203) ((-1203 . -667) 87085) ((-1197 . -667) 86922) ((-1156 . -667) 86832) ((-1261 . -413) 86784) ((-1143 . -502) 86768) ((-60 . -320) 86706) ((-342 . -102) T) ((-1241 . -21) T) ((-1241 . -25) T) ((-40 . -1142) T) ((-732 . -21) T) ((-645 . -631) 86688) ((-528 . -334) 86667) ((-732 . -25) T) ((-452 . -102) T) ((-108 . -297) NIL) ((-949 . -1142) T) ((-40 . -23) T) ((-792 . -1142) T) ((-577 . -1251) T) ((-508 . -1251) T) ((-1034 . -273) 86649) ((-330 . -631) 86631) ((-1034 . -233) 86613) ((-171 . -167) 86597) ((-593 . -569) T) ((-577 . -569) T) ((-508 . -569) T) ((-792 . -23) T) ((-1281 . -148) 86576) ((-1281 . -146) 86555) ((-1189 . -617) 86531) ((-1260 . -146) 86456) ((-1057 . -502) 86440) ((-1254 . -1247) T) ((-1260 . -148) 86365) ((-1312 . -1318) 86344) ((-894 . -920) NIL) ((-489 . -502) 86328) ((-476 . -502) 86312) ((-536 . -34) T) ((-674 . -738) 86282) ((-1289 . -928) 86195) ((-1282 . -928) 86101) ((-1261 . -928) 85862) ((-112 . -997) T) ((-1208 . -174) 85813) ((-683 . -870) 85792) ((-377 . -102) T) ((-608 . -928) 85705) ((-246 . -244) 85684) ((-259 . -102) T) ((-258 . -102) T) ((-1270 . -977) 85653) ((-251 . -870) 85632) ((-1054 . -873) T) ((-837 . -38) 85481) ((-45 . -527) 85273) ((-1188 . -297) 85223) ((-216 . -1130) T) ((-1180 . -1130) T) ((-895 . -238) 85174) ((-1180 . -628) 85153) ((-599 . -25) T) ((-599 . -21) T) ((-1132 . -320) 85091) ((-991 . -424) 85075) ((-720 . -1251) T) ((-650 . -297) 85028) ((-1117 . -659) 84976) ((-933 . -1130) T) ((-803 . -659) 84924) ((-801 . -659) 84872) ((-355 . -132) T) ((-300 . -631) 84854) ((-893 . -1142) T) ((-720 . -569) T) ((-130 . -634) 84836) ((-467 . -659) 84784) ((-171 . -920) 84705) ((-933 . -931) 84689) ((-391 . -465) T) ((-500 . -1130) T) ((-971 . -320) 84627) ((-722 . -669) 84599) ((-562 . -865) T) ((-220 . -1130) T) ((-327 . -948) 84578) ((-324 . -948) T) ((-324 . -841) NIL) ((-403 . -741) T) ((-893 . -23) T) ((-117 . -669) 84565) ((-487 . -146) 84544) ((-431 . -424) 84528) ((-487 . -148) 84507) ((-110 . -502) 84489) ((-322 . -634) 84470) ((-2 . -631) 84452) ((-188 . -102) T) ((-1188 . -19) 84434) ((-1188 . -617) 84409) ((-679 . -21) T) ((-679 . -25) T) ((-606 . -1174) T) ((-1143 . -297) 84386) ((-348 . -25) T) ((-348 . -21) T) ((-913 . -1247) T) ((-909 . -1247) T) ((-1319 . -1086) 84370) ((-246 . -667) 84149) ((-508 . -375) T) ((-1317 . -1086) 84133) ((-1312 . -38) 84103) ((-1281 . -1232) 84069) ((-1281 . -1235) 84035) ((-1270 . -920) 83938) ((-1202 . -1081) 83761) ((-1172 . -1247) T) ((-1155 . -1081) 83604) ((-877 . -1081) 83588) ((-650 . -617) 83563) ((-1281 . -95) 83529) ((-1281 . -238) 83481) ((-1264 . -102) 83459) ((-1202 . -661) 83288) ((-1155 . -661) 83137) ((-877 . -661) 83107) ((-1261 . -233) 83059) ((-1117 . -25) T) ((-562 . -1130) T) ((-1117 . -21) T) ((-991 . -1088) T) ((-544 . -813) T) ((-544 . -816) T) ((-118 . -1251) T) ((-889 . -1247) T) ((-641 . -569) T) ((-803 . -25) T) ((-803 . -21) T) ((-801 . -21) T) ((-801 . -25) T) ((-756 . -1088) T) ((-736 . -1088) T) ((-691 . -1086) 83043) ((-530 . -1113) T) ((-474 . -25) T) ((-118 . -569) T) ((-474 . -21) T) ((-467 . -25) T) ((-467 . -21) T) ((-1261 . -273) 82995) ((-1181 . -93) T) ((-1172 . -1068) 82891) ((-838 . -301) 82870) ((-1260 . -1232) 82836) ((-844 . -1130) T) ((-994 . -997) T) ((-691 . -111) 82815) ((-635 . -1247) T) ((-306 . -527) 82607) ((-1260 . -1235) 82573) ((-1260 . -238) 82432) ((-1255 . -380) T) ((-259 . -320) 82370) ((-258 . -320) 82308) ((-1252 . -865) T) ((-1189 . -632) NIL) ((-1189 . -631) 82290) ((-1172 . -389) 82274) ((-1150 . -841) T) ((-1150 . -948) T) ((-96 . -93) T) ((-1143 . -617) 82251) ((-1110 . -632) 82235) ((-1110 . -631) 82217) ((-1034 . -667) 82167) ((-942 . -667) 82104) ((-836 . -299) 82081) ((-497 . -631) 82013) ((-626 . -152) 81960) ((-500 . -738) 81910) ((-431 . -1088) T) ((-495 . -502) 81894) ((-440 . -667) 81853) ((-338 . -870) 81832) ((-351 . -669) 81806) ((-50 . -21) T) ((-50 . -25) T) ((-220 . -738) 81756) ((-171 . -745) 81727) ((-176 . -669) 81659) ((-594 . -21) T) ((-594 . -25) T) ((-531 . -25) T) ((-531 . -21) T) ((-488 . -152) 81609) ((-1091 . -631) 81591) ((-1023 . -102) T) ((-885 . -102) T) ((-837 . -928) 81491) ((-820 . -424) 81454) ((-40 . -132) T) ((-720 . -375) T) ((-722 . -747) T) ((-722 . -815) T) ((-722 . -812) T) ((-214 . -921) T) ((-593 . -1142) T) ((-577 . -1142) T) ((-508 . -1142) T) ((-371 . -631) 81436) ((-365 . -631) 81418) ((-357 . -631) 81400) ((-66 . -409) T) ((-66 . -408) T) ((-108 . -632) 81330) ((-108 . -631) 81272) ((-213 . -921) T) ((-986 . -152) 81256) ((-792 . -132) T) ((-691 . -634) 81174) ((-135 . -747) T) ((-117 . -747) T) ((-1281 . -35) 81140) ((-1084 . -502) 81124) ((-593 . -23) T) ((-577 . -23) T) ((-508 . -23) T) ((-1260 . -95) 81090) ((-1260 . -35) 81056) ((-1202 . -102) T) ((-1155 . -102) T) ((-877 . -102) T) ((-230 . -502) 81040) ((-1319 . -111) 81019) ((-1317 . -111) 80998) ((-44 . -1086) 80982) ((-1320 . -1247) T) ((-1319 . -634) 80928) ((-1319 . -1079) T) ((-1317 . -634) 80857) ((-1317 . -1079) T) ((-1270 . -1273) 80841) ((-878 . -875) 80825) ((-1208 . -301) 80804) ((-1134 . -1247) T) ((-110 . -297) 80754) ((-1033 . -1247) T) ((-129 . -152) 80736) ((-1172 . -926) 80695) ((-44 . -111) 80674) ((-1252 . -1130) T) ((-1211 . -1292) T) ((-1197 . -869) NIL) ((-1196 . -503) 80655) ((-691 . -1079) T) ((-1196 . -631) 80621) ((-1188 . -631) 80603) ((-487 . -238) 80555) ((-1093 . -628) 80530) ((-1024 . -503) 80511) ((-74 . -454) T) ((-74 . -408) T) ((-1093 . -1130) T) ((-153 . -1086) 80495) ((-1024 . -631) 80461) ((-691 . -239) 80440) ((-584 . -567) 80424) ((-367 . -148) 80403) ((-367 . -146) 80354) ((-364 . -148) 80333) ((-364 . -146) 80284) ((-356 . -148) 80263) ((-356 . -146) 80214) ((-274 . -146) 80193) ((-274 . -148) 80172) ((-254 . -148) 80151) ((-118 . -375) T) ((-254 . -146) 80130) ((-1188 . -632) NIL) ((-153 . -111) 80109) ((-1033 . -1068) 79997) ((-1187 . -1247) T) ((-715 . -1251) T) ((-820 . -1088) T) ((-720 . -1142) T) ((-1033 . -389) 79974) ((-519 . -1247) T) ((-515 . -1247) T) ((-938 . -146) T) ((-938 . -148) 79956) ((-893 . -132) T) ((-836 . -1086) 79877) ((-720 . -23) T) ((-715 . -569) T) ((-228 . -1081) 79842) ((-668 . -631) 79774) ((-668 . -632) 79735) ((-650 . -632) NIL) ((-650 . -631) 79717) ((-500 . -174) T) ((-228 . -661) 79682) ((-220 . -174) T) ((-226 . -21) T) ((-226 . -25) T) ((-487 . -1235) 79648) ((-487 . -1232) 79614) ((-284 . -631) 79596) ((-283 . -631) 79578) ((-282 . -631) 79560) ((-281 . -631) 79542) ((-280 . -631) 79524) ((-513 . -672) 79506) ((-279 . -631) 79488) ((-351 . -747) T) ((-278 . -631) 79470) ((-110 . -19) 79452) ((-176 . -747) T) ((-513 . -385) 79434) ((-214 . -631) 79416) ((-533 . -1179) 79400) ((-513 . -124) T) ((-110 . -617) 79375) ((-213 . -631) 79357) ((-487 . -35) 79323) ((-487 . -95) 79289) ((-211 . -631) 79271) ((-210 . -631) 79253) ((-209 . -631) 79235) ((-208 . -631) 79217) ((-205 . -631) 79199) ((-204 . -631) 79181) ((-203 . -631) 79163) ((-202 . -631) 79145) ((-201 . -631) 79127) ((-200 . -631) 79109) ((-199 . -631) 79091) ((-549 . -1133) 79043) ((-198 . -631) 79025) ((-197 . -631) 79007) ((-45 . -502) 78944) ((-196 . -631) 78926) ((-195 . -631) 78908) ((-153 . -634) 78877) ((-1145 . -102) T) ((-836 . -111) 78793) ((-665 . -102) 78723) ((-660 . -21) T) ((-660 . -25) T) ((-495 . -297) 78700) ((-1320 . -1068) 78684) ((-1143 . -631) 78377) ((-1131 . -1130) T) ((-1076 . -1247) T) ((-1202 . -320) 78364) ((-1092 . -1081) 78351) ((-1165 . -1130) T) ((-980 . -1081) 78194) ((-1155 . -320) 78181) ((-1126 . -1113) T) ((-641 . -1142) T) ((-1092 . -661) 78168) ((-1120 . -1113) T) ((-980 . -661) 78017) ((-1117 . -235) 77962) ((-494 . -1081) 77805) ((-1103 . -1113) T) ((-1096 . -1113) T) ((-1066 . -1113) T) ((-1049 . -1113) T) ((-118 . -1142) T) ((-494 . -661) 77654) ((-803 . -235) 77641) ((-840 . -102) T) ((-644 . -1113) T) ((-641 . -23) T) ((-1180 . -527) 77433) ((-496 . -1113) T) ((-991 . -1130) T) ((-399 . -102) T) ((-335 . -102) T) ((-221 . -1113) T) ((-864 . -1247) T) ((-153 . -1079) T) ((-752 . -424) 77417) ((-118 . -23) T) ((-1033 . -926) 77369) ((-756 . -1130) T) ((-736 . -1130) T) ((-1289 . -667) 77279) ((-1282 . -667) 77161) ((-466 . -1130) T) ((-420 . -1247) T) ((-327 . -443) 77145) ((-605 . -93) T) ((-1057 . -632) 77106) ((-271 . -1247) T) ((-1054 . -1251) T) ((-228 . -102) T) ((-1057 . -631) 77068) ((-837 . -273) 77052) ((-837 . -233) 77036) ((-836 . -634) 76834) ((-1261 . -667) 76671) ((-1054 . -569) T) ((-854 . -669) 76644) ((-366 . -1251) T) ((-489 . -631) 76606) ((-489 . -632) 76567) ((-476 . -632) 76528) ((-476 . -631) 76490) ((-609 . -667) 76449) ((-420 . -908) 76433) ((-330 . -1086) 76268) ((-420 . -910) 76193) ((-608 . -667) 76103) ((-864 . -1068) 75999) ((-500 . -527) NIL) ((-495 . -617) 75976) ((-594 . -235) 75963) ((-366 . -569) T) ((-531 . -235) 75950) ((-220 . -527) NIL) ((-895 . -465) T) ((-431 . -1130) T) ((-420 . -1068) 75814) ((-330 . -111) 75635) ((-715 . -375) T) ((-228 . -295) T) ((-1244 . -634) 75612) ((-48 . -1251) T) ((-1202 . -1182) 75590) ((-1189 . -299) 75566) ((-1092 . -102) T) ((-980 . -102) T) ((-836 . -1079) 75544) ((-593 . -132) T) ((-577 . -132) T) ((-508 . -132) T) ((-367 . -238) 75523) ((-364 . -238) 75502) ((-356 . -238) 75481) ((-48 . -569) T) ((-894 . -1081) 75426) ((-274 . -238) 75377) ((-836 . -239) 75329) ((-327 . -27) 75308) ((-259 . -928) 75177) ((-258 . -928) 75046) ((-256 . -856) 75028) ((-189 . -856) 75010) ((-734 . -102) T) ((-306 . -502) 74947) ((-894 . -661) 74892) ((-494 . -102) T) ((-752 . -1088) T) ((-630 . -631) 74874) ((-630 . -632) 74735) ((-420 . -389) 74719) ((-420 . -350) 74703) ((-1202 . -38) 74532) ((-1155 . -38) 74381) ((-330 . -634) 74207) ((-938 . -238) T) ((-653 . -1247) T) ((-619 . -1247) T) ((-877 . -38) 74177) ((-403 . -669) 74161) ((-665 . -320) 74099) ((-1181 . -503) 74080) ((-1181 . -631) 74046) ((-991 . -738) 73943) ((-756 . -738) 73913) ((-639 . -669) 73887) ((-225 . -107) 73871) ((-45 . -297) 73771) ((-323 . -1130) T) ((-300 . -1086) 73758) ((-110 . -631) 73740) ((-110 . -632) 73722) ((-466 . -738) 73692) ((-837 . -261) 73631) ((-710 . -1130) 73609) ((-563 . -1130) T) ((-1204 . -1088) T) ((-1203 . -1088) T) ((-96 . -503) 73590) ((-1197 . -1088) T) ((-300 . -111) 73575) ((-1156 . -1088) T) ((-563 . -628) 73554) ((-96 . -631) 73520) ((-1034 . -869) T) ((-230 . -708) 73478) ((-715 . -1142) T) ((-1241 . -761) 73454) ((-1054 . -375) T) ((-859 . -856) 73436) ((-854 . -815) 73415) ((-420 . -926) 73374) ((-330 . -1079) T) ((-355 . -25) T) ((-355 . -21) T) ((-171 . -1081) 73284) ((-68 . -1247) T) ((-854 . -812) 73263) ((-431 . -738) 73237) ((-820 . -1130) T) ((-733 . -948) 73216) ((-720 . -132) T) ((-171 . -661) 73044) ((-715 . -23) T) ((-500 . -301) T) ((-854 . -747) 73023) ((-330 . -239) 72975) ((-330 . -249) 72954) ((-220 . -301) T) ((-130 . -380) T) ((-1281 . -465) 72933) ((-1260 . -465) 72912) ((-366 . -340) 72889) ((-366 . -375) T) ((-1170 . -631) 72871) ((-45 . -1285) 72821) ((-894 . -102) T) ((-665 . -293) 72805) ((-720 . -1090) T) ((-1308 . -102) T) ((-1307 . -102) T) ((-490 . -669) 72770) ((-481 . -1130) T) ((-45 . -617) 72695) ((-1188 . -299) 72670) ((-300 . -634) 72642) ((-40 . -659) 72581) ((-1270 . -1081) 72404) ((-878 . -1081) 72388) ((-48 . -375) T) ((-1136 . -631) 72370) ((-1270 . -661) 72199) ((-878 . -661) 72169) ((-650 . -299) 72144) ((-837 . -667) 72054) ((-584 . -1081) 72041) ((-495 . -631) 71734) ((-246 . -424) 71703) ((-1202 . -928) 71610) ((-1195 . -1130) T) ((-980 . -320) 71597) ((-584 . -661) 71584) ((-65 . -1247) T) ((-1163 . -1247) T) ((-1155 . -928) 71568) ((-1143 . -299) 71545) ((-1093 . -527) 71389) ((-692 . -1130) T) ((-641 . -132) T) ((-618 . -1130) T) ((-494 . -320) 71376) ((-559 . -102) T) ((-118 . -132) T) ((-300 . -1079) T) ((-182 . -1130) T) ((-162 . -1130) T) ((-157 . -1130) T) ((-155 . -1130) T) ((-466 . -782) T) ((-31 . -1113) T) ((-991 . -174) 71327) ((-1132 . -232) 71311) ((-1000 . -93) T) ((-1110 . -1086) 71221) ((-1084 . -631) 71183) ((-639 . -747) T) ((-639 . -815) 71162) ((-606 . -1130) T) ((-639 . -812) 71141) ((-306 . -297) 71120) ((-305 . -1247) T) ((-1084 . -632) 71081) ((-1054 . -1142) T) ((-324 . -873) NIL) ((-171 . -102) T) ((-285 . -870) T) ((-1110 . -111) 70977) ((-839 . -631) 70959) ((-1054 . -23) T) ((-1033 . -318) T) ((-924 . -102) T) ((-820 . -738) 70943) ((-371 . -1086) 70895) ((-366 . -1142) T) ((-365 . -1086) 70847) ((-427 . -631) 70829) ((-397 . -631) 70811) ((-357 . -1086) 70763) ((-230 . -631) 70695) ((-862 . -102) T) ((-829 . -102) T) ((-108 . -1086) 70645) ((-790 . -102) T) ((-698 . -102) T) ((-115 . -873) T) ((-487 . -465) 70624) ((-431 . -174) T) ((-371 . -111) 70562) ((-365 . -111) 70500) ((-357 . -111) 70438) ((-259 . -273) 70407) ((-259 . -233) 70376) ((-258 . -273) 70345) ((-258 . -233) 70314) ((-366 . -23) T) ((-71 . -1247) T) ((-228 . -38) 70279) ((-108 . -111) 70213) ((-40 . -25) T) ((-40 . -21) T) ((-691 . -741) T) ((-171 . -295) 70191) ((-48 . -1142) T) ((-881 . -1247) T) ((-949 . -25) T) ((-792 . -25) T) ((-1321 . -669) 70165) ((-1180 . -502) 70102) ((-498 . -1130) T) ((-1312 . -667) 70061) ((-1270 . -102) T) ((-1092 . -1182) T) ((-878 . -102) T) ((-246 . -1088) 70039) ((-992 . -813) 69992) ((-992 . -816) 69945) ((-393 . -669) 69929) ((-48 . -23) T) ((-836 . -816) 69908) ((-836 . -813) 69887) ((-561 . -380) T) ((-306 . -617) 69866) ((-490 . -747) T) ((-584 . -102) T) ((-1110 . -634) 69684) ((-256 . -187) T) ((-189 . -187) T) ((-894 . -320) 69641) ((-674 . -297) 69620) ((-656 . -1247) T) ((-112 . -682) T) ((-363 . -1247) T) ((-371 . -634) 69557) ((-365 . -634) 69494) ((-357 . -634) 69431) ((-76 . -1247) T) ((-108 . -634) 69381) ((-112 . -113) T) ((-1092 . -38) 69368) ((-685 . -386) 69347) ((-980 . -38) 69196) ((-752 . -1130) T) ((-494 . -38) 69045) ((-86 . -1247) T) ((-605 . -503) 69026) ((-1261 . -869) NIL) ((-1204 . -1130) T) ((-584 . -295) T) ((-1203 . -1130) T) ((-605 . -631) 68992) ((-1197 . -1130) T) ((-1150 . -873) T) ((-1110 . -1079) T) ((-363 . -1068) 68969) ((-838 . -503) 68953) ((-1034 . -1088) T) ((-45 . -631) 68935) ((-45 . -632) NIL) ((-942 . -1088) T) ((-838 . -631) 68904) ((-1177 . -102) 68854) ((-1110 . -249) 68805) ((-440 . -1088) T) ((-371 . -1079) T) ((-365 . -1079) T) ((-377 . -376) 68782) ((-357 . -1079) T) ((-355 . -235) 68769) ((-259 . -244) 68748) ((-258 . -244) 68727) ((-1110 . -239) 68652) ((-1156 . -1130) T) ((-305 . -926) 68611) ((-108 . -1079) T) ((-715 . -132) T) ((-431 . -527) 68453) ((-371 . -239) 68432) ((-371 . -249) T) ((-44 . -741) T) ((-365 . -239) 68411) ((-365 . -249) T) ((-357 . -239) 68390) ((-357 . -249) T) ((-1196 . -634) 68371) ((-171 . -320) 68336) ((-108 . -249) T) ((-108 . -239) T) ((-1024 . -634) 68317) ((-330 . -813) T) ((-893 . -21) T) ((-893 . -25) T) ((-420 . -318) T) ((-513 . -34) T) ((-110 . -299) 68292) ((-1143 . -1086) 68213) ((-894 . -1182) NIL) ((-341 . -631) 68195) ((-420 . -1052) 68173) ((-1143 . -111) 68089) ((-712 . -1292) T) ((-449 . -1130) T) ((-257 . -1130) T) ((-1321 . -747) T) ((-63 . -631) 68071) ((-894 . -38) 68016) ((-615 . -152) 68000) ((-536 . -1247) T) ((-525 . -631) 67940) ((-1270 . -320) 67927) ((-752 . -738) 67776) ((-544 . -814) T) ((-544 . -815) T) ((-577 . -659) 67758) ((-508 . -659) 67718) ((-517 . -1247) T) ((-658 . -1304) 67702) ((-367 . -465) T) ((-364 . -465) T) ((-356 . -465) T) ((-274 . -465) 67653) ((-538 . -1130) T) ((-533 . -1130) 67603) ((-254 . -465) 67554) ((-1180 . -297) 67533) ((-1208 . -631) 67515) ((-710 . -527) 67448) ((-991 . -301) 67427) ((-1309 . -631) 67396) ((-563 . -527) 67188) ((-259 . -667) 67036) ((-258 . -667) 66871) ((-1309 . -503) 66855) ((-1204 . -738) 66752) ((-1203 . -738) 66593) ((-994 . -682) T) ((-1202 . -273) 66577) ((-1202 . -233) 66561) ((-1197 . -738) 66357) ((-1187 . -695) 66341) ((-1143 . -634) 66139) ((-171 . -1182) 66118) ((-1156 . -738) 66015) ((-1054 . -132) T) ((-994 . -113) T) ((-916 . -102) T) ((-624 . -631) 65997) ((-623 . -631) 65979) ((-621 . -631) 65961) ((-367 . -415) 65912) ((-364 . -415) 65863) ((-356 . -415) 65814) ((-992 . -380) 65767) ((-820 . -527) 65679) ((-306 . -632) NIL) ((-306 . -631) 65661) ((-938 . -465) T) ((-933 . -297) 65640) ((-836 . -380) 65619) ((-523 . -522) 65598) ((-521 . -522) 65577) ((-895 . -920) 65498) ((-500 . -297) NIL) ((-495 . -299) 65475) ((-431 . -301) T) ((-366 . -132) T) ((-220 . -297) NIL) ((-715 . -506) NIL) ((-99 . -1142) T) ((-40 . -235) 65406) ((-171 . -38) 65234) ((-980 . -928) 65215) ((-1281 . -1003) 65177) ((-1260 . -1003) 65146) ((-1177 . -320) 65084) ((-494 . -928) 65061) ((-1143 . -1079) 65039) ((-938 . -415) T) ((-658 . -522) 65011) ((-1283 . -569) T) ((-1180 . -617) 64990) ((-112 . -870) T) ((-1093 . -502) 64921) ((-593 . -21) T) ((-593 . -25) T) ((-577 . -21) T) ((-577 . -25) T) ((-508 . -25) T) ((-508 . -21) T) ((-1270 . -1182) 64899) ((-1143 . -239) 64851) ((-48 . -132) T) ((-1228 . -102) T) ((-246 . -1130) 64603) ((-894 . -413) 64580) ((-1118 . -102) T) ((-1106 . -102) T) ((-917 . -873) T) ((-626 . -102) T) ((-488 . -102) T) ((-1270 . -38) 64409) ((-878 . -38) 64379) ((-1064 . -1081) 64353) ((-752 . -174) 64264) ((-674 . -631) 64246) ((-666 . -1113) T) ((-1064 . -661) 64230) ((-584 . -38) 64217) ((-1000 . -503) 64198) ((-1000 . -631) 64164) ((-986 . -102) 64094) ((-887 . -631) 64076) ((-887 . -632) 63998) ((-606 . -527) NIL) ((-871 . -102) T) ((-1326 . -1142) T) ((-1289 . -1088) T) ((-1282 . -1088) T) ((-1281 . -920) 63902) ((-1261 . -1088) T) ((-1260 . -920) 63697) ((-1241 . -148) 63676) ((-333 . -1081) 63658) ((-1241 . -146) 63637) ((-1214 . -102) T) ((-1213 . -102) T) ((-1212 . -102) T) ((-1204 . -174) 63588) ((-333 . -661) 63570) ((-722 . -1247) T) ((-1203 . -174) 63501) ((-1197 . -174) 63432) ((-1181 . -634) 63413) ((-1156 . -174) 63364) ((-609 . -1088) T) ((-608 . -1088) T) ((-1034 . -1130) T) ((-1001 . -1130) T) ((-391 . -1081) 63329) ((-135 . -1247) T) ((-117 . -1247) T) ((-942 . -1130) T) ((-894 . -928) NIL) ((-391 . -661) 63294) ((-145 . -873) T) ((-820 . -818) 63278) ((-720 . -25) T) ((-720 . -21) T) ((-118 . -659) 63255) ((-722 . -910) 63237) ((-440 . -1130) T) ((-327 . -1251) 63216) ((-324 . -1251) T) ((-171 . -413) 63200) ((-857 . -1081) 63170) ((-487 . -1003) 63132) ((-129 . -102) T) ((-72 . -631) 63114) ((-131 . -102) T) ((-848 . -1081) 63098) ((-108 . -816) T) ((-108 . -813) T) ((-722 . -1068) 63080) ((-327 . -569) 63059) ((-324 . -569) T) ((-857 . -661) 63029) ((-848 . -661) 62999) ((-1326 . -23) T) ((-135 . -1068) 62981) ((-96 . -634) 62962) ((-1023 . -667) 62944) ((-495 . -1086) 62865) ((-45 . -299) 62790) ((-246 . -738) 62732) ((-530 . -102) T) ((-495 . -111) 62648) ((-1122 . -102) 62618) ((-1064 . -102) T) ((-1202 . -667) 62528) ((-1155 . -667) 62438) ((-877 . -667) 62397) ((-665 . -849) 62376) ((-752 . -527) 62319) ((-1084 . -1086) 62303) ((-171 . -928) 62226) ((-1165 . -93) T) ((-1093 . -297) 62201) ((-641 . -21) T) ((-641 . -25) T) ((-537 . -1130) T) ((-691 . -669) 62139) ((-373 . -102) T) ((-333 . -102) T) ((-397 . -1086) 62123) ((-1084 . -111) 62102) ((-837 . -424) 62086) ((-118 . -25) T) ((-89 . -631) 62068) ((-118 . -21) T) ((-626 . -320) 61863) ((-1180 . -632) NIL) ((-488 . -320) 61667) ((-351 . -1247) T) ((-176 . -1247) T) ((-397 . -111) 61646) ((-391 . -102) T) ((-216 . -631) 61628) ((-1180 . -631) 61610) ((-795 . -1247) T) ((-1197 . -527) 61379) ((-1034 . -738) 61329) ((-1156 . -527) 61299) ((-942 . -738) 61251) ((-495 . -634) 61049) ((-363 . -318) T) ((-1219 . -152) 60999) ((-487 . -920) 60880) ((-986 . -320) 60818) ((-857 . -102) T) ((-440 . -738) 60802) ((-228 . -849) T) ((-848 . -102) T) ((-846 . -102) T) ((-1319 . -669) 60776) ((-1281 . -1280) 60755) ((-492 . -152) 60705) ((-1281 . -1275) 60675) ((-1150 . -1251) T) ((-351 . -1068) 60642) ((-1281 . -1278) 60626) ((-1270 . -928) 60533) ((-1260 . -1259) 60512) ((-80 . -631) 60494) ((-933 . -631) 60476) ((-1260 . -1275) 60453) ((-1150 . -569) T) ((-949 . -870) T) ((-792 . -870) T) ((-693 . -870) T) ((-500 . -632) 60383) ((-500 . -631) 60324) ((-391 . -295) T) ((-1260 . -1257) 60308) ((-1283 . -1142) T) ((-220 . -632) 60238) ((-220 . -631) 60179) ((-1093 . -617) 60154) ((-839 . -634) 60138) ((-577 . -235) 60125) ((-529 . -152) 60109) ((-59 . -152) 60093) ((-509 . -152) 60077) ((-508 . -235) 60064) ((-371 . -1316) 60048) ((-365 . -1316) 60032) ((-357 . -1316) 60016) ((-327 . -375) 59995) ((-324 . -375) T) ((-495 . -1079) 59973) ((-715 . -659) 59955) ((-1317 . -669) 59929) ((-129 . -320) NIL) ((-1283 . -23) T) ((-710 . -502) 59913) ((-64 . -631) 59895) ((-1143 . -816) 59874) ((-1143 . -813) 59853) ((-563 . -502) 59790) ((-691 . -34) T) ((-495 . -239) 59742) ((-306 . -299) 59721) ((-837 . -1088) T) ((-44 . -669) 59679) ((-1110 . -380) 59630) ((-752 . -301) 59561) ((-533 . -527) 59494) ((-838 . -1086) 59445) ((-1117 . -146) 59424) ((-562 . -631) 59406) ((-371 . -380) 59385) ((-365 . -380) 59364) ((-357 . -380) 59343) ((-1117 . -148) 59322) ((-996 . -1247) T) ((-894 . -273) 59299) ((-894 . -233) 59276) ((-838 . -111) 59218) ((-803 . -146) 59197) ((-274 . -977) 59164) ((-254 . -977) 59109) ((-803 . -148) 59088) ((-801 . -146) 59067) ((-801 . -148) 59046) ((-153 . -669) 59020) ((-592 . -1130) T) ((-466 . -297) 58983) ((-467 . -148) 58962) ((-467 . -146) 58941) ((-691 . -747) T) ((-844 . -631) 58923) ((-1289 . -1130) T) ((-1282 . -1130) T) ((-1261 . -1130) T) ((-1241 . -1235) 58889) ((-1241 . -1232) 58855) ((-1204 . -301) 58834) ((-1203 . -301) 58785) ((-1197 . -301) 58736) ((-1156 . -301) 58715) ((-1034 . -174) T) ((-351 . -926) 58696) ((-942 . -174) T) ((-715 . -21) T) ((-715 . -25) T) ((-658 . -1081) 58680) ((-658 . -661) 58664) ((-228 . -667) 58614) ((-609 . -1130) T) ((-608 . -1130) T) ((-487 . -1278) 58598) ((-487 . -1275) 58568) ((-431 . -297) 58496) ((-560 . -870) T) ((-327 . -1142) 58345) ((-324 . -1142) T) ((-1241 . -35) 58311) ((-1241 . -95) 58277) ((-84 . -631) 58259) ((-91 . -102) 58209) ((-1326 . -132) T) ((-735 . -1081) 58179) ((-605 . -634) 58160) ((-594 . -146) T) ((-594 . -148) 58142) ((-531 . -148) 58124) ((-531 . -146) T) ((-735 . -661) 58094) ((-327 . -23) 57946) ((-40 . -354) 57920) ((-324 . -23) T) ((-838 . -634) 57834) ((-1188 . -672) 57816) ((-1312 . -1088) T) ((-1188 . -385) 57798) ((-1126 . -102) T) ((-836 . -669) 57631) ((-1120 . -102) T) ((-1103 . -102) T) ((-171 . -273) 57615) ((-171 . -233) 57599) ((-1096 . -102) T) ((-1066 . -102) T) ((-1049 . -102) T) ((-606 . -502) 57581) ((-644 . -102) T) ((-246 . -527) 57514) ((-496 . -102) T) ((-1319 . -747) T) ((-1317 . -747) T) ((-221 . -102) T) ((-1208 . -1086) 57397) ((-1309 . -111) 57362) ((-1309 . -1086) 57332) ((-1289 . -738) 57229) ((-1092 . -667) 57201) ((-1282 . -738) 57042) ((-980 . -667) 56952) ((-1270 . -273) 56936) ((-1208 . -111) 56805) ((-1064 . -38) 56789) ((-899 . -1113) T) ((-884 . -175) T) ((-494 . -667) 56699) ((-274 . -920) 56605) ((-254 . -920) 56580) ((-838 . -1079) T) ((-702 . -1113) T) ((-697 . -1113) T) ((-641 . -235) 56525) ((-528 . -102) T) ((-523 . -102) T) ((-48 . -659) 56485) ((-521 . -102) T) ((-491 . -1113) T) ((-118 . -235) NIL) ((-3 . -1247) T) ((-139 . -1113) T) ((-138 . -1113) T) ((-134 . -1113) T) ((-854 . -1247) T) ((-838 . -239) T) ((-838 . -249) 56464) ((-1270 . -233) 56448) ((-1261 . -738) 56244) ((-1029 . -873) 56223) ((-1252 . -631) 56205) ((-563 . -297) 56184) ((-1093 . -632) NIL) ((-1093 . -631) 56166) ((-618 . -93) T) ((-692 . -93) T) ((0 . -1247) T) ((-49 . -1247) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-217 . -870) T) ((-1033 . -948) T) ((-1208 . -634) 56019) ((-153 . -747) T) ((-1143 . -380) 55998) ((-658 . -102) T) ((-1054 . -25) T) ((-1034 . -527) NIL) ((-259 . -424) 55967) ((-258 . -424) 55936) ((-1054 . -21) T) ((-895 . -1081) 55888) ((-609 . -738) 55861) ((-608 . -738) 55758) ((-820 . -297) 55716) ((-127 . -102) 55666) ((-854 . -1068) 55562) ((-171 . -849) 55541) ((-330 . -669) 55438) ((-836 . -34) T) ((-735 . -102) T) ((-1150 . -1142) T) ((-1056 . -1247) T) ((-895 . -661) 55390) ((-391 . -38) 55355) ((-366 . -25) T) ((-366 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-256 . -102) T) ((-158 . -102) T) ((-367 . -1304) 55339) ((-364 . -1304) 55323) ((-356 . -1304) 55307) ((-171 . -361) 55286) ((-577 . -870) T) ((-1117 . -238) 55237) ((-1150 . -23) T) ((-87 . -631) 55219) ((-803 . -238) T) ((-722 . -318) T) ((-857 . -38) 55189) ((-848 . -38) 55159) ((-1309 . -634) 55101) ((-1283 . -132) T) ((-1180 . -299) 55080) ((-992 . -747) 54979) ((-992 . -814) 54932) ((-992 . -815) 54885) ((-117 . -318) T) ((-91 . -320) 54823) ((-696 . -34) T) ((-563 . -617) 54802) ((-48 . -25) T) ((-48 . -21) T) ((-836 . -815) 54781) ((-836 . -814) 54760) ((-722 . -1052) T) ((-674 . -1086) 54744) ((-894 . -667) 54674) ((-836 . -747) 54652) ((-403 . -1247) T) ((-992 . -486) 54605) ((-495 . -816) 54584) ((-495 . -813) 54563) ((-938 . -1304) 54550) ((-1208 . -1079) T) ((-639 . -1247) T) ((-674 . -111) 54529) ((-1208 . -337) 54505) ((-1233 . -102) 54455) ((-1131 . -631) 54437) ((-722 . -558) T) ((-837 . -1130) T) ((-594 . -238) T) ((-531 . -238) T) ((-1309 . -1079) T) ((-1165 . -503) 54418) ((-1253 . -102) T) ((-426 . -1130) T) ((-1165 . -631) 54384) ((-259 . -1088) 54362) ((-258 . -1088) 54340) ((-859 . -102) T) ((-300 . -669) 54327) ((-606 . -297) 54277) ((-710 . -708) 54235) ((-1322 . -1247) T) ((-1297 . -870) 54214) ((-991 . -631) 54196) ((-895 . -102) T) ((-756 . -631) 54178) ((-736 . -631) 54160) ((-1289 . -174) 54111) ((-1282 . -174) 54042) ((-1261 . -174) 53973) ((-720 . -870) T) ((-1034 . -301) T) ((-466 . -631) 53955) ((-645 . -747) T) ((-60 . -1130) 53933) ((-251 . -152) 53917) ((-1281 . -661) 53758) ((-942 . -301) T) ((-1054 . -1042) T) ((-645 . -486) T) ((-733 . -1251) 53737) ((-715 . -235) NIL) ((-674 . -634) 53655) ((-171 . -667) 53550) ((-1281 . -1081) 53385) ((-609 . -174) 53364) ((-608 . -174) 53315) ((-1260 . -661) 53129) ((-1260 . -1081) 52937) ((-1255 . -1247) T) ((-733 . -569) 52848) ((-420 . -841) 52827) ((-420 . -948) T) ((-330 . -815) T) ((-490 . -1247) T) ((-1000 . -634) 52808) ((-330 . -747) T) ((-665 . -1179) 52792) ((-431 . -631) 52774) ((-431 . -632) 52681) ((-110 . -672) 52663) ((-327 . -132) 52534) ((-176 . -318) T) ((-127 . -320) 52472) ((-411 . -1247) T) ((-110 . -385) 52454) ((-324 . -132) T) ((-69 . -408) T) ((-110 . -124) T) ((-533 . -502) 52438) ((-675 . -1142) T) ((-606 . -19) 52420) ((-61 . -454) T) ((-61 . -408) T) ((-845 . -1130) T) ((-606 . -617) 52395) ((-490 . -1068) 52355) ((-674 . -1079) T) ((-675 . -23) T) ((-1312 . -1130) T) ((-31 . -102) T) ((-1270 . -667) 52265) ((-878 . -667) 52224) ((-837 . -738) 52073) ((-1299 . -1247) T) ((-590 . -883) T) ((-584 . -667) 52045) ((-118 . -870) NIL) ((-1202 . -424) 52029) ((-1155 . -424) 52013) ((-877 . -424) 51997) ((-896 . -102) 51948) ((-1281 . -102) T) ((-1261 . -527) 51717) ((-1260 . -102) T) ((-1233 . -320) 51655) ((-1204 . -297) 51620) ((-1203 . -297) 51578) ((-538 . -93) T) ((-1197 . -297) 51406) ((-323 . -631) 51388) ((-1132 . -1130) T) ((-1110 . -669) 51262) ((-732 . -465) T) ((-710 . -631) 51194) ((-300 . -747) T) ((-108 . -937) NIL) ((-710 . -632) 51155) ((-614 . -631) 51137) ((-590 . -631) 51119) ((-563 . -632) NIL) ((-563 . -631) 51101) ((-542 . -631) 51083) ((-524 . -522) 51062) ((-500 . -1086) 51012) ((-487 . -1081) 50847) ((-520 . -522) 50826) ((-487 . -661) 50667) ((-220 . -1086) 50617) ((-371 . -669) 50569) ((-365 . -669) 50521) ((-228 . -869) T) ((-357 . -669) 50473) ((-615 . -102) 50403) ((-500 . -111) 50337) ((-495 . -380) 50316) ((-108 . -669) 50266) ((-366 . -235) 50253) ((-246 . -502) 50237) ((-355 . -148) 50219) ((-355 . -146) T) ((-171 . -382) 50190) ((-971 . -1295) 50174) ((-105 . -1247) T) ((-220 . -111) 50108) ((-895 . -320) 50073) ((-971 . -1130) 50023) ((-820 . -632) 49984) ((-820 . -631) 49966) ((-739 . -102) T) ((-1321 . -1247) T) ((-393 . -1247) T) ((-342 . -1130) T) ((-216 . -634) 49943) ((-1150 . -132) T) ((-1312 . -738) 49913) ((-735 . -38) 49883) ((-327 . -506) 49862) ((-544 . -1247) T) ((-513 . -1247) T) ((-1281 . -295) 49828) ((-1260 . -295) 49794) ((-338 . -152) 49778) ((-452 . -1130) T) ((-1246 . -1247) T) ((-1093 . -299) 49753) ((-1254 . -873) T) ((-48 . -235) 49740) ((-1189 . -34) T) ((-1321 . -1068) 49717) ((-497 . -34) T) ((-481 . -631) 49699) ((-257 . -297) 49673) ((-393 . -1068) 49657) ((-1202 . -1088) T) ((-1155 . -1088) T) ((-877 . -1088) T) ((-1092 . -869) T) ((-500 . -634) 49607) ((-220 . -634) 49557) ((-837 . -174) 49468) ((-533 . -297) 49420) ((-1289 . -301) 49399) ((-1228 . -376) 49373) ((-1118 . -276) 49357) ((-692 . -503) 49338) ((-692 . -631) 49304) ((-618 . -503) 49285) ((-118 . -1022) 49262) ((-618 . -631) 49212) ((-487 . -102) T) ((-182 . -503) 49193) ((-182 . -631) 49159) ((-162 . -503) 49140) ((-162 . -631) 49106) ((-157 . -503) 49087) ((-155 . -503) 49068) ((-157 . -631) 49034) ((-377 . -1130) T) ((-259 . -1130) T) ((-258 . -1130) T) ((-155 . -631) 49000) ((-1282 . -301) 48951) ((-1261 . -301) 48902) ((-895 . -1182) 48880) ((-1204 . -1032) 48846) ((-626 . -376) 48786) ((-1203 . -1032) 48752) ((-626 . -232) 48699) ((-715 . -870) T) ((-606 . -631) 48681) ((-606 . -632) NIL) ((-488 . -232) 48631) ((-500 . -1079) T) ((-1197 . -1032) 48597) ((-88 . -453) T) ((-88 . -408) T) ((-220 . -1079) T) ((-1156 . -1032) 48563) ((-1110 . -747) T) ((-733 . -1142) T) ((-609 . -301) 48542) ((-608 . -301) 48521) ((-500 . -249) T) ((-500 . -239) T) ((-220 . -249) T) ((-220 . -239) T) ((-1195 . -631) 48503) ((-895 . -38) 48455) ((-371 . -747) T) ((-365 . -747) T) ((-357 . -747) T) ((-108 . -815) T) ((-108 . -812) T) ((-733 . -23) T) ((-108 . -747) T) ((-533 . -1285) 48439) ((-1326 . -25) T) ((-487 . -295) 48405) ((-1326 . -21) T) ((-1260 . -320) 48344) ((-1206 . -102) T) ((-40 . -146) 48316) ((-40 . -148) 48288) ((-533 . -617) 48265) ((-1143 . -669) 48098) ((-615 . -320) 48036) ((-45 . -672) 47986) ((-45 . -687) 47936) ((-45 . -385) 47886) ((-1188 . -34) T) ((-894 . -869) NIL) ((-675 . -132) T) ((-498 . -631) 47868) ((-246 . -297) 47845) ((-1112 . -1247) T) ((-188 . -1130) T) ((-1117 . -465) 47796) ((-837 . -527) 47670) ((-803 . -465) 47601) ((-685 . -1081) 47585) ((-668 . -34) T) ((-650 . -34) T) ((-685 . -661) 47569) ((-367 . -1081) 47521) ((-355 . -238) T) ((-364 . -1081) 47473) ((-356 . -1081) 47425) ((-274 . -1081) 47268) ((-254 . -1081) 47111) ((-801 . -465) 47062) ((-367 . -661) 47014) ((-364 . -661) 46966) ((-356 . -661) 46918) ((-274 . -661) 46767) ((-254 . -661) 46616) ((-467 . -465) 46567) ((-980 . -424) 46551) ((-752 . -631) 46533) ((-259 . -738) 46475) ((-258 . -738) 46417) ((-752 . -632) 46278) ((-494 . -424) 46262) ((-351 . -313) T) ((-537 . -93) T) ((-363 . -948) T) ((-1030 . -102) 46212) ((-938 . -1081) 46177) ((-1054 . -870) T) ((-60 . -527) 46110) ((-938 . -661) 46075) ((-1260 . -1182) 46027) ((-1034 . -297) NIL) ((-228 . -1088) T) ((-391 . -849) T) ((-1143 . -34) T) ((-594 . -465) T) ((-531 . -465) T) ((-1264 . -1123) 46011) ((-1264 . -1130) 45989) ((-246 . -617) 45966) ((-1264 . -1125) 45923) ((-1204 . -631) 45905) ((-1203 . -631) 45887) ((-1197 . -631) 45869) ((-1197 . -632) NIL) ((-1156 . -631) 45851) ((-895 . -413) 45835) ((-610 . -102) T) ((-598 . -102) T) ((-549 . -102) T) ((-1281 . -38) 45676) ((-1260 . -38) 45490) ((-130 . -1247) T) ((-52 . -1247) T) ((-893 . -148) T) ((-594 . -415) T) ((-531 . -415) T) ((-1293 . -102) T) ((-1283 . -21) T) ((-1283 . -25) T) ((-1219 . -102) T) ((-1143 . -815) 45469) ((-1143 . -814) 45448) ((-1023 . -1130) T) ((-1057 . -34) T) ((-885 . -1130) T) ((-1143 . -747) 45426) ((-685 . -102) T) ((-666 . -102) T) ((-563 . -299) 45405) ((-489 . -34) T) ((-476 . -34) T) ((-367 . -102) T) ((-364 . -102) T) ((-322 . -1247) T) ((-356 . -102) T) ((-274 . -102) T) ((-254 . -102) T) ((-490 . -318) T) ((-1092 . -1088) T) ((-980 . -1088) T) ((-327 . -659) 45311) ((-324 . -659) 45272) ((-1202 . -1130) T) ((-494 . -1088) T) ((-492 . -102) T) ((-449 . -631) 45254) ((-1155 . -1130) T) ((-257 . -631) 45236) ((-877 . -1130) T) ((-1171 . -102) T) ((-837 . -301) 45167) ((-991 . -1086) 45050) ((-490 . -1052) T) ((-895 . -928) 44973) ((-756 . -1086) 44943) ((-1064 . -667) 44902) ((-1177 . -1151) 44886) ((-466 . -1086) 44856) ((-1132 . -527) 44789) ((-991 . -111) 44658) ((-938 . -102) T) ((-40 . -238) 44595) ((-756 . -111) 44560) ((-538 . -503) 44541) ((-538 . -631) 44507) ((-59 . -102) 44437) ((-533 . -632) 44398) ((-533 . -631) 44310) ((-532 . -102) 44260) ((-529 . -102) 44190) ((-510 . -102) 44140) ((-509 . -102) 44070) ((-466 . -111) 44033) ((-333 . -667) 44015) ((-515 . -873) T) ((-431 . -1086) 43989) ((-1241 . -1003) 43951) ((-1029 . -1142) T) ((-391 . -667) 43901) ((-1165 . -634) 43882) ((-971 . -527) 43815) ((-500 . -816) T) ((-487 . -38) 43656) ((-431 . -111) 43623) ((-500 . -813) T) ((-1030 . -320) 43561) ((-220 . -816) T) ((-220 . -813) T) ((-1029 . -23) T) ((-733 . -132) T) ((-1260 . -413) 43531) ((-857 . -667) 43476) ((-848 . -667) 43435) ((-327 . -25) 43287) ((-171 . -424) 43271) ((-327 . -21) 43142) ((-324 . -25) T) ((-324 . -21) T) ((-887 . -380) T) ((-991 . -634) 42995) ((-110 . -34) T) ((-756 . -634) 42951) ((-736 . -634) 42933) ((-495 . -669) 42766) ((-894 . -1088) T) ((-606 . -299) 42741) ((-593 . -148) T) ((-577 . -148) T) ((-508 . -148) T) ((-1202 . -738) 42570) ((-1087 . -102) 42548) ((-1155 . -738) 42397) ((-1150 . -659) 42379) ((-877 . -738) 42349) ((-691 . -1247) T) ((-1 . -102) T) ((-561 . -1247) T) ((-431 . -634) 42257) ((-246 . -631) 41950) ((-1145 . -1130) T) ((-1270 . -424) 41934) ((-1219 . -320) 41738) ((-991 . -1079) T) ((-756 . -1079) T) ((-736 . -1079) T) ((-665 . -1130) 41688) ((-1084 . -669) 41672) ((-878 . -424) 41656) ((-524 . -102) T) ((-520 . -102) T) ((-274 . -320) 41643) ((-254 . -320) 41630) ((-1281 . -928) 41536) ((-991 . -337) 41515) ((-1260 . -928) 41312) ((-397 . -669) 41296) ((-864 . -873) 41275) ((-691 . -1068) 41171) ((-492 . -320) 40975) ((-259 . -527) 40908) ((-258 . -527) 40841) ((-1171 . -320) 40767) ((-420 . -873) 40718) ((-1241 . -920) 40697) ((-840 . -1130) T) ((-820 . -1086) 40681) ((-1289 . -297) 40646) ((-1282 . -297) 40604) ((-1261 . -297) 40432) ((-399 . -1130) T) ((-335 . -1130) T) ((-431 . -1079) T) ((-171 . -1088) T) ((-59 . -320) 40370) ((-820 . -111) 40349) ((-608 . -297) 40314) ((-532 . -320) 40252) ((-529 . -320) 40190) ((-510 . -320) 40128) ((-509 . -320) 40066) ((-431 . -239) 40045) ((-495 . -34) T) ((-228 . -1130) T) ((-1034 . -632) 39975) ((-1034 . -631) 39935) ((-1001 . -631) 39895) ((-942 . -631) 39877) ((-720 . -148) T) ((-1319 . -1247) T) ((-1317 . -1247) T) ((-722 . -948) T) ((-722 . -841) T) ((-440 . -631) 39859) ((-1150 . -21) T) ((-1150 . -25) T) ((-691 . -389) 39843) ((-117 . -948) T) ((-895 . -273) 39827) ((-895 . -233) 39811) ((-44 . -1247) T) ((-78 . -1247) T) ((-127 . -126) 39795) ((-1084 . -34) T) ((-1319 . -1068) 39769) ((-1317 . -1068) 39726) ((-1270 . -1088) T) ((-878 . -1088) T) ((-367 . -1182) 39705) ((-364 . -1182) 39684) ((-356 . -1182) 39663) ((-495 . -815) 39642) ((-495 . -814) 39621) ((-230 . -34) T) ((-495 . -747) 39599) ((-820 . -634) 39445) ((-683 . -1081) 39429) ((-60 . -502) 39413) ((-584 . -1088) T) ((-1202 . -174) 39304) ((-683 . -661) 39288) ((-487 . -928) 39194) ((-153 . -1247) T) ((-1155 . -174) 39105) ((-1092 . -1130) T) ((-1117 . -977) 39050) ((-980 . -1130) T) ((-838 . -669) 39001) ((-803 . -977) 38970) ((-734 . -1130) T) ((-801 . -977) 38937) ((-529 . -293) 38921) ((-691 . -926) 38880) ((-494 . -1130) T) ((-467 . -977) 38847) ((-79 . -1247) T) ((-367 . -38) 38812) ((-364 . -38) 38777) ((-356 . -38) 38742) ((-274 . -38) 38591) ((-254 . -38) 38440) ((-938 . -1182) T) ((-537 . -503) 38421) ((-641 . -148) 38400) ((-641 . -146) 38379) ((-537 . -631) 38345) ((-118 . -148) T) ((-118 . -146) NIL) ((-427 . -747) T) ((-820 . -1079) T) ((-577 . -238) T) ((-508 . -238) T) ((-355 . -465) T) ((-1289 . -1032) 38311) ((-1282 . -1032) 38277) ((-1261 . -1032) 38243) ((-938 . -38) 38208) ((-228 . -738) 38173) ((-1029 . -132) T) ((-658 . -667) 38142) ((-330 . -47) 38112) ((-40 . -422) 38084) ((-141 . -631) 38066) ((-992 . -1247) T) ((-836 . -1247) T) ((-176 . -948) T) ((-562 . -380) T) ((-735 . -667) 38011) ((-618 . -634) 37992) ((-355 . -415) T) ((-692 . -634) 37973) ((-324 . -235) NIL) ((-182 . -634) 37954) ((-162 . -634) 37935) ((-157 . -634) 37916) ((-155 . -634) 37897) ((-533 . -299) 37874) ((-1260 . -233) 37844) ((-1260 . -273) 37814) ((-1244 . -1247) 37792) ((-1208 . -669) 37717) ((-899 . -102) T) ((-836 . -1068) 37544) ((-45 . -34) T) ((-702 . -102) T) ((-697 . -102) T) ((-683 . -102) T) ((-675 . -21) T) ((-675 . -25) T) ((-1132 . -502) 37528) ((-696 . -1247) T) ((-491 . -102) T) ((-251 . -102) 37458) ((-559 . -865) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1117 . -920) 37353) ((-894 . -1130) T) ((-1202 . -527) 37300) ((-1092 . -738) 37287) ((-803 . -920) 37190) ((-752 . -1086) 37033) ((-801 . -920) 37015) ((-980 . -738) 36864) ((-1155 . -527) 36816) ((-1308 . -1130) T) ((-1307 . -1130) T) ((-467 . -920) 36791) ((-494 . -738) 36640) ((-67 . -631) 36622) ((-645 . -1247) T) ((-752 . -111) 36451) ((-971 . -502) 36435) ((-1309 . -669) 36395) ((-1204 . -1086) 36278) ((-838 . -747) T) ((-1203 . -1086) 36113) ((-1197 . -1086) 35903) ((-330 . -1247) T) ((-1156 . -1086) 35786) ((-1033 . -1251) T) ((-1124 . -102) 35764) ((-836 . -389) 35733) ((-592 . -631) 35715) ((-559 . -1130) T) ((-1033 . -569) T) ((-1204 . -111) 35584) ((-1203 . -111) 35405) ((-1197 . -111) 35174) ((-1156 . -111) 35043) ((-1135 . -1133) 35007) ((-391 . -869) T) ((-1289 . -631) 34989) ((-1282 . -631) 34971) ((-895 . -667) 34908) ((-1261 . -631) 34890) ((-1261 . -632) NIL) ((-246 . -299) 34867) ((-40 . -465) T) ((-228 . -174) T) ((-171 . -1130) T) ((-752 . -634) 34652) ((-715 . -148) T) ((-715 . -146) NIL) ((-609 . -631) 34634) ((-608 . -631) 34616) ((-1150 . -235) 34603) ((-924 . -1130) T) ((-862 . -1130) T) ((-829 . -1130) T) ((-274 . -928) 34513) ((-254 . -928) 34490) ((-790 . -1130) T) ((-698 . -1130) T) ((-679 . -875) 34474) ((-641 . -238) 34425) ((-836 . -926) 34357) ((-881 . -873) T) ((-1252 . -380) T) ((-40 . -415) NIL) ((-118 . -238) NIL) ((-1204 . -634) 34239) ((-1150 . -682) T) ((-894 . -738) 34184) ((-259 . -502) 34168) ((-258 . -502) 34152) ((-1203 . -634) 33895) ((-1197 . -634) 33690) ((-733 . -659) 33638) ((-674 . -669) 33612) ((-1156 . -634) 33494) ((-306 . -34) T) ((-1150 . -113) T) ((-752 . -1079) T) ((-594 . -1304) 33481) ((-531 . -1304) 33458) ((-1270 . -1130) T) ((-1202 . -301) 33369) ((-1155 . -301) 33300) ((-656 . -873) T) ((-1092 . -174) T) ((-300 . -1247) T) ((-878 . -1130) T) ((-980 . -174) 33211) ((-803 . -1273) 33195) ((-665 . -527) 33128) ((-77 . -631) 33110) ((-752 . -337) 33075) ((-1208 . -747) T) ((-584 . -1130) T) ((-494 . -174) 32986) ((-251 . -320) 32924) ((-1172 . -1142) T) ((-70 . -631) 32906) ((-1309 . -747) T) ((-1204 . -1079) T) ((-1203 . -1079) T) ((-1197 . -1079) T) ((-338 . -102) 32836) ((-1172 . -23) T) ((-2 . -1247) T) ((-1156 . -1079) T) ((-91 . -1151) 32820) ((-889 . -1142) T) ((-1204 . -239) 32779) ((-1203 . -249) 32758) ((-1203 . -239) 32710) ((-1197 . -239) 32597) ((-1197 . -249) 32576) ((-330 . -926) 32482) ((-889 . -23) T) ((-171 . -738) 32310) ((-420 . -1251) T) ((-1131 . -380) T) ((-1033 . -375) T) ((-893 . -465) T) ((-1054 . -148) T) ((-971 . -297) 32262) ((-324 . -870) NIL) ((-1281 . -667) 32144) ((-897 . -102) T) ((-1260 . -667) 31999) ((-733 . -25) T) ((-420 . -569) T) ((-733 . -21) T) ((-538 . -634) 31980) ((-366 . -148) 31962) ((-366 . -146) T) ((-1177 . -1130) 31940) ((-466 . -741) T) ((-75 . -631) 31922) ((-115 . -870) T) ((-251 . -293) 31906) ((-246 . -1086) 31827) ((-81 . -631) 31809) ((-756 . -380) 31762) ((-1206 . -849) T) ((-758 . -241) 31746) ((-1189 . -1247) T) ((-142 . -241) 31728) ((-246 . -111) 31644) ((-1270 . -738) 31473) ((-48 . -148) T) ((-894 . -174) T) ((-878 . -738) 31443) ((-497 . -1247) T) ((-980 . -527) 31390) ((-674 . -747) T) ((-584 . -738) 31377) ((-1064 . -1088) T) ((-715 . -238) NIL) ((-494 . -527) 31320) ((-971 . -19) 31304) ((-971 . -617) 31281) ((-1110 . -1247) T) ((-1091 . -1247) T) ((-1241 . -661) 31178) ((-837 . -632) NIL) ((-837 . -631) 31160) ((-1241 . -1081) 31043) ((-1110 . -1068) 30939) ((-1034 . -1086) 30889) ((-426 . -631) 30871) ((-259 . -297) 30848) ((-371 . -1247) T) ((-365 . -1247) T) ((-357 . -1247) T) ((-258 . -297) 30825) ((-500 . -937) NIL) ((-327 . -29) 30795) ((-108 . -1247) T) ((-1033 . -1142) T) ((-220 . -937) NIL) ((-942 . -1086) 30747) ((-660 . -1304) 30731) ((-1034 . -111) 30665) ((-1033 . -23) T) ((-732 . -1081) 30630) ((-942 . -111) 30568) ((-758 . -716) 30552) ((-732 . -661) 30517) ((-274 . -273) 30501) ((-274 . -233) 30485) ((-440 . -1086) 30469) ((-391 . -1088) T) ((-246 . -634) 30267) ((-715 . -1235) NIL) ((-500 . -669) 30217) ((-487 . -667) 30099) ((-108 . -908) 30081) ((-108 . -910) 30063) ((-715 . -1232) NIL) ((-220 . -669) 30013) ((-371 . -1068) 29997) ((-365 . -1068) 29981) ((-338 . -320) 29919) ((-357 . -1068) 29903) ((-228 . -301) T) ((-440 . -111) 29882) ((-60 . -631) 29814) ((-171 . -174) T) ((-1150 . -870) T) ((-108 . -1068) 29774) ((-916 . -1130) T) ((-857 . -1088) T) ((-848 . -1088) T) ((-715 . -35) NIL) ((-715 . -95) NIL) ((-324 . -1022) 29735) ((-185 . -102) T) ((-1320 . -1142) T) ((-1320 . -23) T) ((-593 . -465) T) ((-577 . -465) T) ((-508 . -465) T) ((-1312 . -631) 29717) ((-1270 . -174) 29608) ((-1241 . -102) T) ((-420 . -375) T) ((-1228 . -1130) T) ((-1219 . -232) 29558) ((-1213 . -865) T) ((-1212 . -865) T) ((-1196 . -1247) T) ((-246 . -1079) 29536) ((-1024 . -1247) T) ((-1180 . -34) T) ((-1197 . -813) NIL) ((-1197 . -816) NIL) ((-1188 . -1247) T) ((-490 . -948) T) ((-1029 . -659) 29484) ((-259 . -617) 29461) ((-258 . -617) 29438) ((-1172 . -132) T) ((-1132 . -632) 29399) ((-1110 . -389) 29383) ((-894 . -527) 29291) ((-246 . -239) 29243) ((-1132 . -631) 29225) ((-1118 . -1130) T) ((-1034 . -634) 29175) ((-1110 . -926) 29108) ((-942 . -634) 29045) ((-845 . -631) 29027) ((-1106 . -1130) T) ((-1092 . -301) T) ((-1034 . -249) T) ((-1034 . -239) T) ((-1034 . -1079) T) ((-986 . -1130) 28977) ((-980 . -301) 28908) ((-440 . -634) 28877) ((-108 . -389) 28859) ((-108 . -350) 28841) ((-942 . -1079) T) ((-942 . -249) T) ((-820 . -380) 28820) ((-732 . -102) T) ((-722 . -873) T) ((-668 . -1247) T) ((-650 . -1247) T) ((-626 . -1130) T) ((-626 . -628) 28796) ((-599 . -1081) 28771) ((-494 . -301) 28702) ((-584 . -174) T) ((-338 . -293) 28686) ((-366 . -238) T) ((-599 . -661) 28661) ((-367 . -361) 28640) ((-364 . -361) 28619) ((-356 . -361) 28598) ((-214 . -1247) T) ((-83 . -631) 28580) ((-213 . -1247) T) ((-211 . -1247) T) ((-210 . -1247) T) ((-209 . -1247) T) ((-208 . -1247) T) ((-205 . -1247) T) ((-204 . -1247) T) ((-203 . -1247) T) ((-202 . -1247) T) ((-488 . -1130) T) ((-201 . -1247) T) ((-274 . -261) 28542) ((-200 . -1247) T) ((-199 . -1247) T) ((-198 . -1247) T) ((-197 . -1247) T) ((-196 . -1247) T) ((-488 . -628) 28521) ((-195 . -1247) T) ((-284 . -1247) T) ((-283 . -1247) T) ((-282 . -1247) T) ((-281 . -1247) T) ((-492 . -232) 28471) ((-280 . -1247) T) ((-279 . -1247) T) ((-278 . -1247) T) ((-440 . -1079) T) ((-889 . -132) T) ((-864 . -1142) 28450) ((-48 . -238) T) ((-720 . -465) T) ((-108 . -926) NIL) ((-135 . -873) T) ((-1241 . -295) 28416) ((-1143 . -1247) T) ((-895 . -869) 28395) ((-1029 . -25) T) ((-933 . -747) T) ((-171 . -527) 28307) ((-1029 . -21) T) ((-933 . -486) T) ((-420 . -1142) T) ((-500 . -815) T) ((-500 . -812) T) ((-938 . -361) T) ((-500 . -747) T) ((-220 . -815) T) ((-220 . -812) T) ((-733 . -235) 28294) ((-220 . -747) T) ((-864 . -23) 28246) ((-1214 . -1130) T) ((-679 . -1081) 28230) ((-1213 . -1130) T) ((-537 . -634) 28211) ((-1212 . -1130) T) ((-330 . -318) 28190) ((-1065 . -241) 28136) ((-679 . -661) 28106) ((-420 . -23) T) ((-971 . -632) 28067) ((-971 . -631) 27979) ((-665 . -502) 27963) ((-45 . -1040) 27913) ((-1143 . -1068) 27740) ((-635 . -997) T) ((-504 . -102) T) ((-342 . -631) 27722) ((-1023 . -297) 27689) ((-606 . -672) 27671) ((-129 . -1130) T) ((-131 . -1130) T) ((-606 . -385) 27653) ((-355 . -1304) 27630) ((-452 . -631) 27612) ((-1270 . -527) 27559) ((-1117 . -1081) 27402) ((-1057 . -1247) T) ((-894 . -301) T) ((-1202 . -297) 27329) ((-1117 . -661) 27178) ((-1030 . -1025) 27162) ((-803 . -1081) 26985) ((-801 . -1081) 26828) ((-803 . -661) 26657) ((-801 . -661) 26506) ((-489 . -1247) T) ((-476 . -1247) T) ((-599 . -102) T) ((-474 . -1081) 26477) ((-467 . -1081) 26320) ((-685 . -667) 26289) ((-641 . -465) 26268) ((-474 . -661) 26239) ((-467 . -661) 26088) ((-367 . -667) 26025) ((-364 . -667) 25962) ((-356 . -667) 25899) ((-274 . -667) 25809) ((-254 . -667) 25719) ((-1312 . -394) 25691) ((-530 . -1130) T) ((-118 . -465) T) ((-1227 . -102) T) ((-1122 . -1130) 25661) ((-1064 . -1130) T) ((-1145 . -93) T) ((-917 . -870) T) ((-1289 . -111) 25530) ((-363 . -1251) T) ((-1289 . -1086) 25413) ((-1143 . -389) 25382) ((-1282 . -1086) 25217) ((-1261 . -1086) 25007) ((-1282 . -111) 24828) ((-1261 . -111) 24597) ((-1241 . -320) 24584) ((-1033 . -132) T) ((-938 . -667) 24534) ((-377 . -631) 24516) ((-363 . -569) T) ((-300 . -318) T) ((-609 . -1086) 24476) ((-608 . -1086) 24359) ((-594 . -1081) 24324) ((-531 . -1081) 24269) ((-373 . -1130) T) ((-333 . -1130) T) ((-259 . -631) 24230) ((-258 . -631) 24191) ((-594 . -661) 24156) ((-531 . -661) 24101) ((-715 . -422) 24068) ((-653 . -23) T) ((-619 . -23) T) ((-40 . -920) 23975) ((-679 . -102) T) ((-609 . -111) 23928) ((-608 . -111) 23797) ((-391 . -1130) T) ((-348 . -102) T) ((-171 . -301) 23708) ((-1260 . -869) 23661) ((-735 . -1088) T) ((-630 . -1247) T) ((-1177 . -527) 23594) ((-1220 . -856) 23578) ((-1143 . -926) 23510) ((-857 . -1130) T) ((-848 . -1130) T) ((-846 . -1130) T) ((-97 . -102) T) ((-145 . -870) T) ((-630 . -908) 23494) ((-1181 . -1247) T) ((-110 . -1247) T) ((-1117 . -102) T) ((-1093 . -34) T) ((-803 . -102) T) ((-801 . -102) T) ((-1289 . -634) 23376) ((-1282 . -634) 23119) ((-474 . -102) T) ((-467 . -102) T) ((-1261 . -634) 22914) ((-96 . -1247) T) ((-246 . -816) 22893) ((-246 . -813) 22872) ((-670 . -102) T) ((-609 . -634) 22830) ((-608 . -634) 22712) ((-1270 . -301) 22623) ((-685 . -652) 22607) ((-188 . -631) 22589) ((-665 . -297) 22541) ((-1064 . -738) 22525) ((-584 . -301) T) ((-991 . -669) 22450) ((-1320 . -132) T) ((-756 . -669) 22410) ((-736 . -669) 22397) ((-285 . -102) T) ((-466 . -669) 22327) ((-50 . -102) T) ((-594 . -102) T) ((-531 . -102) T) ((-1289 . -1079) T) ((-1282 . -1079) T) ((-1261 . -1079) T) ((-1170 . -1247) T) ((-520 . -667) 22309) ((-333 . -738) 22291) ((-1289 . -239) 22250) ((-1282 . -249) 22229) ((-1282 . -239) 22181) ((-1261 . -239) 22068) ((-1261 . -249) 22047) ((-1241 . -38) 21944) ((-609 . -1079) T) ((-608 . -1079) T) ((-1034 . -816) T) ((-1034 . -813) T) ((-1001 . -816) T) ((-1001 . -813) T) ((-895 . -1088) T) ((-109 . -631) 21926) ((-715 . -465) T) ((-391 . -738) 21891) ((-431 . -669) 21865) ((-893 . -892) 21849) ((-732 . -38) 21814) ((-608 . -239) 21773) ((-40 . -745) 21745) ((-363 . -340) 21722) ((-363 . -375) T) ((-1110 . -318) 21673) ((-305 . -1142) 21554) ((-1136 . -1247) T) ((-1029 . -235) 21499) ((-173 . -102) T) ((-1264 . -631) 21466) ((-864 . -132) 21418) ((-857 . -738) 21388) ((-665 . -1285) 21372) ((-848 . -738) 21342) ((-665 . -617) 21319) ((-495 . -1247) T) ((-371 . -318) T) ((-365 . -318) T) ((-357 . -318) T) ((-412 . -235) 21306) ((-420 . -132) T) ((-533 . -687) 21290) ((-108 . -318) T) ((-305 . -23) 21173) ((-533 . -672) 21157) ((-715 . -415) NIL) ((-533 . -385) 21141) ((-660 . -1081) 21125) ((-660 . -661) 21109) ((-302 . -631) 21091) ((-91 . -1130) 21069) ((-108 . -1052) T) ((-577 . -144) T) ((-1297 . -152) 21053) ((-495 . -1068) 20880) ((-1283 . -146) 20841) ((-1283 . -148) 20802) ((-1084 . -1247) T) ((-1308 . -93) T) ((-1023 . -631) 20784) ((-839 . -1247) T) ((-885 . -631) 20766) ((-837 . -1086) 20609) ((-1307 . -93) T) ((-1202 . -632) NIL) ((-1126 . -1130) T) ((-1120 . -1130) T) ((-1117 . -320) 20596) ((-427 . -1247) T) ((-397 . -1247) T) ((-1103 . -1130) T) ((-230 . -1247) T) ((-1096 . -1130) T) ((-1066 . -1130) T) ((-1049 . -1130) T) ((-803 . -320) 20583) ((-801 . -320) 20570) ((-1202 . -631) 20552) ((-837 . -111) 20381) ((-1155 . -631) 20363) ((-644 . -1130) T) ((-590 . -175) T) ((-542 . -175) T) ((-467 . -320) 20350) ((-496 . -1130) T) ((-1155 . -632) 20098) ((-1064 . -174) T) ((-971 . -299) 20075) ((-221 . -1130) T) ((-877 . -631) 20057) ((-626 . -527) 19840) ((-81 . -634) 19781) ((-839 . -1068) 19765) ((-488 . -527) 19557) ((-854 . -873) 19536) ((-991 . -747) T) ((-756 . -747) T) ((-736 . -747) T) ((-363 . -1142) T) ((-1209 . -631) 19518) ((-226 . -102) T) ((-495 . -389) 19487) ((-528 . -1130) T) ((-523 . -1130) T) ((-521 . -1130) T) ((-820 . -669) 19461) ((-1054 . -465) T) ((-986 . -527) 19394) ((-363 . -23) T) ((-653 . -132) T) ((-619 . -132) T) ((-366 . -465) T) ((-246 . -380) 19373) ((-391 . -174) T) ((-1281 . -1088) T) ((-1260 . -1088) T) ((-228 . -1032) T) ((-837 . -634) 19110) ((-720 . -400) T) ((-431 . -747) T) ((-722 . -1251) T) ((-1172 . -659) 19058) ((-658 . -1130) T) ((-660 . -102) T) ((-593 . -892) 19042) ((-1312 . -1086) 19026) ((-1189 . -1223) 19002) ((-722 . -569) T) ((-127 . -1130) 18980) ((-735 . -1130) T) ((-679 . -38) 18950) ((-495 . -926) 18882) ((-256 . -1130) T) ((-189 . -1130) T) ((-366 . -415) T) ((-327 . -148) 18861) ((-327 . -146) 18840) ((-117 . -569) T) ((-129 . -527) NIL) ((-324 . -148) 18796) ((-324 . -146) 18752) ((-48 . -465) T) ((-163 . -1130) T) ((-158 . -1130) T) ((-1189 . -107) 18699) ((-803 . -1182) 18677) ((-1312 . -111) 18656) ((-710 . -34) T) ((-605 . -1247) T) ((-563 . -34) T) ((-497 . -107) 18640) ((-259 . -299) 18617) ((-258 . -299) 18594) ((-1253 . -865) T) ((-894 . -297) 18545) ((-45 . -1247) T) ((-1241 . -928) 18526) ((-838 . -1247) T) ((-837 . -1079) T) ((-639 . -873) 18505) ((-683 . -667) 18474) ((-1208 . -47) 18450) ((-837 . -337) 18412) ((-1117 . -38) 18261) ((-837 . -239) 18240) ((-803 . -38) 18069) ((-801 . -38) 17918) ((-1145 . -503) 17899) ((-467 . -38) 17748) ((-1145 . -631) 17714) ((-1148 . -102) T) ((-665 . -632) 17675) ((-665 . -631) 17587) ((-594 . -1182) T) ((-531 . -1182) T) ((-1177 . -502) 17571) ((-355 . -1081) 17516) ((-1233 . -1130) 17494) ((-1172 . -25) T) ((-1172 . -21) T) ((-355 . -661) 17439) ((-1312 . -634) 17388) ((-341 . -1247) T) ((-487 . -1088) T) ((-1253 . -1130) T) ((-1261 . -813) NIL) ((-1261 . -816) NIL) ((-1029 . -870) 17367) ((-889 . -21) T) ((-859 . -1130) T) ((-840 . -631) 17349) ((-889 . -25) T) ((-820 . -747) T) ((-658 . -738) 17333) ((-176 . -1251) T) ((-594 . -38) 17298) ((-531 . -38) 17263) ((-399 . -631) 17245) ((-344 . -102) T) ((-335 . -631) 17227) ((-171 . -297) 17185) ((-1255 . -873) T) ((-63 . -1247) T) ((-112 . -102) T) ((-895 . -1130) T) ((-525 . -1247) T) ((-176 . -569) T) ((-735 . -738) 17155) ((-305 . -132) 17038) ((-228 . -631) 17020) ((-228 . -632) 16950) ((-1033 . -659) 16889) ((-1312 . -1079) T) ((-1208 . -1247) T) ((-1150 . -148) T) ((-650 . -1223) 16864) ((-752 . -937) 16843) ((-606 . -34) T) ((-668 . -107) 16827) ((-650 . -107) 16773) ((-624 . -1247) T) ((-623 . -1247) T) ((-621 . -1247) T) ((-1309 . -1247) T) ((-641 . -920) 16694) ((-1270 . -297) 16621) ((-752 . -669) 16510) ((-306 . -1247) T) ((-1208 . -1068) 16406) ((-971 . -636) 16383) ((-590 . -589) T) ((-590 . -540) T) ((-542 . -540) T) ((-118 . -920) NIL) ((-1197 . -937) NIL) ((-1092 . -632) 16298) ((-1092 . -631) 16280) ((-980 . -631) 16262) ((-734 . -503) 16212) ((-355 . -102) T) ((-259 . -1086) 16133) ((-258 . -1086) 16054) ((-407 . -102) T) ((-31 . -1130) T) ((-980 . -632) 15915) ((-734 . -631) 15850) ((-1310 . -1240) 15819) ((-494 . -631) 15801) ((-494 . -632) 15662) ((-274 . -424) 15646) ((-254 . -424) 15630) ((-324 . -238) NIL) ((-259 . -111) 15546) ((-258 . -111) 15462) ((-1254 . -682) T) ((-1204 . -669) 15387) ((-1203 . -669) 15284) ((-1197 . -669) 15136) ((-1156 . -669) 15061) ((-363 . -132) T) ((-82 . -454) T) ((-82 . -408) T) ((-1033 . -25) T) ((-1033 . -21) T) ((-896 . -1130) 15012) ((-40 . -1081) 14957) ((-895 . -738) 14909) ((-40 . -661) 14854) ((-391 . -301) T) ((-171 . -1032) 14805) ((-1117 . -928) 14704) ((-715 . -400) T) ((-1029 . -1027) 14688) ((-722 . -1142) T) ((-715 . -167) 14670) ((-803 . -928) 14577) ((-801 . -928) 14561) ((-1281 . -1130) T) ((-1260 . -1130) T) ((-1194 . -102) T) ((-327 . -1232) 14540) ((-327 . -1235) 14519) ((-467 . -928) 14496) ((-327 . -987) 14475) ((-135 . -1142) T) ((-117 . -1142) T) ((-1000 . -1247) T) ((-887 . -1247) T) ((-722 . -23) T) ((-674 . -1247) T) ((-615 . -1295) 14459) ((-615 . -1130) 14409) ((-544 . -873) T) ((-513 . -873) T) ((-327 . -95) 14388) ((-91 . -527) 14321) ((-176 . -375) T) ((-259 . -634) 14119) ((-258 . -634) 13917) ((-327 . -35) 13896) ((-626 . -502) 13830) ((-135 . -23) T) ((-117 . -23) T) ((-994 . -102) T) ((-739 . -1130) T) ((-488 . -502) 13767) ((-420 . -659) 13715) ((-674 . -1068) 13611) ((-986 . -502) 13595) ((-367 . -1088) T) ((-364 . -1088) T) ((-356 . -1088) T) ((-274 . -1088) T) ((-254 . -1088) T) ((-894 . -632) NIL) ((-894 . -631) 13577) ((-1308 . -503) 13558) ((-1307 . -503) 13539) ((-1320 . -21) T) ((-1308 . -631) 13505) ((-1307 . -631) 13471) ((-584 . -1032) T) ((-752 . -747) T) ((-1320 . -25) T) ((-259 . -1079) 13449) ((-258 . -1079) 13427) ((-72 . -1247) T) ((-1172 . -235) 13372) ((-259 . -239) 13324) ((-258 . -239) 13276) ((-1150 . -238) T) ((-40 . -102) T) ((-938 . -1088) T) ((-715 . -920) NIL) ((-1211 . -102) T) ((-129 . -502) 13258) ((-1204 . -747) T) ((-1203 . -747) T) ((-1197 . -747) T) ((-1197 . -812) NIL) ((-1197 . -815) NIL) ((-982 . -102) T) ((-949 . -102) T) ((-893 . -1081) 13245) ((-1156 . -747) T) ((-792 . -102) T) ((-693 . -102) T) ((-893 . -661) 13232) ((-559 . -631) 13214) ((-487 . -1130) T) ((-351 . -1142) T) ((-176 . -1142) T) ((-330 . -948) 13193) ((-1281 . -738) 13034) ((-895 . -174) T) ((-1260 . -738) 12848) ((-864 . -21) 12800) ((-864 . -25) 12752) ((-251 . -1179) 12736) ((-127 . -527) 12669) ((-420 . -25) T) ((-420 . -21) T) ((-351 . -23) T) ((-171 . -632) 12435) ((-171 . -631) 12417) ((-176 . -23) T) ((-665 . -299) 12394) ((-533 . -34) T) ((-635 . -682) T) ((-924 . -631) 12376) ((-89 . -1247) T) ((-862 . -631) 12358) ((-829 . -631) 12340) ((-790 . -631) 12322) ((-698 . -631) 12304) ((-246 . -669) 12137) ((-635 . -113) T) ((-1206 . -1130) T) ((-1202 . -1086) 11960) ((-216 . -1247) T) ((-1180 . -1247) T) ((-1155 . -1086) 11803) ((-877 . -1086) 11787) ((-1112 . -873) T) ((-1264 . -636) 11771) ((-1202 . -111) 11580) ((-1155 . -111) 11409) ((-877 . -111) 11388) ((-1254 . -870) T) ((-1270 . -632) NIL) ((-1270 . -631) 11370) ((-355 . -1182) T) ((-878 . -631) 11352) ((-1106 . -297) 11331) ((-1241 . -667) 11241) ((-80 . -1247) T) ((-933 . -1247) T) ((-1233 . -527) 11174) ((-1034 . -937) NIL) ((-1117 . -273) 11158) ((-626 . -297) 11134) ((-1117 . -233) 11118) ((-500 . -1247) T) ((-584 . -631) 11100) ((-488 . -297) 11079) ((-1034 . -669) 11029) ((-530 . -93) T) ((-1033 . -235) 10960) ((-220 . -1247) T) ((-986 . -297) 10912) ((-893 . -102) T) ((-300 . -948) T) ((-838 . -318) 10891) ((-803 . -273) 10875) ((-803 . -233) 10859) ((-942 . -669) 10811) ((-732 . -667) 10761) ((-715 . -745) 10728) ((-653 . -21) T) ((-653 . -25) T) ((-619 . -21) T) ((-560 . -102) T) ((-355 . -38) 10693) ((-500 . -908) 10675) ((-500 . -910) 10657) ((-487 . -738) 10498) ((-64 . -1247) T) ((-220 . -908) 10480) ((-220 . -910) 10462) ((-619 . -25) T) ((-440 . -669) 10436) ((-1202 . -634) 10205) ((-500 . -1068) 10165) ((-895 . -527) 10077) ((-1155 . -634) 9869) ((-877 . -634) 9787) ((-220 . -1068) 9747) ((-246 . -34) T) ((-1030 . -1130) 9725) ((-593 . -1081) 9712) ((-577 . -1081) 9699) ((-508 . -1081) 9664) ((-1281 . -174) 9595) ((-1260 . -174) 9526) ((-593 . -661) 9513) ((-577 . -661) 9500) ((-508 . -661) 9465) ((-733 . -146) 9444) ((-733 . -148) 9423) ((-130 . -873) T) ((-722 . -132) T) ((-562 . -1247) T) ((-137 . -478) 9400) ((-1177 . -631) 9332) ((-679 . -677) 9316) ((-129 . -297) 9266) ((-117 . -132) T) ((-490 . -1251) T) ((-626 . -617) 9242) ((-488 . -617) 9221) ((-610 . -1130) T) ((-348 . -347) 9190) ((-598 . -1130) T) ((-549 . -1130) T) ((-490 . -569) T) ((-1202 . -1079) T) ((-1155 . -1079) T) ((-877 . -1079) T) ((-844 . -1247) T) ((-246 . -815) 9169) ((-246 . -814) 9148) ((-1202 . -337) 9125) ((-246 . -747) 9103) ((-986 . -19) 9087) ((-500 . -389) 9069) ((-500 . -350) 9051) ((-1155 . -337) 9023) ((-366 . -1304) 9000) ((-220 . -389) 8982) ((-220 . -350) 8964) ((-986 . -617) 8941) ((-1202 . -239) T) ((-1293 . -1130) T) ((-1219 . -1130) T) ((-685 . -1130) T) ((-666 . -1130) T) ((-1117 . -261) 8878) ((-599 . -667) 8838) ((-367 . -1130) T) ((-364 . -1130) T) ((-356 . -1130) T) ((-274 . -1130) T) ((-254 . -1130) T) ((-84 . -1247) T) ((-217 . -102) T) ((-128 . -102) 8788) ((-122 . -102) 8738) ((-1260 . -527) 8598) ((-1219 . -628) 8577) ((-1171 . -1130) T) ((-1145 . -634) 8558) ((-1110 . -948) 8509) ((-492 . -1130) T) ((-1034 . -815) T) ((-1034 . -812) T) ((-492 . -628) 8488) ((-259 . -816) 8467) ((-259 . -813) 8446) ((-258 . -816) 8425) ((-40 . -1182) NIL) ((-258 . -813) 8404) ((-1034 . -747) T) ((-129 . -19) 8386) ((-1001 . -815) T) ((-720 . -1081) 8351) ((-942 . -747) T) ((-938 . -1130) T) ((-916 . -631) 8333) ((-129 . -617) 8308) ((-720 . -661) 8273) ((-91 . -502) 8257) ((-500 . -926) NIL) ((-895 . -301) T) ((-228 . -1086) 8222) ((-857 . -297) 8201) ((-220 . -926) NIL) ((-854 . -1142) 8180) ((-59 . -1130) 8130) ((-532 . -1130) 8108) ((-529 . -1130) 8058) ((-510 . -1130) 8036) ((-509 . -1130) 7986) ((-593 . -102) T) ((-577 . -102) T) ((-508 . -102) T) ((-487 . -174) 7917) ((-371 . -948) T) ((-365 . -948) T) ((-357 . -948) T) ((-228 . -111) 7873) ((-854 . -23) 7825) ((-440 . -747) T) ((-108 . -948) T) ((-40 . -38) 7770) ((-108 . -841) T) ((-594 . -361) T) ((-531 . -361) T) ((-679 . -667) 7729) ((-327 . -465) 7708) ((-324 . -465) T) ((-615 . -527) 7641) ((-420 . -235) 7586) ((-351 . -132) T) ((-176 . -132) T) ((-305 . -25) 7450) ((-305 . -21) 7333) ((-45 . -1223) 7312) ((-66 . -631) 7294) ((-55 . -102) T) ((-348 . -667) 7276) ((-1298 . -102) T) ((-1297 . -102) 7206) ((-1289 . -669) 7131) ((-1282 . -669) 7028) ((-45 . -107) 6978) ((-840 . -634) 6962) ((-1261 . -669) 6814) ((-1261 . -937) NIL) ((-1252 . -1247) T) ((-1228 . -631) 6796) ((-1220 . -102) T) ((-1132 . -438) 6780) ((-1132 . -380) 6759) ((-399 . -634) 6743) ((-335 . -634) 6727) ((-1126 . -93) T) ((-1117 . -667) 6637) ((-1093 . -1247) T) ((-1092 . -1086) 6624) ((-1092 . -111) 6609) ((-980 . -111) 6438) ((-980 . -1086) 6281) ((-803 . -667) 6191) ((-801 . -667) 6101) ((-685 . -738) 6085) ((-641 . -1081) 6072) ((-641 . -661) 6059) ((-561 . -873) T) ((-494 . -1086) 5902) ((-490 . -375) T) ((-474 . -667) 5858) ((-467 . -667) 5768) ((-228 . -634) 5718) ((-367 . -738) 5670) ((-364 . -738) 5622) ((-118 . -1081) 5567) ((-356 . -738) 5519) ((-274 . -738) 5368) ((-254 . -738) 5217) ((-1120 . -93) T) ((-1103 . -93) T) ((-118 . -661) 5162) ((-1096 . -93) T) ((-971 . -672) 5146) ((-1087 . -1130) 5124) ((-494 . -111) 4953) ((-1066 . -93) T) ((-1049 . -93) T) ((-971 . -385) 4937) ((-255 . -102) T) ((-991 . -47) 4916) ((-74 . -631) 4898) ((-733 . -238) T) ((-731 . -102) T) ((-720 . -102) T) ((-1 . -1130) T) ((-639 . -1142) T) ((-1118 . -631) 4880) ((-644 . -93) T) ((-1106 . -631) 4862) ((-938 . -738) 4827) ((-127 . -502) 4811) ((-496 . -93) T) ((-639 . -23) T) ((-403 . -23) T) ((-87 . -1247) T) ((-221 . -93) T) ((-626 . -631) 4793) ((-626 . -632) NIL) ((-488 . -632) NIL) ((-488 . -631) 4775) ((-363 . -25) T) ((-363 . -21) T) ((-50 . -667) 4734) ((-524 . -1130) T) ((-520 . -1130) T) ((-122 . -320) 4672) ((-128 . -320) 4610) ((-609 . -669) 4584) ((-608 . -669) 4509) ((-594 . -667) 4459) ((-228 . -1079) T) ((-531 . -667) 4389) ((-1092 . -634) 4361) ((-391 . -1032) T) ((-228 . -249) T) ((-228 . -239) T) ((-871 . -503) 4345) ((-1092 . -636) 4326) ((-986 . -632) 4287) ((-986 . -631) 4199) ((-980 . -634) 3988) ((-871 . -631) 3936) ((-893 . -38) 3923) ((-734 . -634) 3873) ((-1281 . -301) 3824) ((-1260 . -301) 3775) ((-494 . -634) 3560) ((-1150 . -465) T) ((-515 . -870) T) ((-327 . -1169) 3539) ((-1131 . -1247) T) ((-1029 . -148) 3518) ((-1029 . -146) 3497) ((-508 . -320) 3484) ((-1214 . -631) 3466) ((-306 . -1223) 3445) ((-1213 . -631) 3427) ((-1165 . -1247) T) ((-1212 . -631) 3409) ((-894 . -1086) 3354) ((-490 . -1142) T) ((-140 . -856) 3336) ((-115 . -856) 3317) ((-1233 . -502) 3301) ((-1092 . -1079) T) ((-641 . -102) T) ((-991 . -1247) T) ((-980 . -1079) T) ((-259 . -380) 3280) ((-258 . -380) 3259) ((-894 . -111) 3188) ((-306 . -107) 3138) ((-131 . -631) 3120) ((-129 . -632) NIL) ((-129 . -631) 3064) ((-118 . -102) T) ((-756 . -1247) T) ((-736 . -1247) T) ((-490 . -23) T) ((-466 . -1247) T) ((-494 . -1079) T) ((-1092 . -239) T) ((-980 . -337) 3033) ((-40 . -928) 2942) ((-494 . -337) 2899) ((-367 . -174) T) ((-364 . -174) T) ((-356 . -174) T) ((-274 . -174) 2810) ((-254 . -174) 2721) ((-991 . -1068) 2617) ((-530 . -503) 2598) ((-756 . -1068) 2569) ((-530 . -631) 2535) ((-431 . -1247) T) ((-1135 . -102) T) ((-1122 . -631) 2494) ((-1064 . -631) 2476) ((-715 . -1081) 2426) ((-1310 . -152) 2410) ((-1308 . -634) 2391) ((-1307 . -634) 2372) ((-1302 . -631) 2354) ((-1289 . -747) T) ((-715 . -661) 2304) ((-1282 . -747) T) ((-1261 . -812) NIL) ((-1261 . -815) NIL) ((-171 . -1086) 2214) ((-938 . -174) T) ((-894 . -634) 2144) ((-1261 . -747) T) ((-1033 . -354) 2118) ((-226 . -667) 2070) ((-1030 . -527) 2003) ((-864 . -870) 1982) ((-577 . -1182) T) ((-487 . -301) 1933) ((-609 . -747) T) ((-373 . -631) 1915) ((-333 . -631) 1897) ((-431 . -1068) 1793) ((-608 . -747) T) ((-420 . -870) 1744) ((-171 . -111) 1640) ((-854 . -132) 1592) ((-1297 . -320) 1530) ((-758 . -152) 1514) ((-992 . -873) 1413) ((-836 . -873) 1364) ((-500 . -318) T) ((-391 . -631) 1331) ((-533 . -1040) 1315) ((-391 . -632) 1229) ((-220 . -318) T) ((-142 . -152) 1211) ((-735 . -297) 1190) ((-500 . -1052) T) ((-593 . -38) 1177) ((-577 . -38) 1164) ((-508 . -38) 1129) ((-660 . -667) 1098) ((-220 . -1052) T) ((-894 . -1079) T) ((-857 . -631) 1080) ((-848 . -631) 1062) ((-846 . -631) 1044) ((-837 . -937) 1023) ((-1321 . -1142) T) ((-323 . -1247) T) ((-1270 . -1086) 846) ((-878 . -1086) 830) ((-894 . -249) T) ((-894 . -239) NIL) ((-710 . -1247) T) ((-1321 . -23) T) ((-837 . -669) 719) ((-563 . -1247) T) ((-431 . -350) 703) ((-584 . -1086) 690) ((-1270 . -111) 499) ((-722 . -659) 481) ((-878 . -111) 460) ((-393 . -23) T) ((-171 . -634) 238) ((-1219 . -527) 30) ((-899 . -1130) T) ((-702 . -1130) T) ((-697 . -1130) T) ((-683 . -1130) T))
\ No newline at end of file +(-2230 (|has| |#1| (-871)) (|has| |#1| (-1131))) +((($ $) . T) ((#0=(-888 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-240)) ((|#2| |#1|) |has| |#1| (-240)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-492 . -1131) T) ((-275 . -528) 205623) ((-255 . -528) 205566) ((-252 . -1131) 205516) ((-585 . -111) 205501) ((-545 . -23) T) ((-140 . -1131) T) ((-139 . -1131) T) ((-119 . -321) 205458) ((-135 . -1131) T) ((-1030 . -239) 205409) ((-821 . -1248) T) ((-493 . -528) 205201) ((-699 . -635) 205185) ((-716 . -102) T) ((-1172 . -528) 205104) ((-413 . -239) T) ((-404 . -133) T) ((-1311 . -1007) 205073) ((-1055 . -1082) 205010) ((-331 . -874) T) ((-1055 . -662) 204947) ((-31 . -93) T) ((-616 . -503) 204931) ((-841 . -868) T) ((-640 . -133) T) ((-626 . -102) T) ((-537 . -57) 204881) ((-621 . -102) T) ((-533 . -528) 204814) ((-364 . -236) 204801) ((-367 . -1082) 204746) ((-59 . -528) 204679) ((-530 . -528) 204612) ((-432 . -927) 204571) ((-172 . -1080) T) ((-511 . -528) 204504) ((-510 . -528) 204437) ((-367 . -662) 204382) ((-821 . -1069) 204162) ((-1271 . -635) 203910) ((-721 . -38) 203875) ((-1125 . -1124) 203859) ((-356 . -362) T) ((-482 . -1248) T) ((-1125 . -1131) 203837) ((-879 . -635) 203734) ((-172 . -250) 203685) ((-172 . -240) 203636) ((-1125 . -1126) 203594) ((-896 . -298) 203552) ((-229 . -817) T) ((-229 . -814) T) ((-716 . -296) NIL) ((-585 . -635) 203524) ((-1181 . -1224) 203503) ((-421 . -1023) 203487) ((-48 . -1082) 203452) ((-723 . -21) T) ((-723 . -25) T) ((-48 . -662) 203417) ((-1313 . -670) 203391) ((-1271 . -338) 203368) ((-1181 . -107) 203318) ((-328 . -162) 203297) ((-328 . -145) 203276) ((-118 . -21) T) ((-40 . -234) 203253) ((-40 . -274) 203230) ((-136 . -25) T) ((-118 . -25) T) ((-1271 . -240) T) ((-1271 . -1080) T) ((-627 . -300) 203206) ((-879 . -1080) T) ((-619 . -1248) T) ((-821 . -351) 203190) ((-489 . -300) 203169) ((-693 . -1248) T) ((-183 . -1248) T) ((-163 . -1248) T) ((-158 . -1248) T) ((-156 . -1248) T) ((-141 . -188) T) ((-119 . -1183) NIL) ((-91 . -632) 203101) ((-491 . -133) T) ((-1196 . -1248) T) ((-1127 . -504) 203082) ((-1127 . -632) 203048) ((-1121 . -504) 203029) ((-1121 . -632) 202995) ((-607 . -1248) T) ((-1104 . -504) 202976) ((-585 . -1080) T) ((-1104 . -632) 202942) ((-684 . -739) 202926) ((-1097 . -504) 202907) ((-1097 . -632) 202873) ((-987 . -300) 202850) ((-60 . -34) T) ((-1093 . -817) T) ((-1093 . -814) T) ((-1067 . -504) 202831) ((-1050 . -504) 202812) ((-838 . -748) T) ((-753 . -47) 202777) ((-642 . -38) 202764) ((-368 . -302) T) ((-365 . -302) T) ((-357 . -302) T) ((-275 . -302) 202695) ((-255 . -302) 202626) ((-1067 . -632) 202592) ((-1055 . -102) T) ((-1050 . -632) 202558) ((-645 . -504) 202539) ((-427 . -748) T) ((-119 . -38) 202484) ((-497 . -504) 202465) ((-645 . -632) 202431) ((-427 . -487) T) ((-222 . -504) 202412) ((-497 . -632) 202378) ((-367 . -102) T) ((-222 . -632) 202344) ((-1242 . -1089) T) ((-356 . -668) 202274) ((-733 . -1089) T) ((-1205 . -47) 202251) ((-1204 . -47) 202221) ((-1198 . -47) 202198) ((-130 . -300) 202173) ((-1066 . -153) 202119) ((-939 . -302) T) ((-1157 . -47) 202091) ((-716 . -321) NIL) ((-529 . -632) 202073) ((-524 . -632) 202055) ((-522 . -632) 202037) ((-499 . -1248) T) ((-339 . -1131) 201987) ((-328 . -921) 201951) ((-325 . -921) NIL) ((-734 . -466) 201882) ((-48 . -102) T) ((-1282 . -298) 201840) ((-1261 . -298) 201740) ((-666 . -688) 201724) ((-666 . -673) 201708) ((-352 . -21) T) ((-352 . -25) T) ((-40 . -362) NIL) ((-177 . -21) T) ((-177 . -25) T) ((-666 . -386) 201692) ((-659 . -632) 201674) ((-616 . -298) 201626) ((-402 . -102) T) ((-1151 . -145) T) ((-128 . -632) 201558) ((-898 . -1131) T) ((-680 . -425) 201542) ((-753 . -1248) T) ((-736 . -632) 201524) ((-257 . -632) 201491) ((-190 . -632) 201473) ((-164 . -632) 201455) ((-159 . -632) 201437) ((-1313 . -748) T) ((-1133 . -34) T) ((-895 . -817) NIL) ((-895 . -814) NIL) ((-882 . -871) T) ((-753 . -911) NIL) ((-1322 . -133) T) ((-394 . -133) T) ((-917 . -635) 201405) ((-933 . -102) T) ((-753 . -1069) 201281) ((-1205 . -1248) T) ((-1204 . -1248) T) ((-545 . -133) T) ((-1198 . -1248) T) ((-1118 . -425) 201265) ((-1031 . -503) 201249) ((-119 . -414) 201226) ((-1157 . -1248) T) ((-804 . -425) 201210) ((-802 . -425) 201194) ((-972 . -34) T) ((-716 . -1183) NIL) ((-260 . -670) 201014) ((-259 . -670) 200821) ((-839 . -949) 200800) ((-468 . -425) 200784) ((-657 . -871) T) ((-616 . -19) 200768) ((-1177 . -1241) 200737) ((-1198 . -911) NIL) ((-1198 . -909) 200689) ((-616 . -618) 200666) ((-108 . -874) T) ((-1234 . -632) 200598) ((-1206 . -632) 200580) ((-62 . -409) T) ((-1204 . -1069) 200515) ((-1198 . -1069) 200481) ((-716 . -38) 200431) ((-40 . -668) 200361) ((-488 . -298) 200319) ((-1254 . -632) 200301) ((-753 . -390) 200285) ((-860 . -632) 200267) ((-680 . -1089) T) ((-642 . -929) 200190) ((-1282 . -1033) 200156) ((-450 . -1248) T) ((-1261 . -1033) 200122) ((-258 . -1248) T) ((-1119 . -635) 200106) ((-1094 . -1224) 200081) ((-1107 . -635) 200058) ((-896 . -633) 199865) ((-896 . -632) 199847) ((-119 . -929) NIL) ((-723 . -236) 199834) ((-1220 . -503) 199771) ((-432 . -1053) 199749) ((-48 . -321) 199736) ((-1094 . -107) 199682) ((-493 . -503) 199619) ((-539 . -1248) T) ((-534 . -1248) T) ((-1198 . -351) 199571) ((-1172 . -503) 199542) ((-1198 . -390) 199494) ((-1118 . -1089) T) ((-451 . -102) T) ((-186 . -1131) T) ((-260 . -34) T) ((-259 . -34) T) ((-1189 . -874) T) ((-872 . -635) 199478) ((-804 . -1089) T) ((-802 . -1089) T) ((-753 . -927) 199455) ((-468 . -1089) T) ((-59 . -503) 199439) ((-1065 . -1087) 199413) ((-533 . -503) 199397) ((-530 . -503) 199381) ((-511 . -503) 199365) ((-510 . -503) 199349) ((-252 . -528) 199282) ((-1065 . -111) 199249) ((-1205 . -927) 199162) ((-1204 . -927) 199068) ((-692 . -1143) T) ((-1198 . -927) 198901) ((-667 . -93) T) ((-1157 . -927) 198885) ((-367 . -1183) T) ((-334 . -1087) 198867) ((-31 . -504) 198848) ((-260 . -816) 198827) ((-260 . -815) 198806) ((-259 . -816) 198785) ((-259 . -815) 198764) ((-31 . -632) 198730) ((-50 . -1089) T) ((-260 . -748) 198708) ((-259 . -748) 198686) ((-1242 . -1131) T) ((-692 . -23) T) ((-595 . -1089) T) ((-532 . -1089) T) ((-392 . -1087) 198651) ((-334 . -111) 198626) ((-73 . -396) T) ((-73 . -409) T) ((-1055 . -38) 198563) ((-716 . -414) 198545) ((-99 . -102) T) ((-1327 . -1082) 198532) ((-733 . -1131) T) ((-1144 . -874) 198483) ((-1034 . -147) 198455) ((-1034 . -149) 198427) ((-894 . -668) 198399) ((-392 . -111) 198355) ((-331 . -1252) 198334) ((-488 . -1033) 198300) ((-367 . -38) 198265) ((-40 . -383) 198237) ((-897 . -632) 198109) ((-129 . -127) 198093) ((-123 . -127) 198077) ((-858 . -1087) 198047) ((-855 . -21) 197999) ((-849 . -1087) 197983) ((-855 . -25) 197935) ((-331 . -570) 197886) ((-531 . -635) 197867) ((-578 . -850) T) ((-247 . -1248) T) ((-1065 . -635) 197836) ((-858 . -111) 197801) ((-849 . -111) 197780) ((-1282 . -632) 197762) ((-1261 . -632) 197744) ((-1261 . -633) 197415) ((-1203 . -938) 197394) ((-1156 . -938) 197373) ((-48 . -38) 197338) ((-1320 . -1143) T) ((-550 . -298) 197294) ((-616 . -632) 197206) ((-616 . -633) 197167) ((-1318 . -1143) T) ((-374 . -635) 197151) ((-334 . -635) 197135) ((-1173 . -239) 197086) ((-247 . -1069) 196913) ((-1203 . -670) 196802) ((-1156 . -670) 196691) ((-878 . -670) 196665) ((-740 . -632) 196647) ((-560 . -381) T) ((-1320 . -23) T) ((-716 . -929) NIL) ((-1318 . -23) T) ((-505 . -1131) T) ((-392 . -635) 196597) ((-392 . -637) 196579) ((-1065 . -1080) T) ((-889 . -102) T) ((-1220 . -298) 196558) ((-172 . -381) 196509) ((-1035 . -1248) T) ((-1002 . -1248) T) ((-943 . -1248) T) ((-858 . -635) 196463) ((-849 . -635) 196418) ((-44 . -23) T) ((-1327 . -102) T) ((-493 . -298) 196397) ((-600 . -1131) T) ((-1177 . -1140) 196366) ((-441 . -1248) T) ((-1135 . -1134) 196318) ((-404 . -21) T) ((-404 . -25) T) ((-154 . -1143) T) ((-1242 . -739) 196215) ((-1228 . -1131) T) ((-1035 . -909) 196197) ((-1035 . -911) 196179) ((-642 . -234) 196163) ((-642 . -274) 196147) ((-640 . -21) T) ((-301 . -570) T) ((-640 . -25) T) ((-1035 . -1069) 196107) ((-733 . -739) 196072) ((-247 . -390) 196041) ((-392 . -1080) T) ((-227 . -1089) T) ((-119 . -274) 196018) ((-119 . -234) 195995) ((-59 . -298) 195947) ((-154 . -23) T) ((-530 . -298) 195899) ((-339 . -528) 195832) ((-510 . -298) 195784) ((-392 . -250) T) ((-392 . -240) T) ((-858 . -1080) T) ((-849 . -1080) T) ((-734 . -978) 195753) ((-723 . -871) T) ((-631 . -874) T) ((-488 . -632) 195735) ((-1284 . -1082) 195640) ((-594 . -668) 195612) ((-578 . -668) 195584) ((-509 . -668) 195534) ((-849 . -240) 195513) ((-136 . -871) T) ((-1284 . -662) 195405) ((-680 . -1131) T) ((-1220 . -618) 195384) ((-564 . -1224) 195363) ((-349 . -1131) T) ((-331 . -376) 195342) ((-421 . -149) 195321) ((-421 . -147) 195300) ((-993 . -1143) 195199) ((-837 . -1143) 195177) ((-247 . -927) 195109) ((-676 . -876) 195093) ((-493 . -618) 195072) ((-110 . -874) T) ((-538 . -1248) T) ((-564 . -107) 195022) ((-1035 . -390) 195004) ((-1035 . -351) 194986) ((-1207 . -632) 194968) ((-97 . -1131) T) ((-993 . -23) 194779) ((-491 . -21) T) ((-491 . -25) T) ((-837 . -23) 194631) ((-1207 . -633) 194553) ((-59 . -19) 194537) ((-1203 . -748) T) ((-1156 . -748) T) ((-1118 . -1131) T) ((-530 . -19) 194521) ((-510 . -19) 194505) ((-59 . -618) 194482) ((-1034 . -239) 194419) ((-930 . -102) 194369) ((-878 . -748) T) ((-804 . -1131) T) ((-530 . -618) 194346) ((-510 . -618) 194323) ((-802 . -1131) T) ((-802 . -1096) 194290) ((-475 . -1131) T) ((-468 . -1131) T) ((-600 . -739) 194265) ((-671 . -1131) T) ((-1290 . -47) 194242) ((-1284 . -102) T) ((-1283 . -47) 194212) ((-1262 . -47) 194189) ((-1242 . -175) 194140) ((-1204 . -319) 194119) ((-1198 . -319) 194098) ((-1127 . -635) 194079) ((-1121 . -635) 194060) ((-1111 . -570) 194011) ((-1111 . -1252) 193962) ((-1104 . -635) 193943) ((-1035 . -927) NIL) ((-1097 . -635) 193924) ((-692 . -133) T) ((-646 . -1143) T) ((-1067 . -635) 193905) ((-1050 . -635) 193886) ((-736 . -1087) 193856) ((-734 . -921) 193759) ((-721 . -668) 193709) ((-286 . -1131) T) ((-85 . -455) T) ((-85 . -409) T) ((-733 . -175) T) ((-659 . -1087) 193693) ((-50 . -1131) T) ((-609 . -47) 193670) ((-229 . -670) 193635) ((-595 . -1131) T) ((-532 . -1131) T) ((-501 . -842) T) ((-501 . -949) T) ((-372 . -1252) T) ((-366 . -1252) T) ((-358 . -1252) T) ((-331 . -1143) T) ((-328 . -1082) 193545) ((-325 . -1082) 193474) ((-108 . -1252) T) ((-645 . -635) 193455) ((-372 . -570) T) ((-221 . -949) T) ((-221 . -842) T) ((-328 . -662) 193365) ((-325 . -662) 193294) ((-366 . -570) T) ((-358 . -570) T) ((-659 . -111) 193273) ((-497 . -635) 193254) ((-108 . -570) T) ((-1198 . -1053) NIL) ((-680 . -739) 193224) ((-496 . -874) 193175) ((-222 . -635) 193156) ((-331 . -23) T) ((-67 . -1248) T) ((-1031 . -632) 193088) ((-1327 . -1183) T) ((-716 . -274) 193070) ((-716 . -234) 193052) ((-1322 . -21) T) ((-736 . -111) 193017) ((-1322 . -25) T) ((-666 . -34) T) ((-252 . -503) 193001) ((-1320 . -133) T) ((-1318 . -133) T) ((-1311 . -102) T) ((-1294 . -632) 192967) ((-1133 . -1129) 192951) ((-174 . -1131) T) ((-1290 . -1248) T) ((-1283 . -1248) T) ((-1283 . -1069) 192886) ((-1262 . -1248) T) ((-1262 . -911) NIL) ((-981 . -938) 192865) ((-1262 . -909) 192817) ((-1262 . -1069) 192783) ((-1242 . -528) 192750) ((-529 . -635) 192734) ((-1220 . -633) NIL) ((-1220 . -632) 192716) ((-1173 . -1154) 192661) ((-495 . -938) 192640) ((-1118 . -739) 192489) ((-1093 . -670) 192461) ((-981 . -670) 192350) ((-840 . -874) T) ((-804 . -739) 192179) ((-611 . -504) 192160) ((-599 . -504) 192141) ((-611 . -632) 192107) ((-599 . -632) 192073) ((-550 . -632) 192055) ((-593 . -1248) T) ((-550 . -633) 192036) ((-802 . -739) 191885) ((-1108 . -102) T) ((-642 . -668) 191857) ((-394 . -25) T) ((-394 . -21) T) ((-495 . -670) 191746) ((-475 . -739) 191717) ((-468 . -739) 191566) ((-1018 . -102) T) ((-1077 . -1241) 191495) ((-930 . -321) 191433) ((-759 . -102) T) ((-659 . -635) 191410) ((-119 . -668) 191340) ((-900 . -93) T) ((-736 . -635) 191294) ((-703 . -93) T) ((-545 . -25) T) ((-698 . -93) T) ((-686 . -632) 191276) ((-667 . -504) 191257) ((-667 . -632) 191210) ((-143 . -102) T) ((-44 . -133) T) ((-610 . -1248) T) ((-609 . -1248) T) ((-356 . -1089) T) ((-301 . -1143) T) ((-492 . -93) T) ((-421 . -239) 191161) ((-368 . -632) 191143) ((-365 . -632) 191125) ((-357 . -632) 191107) ((-275 . -633) 190855) ((-275 . -632) 190837) ((-255 . -632) 190819) ((-255 . -633) 190680) ((-140 . -93) T) ((-139 . -93) T) ((-135 . -93) T) ((-1172 . -632) 190662) ((-1151 . -662) 190649) ((-1151 . -1082) 190636) ((-841 . -748) T) ((-841 . -881) T) ((-616 . -300) 190613) ((-595 . -739) 190578) ((-493 . -633) NIL) ((-493 . -632) 190560) ((-532 . -739) 190505) ((-328 . -102) T) ((-325 . -102) T) ((-301 . -23) T) ((-154 . -133) T) ((-939 . -632) 190487) ((-939 . -633) 190469) ((-400 . -748) T) ((-896 . -1087) 190421) ((-896 . -111) 190359) ((-736 . -1080) T) ((-734 . -1274) 190343) ((-716 . -362) NIL) ((-116 . -102) T) ((-141 . -102) T) ((-138 . -102) T) ((-533 . -632) 190275) ((-392 . -817) T) ((-170 . -1248) T) ((-227 . -1131) T) ((-392 . -814) T) ((-59 . -633) 190236) ((-229 . -816) T) ((-229 . -813) T) ((-59 . -632) 190148) ((-229 . -748) T) ((-530 . -633) 190109) ((-530 . -632) 190021) ((-511 . -632) 189953) ((-510 . -633) 189914) ((-510 . -632) 189826) ((-1111 . -376) 189777) ((-40 . -425) 189754) ((-77 . -1248) T) ((-895 . -938) NIL) ((-372 . -341) 189738) ((-372 . -376) T) ((-366 . -341) 189722) ((-366 . -376) T) ((-358 . -341) 189706) ((-358 . -376) T) ((-328 . -296) 189685) ((-108 . -376) T) ((-70 . -1248) T) ((-661 . -1131) T) ((-1262 . -351) 189637) ((-895 . -670) 189582) ((-1262 . -390) 189534) ((-993 . -133) 189389) ((-837 . -133) 189260) ((-45 . -874) NIL) ((-987 . -673) 189244) ((-1256 . -683) T) ((-1118 . -175) 189155) ((-987 . -386) 189139) ((-1093 . -816) T) ((-1093 . -813) T) ((-896 . -635) 189037) ((-804 . -175) 188928) ((-802 . -175) 188839) ((-838 . -47) 188801) ((-1093 . -748) T) ((-339 . -503) 188785) ((-981 . -748) T) ((-1311 . -321) 188723) ((-1290 . -927) 188636) ((-468 . -175) 188547) ((-252 . -298) 188499) ((-1283 . -927) 188405) ((-1282 . -1087) 188240) ((-1262 . -927) 188073) ((-495 . -748) T) ((-1261 . -1087) 187881) ((-1242 . -302) 187860) ((-1217 . -1248) T) ((-1214 . -381) T) ((-1213 . -381) T) ((-1177 . -153) 187844) ((-1151 . -102) T) ((-1149 . -1131) T) ((-1111 . -23) T) ((-1111 . -1143) T) ((-1106 . -102) T) ((-1088 . -632) 187811) ((-1034 . -423) 187783) ((-956 . -984) T) ((-759 . -321) 187721) ((-75 . -1248) T) ((-686 . -395) 187693) ((-172 . -938) 187646) ((-30 . -984) T) ((-112 . -866) T) ((-1 . -632) 187628) ((-1030 . -921) 187549) ((-130 . -673) 187531) ((-50 . -639) 187515) ((-716 . -668) 187450) ((-609 . -927) 187363) ((-452 . -102) T) ((-130 . -386) 187345) ((-143 . -321) NIL) ((-896 . -1080) T) ((-855 . -871) 187324) ((-81 . -1248) T) ((-733 . -302) T) ((-40 . -1089) T) ((-595 . -175) T) ((-532 . -175) T) ((-525 . -632) 187306) ((-172 . -670) 187180) ((-521 . -632) 187162) ((-364 . -149) 187144) ((-364 . -147) T) ((-372 . -1143) T) ((-366 . -1143) T) ((-358 . -1143) T) ((-1035 . -319) T) ((-943 . -319) T) ((-896 . -250) T) ((-108 . -1143) T) ((-896 . -240) 187123) ((-1282 . -111) 186944) ((-1261 . -111) 186733) ((-252 . -1286) 186717) ((-578 . -870) T) ((-372 . -23) T) ((-367 . -362) T) ((-328 . -321) 186704) ((-325 . -321) 186645) ((-366 . -23) T) ((-331 . -133) T) ((-358 . -23) T) ((-1035 . -1053) T) ((-31 . -635) 186626) ((-108 . -23) T) ((-676 . -1082) 186610) ((-252 . -618) 186587) ((-661 . -739) 186571) ((-345 . -1131) T) ((-676 . -662) 186541) ((-1284 . -38) 186433) ((-1271 . -938) 186412) ((-112 . -1131) T) ((-838 . -1248) T) ((-427 . -1248) T) ((-1066 . -102) T) ((-1271 . -670) 186301) ((-895 . -816) NIL) ((-879 . -670) 186275) ((-895 . -813) NIL) ((-838 . -911) NIL) ((-895 . -748) T) ((-1118 . -528) 186148) ((-804 . -528) 186095) ((-802 . -528) 186047) ((-585 . -670) 186034) ((-838 . -1069) 185862) ((-468 . -528) 185805) ((-402 . -403) T) ((-1282 . -635) 185618) ((-1261 . -635) 185366) ((-60 . -1248) T) ((-640 . -871) 185345) ((-514 . -683) T) ((-1177 . -1007) 185314) ((-1055 . -668) 185251) ((-1034 . -466) T) ((-721 . -870) T) ((-524 . -814) T) ((-488 . -1087) 185086) ((-514 . -114) T) ((-356 . -1131) T) ((-325 . -1183) NIL) ((-301 . -133) T) ((-408 . -1131) T) ((-894 . -1089) T) ((-716 . -383) 185053) ((-367 . -668) 184983) ((-227 . -639) 184960) ((-339 . -298) 184912) ((-488 . -111) 184733) ((-1282 . -1080) T) ((-1261 . -1080) T) ((-838 . -390) 184717) ((-846 . -1248) T) ((-172 . -748) T) ((-1313 . -1248) T) ((-676 . -102) T) ((-1282 . -250) 184696) ((-1282 . -240) 184648) ((-1261 . -240) 184553) ((-1261 . -250) 184532) ((-1034 . -416) NIL) ((-692 . -660) 184480) ((-328 . -38) 184390) ((-325 . -38) 184319) ((-69 . -632) 184301) ((-331 . -507) 184267) ((-48 . -668) 184217) ((-1220 . -300) 184196) ((-1256 . -871) T) ((-1144 . -1143) 184174) ((-83 . -1248) T) ((-61 . -632) 184156) ((-888 . -874) T) ((-493 . -300) 184135) ((-1313 . -1069) 184112) ((-1195 . -1131) T) ((-1144 . -23) 183964) ((-838 . -927) 183900) ((-1271 . -748) T) ((-1133 . -1248) T) ((-488 . -635) 183726) ((-364 . -239) T) ((-1118 . -302) 183657) ((-995 . -1131) T) ((-918 . -102) T) ((-804 . -302) 183568) ((-339 . -19) 183552) ((-59 . -300) 183529) ((-802 . -302) 183460) ((-879 . -748) T) ((-119 . -870) NIL) ((-530 . -300) 183437) ((-339 . -618) 183414) ((-510 . -300) 183391) ((-468 . -302) 183322) ((-1066 . -321) 183173) ((-900 . -504) 183154) ((-900 . -632) 183120) ((-703 . -504) 183101) ((-585 . -748) T) ((-698 . -504) 183082) ((-703 . -632) 183032) ((-698 . -632) 182998) ((-684 . -632) 182980) ((-492 . -504) 182961) ((-492 . -632) 182927) ((-252 . -633) 182888) ((-252 . -504) 182865) ((-140 . -504) 182846) ((-139 . -504) 182827) ((-135 . -504) 182808) ((-252 . -632) 182700) ((-216 . -102) T) ((-140 . -632) 182666) ((-139 . -632) 182632) ((-135 . -632) 182598) ((-1178 . -34) T) ((-972 . -1248) T) ((-356 . -739) 182543) ((-692 . -25) T) ((-692 . -21) T) ((-1207 . -635) 182524) ((-343 . -1248) T) ((-488 . -1080) T) ((-654 . -431) 182489) ((-620 . -431) 182454) ((-1151 . -1183) T) ((-1283 . -319) 182433) ((-734 . -1082) 182256) ((-595 . -302) T) ((-532 . -302) T) ((-1262 . -319) 182235) ((-488 . -240) 182187) ((-488 . -250) 182166) ((-453 . -1248) T) ((-734 . -662) 181995) ((-1262 . -1053) NIL) ((-1111 . -133) T) ((-896 . -817) 181974) ((-146 . -102) T) ((-40 . -1131) T) ((-896 . -814) 181953) ((-666 . -1041) 181937) ((-594 . -1089) T) ((-578 . -1089) T) ((-509 . -1089) T) ((-421 . -466) T) ((-372 . -133) T) ((-328 . -414) 181921) ((-325 . -414) 181882) ((-366 . -133) T) ((-358 . -133) T) ((-1212 . -1131) T) ((-1151 . -38) 181869) ((-1125 . -632) 181836) ((-108 . -133) T) ((-983 . -1131) T) ((-950 . -1131) T) ((-793 . -1131) T) ((-694 . -1131) T) ((-723 . -149) T) ((-623 . -102) T) ((-118 . -149) T) ((-1320 . -21) T) ((-1320 . -25) T) ((-1318 . -21) T) ((-1318 . -25) T) ((-686 . -1087) 181820) ((-545 . -871) T) ((-514 . -871) T) ((-378 . -1248) T) ((-368 . -1087) 181772) ((-365 . -1087) 181724) ((-357 . -1087) 181676) ((-260 . -1248) T) ((-259 . -1248) T) ((-275 . -1087) 181519) ((-255 . -1087) 181362) ((-686 . -111) 181341) ((-839 . -1252) 181320) ((-561 . -866) T) ((-328 . -929) 181286) ((-368 . -111) 181224) ((-365 . -111) 181162) ((-357 . -111) 181100) ((-275 . -111) 180929) ((-255 . -111) 180758) ((-325 . -929) NIL) ((-642 . -425) 180742) ((-44 . -21) T) ((-44 . -25) T) ((-934 . -874) 180693) ((-131 . -683) T) ((-837 . -660) 180599) ((-839 . -570) 180578) ((-501 . -874) T) ((-260 . -1069) 180405) ((-259 . -1069) 180232) ((-128 . -121) 180216) ((-221 . -874) T) ((-939 . -1087) 180181) ((-734 . -102) T) ((-721 . -1089) T) ((-611 . -635) 180162) ((-599 . -635) 180143) ((-550 . -637) 180046) ((-356 . -175) T) ((-154 . -21) T) ((-154 . -25) T) ((-88 . -632) 180028) ((-939 . -111) 179984) ((-40 . -739) 179929) ((-894 . -1131) T) ((-686 . -635) 179906) ((-667 . -635) 179887) ((-368 . -635) 179824) ((-365 . -635) 179761) ((-357 . -635) 179698) ((-561 . -1131) T) ((-339 . -633) 179659) ((-339 . -632) 179571) ((-275 . -635) 179324) ((-255 . -635) 179109) ((-189 . -1248) T) ((-1261 . -814) 179062) ((-1261 . -817) 179015) ((-260 . -390) 178984) ((-259 . -390) 178953) ((-563 . -874) T) ((-676 . -38) 178923) ((-627 . -34) T) ((-496 . -1143) 178901) ((-489 . -34) T) ((-1144 . -133) 178772) ((-993 . -25) 178583) ((-939 . -635) 178533) ((-898 . -632) 178515) ((-218 . -866) T) ((-993 . -21) 178470) ((-837 . -25) 178303) ((-837 . -21) 178214) ((-1254 . -381) T) ((-642 . -1089) T) ((-1209 . -570) 178193) ((-1203 . -47) 178170) ((-368 . -1080) T) ((-365 . -1080) T) ((-496 . -23) 178022) ((-357 . -1080) T) ((-275 . -1080) T) ((-255 . -1080) T) ((-1156 . -47) 177994) ((-119 . -1089) T) ((-1065 . -670) 177968) ((-987 . -34) T) ((-368 . -240) 177947) ((-368 . -250) T) ((-365 . -240) 177926) ((-365 . -250) T) ((-357 . -240) 177905) ((-357 . -250) T) ((-275 . -338) 177877) ((-255 . -338) 177834) ((-275 . -240) 177813) ((-1188 . -153) 177797) ((-260 . -927) 177729) ((-259 . -927) 177661) ((-1173 . -921) 177582) ((-1113 . -871) T) ((-1265 . -1248) 177560) ((-428 . -1143) T) ((-1242 . -1033) 177526) ((-1085 . -23) T) ((-1055 . -870) T) ((-939 . -1080) T) ((-334 . -670) 177508) ((-723 . -239) T) ((-692 . -236) 177453) ((-1204 . -949) 177432) ((-1198 . -949) 177411) ((-1198 . -842) NIL) ((-1030 . -1082) 177307) ((-996 . -1248) T) ((-939 . -250) T) ((-839 . -376) 177286) ((-218 . -1131) T) ((-398 . -23) T) ((-129 . -1131) 177264) ((-123 . -1131) 177242) ((-939 . -240) T) ((-130 . -34) T) ((-392 . -670) 177207) ((-1030 . -662) 177155) ((-894 . -739) 177142) ((-1327 . -668) 177114) ((-1077 . -153) 177079) ((-1024 . -1248) T) ((-886 . -1248) T) ((-40 . -175) T) ((-716 . -425) 177061) ((-734 . -321) 177048) ((-858 . -670) 177008) ((-849 . -670) 176982) ((-331 . -25) T) ((-331 . -21) T) ((-680 . -298) 176961) ((-594 . -1131) T) ((-578 . -1131) T) ((-509 . -1131) T) ((-1203 . -1248) T) ((-252 . -300) 176938) ((-1156 . -1248) T) ((-878 . -1248) T) ((-325 . -274) 176899) ((-325 . -234) 176860) ((-1253 . -874) T) ((-1203 . -911) NIL) ((-55 . -1131) T) ((-1156 . -911) 176719) ((-131 . -871) T) ((-1203 . -1069) 176599) ((-1156 . -1069) 176482) ((-186 . -632) 176464) ((-878 . -1069) 176360) ((-804 . -298) 176287) ((-839 . -1143) T) ((-1065 . -748) T) ((-1077 . -1007) 176216) ((-616 . -673) 176200) ((-1034 . -921) 176107) ((-1030 . -102) T) ((-839 . -23) T) ((-734 . -1183) 176085) ((-716 . -1089) T) ((-616 . -386) 176069) ((-364 . -466) T) ((-356 . -302) T) ((-1299 . -1131) T) ((-256 . -1131) T) ((-413 . -102) T) ((-301 . -21) T) ((-301 . -25) T) ((-374 . -748) T) ((-732 . -1131) T) ((-721 . -1131) T) ((-374 . -487) T) ((-1242 . -632) 176051) ((-1203 . -390) 176035) ((-1156 . -390) 176019) ((-1055 . -425) 175981) ((-143 . -233) 175963) ((-392 . -816) T) ((-392 . -813) T) ((-894 . -175) T) ((-392 . -748) T) ((-733 . -632) 175945) ((-734 . -38) 175774) ((-1298 . -1296) 175758) ((-364 . -416) T) ((-1298 . -1131) 175708) ((-1221 . -1131) T) ((-594 . -739) 175695) ((-578 . -739) 175682) ((-509 . -739) 175647) ((-1284 . -668) 175537) ((-328 . -648) 175516) ((-858 . -748) T) ((-849 . -748) T) ((-1146 . -1248) T) ((-666 . -1248) T) ((-1111 . -660) 175464) ((-1203 . -927) 175407) ((-1156 . -927) 175391) ((-837 . -236) 175282) ((-684 . -1087) 175266) ((-108 . -660) 175248) ((-496 . -133) 175119) ((-1209 . -1143) T) ((-841 . -1248) T) ((-981 . -47) 175088) ((-642 . -1131) T) ((-684 . -111) 175067) ((-505 . -632) 175033) ((-339 . -300) 175010) ((-400 . -1248) T) ((-336 . -1248) T) ((-495 . -47) 174967) ((-1209 . -23) T) ((-119 . -1131) T) ((-103 . -102) 174917) ((-1310 . -1143) T) ((-562 . -871) T) ((-229 . -1248) T) ((-1085 . -133) T) ((-1055 . -1089) T) ((-1310 . -23) T) ((-1228 . -632) 174899) ((-841 . -1069) 174883) ((-1151 . -850) T) ((-1034 . -746) 174855) ((-1136 . -1131) T) ((-721 . -739) 174820) ((-600 . -632) 174802) ((-400 . -1069) 174786) ((-367 . -1089) T) ((-398 . -133) T) ((-336 . -1069) 174770) ((-1111 . -21) T) ((-1111 . -25) T) ((-1035 . -842) T) ((-229 . -911) 174752) ((-1035 . -949) T) ((-91 . -34) T) ((-1030 . -321) 174717) ((-943 . -949) T) ((-900 . -635) 174698) ((-736 . -670) 174658) ((-501 . -1252) T) ((-703 . -635) 174639) ((-698 . -635) 174620) ((-659 . -670) 174604) ((-221 . -1252) T) ((-421 . -921) 174525) ((-229 . -1069) 174485) ((-40 . -302) T) ((-501 . -570) T) ((-492 . -635) 174466) ((-372 . -25) T) ((-328 . -668) 174121) ((-325 . -668) 174035) ((-372 . -21) T) ((-366 . -25) T) ((-366 . -21) T) ((-221 . -570) T) ((-358 . -25) T) ((-358 . -21) T) ((-331 . -236) 173981) ((-252 . -635) 173958) ((-140 . -635) 173939) ((-139 . -635) 173920) ((-135 . -635) 173901) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1089) T) ((-594 . -175) T) ((-578 . -175) T) ((-509 . -175) T) ((-1093 . -1248) T) ((-981 . -1248) T) ((-735 . -1248) T) ((-661 . -298) 173868) ((-680 . -632) 173850) ((-495 . -1248) T) ((-759 . -758) 173834) ((-349 . -632) 173816) ((-68 . -396) T) ((-68 . -409) T) ((-1133 . -107) 173800) ((-1093 . -911) 173782) ((-981 . -911) 173707) ((-675 . -1143) T) ((-642 . -739) 173694) ((-495 . -911) NIL) ((-1177 . -102) T) ((-1125 . -637) 173678) ((-1093 . -1069) 173660) ((-97 . -632) 173642) ((-491 . -149) T) ((-981 . -1069) 173522) ((-119 . -739) 173467) ((-734 . -929) 173374) ((-675 . -23) T) ((-495 . -1069) 173250) ((-1118 . -633) NIL) ((-1118 . -632) 173232) ((-804 . -633) NIL) ((-804 . -632) 173193) ((-802 . -633) 172827) ((-802 . -632) 172741) ((-1144 . -660) 172647) ((-821 . -874) 172626) ((-475 . -632) 172608) ((-468 . -632) 172590) ((-468 . -633) 172451) ((-1066 . -233) 172397) ((-896 . -938) 172376) ((-128 . -34) T) ((-839 . -133) T) ((-671 . -632) 172358) ((-592 . -102) T) ((-368 . -1317) 172342) ((-365 . -1317) 172326) ((-357 . -1317) 172310) ((-123 . -528) 172243) ((-129 . -528) 172176) ((-525 . -814) T) ((-525 . -817) T) ((-524 . -816) T) ((-103 . -321) 172114) ((-226 . -102) 172064) ((-721 . -175) T) ((-716 . -1131) T) ((-896 . -670) 171980) ((-65 . -397) T) ((-286 . -632) 171962) ((-65 . -409) T) ((-981 . -390) 171946) ((-894 . -302) T) ((-50 . -632) 171928) ((-1151 . -668) 171900) ((-1030 . -38) 171848) ((-626 . -1131) T) ((-621 . -1131) T) ((-595 . -632) 171830) ((-495 . -390) 171814) ((-595 . -633) 171796) ((-532 . -632) 171778) ((-939 . -1317) 171765) ((-895 . -1248) T) ((-723 . -466) T) ((-509 . -528) 171731) ((-1309 . -1248) T) ((-1308 . -1248) T) ((-501 . -376) T) ((-368 . -381) 171710) ((-365 . -381) 171689) ((-357 . -381) 171668) ((-736 . -748) T) ((-221 . -376) T) ((-118 . -466) T) ((-1321 . -1312) 171652) ((-895 . -909) 171629) ((-895 . -911) NIL) ((-993 . -871) 171528) ((-837 . -871) 171479) ((-1255 . -102) T) ((-676 . -678) 171463) ((-1234 . -34) T) ((-174 . -632) 171445) ((-1144 . -25) 171278) ((-1144 . -21) 171189) ((-895 . -1069) 171166) ((-981 . -927) 171147) ((-1271 . -47) 171124) ((-939 . -381) T) ((-607 . -874) T) ((-59 . -673) 171108) ((-530 . -673) 171092) ((-495 . -927) 171069) ((-71 . -455) T) ((-71 . -409) T) ((-510 . -673) 171053) ((-59 . -386) 171037) ((-642 . -175) T) ((-530 . -386) 171021) ((-510 . -386) 171005) ((-560 . -1248) T) ((-849 . -730) 170989) ((-1203 . -319) 170968) ((-1209 . -133) T) ((-1173 . -1082) 170952) ((-119 . -175) T) ((-1173 . -662) 170884) ((-1177 . -321) 170822) ((-172 . -1248) T) ((-1310 . -133) T) ((-1283 . -949) 170801) ((-1262 . -949) 170780) ((-1262 . -842) NIL) ((-890 . -1082) 170750) ((-654 . -766) 170734) ((-620 . -766) 170718) ((-1261 . -938) 170671) ((-1055 . -1131) T) ((-934 . -1143) T) ((-890 . -662) 170641) ((-716 . -739) 170591) ((-925 . -1248) T) ((-895 . -390) 170568) ((-895 . -351) 170545) ((-863 . -1248) T) ((-830 . -1248) T) ((-172 . -909) 170529) ((-172 . -911) 170454) ((-791 . -1248) T) ((-699 . -1248) T) ((-1298 . -528) 170387) ((-1282 . -670) 170284) ((-1111 . -236) 170157) ((-501 . -1143) T) ((-367 . -1131) T) ((-221 . -1143) T) ((-76 . -455) T) ((-76 . -409) T) ((-172 . -1069) 170053) ((-306 . -921) 170010) ((-331 . -871) T) ((-1261 . -670) 169818) ((-896 . -816) 169797) ((-896 . -813) 169776) ((-896 . -748) T) ((-501 . -23) T) ((-372 . -236) 169749) ((-366 . -236) 169722) ((-358 . -236) 169695) ((-177 . -466) T) ((-86 . -455) T) ((-226 . -321) 169633) ((-86 . -409) T) ((-227 . -632) 169615) ((-108 . -236) 169602) ((-221 . -23) T) ((-1322 . -1315) 169581) ((-699 . -1069) 169565) ((-594 . -302) T) ((-578 . -302) T) ((-509 . -302) T) ((-1271 . -1248) T) ((-138 . -484) 169520) ((-879 . -1248) T) ((-676 . -668) 169479) ((-48 . -1131) T) ((-734 . -274) 169463) ((-734 . -234) 169447) ((-895 . -927) NIL) ((-585 . -1248) T) ((-1271 . -911) NIL) ((-914 . -102) T) ((-910 . -102) T) ((-661 . -632) 169429) ((-402 . -1131) T) ((-172 . -390) 169413) ((-172 . -351) 169397) ((-1271 . -1069) 169277) ((-879 . -1069) 169173) ((-1173 . -102) T) ((-1030 . -929) 169096) ((-684 . -814) 169075) ((-675 . -133) T) ((-684 . -817) 169054) ((-119 . -528) 168962) ((-585 . -1069) 168944) ((-306 . -1305) 168914) ((-1198 . -874) NIL) ((-890 . -102) T) ((-992 . -570) 168893) ((-1242 . -1087) 168776) ((-1034 . -1082) 168721) ((-496 . -660) 168627) ((-933 . -1131) T) ((-1055 . -739) 168564) ((-733 . -1087) 168529) ((-1034 . -662) 168474) ((-636 . -102) T) ((-616 . -34) T) ((-1178 . -1248) T) ((-1242 . -111) 168343) ((-488 . -670) 168240) ((-367 . -739) 168185) ((-172 . -927) 168144) ((-721 . -302) T) ((-716 . -175) T) ((-733 . -111) 168100) ((-1327 . -1089) T) ((-1271 . -390) 168084) ((-432 . -1252) 168062) ((-1149 . -632) 168044) ((-325 . -870) NIL) ((-432 . -570) T) ((-229 . -319) T) ((-1261 . -813) 167997) ((-1261 . -816) 167950) ((-1282 . -748) T) ((-1261 . -748) T) ((-48 . -739) 167915) ((-229 . -1053) T) ((-1284 . -425) 167881) ((-1271 . -927) 167824) ((-364 . -1305) 167801) ((-1242 . -635) 167683) ((-740 . -748) T) ((-345 . -632) 167665) ((-534 . -874) 167644) ((-1144 . -236) 167535) ((-112 . -632) 167517) ((-112 . -633) 167499) ((-740 . -487) T) ((-733 . -635) 167449) ((-1321 . -1082) 167433) ((-496 . -25) 167266) ((-129 . -503) 167250) ((-123 . -503) 167234) ((-496 . -21) 167145) ((-1321 . -662) 167115) ((-642 . -302) T) ((-600 . -1087) 167090) ((-451 . -1131) T) ((-1093 . -319) T) ((-119 . -302) T) ((-1135 . -102) T) ((-1034 . -102) T) ((-600 . -111) 167058) ((-1242 . -1080) T) ((-1173 . -321) 166996) ((-1093 . -1053) T) ((-1085 . -25) T) ((-66 . -1248) T) ((-917 . -1248) T) ((-1085 . -21) T) ((-733 . -1080) T) ((-398 . -21) T) ((-398 . -25) T) ((-716 . -528) NIL) ((-1055 . -175) T) ((-733 . -250) T) ((-1093 . -559) T) ((-734 . -668) 166906) ((-520 . -102) T) ((-516 . -102) T) ((-367 . -175) T) ((-356 . -632) 166888) ((-421 . -1082) 166840) ((-408 . -632) 166822) ((-1151 . -870) T) ((-488 . -748) T) ((-917 . -1069) 166790) ((-421 . -662) 166742) ((-108 . -871) T) ((-680 . -1087) 166726) ((-501 . -133) T) ((-1284 . -1089) T) ((-221 . -133) T) ((-1188 . -102) 166676) ((-99 . -1131) T) ((-247 . -874) 166627) ((-252 . -688) 166611) ((-252 . -673) 166595) ((-680 . -111) 166574) ((-600 . -635) 166558) ((-328 . -425) 166542) ((-252 . -386) 166526) ((-1190 . -242) 166473) ((-1030 . -274) 166457) ((-1030 . -234) 166441) ((-74 . -1248) T) ((-48 . -175) T) ((-723 . -401) T) ((-723 . -145) T) ((-1321 . -102) T) ((-1229 . -1248) T) ((-1228 . -635) 166423) ((-1119 . -1248) T) ((-1118 . -1087) 166266) ((-1107 . -1248) T) ((-275 . -938) 166245) ((-255 . -938) 166224) ((-804 . -1087) 166047) ((-802 . -1087) 165890) ((-627 . -1248) T) ((-1195 . -632) 165872) ((-1118 . -111) 165701) ((-1077 . -102) T) ((-489 . -1248) T) ((-475 . -1087) 165672) ((-468 . -1087) 165515) ((-686 . -670) 165499) ((-895 . -319) T) ((-804 . -111) 165308) ((-802 . -111) 165137) ((-368 . -670) 165089) ((-365 . -670) 165041) ((-357 . -670) 164993) ((-275 . -670) 164882) ((-255 . -670) 164771) ((-1189 . -871) T) ((-1119 . -1069) 164755) ((-1107 . -1069) 164732) ((-1035 . -874) T) ((-1031 . -34) T) ((-475 . -111) 164693) ((-468 . -111) 164522) ((-1002 . -874) T) ((-995 . -632) 164504) ((-992 . -1143) T) ((-987 . -1248) T) ((-128 . -1041) 164488) ((-872 . -1248) T) ((-895 . -1053) NIL) ((-757 . -1143) T) ((-737 . -1143) T) ((-680 . -635) 164406) ((-1298 . -503) 164390) ((-1215 . -1248) T) ((-1214 . -1248) T) ((-1173 . -38) 164350) ((-992 . -23) T) ((-939 . -670) 164315) ((-889 . -1131) T) ((-865 . -102) T) ((-839 . -21) T) ((-654 . -1082) 164299) ((-620 . -1082) 164283) ((-839 . -25) T) ((-757 . -23) T) ((-737 . -23) T) ((-654 . -662) 164267) ((-110 . -683) T) ((-620 . -662) 164251) ((-595 . -1087) 164216) ((-532 . -1087) 164161) ((-231 . -57) 164119) ((-467 . -23) T) ((-421 . -102) T) ((-1213 . -1248) T) ((-272 . -102) T) ((-110 . -114) T) ((-716 . -302) T) ((-890 . -38) 164089) ((-1118 . -635) 163825) ((-595 . -111) 163781) ((-532 . -111) 163710) ((-432 . -1143) T) ((-328 . -1089) 163600) ((-325 . -1089) T) ((-130 . -1248) T) ((-132 . -1248) T) ((-804 . -635) 163348) ((-802 . -635) 163114) ((-680 . -1080) T) ((-1327 . -1131) T) ((-468 . -635) 162899) ((-172 . -319) 162830) ((-432 . -23) T) ((-40 . -632) 162812) ((-40 . -633) 162796) ((-108 . -1023) 162778) ((-118 . -893) 162762) ((-671 . -635) 162746) ((-48 . -528) 162712) ((-1234 . -1041) 162696) ((-1212 . -632) 162663) ((-1220 . -34) T) ((-983 . -632) 162629) ((-950 . -632) 162611) ((-1144 . -871) 162562) ((-793 . -632) 162544) ((-694 . -632) 162526) ((-531 . -1248) T) ((-1271 . -319) 162505) ((-1188 . -321) 162443) ((-1172 . -34) T) ((-493 . -34) T) ((-1123 . -1248) T) ((-491 . -466) T) ((-1065 . -1248) T) ((-1118 . -1080) T) ((-50 . -635) 162412) ((-804 . -1080) T) ((-802 . -1080) T) ((-669 . -242) 162396) ((-651 . -242) 162342) ((-1209 . -21) T) ((-595 . -635) 162292) ((-532 . -635) 162222) ((-496 . -236) 162113) ((-1209 . -25) T) ((-1118 . -338) 162074) ((-468 . -1080) T) ((-1118 . -240) 162053) ((-804 . -338) 162030) ((-804 . -240) T) ((-802 . -338) 162002) ((-753 . -1252) 161981) ((-533 . -34) T) ((-339 . -673) 161965) ((-530 . -34) T) ((-59 . -34) T) ((-511 . -34) T) ((-510 . -34) T) ((-468 . -338) 161944) ((-339 . -386) 161928) ((-374 . -1248) T) ((-334 . -1248) T) ((-1034 . -1183) NIL) ((-753 . -570) 161859) ((-654 . -102) T) ((-620 . -102) T) ((-368 . -748) T) ((-365 . -748) T) ((-357 . -748) T) ((-275 . -748) T) ((-255 . -748) T) ((-392 . -1248) T) ((-1310 . -21) T) ((-1077 . -321) 161767) ((-1310 . -25) T) ((-930 . -1131) 161745) ((-840 . -236) 161732) ((-50 . -1080) T) ((-1205 . -570) 161711) ((-1204 . -1252) 161690) ((-1204 . -570) 161641) ((-1198 . -1252) 161620) ((-1198 . -570) 161571) ((-1055 . -302) T) ((-595 . -1080) T) ((-532 . -1080) T) ((-1034 . -38) 161516) ((-374 . -1069) 161500) ((-334 . -1069) 161484) ((-1030 . -668) 161407) ((-392 . -911) 161389) ((-858 . -1248) T) ((-849 . -1248) T) ((-847 . -1248) T) ((-821 . -1143) T) ((-939 . -748) T) ((-595 . -250) T) ((-595 . -240) T) ((-532 . -240) T) ((-532 . -250) T) ((-1157 . -570) 161368) ((-367 . -302) T) ((-669 . -717) 161352) ((-392 . -1069) 161312) ((-306 . -1082) 161233) ((-352 . -921) 161212) ((-1151 . -1089) T) ((-103 . -127) 161196) ((-306 . -662) 161138) ((-821 . -23) T) ((-1320 . -1315) 161114) ((-1318 . -1315) 161093) ((-1298 . -298) 161045) ((-1284 . -1131) T) ((-421 . -321) 161010) ((-1173 . -929) 160933) ((-894 . -632) 160915) ((-858 . -1069) 160884) ((-661 . -1087) 160868) ((-206 . -809) T) ((-205 . -809) T) ((-204 . -809) T) ((-203 . -809) T) ((-202 . -809) T) ((-201 . -809) T) ((-200 . -809) T) ((-199 . -809) T) ((-198 . -809) T) ((-197 . -809) T) ((-561 . -632) 160850) ((-509 . -1033) T) ((-285 . -861) T) ((-284 . -861) T) ((-283 . -861) T) ((-282 . -861) T) ((-48 . -302) T) ((-281 . -861) T) ((-280 . -861) T) ((-279 . -861) T) ((-196 . -809) T) ((-661 . -111) 160829) ((-631 . -871) T) ((-676 . -425) 160813) ((-692 . -239) 160764) ((-227 . -635) 160726) ((-110 . -871) T) ((-675 . -21) T) ((-675 . -25) T) ((-1321 . -38) 160696) ((-119 . -298) 160647) ((-1298 . -19) 160631) ((-1262 . -874) NIL) ((-1298 . -618) 160608) ((-1311 . -1131) T) ((-364 . -1082) 160553) ((-1108 . -1131) T) ((-1018 . -1131) T) ((-992 . -133) T) ((-839 . -236) 160540) ((-759 . -1131) T) ((-364 . -662) 160485) ((-757 . -133) T) ((-737 . -133) T) ((-525 . -815) T) ((-525 . -816) T) ((-467 . -133) T) ((-421 . -1183) 160463) ((-227 . -1080) T) ((-306 . -102) 160245) ((-143 . -1131) T) ((-721 . -1033) T) ((-1136 . -298) 160201) ((-91 . -1248) T) ((-218 . -632) 160183) ((-129 . -632) 160115) ((-123 . -632) 160047) ((-1327 . -175) T) ((-1204 . -376) 160026) ((-1198 . -376) 160005) ((-328 . -1131) T) ((-432 . -133) T) ((-325 . -1131) T) ((-421 . -38) 159957) ((-1164 . -102) T) ((-1284 . -739) 159849) ((-1166 . -1293) T) ((-1127 . -1248) T) ((-1121 . -1248) T) ((-676 . -1089) T) ((-1104 . -1248) T) ((-1097 . -1248) T) ((-1067 . -1248) T) ((-1050 . -1248) T) ((-331 . -147) 159828) ((-331 . -149) 159807) ((-141 . -1131) T) ((-138 . -1131) T) ((-116 . -1131) T) ((-882 . -102) T) ((-645 . -1248) T) ((-497 . -1248) T) ((-594 . -632) 159789) ((-578 . -633) 159688) ((-578 . -632) 159670) ((-509 . -632) 159652) ((-509 . -633) 159597) ((-499 . -23) T) ((-222 . -1248) T) ((-496 . -871) 159548) ((-501 . -660) 159530) ((-994 . -632) 159512) ((-1034 . -929) 159421) ((-221 . -660) 159403) ((-229 . -418) T) ((-684 . -670) 159387) ((-55 . -632) 159369) ((-1203 . -949) 159348) ((-753 . -1143) T) ((-657 . -102) T) ((-529 . -1248) T) ((-524 . -1248) T) ((-522 . -1248) T) ((-364 . -102) T) ((-1247 . -1114) T) ((-1151 . -866) T) ((-840 . -871) T) ((-753 . -23) T) ((-356 . -1087) 159293) ((-1178 . -107) 159277) ((-1299 . -632) 159259) ((-1205 . -23) T) ((-1205 . -1143) T) ((-1204 . -1143) T) ((-659 . -1248) T) ((-1204 . -23) T) ((-1198 . -1143) T) ((-1198 . -23) T) ((-1173 . -274) 159243) ((-529 . -1069) 159227) ((-1173 . -234) 159211) ((-1157 . -1143) T) ((-356 . -111) 159140) ((-1035 . -1252) T) ((-128 . -1248) T) ((-943 . -1252) T) ((-1157 . -23) T) ((-1106 . -1131) T) ((-716 . -298) NIL) ((-736 . -1248) T) ((-1035 . -570) T) ((-943 . -570) T) ((-837 . -239) 159037) ((-625 . -683) T) ((-624 . -683) T) ((-257 . -1248) T) ((-190 . -1248) T) ((-164 . -1248) T) ((-159 . -1248) T) ((-256 . -632) 159019) ((-622 . -683) T) ((-821 . -133) T) ((-732 . -632) 159001) ((-328 . -739) 158911) ((-325 . -739) 158840) ((-721 . -632) 158822) ((-721 . -633) 158767) ((-421 . -414) 158751) ((-452 . -1131) T) ((-501 . -25) T) ((-501 . -21) T) ((-1151 . -1131) T) ((-221 . -25) T) ((-221 . -21) T) ((-734 . -425) 158735) ((-736 . -1069) 158704) ((-1298 . -632) 158616) ((-1298 . -633) 158577) ((-1284 . -175) T) ((-1221 . -632) 158559) ((-252 . -34) T) ((-356 . -635) 158489) ((-408 . -635) 158471) ((-955 . -1005) T) ((-1234 . -1248) T) ((-684 . -813) 158450) ((-684 . -816) 158429) ((-412 . -409) T) ((-537 . -102) 158379) ((-1254 . -1248) T) ((-1066 . -1131) T) ((-421 . -929) 158302) ((-226 . -1026) 158286) ((-860 . -1248) T) ((-518 . -102) T) ((-642 . -632) 158268) ((-45 . -871) NIL) ((-642 . -633) 158245) ((-1066 . -629) 158220) ((-930 . -528) 158153) ((-331 . -239) 158105) ((-356 . -1080) T) ((-119 . -633) NIL) ((-119 . -632) 158087) ((-896 . -1248) T) ((-692 . -431) 158071) ((-692 . -1154) 158016) ((-514 . -153) 157998) ((-356 . -240) T) ((-356 . -250) T) ((-40 . -1087) 157943) ((-896 . -909) 157927) ((-896 . -911) 157852) ((-734 . -1089) T) ((-716 . -1033) NIL) ((-1282 . -47) 157822) ((-1261 . -47) 157799) ((-1172 . -1041) 157770) ((-1151 . -739) 157757) ((-3 . |UnionCategory|) T) ((-1136 . -632) 157739) ((-1111 . -149) 157718) ((-1111 . -147) 157669) ((-1035 . -376) T) ((-995 . -635) 157653) ((-229 . -949) T) ((-40 . -111) 157582) ((-896 . -1069) 157446) ((-1034 . -234) 157423) ((-1034 . -274) 157400) ((-723 . -1082) 157387) ((-943 . -376) T) ((-723 . -662) 157374) ((-331 . -1236) 157340) ((-392 . -319) T) ((-331 . -1233) 157306) ((-328 . -175) 157285) ((-325 . -175) T) ((-627 . -1224) 157261) ((-595 . -1317) 157248) ((-532 . -1317) 157225) ((-118 . -1082) 157212) ((-372 . -149) 157191) ((-372 . -147) 157142) ((-366 . -149) 157121) ((-366 . -147) 157072) ((-358 . -149) 157051) ((-118 . -662) 157038) ((-358 . -147) 156989) ((-331 . -35) 156955) ((-489 . -1224) 156934) ((0 . |EnumerationCategory|) T) ((-331 . -95) 156900) ((-392 . -1053) T) ((-108 . -149) T) ((-108 . -147) NIL) ((-45 . -242) 156850) ((-676 . -1131) T) ((-627 . -107) 156797) ((-499 . -133) T) ((-489 . -107) 156747) ((-247 . -1143) 156725) ((-31 . -1248) T) ((-896 . -390) 156709) ((-896 . -351) 156693) ((-247 . -23) 156545) ((-40 . -635) 156475) ((-1311 . -528) 156408) ((-1093 . -949) T) ((-1093 . -842) T) ((-595 . -381) T) ((-532 . -381) T) ((-1290 . -570) 156387) ((-1283 . -1252) 156366) ((-1283 . -570) 156317) ((-1282 . -1248) T) ((-1262 . -1252) 156296) ((-364 . -1183) T) ((-339 . -34) T) ((-44 . -431) 156280) ((-1212 . -635) 156216) ((-897 . -1248) T) ((-404 . -766) 156200) ((-1262 . -570) 156151) ((-1261 . -1248) T) ((-1173 . -668) 156110) ((-753 . -133) T) ((-694 . -635) 156094) ((-1261 . -911) 155967) ((-1261 . -909) 155937) ((-1205 . -133) T) ((-1204 . -133) T) ((-1198 . -133) T) ((-1157 . -133) T) ((-323 . -1114) T) ((-1055 . -1033) T) ((-759 . -528) 155870) ((-1035 . -23) T) ((-1035 . -1143) T) ((-918 . -1131) T) ((-146 . -866) T) ((-1034 . -362) NIL) ((-713 . -632) 155852) ((-972 . -874) 155831) ((-537 . -321) 155769) ((-1002 . -23) T) ((-143 . -528) NIL) ((-890 . -668) 155714) ((-943 . -1143) T) ((-943 . -23) T) ((-896 . -927) 155673) ((-364 . -38) 155638) ((-894 . -1087) 155625) ((-343 . -874) T) ((-82 . -632) 155607) ((-40 . -1080) T) ((-894 . -111) 155592) ((-740 . -1248) T) ((-723 . -102) T) ((-716 . -632) 155574) ((-616 . -1248) T) ((-610 . -570) 155553) ((-441 . -1143) T) ((-352 . -1082) 155537) ((-216 . -1131) T) ((-177 . -1082) 155469) ((-488 . -47) 155439) ((-40 . -240) 155411) ((-40 . -250) T) ((-136 . -102) T) ((-118 . -102) T) ((-609 . -570) 155390) ((-352 . -662) 155374) ((-716 . -633) 155282) ((-328 . -528) 155248) ((-177 . -662) 155180) ((-325 . -528) 155072) ((-501 . -236) 155059) ((-1282 . -1069) 155043) ((-1261 . -1069) 154829) ((-1030 . -425) 154813) ((-221 . -236) 154800) ((-441 . -23) T) ((-1151 . -175) T) ((-626 . -504) 154767) ((-621 . -504) 154749) ((-626 . -632) 154701) ((-621 . -632) 154668) ((-1284 . -302) T) ((-676 . -739) 154638) ((-146 . -1131) T) ((-48 . -1033) T) ((-421 . -274) 154622) ((-421 . -234) 154606) ((-307 . -242) 154556) ((-895 . -949) T) ((-895 . -842) NIL) ((-894 . -635) 154528) ((-260 . -874) 154479) ((-259 . -874) 154430) ((-888 . -871) T) ((-623 . -1131) T) ((-1261 . -351) 154400) ((-1261 . -390) 154370) ((-1111 . -239) 154249) ((-226 . -1152) 154233) ((-306 . -929) 154192) ((-1298 . -300) 154169) ((-372 . -239) 154148) ((-366 . -239) 154127) ((-488 . -1248) T) ((-358 . -239) 154106) ((-108 . -239) T) ((-1242 . -670) 154031) ((-1034 . -668) 153961) ((-992 . -21) T) ((-992 . -25) T) ((-757 . -21) T) ((-757 . -25) T) ((-737 . -21) T) ((-737 . -25) T) ((-733 . -670) 153926) ((-467 . -21) T) ((-467 . -25) T) ((-352 . -102) T) ((-177 . -102) T) ((-1030 . -1089) T) ((-894 . -1080) T) ((-796 . -102) T) ((-1283 . -376) 153905) ((-1282 . -927) 153811) ((-1262 . -376) 153790) ((-1261 . -927) 153641) ((-1207 . -1248) T) ((-1055 . -632) 153623) ((-421 . -850) 153576) ((-1205 . -507) 153542) ((-172 . -949) 153473) ((-1204 . -507) 153439) ((-1198 . -507) 153405) ((-734 . -1131) T) ((-1157 . -507) 153371) ((-594 . -1087) 153358) ((-578 . -1087) 153345) ((-509 . -1087) 153310) ((-328 . -302) 153289) ((-325 . -302) T) ((-367 . -632) 153271) ((-432 . -25) T) ((-432 . -21) T) ((-99 . -298) 153250) ((-594 . -111) 153235) ((-578 . -111) 153220) ((-509 . -111) 153176) ((-1207 . -911) 153143) ((-930 . -503) 153127) ((-48 . -632) 153109) ((-48 . -633) 153054) ((-247 . -133) 152925) ((-1321 . -668) 152884) ((-1271 . -949) 152863) ((-838 . -1252) 152842) ((-402 . -504) 152823) ((-1066 . -528) 152667) ((-402 . -632) 152633) ((-838 . -570) 152564) ((-600 . -670) 152539) ((-275 . -47) 152511) ((-255 . -47) 152468) ((-545 . -523) 152445) ((-594 . -635) 152417) ((-578 . -635) 152389) ((-509 . -635) 152322) ((-1290 . -23) T) ((-1105 . -1248) T) ((-1031 . -1248) T) ((-1290 . -1143) T) ((-1283 . -1143) T) ((-1283 . -23) T) ((-1262 . -1143) T) ((-1262 . -23) T) ((-721 . -1087) 152287) ((-1253 . -683) T) ((-1242 . -748) T) ((-1151 . -302) T) ((-1144 . -239) 152184) ((-1035 . -133) T) ((-1034 . -383) 152156) ((-112 . -381) T) ((-488 . -927) 152062) ((-1002 . -133) T) ((-933 . -632) 152044) ((-55 . -635) 152026) ((-91 . -107) 152010) ((-943 . -133) T) ((-934 . -871) 151961) ((-723 . -1183) T) ((-721 . -111) 151917) ((-865 . -668) 151834) ((-610 . -1143) T) ((-609 . -1143) T) ((-734 . -739) 151663) ((-733 . -748) T) ((-821 . -25) T) ((-821 . -21) T) ((-501 . -871) T) ((-611 . -1248) T) ((-610 . -23) T) ((-599 . -1248) T) ((-221 . -871) T) ((-421 . -668) 151600) ((-594 . -1080) T) ((-578 . -1080) T) ((-550 . -1248) T) ((-509 . -1080) T) ((-356 . -1317) 151577) ((-331 . -466) 151556) ((-352 . -321) 151543) ((-609 . -23) T) ((-441 . -133) T) ((-680 . -670) 151517) ((-252 . -1041) 151501) ((-896 . -319) T) ((-1322 . -1312) 151485) ((-793 . -814) T) ((-793 . -817) T) ((-723 . -38) 151472) ((-578 . -240) T) ((-509 . -250) T) ((-509 . -240) T) ((-1311 . -503) 151456) ((-1294 . -1248) T) ((-1181 . -242) 151406) ((-1118 . -938) 151385) ((-118 . -38) 151372) ((-212 . -822) T) ((-211 . -822) T) ((-210 . -822) T) ((-209 . -822) T) ((-896 . -1053) 151350) ((-686 . -1248) T) ((-667 . -1248) T) ((-804 . -938) 151329) ((-802 . -938) 151308) ((-1220 . -1248) T) ((-368 . -1248) T) ((-365 . -1248) T) ((-357 . -1248) T) ((-275 . -1248) T) ((-255 . -1248) T) ((-468 . -938) 151287) ((-759 . -503) 151271) ((-1118 . -670) 151160) ((-721 . -635) 151095) ((-804 . -670) 150984) ((-642 . -1087) 150971) ((-493 . -1248) T) ((-356 . -381) T) ((-143 . -503) 150953) ((-802 . -670) 150842) ((-1172 . -1248) T) ((-563 . -871) T) ((-475 . -670) 150813) ((-275 . -911) 150672) ((-255 . -911) NIL) ((-119 . -1087) 150617) ((-468 . -670) 150506) ((-686 . -1069) 150483) ((-642 . -111) 150468) ((-404 . -1082) 150452) ((-368 . -1069) 150436) ((-365 . -1069) 150420) ((-357 . -1069) 150404) ((-275 . -1069) 150248) ((-255 . -1069) 150124) ((-939 . -1248) T) ((-119 . -111) 150053) ((-59 . -1248) T) ((-404 . -662) 150037) ((-640 . -1082) 150021) ((-533 . -1248) T) ((-530 . -1248) T) ((-511 . -1248) T) ((-510 . -1248) T) ((-451 . -632) 150003) ((-448 . -632) 149985) ((-640 . -662) 149969) ((-3 . -102) T) ((-1058 . -1241) 149938) ((-855 . -102) T) ((-711 . -57) 149896) ((-721 . -1080) T) ((-654 . -668) 149865) ((-620 . -668) 149834) ((-50 . -670) 149808) ((-301 . -466) T) ((-490 . -1241) 149777) ((0 . -102) T) ((-595 . -670) 149742) ((-532 . -670) 149687) ((-49 . -102) T) ((-939 . -1069) 149674) ((-721 . -250) T) ((-1111 . -423) 149653) ((-753 . -660) 149601) ((-1030 . -1131) T) ((-734 . -175) 149492) ((-642 . -635) 149387) ((-501 . -1023) 149369) ((-432 . -236) 149314) ((-275 . -390) 149298) ((-255 . -390) 149282) ((-413 . -1131) T) ((-1057 . -102) 149260) ((-352 . -38) 149244) ((-221 . -1023) 149226) ((-119 . -635) 149156) ((-177 . -38) 149088) ((-1282 . -319) 149067) ((-1261 . -319) 149046) ((-680 . -748) T) ((-99 . -632) 149028) ((-491 . -1082) 148993) ((-1198 . -660) 148945) ((-491 . -662) 148910) ((-666 . -874) 148889) ((-499 . -25) T) ((-499 . -21) T) ((-1261 . -1053) 148841) ((-1088 . -1248) T) ((-1 . -1248) T) ((-642 . -1080) T) ((-392 . -418) T) ((-404 . -102) T) ((-1136 . -637) 148756) ((-275 . -927) 148702) ((-255 . -927) 148679) ((-119 . -1080) T) ((-1118 . -748) T) ((-838 . -1143) T) ((-841 . -874) T) ((-642 . -240) 148658) ((-640 . -102) T) ((-525 . -1248) T) ((-521 . -1248) T) ((-804 . -748) T) ((-802 . -748) T) ((-1253 . -871) T) ((-427 . -1143) T) ((-119 . -250) T) ((-40 . -381) NIL) ((-119 . -240) NIL) ((-400 . -874) 148637) ((-468 . -748) T) ((-838 . -23) T) ((-753 . -25) T) ((-753 . -21) T) ((-692 . -921) 148558) ((-1108 . -298) 148537) ((-78 . -410) T) ((-78 . -409) T) ((-547 . -789) 148519) ((-229 . -874) T) ((-716 . -1087) 148469) ((-1323 . -102) T) ((-1290 . -133) T) ((-1283 . -133) T) ((-1262 . -133) T) ((-1205 . -25) T) ((-1173 . -425) 148453) ((-654 . -380) 148385) ((-620 . -380) 148317) ((-1188 . -1180) 148301) ((-103 . -1131) 148279) ((-1205 . -21) T) ((-1204 . -21) T) ((-889 . -632) 148261) ((-1030 . -739) 148209) ((-227 . -670) 148176) ((-716 . -111) 148110) ((-50 . -748) T) ((-1204 . -25) T) ((-364 . -362) T) ((-1198 . -21) T) ((-1111 . -466) 148061) ((-1198 . -25) T) ((-734 . -528) 148008) ((-595 . -748) T) ((-532 . -748) T) ((-1157 . -21) T) ((-1157 . -25) T) ((-610 . -133) T) ((-609 . -133) T) ((-306 . -668) 147743) ((-496 . -239) 147640) ((-372 . -466) T) ((-366 . -466) T) ((-358 . -466) T) ((-488 . -319) 147619) ((-1256 . -102) T) ((-325 . -298) 147554) ((-108 . -466) T) ((-79 . -455) T) ((-79 . -409) T) ((-491 . -102) T) ((-713 . -635) 147538) ((-1327 . -632) 147520) ((-1327 . -633) 147502) ((-1111 . -416) 147481) ((-1066 . -503) 147412) ((-661 . -670) 147396) ((-138 . -298) 147373) ((-578 . -817) T) ((-578 . -814) T) ((-1094 . -242) 147319) ((-1093 . -874) T) ((-735 . -874) T) ((-372 . -416) 147270) ((-366 . -416) 147221) ((-358 . -416) 147172) ((-1313 . -1143) T) ((-1322 . -1082) 147156) ((-394 . -1082) 147140) ((-1322 . -662) 147110) ((-840 . -239) T) ((-394 . -662) 147080) ((-716 . -635) 147015) ((-1313 . -23) T) ((-626 . -635) 146982) ((-621 . -635) 146964) ((-1300 . -102) T) ((-352 . -929) 146945) ((-178 . -632) 146927) ((-1173 . -1089) T) ((-561 . -381) T) ((-692 . -766) 146911) ((-1209 . -147) 146890) ((-1209 . -149) 146869) ((-1177 . -1131) T) ((-1177 . -1102) 146838) ((-69 . -1248) T) ((-1055 . -1087) 146775) ((-364 . -668) 146705) ((-890 . -1089) T) ((-247 . -660) 146611) ((-716 . -1080) T) ((-367 . -1087) 146556) ((-61 . -1248) T) ((-1055 . -111) 146472) ((-930 . -632) 146383) ((-716 . -250) T) ((-716 . -240) NIL) ((-865 . -870) 146362) ((-721 . -817) T) ((-721 . -814) T) ((-1034 . -425) 146339) ((-367 . -111) 146268) ((-392 . -949) T) ((-421 . -870) 146247) ((-734 . -302) 146158) ((-227 . -748) T) ((-1290 . -507) 146124) ((-1283 . -507) 146090) ((-1262 . -507) 146056) ((-592 . -1131) T) ((-328 . -1033) 146035) ((-226 . -1131) 146013) ((-1255 . -866) T) ((-331 . -1004) 145975) ((-105 . -102) T) ((-48 . -1087) 145940) ((-895 . -874) NIL) ((-1322 . -102) T) ((-394 . -102) T) ((-1284 . -632) 145922) ((-1164 . -1165) 145906) ((-1035 . -660) 145888) ((-900 . -1248) T) ((-48 . -111) 145844) ((-703 . -1248) T) ((-698 . -1248) T) ((-684 . -1248) T) ((-837 . -921) 145711) ((-492 . -1248) T) ((-252 . -1248) T) ((-545 . -102) T) ((-514 . -102) T) ((-154 . -1305) 145695) ((-140 . -1248) T) ((-139 . -1248) T) ((-135 . -1248) T) ((-1247 . -102) T) ((-1055 . -635) 145632) ((-839 . -239) T) ((-1203 . -1252) 145611) ((-218 . -381) T) ((-367 . -635) 145541) ((-1156 . -1252) 145520) ((-247 . -25) 145353) ((-247 . -21) 145264) ((-129 . -121) 145248) ((-123 . -121) 145232) ((-44 . -766) 145216) ((-1203 . -570) 145127) ((-1156 . -570) 145058) ((-1255 . -1131) T) ((-560 . -874) T) ((-1066 . -298) 145033) ((-1197 . -1114) T) ((-1025 . -1114) T) ((-838 . -133) T) ((-119 . -817) NIL) ((-119 . -814) NIL) ((-368 . -319) T) ((-365 . -319) T) ((-357 . -319) T) ((-1125 . -1248) 145011) ((-260 . -1143) 144989) ((-259 . -1143) 144967) ((-1055 . -1080) T) ((-1034 . -1089) T) ((-48 . -635) 144900) ((-356 . -670) 144845) ((-1311 . -632) 144807) ((-1311 . -633) 144768) ((-640 . -38) 144752) ((-1205 . -236) 144705) ((-1204 . -236) 144651) ((-1108 . -632) 144633) ((-1055 . -250) T) ((-367 . -1080) T) ((-837 . -1305) 144603) ((-260 . -23) T) ((-259 . -23) T) ((-1018 . -632) 144585) ((-1198 . -236) 144402) ((-1190 . -153) 144349) ((-759 . -633) 144310) ((-759 . -632) 144292) ((-1035 . -25) T) ((-821 . -871) 144271) ((-1030 . -528) 144183) ((-699 . -874) T) ((-367 . -240) T) ((-367 . -250) T) ((-402 . -635) 144164) ((-939 . -319) T) ((-143 . -632) 144146) ((-143 . -633) 144105) ((-331 . -921) 144009) ((-1035 . -21) T) ((-1002 . -25) T) ((-943 . -21) T) ((-943 . -25) T) ((-441 . -21) T) ((-441 . -25) T) ((-865 . -425) 143993) ((-48 . -1080) T) ((-1320 . -1312) 143977) ((-1318 . -1312) 143961) ((-1066 . -618) 143936) ((-328 . -633) 143797) ((-328 . -632) 143779) ((-325 . -633) NIL) ((-325 . -632) 143761) ((-48 . -250) T) ((-48 . -240) T) ((-676 . -298) 143722) ((-564 . -242) 143672) ((-585 . -874) T) ((-141 . -632) 143639) ((-138 . -632) 143621) ((-116 . -632) 143603) ((-491 . -38) 143568) ((-1322 . -1319) 143547) ((-1313 . -133) T) ((-1321 . -1089) T) ((-1113 . -102) T) ((-88 . -1248) T) ((-514 . -321) NIL) ((-1031 . -107) 143531) ((-914 . -1131) T) ((-910 . -1131) T) ((-1298 . -673) 143515) ((-1298 . -386) 143499) ((-339 . -1248) T) ((-607 . -871) T) ((-1173 . -1131) T) ((-1173 . -1084) 143439) ((-103 . -528) 143372) ((-956 . -632) 143354) ((-356 . -748) T) ((-30 . -632) 143336) ((-890 . -1131) T) ((-865 . -1089) 143315) ((-40 . -670) 143222) ((-229 . -1252) T) ((-421 . -1089) T) ((-1189 . -153) 143204) ((-1030 . -302) 143155) ((-898 . -1248) T) ((-636 . -1131) T) ((-229 . -570) T) ((-331 . -1279) 143139) ((-331 . -1276) 143109) ((-723 . -668) 143081) ((-1220 . -1224) 143060) ((-1106 . -632) 143042) ((-1220 . -107) 142992) ((-669 . -153) 142976) ((-651 . -153) 142922) ((-118 . -668) 142894) ((-493 . -1224) 142873) ((-501 . -149) T) ((-501 . -147) NIL) ((-1151 . -633) 142788) ((-452 . -632) 142770) ((-221 . -149) T) ((-221 . -147) NIL) ((-1151 . -632) 142752) ((-131 . -102) T) ((-52 . -102) T) ((-1262 . -660) 142704) ((-493 . -107) 142654) ((-1024 . -23) T) ((-1322 . -38) 142624) ((-1203 . -1143) T) ((-1156 . -1143) T) ((-1093 . -1252) T) ((-247 . -236) 142515) ((-323 . -102) T) ((-878 . -1143) T) ((-981 . -1252) 142494) ((-495 . -1252) 142473) ((-1093 . -570) T) ((-981 . -570) 142404) ((-1203 . -23) T) ((-1182 . -1114) T) ((-1156 . -23) T) ((-878 . -23) T) ((-495 . -570) 142335) ((-1173 . -739) 142267) ((-692 . -1082) 142251) ((-1177 . -528) 142184) ((-692 . -662) 142168) ((-1066 . -633) NIL) ((-1066 . -632) 142150) ((-96 . -1114) T) ((-1327 . -1087) 142137) ((-890 . -739) 142107) ((-1327 . -111) 142092) ((-1242 . -47) 142061) ((-1198 . -871) NIL) ((-260 . -133) T) ((-259 . -133) T) ((-1135 . -1131) T) ((-1034 . -1131) T) ((-62 . -632) 142043) ((-1111 . -921) 141912) ((-1055 . -814) T) ((-1055 . -817) T) ((-1290 . -25) T) ((-1290 . -21) T) ((-1283 . -21) T) ((-1283 . -25) T) ((-894 . -670) 141899) ((-1262 . -21) T) ((-1262 . -25) T) ((-1058 . -153) 141883) ((-1035 . -236) 141870) ((-896 . -842) 141849) ((-896 . -949) T) ((-734 . -298) 141776) ((-610 . -21) T) ((-352 . -668) 141735) ((-108 . -921) NIL) ((-610 . -25) T) ((-609 . -21) T) ((-177 . -668) 141652) ((-40 . -748) T) ((-226 . -528) 141585) ((-609 . -25) T) ((-490 . -153) 141569) ((-477 . -153) 141553) ((-186 . -1248) T) ((-950 . -816) T) ((-950 . -748) T) ((-793 . -815) T) ((-793 . -816) T) ((-520 . -1131) T) ((-516 . -1131) T) ((-793 . -748) T) ((-229 . -376) T) ((-1320 . -1082) 141537) ((-1318 . -1082) 141521) ((-1320 . -662) 141491) ((-1188 . -1131) 141469) ((-895 . -1252) T) ((-1318 . -662) 141439) ((-1119 . -874) T) ((-676 . -632) 141421) ((-895 . -570) T) ((-716 . -381) NIL) ((-44 . -1082) 141405) ((-1327 . -635) 141387) ((-1321 . -1131) T) ((-692 . -102) T) ((-372 . -1305) 141371) ((-366 . -1305) 141355) ((-44 . -662) 141339) ((-358 . -1305) 141323) ((-562 . -102) T) ((-1242 . -1248) T) ((-534 . -871) 141302) ((-733 . -1248) T) ((-987 . -874) 141281) ((-872 . -874) T) ((-501 . -239) T) ((-221 . -239) T) ((-1077 . -1131) T) ((-839 . -466) 141260) ((-154 . -1082) 141244) ((-1077 . -1102) 141173) ((-1058 . -1007) 141142) ((-841 . -1143) T) ((-1034 . -739) 141087) ((-154 . -662) 141071) ((-400 . -1143) T) ((-490 . -1007) 141040) ((-477 . -1007) 141009) ((-1214 . -874) T) ((-110 . -153) 140991) ((-73 . -632) 140973) ((-918 . -632) 140955) ((-1213 . -874) T) ((-1111 . -746) 140934) ((-1327 . -1080) T) ((-838 . -660) 140882) ((-306 . -1089) 140824) ((-172 . -1252) 140729) ((-229 . -1143) T) ((-336 . -23) T) ((-1198 . -1023) 140681) ((-1284 . -1087) 140586) ((-865 . -1131) T) ((-130 . -874) T) ((-1157 . -762) 140565) ((-1282 . -949) 140544) ((-1261 . -949) 140523) ((-894 . -748) T) ((-172 . -570) 140434) ((-594 . -670) 140421) ((-578 . -670) 140393) ((-421 . -1131) T) ((-272 . -1131) T) ((-216 . -632) 140375) ((-509 . -670) 140325) ((-229 . -23) T) ((-1261 . -842) 140278) ((-1320 . -102) T) ((-505 . -1248) T) ((-367 . -1317) 140255) ((-1318 . -102) T) ((-1284 . -111) 140147) ((-1144 . -921) 140014) ((-837 . -1082) 139915) ((-837 . -662) 139837) ((-146 . -632) 139819) ((-1024 . -133) T) ((-44 . -102) T) ((-247 . -871) 139770) ((-600 . -1248) T) ((-1271 . -1252) 139749) ((-103 . -503) 139733) ((-1321 . -739) 139703) ((-1118 . -47) 139664) ((-1093 . -1143) T) ((-981 . -1143) T) ((-129 . -34) T) ((-123 . -34) T) ((-1271 . -570) 139575) ((-804 . -47) 139552) ((-802 . -47) 139524) ((-1228 . -1248) T) ((-1203 . -133) T) ((-367 . -381) T) ((-495 . -1143) T) ((-1156 . -133) T) ((-895 . -376) T) ((-468 . -47) 139503) ((-878 . -133) T) ((-334 . -874) 139482) ((-154 . -102) T) ((-1093 . -23) T) ((-981 . -23) T) ((-585 . -570) T) ((-838 . -25) T) ((-838 . -21) T) ((-1173 . -528) 139415) ((-623 . -632) 139382) ((-606 . -1114) T) ((-600 . -1069) 139366) ((-1284 . -635) 139240) ((-495 . -23) T) ((-364 . -1089) T) ((-392 . -874) T) ((-1242 . -927) 139221) ((-692 . -321) 139159) ((-1290 . -236) 139112) ((-1144 . -1305) 139082) ((-721 . -670) 139047) ((-1035 . -871) T) ((-1034 . -175) T) ((-992 . -147) 139026) ((-654 . -1131) T) ((-620 . -1131) T) ((-992 . -149) 139005) ((-757 . -149) 138984) ((-757 . -147) 138963) ((-680 . -1248) T) ((-1002 . -871) T) ((-1283 . -236) 138909) ((-1262 . -236) 138726) ((-855 . -668) 138643) ((-488 . -949) 138622) ((-349 . -1248) T) ((-331 . -1082) 138457) ((-328 . -1087) 138367) ((-325 . -1087) 138296) ((-1030 . -298) 138254) ((-421 . -739) 138206) ((-331 . -662) 138047) ((-609 . -236) 138000) ((-723 . -870) T) ((-1284 . -1080) T) ((-328 . -111) 137896) ((-325 . -111) 137809) ((-97 . -1248) T) ((-993 . -102) T) ((-837 . -102) 137541) ((-734 . -633) NIL) ((-734 . -632) 137523) ((-1284 . -338) 137467) ((-680 . -1069) 137363) ((-1118 . -1248) T) ((-1066 . -300) 137338) ((-594 . -748) T) ((-578 . -816) T) ((-172 . -376) 137289) ((-578 . -813) T) ((-578 . -748) T) ((-509 . -748) T) ((-804 . -1248) T) ((-802 . -1248) T) ((-1177 . -503) 137273) ((-475 . -1248) T) ((-468 . -1248) T) ((-1320 . -1319) 137249) ((-1118 . -911) NIL) ((-895 . -1143) T) ((-119 . -938) NIL) ((-1318 . -1319) 137228) ((-671 . -1248) T) ((-804 . -911) NIL) ((-802 . -911) 137087) ((-1313 . -25) T) ((-1313 . -21) T) ((-1245 . -102) 137065) ((-1137 . -409) T) ((-642 . -670) 137052) ((-468 . -911) NIL) ((-697 . -102) 137002) ((-1118 . -1069) 136829) ((-895 . -23) T) ((-804 . -1069) 136688) ((-802 . -1069) 136545) ((-119 . -670) 136490) ((-468 . -1069) 136366) ((-286 . -1248) T) ((-328 . -635) 135930) ((-325 . -635) 135813) ((-50 . -1248) T) ((-404 . -668) 135782) ((-671 . -1069) 135766) ((-646 . -102) T) ((-595 . -1248) T) ((-532 . -1248) T) ((-226 . -503) 135750) ((-1298 . -34) T) ((-640 . -668) 135709) ((-301 . -1082) 135696) ((-138 . -635) 135680) ((-301 . -662) 135667) ((-654 . -739) 135651) ((-620 . -739) 135635) ((-692 . -38) 135595) ((-331 . -102) T) ((-1151 . -1087) 135582) ((-85 . -632) 135564) ((-50 . -1069) 135548) ((-1118 . -390) 135532) ((-804 . -390) 135516) ((-721 . -748) T) ((-721 . -816) T) ((-721 . -813) T) ((-60 . -57) 135478) ((-595 . -1069) 135465) ((-532 . -1069) 135442) ((-174 . -1248) T) ((-336 . -133) T) ((-328 . -1080) 135332) ((-325 . -1080) T) ((-172 . -1143) T) ((-802 . -390) 135316) ((-45 . -153) 135266) ((-1035 . -1023) 135248) ((-468 . -390) 135232) ((-421 . -175) T) ((-328 . -250) 135211) ((-325 . -250) T) ((-325 . -240) NIL) ((-306 . -1131) 134993) ((-229 . -133) T) ((-1151 . -111) 134978) ((-172 . -23) T) ((-821 . -149) 134957) ((-821 . -147) 134936) ((-260 . -660) 134842) ((-259 . -660) 134748) ((-331 . -296) 134714) ((-1188 . -528) 134647) ((-491 . -668) 134597) ((-657 . -866) T) ((-496 . -921) 134464) ((-1164 . -1131) T) ((-229 . -1091) T) ((-837 . -321) 134402) ((-1118 . -927) 134337) ((-804 . -927) 134280) ((-802 . -927) 134264) ((-1320 . -38) 134234) ((-1318 . -38) 134204) ((-1271 . -1143) T) ((-879 . -1143) T) ((-468 . -927) 134181) ((-882 . -1131) T) ((-1271 . -23) T) ((-1151 . -635) 134153) ((-1093 . -133) T) ((-879 . -23) T) ((-585 . -1143) T) ((-642 . -748) T) ((-524 . -874) T) ((-368 . -949) T) ((-365 . -949) T) ((-301 . -102) T) ((-357 . -949) T) ((-1001 . -1114) T) ((-981 . -133) T) ((-838 . -236) 134098) ((-119 . -816) NIL) ((-119 . -813) NIL) ((-119 . -748) T) ((-1077 . -528) 133999) ((-716 . -938) NIL) ((-585 . -23) T) ((-495 . -133) T) ((-432 . -239) 133950) ((-697 . -321) 133888) ((-227 . -1248) T) ((-657 . -1131) T) ((-654 . -783) T) ((-620 . -783) T) ((-1262 . -871) NIL) ((-1111 . -1082) 133798) ((-1034 . -302) T) ((-716 . -670) 133748) ((-260 . -25) T) ((-364 . -1131) T) ((-260 . -21) T) ((-259 . -25) T) ((-259 . -21) T) ((-154 . -38) 133732) ((-2 . -102) T) ((-939 . -949) T) ((-1111 . -662) 133600) ((-496 . -1305) 133570) ((-1151 . -1080) T) ((-733 . -319) T) ((-723 . -1089) T) ((-372 . -1082) 133522) ((-366 . -1082) 133474) ((-358 . -1082) 133426) ((-372 . -662) 133378) ((-227 . -1069) 133355) ((-366 . -662) 133307) ((-108 . -1082) 133257) ((-358 . -662) 133209) ((-306 . -739) 133151) ((-661 . -1248) T) ((-501 . -466) T) ((-421 . -528) 133063) ((-108 . -662) 133013) ((-221 . -466) T) ((-1151 . -240) T) ((-307 . -153) 132963) ((-1030 . -633) 132924) ((-1030 . -632) 132906) ((-1020 . -632) 132888) ((-118 . -1089) T) ((-676 . -1087) 132872) ((-229 . -507) T) ((-413 . -632) 132854) ((-413 . -633) 132831) ((-1085 . -1305) 132801) ((-676 . -111) 132780) ((-692 . -929) 132703) ((-1173 . -503) 132687) ((-1322 . -668) 132646) ((-394 . -668) 132615) ((-63 . -455) T) ((-63 . -409) T) ((-1190 . -102) T) ((-895 . -133) T) ((-498 . -102) 132565) ((-1149 . -1248) T) ((-1254 . -874) T) ((-1327 . -381) T) ((-1111 . -102) T) ((-1092 . -102) T) ((-364 . -739) 132510) ((-896 . -874) 132461) ((-753 . -149) 132440) ((-753 . -147) 132419) ((-676 . -635) 132337) ((-1055 . -670) 132274) ((-537 . -1131) 132252) ((-372 . -102) T) ((-366 . -102) T) ((-358 . -102) T) ((-108 . -102) T) ((-518 . -1131) T) ((-367 . -670) 132197) ((-1203 . -660) 132145) ((-1156 . -660) 132093) ((-398 . -523) 132072) ((-855 . -870) 132051) ((-716 . -748) T) ((-392 . -1252) T) ((-345 . -1248) T) ((-1262 . -1023) 132003) ((-352 . -1089) T) ((-112 . -1248) T) ((-177 . -1089) T) ((-103 . -632) 131935) ((-1205 . -147) 131914) ((-1205 . -149) 131893) ((-392 . -570) T) ((-1204 . -149) 131872) ((-1204 . -147) 131851) ((-1198 . -147) 131758) ((-421 . -302) T) ((-1198 . -149) 131665) ((-1157 . -149) 131644) ((-1157 . -147) 131623) ((-331 . -38) 131464) ((-172 . -133) T) ((-325 . -817) NIL) ((-325 . -814) NIL) ((-676 . -1080) T) ((-48 . -670) 131414) ((-1144 . -1082) 131315) ((-918 . -635) 131292) ((-1144 . -662) 131214) ((-1197 . -102) T) ((-1025 . -102) T) ((-1024 . -21) T) ((-129 . -1041) 131198) ((-123 . -1041) 131182) ((-1024 . -25) T) ((-930 . -121) 131166) ((-1189 . -102) T) ((-1271 . -133) T) ((-1261 . -874) 131065) ((-1203 . -25) T) ((-1203 . -21) T) ((-1190 . -321) 130860) ((-356 . -1248) T) ((-1156 . -25) T) ((-879 . -133) T) ((-408 . -1248) T) ((-1156 . -21) T) ((-878 . -25) T) ((-878 . -21) T) ((-804 . -319) 130839) ((-1188 . -503) 130823) ((-1181 . -153) 130773) ((-1177 . -632) 130735) ((-669 . -102) 130685) ((-651 . -102) T) ((-1177 . -633) 130646) ((-585 . -133) T) ((-640 . -870) 130625) ((-1055 . -813) T) ((-1055 . -816) T) ((-1055 . -748) T) ((-837 . -929) 130494) ((-734 . -1087) 130317) ((-616 . -874) 130296) ((-498 . -321) 130234) ((-467 . -431) 130204) ((-364 . -175) T) ((-301 . -38) 130191) ((-260 . -236) 130082) ((-259 . -236) 129973) ((-285 . -102) T) ((-284 . -102) T) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-356 . -1069) 129950) ((-279 . -102) T) ((-215 . -102) T) ((-214 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-734 . -111) 129759) ((-367 . -748) T) ((-692 . -274) 129743) ((-692 . -234) 129727) ((-595 . -319) T) ((-532 . -319) T) ((-306 . -528) 129676) ((-1195 . -1248) T) ((-108 . -321) NIL) ((-72 . -409) T) ((-1144 . -102) 129408) ((-855 . -425) 129392) ((-1151 . -817) T) ((-1151 . -814) T) ((-723 . -1131) T) ((-592 . -632) 129374) ((-392 . -376) T) ((-172 . -507) 129352) ((-226 . -632) 129284) ((-136 . -1131) T) ((-118 . -1131) T) ((-995 . -1248) T) ((-48 . -748) T) ((-1077 . -503) 129249) ((-143 . -439) 129231) ((-143 . -381) T) ((-1058 . -102) T) ((-526 . -523) 129210) ((-734 . -635) 128966) ((-1255 . -632) 128948) ((-1212 . -1248) T) ((-1212 . -1069) 128884) ((-1205 . -239) 128843) ((-490 . -102) T) ((-477 . -102) T) ((-1204 . -239) 128795) ((-1198 . -239) 128618) ((-1065 . -1143) T) ((-331 . -929) 128524) ((-1207 . -874) T) ((-1205 . -35) 128490) ((-1205 . -95) 128456) ((-1205 . -1236) 128422) ((-1205 . -1233) 128388) ((-1204 . -1233) 128354) ((-1204 . -1236) 128320) ((-1204 . -95) 128286) ((-1204 . -35) 128252) ((-1198 . -1233) 128218) ((-1198 . -1236) 128184) ((-1189 . -321) NIL) ((-89 . -410) T) ((-89 . -409) T) ((-1111 . -1183) 128163) ((-40 . -1248) T) ((-1198 . -95) 128129) ((-1065 . -23) T) ((-1198 . -35) 128095) ((-585 . -507) T) ((-1157 . -35) 128061) ((-1157 . -95) 128027) ((-1157 . -1236) 127993) ((-1157 . -1233) 127959) ((-374 . -1143) T) ((-372 . -1183) 127938) ((-366 . -1183) 127917) ((-358 . -1183) 127896) ((-1135 . -298) 127852) ((-983 . -1248) T) ((-950 . -1248) T) ((-108 . -1183) T) ((-855 . -1089) 127831) ((-793 . -1248) T) ((-669 . -321) 127769) ((-651 . -321) 127620) ((-694 . -1248) T) ((-734 . -1080) T) ((-1093 . -660) 127602) ((-1111 . -38) 127470) ((-981 . -660) 127418) ((-1035 . -149) T) ((-1035 . -147) NIL) ((-392 . -1143) T) ((-336 . -25) T) ((-334 . -23) T) ((-972 . -871) 127397) ((-734 . -338) 127374) ((-495 . -660) 127322) ((-40 . -1069) 127210) ((-734 . -240) T) ((-723 . -739) 127197) ((-352 . -1131) T) ((-177 . -1131) T) ((-343 . -871) T) ((-432 . -466) 127147) ((-392 . -23) T) ((-372 . -38) 127112) ((-366 . -38) 127077) ((-358 . -38) 127042) ((-80 . -455) T) ((-80 . -409) T) ((-229 . -25) T) ((-229 . -21) T) ((-858 . -1143) T) ((-108 . -38) 126992) ((-849 . -1143) T) ((-796 . -1131) T) ((-118 . -739) 126979) ((-694 . -1069) 126963) ((-631 . -102) T) ((-858 . -23) T) ((-849 . -23) T) ((-1188 . -298) 126915) ((-1144 . -321) 126853) ((-496 . -1082) 126754) ((-1133 . -242) 126738) ((-64 . -410) T) ((-64 . -409) T) ((-1182 . -102) T) ((-110 . -102) T) ((-496 . -662) 126660) ((-40 . -390) 126637) ((-96 . -102) T) ((-675 . -876) 126621) ((-1203 . -236) 126608) ((-1166 . -1114) T) ((-1093 . -21) T) ((-1093 . -25) T) ((-1085 . -1082) 126592) ((-837 . -274) 126561) ((-837 . -234) 126530) ((-981 . -25) T) ((-981 . -21) T) ((-1151 . -381) T) ((-1085 . -662) 126472) ((-640 . -1089) T) ((-1058 . -321) 126410) ((-914 . -632) 126392) ((-692 . -668) 126351) ((-495 . -25) T) ((-495 . -21) T) ((-398 . -1082) 126335) ((-910 . -632) 126317) ((-894 . -1248) T) ((-537 . -528) 126250) ((-260 . -871) 126201) ((-259 . -871) 126152) ((-398 . -662) 126122) ((-895 . -660) 126099) ((-490 . -321) 126037) ((-561 . -1248) T) ((-477 . -321) 125975) ((-364 . -302) T) ((-1188 . -1286) 125959) ((-1173 . -632) 125921) ((-1173 . -633) 125882) ((-1171 . -102) T) ((-1030 . -1087) 125778) ((-40 . -927) 125730) ((-1188 . -618) 125707) ((-1327 . -670) 125694) ((-1094 . -153) 125640) ((-501 . -921) NIL) ((-890 . -504) 125617) ((-1030 . -111) 125499) ((-896 . -1252) T) ((-221 . -921) NIL) ((-352 . -739) 125483) ((-890 . -632) 125445) ((-177 . -739) 125377) ((-896 . -570) T) ((-421 . -298) 125335) ((-247 . -239) 125232) ((-108 . -414) 125214) ((-84 . -397) T) ((-84 . -409) T) ((-723 . -175) T) ((-636 . -632) 125196) ((-99 . -748) T) ((-496 . -102) 124928) ((-99 . -487) T) ((-118 . -175) T) ((-1320 . -668) 124887) ((-1318 . -668) 124846) ((-172 . -660) 124794) ((-1111 . -929) 124665) ((-1085 . -102) T) ((-1030 . -635) 124555) ((-895 . -25) T) ((-837 . -245) 124534) ((-895 . -21) T) ((-840 . -102) T) ((-1035 . -239) T) ((-44 . -668) 124477) ((-428 . -102) T) ((-398 . -102) T) ((-110 . -321) NIL) ((-231 . -102) 124427) ((-218 . -1248) T) ((-129 . -1248) T) ((-123 . -1248) T) ((-108 . -929) NIL) ((-839 . -1082) 124378) ((-59 . -874) 124357) ((-839 . -662) 124299) ((-530 . -874) 124278) ((-510 . -874) 124257) ((-1065 . -133) T) ((-692 . -380) 124241) ((-154 . -668) 124200) ((-1327 . -748) T) ((-654 . -298) 124158) ((-620 . -298) 124116) ((-1290 . -147) 124095) ((-1271 . -660) 124043) ((-1030 . -1080) T) ((-1135 . -632) 124025) ((-1034 . -632) 124007) ((-594 . -1248) T) ((-578 . -1248) T) ((-509 . -1248) T) ((-529 . -23) T) ((-524 . -23) T) ((-356 . -319) T) ((-522 . -23) T) ((-334 . -133) T) ((-3 . -1131) T) ((-1034 . -633) 123991) ((-1030 . -250) 123970) ((-1030 . -240) 123949) ((-1290 . -149) 123928) ((-1283 . -149) 123907) ((-855 . -1131) T) ((-1283 . -147) 123886) ((-1282 . -1252) 123865) ((-1262 . -147) 123772) ((-1262 . -149) 123679) ((-1261 . -1252) 123658) ((-392 . -133) T) ((-229 . -236) 123645) ((-177 . -175) T) ((-578 . -911) 123627) ((0 . -1131) T) ((-172 . -21) T) ((-172 . -25) T) ((-55 . -1248) T) ((-49 . -1131) T) ((-1284 . -670) 123532) ((-1282 . -570) 123483) ((-1261 . -570) 123434) ((-736 . -1143) T) ((-659 . -23) T) ((-578 . -1069) 123416) ((-609 . -149) 123395) ((-609 . -147) 123374) ((-509 . -1069) 123317) ((-1166 . -1168) T) ((-87 . -397) T) ((-87 . -409) T) ((-896 . -376) T) ((-858 . -133) T) ((-849 . -133) T) ((-993 . -668) 123261) ((-736 . -23) T) ((-520 . -632) 123211) ((-516 . -632) 123193) ((-837 . -668) 122972) ((-1322 . -1089) T) ((-392 . -1091) T) ((-1057 . -1131) 122950) ((-55 . -1069) 122932) ((-930 . -34) T) ((-496 . -321) 122870) ((-606 . -102) T) ((-1188 . -633) 122831) ((-1188 . -632) 122763) ((-1209 . -1082) 122646) ((-45 . -102) T) ((-839 . -102) T) ((-1209 . -662) 122543) ((-1299 . -1248) T) ((-1271 . -25) T) ((-1271 . -21) T) ((-1093 . -236) 122530) ((-879 . -25) T) ((-525 . -874) T) ((-256 . -1248) T) ((-44 . -380) 122514) ((-879 . -21) T) ((-753 . -466) 122465) ((-1321 . -632) 122447) ((-732 . -1248) T) ((-721 . -1248) T) ((-1310 . -1082) 122417) ((-1085 . -321) 122355) ((-693 . -1114) T) ((-619 . -1114) T) ((-404 . -1131) T) ((-585 . -25) T) ((-585 . -21) T) ((-183 . -1114) T) ((-163 . -1114) T) ((-158 . -1114) T) ((-156 . -1114) T) ((-1310 . -662) 122325) ((-640 . -1131) T) ((-721 . -911) 122307) ((-1298 . -1248) T) ((-231 . -321) 122245) ((-146 . -381) T) ((-1221 . -1248) T) ((-1077 . -633) 122187) ((-1077 . -632) 122130) ((-325 . -938) NIL) ((-1256 . -866) T) ((-1144 . -929) 121999) ((-721 . -1069) 121944) ((-733 . -949) T) ((-488 . -1252) 121923) ((-1204 . -466) 121902) ((-1198 . -466) 121881) ((-342 . -102) T) ((-896 . -1143) T) ((-331 . -668) 121763) ((-328 . -670) 121492) ((-325 . -670) 121421) ((-488 . -570) 121372) ((-352 . -528) 121338) ((-564 . -153) 121288) ((-40 . -319) T) ((-865 . -632) 121270) ((-723 . -302) T) ((-896 . -23) T) ((-392 . -507) T) ((-1111 . -274) 121240) ((-1111 . -234) 121210) ((-526 . -102) T) ((-421 . -633) 121017) ((-421 . -632) 120999) ((-272 . -632) 120981) ((-118 . -302) T) ((-1284 . -748) T) ((-642 . -1248) T) ((-1323 . -1131) T) ((-1282 . -376) 120960) ((-1261 . -376) 120939) ((-1311 . -34) T) ((-1256 . -1131) T) ((-119 . -1248) T) ((-108 . -274) 120921) ((-108 . -234) 120903) ((-1209 . -102) T) ((-491 . -1131) T) ((-537 . -503) 120887) ((-759 . -34) T) ((-675 . -1082) 120871) ((-675 . -662) 120841) ((-895 . -236) NIL) ((-143 . -34) T) ((-119 . -909) 120818) ((-119 . -911) NIL) ((-1310 . -102) T) ((-1290 . -239) 120777) ((-642 . -1069) 120660) ((-625 . -102) T) ((-624 . -102) T) ((-622 . -102) T) ((-666 . -871) 120639) ((-1283 . -239) 120591) ((-1262 . -239) 120414) ((-307 . -102) T) ((-734 . -381) 120393) ((-119 . -1069) 120370) ((-404 . -739) 120354) ((-609 . -239) 120313) ((-640 . -739) 120297) ((-1136 . -1248) T) ((-45 . -321) 120101) ((-838 . -147) 120080) ((-838 . -149) 120059) ((-301 . -668) 120031) ((-1321 . -395) 120010) ((-841 . -871) T) ((-1300 . -1131) T) ((-1190 . -233) 119957) ((-400 . -871) 119936) ((-1290 . -35) 119902) ((-1290 . -1236) 119868) ((-1290 . -1233) 119834) ((-1283 . -1233) 119800) ((-529 . -133) T) ((-1283 . -1236) 119766) ((-1262 . -1233) 119732) ((-1262 . -1236) 119698) ((-1290 . -95) 119664) ((-1283 . -95) 119630) ((-432 . -921) 119551) ((-654 . -632) 119520) ((-620 . -632) 119489) ((-229 . -871) T) ((-1283 . -35) 119455) ((-1282 . -1143) T) ((-1262 . -95) 119421) ((-1151 . -670) 119393) ((-1262 . -35) 119359) ((-1261 . -1143) T) ((-607 . -153) 119341) ((-1111 . -362) 119320) ((-177 . -302) T) ((-119 . -390) 119297) ((-119 . -351) 119274) ((-172 . -236) 119199) ((-894 . -319) T) ((-325 . -816) NIL) ((-325 . -813) NIL) ((-328 . -748) 119048) ((-325 . -748) T) ((-659 . -133) T) ((-488 . -376) 119027) ((-372 . -362) 119006) ((-366 . -362) 118985) ((-358 . -362) 118964) ((-328 . -487) 118943) ((-1282 . -23) T) ((-1261 . -23) T) ((-740 . -1143) T) ((-736 . -133) T) ((-675 . -102) T) ((-491 . -739) 118908) ((-684 . -874) 118887) ((-45 . -294) 118837) ((-105 . -1131) T) ((-68 . -632) 118819) ((-252 . -874) 118798) ((-1001 . -102) T) ((-888 . -102) T) ((-642 . -927) 118757) ((-1322 . -1131) T) ((-394 . -1131) T) ((-1271 . -236) 118744) ((-1247 . -1131) T) ((-82 . -1248) T) ((-1144 . -274) 118713) ((-1093 . -871) T) ((-119 . -927) NIL) ((-804 . -949) 118692) ((-735 . -871) T) ((-545 . -1131) T) ((-514 . -1131) T) ((-368 . -1252) T) ((-365 . -1252) T) ((-357 . -1252) T) ((-275 . -1252) 118671) ((-255 . -1252) 118650) ((-547 . -884) T) ((-1144 . -234) 118619) ((-1189 . -850) T) ((-1173 . -1087) 118603) ((-404 . -783) T) ((-716 . -1248) T) ((-713 . -1069) 118587) ((-368 . -570) T) ((-365 . -570) T) ((-357 . -570) T) ((-275 . -570) 118518) ((-255 . -570) 118449) ((-539 . -1114) T) ((-1173 . -111) 118428) ((-467 . -766) 118398) ((-890 . -1087) 118368) ((-839 . -38) 118310) ((-716 . -909) 118292) ((-626 . -1248) T) ((-621 . -1248) T) ((-716 . -911) 118274) ((-307 . -321) 118078) ((-1188 . -300) 118055) ((-939 . -1252) T) ((-1111 . -668) 117950) ((-1035 . -466) T) ((-692 . -425) 117934) ((-890 . -111) 117899) ((-943 . -466) T) ((-716 . -1069) 117844) ((-939 . -570) T) ((-547 . -632) 117826) ((-595 . -949) T) ((-501 . -1082) 117776) ((-488 . -1143) T) ((-532 . -949) T) ((-496 . -929) 117645) ((-65 . -632) 117627) ((-221 . -1082) 117577) ((-501 . -662) 117527) ((-372 . -668) 117464) ((-366 . -668) 117401) ((-358 . -668) 117338) ((-651 . -233) 117284) ((-221 . -662) 117234) ((-108 . -668) 117184) ((-488 . -23) T) ((-1151 . -816) T) ((-896 . -133) T) ((-1151 . -813) T) ((-1313 . -1315) 117163) ((-1151 . -748) T) ((-676 . -670) 117137) ((-306 . -632) 116878) ((-1173 . -635) 116796) ((-1066 . -34) T) ((-838 . -239) 116747) ((-594 . -319) T) ((-578 . -319) T) ((-509 . -319) T) ((-1322 . -739) 116717) ((-716 . -390) 116699) ((-716 . -351) 116681) ((-491 . -175) T) ((-394 . -739) 116651) ((-890 . -635) 116586) ((-895 . -871) NIL) ((-578 . -1053) T) ((-509 . -1053) T) ((-1164 . -632) 116568) ((-1144 . -245) 116547) ((-217 . -102) T) ((-1181 . -102) T) ((-71 . -632) 116529) ((-1055 . -1248) T) ((-1173 . -1080) T) ((-1209 . -38) 116426) ((-882 . -632) 116408) ((-578 . -559) T) ((-692 . -1089) T) ((-753 . -978) 116361) ((-1173 . -240) 116340) ((-367 . -1248) T) ((-1113 . -1131) T) ((-1065 . -25) T) ((-1065 . -21) T) ((-1034 . -1087) 116285) ((-339 . -874) 116264) ((-934 . -102) T) ((-890 . -1080) T) ((-716 . -927) NIL) ((-368 . -341) 116248) ((-368 . -376) T) ((-365 . -341) 116232) ((-365 . -376) T) ((-357 . -341) 116216) ((-357 . -376) T) ((-501 . -102) T) ((-1310 . -38) 116186) ((-560 . -871) T) ((-537 . -709) 116136) ((-221 . -102) T) ((-1055 . -1069) 116016) ((-1034 . -111) 115945) ((-657 . -632) 115927) ((-1205 . -1004) 115896) ((-1204 . -1004) 115858) ((-534 . -153) 115842) ((-1111 . -383) 115821) ((-364 . -632) 115803) ((-334 . -21) T) ((-367 . -1069) 115780) ((-334 . -25) T) ((-1198 . -1004) 115749) ((-48 . -1248) T) ((-76 . -632) 115731) ((-1157 . -1004) 115698) ((-721 . -319) T) ((-131 . -866) T) ((-939 . -376) T) ((-392 . -25) T) ((-392 . -21) T) ((-939 . -341) 115685) ((-86 . -632) 115667) ((-721 . -1053) T) ((-699 . -871) T) ((-402 . -1248) T) ((-1282 . -133) T) ((-1261 . -133) T) ((-930 . -1041) 115651) ((-858 . -21) T) ((-48 . -1069) 115594) ((-858 . -25) T) ((-849 . -25) T) ((-849 . -21) T) ((-1144 . -668) 115373) ((-1320 . -1089) T) ((-563 . -102) T) ((-1318 . -1089) T) ((-676 . -748) T) ((-1135 . -637) 115276) ((-1034 . -635) 115206) ((-1321 . -1087) 115190) ((-933 . -1248) T) ((-837 . -425) 115159) ((-103 . -121) 115143) ((-131 . -1131) T) ((-52 . -1131) T) ((-955 . -632) 115125) ((-895 . -1023) 115102) ((-845 . -102) T) ((-1321 . -111) 115081) ((-753 . -921) 115056) ((-675 . -38) 115026) ((-585 . -871) T) ((-368 . -1143) T) ((-365 . -1143) T) ((-357 . -1143) T) ((-275 . -1143) T) ((-255 . -1143) T) ((-1181 . -321) 114830) ((-1119 . -236) 114817) ((-642 . -319) 114796) ((-686 . -23) T) ((-538 . -1114) T) ((-323 . -1131) T) ((-496 . -274) 114765) ((-496 . -234) 114734) ((-154 . -1089) T) ((-368 . -23) T) ((-365 . -23) T) ((-357 . -23) T) ((-119 . -319) T) ((-275 . -23) T) ((-255 . -23) T) ((-1034 . -1080) T) ((-734 . -938) 114713) ((-1205 . -921) 114601) ((-1204 . -921) 114482) ((-1198 . -921) 114218) ((-1188 . -635) 114195) ((-1034 . -240) 114167) ((-1034 . -250) T) ((-1157 . -921) 114149) ((-119 . -1053) NIL) ((-939 . -1143) T) ((-1283 . -466) 114128) ((-1262 . -466) 114107) ((-537 . -632) 114039) ((-734 . -670) 113928) ((-421 . -1087) 113880) ((-518 . -632) 113862) ((-939 . -23) T) ((-501 . -321) NIL) ((-1321 . -635) 113818) ((-488 . -133) T) ((-221 . -321) NIL) ((-421 . -111) 113756) ((-837 . -1089) 113734) ((-759 . -1129) 113718) ((-1282 . -507) 113684) ((-1261 . -507) 113650) ((-451 . -1248) T) ((-562 . -866) T) ((-143 . -1129) 113632) ((-491 . -302) T) ((-1214 . -683) T) ((-1321 . -1080) T) ((-260 . -239) 113529) ((-259 . -239) 113426) ((-1253 . -102) T) ((-1094 . -102) T) ((-865 . -635) 113294) ((-514 . -528) NIL) ((-496 . -245) 113273) ((-421 . -635) 113171) ((-992 . -1082) 113054) ((-757 . -1082) 113024) ((-992 . -662) 112921) ((-1203 . -147) 112900) ((-757 . -662) 112870) ((-467 . -1082) 112840) ((-1203 . -149) 112819) ((-1156 . -149) 112798) ((-1156 . -147) 112777) ((-654 . -1087) 112761) ((-620 . -1087) 112745) ((-467 . -662) 112715) ((-1205 . -1289) 112699) ((-1205 . -1276) 112676) ((-1204 . -1281) 112637) ((-692 . -1131) T) ((-692 . -1084) 112577) ((-1204 . -1276) 112547) ((-562 . -1131) T) ((-501 . -1183) T) ((-1204 . -1279) 112531) ((-1198 . -1260) 112492) ((-840 . -277) 112476) ((-221 . -1183) T) ((-356 . -949) T) ((-99 . -1248) T) ((-654 . -111) 112455) ((-620 . -111) 112434) ((-1198 . -1276) 112411) ((-865 . -1080) 112390) ((-1198 . -1258) 112374) ((-529 . -25) T) ((-509 . -314) T) ((-525 . -23) T) ((-524 . -25) T) ((-522 . -25) T) ((-521 . -23) T) ((-432 . -1082) 112348) ((-421 . -1080) T) ((-331 . -1089) T) ((-716 . -319) T) ((-432 . -662) 112322) ((-108 . -870) T) ((-734 . -748) T) ((-421 . -250) T) ((-421 . -240) 112301) ((-392 . -236) 112288) ((-501 . -38) 112238) ((-221 . -38) 112188) ((-488 . -507) 112154) ((-659 . -21) T) ((-659 . -25) T) ((-1255 . -381) T) ((-1189 . -1175) T) ((-1132 . -102) T) ((-849 . -236) 112127) ((-723 . -632) 112109) ((-723 . -633) 112024) ((-736 . -21) T) ((-736 . -25) T) ((-1166 . -102) T) ((-496 . -668) 111803) ((-247 . -921) 111670) ((-136 . -632) 111652) ((-118 . -632) 111634) ((-159 . -25) T) ((-1320 . -1131) T) ((-896 . -660) 111582) ((-1318 . -1131) T) ((-889 . -1248) T) ((-992 . -102) T) ((-757 . -102) T) ((-737 . -102) T) ((-467 . -102) T) ((-838 . -466) 111533) ((-44 . -1131) T) ((-1119 . -871) T) ((-1094 . -321) 111384) ((-686 . -133) T) ((-1085 . -668) 111353) ((-692 . -739) 111337) ((-301 . -1089) T) ((-368 . -133) T) ((-365 . -133) T) ((-357 . -133) T) ((-275 . -133) T) ((-255 . -133) T) ((-398 . -668) 111306) ((-1327 . -1248) T) ((-432 . -102) T) ((-154 . -1131) T) ((-45 . -233) 111256) ((-1035 . -921) NIL) ((-821 . -1082) 111240) ((-987 . -871) 111219) ((-1030 . -670) 111121) ((-821 . -662) 111105) ((-247 . -1305) 111075) ((-1055 . -319) T) ((-306 . -1087) 110996) ((-939 . -133) T) ((-40 . -949) T) ((-501 . -414) 110978) ((-367 . -319) T) ((-221 . -414) 110960) ((-1111 . -425) 110944) ((-306 . -111) 110860) ((-1214 . -871) T) ((-1213 . -871) T) ((-896 . -25) T) ((-896 . -21) T) ((-1284 . -47) 110804) ((-352 . -632) 110786) ((-1203 . -239) T) ((-229 . -149) T) ((-177 . -632) 110768) ((-796 . -632) 110750) ((-130 . -871) T) ((-627 . -242) 110697) ((-489 . -242) 110647) ((-1320 . -739) 110617) ((-48 . -319) T) ((-1318 . -739) 110587) ((-65 . -635) 110516) ((-993 . -1131) T) ((-837 . -1131) 110268) ((-324 . -102) T) ((-930 . -1248) T) ((-48 . -1053) T) ((-1261 . -660) 110176) ((-711 . -102) 110126) ((-44 . -739) 110110) ((-564 . -102) T) ((-306 . -635) 110041) ((-67 . -396) T) ((-501 . -929) NIL) ((-67 . -409) T) ((-286 . -874) T) ((-221 . -929) NIL) ((-684 . -23) T) ((-839 . -668) 109977) ((-692 . -783) T) ((-1245 . -1131) 109955) ((-364 . -1087) 109900) ((-697 . -1131) 109878) ((-1093 . -149) T) ((-981 . -149) 109857) ((-981 . -147) 109836) ((-821 . -102) T) ((-154 . -739) 109820) ((-495 . -149) 109799) ((-495 . -147) 109778) ((-364 . -111) 109707) ((-1111 . -1089) T) ((-334 . -871) 109686) ((-1290 . -1004) 109655) ((-1284 . -1248) T) ((-646 . -1131) T) ((-1283 . -1004) 109617) ((-525 . -133) T) ((-521 . -133) T) ((-307 . -233) 109567) ((-372 . -1089) T) ((-366 . -1089) T) ((-358 . -1089) T) ((-306 . -1080) 109509) ((-1262 . -1004) 109478) ((-392 . -871) T) ((-108 . -1089) T) ((-1030 . -748) T) ((-894 . -949) T) ((-865 . -817) 109457) ((-865 . -814) 109436) ((-432 . -321) 109375) ((-482 . -102) T) ((-609 . -1004) 109344) ((-331 . -1131) T) ((-421 . -817) 109323) ((-421 . -814) 109302) ((-514 . -503) 109284) ((-1284 . -1069) 109250) ((-1282 . -21) T) ((-1282 . -25) T) ((-1261 . -21) T) ((-1261 . -25) T) ((-657 . -635) 109227) ((-837 . -739) 109169) ((-364 . -635) 109099) ((-721 . -418) T) ((-1311 . -1248) T) ((-1144 . -425) 109068) ((-1108 . -1248) T) ((-619 . -102) T) ((-1034 . -381) NIL) ((-1018 . -1248) T) ((-693 . -102) T) ((-183 . -102) T) ((-163 . -102) T) ((-158 . -102) T) ((-156 . -102) T) ((-103 . -34) T) ((-1209 . -668) 108978) ((-759 . -1248) T) ((-753 . -1082) 108821) ((-44 . -783) T) ((-753 . -662) 108670) ((-607 . -102) T) ((-675 . -678) 108654) ((-77 . -410) T) ((-77 . -409) T) ((-143 . -1248) T) ((-895 . -149) T) ((-895 . -147) NIL) ((-1310 . -668) 108599) ((-1290 . -921) 108487) ((-1283 . -921) 108368) ((-1247 . -93) T) ((-364 . -1080) T) ((-229 . -239) T) ((-70 . -396) T) ((-70 . -409) T) ((-1196 . -102) T) ((-692 . -528) 108301) ((-1262 . -921) 108037) ((-1242 . -570) 108016) ((-711 . -321) 107954) ((-992 . -38) 107851) ((-1211 . -632) 107833) ((-757 . -38) 107803) ((-564 . -321) 107607) ((-1205 . -1082) 107490) ((-328 . -1248) T) ((-364 . -240) T) ((-364 . -250) T) ((-325 . -1248) T) ((-301 . -1131) T) ((-1204 . -1082) 107325) ((-1198 . -1082) 107115) ((-1157 . -1082) 106998) ((-1205 . -662) 106895) ((-1204 . -662) 106736) ((-733 . -1252) T) ((-1198 . -662) 106532) ((-1188 . -673) 106516) ((-1157 . -662) 106413) ((-841 . -399) 106397) ((-733 . -570) T) ((-609 . -921) 106308) ((-328 . -909) 106292) ((-328 . -911) 106217) ((-325 . -909) 106178) ((-141 . -1248) T) ((-138 . -1248) T) ((-116 . -1248) T) ((-325 . -911) NIL) ((-821 . -321) 106143) ((-1254 . -683) T) ((-331 . -739) 105984) ((-400 . -399) 105968) ((-336 . -335) 105945) ((-499 . -102) T) ((-488 . -25) T) ((-488 . -21) T) ((-432 . -38) 105919) ((-328 . -1069) 105582) ((-229 . -1233) T) ((-229 . -1236) T) ((-3 . -632) 105564) ((-325 . -1069) 105494) ((-896 . -236) 105439) ((-2 . -1131) T) ((-2 . |RecordCategory|) T) ((-1144 . -1089) 105417) ((-855 . -632) 105399) ((-1093 . -239) T) ((-594 . -949) T) ((-578 . -842) T) ((-578 . -949) T) ((-509 . -949) T) ((-138 . -1069) 105383) ((-229 . -95) T) ((-172 . -149) 105362) ((-75 . -455) T) ((0 . -632) 105344) ((-75 . -409) T) ((-172 . -147) 105295) ((-229 . -35) T) ((-49 . -632) 105277) ((-491 . -1089) T) ((-501 . -274) 105259) ((-501 . -234) 105241) ((-498 . -999) 105225) ((-221 . -274) 105207) ((-221 . -234) 105189) ((-81 . -455) T) ((-81 . -409) T) ((-1177 . -34) T) ((-753 . -102) T) ((-675 . -668) 105148) ((-1057 . -632) 105115) ((-514 . -298) 105065) ((-328 . -390) 105034) ((-325 . -390) 104995) ((-325 . -351) 104956) ((-1116 . -632) 104938) ((-838 . -978) 104885) ((-684 . -133) T) ((-1271 . -147) 104864) ((-1271 . -149) 104843) ((-1205 . -102) T) ((-1204 . -102) T) ((-1198 . -102) T) ((-1190 . -1131) T) ((-1157 . -102) T) ((-1106 . -1248) T) ((-226 . -34) T) ((-301 . -739) 104830) ((-1290 . -1289) 104814) ((-1190 . -629) 104790) ((-607 . -321) NIL) ((-1290 . -1276) 104767) ((-1181 . -233) 104717) ((-498 . -1131) 104695) ((-452 . -1248) T) ((-404 . -632) 104677) ((-524 . -871) T) ((-1151 . -1248) T) ((-1283 . -1281) 104638) ((-1283 . -1276) 104608) ((-1283 . -1279) 104592) ((-1262 . -1260) 104553) ((-1262 . -1276) 104530) ((-1262 . -1258) 104514) ((-1205 . -296) 104480) ((-640 . -632) 104462) ((-1204 . -296) 104428) ((-721 . -949) T) ((-1198 . -296) 104394) ((-1157 . -296) 104360) ((-1151 . -911) 104342) ((-1111 . -1131) T) ((-1092 . -1131) T) ((-48 . -314) T) ((-328 . -927) 104308) ((-325 . -927) NIL) ((-1092 . -1099) 104287) ((-821 . -38) 104271) ((-275 . -660) 104219) ((-112 . -874) T) ((-255 . -660) 104167) ((-723 . -1087) 104154) ((-609 . -1276) 104131) ((-1151 . -1069) 104113) ((-331 . -175) 104044) ((-372 . -1131) T) ((-366 . -1131) T) ((-358 . -1131) T) ((-514 . -19) 104026) ((-1133 . -153) 104010) ((-895 . -239) NIL) ((-108 . -1131) T) ((-118 . -1087) 103997) ((-733 . -376) T) ((-514 . -618) 103972) ((-723 . -111) 103957) ((-1323 . -632) 103923) ((-1323 . -504) 103904) ((-1282 . -236) 103850) ((-1261 . -236) 103703) ((-450 . -102) T) ((-900 . -1293) T) ((-258 . -102) T) ((-45 . -1180) 103653) ((-118 . -111) 103638) ((-1300 . -632) 103620) ((-1271 . -239) T) ((-1256 . -632) 103602) ((-1254 . -871) T) ((-654 . -742) T) ((-620 . -742) T) ((-1242 . -1143) T) ((-1242 . -23) T) ((-1203 . -466) 103533) ((-1198 . -321) 103418) ((-1197 . -1131) T) ((-837 . -528) 103351) ((-1066 . -1248) T) ((-247 . -1082) 103252) ((-1189 . -1131) T) ((-1173 . -670) 103190) ((-972 . -153) 103174) ((-1157 . -321) 103161) ((-1156 . -466) 103112) ((-247 . -662) 103034) ((-1118 . -570) 102965) ((-1118 . -1252) 102944) ((-1111 . -739) 102812) ((-539 . -102) T) ((-534 . -102) 102742) ((-1035 . -1082) 102692) ((-1025 . -1131) T) ((-838 . -921) 102588) ((-804 . -1252) 102567) ((-802 . -1252) 102546) ((-62 . -1248) T) ((-491 . -632) 102498) ((-491 . -633) 102420) ((-804 . -570) 102331) ((-802 . -570) 102262) ((-753 . -321) 102249) ((-723 . -635) 102221) ((-496 . -425) 102190) ((-642 . -949) 102169) ((-468 . -1252) 102148) ((-697 . -528) 102081) ((-686 . -25) T) ((-412 . -632) 102063) ((-686 . -21) T) ((-468 . -570) 101994) ((-432 . -929) 101917) ((-368 . -25) T) ((-368 . -21) T) ((-365 . -25) T) ((-119 . -949) T) ((-119 . -842) NIL) ((-365 . -21) T) ((-357 . -25) T) ((-357 . -21) T) ((-275 . -25) T) ((-275 . -21) T) ((-255 . -25) T) ((-255 . -21) T) ((-172 . -239) 101848) ((-83 . -397) T) ((-83 . -409) T) ((-136 . -635) 101830) ((-118 . -635) 101802) ((-1035 . -662) 101752) ((-972 . -1011) 101736) ((-943 . -662) 101688) ((-943 . -1082) 101640) ((-939 . -21) T) ((-939 . -25) T) ((-896 . -871) 101591) ((-890 . -670) 101551) ((-733 . -1143) T) ((-733 . -23) T) ((-723 . -1080) T) ((-723 . -240) T) ((-301 . -175) T) ((-676 . -1248) T) ((-323 . -93) T) ((-669 . -1131) 101529) ((-651 . -629) 101504) ((-651 . -1131) T) ((-595 . -1252) T) ((-595 . -570) T) ((-532 . -1252) T) ((-532 . -570) T) ((-501 . -668) 101454) ((-488 . -236) 101400) ((-441 . -1082) 101384) ((-441 . -662) 101368) ((-372 . -739) 101320) ((-366 . -739) 101272) ((-352 . -1087) 101256) ((-358 . -739) 101208) ((-352 . -111) 101187) ((-177 . -1087) 101119) ((-177 . -111) 101030) ((-108 . -739) 100980) ((-221 . -668) 100930) ((-285 . -1131) T) ((-284 . -1131) T) ((-283 . -1131) T) ((-282 . -1131) T) ((-281 . -1131) T) ((-280 . -1131) T) ((-279 . -1131) T) ((-215 . -1131) T) ((-214 . -1131) T) ((-172 . -1236) 100908) ((-172 . -1233) 100886) ((-212 . -1131) T) ((-211 . -1131) T) ((-118 . -1080) T) ((-210 . -1131) T) ((-209 . -1131) T) ((-206 . -1131) T) ((-205 . -1131) T) ((-204 . -1131) T) ((-203 . -1131) T) ((-202 . -1131) T) ((-201 . -1131) T) ((-200 . -1131) T) ((-199 . -1131) T) ((-198 . -1131) T) ((-197 . -1131) T) ((-196 . -1131) T) ((-247 . -102) 100618) ((-172 . -35) 100596) ((-172 . -95) 100574) ((-676 . -1069) 100470) ((-496 . -1089) 100448) ((-1144 . -1131) 100200) ((-1173 . -34) T) ((-692 . -503) 100184) ((-73 . -1248) T) ((-105 . -632) 100166) ((-918 . -1248) T) ((-1322 . -632) 100148) ((-394 . -632) 100130) ((-352 . -635) 100082) ((-177 . -635) 99999) ((-1247 . -504) 99980) ((-753 . -38) 99829) ((-585 . -1236) T) ((-585 . -1233) T) ((-545 . -632) 99811) ((-534 . -321) 99749) ((-514 . -632) 99731) ((-514 . -633) 99713) ((-1247 . -632) 99679) ((-1198 . -1183) NIL) ((-216 . -1248) T) ((-1058 . -1102) 99648) ((-1058 . -1131) T) ((-1035 . -102) T) ((-1002 . -102) T) ((-943 . -102) T) ((-918 . -1069) 99625) ((-1173 . -748) T) ((-1034 . -670) 99532) ((-490 . -1131) T) ((-477 . -1131) T) ((-600 . -23) T) ((-585 . -35) T) ((-585 . -95) T) ((-441 . -102) T) ((-1094 . -233) 99478) ((-1205 . -38) 99375) ((-1204 . -38) 99216) ((-950 . -874) T) ((-890 . -748) T) ((-793 . -874) T) ((-716 . -949) T) ((-694 . -874) T) ((-525 . -25) T) ((-521 . -21) T) ((-521 . -25) T) ((-1198 . -38) 99012) ((-352 . -1080) T) ((-146 . -1248) T) ((-1111 . -175) T) ((-177 . -1080) T) ((-1157 . -38) 98909) ((-734 . -47) 98886) ((-372 . -175) T) ((-366 . -175) T) ((-533 . -57) 98860) ((-511 . -57) 98810) ((-364 . -1317) 98787) ((-229 . -466) T) ((-331 . -302) 98738) ((-358 . -175) T) ((-177 . -250) T) ((-1261 . -871) 98637) ((-108 . -175) T) ((-896 . -1023) 98621) ((-680 . -1143) T) ((-595 . -376) T) ((-595 . -341) 98608) ((-532 . -341) 98585) ((-532 . -376) T) ((-328 . -319) 98564) ((-325 . -319) T) ((-616 . -871) 98543) ((-1144 . -739) 98485) ((-623 . -1248) T) ((-534 . -294) 98469) ((-680 . -23) T) ((-432 . -234) 98453) ((-432 . -274) 98437) ((-325 . -1053) NIL) ((-349 . -23) T) ((-103 . -1041) 98421) ((-657 . -381) T) ((-45 . -36) 98400) ((-631 . -1131) T) ((-364 . -381) T) ((-538 . -102) T) ((-509 . -27) T) ((-247 . -321) 98338) ((-1118 . -1143) T) ((-1321 . -670) 98312) ((-804 . -1143) T) ((-802 . -1143) T) ((-1209 . -425) 98296) ((-468 . -1143) T) ((-1093 . -466) T) ((-1182 . -1131) T) ((-981 . -466) 98247) ((-1146 . -1114) T) ((-110 . -1131) T) ((-1118 . -23) T) ((-1190 . -528) 98030) ((-839 . -1089) T) ((-804 . -23) T) ((-802 . -23) T) ((-495 . -466) 97981) ((-475 . -23) T) ((-394 . -395) 97960) ((-368 . -236) 97933) ((-365 . -236) 97906) ((-357 . -236) 97879) ((-468 . -23) T) ((-275 . -236) 97824) ((-260 . -921) 97691) ((-259 . -921) 97558) ((-96 . -1131) T) ((-734 . -1248) T) ((-692 . -298) 97535) ((-498 . -528) 97468) ((-1290 . -1082) 97351) ((-1290 . -662) 97248) ((-1283 . -662) 97089) ((-1283 . -1082) 96924) ((-1262 . -662) 96720) ((-1262 . -1082) 96510) ((-301 . -302) T) ((-1113 . -632) 96492) ((-561 . -874) T) ((-1113 . -633) 96473) ((-421 . -938) 96452) ((-1242 . -133) T) ((-50 . -1143) T) ((-1198 . -414) 96404) ((-1055 . -949) T) ((-1034 . -748) T) ((-865 . -670) 96377) ((-734 . -911) NIL) ((-610 . -1082) 96337) ((-595 . -1143) T) ((-532 . -1143) T) ((-609 . -1082) 96220) ((-1188 . -34) T) ((-1035 . -321) NIL) ((-837 . -503) 96204) ((-610 . -662) 96177) ((-367 . -949) T) ((-609 . -662) 96074) ((-939 . -236) 96061) ((-421 . -670) 95977) ((-50 . -23) T) ((-733 . -133) T) ((-734 . -1069) 95857) ((-595 . -23) T) ((-108 . -528) NIL) ((-532 . -23) T) ((-172 . -423) 95828) ((-1171 . -1131) T) ((-1313 . -1312) 95812) ((-753 . -929) 95789) ((-723 . -817) T) ((-723 . -814) T) ((-1151 . -319) T) ((-392 . -149) T) ((-292 . -632) 95771) ((-291 . -632) 95753) ((-1261 . -1023) 95723) ((-48 . -949) T) ((-697 . -503) 95707) ((-260 . -1305) 95677) ((-259 . -1305) 95647) ((-1119 . -239) T) ((-1207 . -871) T) ((-1151 . -1053) T) ((-1077 . -34) T) ((-858 . -149) 95626) ((-858 . -147) 95605) ((-759 . -107) 95589) ((-631 . -134) T) ((-1209 . -1089) T) ((-496 . -1131) 95341) ((-1205 . -929) 95254) ((-1204 . -929) 95160) ((-1198 . -929) 94921) ((-895 . -466) T) ((-85 . -1248) T) ((-143 . -107) 94903) ((-1157 . -929) 94887) ((-734 . -390) 94871) ((-855 . -635) 94739) ((-1321 . -748) T) ((-1310 . -1089) T) ((-1290 . -102) T) ((-1283 . -102) T) ((-1151 . -559) T) ((-593 . -102) T) ((-131 . -504) 94721) ((-1203 . -978) 94690) ((-404 . -1087) 94674) ((-1156 . -978) 94641) ((-44 . -298) 94618) ((-131 . -632) 94585) ((-52 . -632) 94567) ((-218 . -874) T) ((-675 . -425) 94551) ((-1262 . -102) T) ((-1189 . -528) NIL) ((-684 . -25) T) ((-640 . -1087) 94535) ((-684 . -21) T) ((-992 . -668) 94445) ((-757 . -668) 94390) ((-737 . -668) 94362) ((-404 . -111) 94341) ((-226 . -263) 94325) ((-1085 . -1084) 94265) ((-1085 . -1131) T) ((-1035 . -1183) T) ((-840 . -1131) T) ((-467 . -668) 94180) ((-654 . -670) 94164) ((-640 . -111) 94143) ((-620 . -670) 94127) ((-610 . -102) T) ((-356 . -1252) T) ((-323 . -504) 94108) ((-600 . -133) T) ((-609 . -102) T) ((-428 . -1131) T) ((-398 . -1131) T) ((-323 . -632) 94074) ((-231 . -1131) 94052) ((-669 . -528) 93985) ((-651 . -528) 93829) ((-855 . -1080) 93808) ((-666 . -153) 93792) ((-356 . -570) T) ((-734 . -927) 93735) ((-564 . -233) 93685) ((-1290 . -296) 93651) ((-1283 . -296) 93617) ((-1111 . -302) 93568) ((-578 . -874) T) ((-501 . -870) T) ((-227 . -1143) T) ((-1262 . -296) 93534) ((-1242 . -507) 93500) ((-1035 . -38) 93450) ((-221 . -870) T) ((-432 . -668) 93409) ((-943 . -38) 93361) ((-865 . -816) 93340) ((-865 . -813) 93319) ((-865 . -748) 93298) ((-372 . -302) T) ((-366 . -302) T) ((-358 . -302) T) ((-172 . -466) 93229) ((-441 . -38) 93213) ((-227 . -23) T) ((-108 . -302) T) ((-421 . -816) 93192) ((-421 . -813) 93171) ((-421 . -748) T) ((-514 . -300) 93146) ((-491 . -1087) 93111) ((-680 . -133) T) ((-640 . -635) 93080) ((-1144 . -528) 93013) ((-349 . -133) T) ((-172 . -416) 92992) ((-496 . -739) 92934) ((-837 . -298) 92911) ((-491 . -111) 92867) ((-675 . -1089) T) ((-661 . -23) T) ((-1203 . -921) 92770) ((-1156 . -921) 92752) ((-838 . -1082) 92595) ((-1309 . -1114) T) ((-1271 . -466) 92526) ((-838 . -662) 92375) ((-1308 . -1114) T) ((-1118 . -133) T) ((-1085 . -739) 92317) ((-1058 . -528) 92250) ((-804 . -133) T) ((-802 . -133) T) ((-721 . -874) T) ((-585 . -466) T) ((-640 . -1080) T) ((-606 . -1131) T) ((-547 . -176) T) ((-475 . -133) T) ((-468 . -133) T) ((-392 . -239) T) ((-1030 . -1248) T) ((-45 . -1131) T) ((-398 . -739) 92220) ((-839 . -1131) T) ((-490 . -528) 92153) ((-477 . -528) 92086) ((-1323 . -635) 92067) ((-467 . -380) 92037) ((-45 . -629) 92016) ((-413 . -1248) T) ((-328 . -314) T) ((-1298 . -874) 91995) ((-849 . -239) 91974) ((-491 . -635) 91924) ((-1262 . -321) 91809) ((-692 . -632) 91771) ((-59 . -871) 91750) ((-1035 . -414) 91732) ((-562 . -632) 91714) ((-821 . -668) 91673) ((-837 . -618) 91650) ((-530 . -871) 91629) ((-510 . -871) 91608) ((-1030 . -1069) 91504) ((-40 . -1252) T) ((-247 . -929) 91373) ((-50 . -133) T) ((-595 . -133) T) ((-532 . -133) T) ((-306 . -670) 91233) ((-356 . -341) 91210) ((-356 . -376) T) ((-334 . -335) 91187) ((-331 . -298) 91145) ((-40 . -570) T) ((-392 . -1233) T) ((-392 . -1236) T) ((-1066 . -1224) 91120) ((-1220 . -242) 91070) ((-1198 . -234) 91022) ((-1198 . -274) 90974) ((-342 . -1131) T) ((-392 . -95) T) ((-392 . -35) T) ((-1066 . -107) 90920) ((-491 . -1080) T) ((-1322 . -1087) 90904) ((-493 . -242) 90854) ((-1190 . -503) 90788) ((-1313 . -1082) 90772) ((-394 . -1087) 90756) ((-1313 . -662) 90726) ((-838 . -102) T) ((-491 . -250) T) ((-736 . -149) 90705) ((-736 . -147) 90684) ((-119 . -874) NIL) ((-498 . -503) 90668) ((-499 . -348) 90637) ((-526 . -1131) 90588) ((-1322 . -111) 90567) ((-1030 . -390) 90551) ((-427 . -102) T) ((-394 . -111) 90530) ((-1030 . -351) 90514) ((-290 . -1014) 90498) ((-289 . -1014) 90482) ((-1035 . -929) NIL) ((-1320 . -632) 90464) ((-1318 . -632) 90446) ((-110 . -528) NIL) ((-1203 . -1274) 90430) ((-878 . -876) 90414) ((-1209 . -1131) T) ((-103 . -1248) T) ((-981 . -978) 90375) ((-839 . -739) 90317) ((-1262 . -1183) NIL) ((-495 . -978) 90262) ((-1093 . -145) T) ((-60 . -102) 90212) ((-44 . -632) 90194) ((-78 . -632) 90176) ((-364 . -670) 90121) ((-625 . -1131) T) ((-624 . -1131) T) ((-622 . -1131) T) ((-1310 . -1131) T) ((-525 . -871) T) ((-301 . -298) 90100) ((-356 . -1143) T) ((-307 . -1131) T) ((-1030 . -927) 90059) ((-307 . -629) 90038) ((-1322 . -635) 89987) ((-1290 . -38) 89884) ((-1283 . -38) 89725) ((-1262 . -38) 89521) ((-501 . -1089) T) ((-394 . -635) 89505) ((-221 . -1089) T) ((-356 . -23) T) ((-154 . -632) 89487) ((-855 . -817) 89466) ((-855 . -814) 89445) ((-1247 . -635) 89426) ((-610 . -38) 89399) ((-609 . -38) 89296) ((-894 . -570) T) ((-227 . -133) T) ((-331 . -1033) 89262) ((-79 . -632) 89244) ((-734 . -319) 89223) ((-306 . -748) 89125) ((-846 . -102) T) ((-888 . -866) T) ((-306 . -487) 89104) ((-1313 . -102) T) ((-40 . -376) T) ((-896 . -149) 89083) ((-499 . -668) 89065) ((-896 . -147) 89044) ((-1189 . -503) 89026) ((-1322 . -1080) T) ((-496 . -528) 88959) ((-661 . -133) T) ((-1177 . -1248) T) ((-993 . -632) 88941) ((-669 . -503) 88925) ((-651 . -503) 88856) ((-837 . -632) 88549) ((-48 . -27) T) ((-1209 . -739) 88446) ((-981 . -921) 88425) ((-675 . -1131) T) ((-885 . -884) T) ((-450 . -377) 88399) ((-753 . -668) 88309) ((-495 . -921) 88284) ((-1133 . -102) T) ((-1001 . -1131) T) ((-888 . -1131) T) ((-838 . -321) 88271) ((-547 . -541) T) ((-547 . -590) T) ((-1318 . -395) 88243) ((-716 . -874) T) ((-1085 . -528) 88176) ((-1190 . -298) 88152) ((-247 . -274) 88121) ((-247 . -234) 88090) ((-260 . -1082) 87991) ((-259 . -1082) 87892) ((-1310 . -739) 87862) ((-1197 . -93) T) ((-1025 . -93) T) ((-839 . -175) 87841) ((-260 . -662) 87763) ((-259 . -662) 87685) ((-1245 . -504) 87662) ((-592 . -1248) T) ((-231 . -528) 87595) ((-640 . -817) 87574) ((-640 . -814) 87553) ((-1245 . -632) 87465) ((-226 . -1248) T) ((-697 . -632) 87397) ((-1205 . -668) 87307) ((-1188 . -1041) 87291) ((-972 . -102) 87221) ((-364 . -748) T) ((-885 . -632) 87203) ((-1204 . -668) 87085) ((-1198 . -668) 86922) ((-1157 . -668) 86832) ((-1262 . -414) 86784) ((-1144 . -503) 86768) ((-60 . -321) 86706) ((-343 . -102) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-40 . -1143) T) ((-733 . -21) T) ((-646 . -632) 86688) ((-529 . -335) 86667) ((-733 . -25) T) ((-453 . -102) T) ((-108 . -298) NIL) ((-950 . -1143) T) ((-40 . -23) T) ((-793 . -1143) T) ((-578 . -1252) T) ((-509 . -1252) T) ((-1035 . -274) 86649) ((-331 . -632) 86631) ((-1035 . -234) 86613) ((-172 . -168) 86597) ((-594 . -570) T) ((-578 . -570) T) ((-509 . -570) T) ((-793 . -23) T) ((-1282 . -149) 86576) ((-1282 . -147) 86555) ((-1190 . -618) 86531) ((-1261 . -147) 86456) ((-1058 . -503) 86440) ((-1255 . -1248) T) ((-1261 . -149) 86365) ((-1313 . -1319) 86344) ((-895 . -921) NIL) ((-490 . -503) 86328) ((-477 . -503) 86312) ((-537 . -34) T) ((-675 . -739) 86282) ((-1290 . -929) 86195) ((-1283 . -929) 86101) ((-1262 . -929) 85862) ((-112 . -998) T) ((-1209 . -175) 85813) ((-684 . -871) 85792) ((-378 . -102) T) ((-609 . -929) 85705) ((-247 . -245) 85684) ((-260 . -102) T) ((-259 . -102) T) ((-1271 . -978) 85653) ((-252 . -871) 85632) ((-1055 . -874) T) ((-838 . -38) 85481) ((-45 . -528) 85273) ((-1189 . -298) 85223) ((-217 . -1131) T) ((-1181 . -1131) T) ((-896 . -239) 85174) ((-1181 . -629) 85153) ((-600 . -25) T) ((-600 . -21) T) ((-1133 . -321) 85091) ((-992 . -425) 85075) ((-721 . -1252) T) ((-651 . -298) 85028) ((-1118 . -660) 84976) ((-934 . -1131) T) ((-804 . -660) 84924) ((-802 . -660) 84872) ((-356 . -133) T) ((-301 . -632) 84854) ((-894 . -1143) T) ((-721 . -570) T) ((-131 . -635) 84836) ((-468 . -660) 84784) ((-172 . -921) 84705) ((-934 . -932) 84689) ((-392 . -466) T) ((-501 . -1131) T) ((-972 . -321) 84627) ((-723 . -670) 84599) ((-563 . -866) T) ((-221 . -1131) T) ((-328 . -949) 84578) ((-325 . -949) T) ((-325 . -842) NIL) ((-404 . -742) T) ((-894 . -23) T) ((-118 . -670) 84565) ((-488 . -147) 84544) ((-432 . -425) 84528) ((-488 . -149) 84507) ((-110 . -503) 84489) ((-323 . -635) 84470) ((-2 . -632) 84452) ((-189 . -102) T) ((-1189 . -19) 84434) ((-1189 . -618) 84409) ((-680 . -21) T) ((-680 . -25) T) ((-607 . -1175) T) ((-1144 . -298) 84386) ((-349 . -25) T) ((-349 . -21) T) ((-914 . -1248) T) ((-910 . -1248) T) ((-1320 . -1087) 84370) ((-247 . -668) 84149) ((-509 . -376) T) ((-1318 . -1087) 84133) ((-1313 . -38) 84103) ((-1282 . -1233) 84069) ((-1282 . -1236) 84035) ((-1271 . -921) 83938) ((-1203 . -1082) 83761) ((-1173 . -1248) T) ((-1156 . -1082) 83604) ((-878 . -1082) 83588) ((-651 . -618) 83563) ((-1282 . -95) 83529) ((-1282 . -239) 83481) ((-1265 . -102) 83459) ((-1203 . -662) 83288) ((-1156 . -662) 83137) ((-878 . -662) 83107) ((-1262 . -234) 83059) ((-1118 . -25) T) ((-563 . -1131) T) ((-1118 . -21) T) ((-992 . -1089) T) ((-545 . -814) T) ((-545 . -817) T) ((-119 . -1252) T) ((-890 . -1248) T) ((-642 . -570) T) ((-804 . -25) T) ((-804 . -21) T) ((-802 . -21) T) ((-802 . -25) T) ((-757 . -1089) T) ((-737 . -1089) T) ((-692 . -1087) 83043) ((-531 . -1114) T) ((-475 . -25) T) ((-119 . -570) T) ((-475 . -21) T) ((-468 . -25) T) ((-468 . -21) T) ((-1262 . -274) 82995) ((-1182 . -93) T) ((-1173 . -1069) 82891) ((-839 . -302) 82870) ((-1261 . -1233) 82836) ((-845 . -1131) T) ((-995 . -998) T) ((-692 . -111) 82815) ((-636 . -1248) T) ((-307 . -528) 82607) ((-1261 . -1236) 82573) ((-1261 . -239) 82432) ((-1256 . -381) T) ((-260 . -321) 82370) ((-259 . -321) 82308) ((-1253 . -866) T) ((-1190 . -633) NIL) ((-1190 . -632) 82290) ((-1173 . -390) 82274) ((-1151 . -842) T) ((-1151 . -949) T) ((-96 . -93) T) ((-1144 . -618) 82251) ((-1111 . -633) 82235) ((-1111 . -632) 82217) ((-1035 . -668) 82167) ((-943 . -668) 82104) ((-837 . -300) 82081) ((-498 . -632) 82013) ((-627 . -153) 81960) ((-501 . -739) 81910) ((-432 . -1089) T) ((-496 . -503) 81894) ((-441 . -668) 81853) ((-339 . -871) 81832) ((-352 . -670) 81806) ((-50 . -21) T) ((-50 . -25) T) ((-221 . -739) 81756) ((-172 . -746) 81727) ((-177 . -670) 81659) ((-595 . -21) T) ((-595 . -25) T) ((-532 . -25) T) ((-532 . -21) T) ((-489 . -153) 81609) ((-1092 . -632) 81591) ((-1024 . -102) T) ((-886 . -102) T) ((-838 . -929) 81491) ((-821 . -425) 81454) ((-40 . -133) T) ((-721 . -376) T) ((-723 . -748) T) ((-723 . -816) T) ((-723 . -813) T) ((-215 . -922) T) ((-594 . -1143) T) ((-578 . -1143) T) ((-509 . -1143) T) ((-372 . -632) 81436) ((-366 . -632) 81418) ((-358 . -632) 81400) ((-66 . -410) T) ((-66 . -409) T) ((-108 . -633) 81330) ((-108 . -632) 81272) ((-214 . -922) T) ((-987 . -153) 81256) ((-793 . -133) T) ((-692 . -635) 81174) ((-136 . -748) T) ((-118 . -748) T) ((-1282 . -35) 81140) ((-1085 . -503) 81124) ((-594 . -23) T) ((-578 . -23) T) ((-509 . -23) T) ((-1261 . -95) 81090) ((-1261 . -35) 81056) ((-1203 . -102) T) ((-1156 . -102) T) ((-878 . -102) T) ((-231 . -503) 81040) ((-1320 . -111) 81019) ((-1318 . -111) 80998) ((-44 . -1087) 80982) ((-1321 . -1248) T) ((-1320 . -635) 80928) ((-1320 . -1080) T) ((-1318 . -635) 80857) ((-1318 . -1080) T) ((-1271 . -1274) 80841) ((-879 . -876) 80825) ((-1209 . -302) 80804) ((-1135 . -1248) T) ((-110 . -298) 80754) ((-1034 . -1248) T) ((-130 . -153) 80736) ((-1173 . -927) 80695) ((-44 . -111) 80674) ((-1253 . -1131) T) ((-1212 . -1293) T) ((-1198 . -870) NIL) ((-1197 . -504) 80655) ((-692 . -1080) T) ((-1197 . -632) 80621) ((-1189 . -632) 80603) ((-488 . -239) 80555) ((-1094 . -629) 80530) ((-1025 . -504) 80511) ((-74 . -455) T) ((-74 . -409) T) ((-1094 . -1131) T) ((-154 . -1087) 80495) ((-1025 . -632) 80461) ((-692 . -240) 80440) ((-585 . -568) 80424) ((-368 . -149) 80403) ((-368 . -147) 80354) ((-365 . -149) 80333) ((-365 . -147) 80284) ((-357 . -149) 80263) ((-357 . -147) 80214) ((-275 . -147) 80193) ((-275 . -149) 80172) ((-255 . -149) 80151) ((-119 . -376) T) ((-255 . -147) 80130) ((-1189 . -633) NIL) ((-154 . -111) 80109) ((-1034 . -1069) 79997) ((-1188 . -1248) T) ((-716 . -1252) T) ((-821 . -1089) T) ((-721 . -1143) T) ((-1034 . -390) 79974) ((-520 . -1248) T) ((-516 . -1248) T) ((-939 . -147) T) ((-939 . -149) 79956) ((-894 . -133) T) ((-837 . -1087) 79877) ((-721 . -23) T) ((-716 . -570) T) ((-229 . -1082) 79842) ((-669 . -632) 79774) ((-669 . -633) 79735) ((-651 . -633) NIL) ((-651 . -632) 79717) ((-501 . -175) T) ((-229 . -662) 79682) ((-221 . -175) T) ((-227 . -21) T) ((-227 . -25) T) ((-488 . -1236) 79648) ((-488 . -1233) 79614) ((-285 . -632) 79596) ((-284 . -632) 79578) ((-283 . -632) 79560) ((-282 . -632) 79542) ((-281 . -632) 79524) ((-514 . -673) 79506) ((-280 . -632) 79488) ((-352 . -748) T) ((-279 . -632) 79470) ((-110 . -19) 79452) ((-177 . -748) T) ((-514 . -386) 79434) ((-215 . -632) 79416) ((-534 . -1180) 79400) ((-514 . -125) T) ((-110 . -618) 79375) ((-214 . -632) 79357) ((-488 . -35) 79323) ((-488 . -95) 79289) ((-212 . -632) 79271) ((-211 . -632) 79253) ((-210 . -632) 79235) ((-209 . -632) 79217) ((-206 . -632) 79199) ((-205 . -632) 79181) ((-204 . -632) 79163) ((-203 . -632) 79145) ((-202 . -632) 79127) ((-201 . -632) 79109) ((-200 . -632) 79091) ((-550 . -1134) 79043) ((-199 . -632) 79025) ((-198 . -632) 79007) ((-45 . -503) 78944) ((-197 . -632) 78926) ((-196 . -632) 78908) ((-154 . -635) 78877) ((-1146 . -102) T) ((-837 . -111) 78793) ((-666 . -102) 78723) ((-661 . -21) T) ((-661 . -25) T) ((-496 . -298) 78700) ((-1321 . -1069) 78684) ((-1144 . -632) 78377) ((-1132 . -1131) T) ((-1077 . -1248) T) ((-1203 . -321) 78364) ((-1093 . -1082) 78351) ((-1166 . -1131) T) ((-981 . -1082) 78194) ((-1156 . -321) 78181) ((-1127 . -1114) T) ((-642 . -1143) T) ((-1093 . -662) 78168) ((-1121 . -1114) T) ((-981 . -662) 78017) ((-1118 . -236) 77962) ((-495 . -1082) 77805) ((-1104 . -1114) T) ((-1097 . -1114) T) ((-1067 . -1114) T) ((-1050 . -1114) T) ((-119 . -1143) T) ((-495 . -662) 77654) ((-804 . -236) 77641) ((-841 . -102) T) ((-645 . -1114) T) ((-642 . -23) T) ((-1181 . -528) 77433) ((-497 . -1114) T) ((-992 . -1131) T) ((-400 . -102) T) ((-336 . -102) T) ((-222 . -1114) T) ((-865 . -1248) T) ((-154 . -1080) T) ((-753 . -425) 77417) ((-119 . -23) T) ((-1034 . -927) 77369) ((-757 . -1131) T) ((-737 . -1131) T) ((-1290 . -668) 77279) ((-1283 . -668) 77161) ((-467 . -1131) T) ((-421 . -1248) T) ((-328 . -444) 77145) ((-606 . -93) T) ((-1058 . -633) 77106) ((-272 . -1248) T) ((-1055 . -1252) T) ((-229 . -102) T) ((-1058 . -632) 77068) ((-838 . -274) 77052) ((-838 . -234) 77036) ((-837 . -635) 76834) ((-1262 . -668) 76671) ((-1055 . -570) T) ((-855 . -670) 76644) ((-367 . -1252) T) ((-490 . -632) 76606) ((-490 . -633) 76567) ((-477 . -633) 76528) ((-477 . -632) 76490) ((-610 . -668) 76449) ((-421 . -909) 76433) ((-331 . -1087) 76268) ((-421 . -911) 76193) ((-609 . -668) 76103) ((-865 . -1069) 75999) ((-501 . -528) NIL) ((-496 . -618) 75976) ((-595 . -236) 75963) ((-367 . -570) T) ((-532 . -236) 75950) ((-221 . -528) NIL) ((-896 . -466) T) ((-432 . -1131) T) ((-421 . -1069) 75814) ((-331 . -111) 75635) ((-716 . -376) T) ((-229 . -296) T) ((-1245 . -635) 75612) ((-48 . -1252) T) ((-1203 . -1183) 75590) ((-1190 . -300) 75566) ((-1093 . -102) T) ((-981 . -102) T) ((-837 . -1080) 75544) ((-594 . -133) T) ((-578 . -133) T) ((-509 . -133) T) ((-368 . -239) 75523) ((-365 . -239) 75502) ((-357 . -239) 75481) ((-48 . -570) T) ((-895 . -1082) 75426) ((-275 . -239) 75377) ((-837 . -240) 75329) ((-328 . -27) 75308) ((-260 . -929) 75177) ((-259 . -929) 75046) ((-257 . -857) 75028) ((-190 . -857) 75010) ((-735 . -102) T) ((-307 . -503) 74947) ((-895 . -662) 74892) ((-495 . -102) T) ((-753 . -1089) T) ((-631 . -632) 74874) ((-631 . -633) 74735) ((-421 . -390) 74719) ((-421 . -351) 74703) ((-1203 . -38) 74532) ((-1156 . -38) 74381) ((-331 . -635) 74207) ((-939 . -239) T) ((-654 . -1248) T) ((-620 . -1248) T) ((-878 . -38) 74177) ((-404 . -670) 74161) ((-666 . -321) 74099) ((-1182 . -504) 74080) ((-1182 . -632) 74046) ((-992 . -739) 73943) ((-757 . -739) 73913) ((-640 . -670) 73887) ((-226 . -107) 73871) ((-45 . -298) 73771) ((-324 . -1131) T) ((-301 . -1087) 73758) ((-110 . -632) 73740) ((-110 . -633) 73722) ((-467 . -739) 73692) ((-838 . -262) 73631) ((-711 . -1131) 73609) ((-564 . -1131) T) ((-1205 . -1089) T) ((-1204 . -1089) T) ((-96 . -504) 73590) ((-1198 . -1089) T) ((-301 . -111) 73575) ((-1157 . -1089) T) ((-564 . -629) 73554) ((-96 . -632) 73520) ((-1035 . -870) T) ((-231 . -709) 73478) ((-716 . -1143) T) ((-1242 . -762) 73454) ((-1055 . -376) T) ((-860 . -857) 73436) ((-855 . -816) 73415) ((-421 . -927) 73374) ((-331 . -1080) T) ((-356 . -25) T) ((-356 . -21) T) ((-172 . -1082) 73284) ((-68 . -1248) T) ((-855 . -813) 73263) ((-432 . -739) 73237) ((-821 . -1131) T) ((-734 . -949) 73216) ((-721 . -133) T) ((-172 . -662) 73044) ((-716 . -23) T) ((-501 . -302) T) ((-855 . -748) 73023) ((-331 . -240) 72975) ((-331 . -250) 72954) ((-221 . -302) T) ((-131 . -381) T) ((-1282 . -466) 72933) ((-1261 . -466) 72912) ((-367 . -341) 72889) ((-367 . -376) T) ((-1171 . -632) 72871) ((-45 . -1286) 72821) ((-895 . -102) T) ((-666 . -294) 72805) ((-721 . -1091) T) ((-1309 . -102) T) ((-1308 . -102) T) ((-491 . -670) 72770) ((-482 . -1131) T) ((-45 . -618) 72695) ((-1189 . -300) 72670) ((-301 . -635) 72642) ((-40 . -660) 72581) ((-1271 . -1082) 72404) ((-879 . -1082) 72388) ((-48 . -376) T) ((-1137 . -632) 72370) ((-1271 . -662) 72199) ((-879 . -662) 72169) ((-651 . -300) 72144) ((-838 . -668) 72054) ((-585 . -1082) 72041) ((-496 . -632) 71734) ((-247 . -425) 71703) ((-1203 . -929) 71610) ((-1196 . -1131) T) ((-981 . -321) 71597) ((-585 . -662) 71584) ((-65 . -1248) T) ((-1164 . -1248) T) ((-1156 . -929) 71568) ((-1144 . -300) 71545) ((-1094 . -528) 71389) ((-693 . -1131) T) ((-642 . -133) T) ((-619 . -1131) T) ((-495 . -321) 71376) ((-560 . -102) T) ((-119 . -133) T) ((-301 . -1080) T) ((-183 . -1131) T) ((-163 . -1131) T) ((-158 . -1131) T) ((-156 . -1131) T) ((-467 . -783) T) ((-31 . -1114) T) ((-992 . -175) 71327) ((-1133 . -233) 71311) ((-1001 . -93) T) ((-1111 . -1087) 71221) ((-1085 . -632) 71183) ((-640 . -748) T) ((-640 . -816) 71162) ((-607 . -1131) T) ((-640 . -813) 71141) ((-307 . -298) 71120) ((-306 . -1248) T) ((-1085 . -633) 71081) ((-1055 . -1143) T) ((-325 . -874) NIL) ((-172 . -102) T) ((-286 . -871) T) ((-1111 . -111) 70977) ((-840 . -632) 70959) ((-1055 . -23) T) ((-1034 . -319) T) ((-925 . -102) T) ((-821 . -739) 70943) ((-372 . -1087) 70895) ((-367 . -1143) T) ((-366 . -1087) 70847) ((-428 . -632) 70829) ((-398 . -632) 70811) ((-358 . -1087) 70763) ((-231 . -632) 70695) ((-863 . -102) T) ((-830 . -102) T) ((-108 . -1087) 70645) ((-791 . -102) T) ((-699 . -102) T) ((-116 . -874) T) ((-488 . -466) 70624) ((-432 . -175) T) ((-372 . -111) 70562) ((-366 . -111) 70500) ((-358 . -111) 70438) ((-260 . -274) 70407) ((-260 . -234) 70376) ((-259 . -274) 70345) ((-259 . -234) 70314) ((-367 . -23) T) ((-71 . -1248) T) ((-229 . -38) 70279) ((-108 . -111) 70213) ((-40 . -25) T) ((-40 . -21) T) ((-692 . -742) T) ((-172 . -296) 70191) ((-48 . -1143) T) ((-882 . -1248) T) ((-950 . -25) T) ((-793 . -25) T) ((-1322 . -670) 70165) ((-1181 . -503) 70102) ((-499 . -1131) T) ((-1313 . -668) 70061) ((-1271 . -102) T) ((-1093 . -1183) T) ((-879 . -102) T) ((-247 . -1089) 70039) ((-993 . -814) 69992) ((-993 . -817) 69945) ((-394 . -670) 69929) ((-48 . -23) T) ((-837 . -817) 69908) ((-837 . -814) 69887) ((-562 . -381) T) ((-307 . -618) 69866) ((-491 . -748) T) ((-585 . -102) T) ((-1111 . -635) 69684) ((-257 . -188) T) ((-190 . -188) T) ((-895 . -321) 69641) ((-675 . -298) 69620) ((-657 . -1248) T) ((-112 . -683) T) ((-364 . -1248) T) ((-372 . -635) 69557) ((-366 . -635) 69494) ((-358 . -635) 69431) ((-76 . -1248) T) ((-108 . -635) 69381) ((-112 . -114) T) ((-1093 . -38) 69368) ((-686 . -387) 69347) ((-981 . -38) 69196) ((-753 . -1131) T) ((-495 . -38) 69045) ((-86 . -1248) T) ((-606 . -504) 69026) ((-1262 . -870) NIL) ((-1205 . -1131) T) ((-585 . -296) T) ((-1204 . -1131) T) ((-606 . -632) 68992) ((-1198 . -1131) T) ((-1151 . -874) T) ((-1111 . -1080) T) ((-364 . -1069) 68969) ((-839 . -504) 68953) ((-1035 . -1089) T) ((-45 . -632) 68935) ((-45 . -633) NIL) ((-943 . -1089) T) ((-839 . -632) 68904) ((-1178 . -102) 68854) ((-1111 . -250) 68805) ((-441 . -1089) T) ((-372 . -1080) T) ((-366 . -1080) T) ((-378 . -377) 68782) ((-358 . -1080) T) ((-356 . -236) 68769) ((-260 . -245) 68748) ((-259 . -245) 68727) ((-1111 . -240) 68652) ((-1157 . -1131) T) ((-306 . -927) 68611) ((-108 . -1080) T) ((-716 . -133) T) ((-432 . -528) 68453) ((-372 . -240) 68432) ((-372 . -250) T) ((-44 . -742) T) ((-366 . -240) 68411) ((-366 . -250) T) ((-358 . -240) 68390) ((-358 . -250) T) ((-1197 . -635) 68371) ((-172 . -321) 68336) ((-108 . -250) T) ((-108 . -240) T) ((-1025 . -635) 68317) ((-331 . -814) T) ((-894 . -21) T) ((-894 . -25) T) ((-421 . -319) T) ((-514 . -34) T) ((-110 . -300) 68292) ((-1144 . -1087) 68213) ((-895 . -1183) NIL) ((-342 . -632) 68195) ((-421 . -1053) 68173) ((-1144 . -111) 68089) ((-713 . -1293) T) ((-450 . -1131) T) ((-258 . -1131) T) ((-1322 . -748) T) ((-63 . -632) 68071) ((-895 . -38) 68016) ((-616 . -153) 68000) ((-537 . -1248) T) ((-526 . -632) 67940) ((-1271 . -321) 67927) ((-753 . -739) 67776) ((-545 . -815) T) ((-545 . -816) T) ((-578 . -660) 67758) ((-509 . -660) 67718) ((-518 . -1248) T) ((-659 . -1305) 67702) ((-368 . -466) T) ((-365 . -466) T) ((-357 . -466) T) ((-275 . -466) 67653) ((-539 . -1131) T) ((-534 . -1131) 67603) ((-255 . -466) 67554) ((-1181 . -298) 67533) ((-1209 . -632) 67515) ((-711 . -528) 67448) ((-992 . -302) 67427) ((-1310 . -632) 67396) ((-564 . -528) 67188) ((-260 . -668) 67036) ((-259 . -668) 66871) ((-1310 . -504) 66855) ((-1205 . -739) 66752) ((-1204 . -739) 66593) ((-995 . -683) T) ((-1203 . -274) 66577) ((-1203 . -234) 66561) ((-1198 . -739) 66357) ((-1188 . -696) 66341) ((-1144 . -635) 66139) ((-172 . -1183) 66118) ((-1157 . -739) 66015) ((-1055 . -133) T) ((-995 . -114) T) ((-917 . -102) T) ((-625 . -632) 65997) ((-624 . -632) 65979) ((-622 . -632) 65961) ((-368 . -416) 65912) ((-365 . -416) 65863) ((-357 . -416) 65814) ((-993 . -381) 65767) ((-821 . -528) 65679) ((-307 . -633) NIL) ((-307 . -632) 65661) ((-939 . -466) T) ((-934 . -298) 65640) ((-837 . -381) 65619) ((-524 . -523) 65598) ((-522 . -523) 65577) ((-896 . -921) 65498) ((-501 . -298) NIL) ((-496 . -300) 65475) ((-432 . -302) T) ((-367 . -133) T) ((-221 . -298) NIL) ((-716 . -507) NIL) ((-99 . -1143) T) ((-40 . -236) 65406) ((-172 . -38) 65234) ((-981 . -929) 65215) ((-1282 . -1004) 65177) ((-1261 . -1004) 65146) ((-1178 . -321) 65084) ((-495 . -929) 65061) ((-1144 . -1080) 65039) ((-939 . -416) T) ((-659 . -523) 65011) ((-1284 . -570) T) ((-1181 . -618) 64990) ((-112 . -871) T) ((-1094 . -503) 64921) ((-594 . -21) T) ((-594 . -25) T) ((-578 . -21) T) ((-578 . -25) T) ((-509 . -25) T) ((-509 . -21) T) ((-1271 . -1183) 64899) ((-1144 . -240) 64851) ((-48 . -133) T) ((-1229 . -102) T) ((-247 . -1131) 64603) ((-895 . -414) 64580) ((-1119 . -102) T) ((-1107 . -102) T) ((-918 . -874) T) ((-627 . -102) T) ((-489 . -102) T) ((-1271 . -38) 64409) ((-879 . -38) 64379) ((-1065 . -1082) 64353) ((-753 . -175) 64264) ((-675 . -632) 64246) ((-667 . -1114) T) ((-1065 . -662) 64230) ((-585 . -38) 64217) ((-1001 . -504) 64198) ((-1001 . -632) 64164) ((-987 . -102) 64094) ((-888 . -632) 64076) ((-888 . -633) 63998) ((-607 . -528) NIL) ((-872 . -102) T) ((-1327 . -1143) T) ((-1290 . -1089) T) ((-1283 . -1089) T) ((-1282 . -921) 63902) ((-1262 . -1089) T) ((-1261 . -921) 63697) ((-1242 . -149) 63676) ((-334 . -1082) 63658) ((-1242 . -147) 63637) ((-1215 . -102) T) ((-1214 . -102) T) ((-1213 . -102) T) ((-1205 . -175) 63588) ((-334 . -662) 63570) ((-723 . -1248) T) ((-1204 . -175) 63501) ((-1198 . -175) 63432) ((-1182 . -635) 63413) ((-1157 . -175) 63364) ((-610 . -1089) T) ((-609 . -1089) T) ((-1035 . -1131) T) ((-1002 . -1131) T) ((-392 . -1082) 63329) ((-136 . -1248) T) ((-118 . -1248) T) ((-943 . -1131) T) ((-895 . -929) NIL) ((-392 . -662) 63294) ((-146 . -874) T) ((-821 . -819) 63278) ((-721 . -25) T) ((-721 . -21) T) ((-119 . -660) 63255) ((-723 . -911) 63237) ((-441 . -1131) T) ((-328 . -1252) 63216) ((-325 . -1252) T) ((-172 . -414) 63200) ((-858 . -1082) 63170) ((-488 . -1004) 63132) ((-130 . -102) T) ((-72 . -632) 63114) ((-132 . -102) T) ((-849 . -1082) 63098) ((-108 . -817) T) ((-108 . -814) T) ((-723 . -1069) 63080) ((-328 . -570) 63059) ((-325 . -570) T) ((-858 . -662) 63029) ((-849 . -662) 62999) ((-1327 . -23) T) ((-136 . -1069) 62981) ((-96 . -635) 62962) ((-1024 . -668) 62944) ((-496 . -1087) 62865) ((-45 . -300) 62790) ((-247 . -739) 62732) ((-531 . -102) T) ((-496 . -111) 62648) ((-1123 . -102) 62618) ((-1065 . -102) T) ((-1203 . -668) 62528) ((-1156 . -668) 62438) ((-878 . -668) 62397) ((-666 . -850) 62376) ((-753 . -528) 62319) ((-1085 . -1087) 62303) ((-172 . -929) 62226) ((-1166 . -93) T) ((-1094 . -298) 62201) ((-642 . -21) T) ((-642 . -25) T) ((-538 . -1131) T) ((-692 . -670) 62139) ((-374 . -102) T) ((-334 . -102) T) ((-398 . -1087) 62123) ((-1085 . -111) 62102) ((-838 . -425) 62086) ((-119 . -25) T) ((-89 . -632) 62068) ((-119 . -21) T) ((-627 . -321) 61863) ((-1181 . -633) NIL) ((-489 . -321) 61667) ((-352 . -1248) T) ((-177 . -1248) T) ((-398 . -111) 61646) ((-392 . -102) T) ((-217 . -632) 61628) ((-1181 . -632) 61610) ((-796 . -1248) T) ((-1198 . -528) 61379) ((-1035 . -739) 61329) ((-1157 . -528) 61299) ((-943 . -739) 61251) ((-496 . -635) 61049) ((-364 . -319) T) ((-1220 . -153) 60999) ((-488 . -921) 60880) ((-987 . -321) 60818) ((-858 . -102) T) ((-441 . -739) 60802) ((-229 . -850) T) ((-849 . -102) T) ((-847 . -102) T) ((-1320 . -670) 60776) ((-1282 . -1281) 60755) ((-493 . -153) 60705) ((-1282 . -1276) 60675) ((-1151 . -1252) T) ((-352 . -1069) 60642) ((-1282 . -1279) 60626) ((-1271 . -929) 60533) ((-1261 . -1260) 60512) ((-80 . -632) 60494) ((-934 . -632) 60476) ((-1261 . -1276) 60453) ((-1151 . -570) T) ((-950 . -871) T) ((-793 . -871) T) ((-694 . -871) T) ((-501 . -633) 60383) ((-501 . -632) 60324) ((-392 . -296) T) ((-1261 . -1258) 60308) ((-1284 . -1143) T) ((-221 . -633) 60238) ((-221 . -632) 60179) ((-1094 . -618) 60154) ((-840 . -635) 60138) ((-578 . -236) 60125) ((-530 . -153) 60109) ((-59 . -153) 60093) ((-510 . -153) 60077) ((-509 . -236) 60064) ((-372 . -1317) 60048) ((-366 . -1317) 60032) ((-358 . -1317) 60016) ((-328 . -376) 59995) ((-325 . -376) T) ((-496 . -1080) 59973) ((-716 . -660) 59955) ((-1318 . -670) 59929) ((-130 . -321) NIL) ((-1284 . -23) T) ((-711 . -503) 59913) ((-64 . -632) 59895) ((-1144 . -817) 59874) ((-1144 . -814) 59853) ((-564 . -503) 59790) ((-692 . -34) T) ((-496 . -240) 59742) ((-307 . -300) 59721) ((-838 . -1089) T) ((-44 . -670) 59679) ((-1111 . -381) 59630) ((-753 . -302) 59561) ((-534 . -528) 59494) ((-839 . -1087) 59445) ((-1118 . -147) 59424) ((-563 . -632) 59406) ((-372 . -381) 59385) ((-366 . -381) 59364) ((-358 . -381) 59343) ((-1118 . -149) 59322) ((-997 . -1248) T) ((-895 . -274) 59299) ((-895 . -234) 59276) ((-839 . -111) 59218) ((-804 . -147) 59197) ((-275 . -978) 59164) ((-255 . -978) 59109) ((-804 . -149) 59088) ((-802 . -147) 59067) ((-802 . -149) 59046) ((-154 . -670) 59020) ((-593 . -1131) T) ((-467 . -298) 58983) ((-468 . -149) 58962) ((-468 . -147) 58941) ((-692 . -748) T) ((-845 . -632) 58923) ((-1290 . -1131) T) ((-1283 . -1131) T) ((-1262 . -1131) T) ((-1242 . -1236) 58889) ((-1242 . -1233) 58855) ((-1205 . -302) 58834) ((-1204 . -302) 58785) ((-1198 . -302) 58736) ((-1157 . -302) 58715) ((-1035 . -175) T) ((-352 . -927) 58696) ((-943 . -175) T) ((-716 . -21) T) ((-716 . -25) T) ((-659 . -1082) 58680) ((-659 . -662) 58664) ((-229 . -668) 58614) ((-610 . -1131) T) ((-609 . -1131) T) ((-488 . -1279) 58598) ((-488 . -1276) 58568) ((-432 . -298) 58496) ((-561 . -871) T) ((-328 . -1143) 58345) ((-325 . -1143) T) ((-1242 . -35) 58311) ((-1242 . -95) 58277) ((-84 . -632) 58259) ((-91 . -102) 58209) ((-1327 . -133) T) ((-736 . -1082) 58179) ((-606 . -635) 58160) ((-595 . -147) T) ((-595 . -149) 58142) ((-532 . -149) 58124) ((-532 . -147) T) ((-736 . -662) 58094) ((-328 . -23) 57946) ((-40 . -355) 57920) ((-325 . -23) T) ((-839 . -635) 57834) ((-1189 . -673) 57816) ((-1313 . -1089) T) ((-1189 . -386) 57798) ((-1127 . -102) T) ((-837 . -670) 57631) ((-1121 . -102) T) ((-1104 . -102) T) ((-172 . -274) 57615) ((-172 . -234) 57599) ((-1097 . -102) T) ((-1067 . -102) T) ((-1050 . -102) T) ((-607 . -503) 57581) ((-645 . -102) T) ((-247 . -528) 57514) ((-497 . -102) T) ((-1320 . -748) T) ((-1318 . -748) T) ((-222 . -102) T) ((-1209 . -1087) 57397) ((-1310 . -111) 57362) ((-1310 . -1087) 57332) ((-1290 . -739) 57229) ((-1093 . -668) 57201) ((-1283 . -739) 57042) ((-981 . -668) 56952) ((-1271 . -274) 56936) ((-1209 . -111) 56805) ((-1065 . -38) 56789) ((-900 . -1114) T) ((-885 . -176) T) ((-495 . -668) 56699) ((-275 . -921) 56605) ((-255 . -921) 56580) ((-839 . -1080) T) ((-703 . -1114) T) ((-698 . -1114) T) ((-642 . -236) 56525) ((-529 . -102) T) ((-524 . -102) T) ((-48 . -660) 56485) ((-522 . -102) T) ((-492 . -1114) T) ((-119 . -236) NIL) ((-3 . -1248) T) ((-140 . -1114) T) ((-139 . -1114) T) ((-135 . -1114) T) ((-855 . -1248) T) ((-839 . -240) T) ((-839 . -250) 56464) ((-1271 . -234) 56448) ((-1262 . -739) 56244) ((-1030 . -874) 56223) ((-1253 . -632) 56205) ((-564 . -298) 56184) ((-1094 . -633) NIL) ((-1094 . -632) 56166) ((-619 . -93) T) ((-693 . -93) T) ((0 . -1248) T) ((-49 . -1248) T) ((-183 . -93) T) ((-163 . -93) T) ((-158 . -93) T) ((-156 . -93) T) ((-218 . -871) T) ((-1034 . -949) T) ((-1209 . -635) 56019) ((-154 . -748) T) ((-1144 . -381) 55998) ((-659 . -102) T) ((-1055 . -25) T) ((-1035 . -528) NIL) ((-260 . -425) 55967) ((-259 . -425) 55936) ((-1055 . -21) T) ((-896 . -1082) 55888) ((-610 . -739) 55861) ((-609 . -739) 55758) ((-821 . -298) 55716) ((-128 . -102) 55666) ((-855 . -1069) 55562) ((-172 . -850) 55541) ((-331 . -670) 55438) ((-837 . -34) T) ((-736 . -102) T) ((-1151 . -1143) T) ((-1057 . -1248) T) ((-896 . -662) 55390) ((-392 . -38) 55355) ((-367 . -25) T) ((-367 . -21) T) ((-190 . -102) T) ((-164 . -102) T) ((-257 . -102) T) ((-159 . -102) T) ((-368 . -1305) 55339) ((-365 . -1305) 55323) ((-357 . -1305) 55307) ((-172 . -362) 55286) ((-578 . -871) T) ((-1118 . -239) 55237) ((-1151 . -23) T) ((-87 . -632) 55219) ((-804 . -239) T) ((-723 . -319) T) ((-858 . -38) 55189) ((-849 . -38) 55159) ((-1310 . -635) 55101) ((-1284 . -133) T) ((-1181 . -300) 55080) ((-993 . -748) 54979) ((-993 . -815) 54932) ((-993 . -816) 54885) ((-118 . -319) T) ((-91 . -321) 54823) ((-697 . -34) T) ((-564 . -618) 54802) ((-48 . -25) T) ((-48 . -21) T) ((-837 . -816) 54781) ((-837 . -815) 54760) ((-723 . -1053) T) ((-675 . -1087) 54744) ((-895 . -668) 54674) ((-837 . -748) 54652) ((-404 . -1248) T) ((-993 . -487) 54605) ((-496 . -817) 54584) ((-496 . -814) 54563) ((-939 . -1305) 54550) ((-1209 . -1080) T) ((-640 . -1248) T) ((-675 . -111) 54529) ((-1209 . -338) 54505) ((-1234 . -102) 54455) ((-1132 . -632) 54437) ((-723 . -559) T) ((-838 . -1131) T) ((-595 . -239) T) ((-532 . -239) T) ((-1310 . -1080) T) ((-1166 . -504) 54418) ((-1254 . -102) T) ((-427 . -1131) T) ((-1166 . -632) 54384) ((-260 . -1089) 54362) ((-259 . -1089) 54340) ((-860 . -102) T) ((-301 . -670) 54327) ((-607 . -298) 54277) ((-711 . -709) 54235) ((-1323 . -1248) T) ((-1298 . -871) 54214) ((-992 . -632) 54196) ((-896 . -102) T) ((-757 . -632) 54178) ((-737 . -632) 54160) ((-1290 . -175) 54111) ((-1283 . -175) 54042) ((-1262 . -175) 53973) ((-721 . -871) T) ((-1035 . -302) T) ((-467 . -632) 53955) ((-646 . -748) T) ((-60 . -1131) 53933) ((-252 . -153) 53917) ((-1282 . -662) 53758) ((-943 . -302) T) ((-1055 . -1043) T) ((-646 . -487) T) ((-734 . -1252) 53737) ((-716 . -236) NIL) ((-675 . -635) 53655) ((-172 . -668) 53550) ((-1282 . -1082) 53385) ((-610 . -175) 53364) ((-609 . -175) 53315) ((-1261 . -662) 53129) ((-1261 . -1082) 52937) ((-1256 . -1248) T) ((-734 . -570) 52848) ((-421 . -842) 52827) ((-421 . -949) T) ((-331 . -816) T) ((-491 . -1248) T) ((-1001 . -635) 52808) ((-331 . -748) T) ((-666 . -1180) 52792) ((-432 . -632) 52774) ((-432 . -633) 52681) ((-110 . -673) 52663) ((-328 . -133) 52534) ((-177 . -319) T) ((-128 . -321) 52472) ((-412 . -1248) T) ((-110 . -386) 52454) ((-325 . -133) T) ((-69 . -409) T) ((-110 . -125) T) ((-534 . -503) 52438) ((-676 . -1143) T) ((-607 . -19) 52420) ((-61 . -455) T) ((-61 . -409) T) ((-846 . -1131) T) ((-607 . -618) 52395) ((-491 . -1069) 52355) ((-675 . -1080) T) ((-676 . -23) T) ((-1313 . -1131) T) ((-31 . -102) T) ((-1271 . -668) 52265) ((-879 . -668) 52224) ((-838 . -739) 52073) ((-1300 . -1248) T) ((-591 . -884) T) ((-585 . -668) 52045) ((-119 . -871) NIL) ((-1203 . -425) 52029) ((-1156 . -425) 52013) ((-878 . -425) 51997) ((-897 . -102) 51948) ((-1282 . -102) T) ((-1262 . -528) 51717) ((-1261 . -102) T) ((-1234 . -321) 51655) ((-1205 . -298) 51620) ((-1204 . -298) 51578) ((-539 . -93) T) ((-1198 . -298) 51406) ((-324 . -632) 51388) ((-1133 . -1131) T) ((-1111 . -670) 51262) ((-733 . -466) T) ((-711 . -632) 51194) ((-301 . -748) T) ((-108 . -938) NIL) ((-711 . -633) 51155) ((-615 . -632) 51137) ((-591 . -632) 51119) ((-564 . -633) NIL) ((-564 . -632) 51101) ((-543 . -632) 51083) ((-525 . -523) 51062) ((-501 . -1087) 51012) ((-488 . -1082) 50847) ((-521 . -523) 50826) ((-488 . -662) 50667) ((-221 . -1087) 50617) ((-372 . -670) 50569) ((-366 . -670) 50521) ((-229 . -870) T) ((-358 . -670) 50473) ((-616 . -102) 50403) ((-501 . -111) 50337) ((-496 . -381) 50316) ((-108 . -670) 50266) ((-367 . -236) 50253) ((-247 . -503) 50237) ((-356 . -149) 50219) ((-356 . -147) T) ((-172 . -383) 50190) ((-972 . -1296) 50174) ((-105 . -1248) T) ((-221 . -111) 50108) ((-896 . -321) 50073) ((-972 . -1131) 50023) ((-821 . -633) 49984) ((-821 . -632) 49966) ((-740 . -102) T) ((-1322 . -1248) T) ((-394 . -1248) T) ((-343 . -1131) T) ((-217 . -635) 49943) ((-1151 . -133) T) ((-1313 . -739) 49913) ((-736 . -38) 49883) ((-328 . -507) 49862) ((-545 . -1248) T) ((-514 . -1248) T) ((-1282 . -296) 49828) ((-1261 . -296) 49794) ((-339 . -153) 49778) ((-453 . -1131) T) ((-1247 . -1248) T) ((-1094 . -300) 49753) ((-1255 . -874) T) ((-48 . -236) 49740) ((-1190 . -34) T) ((-1322 . -1069) 49717) ((-498 . -34) T) ((-482 . -632) 49699) ((-258 . -298) 49673) ((-394 . -1069) 49657) ((-1203 . -1089) T) ((-1156 . -1089) T) ((-878 . -1089) T) ((-1093 . -870) T) ((-501 . -635) 49607) ((-221 . -635) 49557) ((-838 . -175) 49468) ((-534 . -298) 49420) ((-1290 . -302) 49399) ((-1229 . -377) 49373) ((-1119 . -277) 49357) ((-693 . -504) 49338) ((-693 . -632) 49304) ((-619 . -504) 49285) ((-119 . -1023) 49262) ((-619 . -632) 49212) ((-488 . -102) T) ((-183 . -504) 49193) ((-183 . -632) 49159) ((-163 . -504) 49140) ((-163 . -632) 49106) ((-158 . -504) 49087) ((-156 . -504) 49068) ((-158 . -632) 49034) ((-378 . -1131) T) ((-260 . -1131) T) ((-259 . -1131) T) ((-156 . -632) 49000) ((-1283 . -302) 48951) ((-1262 . -302) 48902) ((-896 . -1183) 48880) ((-1205 . -1033) 48846) ((-627 . -377) 48786) ((-1204 . -1033) 48752) ((-627 . -233) 48699) ((-716 . -871) T) ((-607 . -632) 48681) ((-607 . -633) NIL) ((-489 . -233) 48631) ((-501 . -1080) T) ((-1198 . -1033) 48597) ((-88 . -454) T) ((-88 . -409) T) ((-221 . -1080) T) ((-1157 . -1033) 48563) ((-1111 . -748) T) ((-734 . -1143) T) ((-610 . -302) 48542) ((-609 . -302) 48521) ((-501 . -250) T) ((-501 . -240) T) ((-221 . -250) T) ((-221 . -240) T) ((-1196 . -632) 48503) ((-896 . -38) 48455) ((-372 . -748) T) ((-366 . -748) T) ((-358 . -748) T) ((-108 . -816) T) ((-108 . -813) T) ((-734 . -23) T) ((-108 . -748) T) ((-534 . -1286) 48439) ((-1327 . -25) T) ((-488 . -296) 48405) ((-1327 . -21) T) ((-1261 . -321) 48344) ((-1207 . -102) T) ((-40 . -147) 48316) ((-40 . -149) 48288) ((-534 . -618) 48265) ((-1144 . -670) 48098) ((-616 . -321) 48036) ((-45 . -673) 47986) ((-45 . -688) 47936) ((-45 . -386) 47886) ((-1189 . -34) T) ((-895 . -870) NIL) ((-676 . -133) T) ((-499 . -632) 47868) ((-247 . -298) 47845) ((-1113 . -1248) T) ((-189 . -1131) T) ((-1118 . -466) 47796) ((-838 . -528) 47670) ((-804 . -466) 47601) ((-686 . -1082) 47585) ((-669 . -34) T) ((-651 . -34) T) ((-686 . -662) 47569) ((-368 . -1082) 47521) ((-356 . -239) T) ((-365 . -1082) 47473) ((-357 . -1082) 47425) ((-275 . -1082) 47268) ((-255 . -1082) 47111) ((-802 . -466) 47062) ((-368 . -662) 47014) ((-365 . -662) 46966) ((-357 . -662) 46918) ((-275 . -662) 46767) ((-255 . -662) 46616) ((-468 . -466) 46567) ((-981 . -425) 46551) ((-753 . -632) 46533) ((-260 . -739) 46475) ((-259 . -739) 46417) ((-753 . -633) 46278) ((-495 . -425) 46262) ((-352 . -314) T) ((-538 . -93) T) ((-364 . -949) T) ((-1031 . -102) 46212) ((-939 . -1082) 46177) ((-1055 . -871) T) ((-60 . -528) 46110) ((-939 . -662) 46075) ((-1261 . -1183) 46027) ((-1035 . -298) NIL) ((-229 . -1089) T) ((-392 . -850) T) ((-1144 . -34) T) ((-595 . -466) T) ((-532 . -466) T) ((-1265 . -1124) 46011) ((-1265 . -1131) 45989) ((-247 . -618) 45966) ((-1265 . -1126) 45923) ((-1205 . -632) 45905) ((-1204 . -632) 45887) ((-1198 . -632) 45869) ((-1198 . -633) NIL) ((-1157 . -632) 45851) ((-896 . -414) 45835) ((-611 . -102) T) ((-599 . -102) T) ((-550 . -102) T) ((-1282 . -38) 45676) ((-1261 . -38) 45490) ((-131 . -1248) T) ((-52 . -1248) T) ((-894 . -149) T) ((-595 . -416) T) ((-532 . -416) T) ((-1294 . -102) T) ((-1284 . -21) T) ((-1284 . -25) T) ((-1220 . -102) T) ((-1144 . -816) 45469) ((-1144 . -815) 45448) ((-1024 . -1131) T) ((-1058 . -34) T) ((-886 . -1131) T) ((-1144 . -748) 45426) ((-686 . -102) T) ((-667 . -102) T) ((-564 . -300) 45405) ((-490 . -34) T) ((-477 . -34) T) ((-368 . -102) T) ((-365 . -102) T) ((-323 . -1248) T) ((-357 . -102) T) ((-275 . -102) T) ((-255 . -102) T) ((-491 . -319) T) ((-1093 . -1089) T) ((-981 . -1089) T) ((-328 . -660) 45311) ((-325 . -660) 45272) ((-1203 . -1131) T) ((-495 . -1089) T) ((-493 . -102) T) ((-450 . -632) 45254) ((-1156 . -1131) T) ((-258 . -632) 45236) ((-878 . -1131) T) ((-1172 . -102) T) ((-838 . -302) 45167) ((-992 . -1087) 45050) ((-491 . -1053) T) ((-896 . -929) 44973) ((-757 . -1087) 44943) ((-1065 . -668) 44902) ((-1178 . -1152) 44886) ((-467 . -1087) 44856) ((-1133 . -528) 44789) ((-992 . -111) 44658) ((-939 . -102) T) ((-40 . -239) 44595) ((-757 . -111) 44560) ((-539 . -504) 44541) ((-539 . -632) 44507) ((-59 . -102) 44437) ((-534 . -633) 44398) ((-534 . -632) 44310) ((-533 . -102) 44260) ((-530 . -102) 44190) ((-511 . -102) 44140) ((-510 . -102) 44070) ((-467 . -111) 44033) ((-334 . -668) 44015) ((-516 . -874) T) ((-432 . -1087) 43989) ((-1242 . -1004) 43951) ((-1030 . -1143) T) ((-392 . -668) 43901) ((-1166 . -635) 43882) ((-972 . -528) 43815) ((-501 . -817) T) ((-488 . -38) 43656) ((-432 . -111) 43623) ((-501 . -814) T) ((-1031 . -321) 43561) ((-221 . -817) T) ((-221 . -814) T) ((-1030 . -23) T) ((-734 . -133) T) ((-1261 . -414) 43531) ((-858 . -668) 43476) ((-849 . -668) 43435) ((-328 . -25) 43287) ((-172 . -425) 43271) ((-328 . -21) 43142) ((-325 . -25) T) ((-325 . -21) T) ((-888 . -381) T) ((-992 . -635) 42995) ((-110 . -34) T) ((-757 . -635) 42951) ((-737 . -635) 42933) ((-496 . -670) 42766) ((-895 . -1089) T) ((-607 . -300) 42741) ((-594 . -149) T) ((-578 . -149) T) ((-509 . -149) T) ((-1203 . -739) 42570) ((-1088 . -102) 42548) ((-1156 . -739) 42397) ((-1151 . -660) 42379) ((-878 . -739) 42349) ((-692 . -1248) T) ((-1 . -102) T) ((-562 . -1248) T) ((-432 . -635) 42257) ((-247 . -632) 41950) ((-1146 . -1131) T) ((-1271 . -425) 41934) ((-1220 . -321) 41738) ((-992 . -1080) T) ((-757 . -1080) T) ((-737 . -1080) T) ((-666 . -1131) 41688) ((-1085 . -670) 41672) ((-879 . -425) 41656) ((-525 . -102) T) ((-521 . -102) T) ((-275 . -321) 41643) ((-255 . -321) 41630) ((-1282 . -929) 41536) ((-992 . -338) 41515) ((-1261 . -929) 41312) ((-398 . -670) 41296) ((-865 . -874) 41275) ((-692 . -1069) 41171) ((-493 . -321) 40975) ((-260 . -528) 40908) ((-259 . -528) 40841) ((-1172 . -321) 40767) ((-421 . -874) 40718) ((-1242 . -921) 40697) ((-841 . -1131) T) ((-821 . -1087) 40681) ((-1290 . -298) 40646) ((-1283 . -298) 40604) ((-1262 . -298) 40432) ((-400 . -1131) T) ((-336 . -1131) T) ((-432 . -1080) T) ((-172 . -1089) T) ((-59 . -321) 40370) ((-821 . -111) 40349) ((-609 . -298) 40314) ((-533 . -321) 40252) ((-530 . -321) 40190) ((-511 . -321) 40128) ((-510 . -321) 40066) ((-432 . -240) 40045) ((-496 . -34) T) ((-229 . -1131) T) ((-1035 . -633) 39975) ((-1035 . -632) 39935) ((-1002 . -632) 39895) ((-943 . -632) 39877) ((-721 . -149) T) ((-1320 . -1248) T) ((-1318 . -1248) T) ((-723 . -949) T) ((-723 . -842) T) ((-441 . -632) 39859) ((-1151 . -21) T) ((-1151 . -25) T) ((-692 . -390) 39843) ((-118 . -949) T) ((-896 . -274) 39827) ((-896 . -234) 39811) ((-44 . -1248) T) ((-78 . -1248) T) ((-128 . -127) 39795) ((-1085 . -34) T) ((-1320 . -1069) 39769) ((-1318 . -1069) 39726) ((-1271 . -1089) T) ((-879 . -1089) T) ((-368 . -1183) 39705) ((-365 . -1183) 39684) ((-357 . -1183) 39663) ((-496 . -816) 39642) ((-496 . -815) 39621) ((-231 . -34) T) ((-496 . -748) 39599) ((-821 . -635) 39445) ((-684 . -1082) 39429) ((-60 . -503) 39413) ((-585 . -1089) T) ((-1203 . -175) 39304) ((-684 . -662) 39288) ((-488 . -929) 39194) ((-154 . -1248) T) ((-1156 . -175) 39105) ((-1093 . -1131) T) ((-1118 . -978) 39050) ((-981 . -1131) T) ((-839 . -670) 39001) ((-804 . -978) 38970) ((-735 . -1131) T) ((-802 . -978) 38937) ((-530 . -294) 38921) ((-692 . -927) 38880) ((-495 . -1131) T) ((-468 . -978) 38847) ((-79 . -1248) T) ((-368 . -38) 38812) ((-365 . -38) 38777) ((-357 . -38) 38742) ((-275 . -38) 38591) ((-255 . -38) 38440) ((-939 . -1183) T) ((-538 . -504) 38421) ((-642 . -149) 38400) ((-642 . -147) 38379) ((-538 . -632) 38345) ((-119 . -149) T) ((-119 . -147) NIL) ((-428 . -748) T) ((-821 . -1080) T) ((-578 . -239) T) ((-509 . -239) T) ((-356 . -466) T) ((-1290 . -1033) 38311) ((-1283 . -1033) 38277) ((-1262 . -1033) 38243) ((-939 . -38) 38208) ((-229 . -739) 38173) ((-1030 . -133) T) ((-659 . -668) 38142) ((-331 . -47) 38112) ((-40 . -423) 38084) ((-142 . -632) 38066) ((-993 . -1248) T) ((-837 . -1248) T) ((-177 . -949) T) ((-563 . -381) T) ((-736 . -668) 38011) ((-619 . -635) 37992) ((-356 . -416) T) ((-693 . -635) 37973) ((-325 . -236) NIL) ((-183 . -635) 37954) ((-163 . -635) 37935) ((-158 . -635) 37916) ((-156 . -635) 37897) ((-534 . -300) 37874) ((-1261 . -234) 37844) ((-1261 . -274) 37814) ((-1245 . -1248) 37792) ((-1209 . -670) 37717) ((-900 . -102) T) ((-837 . -1069) 37544) ((-45 . -34) T) ((-703 . -102) T) ((-698 . -102) T) ((-684 . -102) T) ((-676 . -21) T) ((-676 . -25) T) ((-1133 . -503) 37528) ((-697 . -1248) T) ((-492 . -102) T) ((-252 . -102) 37458) ((-560 . -866) T) ((-140 . -102) T) ((-139 . -102) T) ((-135 . -102) T) ((-1118 . -921) 37353) ((-895 . -1131) T) ((-1203 . -528) 37300) ((-1093 . -739) 37287) ((-804 . -921) 37190) ((-753 . -1087) 37033) ((-802 . -921) 37015) ((-981 . -739) 36864) ((-1156 . -528) 36816) ((-1309 . -1131) T) ((-1308 . -1131) T) ((-468 . -921) 36791) ((-495 . -739) 36640) ((-67 . -632) 36622) ((-646 . -1248) T) ((-753 . -111) 36451) ((-972 . -503) 36435) ((-1310 . -670) 36395) ((-1205 . -1087) 36278) ((-839 . -748) T) ((-1204 . -1087) 36113) ((-1198 . -1087) 35903) ((-331 . -1248) T) ((-1157 . -1087) 35786) ((-1034 . -1252) T) ((-1125 . -102) 35764) ((-837 . -390) 35733) ((-593 . -632) 35715) ((-560 . -1131) T) ((-1034 . -570) T) ((-1205 . -111) 35584) ((-1204 . -111) 35405) ((-1198 . -111) 35174) ((-1157 . -111) 35043) ((-1136 . -1134) 35007) ((-392 . -870) T) ((-1290 . -632) 34989) ((-1283 . -632) 34971) ((-896 . -668) 34908) ((-1262 . -632) 34890) ((-1262 . -633) NIL) ((-247 . -300) 34867) ((-40 . -466) T) ((-229 . -175) T) ((-172 . -1131) T) ((-753 . -635) 34652) ((-716 . -149) T) ((-716 . -147) NIL) ((-610 . -632) 34634) ((-609 . -632) 34616) ((-1151 . -236) 34603) ((-925 . -1131) T) ((-863 . -1131) T) ((-830 . -1131) T) ((-275 . -929) 34513) ((-255 . -929) 34490) ((-791 . -1131) T) ((-699 . -1131) T) ((-680 . -876) 34474) ((-642 . -239) 34425) ((-837 . -927) 34357) ((-882 . -874) T) ((-1253 . -381) T) ((-40 . -416) NIL) ((-119 . -239) NIL) ((-1205 . -635) 34239) ((-1151 . -683) T) ((-895 . -739) 34184) ((-260 . -503) 34168) ((-259 . -503) 34152) ((-1204 . -635) 33895) ((-1198 . -635) 33690) ((-734 . -660) 33638) ((-675 . -670) 33612) ((-1157 . -635) 33494) ((-307 . -34) T) ((-1151 . -114) T) ((-753 . -1080) T) ((-595 . -1305) 33481) ((-532 . -1305) 33458) ((-1271 . -1131) T) ((-1203 . -302) 33369) ((-1156 . -302) 33300) ((-657 . -874) T) ((-1093 . -175) T) ((-301 . -1248) T) ((-879 . -1131) T) ((-981 . -175) 33211) ((-804 . -1274) 33195) ((-666 . -528) 33128) ((-77 . -632) 33110) ((-753 . -338) 33075) ((-1209 . -748) T) ((-585 . -1131) T) ((-495 . -175) 32986) ((-252 . -321) 32924) ((-1173 . -1143) T) ((-70 . -632) 32906) ((-1310 . -748) T) ((-1205 . -1080) T) ((-1204 . -1080) T) ((-1198 . -1080) T) ((-339 . -102) 32836) ((-1173 . -23) T) ((-2 . -1248) T) ((-1157 . -1080) T) ((-91 . -1152) 32820) ((-890 . -1143) T) ((-1205 . -240) 32779) ((-1204 . -250) 32758) ((-1204 . -240) 32710) ((-1198 . -240) 32597) ((-1198 . -250) 32576) ((-331 . -927) 32482) ((-890 . -23) T) ((-172 . -739) 32310) ((-421 . -1252) T) ((-1132 . -381) T) ((-1034 . -376) T) ((-894 . -466) T) ((-1055 . -149) T) ((-972 . -298) 32262) ((-325 . -871) NIL) ((-1282 . -668) 32144) ((-898 . -102) T) ((-1261 . -668) 31999) ((-734 . -25) T) ((-421 . -570) T) ((-734 . -21) T) ((-539 . -635) 31980) ((-367 . -149) 31962) ((-367 . -147) T) ((-1178 . -1131) 31940) ((-467 . -742) T) ((-75 . -632) 31922) ((-116 . -871) T) ((-252 . -294) 31906) ((-247 . -1087) 31827) ((-81 . -632) 31809) ((-757 . -381) 31762) ((-1207 . -850) T) ((-759 . -242) 31746) ((-1190 . -1248) T) ((-143 . -242) 31728) ((-247 . -111) 31644) ((-1271 . -739) 31473) ((-48 . -149) T) ((-895 . -175) T) ((-879 . -739) 31443) ((-498 . -1248) T) ((-981 . -528) 31390) ((-675 . -748) T) ((-585 . -739) 31377) ((-1065 . -1089) T) ((-716 . -239) NIL) ((-495 . -528) 31320) ((-972 . -19) 31304) ((-972 . -618) 31281) ((-1111 . -1248) T) ((-1092 . -1248) T) ((-1242 . -662) 31178) ((-838 . -633) NIL) ((-838 . -632) 31160) ((-1242 . -1082) 31043) ((-1111 . -1069) 30939) ((-1035 . -1087) 30889) ((-427 . -632) 30871) ((-260 . -298) 30848) ((-372 . -1248) T) ((-366 . -1248) T) ((-358 . -1248) T) ((-259 . -298) 30825) ((-501 . -938) NIL) ((-328 . -29) 30795) ((-108 . -1248) T) ((-1034 . -1143) T) ((-221 . -938) NIL) ((-943 . -1087) 30747) ((-661 . -1305) 30731) ((-1035 . -111) 30665) ((-1034 . -23) T) ((-733 . -1082) 30630) ((-943 . -111) 30568) ((-759 . -717) 30552) ((-733 . -662) 30517) ((-275 . -274) 30501) ((-275 . -234) 30485) ((-441 . -1087) 30469) ((-392 . -1089) T) ((-247 . -635) 30267) ((-716 . -1236) NIL) ((-501 . -670) 30217) ((-488 . -668) 30099) ((-108 . -909) 30081) ((-108 . -911) 30063) ((-716 . -1233) NIL) ((-221 . -670) 30013) ((-372 . -1069) 29997) ((-366 . -1069) 29981) ((-339 . -321) 29919) ((-358 . -1069) 29903) ((-229 . -302) T) ((-441 . -111) 29882) ((-60 . -632) 29814) ((-172 . -175) T) ((-1151 . -871) T) ((-108 . -1069) 29774) ((-917 . -1131) T) ((-858 . -1089) T) ((-849 . -1089) T) ((-716 . -35) NIL) ((-716 . -95) NIL) ((-325 . -1023) 29735) ((-186 . -102) T) ((-1321 . -1143) T) ((-1321 . -23) T) ((-594 . -466) T) ((-578 . -466) T) ((-509 . -466) T) ((-1313 . -632) 29717) ((-1271 . -175) 29608) ((-1242 . -102) T) ((-421 . -376) T) ((-1229 . -1131) T) ((-1220 . -233) 29558) ((-1214 . -866) T) ((-1213 . -866) T) ((-1197 . -1248) T) ((-247 . -1080) 29536) ((-1025 . -1248) T) ((-1181 . -34) T) ((-1198 . -814) NIL) ((-1198 . -817) NIL) ((-1189 . -1248) T) ((-491 . -949) T) ((-1030 . -660) 29484) ((-260 . -618) 29461) ((-259 . -618) 29438) ((-1173 . -133) T) ((-1133 . -633) 29399) ((-1111 . -390) 29383) ((-895 . -528) 29291) ((-247 . -240) 29243) ((-1133 . -632) 29225) ((-1119 . -1131) T) ((-1035 . -635) 29175) ((-1111 . -927) 29108) ((-943 . -635) 29045) ((-846 . -632) 29027) ((-1107 . -1131) T) ((-1093 . -302) T) ((-1035 . -250) T) ((-1035 . -240) T) ((-1035 . -1080) T) ((-987 . -1131) 28977) ((-981 . -302) 28908) ((-441 . -635) 28877) ((-108 . -390) 28859) ((-108 . -351) 28841) ((-943 . -1080) T) ((-943 . -250) T) ((-821 . -381) 28820) ((-733 . -102) T) ((-723 . -874) T) ((-669 . -1248) T) ((-651 . -1248) T) ((-627 . -1131) T) ((-627 . -629) 28796) ((-600 . -1082) 28771) ((-495 . -302) 28702) ((-585 . -175) T) ((-339 . -294) 28686) ((-367 . -239) T) ((-600 . -662) 28661) ((-368 . -362) 28640) ((-365 . -362) 28619) ((-357 . -362) 28598) ((-215 . -1248) T) ((-83 . -632) 28580) ((-214 . -1248) T) ((-212 . -1248) T) ((-211 . -1248) T) ((-210 . -1248) T) ((-209 . -1248) T) ((-206 . -1248) T) ((-205 . -1248) T) ((-204 . -1248) T) ((-203 . -1248) T) ((-489 . -1131) T) ((-202 . -1248) T) ((-275 . -262) 28542) ((-201 . -1248) T) ((-200 . -1248) T) ((-199 . -1248) T) ((-198 . -1248) T) ((-197 . -1248) T) ((-489 . -629) 28521) ((-196 . -1248) T) ((-285 . -1248) T) ((-284 . -1248) T) ((-283 . -1248) T) ((-282 . -1248) T) ((-493 . -233) 28471) ((-281 . -1248) T) ((-280 . -1248) T) ((-279 . -1248) T) ((-441 . -1080) T) ((-890 . -133) T) ((-865 . -1143) 28450) ((-48 . -239) T) ((-721 . -466) T) ((-108 . -927) NIL) ((-136 . -874) T) ((-1242 . -296) 28416) ((-1144 . -1248) T) ((-896 . -870) 28395) ((-1030 . -25) T) ((-934 . -748) T) ((-172 . -528) 28307) ((-1030 . -21) T) ((-934 . -487) T) ((-421 . -1143) T) ((-501 . -816) T) ((-501 . -813) T) ((-939 . -362) T) ((-501 . -748) T) ((-221 . -816) T) ((-221 . -813) T) ((-734 . -236) 28294) ((-221 . -748) T) ((-865 . -23) 28246) ((-1215 . -1131) T) ((-680 . -1082) 28230) ((-1214 . -1131) T) ((-538 . -635) 28211) ((-1213 . -1131) T) ((-331 . -319) 28190) ((-1066 . -242) 28136) ((-680 . -662) 28106) ((-421 . -23) T) ((-972 . -633) 28067) ((-972 . -632) 27979) ((-666 . -503) 27963) ((-45 . -1041) 27913) ((-1144 . -1069) 27740) ((-636 . -998) T) ((-505 . -102) T) ((-343 . -632) 27722) ((-1024 . -298) 27689) ((-607 . -673) 27671) ((-130 . -1131) T) ((-132 . -1131) T) ((-607 . -386) 27653) ((-356 . -1305) 27630) ((-453 . -632) 27612) ((-1271 . -528) 27559) ((-1118 . -1082) 27402) ((-1058 . -1248) T) ((-895 . -302) T) ((-1203 . -298) 27329) ((-1118 . -662) 27178) ((-1031 . -1026) 27162) ((-804 . -1082) 26985) ((-802 . -1082) 26828) ((-804 . -662) 26657) ((-802 . -662) 26506) ((-490 . -1248) T) ((-477 . -1248) T) ((-600 . -102) T) ((-475 . -1082) 26477) ((-468 . -1082) 26320) ((-686 . -668) 26289) ((-642 . -466) 26268) ((-475 . -662) 26239) ((-468 . -662) 26088) ((-368 . -668) 26025) ((-365 . -668) 25962) ((-357 . -668) 25899) ((-275 . -668) 25809) ((-255 . -668) 25719) ((-1313 . -395) 25691) ((-531 . -1131) T) ((-119 . -466) T) ((-1228 . -102) T) ((-1123 . -1131) 25661) ((-1065 . -1131) T) ((-1146 . -93) T) ((-918 . -871) T) ((-1290 . -111) 25530) ((-364 . -1252) T) ((-1290 . -1087) 25413) ((-1144 . -390) 25382) ((-1283 . -1087) 25217) ((-1262 . -1087) 25007) ((-1283 . -111) 24828) ((-1262 . -111) 24597) ((-1242 . -321) 24584) ((-1034 . -133) T) ((-939 . -668) 24534) ((-378 . -632) 24516) ((-364 . -570) T) ((-301 . -319) T) ((-610 . -1087) 24476) ((-609 . -1087) 24359) ((-595 . -1082) 24324) ((-532 . -1082) 24269) ((-374 . -1131) T) ((-334 . -1131) T) ((-260 . -632) 24230) ((-259 . -632) 24191) ((-595 . -662) 24156) ((-532 . -662) 24101) ((-716 . -423) 24068) ((-654 . -23) T) ((-620 . -23) T) ((-40 . -921) 23975) ((-680 . -102) T) ((-610 . -111) 23928) ((-609 . -111) 23797) ((-392 . -1131) T) ((-349 . -102) T) ((-172 . -302) 23708) ((-1261 . -870) 23661) ((-736 . -1089) T) ((-631 . -1248) T) ((-1178 . -528) 23594) ((-1221 . -857) 23578) ((-1144 . -927) 23510) ((-858 . -1131) T) ((-849 . -1131) T) ((-847 . -1131) T) ((-97 . -102) T) ((-146 . -871) T) ((-631 . -909) 23494) ((-1182 . -1248) T) ((-110 . -1248) T) ((-1118 . -102) T) ((-1094 . -34) T) ((-804 . -102) T) ((-802 . -102) T) ((-1290 . -635) 23376) ((-1283 . -635) 23119) ((-475 . -102) T) ((-468 . -102) T) ((-1262 . -635) 22914) ((-96 . -1248) T) ((-247 . -817) 22893) ((-247 . -814) 22872) ((-671 . -102) T) ((-610 . -635) 22830) ((-609 . -635) 22712) ((-1271 . -302) 22623) ((-686 . -653) 22607) ((-189 . -632) 22589) ((-666 . -298) 22541) ((-1065 . -739) 22525) ((-585 . -302) T) ((-992 . -670) 22450) ((-1321 . -133) T) ((-757 . -670) 22410) ((-737 . -670) 22397) ((-286 . -102) T) ((-467 . -670) 22327) ((-50 . -102) T) ((-595 . -102) T) ((-532 . -102) T) ((-1290 . -1080) T) ((-1283 . -1080) T) ((-1262 . -1080) T) ((-1171 . -1248) T) ((-521 . -668) 22309) ((-334 . -739) 22291) ((-1290 . -240) 22250) ((-1283 . -250) 22229) ((-1283 . -240) 22181) ((-1262 . -240) 22068) ((-1262 . -250) 22047) ((-1242 . -38) 21944) ((-610 . -1080) T) ((-609 . -1080) T) ((-1035 . -817) T) ((-1035 . -814) T) ((-1002 . -817) T) ((-1002 . -814) T) ((-896 . -1089) T) ((-109 . -632) 21926) ((-716 . -466) T) ((-392 . -739) 21891) ((-432 . -670) 21865) ((-894 . -893) 21849) ((-733 . -38) 21814) ((-609 . -240) 21773) ((-40 . -746) 21745) ((-364 . -341) 21722) ((-364 . -376) T) ((-1111 . -319) 21673) ((-306 . -1143) 21554) ((-1137 . -1248) T) ((-1030 . -236) 21499) ((-174 . -102) T) ((-1265 . -632) 21466) ((-865 . -133) 21418) ((-858 . -739) 21388) ((-666 . -1286) 21372) ((-849 . -739) 21342) ((-666 . -618) 21319) ((-496 . -1248) T) ((-372 . -319) T) ((-366 . -319) T) ((-358 . -319) T) ((-413 . -236) 21306) ((-421 . -133) T) ((-534 . -688) 21290) ((-108 . -319) T) ((-306 . -23) 21173) ((-534 . -673) 21157) ((-716 . -416) NIL) ((-534 . -386) 21141) ((-661 . -1082) 21125) ((-661 . -662) 21109) ((-303 . -632) 21091) ((-91 . -1131) 21069) ((-108 . -1053) T) ((-578 . -145) T) ((-1298 . -153) 21053) ((-496 . -1069) 20880) ((-1284 . -147) 20841) ((-1284 . -149) 20802) ((-1085 . -1248) T) ((-1309 . -93) T) ((-1024 . -632) 20784) ((-840 . -1248) T) ((-886 . -632) 20766) ((-838 . -1087) 20609) ((-1308 . -93) T) ((-1203 . -633) NIL) ((-1127 . -1131) T) ((-1121 . -1131) T) ((-1118 . -321) 20596) ((-428 . -1248) T) ((-398 . -1248) T) ((-1104 . -1131) T) ((-231 . -1248) T) ((-1097 . -1131) T) ((-1067 . -1131) T) ((-1050 . -1131) T) ((-804 . -321) 20583) ((-802 . -321) 20570) ((-1203 . -632) 20552) ((-838 . -111) 20381) ((-1156 . -632) 20363) ((-645 . -1131) T) ((-591 . -176) T) ((-543 . -176) T) ((-468 . -321) 20350) ((-497 . -1131) T) ((-1156 . -633) 20098) ((-1065 . -175) T) ((-972 . -300) 20075) ((-222 . -1131) T) ((-878 . -632) 20057) ((-627 . -528) 19840) ((-81 . -635) 19781) ((-840 . -1069) 19765) ((-489 . -528) 19557) ((-855 . -874) 19536) ((-992 . -748) T) ((-757 . -748) T) ((-737 . -748) T) ((-364 . -1143) T) ((-1210 . -632) 19518) ((-227 . -102) T) ((-496 . -390) 19487) ((-529 . -1131) T) ((-524 . -1131) T) ((-522 . -1131) T) ((-821 . -670) 19461) ((-1055 . -466) T) ((-987 . -528) 19394) ((-364 . -23) T) ((-654 . -133) T) ((-620 . -133) T) ((-367 . -466) T) ((-247 . -381) 19373) ((-392 . -175) T) ((-1282 . -1089) T) ((-1261 . -1089) T) ((-229 . -1033) T) ((-838 . -635) 19110) ((-721 . -401) T) ((-432 . -748) T) ((-723 . -1252) T) ((-1173 . -660) 19058) ((-659 . -1131) T) ((-661 . -102) T) ((-594 . -893) 19042) ((-1313 . -1087) 19026) ((-1190 . -1224) 19002) ((-723 . -570) T) ((-128 . -1131) 18980) ((-736 . -1131) T) ((-680 . -38) 18950) ((-496 . -927) 18882) ((-257 . -1131) T) ((-190 . -1131) T) ((-367 . -416) T) ((-328 . -149) 18861) ((-328 . -147) 18840) ((-118 . -570) T) ((-130 . -528) NIL) ((-325 . -149) 18796) ((-325 . -147) 18752) ((-48 . -466) T) ((-164 . -1131) T) ((-159 . -1131) T) ((-1190 . -107) 18699) ((-804 . -1183) 18677) ((-1313 . -111) 18656) ((-711 . -34) T) ((-606 . -1248) T) ((-564 . -34) T) ((-498 . -107) 18640) ((-260 . -300) 18617) ((-259 . -300) 18594) ((-1254 . -866) T) ((-895 . -298) 18545) ((-45 . -1248) T) ((-1242 . -929) 18526) ((-839 . -1248) T) ((-838 . -1080) T) ((-640 . -874) 18505) ((-684 . -668) 18474) ((-1209 . -47) 18450) ((-838 . -338) 18412) ((-1118 . -38) 18261) ((-838 . -240) 18240) ((-804 . -38) 18069) ((-802 . -38) 17918) ((-1146 . -504) 17899) ((-468 . -38) 17748) ((-1146 . -632) 17714) ((-1149 . -102) T) ((-666 . -633) 17675) ((-666 . -632) 17587) ((-595 . -1183) T) ((-532 . -1183) T) ((-1178 . -503) 17571) ((-356 . -1082) 17516) ((-1234 . -1131) 17494) ((-1173 . -25) T) ((-1173 . -21) T) ((-356 . -662) 17439) ((-1313 . -635) 17388) ((-342 . -1248) T) ((-488 . -1089) T) ((-1254 . -1131) T) ((-1262 . -814) NIL) ((-1262 . -817) NIL) ((-1030 . -871) 17367) ((-890 . -21) T) ((-860 . -1131) T) ((-841 . -632) 17349) ((-890 . -25) T) ((-821 . -748) T) ((-659 . -739) 17333) ((-177 . -1252) T) ((-595 . -38) 17298) ((-532 . -38) 17263) ((-400 . -632) 17245) ((-345 . -102) T) ((-336 . -632) 17227) ((-172 . -298) 17185) ((-1256 . -874) T) ((-63 . -1248) T) ((-112 . -102) T) ((-896 . -1131) T) ((-526 . -1248) T) ((-177 . -570) T) ((-736 . -739) 17155) ((-306 . -133) 17038) ((-229 . -632) 17020) ((-229 . -633) 16950) ((-1034 . -660) 16889) ((-1313 . -1080) T) ((-1209 . -1248) T) ((-1151 . -149) T) ((-651 . -1224) 16864) ((-753 . -938) 16843) ((-607 . -34) T) ((-669 . -107) 16827) ((-651 . -107) 16773) ((-625 . -1248) T) ((-624 . -1248) T) ((-622 . -1248) T) ((-1310 . -1248) T) ((-642 . -921) 16694) ((-1271 . -298) 16621) ((-753 . -670) 16510) ((-307 . -1248) T) ((-1209 . -1069) 16406) ((-972 . -637) 16383) ((-591 . -590) T) ((-591 . -541) T) ((-543 . -541) T) ((-119 . -921) NIL) ((-1198 . -938) NIL) ((-1093 . -633) 16298) ((-1093 . -632) 16280) ((-981 . -632) 16262) ((-735 . -504) 16212) ((-356 . -102) T) ((-260 . -1087) 16133) ((-259 . -1087) 16054) ((-408 . -102) T) ((-31 . -1131) T) ((-981 . -633) 15915) ((-735 . -632) 15850) ((-1311 . -1241) 15819) ((-495 . -632) 15801) ((-495 . -633) 15662) ((-275 . -425) 15646) ((-255 . -425) 15630) ((-325 . -239) NIL) ((-260 . -111) 15546) ((-259 . -111) 15462) ((-1255 . -683) T) ((-1205 . -670) 15387) ((-1204 . -670) 15284) ((-1198 . -670) 15136) ((-1157 . -670) 15061) ((-364 . -133) T) ((-82 . -455) T) ((-82 . -409) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-897 . -1131) 15012) ((-40 . -1082) 14957) ((-896 . -739) 14909) ((-40 . -662) 14854) ((-392 . -302) T) ((-172 . -1033) 14805) ((-1118 . -929) 14704) ((-716 . -401) T) ((-1030 . -1028) 14688) ((-723 . -1143) T) ((-716 . -168) 14670) ((-804 . -929) 14577) ((-802 . -929) 14561) ((-1282 . -1131) T) ((-1261 . -1131) T) ((-1195 . -102) T) ((-328 . -1233) 14540) ((-328 . -1236) 14519) ((-468 . -929) 14496) ((-328 . -988) 14475) ((-136 . -1143) T) ((-118 . -1143) T) ((-1001 . -1248) T) ((-888 . -1248) T) ((-723 . -23) T) ((-675 . -1248) T) ((-616 . -1296) 14459) ((-616 . -1131) 14409) ((-545 . -874) T) ((-514 . -874) T) ((-328 . -95) 14388) ((-91 . -528) 14321) ((-177 . -376) T) ((-260 . -635) 14119) ((-259 . -635) 13917) ((-328 . -35) 13896) ((-627 . -503) 13830) ((-136 . -23) T) ((-118 . -23) T) ((-995 . -102) T) ((-740 . -1131) T) ((-489 . -503) 13767) ((-421 . -660) 13715) ((-675 . -1069) 13611) ((-987 . -503) 13595) ((-368 . -1089) T) ((-365 . -1089) T) ((-357 . -1089) T) ((-275 . -1089) T) ((-255 . -1089) T) ((-895 . -633) NIL) ((-895 . -632) 13577) ((-1309 . -504) 13558) ((-1308 . -504) 13539) ((-1321 . -21) T) ((-1309 . -632) 13505) ((-1308 . -632) 13471) ((-585 . -1033) T) ((-753 . -748) T) ((-1321 . -25) T) ((-260 . -1080) 13449) ((-259 . -1080) 13427) ((-72 . -1248) T) ((-1173 . -236) 13372) ((-260 . -240) 13324) ((-259 . -240) 13276) ((-1151 . -239) T) ((-40 . -102) T) ((-939 . -1089) T) ((-716 . -921) NIL) ((-1212 . -102) T) ((-130 . -503) 13258) ((-1205 . -748) T) ((-1204 . -748) T) ((-1198 . -748) T) ((-1198 . -813) NIL) ((-1198 . -816) NIL) ((-983 . -102) T) ((-950 . -102) T) ((-894 . -1082) 13245) ((-1157 . -748) T) ((-793 . -102) T) ((-694 . -102) T) ((-894 . -662) 13232) ((-560 . -632) 13214) ((-488 . -1131) T) ((-352 . -1143) T) ((-177 . -1143) T) ((-331 . -949) 13193) ((-1282 . -739) 13034) ((-896 . -175) T) ((-1261 . -739) 12848) ((-865 . -21) 12800) ((-865 . -25) 12752) ((-252 . -1180) 12736) ((-128 . -528) 12669) ((-421 . -25) T) ((-421 . -21) T) ((-352 . -23) T) ((-172 . -633) 12435) ((-172 . -632) 12417) ((-177 . -23) T) ((-666 . -300) 12394) ((-534 . -34) T) ((-636 . -683) T) ((-925 . -632) 12376) ((-89 . -1248) T) ((-863 . -632) 12358) ((-830 . -632) 12340) ((-791 . -632) 12322) ((-699 . -632) 12304) ((-247 . -670) 12137) ((-636 . -114) T) ((-1207 . -1131) T) ((-1203 . -1087) 11960) ((-217 . -1248) T) ((-1181 . -1248) T) ((-1156 . -1087) 11803) ((-878 . -1087) 11787) ((-1113 . -874) T) ((-1265 . -637) 11771) ((-1203 . -111) 11580) ((-1156 . -111) 11409) ((-878 . -111) 11388) ((-1255 . -871) T) ((-1271 . -633) NIL) ((-1271 . -632) 11370) ((-356 . -1183) T) ((-879 . -632) 11352) ((-1107 . -298) 11331) ((-1242 . -668) 11241) ((-80 . -1248) T) ((-934 . -1248) T) ((-1234 . -528) 11174) ((-1035 . -938) NIL) ((-1118 . -274) 11158) ((-627 . -298) 11134) ((-1118 . -234) 11118) ((-501 . -1248) T) ((-585 . -632) 11100) ((-489 . -298) 11079) ((-1035 . -670) 11029) ((-531 . -93) T) ((-1034 . -236) 10960) ((-221 . -1248) T) ((-987 . -298) 10912) ((-894 . -102) T) ((-301 . -949) T) ((-839 . -319) 10891) ((-804 . -274) 10875) ((-804 . -234) 10859) ((-943 . -670) 10811) ((-733 . -668) 10761) ((-716 . -746) 10728) ((-654 . -21) T) ((-654 . -25) T) ((-620 . -21) T) ((-561 . -102) T) ((-356 . -38) 10693) ((-501 . -909) 10675) ((-501 . -911) 10657) ((-488 . -739) 10498) ((-64 . -1248) T) ((-221 . -909) 10480) ((-221 . -911) 10462) ((-620 . -25) T) ((-441 . -670) 10436) ((-1203 . -635) 10205) ((-501 . -1069) 10165) ((-896 . -528) 10077) ((-1156 . -635) 9869) ((-878 . -635) 9787) ((-221 . -1069) 9747) ((-247 . -34) T) ((-1031 . -1131) 9725) ((-594 . -1082) 9712) ((-578 . -1082) 9699) ((-509 . -1082) 9664) ((-1282 . -175) 9595) ((-1261 . -175) 9526) ((-594 . -662) 9513) ((-578 . -662) 9500) ((-509 . -662) 9465) ((-734 . -147) 9444) ((-734 . -149) 9423) ((-131 . -874) T) ((-723 . -133) T) ((-563 . -1248) T) ((-138 . -479) 9400) ((-1178 . -632) 9332) ((-680 . -678) 9316) ((-130 . -298) 9266) ((-118 . -133) T) ((-491 . -1252) T) ((-627 . -618) 9242) ((-489 . -618) 9221) ((-611 . -1131) T) ((-349 . -348) 9190) ((-599 . -1131) T) ((-550 . -1131) T) ((-491 . -570) T) ((-1203 . -1080) T) ((-1156 . -1080) T) ((-878 . -1080) T) ((-845 . -1248) T) ((-247 . -816) 9169) ((-247 . -815) 9148) ((-1203 . -338) 9125) ((-247 . -748) 9103) ((-987 . -19) 9087) ((-501 . -390) 9069) ((-501 . -351) 9051) ((-1156 . -338) 9023) ((-367 . -1305) 9000) ((-221 . -390) 8982) ((-221 . -351) 8964) ((-987 . -618) 8941) ((-1203 . -240) T) ((-1294 . -1131) T) ((-1220 . -1131) T) ((-686 . -1131) T) ((-667 . -1131) T) ((-1118 . -262) 8878) ((-600 . -668) 8838) ((-368 . -1131) T) ((-365 . -1131) T) ((-357 . -1131) T) ((-275 . -1131) T) ((-255 . -1131) T) ((-84 . -1248) T) ((-218 . -102) T) ((-129 . -102) 8788) ((-123 . -102) 8738) ((-1261 . -528) 8598) ((-1220 . -629) 8577) ((-1172 . -1131) T) ((-1146 . -635) 8558) ((-1111 . -949) 8509) ((-493 . -1131) T) ((-1035 . -816) T) ((-1035 . -813) T) ((-493 . -629) 8488) ((-260 . -817) 8467) ((-260 . -814) 8446) ((-259 . -817) 8425) ((-40 . -1183) NIL) ((-259 . -814) 8404) ((-1035 . -748) T) ((-130 . -19) 8386) ((-1002 . -816) T) ((-721 . -1082) 8351) ((-943 . -748) T) ((-939 . -1131) T) ((-917 . -632) 8333) ((-130 . -618) 8308) ((-721 . -662) 8273) ((-91 . -503) 8257) ((-501 . -927) NIL) ((-896 . -302) T) ((-229 . -1087) 8222) ((-858 . -298) 8201) ((-221 . -927) NIL) ((-855 . -1143) 8180) ((-59 . -1131) 8130) ((-533 . -1131) 8108) ((-530 . -1131) 8058) ((-511 . -1131) 8036) ((-510 . -1131) 7986) ((-594 . -102) T) ((-578 . -102) T) ((-509 . -102) T) ((-488 . -175) 7917) ((-372 . -949) T) ((-366 . -949) T) ((-358 . -949) T) ((-229 . -111) 7873) ((-855 . -23) 7825) ((-441 . -748) T) ((-108 . -949) T) ((-40 . -38) 7770) ((-108 . -842) T) ((-595 . -362) T) ((-532 . -362) T) ((-680 . -668) 7729) ((-328 . -466) 7708) ((-325 . -466) T) ((-616 . -528) 7641) ((-421 . -236) 7586) ((-352 . -133) T) ((-177 . -133) T) ((-306 . -25) 7450) ((-306 . -21) 7333) ((-45 . -1224) 7312) ((-66 . -632) 7294) ((-55 . -102) T) ((-349 . -668) 7276) ((-1299 . -102) T) ((-1298 . -102) 7206) ((-1290 . -670) 7131) ((-1283 . -670) 7028) ((-45 . -107) 6978) ((-841 . -635) 6962) ((-1262 . -670) 6814) ((-1262 . -938) NIL) ((-1253 . -1248) T) ((-1229 . -632) 6796) ((-1221 . -102) T) ((-1133 . -439) 6780) ((-1133 . -381) 6759) ((-400 . -635) 6743) ((-336 . -635) 6727) ((-1127 . -93) T) ((-1118 . -668) 6637) ((-1094 . -1248) T) ((-1093 . -1087) 6624) ((-1093 . -111) 6609) ((-981 . -111) 6438) ((-981 . -1087) 6281) ((-804 . -668) 6191) ((-802 . -668) 6101) ((-686 . -739) 6085) ((-642 . -1082) 6072) ((-642 . -662) 6059) ((-562 . -874) T) ((-495 . -1087) 5902) ((-491 . -376) T) ((-475 . -668) 5858) ((-468 . -668) 5768) ((-229 . -635) 5718) ((-368 . -739) 5670) ((-365 . -739) 5622) ((-119 . -1082) 5567) ((-357 . -739) 5519) ((-275 . -739) 5368) ((-255 . -739) 5217) ((-1121 . -93) T) ((-1104 . -93) T) ((-119 . -662) 5162) ((-1097 . -93) T) ((-972 . -673) 5146) ((-1088 . -1131) 5124) ((-495 . -111) 4953) ((-1067 . -93) T) ((-1050 . -93) T) ((-972 . -386) 4937) ((-256 . -102) T) ((-992 . -47) 4916) ((-74 . -632) 4898) ((-734 . -239) T) ((-732 . -102) T) ((-721 . -102) T) ((-1 . -1131) T) ((-640 . -1143) T) ((-1119 . -632) 4880) ((-645 . -93) T) ((-1107 . -632) 4862) ((-939 . -739) 4827) ((-128 . -503) 4811) ((-497 . -93) T) ((-640 . -23) T) ((-404 . -23) T) ((-87 . -1248) T) ((-222 . -93) T) ((-627 . -632) 4793) ((-627 . -633) NIL) ((-489 . -633) NIL) ((-489 . -632) 4775) ((-364 . -25) T) ((-364 . -21) T) ((-50 . -668) 4734) ((-525 . -1131) T) ((-521 . -1131) T) ((-123 . -321) 4672) ((-129 . -321) 4610) ((-610 . -670) 4584) ((-609 . -670) 4509) ((-595 . -668) 4459) ((-229 . -1080) T) ((-532 . -668) 4389) ((-1093 . -635) 4361) ((-392 . -1033) T) ((-229 . -250) T) ((-229 . -240) T) ((-872 . -504) 4345) ((-1093 . -637) 4326) ((-987 . -633) 4287) ((-987 . -632) 4199) ((-981 . -635) 3988) ((-872 . -632) 3936) ((-894 . -38) 3923) ((-735 . -635) 3873) ((-1282 . -302) 3824) ((-1261 . -302) 3775) ((-495 . -635) 3560) ((-1151 . -466) T) ((-516 . -871) T) ((-328 . -1170) 3539) ((-1132 . -1248) T) ((-1030 . -149) 3518) ((-1030 . -147) 3497) ((-509 . -321) 3484) ((-1215 . -632) 3466) ((-307 . -1224) 3445) ((-1214 . -632) 3427) ((-1166 . -1248) T) ((-1213 . -632) 3409) ((-895 . -1087) 3354) ((-491 . -1143) T) ((-141 . -857) 3336) ((-116 . -857) 3317) ((-1234 . -503) 3301) ((-1093 . -1080) T) ((-642 . -102) T) ((-992 . -1248) T) ((-981 . -1080) T) ((-260 . -381) 3280) ((-259 . -381) 3259) ((-895 . -111) 3188) ((-307 . -107) 3138) ((-132 . -632) 3120) ((-130 . -633) NIL) ((-130 . -632) 3064) ((-119 . -102) T) ((-757 . -1248) T) ((-737 . -1248) T) ((-491 . -23) T) ((-467 . -1248) T) ((-495 . -1080) T) ((-1093 . -240) T) ((-981 . -338) 3033) ((-40 . -929) 2942) ((-495 . -338) 2899) ((-368 . -175) T) ((-365 . -175) T) ((-357 . -175) T) ((-275 . -175) 2810) ((-255 . -175) 2721) ((-992 . -1069) 2617) ((-531 . -504) 2598) ((-757 . -1069) 2569) ((-531 . -632) 2535) ((-432 . -1248) T) ((-1136 . -102) T) ((-1123 . -632) 2494) ((-1065 . -632) 2476) ((-716 . -1082) 2426) ((-1311 . -153) 2410) ((-1309 . -635) 2391) ((-1308 . -635) 2372) ((-1303 . -632) 2354) ((-1290 . -748) T) ((-716 . -662) 2304) ((-1283 . -748) T) ((-1262 . -813) NIL) ((-1262 . -816) NIL) ((-172 . -1087) 2214) ((-939 . -175) T) ((-895 . -635) 2144) ((-1262 . -748) T) ((-1034 . -355) 2118) ((-227 . -668) 2070) ((-1031 . -528) 2003) ((-865 . -871) 1982) ((-578 . -1183) T) ((-488 . -302) 1933) ((-610 . -748) T) ((-374 . -632) 1915) ((-334 . -632) 1897) ((-432 . -1069) 1793) ((-609 . -748) T) ((-421 . -871) 1744) ((-172 . -111) 1640) ((-855 . -133) 1592) ((-1298 . -321) 1530) ((-759 . -153) 1514) ((-993 . -874) 1413) ((-837 . -874) 1364) ((-501 . -319) T) ((-392 . -632) 1331) ((-534 . -1041) 1315) ((-392 . -633) 1229) ((-221 . -319) T) ((-143 . -153) 1211) ((-736 . -298) 1190) ((-501 . -1053) T) ((-594 . -38) 1177) ((-578 . -38) 1164) ((-509 . -38) 1129) ((-661 . -668) 1098) ((-221 . -1053) T) ((-895 . -1080) T) ((-858 . -632) 1080) ((-849 . -632) 1062) ((-847 . -632) 1044) ((-838 . -938) 1023) ((-1322 . -1143) T) ((-324 . -1248) T) ((-1271 . -1087) 846) ((-879 . -1087) 830) ((-895 . -250) T) ((-895 . -240) NIL) ((-711 . -1248) T) ((-1322 . -23) T) ((-838 . -670) 719) ((-564 . -1248) T) ((-432 . -351) 703) ((-585 . -1087) 690) ((-1271 . -111) 499) ((-723 . -660) 481) ((-879 . -111) 460) ((-394 . -23) T) ((-172 . -635) 238) ((-1220 . -528) 30) ((-900 . -1131) T) ((-703 . -1131) T) ((-698 . -1131) T) ((-684 . -1131) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 2968ca75..471d6448 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3497162532) -(4502 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3497168579) +(4503 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -27,27 +27,27 @@ |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| - |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean| |BooleanLogic| - |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| - |BalancedPAdicInteger| |BalancedPAdicRational| - |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| - |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| - |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |ByteBuffer| |Byte| |ByteOrder| - |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| - |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| - |CaseAst| |CategoryAst| |CategoryConstructor| |Category| - |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| - |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| - |CharacteristicZero| |ChangeOfVariable| - |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| - |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| - |CollectAst| |ComplexRootPackage| |ColonAst| |Color| - |CombinatorialFunction| |IntegerCombinatoricFunctions| - |CombinatorialOpsCategory| |CommaAst| |Commutator| |CommonOperators| - |CommuteUnivariatePolynomialCategory| |ComplexCategory&| - |ComplexCategory| |ComplexFactorization| |CompilerPackage| - |ComplexFunctions2| |Complex| |ComplexPattern| + |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean| + |BooleanLogic&| |BooleanLogic| |BasicOperatorFunctions1| + |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| + |BalancedPAdicRational| |BinaryRecursiveAggregate&| + |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| + |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| + |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |ByteBuffer| + |Byte| |ByteOrder| |CancellationAbelianMonoid| |CachableSet| + |CapsuleAst| |CardinalNumber| |CartesianTensorFunctions2| + |CartesianTensor| |CaseAst| |CategoryAst| |CategoryConstructor| + |Category| |CharacterClass| |CommonDenominator| + |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| + |CharacteristicPolynomialPackage| |CharacteristicZero| + |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| + |Collection&| |Collection| |CliffordAlgebra| + |TwoDimensionalPlotClipping| |CollectAst| |ComplexRootPackage| + |ColonAst| |Color| |CombinatorialFunction| + |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |CommaAst| + |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| + |ComplexCategory&| |ComplexCategory| |ComplexFactorization| + |CompilerPackage| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| @@ -490,676 +490,676 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |expintfldpoly| |adaptive?| |moduleSum| - |tubePointsDefault| |dilog| |queue| |dualSignature| |augment| |union| - |controlPanel| |internalIntegrate| |flexible?| |float?| |min| - |errorInfo| |writeInt8!| |mix| |sin| |balancedFactorisation| |iisech| - |categoryMode| |moebiusMu| |inc| |step| |readUInt8!| |e01bff| - |modularGcdPrimitive| |internalZeroSetSplit| |extractProperty| |cos| - |dihedralGroup| |antisymmetricTensors| |symbol?| |say| - |createMultiplicationMatrix| |elem?| |car| |iomode| |infieldint| - |associates?| |tan| |OMgetEndObject| |matrixGcd| |getRef| |bsolve| - |s15aef| |internalInfRittWu?| |zag| |stoseInvertibleSetreg| - |rightPower| |cot| |blue| |cCosh| |s18acf| |commaSeparate| - |putProperties| |monomials| |mkIntegral| |generic| |sturmSequence| - |sec| |factorAndSplit| |module| |horizConcat| |mapUnivariateIfCan| - |littleEndian| |rootRadius| |asechIfCan| |plus| |radicalSolve| - |clearTheIFTable| |csc| |setColumn!| |critMonD1| |scale| |reset| - |taylorIfCan| |rootsOf| |putGraph| |eigenvector| |mkPrim| |failed?| - |asin| |startTable!| |divisors| |antiCommutator| |clearTheSymbolTable| - |powerSum| |wrregime| |adjoint| |factorSquareFreeByRecursion| - |semiIndiceSubResultantEuclidean| |acos| |unary?| |cAcosh| - |principalIdeal| |write| |real?| |updatD| |flexibleArray| - |leadingCoefficientRicDE| |times| |rowEchelon| |negative?| |atan| - |iiacsch| |complexForm| |save| |cAcot| |solveLinearPolynomialEquation| - |rk4| |extendedSubResultantGcd| |ignore?| |doubleComplex?| - |trace2PowMod| |acot| |insertMatch| |swapColumns!| |padecf| - |physicalLength!| |leftOne| |leaf?| |sturmVariationsOf| |aQuadratic| - |inverseLaplace| |asec| |jvmStrict| |OMputString| |directory| - |setMaxPoints| |sort!| |exprToUPS| |infinityNorm| |virtualDegree| - |ceiling| |acsc| |tubeRadiusDefault| |finite?| |numberOfCycles| - |complete| |reorder| |palglimint| |imagj| |stFunc1| |monom| - |modularFactor| |sinh| |makeSketch| |ldf2vmf| |lowerCase!| - |viewDefaults| |csc2sin| |factorset| |prinpolINFO| |geometric| - |iidprod| |reflect| |rightRecip| |cosh| |getBadValues| |mapDown!| - |e02dcf| |radicalRoots| |createPrimitiveElement| |upperBound| - |typeForm| |edf2ef| |repeatUntilLoop| |setFormula!| |polyred| |tanh| - |initiallyReduce| |leaves| |categoryFrame| |tanh2trigh| - |extendedEuclidean| |top!| |drawComplex| |badValues| |common| - |rationalApproximation| |s18dcf| |polyRDE| |maxPoints3D| |coth| - |zero?| |iiasinh| |transcendent?| |polygon| |find| |lazyPrem| - |listOfLists| |space| |pol| |zero| |cschIfCan| |sech| |constant| - |addiag| |copyInto!| |numberOfFractionalTerms| |constructor| - |OMgetEndError| |logGamma| |returnTypeOf| |printStatement| |relerror| - |reverse| |dimensionsOf| |csch| |userOrdered?| |extractPoint| - |setRow!| EQ |setProperties| |algebraicOf| |rk4f| |And| |typeList| - |rightAlternative?| |asinh| |hMonic| |getStream| |setsubMatrix!| - |OMconnectTCP| |aLinear| |exprToGenUPS| |cot2trig| |Or| |hermiteH| - |atanIfCan| |acosh| |open?| |mergeFactors| |parabolicCylindrical| - |purelyAlgebraic?| |triangular?| |bezoutResultant| |permutations| - |rootPower| |Not| |wordInGenerators| |lazyPremWithDefault| - |inHallBasis?| |atanh| |rightScalarTimes!| |leviCivitaSymbol| - |setCondition!| |minrank| |checkPrecision| |OMlistCDs| - |extractSplittingLeaf| |irreducibleRepresentation| |getGoodPrime| - |zeroMatrix| |acoth| |minPoints3D| |morphism| |setIntersection| - |semiSubResultantGcdEuclidean2| |leftNorm| |primaryDecomp| |index?| - |parametersOf| |linearPolynomials| |jvmIntegerConstantTag| |asech| - |exists?| |dmp2rfi| |collect| |jvmStatic| |e01bhf| |freeOf?| - |wronskianMatrix| |block| |listBranches| |OMopenFile| - |findConstructor| |fintegrate| |graphStates| |discriminant| - |closeComponent| |eulerPhi| |degreeSubResultantEuclidean| |normalForm| - |divideExponents| |mapCoef| |categories| |multiple| |isTimes| - |numberOfComposites| |irreducibleFactor| |readLine!| |close| |d01gaf| - |eyeDistance| |stirling2| |genericPosition| |applyQuote| |fractRagits| - |possiblyInfinite?| |prime?| |tracePowMod| |iFTable| |f01qcf| - |quotient| |algintegrate| |univariatePolynomials| |limitedIntegrate| - |leftRemainder| |range| |positiveRemainder| |elaboration| - |normalizeAtInfinity| |tableForDiscreteLogarithm| |display| - |uncouplingMatrices| |genericRightDiscriminant| |cdr| |domainTemplate| - |writeLine!| |OMgetEndAttr| |quotientByP| |cRationalPower| |maxPoints| - |rightQuotient| |e02dff| |sup| |critB| |f01rcf| |prepareSubResAlgo| - |smith| |monicDecomposeIfCan| |basisOfLeftAnnihilator| |debug| - |alphabetic?| |rightZero| |subscriptedVariables| |mvar| |mat| - |writeByte!| |resetAttributeButtons| |sin?| |solveRetract| D - |approximants| |rightTrace| |repeating| |factors| |isQuotient| - |brillhartTrials| |resultantReduitEuclidean| |setref| |extractIfCan| - |palgLODE| |dec| |iprint| |triangulate| |po| |e01bef| |symbolTableOf| - |finiteBound| |getOrder| |ramifiedAtInfinity?| |laguerre| |Lazard| - |input| |singularitiesOf| |retractable?| |torsion?| |varselect| |mdeg| - |simplify| |delete| |perspective| |totalGroebner| |maxRowIndex| - |oddintegers| |library| |dioSolve| |pointLists| |shrinkable| - |bothWays| |components| |cAsec| |elaborate| |fortranLogical| - |lagrange| |copy!| |messagePrint| |character?| |distance| - |halfExtendedSubResultantGcd1| |dmpToHdmp| |SturmHabicht| - |combineFeatureCompatibility| |ptree| |putProperty| |explicitEntries?| - |pr2dmp| |indiceSubResultantEuclidean| |generators| - |oneDimensionalArray| |ScanRoman| |sh| |height| |addPoint2| - |matrixConcat3D| |substitute| |sumOfKthPowerDivisors| |outputAsTex| - |OMgetAtp| |graeffe| |logpart| |linear| |psolve| |diagonalProduct| - |leftPower| |LyndonCoordinates| |bits| |cycleTail| |subspace| |set| - |rischDEsys| |usingTable?| |rightUnits| |cos2sec| |plot| |trapezoidal| - |roughUnitIdeal?| |knownInfBasis| |sinhcosh| |numberOfComponents| |xn| - |connectTo| |OMreadFile| |binaryFunction| |polynomial| - |removeIrreducibleRedundantFactors| |changeThreshhold| |lyndonIfCan| - |primPartElseUnitCanonical!| |definingPolynomial| |mkAnswer| |print| - |operation| |setAdaptive3D| |separate| |notelem| |OMconnOutDevice| - |pack!| |spherical| |tanQ| |f02ajf| RF2UTS |resolve| |localUnquote| - |presuper| |commutativeEquality| |stronglyReduced?| - |rootOfIrreduciblePoly| |multiEuclideanTree| |groebner?| |romberg| - |rule| |jacobiIdentity?| |cons| |cCsc| |collectUpper| |hcrf| - |algebraicVariables| |toseSquareFreePart| |replace| - |bezoutDiscriminant| |iicoth| |closed| |nary?| |mindegTerm| - |jvmLongConstantTag| |rightGcd| |bivariate?| |perfectNthRoot| |minPol| - |f02bjf| |linear?| |pmComplexintegrate| |numberOfNormalPoly| |front| - |exp1| |monicCompleteDecompose| |asecIfCan| |exteriorDifferential| - |bringDown| |irVar| |LiePoly| |rightRegularRepresentation| |ratpart| - |sylvesterSequence| |cfirst| |cyclicEntries| |readInt16!| - |sumOfDivisors| |selectsecond| |infix| |any?| |monomRDE| |whileLoop| - |writeBytes!| |e01sff| |createIrreduciblePoly| |splitConstant| |log10| - |jvmVolatile| |wordInStrongGenerators| |source| |cTan| |roman| - |computeCycleEntry| |mapdiv| |e02def| |elliptic?| |laplace| |infLex?| - |bitand| |prime| |symbolTable| |show| |s17adf| |symFunc| |c05adf| - |baseRDE| |trigs| |f2df| |bernoulli| |e02bbf| |bitior| |tanAn| - |matrix| |printTypes| |graphState| |realEigenvectors| - |zeroSetSplitIntoTriangularSystems| |monomialIntPoly| |leftGcd| |rank| - |chebyshevT| |extractClosed| |subResultantsChain| - |pushFortranOutputStack| |trace| |hasoln| |quoByVar| |radPoly| - |OMUnknownSymbol?| |moebius| |shift| |factorials| |nthRootIfCan| |ref| - |reify| |popFortranOutputStack| |target| |eigenvectors| - |stoseInvertibleSetsqfreg| |capacity| |listexp| |modifyPoint| |ranges| - |check| |upperCase| |Nul| |outputAsFortran| |leftZero| |nullary| - |s18aef| |LazardQuotient| |completeHermite| |musserTrials| - |nthExponent| |ode2| |FormatRoman| |represents| |duplicates| |s14baf| - |stFuncN| |setleft!| |constantOperator| |OMgetEndAtp| - |partialFraction| |rewriteIdealWithQuasiMonicGenerators| - |incrementKthElement| |fortranDouble| |splitSquarefree| |mainKernel| - |matrixDimensions| |expt| |properties| |jvmUTF8ConstantTag| - |positiveSolve| |enqueue!| |setTex!| |integral?| |options| - |clipPointsDefault| |derivationCoordinates| |unitNormal| |squareTop| - |setClipValue| |translate| |graphCurves| |stripCommentsAndBlanks| - |youngDiagram| |elliptic| |groebnerFactorize| |repeating?| |linGenPos| - |updateStatus!| |singular?| |e04ycf| |lists| |iiasin| - |functionIsFracPolynomial?| |reducedSystem| |sum| |nextPrime| - |diagonals| |iiperm| |setStatus| |leftMult| |bindings| - |numberOfImproperPartitions| |maxIndex| |subSet| |powers| |string| - |setEpilogue!| |more?| |cycleElt| |f01maf| |iiacot| |algDsolve| - |createPrimitiveNormalPoly| |rename!| |elseBranch| |weight| - |primextendedint| |bitLength| |isOpen?| |edf2fi| |setrest!| |f02axf| - |OMreceive| |modifyPointData| |associative?| |structuralConstants| - |iiexp| |sincos| |stronglyReduce| |lowerPolynomial| |leftUnits| - |remove!| |f01brf| |reducedForm| |inf| |simpleBounds?| |factorList| - |unitVector| |dmpToP| |makeUnit| |nodeOf?| |explogs2trigs| - |companionBlocks| |chiSquare1| |doubleResultant| |explicitlyFinite?| - |iiasech| |groebSolve| |d01gbf| |light| |simpson| |cAcsch| |d02cjf| - |ffactor| |setMaxPoints3D| |evenInfiniteProduct| |generalTwoFactor| - |generalizedContinuumHypothesisAssumed| |leftExactQuotient| |tanIfCan| - |vector| |f01qdf| |acoshIfCan| |setDifference| |orbits| - |useEisensteinCriterion| |directSum| |jordanAdmissible?| - |fortranTypeOf| |mapUp!| |differentiate| |s17dhf| - |stoseInternalLastSubResultant| |bytes| |cosIfCan| - |bivariatePolynomials| |factorGroebnerBasis| |comp| |extension| - |cAtan| |sort| |getExplanations| |f04mbf| |OMReadError?| |merge!| - |resetBadValues| |super| |debug3D| |lyndon| |complexEigenvalues| - |findBinding| |pushuconst| |position!| |decomposeFunc| |d01akf| - |subResultantChain| |parseString| |ricDsolve| |airyBi| |coth2trigh| - |random| |partition| |setPredicates| |chebyshevU| |getlo| - |infieldIntegrate| |newLine| |symbol| |dequeue| |f2st| - |startTableGcd!| |polarCoordinates| |leadingExponent| |qfactor| - |gramschmidt| |fracPart| |expression| |lSpaceBasis| |fi2df| |sub| - |hspace| |cartesian| |iicsch| |screenResolution| |cAsin| |index| - |integer| |setMinPoints3D| |initializeGroupForWordProblem| |lifting1| - |scan| |content| |totalDifferential| |root?| |permutationGroup| - |sinh2csch| |iiatanh| |one?| |option?| |loopPoints| |condition| - |diagonal?| |alternative?| |monomialIntegrate| |nextSubsetGray| - |triangularSystems| |idealiserMatrix| |shape| |iibinom| |polCase| - |cyclic?| |meshPar1Var| |createGenericMatrix| |pair| |addMatch| - |iicsc| |splitDenominator| |unit| |quasiMonicPolynomials| - |coordinates| |returns| |BasicMethod| |f02aff| |pointSizeDefault| - |whitePoint| |nullary?| |useEisensteinCriterion?| |cLog| |s17akf| - |polyPart| |readIfCan!| |harmonic| |setPoly| |hyperelliptic| - |lastSubResultantEuclidean| |jvmInterface| |floor| |commutative?| - |simpsono| |region| |physicalLength| |ode| |output| |innerint| - |deepExpand| |pushdterm| |logIfCan| |mainContent| |clearTable!| - |arrayStack| |subresultantSequence| |stoseInvertible?| |e02gaf| - |reduceLODE| F |setleaves!| |push| |zeroVector| |viewPosDefault| - |exprHasWeightCosWXorSinWX| |iiacosh| |rangePascalTriangle| - |linearPart| |integers| |leftTraceMatrix| BY |univariateSolve| - |quasiRegular| |s14abf| |integralMatrix| |multiple?| |subset?| - |redmat| |invertibleElseSplit?| |plotPolar| |s17acf| |mappingAst| - |BumInSepFFE| |OMencodingBinary| |gbasis| |ScanFloatIgnoreSpacesIfCan| - |repSq| |exponent| |predicate| |pdf2df| |probablyZeroDim?| - |alphanumeric| |nextsubResultant2| |sparsityIF| |showSummary| |iiacos| - |youngGroup| |generalizedEigenvectors| |hessian| |rubiksGroup| - |makeCrit| |null?| |lazyGintegrate| |f02abf| |init| |isPower| - |endOfFile?| |primeFrobenius| |unexpand| |nextNormalPoly| |makeCos| - |phiCoord| |completeSmith| |box| |delete!| |btwFact| |equiv| - |lastSubResultant| |toseInvertibleSet| |algebraicCoefficients?| - |fibonacci| |c06ekf| |Lazard2| NOT |sayLength| |infRittWu?| |size| - |genericLeftTraceForm| |merge| |moduloP| |basis| |hclf| |besselK| - |lowerCase?| OR |showAttributes| |graphImage| |quoted?| - |palginfieldint| |c05nbf| |bigEndian| |generalSqFr| |branchPoint?| - |cAtanh| |exQuo| AND |genericRightTraceForm| |lowerBound| - |numFunEvals3D| |patternMatch| |changeBase| |c06fuf| |triangSolve| - |kroneckerDelta| |leftUnit| |setFieldInfo| |doubleRank| LODO2FUN - |currentEnv| |fortranInteger| |leastPower| |problemPoints| - |raisePolynomial| |open| |acscIfCan| |outputMeasure| |bracket| - |iitanh| |d01anf| |function| |readLineIfCan!| |singularAtInfinity?| - |inGroundField?| |maxdeg| |swap| |clipBoolean| |d01asf| |nilFactor| - |laguerreL| |parameters| |d01aqf| |cosSinInfo| |binaryTree| - |multinomial| |critM| |rationalPoint?| |returnType!| |epilogue| - |permutation| |f04asf| |bipolar| |splitLinear| |iisin| |coerceS| - |isImplies| |algebraicDecompose| |wreath| |normalise| |f02fjf| - |fortranLinkerArgs| |e02ddf| |null| |loadNativeModule| |normalDenom| - |root| |mainMonomial| |operations| |tanh2coth| |palgint| |getOperands| - |modulus| |algebraic?| |roughEqualIdeals?| |not| |s21baf| |idealiser| - |KrullNumber| |rootOf| |node| |heap| |isExpt| |mainDefiningPolynomial| - |characteristicSet| |member?| |and| |qroot| |yellow| |palgRDE0| - |magnitude| |binary| |nextsousResultant2| |s20adf| |initials| - |appendPoint| |rombergo| |ruleset| |or| |nextSublist| |cyclic| - |lastSubResultantElseSplit| |showScalarValues| * |factorSFBRlcUnit| - |monomial?| |createLowComplexityNormalBasis| |extendedResultant| - |composite| |quatern| |xor| |sinIfCan| |getMultiplicationMatrix| - |FormatArabic| |rur| |category| |elements| |unrankImproperPartitions0| - |nonSingularModel| |certainlySubVariety?| |increase| |case| |vedf2vef| - |attributeData| |printHeader| |normalizeIfCan| |outerProduct| |domain| - |rectangularMatrix| |clearDenominator| |padicallyExpand| |legendre| - |s19abf| |suchThat| |Zero| |halfExtendedResultant1| - |leftMinimalPolynomial| |e02daf| |preprocess| |package| - |absolutelyIrreducible?| |stosePrepareSubResAlgo| |mathieu11| - |evenlambert| |s13adf| |One| |sumSquares| |OMgetType| - |nthFractionalTerm| |critMTonD1| = |outputFixed| |OMputBVar| - |deleteProperty!| |pair?| |lcm| |elRow1!| |minGbasis| |mesh?| |empty?| - |multiplyExponents| |rootPoly| |cTanh| - |removeRoughlyRedundantFactorsInContents| |column| |cyclicCopy| - |primitivePart!| |f07fef| |internalLastSubResultant| |bezoutMatrix| < - |key?| |explicitlyEmpty?| |completeEval| |prinb| |append| - |invmultisect| |coerce| |OMunhandledSymbol| |reseed| |diagonal| - |rotatey| > |constantLeft| |OMlistSymbols| |doublyTransitive?| - |dimension| |gcd| |children| |construct| |birth| |alphanumeric?| - |pseudoRemainder| |tanNa| |dictionary| <= |addMatchRestricted| - |denominator| |setLegalFortranSourceExtensions| |fTable| |rules| - |false| |elt| |minimize| |representationType| |d01apf| - |expenseOfEvaluation| >= |iisec| |euclideanSize| |symmetricGroup| - |semiSubResultantGcdEuclidean1| |linearDependenceOverZ| - |solveLinearlyOverQ| |rightTrim| |aspFilename| |leftLcm| - |rewriteIdealWithRemainder| |makeGraphImage| |d03faf| - |toseLastSubResultant| |stoseInvertibleSet| |leftQuotient| |safeFloor| - |leftTrim| |HenselLift| |adaptive| |addmod| |f02aaf| |stFunc2| - |leadingIndex| |Ei| |tableau| |f01ref| |complexLimit| |addPointLast| - |bfKeys| |rightTraceMatrix| + |optional| |tan2cot| |f04qaf| - |getSyntaxFormsFromFile| |parents| |iteratedInitials| |shiftRight| - |GospersMethod| |terms| |jvmFieldrefConstantTag| |mr| - |meshPar2Var| - |shiftLeft| |realElementary| |subresultantVector| |frobenius| - |LyndonWordsList1| |constantKernel| |jvmAbstract| |linears| - |principalAncestors| / |stiffnessAndStabilityOfODEIF| |hasPredicate?| - |d03eef| |viewSizeDefault| |choosemon| |lift| |status| |iipow| - |innerEigenvectors| |f04arf| |mainVariable| |comment| |d01bbf| - |sechIfCan| |normDeriv2| |invertibleSet| |reduce| |viewDeltaXDefault| - |createNormalElement| |leftScalarTimes!| |irreducible?| - |scanOneDimSubspaces| |imagi| |numer| |every?| |pdct| |pleskenSplit| - |diophantineSystem| |flagFactor| |e02ahf| |before?| - |basisOfLeftNucleus| |scopes| |denom| |maxColIndex| |mainForm| - |interpretString| |setLabelValue| |invmod| |denomLODE| |vectorise| - |component| |iilog| |lexTriangular| |completeHensel| |tablePow| - |removeSquaresIfCan| F2FG |fixedDivisor| |integralBasis| |iisqrt2| - |basisOfLeftNucloid| |fortranReal| |univariatePolynomial| |pi| - |removeSinSq| |Aleph| |separateFactors| |lookup| |OMputEndAttr| - |vertConcat| |semiResultantReduitEuclidean| |complexSolve| - |makeSeries| |OMParseError?| |inRadical?| |infinity| |lookupFunction| - |ode1| |OMsetEncoding| |createThreeSpace| |inverse| |c02agf| - |weakBiRank| |minus!| |singRicDE| |f02awf| |central?| - |SturmHabichtMultiple| |split| |bumprow| |expressIdealMember| - |insertionSort!| |numberOfOperations| |exptMod| |charthRoot| - |brillhartIrreducible?| |host| |factorSquareFreePolynomial| Y - |rootBound| |connect| |just| |branchPointAtInfinity?| |setelt| - |leftFactorIfCan| |lifting| |c06gqf| |kernel| |findCycle| - |homogeneous?| |routines| |cothIfCan| |list?| |lfextlimint| - |symmetricSquare| |s19aaf| |stirling1| |OMgetInteger| - |complexNumericIfCan| |list| |factorial| |read!| |contract| - |readable?| |subQuasiComponent?| |showAllElements| - |selectSumOfSquaresRoutines| |lazyPseudoRemainder| |numerator| - |solveLinearPolynomialEquationByFractions| |deepestInitial| |draw| - |coshIfCan| |definingInequation| |determinant| |computePowers| - |decompose| |prefixRagits| |headReduced?| |rdHack1| - |genericRightMinimalPolynomial| |inverseColeman| |copies| - |numberOfVariables| |RemainderList| |rk4qc| |transcendenceDegree| - |inverseIntegralMatrix| |makeprod| |resultantReduit| |finiteBasis| - |complex?| |hue| |hypergeometric0F1| |lambert| |size?| |OMgetObject| - |OMgetString| |recur| |integralAtInfinity?| |seriesSolve| - |enterInCache| |outputBinaryFile| |solid| |zeroDim?| |f02xef| |s17aef| - |sdf2lst| |f02wef| |ideal| |result| |perfectNthPower?| - |currentCategoryFrame| |makeObject| |partitions| |plus!| |ListOfTerms| - |pointColorPalette| |minRowIndex| |halfExtendedSubResultantGcd2| - |powern| |Gamma| |airyAi| |resetVariableOrder| |recolor| |coef| - |encodingDirectory| |tanintegrate| |label| |rightDivide| |stack| - |getOperator| |clipParametric| |s17aff| |genericRightTrace| - |OMgetEndBVar| |signAround| |s18def| |possiblyNewVariety?| |delay| - |points| |fractionPart| |decreasePrecision| |prepareDecompose| - |constDsolve| |semiResultantEuclideannaif| |f07aef| - |lazyIrreducibleFactors| |integralLastSubResultant| |charClass| - |mapMatrixIfCan| |iiasec| |complement| |curve?| |double?| - |subResultantGcdEuclidean| |currentScope| |blankSeparate| |meatAxe| - |resetNew| |minset| |secIfCan| |irDef| |unravel| |noValueMode| - |associatedEquations| |selectFiniteRoutines| |showAll?| |inrootof| - |functorData| |traceMatrix| |paraboloidal| |f02aef| |setClosed| - |rationalPoints| |enumerate| |ddFact| |discreteLog| |vark| |d01alf| - |fmecg| |d02ejf| |parts| |symmetricDifference| |mainCharacterization| - |PollardSmallFactor| |computeBasis| |checkRur| |ScanArabic| - |permanent| |remove| |fixPredicate| |quasiAlgebraicSet| - |cyclicParents| |rightExtendedGcd| |pole?| |cCoth| |corrPoly| - |conjugate| |exprHasAlgebraicWeight| |mainVariable?| |leftDivide| - |rational?| |multiEuclidean| |listOfMonoms| |rationalIfCan| |getGraph| - |entry| |vspace| |norm| |last| |option| |continuedFraction| - |setTopPredicate| |monomRDEsys| |trapezoidalo| |sample| - |numberOfFactors| |duplicates?| |s17ahf| |assoc| |asimpson| - |unprotectedRemoveRedundantFactors| |expenseOfEvaluationIF| - |coerceImages| |scalarTypeOf| |unitNormalize| |removeCoshSq| |factor1| - |bumptab1| |degree| |updatF| |coefficient| |qinterval| |mathieu22| - |byteBuffer| |quadratic?| |goto| |useSingleFactorBound| |positive?| - |expintegrate| |cn| |s17dcf| |untab| |identityMatrix| |laurentRep| - |OMwrite| |even?| |internal?| |localAbs| |leftReducedSystem| |split!| - |OMgetFloat| |factor| |mainMonomials| |createNormalPrimitivePoly| - |setchildren!| |row| |makeTerm| |upperCase?| |datalist| |OMclose| - |ParCondList| |sqrt| |mesh| |uniform01| |jvmClassConstantTag| - |fglmIfCan| |monicModulo| |jvmPublic| |padicFraction| |retractIfCan| - |univariatePolynomialsGcds| |gradient| |semiDiscriminantEuclidean| - |real| |graphs| |leader| |deref| |upDateBranches| |rootSplit| - |constantOpIfCan| |ord| |rightDiscriminant| |distribute| - |scalarMatrix| |mulmod| |imag| |showArrayValues| |bounds| |reindex| - |OMopenString| |polar| |adaptive3D?| |directProduct| |normalElement| - |palgintegrate| |child| |bat1| |leadingBasisTerm| |generator| - |var1Steps| |hexDigit?| |numericalIntegration| |mainVariables| - |hitherPlane| |top| |basisOfRightAnnihilator| |OMputEndError| - |setButtonValue| |shanksDiscLogAlgorithm| |var1StepsDefault| - |balancedBinaryTree| |zeroDimPrimary?| |mightHaveRoots| |iicos| - |viewport3D| |ratPoly| |continue| |submod| |UpTriBddDenomInv| - |supRittWu?| |brace| |randnum| |strongGenerators| |gderiv| |concat!| - |normalDeriv| |cAsech| |basisOfNucleus| |f04axf| |s14aaf| - |realEigenvalues| |destruct| |radicalSimplify| |rischNormalize| - |maximumExponent| |zerosOf| |cotIfCan| |setImagSteps| |schema| - |lexico| |lllp| |solid?| |characteristicSerie| |intcompBasis| |void| - |mathieu24| |backOldPos| |cAcos| |nand| |integerIfCan| |heapSort| - |restorePrecision| |LagrangeInterpolation| |primextintfrac| |crest| - |monicRightDivide| |pattern| |nativeModuleExtension| |readByte!| - |subResultantGcd| |pop!| |cycleLength| |numericalOptimization| |atom?| - |aQuartic| |generalizedInverse| |f04faf| |genericRightNorm| |sPol| - |conjunction| |signatureAst| |ScanFloatIgnoreSpaces| UTS2UP |dfRange| - |denomRicDE| |leastMonomial| |OMputApp| |monomial| |c06fpf| GF2FG - |cSinh| |coefficients| |shufflein| |newTypeLists| |rightNorm| |d03edf| - |unrankImproperPartitions1| |multivariate| |getCurve| |exponential1| - |pow| |identitySquareMatrix| |deepestTail| |operators| |OMgetEndApp| - |optimize| |iroot| |prolateSpheroidal| |ODESolve| |fixedPoints| - |variables| |rightRank| |message| |iicot| |lfinfieldint| |satisfy?| - |selectMultiDimensionalRoutines| |mirror| |delta| |create| - |viewport2D| |iicosh| |dark| |highCommonTerms| |expPot| |arbitrary| - |difference| |goodPoint| |compdegd| |functionIsContinuousAtEndPoints| - |tRange| |generic?| |removeRedundantFactorsInPols| - |computeCycleLength| |mergeDifference| |optAttributes| |charpol| - |node?| |getMeasure| |rootProduct| |showFortranOutputStack| - |alphabetic| |primeFactor| |reduceByQuasiMonic| |initiallyReduced?| - |socf2socdf| |useNagFunctions| |rotatez| |cardinality| - |minimumExponent| |minColIndex| |antiCommutative?| |interpolate| - |rowEchelonLocal| |binaryTournament| |rightMinimalPolynomial| - |tensorProduct| |constant?| |close!| |sin2csc| |sortConstraints| - |deleteRoutine!| |linearlyDependentOverZ?| |groebnerIdeal| |taylor| - |setPrologue!| |extractTop!| |call| |trigs2explogs| - |jvmNameAndTypeConstantTag| |primitivePart| |e04gcf| |closedCurve| - |skewSFunction| |formula| |aromberg| |dimensions| |OMputBind| - |laurent| |nthFactor| |linearMatrix| |univariate?| |ldf2lst| - |linearlyDependent?| |plusInfinity| |LowTriBddDenomInv| |multiset| - |pureLex| |redPo| |pushup| |lowerCase| |puiseux| |LiePolyIfCan| - |mantissa| |e02zaf| |conical| |e01baf| |pointColorDefault| |e04naf| - |minusInfinity| |getProperties| |fixedPoint| |mkcomm| |lambda| - |shiftRoots| |systemCommand| |poisson| |lllip| |showClipRegion| - |sorted?| |imagJ| |contours| |coHeight| |branchIfCan| |initTable!| - |eisensteinIrreducible?| |complexIntegrate| |inv| |setValue!| - |drawStyle| |setPosition| |insertTop!| |fullDisplay| |setUnion| |zoom| - |numberOfDivisors| |expandTrigProducts| |leftRegularRepresentation| - |nrows| |OMgetAttr| |bat| |ground?| |unitsColorDefault| |digit| - |algSplitSimple| |push!| |setScreenResolution| |rotate| - |numberOfComputedEntries| |Frobenius| |numberOfHues| |printCode| - |ncols| |ground| |stoseIntegralLastSubResultant| |e02agf| |normal| - |Ci| |complexZeros| |surface| |fortranLiteralLine| |arity| |diag| - |setOrder| |fprindINFO| |perfectSquare?| |squareFreeLexTriangular| - |leadingMonomial| |primPartElseUnitCanonical| |sts2stst| |type| - |integralMatrixAtInfinity| |countRealRootsMultiple| - |increasePrecision| |areEquivalent?| |quadraticNorm| |s21bdf| |df2mf| - |indicialEquationAtInfinity| |startTableInvSet!| - |selectNonFiniteRoutines| |leadingCoefficient| |antisymmetric?| - |constantIfCan| |printStats!| |symmetricPower| |subTriSet?| - |OMgetBVar| |semiResultantEuclidean1| |testDim| |voidMode| |swapRows!| - |primitiveMonomials| |enterPointData| |clearFortranOutputStack| - |optpair| |isPlus| |genericLeftDiscriminant| - |jvmInterfaceMethodConstantTag| |extract!| |viewPhiDefault| - |linearElement| |precision| |normalizedDivide| |stopTable!| |head| - |reductum| |radicalOfLeftTraceForm| |startStats!| |makeEq| |separant| - |collectUnder| |df2st| |fortranComplex| |setright!| |cylindrical| - |closedCurve?| |clikeUniv| |makeFR| - |dimensionOfIrreducibleRepresentation| |OMputFloat| |mainCoefficients| - |ip4Address| |prologue| |rem| |entry?| |pushNewContour| |dAndcExp| - |setStatus!| |removeCosSq| |cSec| |decimal| |OMsupportsCD?| - |leadingSupport| |d01ajf| |leftCharacteristicPolynomial| |quo| |quote| - |twoFactor| |minIndex| |unvectorise| |char| |assign| |key| |f02adf| - |eof?| |colorDef| |measure| |abelianGroup| |partialDenominators| - |OMgetVariable| |viewZoomDefault| |semicolonSeparate| |property| - |lfintegrate| |pmintegrate| |var2Steps| |rightRankPolynomial| - |variable?| |legendreP| |div| |reducedQPowers| |algebraicSort| - |Vectorise| |rischDE| |selectOrPolynomials| |filename| |lieAlgebra?| - |solveid| |supDimElseRittWu?| |symmetricRemainder| |s15adf| |exquo| - |derivative| |factorByRecursion| |pushucoef| |extensionDegree| - |integralDerivationMatrix| |makeResult| |sumOfSquares| - |factorsOfDegree| |newReduc| |readInt32!| ~= |readInt8!| |rCoord| - |decrease| |argumentList!| |rquo| |parse| |constantToUnaryFunction| - |argumentListOf| |SturmHabichtCoefficients| |scripted?| - |patternVariable| |primes| |#| |clipWithRanges| |weierstrass| - |nonLinearPart| |Si| |axesColorDefault| |complexNormalize| |clip| - |jvmDoubleConstantTag| |hasSolution?| |characteristic| ~ |bag| - |removeDuplicates!| |getButtonValue| |hconcat| |ratDsolve| |float| - |keys| |iterationVar| |generateIrredPoly| |OMputVariable| - |partialNumerators| |semiResultantEuclidean2| |OMputObject| |rspace| - |setLength!| |pascalTriangle| |cycleEntry| |droot| |bit?| |search| - |integralCoordinates| |weighted| |leftRecip| |leftFactor| - |selectfirst| |deriv| |subtractIfCan| |generalPosition| - |viewWriteAvailable| |critpOrder| |s17def| |binomial| |changeMeasure| - |integer?| |pastel| |firstDenom| |/\\| |exponentialOrder| - |palgextint0| |intChoose| |extendIfCan| |wholePart| |fortran| - |shuffle| |s18adf| |laurentIfCan| |bivariateSLPEBR| |part?| |any| - |\\/| |tryFunctionalDecomposition?| |compose| |applyRules| - |intermediateResultsIF| |back| |acotIfCan| |zeroOf| |integral| - |trivialIdeal?| |subNode?| |elRow2!| |se2rfi| |OMgetError| - |printInfo!| |depth| |wholeRadix| |unknownEndian| - |setAttributeButtonStep| |shade| |getConstant| |tanhIfCan| |id| - |hdmpToP| |nullity| |normalize| |stoseInvertible?reg| - |indiceSubResultant| |showIntensityFunctions| - |createMultiplicationTable| |point?| |sqfrFactor| |reverseLex| |dom| - |lo| |diff| |besselI| |imagI| |changeWeightLevel| |red| |acosIfCan| - |figureUnits| |expandPower| |plenaryPower| |showTheRoutinesTable| - |separateDegrees| |lyndon?| |redPol| |rootDirectory| |xCoord| GE - |s21bcf| |bright| |mindeg| |exactQuotient!| |nil?| |convert| - |dihedral| |idealSimplify| |divideIfCan!| |lprop| |neglist| GT - |iiacoth| |changeNameToObjf| |atanhIfCan| |setRealSteps| |quasiMonic?| - |nextPrimitiveNormalPoly| |quadraticForm| |basisOfCentroid| |odd?| LE - |argscript| |pToDmp| |ptFunc| |recoverAfterFail| |eval| |pToHdmp| - |multisect| |s19adf| |discriminantEuclidean| |bfEntry| - |withPredicates| |lintgcd| LT |quartic| |chvar| |conjugates| - |exponential| |realRoots| |interpret| |title| |frst| - |selectIntegrationRoutines| |expextendedint| |qelt| |setprevious!| - |signature| |latex| |abs| |iisinh| |symmetric?| |leadingTerm| - |purelyAlgebraicLeadingMonomial?| |primitive?| |compound?| |qsetelt| - |d02bhf| |gcdprim| |error| |edf2df| |sizeLess?| |inspect| |sinhIfCan| - |characteristicPolynomial| |splitNodeOf!| |select!| |df2fi| |gethi| - |xRange| |LyndonBasis| |optional?| |roughSubIdeal?| |validExponential| - |patternMatchTimes| |e| |overlap| |low| |empty| |removeZero| |yRange| - |less?| |elColumn2!| |script| |particularSolution| |bumptab| - |outputGeneral| |solveLinearPolynomialEquationByRecursion| - |approxSqrt| |swap!| |zRange| |asinhIfCan| |f02bbf| |constantRight| - |lazyPseudoDivide| |outputArgs| |htrigs| |c06gbf| |complexElementary| - |atoms| |karatsubaOnce| |map!| |makeYoungTableau| |transpose| - |relativeApprox| |autoReduced?| |doubleFloatFormat| |isList| - |acschIfCan| |setfirst!| |slash| |lineColorDefault| |qsetelt!| - |regularRepresentation| |weights| |exponents| |getIdentifier| |tex| - |basisOfMiddleNucleus| |lex| |write!| |e02ajf| |errorKind| |rotatex| - |pdf2ef| |interval| |linearForm| |conditionsForIdempotents| |jacobian| - |sequence| |supersub| |mapSolve| |UP2ifCan| |d02raf| |pushdown| - |clearTheFTable| |cap| |eulerE| |basisOfRightNucloid| |minPoints| - |degreePartition| |hasHi| |digit?| |monicLeftDivide| - |rewriteSetWithReduction| |e04ucf| |fill!| |midpoint| |unparse| - |entries| |elementary| |iiacsc| |moreAlgebraic?| |forLoop| |length| - |integrate| |jvmFloatConstantTag| |f04atf| |removeRedundantFactors| - |reduceBasisAtInfinity| |approxNthRoot| |normal01| |evaluateInverse| - |scripts| |s21bbf| |acsch| |fractionFreeGauss!| |eq| |redpps| - |simplifyExp| |powerAssociative?| |internalDecompose| - |makeFloatFunction| |firstNumer| |removeRedundantFactorsInContents| - |dot| |cond| |mapGen| |retract| |acothIfCan| |iter| - |fortranCompilerName| |compiledFunction| |OMgetBind| |baseRDEsys| - |permutationRepresentation| |c06frf| |presub| |tubeRadius| - |zeroDimPrime?| |product| |basisOfCenter| |colorFunction| - |OMputSymbol| |doubleDisc| |ellipticCylindrical| |outputAsScript| - |isobaric?| |fortranCarriageReturn| |nextIrreduciblePoly| - |pseudoDivide| |byte| |f04jgf| |linearAssociatedLog| |belong?| |genus| - |primintfldpoly| |flatten| |external?| |disjunction| - |reciprocalPolynomial| |cSech| |getProperty| |fixedPointExquo| |coord| - |pquo| |bombieriNorm| |monicDivide| |e01daf| |paren| |s13acf| - |rational| |palgRDE| |shallowExpand| |solve1| |getMatch| |imagk| - |pile| |substring?| |cCot| |generalInfiniteProduct| |getCode| - |OMputError| |minimumDegree| |leftDiscriminant| |OMencodingSGML| - |complexEigenvectors| |indicialEquation| |linearAssociatedOrder| - |tryFunctionalDecomposition| |replaceKthElement| |externalList| |isOp| - |realZeros| |bipolarCylindrical| |genericLeftTrace| |interactiveEnv| - |subst| |rdregime| |exp| |e04jaf| |Beta| |reducedDiscriminant| - |suffix?| |anticoord| |besselY| |Hausdorff| |exportedOperators| - |c06gsf| |squareMatrix| |cot2tan| |Is| |cyclicSubmodule| |gensym| - |isNot| |conditionP| |coerceP| |subNodeOf?| |numberOfPrimitivePoly| - |anfactor| |contains?| |polyRicDE| |viewWriteDefault| |map| |tan2trig| - |midpoints| |factorFraction| |prefix?| |chineseRemainder| |froot| - |viewThetaDefault| |HermiteIntegrate| |var2StepsDefault| - |primitiveElement| |alternating| |zCoord| |chiSquare| |int| - |hasTopPredicate?| |move| |sqfree| |divisorCascade| |seed| - |environment| |slex| |vconcat| |oblateSpheroidal| |setErrorBound| - |allRootsOf| |outlineRender| |bubbleSort!| |objects| |OMputAttr| - |besselJ| |showTheFTable| |numberOfMonomials| |prinshINFO| |transform| - |npcoef| |subCase?| |base| |refine| UP2UTS |rst| - |squareFreePolynomial| |nextItem| |d02kef| |lhs| |yCoord| |s13aaf| - |nsqfree| |sech2cosh| |prindINFO| |f01rdf| |df2ef| - |rightCharacteristicPolynomial| |showRegion| |createRandomElement| - |rhs| |revert| |rightUnit| |differentialVariables| |binomThmExpt| - |nextColeman| |subscript| |mainSquareFreePart| |build| - |defineProperty| |eq?| |yCoordinates| |thenBranch| |leftAlternative?| - |string?| |normal?| |collectQuasiMonic| |infix?| |lighting| - |iflist2Result| |fortranDoubleComplex| |totolex| |resultantnaif| - |medialSet| |width| |cycle| |useSingleFactorBound?| |karatsubaDivide| - |mask| |consnewpol| |univcase| |rightLcm| |sizeMultiplication| |lazy?| - |d02gaf| |lfextendedint| |LyndonWordsList| |LazardQuotient2| |concat| - |totalDegree| |overlabel| |topPredicate| |compactFraction| - |mainExpression| |log2| |processTemplate| |rk4a| |cubic| |axes| - |hermite| |SFunction| |jvmSuper| |hostByteOrder| |quasiComponent| - |makeop| |asinIfCan| |extractIndex| |coefChoose| |quadratic| - |solveLinear| |taylorRep| |kovacic| |addPoint| |makeVariable| - |makeSUP| |fractRadix| |countable?| |lepol| |OMUnknownCD?| |sec2cos| - |subMatrix| |table| |stop| |child?| |bandedJacobian| |octon| - |normFactors| |conjug| |obj| |checkForZero| |extendedIntegrate| - |distdfact| |contractSolve| |PDESolve| |new| |basisOfRightNucleus| - |generalizedEigenvector| |euclideanGroebner| |nthr| |convergents| - |dim| |ravel| |cache| |nthExpon| |removeSuperfluousCases| - |superscript| |resultant| |f04adf| |coleman| |ocf2ocdf| - |seriesToOutputForm| |bottom!| |solve| |reshape| |e02akf| - |goodnessOfFit| |computeInt| |outputForm| |modTree| |previous| - |llprop| |nextNormalPrimitivePoly| |makeViewport2D| |critBonD| - |element?| |s17ajf| |nlde| |normInvertible?| |hdmpToDmp| |janko2| - |monic?| |e02bdf| |lazyPquo| |OMgetEndBind| |prem| |e04fdf| |s18aff| - |simplifyLog| |jvmFinal| |sequences| |bandedHessian| |insert!| - |halfExtendedResultant2| |componentUpperBound| - |nextLatticePermutation| |quasiRegular?| |f07adf| |prod| |setEmpty!| - |drawComplexVectorField| |c06ebf| |OMputEndBVar| |fortranCharacter| - |parametric?| |rightFactorIfCan| |innerSolve1| |c06fqf| |infinite?| - |intensity| |gcdcofact| |cyclicGroup| |dn| |clearCache| |cExp| - |jvmStringConstantTag| |RittWuCompare| |purelyTranscendental?| - |principal?| |alternatingGroup| |reverse!| |monicRightFactorIfCan| - |update| |changeName| |mapmult| |mapUnivariate| |specialTrigs| - |createZechTable| |inconsistent?| |genericLeftMinimalPolynomial| - |stoseInvertible?sqfreg| |s19acf| |crushedSet| |rangeIsFinite| - |randomLC| |buildSyntax| |divergence| |tail| |cosh2sech| - |noncommutativeJordanAlgebra?| |qualifier| |sizePascalTriangle| - |minordet| |jvmProtected| |makingStats?| |failed| |groebner| - |ReduceOrder| |makeMulti| |c05pbf| |csch2sinh| |left| |lquo| - |sylvesterMatrix| |headAst| |inputBinaryFile| |dominantTerm| - |removeDuplicates| |torsionIfCan| |quotedOperators| |log| |unknown| - |removeSuperfluousQuasiComponents| |singleFactorBound| |right| - |linkToFortran| |mathieu12| |stopTableGcd!| |partialQuotients| - |cycleRagits| |nil| |accuracyIF| |divisor| |c06gcf| |nonQsign| - |aCubic| |setnext!| |safeCeiling| |definingEquations| |isOr| - |viewDeltaYDefault| |bitTruth| |prevPrime| |position| |indices| - |invertIfCan| |UnVectorise| |order| |tValues| |nextPartition| - |shallowCopy| |iidsum| |curveColor| |OMputEndBind| |uniform| - |associatorDependence| |associator| |setAdaptive| |OMmakeConn| |tree| - |direction| |stiffnessAndStabilityFactor| |OMputInteger| |iitan| - |e02bef| |approximate| |jokerMode| |OMputEndObject| |cup| |mpsode| - |unitCanonical| |leftRank| |setVariableOrder| |increment| |curry| - |addBadValue| |second| |complex| |expr| |palglimint0| |resize| - |powmod| |imagE| |cCos| |safetyMargin| |readUInt32!| |rowEch| |imagK| - |removeZeroes| |third| SEGMENT |totalLex| |numFunEvals| - |unaryFunction| |isAnd| |c06eaf| |units| |reducedContinuedFraction| - |fullPartialFraction| |li| |d01amf| |OMencodingUnknown| - |stoseSquareFreePart| |extractBottom!| |opeval| |binarySearchTree| - |rroot| |lieAdmissible?| |wordsForStrongGenerators| |rightOne| - |countRealRoots| |biRank| |someBasis| |palgLODE0| |stopTableInvSet!| - |dual| |intersect| |OMsend| |identification| |cyclotomicDecomposition| - |irCtor| |style| |inR?| |variable| |zeroSquareMatrix| |An| - |rootKerSimp| |iifact| |coercePreimagesImages| |palgextint| - |mainPrimitivePart| |totalfract| |cyclicEqual?| |numeric| |traverse| - |copy| |iterators| |irForm| |groebgen| |testModulus| - |radicalEigenvectors| |insertBottom!| |rootNormalize| |expIfCan| - |radical| |twist| |cSin| |middle| |trueEqual| |polygamma| - |factorOfDegree| |selectAndPolynomials| |code| - |resultantEuclideannaif| |maxrank| |OMgetApp| - |semiDegreeSubResultantEuclidean| |exprHasLogarithmicWeights| - |mainValue| |reduced?| |basicSet| |orbit| |degreeSubResultant| - |rewriteSetByReducingWithParticularGenerators| |radicalEigenvalues| - |changeVar| |radicalEigenvector| |fortranLiteral| |linearDependence| - |multMonom| |extend| |cPower| |iExquo| |setelt!| |equation| - |irreducibleFactors| |round| |f01mcf| |divideIfCan| |e02adf| - |removeRoughlyRedundantFactorsInPol| |transcendentalDecompose| - |getPickedPoints| |lazyPseudoQuotient| |listConjugateBases| - |meshFun2Var| |readBytes!| |exactQuotient| |autoCoerce| |test| - |d01fcf| |selectOptimizationRoutines| |bernoulliB| |match?| |times!| - |dequeue!| |exprToXXP| |inputOutputBinaryFile| |listYoungTableaus| - |isConnected?| |clipSurface| |composites| |lp| |pointPlot| |coth2tanh| - |isAtom| |invertible?| |compBound| |startPolynomial| |unmakeSUP| - |tubePlot| |incr| |elaborateFile| |simplifyPower| |rootSimp| - |headReduce| |realSolve| |next| |callForm?| |laplacian| |postfix| |hi| - |squareFreePrim| |cscIfCan| |minimalPolynomial| |critT| |f01bsf| - |kmax| |rowEchLocal| |normalizedAssociate| |att2Result| |modularGcd| - |innerSolve| |equality| |listLoops| |power!| |OMputEndAtp| - |generalLambert| |prefix| |newSubProgram| |truncate| |qqq| |arguments| - |factorsOfCyclicGroupSize| |taylorQuoByVar| |setProperty| - |noLinearFactor?| |largest| |rewriteIdealWithHeadRemainder| - |curryRight| |setMinPoints| ** |double| |e04dgf| |distFact| - |imaginary| |resultantEuclidean| |high| |leadingIdeal| |e01sef| - |nextPrimitivePoly| |stoseLastSubResultant| |name| - |showTheSymbolTable| |numericIfCan| |cAcsc| |e01sbf| |f04mcf| - |nullSpace| |level| |OMbindTCP| |noKaratsuba| |body| - |numberOfChildren| |OMread| |saturate| |value| |karatsuba| - |eigenMatrix| |orthonormalBasis| |cycleSplit!| |ipow| |measure2Result| - |eigenvalues| |systemSizeIF| |packageCall| |wholeRagits| - |outputSpacing| FG2F |e02bcf| |outputList| |getMultiplicationTable| - |rightRemainder| |jvmTransient| |OMserve| |members| - |numberOfIrreduciblePoly| |zeroDimensional?| |coordinate| - |getDatabase| |selectPDERoutines| |myDegree| |rightExactQuotient| - |setOfMinN| |scaleRoots| |lexGroebner| |nothing| - |setScreenResolution3D| |associatedSystem| |oddInfiniteProduct| - |binding| |symmetricTensors| |declare!| |ran| |jvmSynchronized| - |lazyIntegrate| |polynomialZeros| |complementaryBasis| - |coerceListOfPairs| |commonDenominator| |sn| |selectODEIVPRoutines| - |limitedint| |toseInvertible?| |max| |generate| |primintegrate| - |e02aef| |rotate!| |internalSubPolSet?| |OMcloseConn| |cyclotomic| - |localIntegralBasis| |antiAssociative?| |apply| |jacobi| |isEquiv| - |mapExpon| |s17agf| |iiatan| |number?| |port| |currentSubProgram| - |henselFact| |incrementBy| |first| |f02agf| |rationalFunction| - |s01eaf| |badNum| |complexRoots| |universe| |multiplyCoefficients| - |s17dgf| |rest| |expand| |numerators| |createLowComplexityTable| - |pointColor| |zeroSetSplit| |polygon?| |insertRoot!| |compile| - |semiLastSubResultantEuclidean| |completeEchelonBasis| |t| - |gcdPrimitive| |filterWhile| |printInfo| |putColorInfo| - |internalAugment| |cAsinh| |indicialEquations| |reopen!| |credPol| - |gcdcofactprim| |ridHack1| |createPrimitivePoly| |filterUntil| |radix| - |standardBasisOfCyclicSubmodule| |tubePoints| |OMconnInDevice| - |d02bbf| |segment| |hex| |qPot| |color| |jvmNative| |select| - |extendedint| |B1solve| |leftRankPolynomial| |ParCond| |escape| - |regime| |SturmHabichtSequence| |squareFree| |typeLists| - |integerBound| |imports| |unit?| |jvmPrivate| - |cyclotomicFactorization| |nthCoef| |fillPascalTriangle| |palgint0| - |hostPlatform| |lazyEvaluate| |curveColorPalette| - |trailingCoefficient| |linearAssociatedExp| |factorSquareFree| - |assert| |drawCurves| |symmetricProduct| |OMreadStr| |diagonalMatrix| - |solveInField| |createNormalPoly| |OMsupportsSymbol?| |bitCoef| - |implies| |tube| |denominators| |listRepresentation| - |selectPolynomials| |closed?| |isMult| |insert| |s20acf| - |chainSubResultants| |factorPolynomial| |parent| |curryLeft| - |argument| |digits| |upperCase!| |recip| |printingInfo?| - |OMencodingXML| |nodes| |logical?| |lazyVariations| - |topFortranOutputStack| |linSolve| |beauzamyBound| |lfunc| |deepCopy| - |makeRecord| |e02baf| |endSubProgram| |intPatternMatch| |c06ecf| - |iiGamma| |pointData| |s17dlf| |randomR| |true| |digamma| |sncndn| - |f02akf| |f04maf| |setlast!| |infiniteProduct| |variationOfParameters| - |mapExponents| |isAbsolutelyIrreducible?| |e01bgf| |hash| |pomopo!| - |viewpoint| |hexDigit| |explimitedint| |tower| |subPolSet?| |green| - |summation| |const| |OMgetSymbol| |count| |pade| |makeViewport3D| - |support| |power| |firstSubsetGray| |whatInfinity| - |inverseIntegralMatrixAtInfinity| |internalIntegrate0| |cAcoth| - |primlimitedint| |writeUInt8!| |constantCoefficientRicDE| - |getVariableOrder| |mathieu23| |minPoly| |mappingMode| |roughBasicSet| - |nthRoot| |curve| |oddlambert| |localReal?| |rationalPower| |limit| - |initial| |ef2edf| |maxint| |boundOfCauchy| |lflimitedint| - |integralRepresents| |expint| |ksec| |iCompose| |squareFreeFactors| - |drawToScale| |e01saf| |f07fdf| |perfectSqrt| |rightFactorCandidate| - |expandLog| |headRemainder| |removeSinhSq| |commutator| - |complexNumeric| |d02gbf| |center| |remainder| |trunc| |overset?| - |iisqrt3| |gcdPolynomial| |ratDenom| |dflist| - |basisOfCommutingElements| |integralBasisAtInfinity| |iiabs| - |removeConstantTerm| |tanSum| |functionIsOscillatory| |limitPlus| - |superHeight| |divide| |kernels| |shellSort| |macroExpand| |e04mbf| - |nor| |parabolic| |cCsch| |generalizedContinuumHypothesisAssumed?| - |leastAffineMultiple| |roughBase?| - |removeRoughlyRedundantFactorsInPols| |operator| |thetaCoord| - |toScale| |makeSin| |readUInt16!| |internalSubQuasiComponent?| - |showTheIFTable| |screenResolution3D| |jordanAlgebra?| |square?| - |over| |kind| |stopMusserTrials| |ramified?| |jvmMethodrefConstantTag| - |setvalue!| |identity| |relationsIdeal| |point| - |firstUncouplingMatrix| |cycles| |varList| |exprex| |univariate| - |arg1| |complexExpand| |op| |predicates| |normalized?| |create3Space| - |genericLeftNorm| |f01qef| |OMputAtp| |rarrow| |maxrow| |arg2| - |toroidal| |euler| |interReduce| |pseudoQuotient| |primlimintfrac| - |cross| |euclideanNormalForm| |rename| |nthFlag| |mapBivariate| - |reduction| |lazyResidueClass| |csubst| |getZechTable| |rightMult| - |series| |overbar| |algint| |is?| |erf| |evaluate| |conditions| - |cyclePartition| |outputFloating| |squareFreePart| |OMputEndApp| - |trim| |sign| |leftExtendedGcd| |tab| |writable?| |match| |edf2efi| - |in?| |omError| |schwerpunkt| |calcRanges| |declare| |leftTrace| - |c02aff| |comparison| |atrapezoidal| |symbolIfCan| |quickSort| - |coerceL| |subHeight| |has?| |tab1| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| - |canonical| |noetherian| |central| |partiallyOrderedSet| - |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| - |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| - |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| - |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |rightRankPolynomial| |shape| |c06fqf| |ScanArabic| + |reduction| |dilog| |dictionary| |collectUpper| |union| |simplifyExp| + |packageCall| |iibinom| |variable?| |min| |infinite?| |permanent| + |lazyResidueClass| |sin| |hcrf| |powerAssociative?| + |addMatchRestricted| |wholeRagits| |inc| |step| |polCase| |legendreP| + |fixPredicate| |intensity| |csubst| |cos| |algebraicVariables| + |denominator| |internalDecompose| |say| |outputSpacing| + |reducedQPowers| |cyclic?| |gcdcofact| |quasiAlgebraicSet| + |getZechTable| |tan| |toseSquareFreePart| + |setLegalFortranSourceExtensions| |makeFloatFunction| FG2F + |meshPar1Var| |algebraicSort| |cyclicGroup| |cyclicParents| + |rightMult| |cot| |replace| |fTable| |firstNumer| |e02bcf| |Vectorise| + |createGenericMatrix| |dn| |rightExtendedGcd| |overbar| |sec| + |bezoutDiscriminant| |minimize| |removeRedundantFactorsInContents| + |getMultiplicationTable| |cExp| |addMatch| |rischDE| |plus| |pole?| + |algint| |csc| |iicoth| |representationType| |dot| |reset| + |rightRemainder| |iicsc| |selectOrPolynomials| |cCoth| + |jvmStringConstantTag| |is?| |asin| |closed| |mapGen| |d01apf| + |jvmTransient| |lieAlgebra?| |splitDenominator| |corrPoly| + |RittWuCompare| |evaluate| |acos| |nary?| |expenseOfEvaluation| + |acothIfCan| |write| |OMserve| |unit| |solveid| |times| |conjugate| + |purelyTranscendental?| |cyclePartition| |atan| |iisec| |mindegTerm| + |save| |fortranCompilerName| |members| |quasiMonicPolynomials| + |supDimElseRittWu?| |exprHasAlgebraicWeight| |principal?| + |outputFloating| |acot| |jvmLongConstantTag| |euclideanSize| + |compiledFunction| |numberOfIrreduciblePoly| |symmetricRemainder| + |coordinates| |alternatingGroup| |mainVariable?| |asec| + |squareFreePart| |OMgetBind| |symmetricGroup| |directory| + |zeroDimensional?| |returns| |s15adf| |reverse!| |leftDivide| + |OMputEndApp| |acsc| |extractIfCan| |semiSubResultantGcdEuclidean1| + |baseRDEsys| |coordinate| |derivative| |BasicMethod| |rational?| + |monicRightFactorIfCan| |monom| |trim| |sinh| |palgLODE| |exprToUPS| + |permutationRepresentation| |linearDependenceOverZ| |updatD| + |getDatabase| |f02aff| |factorByRecursion| |changeName| + |multiEuclidean| |cosh| |sign| |iprint| |infinityNorm| |c06frf| + |solveLinearlyOverQ| |flexibleArray| |selectPDERoutines| |typeForm| + |listOfMonoms| |horizConcat| |mapmult| |leftExtendedGcd| |tanh| + |triangulate| |leaves| |aspFilename| |presub| |myDegree| |ignore?| + |makeUnit| |rotate| |common| |mapUnivariate| |mapUnivariateIfCan| + |rationalIfCan| |coth| |tab| |po| |tubeRadius| |leftLcm| + |rightExactQuotient| |specialTrigs| |numberOfComputedEntries| + |nodeOf?| |writable?| |doubleComplex?| |zero| |getGraph| |sech| + |constant| |e01bef| |zeroDimPrime?| |rewriteIdealWithRemainder| + |constructor| |setOfMinN| |explogs2trigs| |Frobenius| |edf2efi| + |createZechTable| |vspace| |reverse| |csch| |symbolTableOf| |failed?| + |scaleRoots| EQ |numberOfHues| |companionBlocks| |And| |inconsistent?| + |norm| |in?| |asinh| |finiteBound| |startTable!| |sinhIfCan| + |KrullNumber| |lexGroebner| |printCode| |chiSquare1| + |genericLeftMinimalPolynomial| |Or| |continuedFraction| |omError| + |acosh| |getOrder| |characteristicPolynomial| |rootOf| + |setScreenResolution3D| |doubleResultant| + |stoseIntegralLastSubResultant| |littleEndian| |Not| |setTopPredicate| + |stoseInvertible?sqfreg| |schwerpunkt| |atanh| |ramifiedAtInfinity?| + |heap| |splitNodeOf!| |associatedSystem| |checkPrecision| |e02agf| + |explicitlyFinite?| |rootRadius| |ceiling| |calcRanges| |acoth| + |laguerre| |select!| |isExpt| |oddInfiniteProduct| |iiasech| |Ci| + |hue| |cubic| |tubeRadiusDefault| |leftTrace| |asech| |Lazard| |df2fi| + |mainDefiningPolynomial| |binding| |leadingCoefficientRicDE| + |complexZeros| |groebSolve| |hypergeometric0F1| |axes| |c02aff| + |singularitiesOf| |gethi| |characteristicSet| |rowEchelon| + |symmetricTensors| |d01gbf| |surface| |hermite| |lambert| |comparison| + |cCosh| |multiple| |categories| |retractable?| |LyndonBasis| |member?| + |close| |fortranLiteralLine| |light| |size?| |SFunction| |applyQuote| + |atrapezoidal| |s18acf| |torsion?| |optional?| |qroot| + |lazyPseudoQuotient| |jvmSuper| |simpson| |arity| |rightPower| + |OMgetObject| |symbolIfCan| |varselect| |yellow| |roughSubIdeal?| + |listConjugateBases| |display| |cAcsch| |diag| |OMgetString| + |hostByteOrder| |blue| |quickSort| |mdeg| |validExponential| + |palgRDE0| |meshFun2Var| |d02cjf| |setOrder| |recur| |quasiComponent| + |simplify| |patternMatchTimes| |magnitude| |readBytes!| |debug| + |ffactor| |fprindINFO| |integralAtInfinity?| |makeop| |limit| + |perspective| |overlap| |binary| |exactQuotient| D |seriesSolve| + |perfectSquare?| |setMaxPoints3D| |asinIfCan| |isQuotient| |ef2edf| + |totalGroebner| |nextsousResultant2| |low| |d01fcf| |dec| + |squareFreeLexTriangular| |evenInfiniteProduct| |OMgetEndObject| + |enterInCache| |extractIndex| |maxint| |maxRowIndex| |s20adf| |empty| + |selectOptimizationRoutines| |input| |matrixGcd| + |primPartElseUnitCanonical| |generalTwoFactor| |coefChoose| + |outputBinaryFile| |boundOfCauchy| |delete| |oddintegers| |removeZero| + |initials| |bernoulliB| |library| + |generalizedContinuumHypothesisAssumed| |solid| |sts2stst| |generic| + |quadratic| |lflimitedint| |dioSolve| |appendPoint| |less?| |times!| + |negative?| |integralMatrixAtInfinity| |zeroDim?| |leftExactQuotient| + |solveLinear| |sturmSequence| |integralRepresents| |ptree| + |pointLists| |elColumn2!| |rombergo| |dequeue!| |iiacsch| |f02xef| + |tanIfCan| |countRealRootsMultiple| |height| |taylorRep| |expint| + |shrinkable| |nextSublist| |particularSolution| |exprToXXP| + |increasePrecision| |kovacic| |f01qdf| |s17aef| |linear| |ksec| + |bothWays| |cyclic| |bumptab| |inputOutputBinaryFile| |set| + |acoshIfCan| |areEquivalent?| |sdf2lst| |addPoint| |iCompose| + |finite?| |components| |outputGeneral| |lastSubResultantElseSplit| + |listYoungTableaus| |makeVariable| |quadraticNorm| |setDifference| + |f02wef| |polynomial| |squareFreeFactors| |numberOfCycles| |cAsec| + |solveLinearPolynomialEquationByRecursion| |showScalarValues| + |isConnected?| |print| |operation| |s21bdf| |orbits| |ideal| |makeSUP| + |drawToScale| |elaborate| |approxSqrt| |factorSFBRlcUnit| + |clipSurface| |resolve| |df2mf| |useEisensteinCriterion| + |perfectNthPower?| |fractRadix| |e01saf| |fortranLogical| |swap!| + |rule| |monomial?| |composites| |cons| |directSum| + |indicialEquationAtInfinity| |countable?| |currentCategoryFrame| + |f07fdf| |lagrange| |createLowComplexityNormalBasis| |asinhIfCan| + |pointPlot| |jordanAdmissible?| |startTableInvSet!| |lepol| + |partitions| |perfectSqrt| |copy!| |f02bbf| |extendedResultant| + |coth2tanh| |virtualDegree| |selectNonFiniteRoutines| |fortranTypeOf| + |plus!| |OMUnknownCD?| |rightFactorCandidate| |messagePrint| + |constantRight| |composite| |isAtom| |mapUp!| |antisymmetric?| + |ListOfTerms| |sec2cos| |expandLog| |character?| |quatern| + |lazyPseudoDivide| |invertible?| |constantIfCan| |s17dhf| + |pointColorPalette| |subMatrix| |headRemainder| |log10| |distance| + |outputArgs| |sinIfCan| |compBound| |source| + |stoseInternalLastSubResultant| |printStats!| |child?| |minRowIndex| + |removeSinhSq| |getMultiplicationMatrix| + |halfExtendedSubResultantGcd1| |htrigs| |bitand| |startPolynomial| + |symbolTable| |show| |bytes| |symmetricPower| |bandedJacobian| + |halfExtendedSubResultantGcd2| |commutator| |c06gbf| |dmpToHdmp| + |FormatArabic| |bitior| |unmakeSUP| |matrix| |cosIfCan| |subTriSet?| + |octon| |powern| |d02gbf| |rank| |SturmHabicht| |rur| + |complexElementary| |tubePlot| |pushFortranOutputStack| |trace| + |OMgetBVar| |bivariatePolynomials| |normFactors| |Gamma| |remainder| + |shift| |combineFeatureCompatibility| |atoms| |elements| + |elaborateFile| |popFortranOutputStack| |target| |factorGroebnerBasis| + |semiResultantEuclidean1| |conjug| |airyAi| |trunc| |putProperty| + |unrankImproperPartitions0| |karatsubaOnce| |simplifyPower| + |outputAsFortran| |extension| |testDim| |checkForZero| + |resetVariableOrder| |overset?| |explicitEntries?| |nonSingularModel| + |makeYoungTableau| |rootSimp| |cAtan| |voidMode| |recolor| + |extendedIntegrate| |iisqrt3| |trace2PowMod| |pr2dmp| + |certainlySubVariety?| |transpose| |headReduce| |swapRows!| + |getExplanations| |distdfact| |encodingDirectory| |gcdPolynomial| + |increase| |properties| |indiceSubResultantEuclidean| |insertMatch| + |relativeApprox| |realSolve| |options| |f04mbf| |enterPointData| + |tanintegrate| |contractSolve| |ratDenom| |generators| |translate| + |vedf2vef| |autoReduced?| |callForm?| |clearFortranOutputStack| + |OMReadError?| |rightDivide| |PDESolve| |dflist| |oneDimensionalArray| + |lists| |attributeData| |doubleFloatFormat| |laplacian| |sum| + |optpair| |merge!| |basisOfRightNucleus| |getOperator| + |basisOfCommutingElements| |bindings| |ScanRoman| |isList| + |printHeader| |postfix| |string| |resetBadValues| |isPlus| + |clipParametric| |generalizedEigenvector| |integralBasisAtInfinity| + |sh| |normalizeIfCan| |acschIfCan| |squareFreePrim| + |genericLeftDiscriminant| |debug3D| |euclideanGroebner| |s17aff| + |iiabs| |addPoint2| |rectangularMatrix| |setfirst!| |cscIfCan| + |jvmInterfaceMethodConstantTag| |lyndon| |genericRightTrace| |nthr| + |removeConstantTerm| |matrixConcat3D| |slash| |clearDenominator| + |minimalPolynomial| |extract!| |complexEigenvalues| |convergents| + |OMgetEndBVar| |tanSum| |substitute| |padicallyExpand| + |lineColorDefault| |critT| |findBinding| |viewPhiDefault| |signAround| + |nthExpon| |functionIsOscillatory| |sumOfKthPowerDivisors| + |regularRepresentation| |legendre| |f01bsf| |linearElement| + |pushuconst| |s18def| |removeSuperfluousCases| |limitPlus| + |outputAsTex| |weights| |s19abf| |kmax| |vector| |position!| + |normalizedDivide| |possiblyNewVariety?| |superscript| |superHeight| + |OMgetAtp| |exponents| |halfExtendedResultant1| |rowEchLocal| + |differentiate| |stopTable!| |decomposeFunc| |delay| |resultant| + |divide| |graeffe| |comp| |getIdentifier| |leftMinimalPolynomial| + |normalizedAssociate| |sort| |d01akf| |f04adf| |head| |points| |super| + |shellSort| |logpart| |basisOfMiddleNucleus| |e02daf| |att2Result| + |radicalOfLeftTraceForm| |subResultantChain| |fractionPart| |coleman| + |e04mbf| |psolve| |preprocess| |lex| |modularGcd| |random| + |parseString| |startStats!| |ocf2ocdf| |decreasePrecision| |nor| + |symbol| |absolutelyIrreducible?| |write!| |innerSolve| |makeEq| + |ricDsolve| |seriesToOutputForm| |prepareDecompose| |parabolic| + |expression| |irreducibleFactor| |e02ajf| |stosePrepareSubResAlgo| + |equality| |separant| |bottom!| |airyBi| |cCsch| |constDsolve| |index| + |integer| |readLine!| |errorKind| |mathieu11| |listLoops| + |collectUnder| |coth2trigh| |semiResultantEuclideannaif| |solve| + |generalizedContinuumHypothesisAssumed?| |d01gaf| |rotatex| + |evenlambert| |condition| |power!| |e02akf| |f07aef| + |leastAffineMultiple| |eyeDistance| |pdf2ef| |s13adf| |OMputEndAtp| + |setClipValue| |primitivePart| |goodnessOfFit| + |lazyIrreducibleFactors| |pair| |roughBase?| |stirling2| |complete| + |sumSquares| |interval| |generalLambert| |e04gcf| |graphCurves| + |computeInt| |integralLastSubResultant| + |removeRoughlyRedundantFactorsInPols| |genericPosition| |reorder| + |linearForm| |OMgetType| |complexForm| |newSubProgram| |closedCurve| + |stripCommentsAndBlanks| |charClass| |outputForm| |principalIdeal| + |thetaCoord| |palglimint| |fractRagits| |truncate| |skewSFunction| + |youngDiagram| |output| |modTree| |mapMatrixIfCan| |toScale| |real?| + |imagj| |possiblyInfinite?| |separateDegrees| |triangSolve| |qqq| + |elliptic| |aromberg| F |iiasec| |llprop| |makeSin| |prime?| + |kroneckerDelta| |lyndon?| |factorsOfCyclicGroupSize| + |groebnerFactorize| |dimensions| |nextNormalPrimitivePoly| + |complement| BY |readUInt16!| |tracePowMod| |leftUnit| |redPol| + |taylorQuoByVar| |OMputBind| |repeating?| |internalSubQuasiComponent?| + |iFTable| |setFieldInfo| |rootDirectory| |setProperty| |linGenPos| + |nthFactor| |rst| |insertionSort!| |predicate| |showTheIFTable| + |f01qcf| |doubleRank| |xCoord| |noLinearFactor?| |showSummary| + |linearMatrix| |updateStatus!| |numberOfOperations| + |squareFreePolynomial| |screenResolution3D| |quotient| |s21bcf| + LODO2FUN |init| |largest| |singular?| |univariate?| |exptMod| + |nextItem| |jordanAlgebra?| |fortranInteger| |algintegrate| |mindeg| + |box| |ldf2lst| |e04ycf| |d02kef| |charthRoot| |square?| + |univariatePolynomials| |leastPower| |exactQuotient!| |irCtor| NOT + |iiasin| |linearlyDependent?| |size| |brillhartIrreducible?| |yCoord| + |over| |limitedIntegrate| |problemPoints| |nil?| |style| OR + |showAttributes| |functionIsFracPolynomial?| |LowTriBddDenomInv| + |host| |s13aaf| |stopMusserTrials| |leftRemainder| |dihedral| + |raisePolynomial| |inR?| AND |reducedSystem| |multiset| |nsqfree| + |factorSquareFreePolynomial| |range| |acscIfCan| |idealSimplify| + |zeroSquareMatrix| |pureLex| |nextPrime| |rootBound| |sech2cosh| + |currentEnv| |logical?| |positiveRemainder| |outputMeasure| + |divideIfCan!| |open| |An| |redPo| |diagonals| |prindINFO| |connect| + |function| |lazyVariations| |elaboration| |bracket| |lprop| + |rootKerSimp| |iiperm| |pushup| |just| |f01rdf| + |topFortranOutputStack| |parameters| |normalizeAtInfinity| |iitanh| + |neglist| |iifact| |s15aef| |setStatus| |lowerCase| |df2ef| + |branchPointAtInfinity?| |linSolve| |tableForDiscreteLogarithm| + |iiacoth| |d01anf| |coercePreimagesImages| |internalInfRittWu?| + |leftMult| |LiePolyIfCan| |rightCharacteristicPolynomial| + |leftFactorIfCan| |beauzamyBound| |null| |loadNativeModule| + |uncouplingMatrices| |changeNameToObjf| |readLineIfCan!| |operations| + |palgextint| |e02zaf| |numberOfImproperPartitions| |lifting| + |showRegion| |lfunc| |not| |genericRightDiscriminant| + |singularAtInfinity?| |atanhIfCan| |mainPrimitivePart| |node| + |conical| |maxIndex| |c06gqf| |createRandomElement| |deepCopy| |and| + |cdr| |setRealSteps| |inGroundField?| |totalfract| |e01baf| |subSet| + |findCycle| |revert| |eigenvector| |e02baf| |ruleset| |or| + |domainTemplate| |quasiMonic?| |maxdeg| |cyclicEqual?| * |powers| + |pointColorDefault| |homogeneous?| |rightUnit| |mkPrim| + |endSubProgram| |xor| |writeLine!| |swap| |nextPrimitiveNormalPoly| + |traverse| |category| |e04naf| |setEpilogue!| |differentialVariables| + |routines| |intPatternMatch| |case| |OMgetEndAttr| |clipBoolean| + |quadraticForm| |irForm| |outerProduct| |domain| |getProperties| + |more?| |binomThmExpt| |cothIfCan| |c06ecf| |suchThat| |Zero| + |quotientByP| |basisOfCentroid| |d01asf| |groebgen| |cycleElt| + |package| |fixedPoint| |list?| |nextColeman| |iiGamma| |One| + |cRationalPower| |nilFactor| |odd?| |testModulus| = |mkcomm| |f01maf| + |lfextlimint| |subscript| |lcm| |pointData| |maxPoints| |laguerreL| + |argscript| |radicalEigenvectors| |iiacot| |shiftRoots| + |symmetricSquare| |mainSquareFreePart| |s17dlf| |rightQuotient| + |d01aqf| |pToDmp| |insertBottom!| < |algDsolve| |poisson| |build| + |s19aaf| |append| |randomR| |coerce| |e02dff| |ptFunc| |cosSinInfo| + |rootNormalize| > |createPrimitiveNormalPoly| |lllip| |stirling1| + |defineProperty| |gcd| |digamma| |construct| |sup| |binaryTree| + |recoverAfterFail| |expIfCan| |eq?| <= |rename!| |showClipRegion| + |sncndn| |OMgetInteger| |rules| |false| |elt| |critB| |multinomial| + |pToHdmp| |twist| >= |sorted?| |elseBranch| |yCoordinates| + |complexNumericIfCan| |f02akf| |f01rcf| |rightTrim| |critM| + |multisect| |cSin| |weight| |imagJ| |factorial| |thenBranch| |f04maf| + |prepareSubResAlgo| |leftTrim| |rationalPoint?| |s19adf| |middle| + |primextendedint| |contours| |read!| |leftAlternative?| |setlast!| + |smith| |discriminantEuclidean| |returnType!| |trueEqual| |bitLength| + + |optional| |coHeight| |contract| |string?| |parents| + |infiniteProduct| |monicDecomposeIfCan| |bfEntry| |epilogue| + |polygamma| |mr| - |isOpen?| |branchIfCan| |readable?| |normal?| + |variationOfParameters| |expintfldpoly| |basisOfLeftAnnihilator| + |permutation| |withPredicates| |factorOfDegree| / |edf2fi| + |initTable!| |subQuasiComponent?| |collectQuasiMonic| |mapExponents| + |lift| |adaptive?| |alphabetic?| |lintgcd| |f04asf| + |selectAndPolynomials| |comment| |eisensteinIrreducible?| |setrest!| + |showAllElements| |lighting| |reduce| |isAbsolutelyIrreducible?| + |moduleSum| |rightZero| |bipolar| |quartic| |resultantEuclideannaif| + |numer| |complexIntegrate| |f02axf| |iflist2Result| + |selectSumOfSquaresRoutines| |e01bgf| |tubePointsDefault| + |subscriptedVariables| |chvar| |splitLinear| |maxrank| |denom| + |OMreceive| |setValue!| |fortranDoubleComplex| |lazyPseudoRemainder| + |pomopo!| |queue| |mvar| |iisin| |conjugates| |OMgetApp| |drawStyle| + |modifyPointData| |totolex| |numerator| |viewpoint| |dualSignature| + |mat| |coerceS| |exponential| |semiDegreeSubResultantEuclidean| |pi| + |setPosition| |associative?| + |solveLinearPolynomialEquationByFractions| |resultantnaif| |hexDigit| + |augment| |writeByte!| |realRoots| |isImplies| + |exprHasLogarithmicWeights| |infinity| |insertTop!| + |structuralConstants| |deepestInitial| |medialSet| |explimitedint| + |controlPanel| |resetAttributeButtons| |frst| |algebraicDecompose| + |mainValue| |iiexp| |fullDisplay| |cycle| |coshIfCan| |subPolSet?| + |internalIntegrate| |sin?| |wreath| |selectIntegrationRoutines| + |reduced?| |setUnion| |sincos| Y |useSingleFactorBound?| + |definingInequation| |green| |flexible?| |setelt| |solveRetract| + |expextendedint| |normalise| |kernel| |basicSet| |stronglyReduce| + |zoom| |determinant| |karatsubaDivide| |summation| |float?| + |approximants| |setprevious!| |f02fjf| |orbit| |list| |inverseLaplace| + |lowerPolynomial| |numberOfDivisors| |computePowers| |consnewpol| + |const| |monomials| |errorInfo| |rightTrace| |fortranLinkerArgs| + |latex| |draw| |degreeSubResultant| |leftUnits| |expandTrigProducts| + |univcase| |decompose| |OMgetSymbol| |writeInt8!| |repeating| |e02ddf| + |abs| |rewriteSetByReducingWithParticularGenerators| + |leftRegularRepresentation| |remove!| |rightLcm| |prefixRagits| |pade| + |mix| |factors| |iisinh| |normalDenom| |radicalEigenvalues| |f01brf| + |OMgetAttr| |sizeMultiplication| |headReduced?| |makeViewport3D| + |balancedFactorisation| |brillhartTrials| |root| |symmetric?| + |changeVar| |reducedForm| |bat| |lazy?| |rdHack1| |support| |iisech| + |resultantReduitEuclidean| |result| |leadingTerm| |mainMonomial| + |makeObject| |radicalEigenvector| |inf| |unitsColorDefault| + |genericRightMinimalPolynomial| |d02gaf| |power| |categoryMode| + |setref| |purelyAlgebraicLeadingMonomial?| |tanh2coth| + |fortranLiteral| |coef| |digit| |simpleBounds?| |lfextendedint| + |label| |stack| |inverseColeman| |firstSubsetGray| |moebiusMu| + |primitive?| |palgint| |linearDependence| |algSplitSimple| + |factorList| |copies| |LyndonWordsList| |whatInfinity| |exprToGenUPS| + |readUInt8!| |compound?| |getOperands| |multMonom| |push!| + |unitVector| |LazardQuotient2| |numberOfVariables| + |inverseIntegralMatrixAtInfinity| |e01bff| |cot2trig| |swapColumns!| + |d02bhf| |modulus| |extend| |setScreenResolution| |dmpToP| + |totalDegree| |RemainderList| |internalIntegrate0| + |modularGcdPrimitive| |hermiteH| |gcdprim| |padecf| |algebraic?| + |cPower| |rk4qc| |overlabel| |cAcoth| |atanIfCan| + |internalZeroSetSplit| |edf2df| |roughEqualIdeals?| |iExquo| + |rightRank| |monomialIntPoly| |topPredicate| |transcendenceDegree| + |primlimitedint| |parts| |open?| |extractProperty| |sizeLess?| + |s21baf| |setelt!| |iicot| |leftGcd| |remove| |inverseIntegralMatrix| + |compactFraction| |writeUInt8!| |mergeFactors| |dihedralGroup| + |inspect| |idealiser| |irreducibleFactors| |lfinfieldint| |chebyshevT| + |makeprod| |mainExpression| |constantCoefficientRicDE| + |parabolicCylindrical| |antisymmetricTensors| |round| |entry| + |satisfy?| |extractClosed| |last| |option| |log2| |resultantReduit| + |getVariableOrder| |purelyAlgebraic?| |symbol?| |exponent| |s17def| + |f01mcf| |assoc| |subResultantsChain| |selectMultiDimensionalRoutines| + |finiteBasis| |processTemplate| |mathieu23| + |createMultiplicationMatrix| |triangular?| |pdf2df| |binomial| + |divideIfCan| |hasoln| |mirror| |complex?| |rk4a| |minPoly| + |bezoutResultant| |elem?| |probablyZeroDim?| |changeMeasure| |e02adf| + |cn| |create| |quoByVar| |mappingMode| |permutations| |alphanumeric| + |integer?| |removeRoughlyRedundantFactorsInPol| |radPoly| |viewport2D| + |imagi| |Beta| |factor| |roughBasicSet| |rootPower| |pastel| + |nextsubResultant2| |transcendentalDecompose| |datalist| |iicosh| + |every?| |OMUnknownSymbol?| |reducedDiscriminant| |sqrt| |nthRoot| + |wordInGenerators| |sparsityIF| |firstDenom| |anticoord| + |getPickedPoints| |retractIfCan| |commaSeparate| |moebius| |dark| + |pdct| |real| |leader| |curve| |lazyPremWithDefault| |iiacos| + |exponentialOrder| |factorials| |putProperties| |pleskenSplit| + |highCommonTerms| |besselY| |imag| |oddlambert| |inHallBasis?| + |palgextint0| |youngGroup| |associatorDependence| |deref| + |directProduct| |expPot| |nthRootIfCan| |diophantineSystem| + |Hausdorff| |localReal?| |generator| |rightScalarTimes!| + |generalizedEigenvectors| |intChoose| |associator| |upDateBranches| + |top| |arbitrary| |ref| |exportedOperators| |flagFactor| + |rationalPower| |leviCivitaSymbol| |hessian| |extendIfCan| |rootSplit| + |setAdaptive| |reify| |continue| |c06gsf| |difference| |e02ahf| + |brace| |setCondition!| |car| |rubiksGroup| |wholePart| + |constantOpIfCan| |OMmakeConn| |before?| |goodPoint| |eigenvectors| + |destruct| |squareMatrix| |OMconnInDevice| |iomode| |minrank| + |makeCrit| |shuffle| |ord| |direction| |compdegd| + |stoseInvertibleSetsqfreg| |basisOfLeftNucleus| |cot2tan| |d02bbf| + |void| |OMlistCDs| |s18adf| |null?| |stiffnessAndStabilityFactor| + |rightDiscriminant| |capacity| |functionIsContinuousAtEndPoints| + |getRef| |scopes| |Is| |hex| |pattern| |extractSplittingLeaf| + |lazyGintegrate| |laurentIfCan| |distribute| |OMputInteger| |listexp| + |bsolve| |tRange| |cyclicSubmodule| |maxColIndex| |qPot| + |irreducibleRepresentation| |f02abf| |bivariateSLPEBR| |iitan| + |scalarMatrix| |gensym| |generic?| |modifyPoint| |monomial| |mainForm| + |color| |getGoodPrime| |isPower| |part?| |mulmod| |e02bef| |ranges| + |removeRedundantFactorsInPols| |isNot| |multivariate| + |interpretString| |jvmNative| |zeroMatrix| + |tryFunctionalDecomposition?| |endOfFile?| |jokerMode| + |showArrayValues| |optimize| |computeCycleLength| |setLabelValue| + |check| |conditionP| |variables| |extendedint| |message| |minPoints3D| + |primeFrobenius| |compose| |OMputEndObject| |bounds| |delta| + |mergeDifference| |upperCase| |coerceP| |invmod| |B1solve| |morphism| + |applyRules| |unexpand| |reindex| |cup| |optAttributes| |Nul| + |denomLODE| |subNodeOf?| |leftRankPolynomial| |setIntersection| + |intermediateResultsIF| |nextNormalPoly| |OMopenString| |mpsode| + |leftZero| |charpol| |numberOfPrimitivePoly| |vectorise| |ParCond| + |semiSubResultantGcdEuclidean2| |makeCos| |back| |polar| + |unitCanonical| |nullary| |node?| |anfactor| |component| |escape| + |leftRank| |leftNorm| |phiCoord| |acotIfCan| |adaptive3D?| |stFunc1| + |iilog| |aQuadratic| |s18aef| |getMeasure| |contains?| |taylor| + |regime| |divisors| |zeroOf| |primaryDecomp| |modularFactor| + |completeSmith| |normalElement| |setVariableOrder| |rootProduct| + |formula| |lexTriangular| |LazardQuotient| |polyRicDE| |laurent| + |SturmHabichtSequence| |makeSketch| |antiCommutator| |delete!| + |index?| |plusInfinity| |integral| |increment| |palgintegrate| + |showFortranOutputStack| |completeHensel| |completeHermite| |puiseux| + |viewWriteDefault| |mantissa| |squareFree| |ldf2vmf| |btwFact| + |parametersOf| |minusInfinity| |trivialIdeal?| |curry| |child| + |alphabetic| |lambda| |musserTrials| |tablePow| |systemCommand| + |tan2trig| |typeLists| |addBadValue| |linearPolynomials| |equiv| + |subNode?| |bat1| |lowerCase!| |primeFactor| |nthExponent| |inv| + |removeSquaresIfCan| |midpoints| |integerBound| |leadingBasisTerm| + |jvmIntegerConstantTag| |elRow2!| |lastSubResultant| |palglimint0| + |viewDefaults| |ground?| |nrows| |reduceByQuasiMonic| |ode2| F2FG + |factorFraction| |imports| |var1Steps| |exists?| |se2rfi| + |toseInvertibleSet| |resize| |csc2sin| |ground| |chineseRemainder| + |ncols| |FormatRoman| |initiallyReduced?| |fixedDivisor| |normal| + |unit?| |hexDigit?| |dmp2rfi| |OMgetError| |algebraicCoefficients?| + |powmod| |factorset| |socf2socdf| |represents| |froot| + |leadingMonomial| |integralBasis| |jvmPrivate| |type| |prinpolINFO| + |collect| |fibonacci| |printInfo!| |numericalIntegration| |imagE| + |iisqrt2| |useNagFunctions| |duplicates| |leadingCoefficient| + |viewThetaDefault| |cyclotomicFactorization| |cCos| |jvmStatic| + |c06ekf| |wholeRadix| |mainVariables| |geometric| |basisOfLeftNucloid| + |rotatez| |s14baf| |HermiteIntegrate| |primitiveMonomials| |nthCoef| + |infieldint| |e01bhf| |unknownEndian| |Lazard2| |safetyMargin| + |hitherPlane| |cardinality| |fortranReal| |precision| |stFuncN| + |var2StepsDefault| |reductum| |fillPascalTriangle| |associates?| + |freeOf?| |setAttributeButtonStep| |sayLength| + |basisOfRightAnnihilator| |readUInt32!| |setleft!| |minimumExponent| + |primitiveElement| |univariatePolynomial| |palgint0| |wronskianMatrix| + |shade| |infRittWu?| |rowEch| |OMputEndError| |rem| |constantOperator| + |minColIndex| |alternating| |removeSinSq| |hostPlatform| |block| + |getConstant| |genericLeftTraceForm| |setButtonValue| |imagK| + |factorAndSplit| |quo| |antiCommutative?| |OMgetEndAtp| |Aleph| + |zCoord| |char| |lazyEvaluate| |key| |listBranches| |tanhIfCan| + |merge| |shanksDiscLogAlgorithm| |removeZeroes| |module| + |partialFraction| |interpolate| |separateFactors| |chiSquare| + |curveColorPalette| |OMopenFile| |moduloP| |hdmpToP| |totalLex| + |var1StepsDefault| |div| |rowEchelonLocal| + |rewriteIdealWithQuasiMonicGenerators| |lookup| |hasTopPredicate?| + |trailingCoefficient| |filename| |findConstructor| |basis| |nullity| + |balancedBinaryTree| |numFunEvals| |exquo| |binaryTournament| + |incrementKthElement| |OMputEndAttr| |move| |linearAssociatedExp| + |fintegrate| |hclf| |normalize| |zeroDimPrimary?| |unaryFunction| ~= + |rightMinimalPolynomial| |fortranDouble| |vertConcat| |sqfree| + |factorSquareFree| |parse| |jvmStrict| |graphStates| + |stoseInvertible?reg| |besselK| |isAnd| |mightHaveRoots| |#| + |splitSquarefree| |tensorProduct| |divisorCascade| + |semiResultantReduitEuclidean| |drawCurves| |discriminant| + |lowerCase?| |indiceSubResultant| |iicos| |c06eaf| ~ |mainKernel| + |constant?| |complexSolve| |seed| |symmetricProduct| |float| |keys| + |closeComponent| |graphImage| |showIntensityFunctions| + |reducedContinuedFraction| |viewport3D| |close!| |matrixDimensions| + |environment| |makeSeries| |OMreadStr| |ratPoly| |eulerPhi| |search| + |createMultiplicationTable| |quoted?| |fullPartialFraction| |cAcot| + |expt| |sin2csc| |OMParseError?| |slex| |diagonalMatrix| |submod| + |palginfieldint| |degreeSubResultantEuclidean| |d01amf| |point?| + |OMputString| |solveLinearPolynomialEquation| |/\\| |sortConstraints| + |jvmUTF8ConstantTag| |inRadical?| |vconcat| |solveInField| |fortran| + |normalForm| |sqfrFactor| |c05nbf| |OMencodingUnknown| + |UpTriBddDenomInv| |any| |\\/| |deleteRoutine!| |positiveSolve| + |oblateSpheroidal| |lookupFunction| |createNormalPoly| + |divideExponents| |bigEndian| |reverseLex| |supRittWu?| + |stoseSquareFreePart| |enqueue!| |linearlyDependentOverZ?| + |setErrorBound| |ode1| |depth| |OMsupportsSymbol?| |mapCoef| |diff| + |generalSqFr| |extractBottom!| |randnum| |groebnerIdeal| |id| + |setTex!| |OMsetEncoding| |allRootsOf| |bitCoef| |isTimes| + |branchPoint?| |besselI| |opeval| |strongGenerators| |dom| |integral?| + |lo| |setPrologue!| |createThreeSpace| |outlineRender| |implies| + |numberOfComposites| |cAtanh| |imagI| |binarySearchTree| |gderiv| + |extractTop!| |clipPointsDefault| |bubbleSort!| |inverse| GE |tube| + |exQuo| |bright| |changeWeightLevel| |rroot| |concat!| |convert| + |call| |derivationCoordinates| |c02agf| |OMputAttr| |denominators| GT + |iidprod| |genericRightTraceForm| |red| |normalDeriv| |lieAdmissible?| + |unitNormal| |trigs2explogs| |weakBiRank| |besselJ| + |listRepresentation| LE |reflect| |acosIfCan| |lowerBound| |eval| + |cAsech| |wordsForStrongGenerators| |jvmNameAndTypeConstantTag| + |squareTop| |showTheFTable| |minus!| |selectPolynomials| LT + |rightRecip| |basisOfNucleus| |figureUnits| |numFunEvals3D| |rightOne| + |interpret| |title| |numberOfMonomials| |singRicDE| |qelt| |closed?| + |getBadValues| |signature| |patternMatch| |expandPower| |f04axf| + |countRealRoots| |lexico| |rightGcd| |prinshINFO| |f02awf| |qsetelt| + |isMult| |mapDown!| |error| |plenaryPower| |changeBase| |biRank| + |s14aaf| |bivariate?| |lllp| |central?| |transform| |s20acf| |xRange| + |e02dcf| |c06fuf| |showTheRoutinesTable| |someBasis| |realEigenvalues| + |e| |solid?| |perfectNthRoot| |npcoef| |SturmHabichtMultiple| + |chainSubResultants| |yRange| |radicalRoots| |script| |palgLODE0| + |radicalSimplify| |minPol| |characteristicSerie| |subCase?| |split| + |factorPolynomial| |zRange| |createPrimitiveElement| |pushucoef| + |pointSizeDefault| |rischNormalize| |stopTableInvSet!| |intcompBasis| + |f02bjf| |refine| |bumprow| |map!| |parent| |upperBound| |whitePoint| + |extensionDegree| |maximumExponent| |dual| |mathieu24| |linear?| + |expressIdealMember| UP2UTS |qsetelt!| |curryLeft| |nullary?| |edf2ef| + |integralDerivationMatrix| |tex| |zerosOf| |intersect| |unary?| + |backOldPos| |pmComplexintegrate| |argument| |repeatUntilLoop| + |useEisensteinCriterion?| |makeResult| |OMsend| |cotIfCan| |cAcosh| + |numberOfNormalPoly| |cAcos| |makeGraphImage| |product| |digits| + |setFormula!| |sumOfSquares| |cLog| |setImagSteps| |identification| + |nand| |front| |basisOfCenter| |d03faf| |upperCase!| |polyred| + |factorsOfDegree| |s17akf| |cyclotomicDecomposition| |schema| + |colorFunction| |exp1| |integerIfCan| |toseLastSubResultant| |length| + |recip| |initiallyReduce| |polyPart| |newReduc| |heapSort| + |OMputSymbol| |monicCompleteDecompose| |stoseInvertibleSet| |scripts| + |acsch| |printingInfo?| |categoryFrame| |eq| |readInt32!| |readIfCan!| + |s19acf| |monomRDEsys| |restorePrecision| |asecIfCan| |leftQuotient| + |doubleDisc| |cond| |physicalLength!| |retract| |OMencodingXML| |iter| + |tanh2trigh| |readInt8!| |harmonic| |trapezoidalo| |crushedSet| + |exteriorDifferential| |LagrangeInterpolation| |ellipticCylindrical| + |safeFloor| |nodes| |leftOne| |extendedEuclidean| |setPoly| |rCoord| + |rangeIsFinite| |sample| |bringDown| |primextintfrac| |HenselLift| + |outputAsScript| |decrease| |top!| |byte| |hyperelliptic| |randomLC| + |numberOfFactors| |flatten| |irVar| |crest| |isobaric?| |adaptive| + |ran| |drawComplex| |lastSubResultantEuclidean| |argumentList!| + |duplicates?| |buildSyntax| |LiePoly| |monicRightDivide| + |fortranCarriageReturn| |addmod| |jvmSynchronized| |jvmInterface| + |badValues| |divergence| |rquo| |s17ahf| |substring?| + |rightRegularRepresentation| |nativeModuleExtension| + |nextIrreduciblePoly| |f02aaf| |lazyIntegrate| |rationalApproximation| + |clearTheSymbolTable| |constantToUnaryFunction| |floor| |asimpson| + |cosh2sech| |readByte!| |ratpart| |pseudoDivide| |stFunc2| |powerSum| + |polynomialZeros| |subst| |noncommutativeJordanAlgebra?| |s18dcf| + |exp| |commutative?| |argumentListOf| + |unprotectedRemoveRedundantFactors| |suffix?| |coerceL| + |sylvesterSequence| |subResultantGcd| |leadingIndex| |f04jgf| + |complementaryBasis| |polyRDE| |simpsono| |SturmHabichtCoefficients| + |expenseOfEvaluationIF| |qualifier| |subHeight| |pop!| |cfirst| + |linearAssociatedLog| |Ei| |coerceListOfPairs| |sizePascalTriangle| + |maxPoints3D| |map| |scripted?| |region| |coerceImages| |prefix?| + |has?| |cyclicEntries| |cycleLength| |belong?| |tableau| + |commonDenominator| |physicalLength| |zero?| |patternVariable| |int| + |scalarTypeOf| |minordet| |tab1| |readInt16!| |numericalOptimization| + |genus| |f01ref| |selectODEIVPRoutines| |iiasinh| |unitNormalize| + |primes| |ode| |jvmProtected| |objects| |sumOfDivisors| |atom?| + |primintfldpoly| |complexLimit| |limitedint| |clipWithRanges| + |transcendent?| |innerint| |base| |makingStats?| |removeCoshSq| + |external?| |selectsecond| |aQuartic| |addPointLast| |lhs| + |toseInvertible?| |polygon| |deepExpand| |weierstrass| |groebner| + |factor1| |bfKeys| |generalizedInverse| |infix| |disjunction| |rhs| + |max| |find| |nonLinearPart| |pushdterm| |ReduceOrder| |bumptab1| + |any?| |f04faf| |reciprocalPolynomial| |rightTraceMatrix| + |primintegrate| |Si| |lazyPrem| |makeMulti| |logIfCan| |infix?| + |degree| |genericRightNorm| |cSech| |clearTheIFTable| |monomRDE| + |tan2cot| |width| |e02aef| |updatF| |listOfLists| |mainContent| + |axesColorDefault| |mask| |c05pbf| |setColumn!| |whileLoop| |sPol| + |getProperty| |f04qaf| |rotate!| |concat| |space| |clearTable!| + |complexNormalize| |csch2sinh| |coefficient| |writeBytes!| + |conjunction| |getSyntaxFormsFromFile| |fixedPointExquo| + |internalSubPolSet?| |pol| |arrayStack| |clip| |qinterval| |lquo| + |rk4| |e01sff| |signatureAst| |coord| |iteratedInitials| |OMcloseConn| + |cschIfCan| |jvmDoubleConstantTag| |subresultantSequence| + |sylvesterMatrix| |mathieu22| |extendedSubResultantGcd| + |createIrreduciblePoly| |ScanFloatIgnoreSpaces| |pquo| |shiftRight| + |cyclotomic| |table| |stop| |addiag| |hasSolution?| |stoseInvertible?| + |byteBuffer| |headAst| |obj| |splitConstant| UTS2UP |bombieriNorm| + |GospersMethod| |localIntegralBasis| |new| |quadratic?| |copyInto!| + |e02gaf| |characteristic| |inputBinaryFile| |dim| |ravel| |cache| + |dfRange| |jvmVolatile| |monicDivide| |terms| |antiAssociative?| + |numberOfFractionalTerms| |bag| |reduceLODE| |goto| |dominantTerm| + |reshape| |denomRicDE| |wordInStrongGenerators| + |jvmFieldrefConstantTag| |e01daf| |jacobi| |setleaves!| + |OMgetEndError| |removeDuplicates| |removeDuplicates!| |previous| + |useSingleFactorBound| |cTan| |leastMonomial| |meshPar2Var| |paren| + |isEquiv| |logGamma| |getButtonValue| |push| |torsionIfCan| + |positive?| |critMonD1| |OMputApp| |roman| |s13acf| |shiftLeft| + |mapExpon| |returnTypeOf| |zeroVector| |hconcat| |expintegrate| + |quotedOperators| |computeCycleEntry| |c06fpf| |scale| + |realElementary| |rational| |s17agf| |printStatement| |ratDsolve| + |viewPosDefault| |s17dcf| |removeSuperfluousQuasiComponents| GF2FG + |mapdiv| |palgRDE| |subresultantVector| |iiatan| |clearCache| + |exprHasWeightCosWXorSinWX| |relerror| |iterationVar| |leaf?| + |singleFactorBound| |untab| |cSinh| |e02def| |update| |shallowExpand| + |frobenius| |number?| |iiacosh| |linkToFortran| |dimensionsOf| + |generateIrredPoly| |sturmVariationsOf| |identityMatrix| |asechIfCan| + |elliptic?| |solve1| |coefficients| |LyndonWordsList1| |tail| + |currentSubProgram| |rangePascalTriangle| |userOrdered?| |mathieu12| + |OMputVariable| |radicalSolve| |laurentRep| |failed| |laplace| + |shufflein| |constantKernel| |getMatch| |henselFact| |left| + |extractPoint| |partialNumerators| |linearPart| |OMwrite| + |stopTableGcd!| |jvmAbstract| |infLex?| |newTypeLists| |log| |unknown| + |imagk| |f02agf| |right| |setRow!| |semiResultantEuclidean2| + |integers| |partialQuotients| |even?| |nil| |rightNorm| |prime| + |linears| |pile| |rationalFunction| |setProperties| |leftTraceMatrix| + |OMputObject| |cycleRagits| |internal?| |d03edf| |s17adf| |position| + |principalAncestors| |cCot| |s01eaf| |wrregime| |algebraicOf| |rspace| + |univariateSolve| |accuracyIF| |localAbs| |unrankImproperPartitions1| + |symFunc| |stiffnessAndStabilityOfODEIF| |generalInfiniteProduct| + |badNum| |adjoint| |tree| |rk4f| |setLength!| |quasiRegular| |divisor| + |leftReducedSystem| |approximate| |c05adf| |getCurve| |getCode| + |hasPredicate?| |complexRoots| |pascalTriangle| |typeList| |c06gcf| + |s14abf| |split!| |second| |complex| |expr| |baseRDE| |exponential1| + |d03eef| |OMputError| |universe| |integralMatrix| |rightAlternative?| + |OMgetFloat| |cycleEntry| |nonQsign| |third| SEGMENT |pow| |trigs| + |minimumDegree| |viewSizeDefault| |multiplyCoefficients| |units| + |droot| |hMonic| |li| |multiple?| |mainMonomials| |aCubic| |f2df| + |identitySquareMatrix| |leftDiscriminant| |choosemon| |s17dgf| + |getStream| |bit?| |subset?| |setnext!| |createNormalPrimitivePoly| + |bernoulli| |deepestTail| |OMencodingSGML| |status| |numerators| + |setsubMatrix!| |integralCoordinates| |redmat| |safeCeiling| + |setchildren!| |variable| |operators| |e02bbf| |iipow| + |complexEigenvectors| |createLowComplexityTable| |numeric| + |OMconnectTCP| |weighted| |invertibleElseSplit?| |definingEquations| + |row| |copy| |iterators| |OMgetEndApp| |tanAn| |innerEigenvectors| + |indicialEquation| |pointColor| |radical| |aLinear| |leftRecip| + |plotPolar| |makeTerm| |isOr| |iroot| |printTypes| + |linearAssociatedOrder| |f04arf| |code| |zeroSetSplit| + |factorSquareFreeByRecursion| |s17acf| |leftFactor| |upperCase?| + |viewDeltaYDefault| |prolateSpheroidal| |graphState| + |tryFunctionalDecomposition| |mainVariable| |polygon?| + |semiIndiceSubResultantEuclidean| |mappingAst| |selectfirst| + |bitTruth| |OMclose| |realEigenvectors| |ODESolve| |d01bbf| + |replaceKthElement| |insertRoot!| |equation| |deriv| |BumInSepFFE| + |ParCondList| |prevPrime| |fixedPoints| + |zeroSetSplitIntoTriangularSystems| |sechIfCan| |externalList| + |semiLastSubResultantEuclidean| |subtractIfCan| |OMencodingBinary| + |indices| |mesh| |autoCoerce| |test| |normDeriv2| |isOp| + |completeEchelonBasis| |match?| |gbasis| |generalPosition| + |invertIfCan| |uniform01| |diagonalProduct| |realZeros| + |invertibleSet| |gcdPrimitive| |lp| |ScanFloatIgnoreSpacesIfCan| + |viewWriteAvailable| |jvmClassConstantTag| |UnVectorise| |leftPower| + |bipolarCylindrical| |viewDeltaXDefault| |putColorInfo| |incr| + |critpOrder| |repSq| |fglmIfCan| |order| |LyndonCoordinates| |next| + |createNormalElement| |genericLeftTrace| |internalAugment| |hi| + |tValues| |monicModulo| |bits| |interactiveEnv| |leftScalarTimes!| + |cAsinh| |df2st| |partition| |jvmPublic| |nextPartition| |cycleTail| + |irreducible?| |rdregime| |indicialEquations| |fortranComplex| + |setPredicates| |prefix| |padicFraction| |shallowCopy| |subspace| + |arguments| |e04jaf| |scanOneDimSubspaces| |reopen!| |setright!| + |setMaxPoints| |chebyshevU| |iidsum| |univariatePolynomialsGcds| ** + |double| |rischDEsys| |credPol| |cylindrical| |getlo| |sort!| + |curveColor| |gradient| |conditionsForIdempotents| |usingTable?| + |nthFractionalTerm| |name| |gcdcofactprim| |infieldIntegrate| + |closedCurve?| |OMputEndBind| |semiDiscriminantEuclidean| |level| + |critMTonD1| |rightUnits| |jacobian| |body| |ridHack1| |newLine| + |value| |clikeUniv| |uniform| |graphs| |cos2sec| |outputFixed| + |sequence| |createPrimitivePoly| |dequeue| |makeFR| |plot| |OMputBVar| + |supersub| |radix| |outputList| |f2st| + |dimensionOfIrreducibleRepresentation| |curve?| |makeViewport2D| + |trapezoidal| |deleteProperty!| |mapSolve| + |standardBasisOfCyclicSubmodule| |OMputFloat| |startTableGcd!| + |double?| |critBonD| |roughUnitIdeal?| |UP2ifCan| |pair?| |tubePoints| + |nothing| |polarCoordinates| |mainCoefficients| |element?| + |subResultantGcdEuclidean| |declare!| |knownInfBasis| |elRow1!| + |d02raf| |leadingExponent| |ip4Address| |s17ajf| |currentScope| |sn| + |sinhcosh| |minGbasis| |pushdown| |rewriteIdealWithHeadRemainder| + |generate| |qfactor| |prologue| |blankSeparate| |nlde| + |numberOfComponents| |clearTheFTable| |mesh?| |curryRight| |apply| + |entry?| |gramschmidt| |normInvertible?| |meatAxe| |cap| |xn| |port| + |empty?| |setMinPoints| |incrementBy| |first| |fracPart| + |pushNewContour| |hdmpToDmp| |resetNew| |connectTo| |eulerE| + |multiplyExponents| |e04dgf| |rest| |expand| |lSpaceBasis| |dAndcExp| + |janko2| |minset| |ramified?| |basisOfRightNucloid| |rootPoly| + |OMreadFile| |compile| |t| |distFact| |filterWhile| |printInfo| + |fi2df| |setStatus!| |secIfCan| |monic?| |jvmMethodrefConstantTag| + |binaryFunction| |cTanh| |minPoints| |imaginary| |filterUntil| |sub| + |removeCosSq| |irDef| |e02bdf| |setvalue!| |segment| + |removeIrreducibleRedundantFactors| |degreePartition| + |removeRoughlyRedundantFactorsInContents| |resultantEuclidean| + |select| |cSec| |hspace| |unravel| |lazyPquo| |identity| + |changeThreshhold| |column| |hasHi| |high| |cartesian| |decimal| + |noValueMode| |OMgetEndBind| |relationsIdeal| |digit?| |lyndonIfCan| + |cyclicCopy| |taylorIfCan| |leadingIdeal| |iicsch| |OMsupportsCD?| + |associatedEquations| |prem| |assert| |firstUncouplingMatrix| + |primPartElseUnitCanonical!| |monicLeftDivide| |primitivePart!| + |e01sef| |leadingSupport| |screenResolution| |e04fdf| + |selectFiniteRoutines| |cycles| |rootsOf| |definingPolynomial| + |f07fef| |rewriteSetWithReduction| |nextPrimitivePoly| |insert| + |cAsin| |d01ajf| |s18aff| |showAll?| |exprex| |mkAnswer| |e04ucf| + |internalLastSubResultant| |putGraph| |stoseLastSubResultant| + |leftCharacteristicPolynomial| |setMinPoints3D| |inrootof| + |simplifyLog| |complexExpand| |setAdaptive3D| |bezoutMatrix| |fill!| + |showTheSymbolTable| |makeRecord| |quote| + |initializeGroupForWordProblem| |functorData| |jvmFinal| |predicates| + |separate| |key?| |midpoint| |numericIfCan| |true| |lifting1| + |twoFactor| |traceMatrix| |sequences| |normalized?| |notelem| + |unparse| |explicitlyEmpty?| |cAcsc| |hash| |minIndex| |scan| + |paraboloidal| |bandedHessian| |tower| |create3Space| + |OMconnOutDevice| |completeEval| |entries| |e01sbf| |count| |content| + |unvectorise| |f02aef| |insert!| |genericLeftNorm| |pack!| + |elementary| |prinb| |f04mcf| |totalDifferential| |assign| + |halfExtendedResultant2| |setClosed| |f01qef| |spherical| |iiacsc| + |invmultisect| |nullSpace| |f02adf| |root?| |rationalPoints| + |componentUpperBound| |OMputAtp| |initial| |tanQ| |OMunhandledSymbol| + |moreAlgebraic?| |OMbindTCP| |eof?| |permutationGroup| |enumerate| + |nextLatticePermutation| |rarrow| |f02ajf| |forLoop| |reseed| + |noKaratsuba| |sinh2csch| |colorDef| |ddFact| |quasiRegular?| + |complexNumeric| |maxrow| RF2UTS |center| |diagonal| |integrate| + |numberOfChildren| |iiatanh| |measure| |discreteLog| |f07adf| + |toroidal| |localUnquote| |rotatey| |jvmFloatConstantTag| |OMread| + |one?| |abelianGroup| |vark| |prod| |kernels| |euler| |macroExpand| + |presuper| |constantLeft| |f04atf| |saturate| |partialDenominators| + |option?| |d01alf| |setEmpty!| |operator| |interReduce| + |commutativeEquality| |OMlistSymbols| |removeRedundantFactors| + |karatsuba| |OMgetVariable| |loopPoints| |drawComplexVectorField| + |fmecg| |pseudoQuotient| |doublyTransitive?| |stronglyReduced?| |kind| + |reduceBasisAtInfinity| |eigenMatrix| |c06ebf| |point| |diagonal?| + |viewZoomDefault| |d02ejf| |varList| |primlimintfrac| |univariate| + |arg1| |rootOfIrreduciblePoly| |approxNthRoot| |op| |dimension| + |orthonormalBasis| |alternative?| |semicolonSeparate| |OMputEndBVar| + |symmetricDifference| |cross| |arg2| |multiEuclideanTree| |normal01| + |children| |cycleSplit!| |monomialIntegrate| |property| + |fortranCharacter| |mainCharacterization| |mkIntegral| + |euclideanNormalForm| |groebner?| |evaluateInverse| |birth| |ipow| + |nextSubsetGray| |lfintegrate| |series| |PollardSmallFactor| + |parametric?| |erf| |rename| |conditions| |romberg| |alphanumeric?| + |s21bbf| |measure2Result| |pmintegrate| |triangularSystems| + |computeBasis| |rightFactorIfCan| |nthFlag| |match| |jacobiIdentity?| + |fractionFreeGauss!| |pseudoRemainder| |eigenvalues| |zag| |declare| + |var2Steps| |idealiserMatrix| |innerSolve1| |checkRur| |mapBivariate| + |cCsc| |redpps| |tanNa| |systemSizeIF| |stoseInvertibleSetreg| |nil| + |infinite| |arbitraryExponent| |approximate| |complex| + |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 5cfe64d4..68836f71 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5480 +1,5484 @@ -(3471759 . 3497162554) -((-3047 (((-112) (-1 (-112) |#2| |#2|) $) 86 T ELT) (((-112) $) NIL T ELT)) (-1461 (($ (-1 (-112) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-2589 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-1264 (-577)) |#2|) 44 T ELT)) (-3823 (($ $) 80 T ELT)) (-2511 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3886 (((-577) (-1 (-112) |#2|) $) 27 T ELT) (((-577) |#2| $) NIL T ELT) (((-577) |#2| $ (-577)) 96 T ELT)) (-2728 (((-665 |#2|) $) 13 T ELT)) (-2223 (($ (-1 (-112) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-3437 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-4272 (($ |#2| $ (-577)) NIL T ELT) (($ $ $ (-577)) 67 T ELT)) (-1520 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29 T ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-2435 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) 66 T ELT)) (-1704 (($ $ (-577)) 76 T ELT) (($ $ (-1264 (-577))) 75 T ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) 34 T ELT) (((-792) |#2| $) NIL T ELT)) (-1530 (($ $ $ (-577)) 69 T ELT)) (-3978 (($ $) 68 T ELT)) (-2422 (($ (-665 |#2|)) 73 T ELT)) (-3702 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-665 $)) 85 T ELT)) (-2410 (((-885) $) 92 T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 22 T ELT)) (-2383 (((-112) $ $) 95 T ELT)) (-2403 (((-112) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2403 ((-112) |#1| |#1|)) (-15 -1461 (|#1| |#1|)) (-15 -1461 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -1530 (|#1| |#1| |#1| (-577))) (-15 -3047 ((-112) |#1|)) (-15 -2223 (|#1| |#1| |#1|)) (-15 -3886 ((-577) |#2| |#1| (-577))) (-15 -3886 ((-577) |#2| |#1|)) (-15 -3886 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3047 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2223 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2589 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -1704 (|#1| |#1| (-1264 (-577)))) (-15 -1704 (|#1| |#1| (-577))) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3702 (|#1| (-665 |#1|))) (-15 -3702 (|#1| |#1| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#2|)) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -2422 (|#1| (-665 |#2|))) (-15 -1520 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2435 (|#2| |#1| (-577))) (-15 -2435 (|#2| |#1| (-577) |#2|)) (-15 -2589 (|#2| |#1| (-577) |#2|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -2728 ((-665 |#2|) |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3978 (|#1| |#1|))) (-19 |#2|) (-1247)) (T -18)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2403 ((-112) |#1| |#1|)) (-15 -1461 (|#1| |#1|)) (-15 -1461 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3823 (|#1| |#1|)) (-15 -1530 (|#1| |#1| |#1| (-577))) (-15 -3047 ((-112) |#1|)) (-15 -2223 (|#1| |#1| |#1|)) (-15 -3886 ((-577) |#2| |#1| (-577))) (-15 -3886 ((-577) |#2| |#1|)) (-15 -3886 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3047 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2223 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2589 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -1704 (|#1| |#1| (-1264 (-577)))) (-15 -1704 (|#1| |#1| (-577))) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3702 (|#1| (-665 |#1|))) (-15 -3702 (|#1| |#1| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#2|)) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -2422 (|#1| (-665 |#2|))) (-15 -1520 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2435 (|#2| |#1| (-577))) (-15 -2435 (|#2| |#1| (-577) |#2|)) (-15 -2589 (|#2| |#1| (-577) |#2|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -2728 ((-665 |#2|) |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3978 (|#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3823 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 103 T ELT)) (-3860 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 52 T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) 70 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-3482 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-1704 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1530 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 72 T ELT)) (-3702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-19 |#1|) (-141) (-1247)) (T -19)) -NIL -(-13 (-385 |t#1|) (-10 -7 (-6 -4500))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T)) -((-3262 (((-3 $ "failed") $ $) 12 T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 26 T ELT))) -(((-20 |#1|) (-10 -8 (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3262 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3262 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT))) -(((-21) (-141)) (T -21)) -((-2483 (*1 *1 *1) (-4 *1 (-21))) (-2483 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-667 (-577)) (-10 -8 (-15 -2483 ($ $)) (-15 -2483 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1130) . T) ((-1247) . T)) -((-1516 (((-112) $) 10 T ELT)) (-2762 (($) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 19 T ELT))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-792) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -2762 (|#1|)) (-15 * (|#1| (-949) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-792) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 -2762 (|#1|)) (-15 * (|#1| (-949) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) -(((-23) (-141)) (T -23)) -((-2367 (*1 *1) (-4 *1 (-23))) (-2762 (*1 *1) (-4 *1 (-23))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-792))))) -(-13 (-25) (-10 -8 (-15 (-2367) ($) -1528) (-15 -2762 ($) -1528) (-15 -1516 ((-112) $)) (-15 * ($ (-792) $)))) -(((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((* (($ (-949) $) 10 T ELT))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-949) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-949) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT))) -(((-25) (-141)) (T -25)) -((-2471 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-949))))) -(-13 (-1130) (-10 -8 (-15 -2471 ($ $ $)) (-15 * ($ (-949) $)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-2883 (((-665 $) (-980 $)) 32 T ELT) (((-665 $) (-1202 $)) 16 T ELT) (((-665 $) (-1202 $) (-1206)) 20 T ELT)) (-3292 (($ (-980 $)) 30 T ELT) (($ (-1202 $)) 11 T ELT) (($ (-1202 $) (-1206)) 60 T ELT)) (-1408 (((-665 $) (-980 $)) 33 T ELT) (((-665 $) (-1202 $)) 18 T ELT) (((-665 $) (-1202 $) (-1206)) 19 T ELT)) (-2312 (($ (-980 $)) 31 T ELT) (($ (-1202 $)) 13 T ELT) (($ (-1202 $) (-1206)) NIL T ELT))) -(((-26 |#1|) (-10 -8 (-15 -2883 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -2883 ((-665 |#1|) (-1202 |#1|))) (-15 -2883 ((-665 |#1|) (-980 |#1|))) (-15 -3292 (|#1| (-1202 |#1|) (-1206))) (-15 -3292 (|#1| (-1202 |#1|))) (-15 -3292 (|#1| (-980 |#1|))) (-15 -1408 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -1408 ((-665 |#1|) (-1202 |#1|))) (-15 -1408 ((-665 |#1|) (-980 |#1|))) (-15 -2312 (|#1| (-1202 |#1|) (-1206))) (-15 -2312 (|#1| (-1202 |#1|))) (-15 -2312 (|#1| (-980 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2883 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -2883 ((-665 |#1|) (-1202 |#1|))) (-15 -2883 ((-665 |#1|) (-980 |#1|))) (-15 -3292 (|#1| (-1202 |#1|) (-1206))) (-15 -3292 (|#1| (-1202 |#1|))) (-15 -3292 (|#1| (-980 |#1|))) (-15 -1408 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -1408 ((-665 |#1|) (-1202 |#1|))) (-15 -1408 ((-665 |#1|) (-980 |#1|))) (-15 -2312 (|#1| (-1202 |#1|) (-1206))) (-15 -2312 (|#1| (-1202 |#1|))) (-15 -2312 (|#1| (-980 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-2883 (((-665 $) (-980 $)) 88 T ELT) (((-665 $) (-1202 $)) 87 T ELT) (((-665 $) (-1202 $) (-1206)) 86 T ELT)) (-3292 (($ (-980 $)) 91 T ELT) (($ (-1202 $)) 90 T ELT) (($ (-1202 $) (-1206)) 89 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-2809 (($ $) 100 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2762 (($) 18 T CONST)) (-1408 (((-665 $) (-980 $)) 94 T ELT) (((-665 $) (-1202 $)) 93 T ELT) (((-665 $) (-1202 $) (-1206)) 92 T ELT)) (-2312 (($ (-980 $)) 97 T ELT) (($ (-1202 $)) 96 T ELT) (($ (-1202 $) (-1206)) 95 T ELT)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 99 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 73 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 98 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) -(((-27) (-141)) (T -27)) -((-2312 (*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) (-2312 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-1408 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-3292 (*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) (-3292 (*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) (-3292 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) (-2883 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) (-5 *2 (-665 *1))))) -(-13 (-375) (-1032) (-10 -8 (-15 -2312 ($ (-980 $))) (-15 -2312 ($ (-1202 $))) (-15 -2312 ($ (-1202 $) (-1206))) (-15 -1408 ((-665 $) (-980 $))) (-15 -1408 ((-665 $) (-1202 $))) (-15 -1408 ((-665 $) (-1202 $) (-1206))) (-15 -3292 ($ (-980 $))) (-15 -3292 ($ (-1202 $))) (-15 -3292 ($ (-1202 $) (-1206))) (-15 -2883 ((-665 $) (-980 $))) (-15 -2883 ((-665 $) (-1202 $))) (-15 -2883 ((-665 $) (-1202 $) (-1206))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1032) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-2883 (((-665 $) (-980 $)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-1202 $) (-1206)) 55 T ELT) (((-665 $) $) 22 T ELT) (((-665 $) $ (-1206)) 46 T ELT)) (-3292 (($ (-980 $)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-1202 $) (-1206)) 57 T ELT) (($ $) 20 T ELT) (($ $ (-1206)) 40 T ELT)) (-1408 (((-665 $) (-980 $)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-1202 $) (-1206)) 53 T ELT) (((-665 $) $) 18 T ELT) (((-665 $) $ (-1206)) 48 T ELT)) (-2312 (($ (-980 $)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-1202 $) (-1206)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1206)) 42 T ELT))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2883 ((-665 |#1|) |#1| (-1206))) (-15 -3292 (|#1| |#1| (-1206))) (-15 -2883 ((-665 |#1|) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -1408 ((-665 |#1|) |#1| (-1206))) (-15 -2312 (|#1| |#1| (-1206))) (-15 -1408 ((-665 |#1|) |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2883 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -2883 ((-665 |#1|) (-1202 |#1|))) (-15 -2883 ((-665 |#1|) (-980 |#1|))) (-15 -3292 (|#1| (-1202 |#1|) (-1206))) (-15 -3292 (|#1| (-1202 |#1|))) (-15 -3292 (|#1| (-980 |#1|))) (-15 -1408 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -1408 ((-665 |#1|) (-1202 |#1|))) (-15 -1408 ((-665 |#1|) (-980 |#1|))) (-15 -2312 (|#1| (-1202 |#1|) (-1206))) (-15 -2312 (|#1| (-1202 |#1|))) (-15 -2312 (|#1| (-980 |#1|)))) (-29 |#2|) (-569)) (T -28)) -NIL -(-10 -8 (-15 -2883 ((-665 |#1|) |#1| (-1206))) (-15 -3292 (|#1| |#1| (-1206))) (-15 -2883 ((-665 |#1|) |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -1408 ((-665 |#1|) |#1| (-1206))) (-15 -2312 (|#1| |#1| (-1206))) (-15 -1408 ((-665 |#1|) |#1|)) (-15 -2312 (|#1| |#1|)) (-15 -2883 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -2883 ((-665 |#1|) (-1202 |#1|))) (-15 -2883 ((-665 |#1|) (-980 |#1|))) (-15 -3292 (|#1| (-1202 |#1|) (-1206))) (-15 -3292 (|#1| (-1202 |#1|))) (-15 -3292 (|#1| (-980 |#1|))) (-15 -1408 ((-665 |#1|) (-1202 |#1|) (-1206))) (-15 -1408 ((-665 |#1|) (-1202 |#1|))) (-15 -1408 ((-665 |#1|) (-980 |#1|))) (-15 -2312 (|#1| (-1202 |#1|) (-1206))) (-15 -2312 (|#1| (-1202 |#1|))) (-15 -2312 (|#1| (-980 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-2883 (((-665 $) (-980 $)) 88 T ELT) (((-665 $) (-1202 $)) 87 T ELT) (((-665 $) (-1202 $) (-1206)) 86 T ELT) (((-665 $) $) 138 T ELT) (((-665 $) $ (-1206)) 136 T ELT)) (-3292 (($ (-980 $)) 91 T ELT) (($ (-1202 $)) 90 T ELT) (($ (-1202 $) (-1206)) 89 T ELT) (($ $) 139 T ELT) (($ $ (-1206)) 137 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 (-1206)) $) 207 T ELT)) (-4419 (((-420 (-1202 $)) $ (-630 $)) 239 (|has| |#1| (-569)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-4317 (((-665 (-630 $)) $) 170 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3583 (($ $ (-665 (-630 $)) (-665 $)) 160 T ELT) (($ $ (-665 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-2809 (($ $) 100 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2762 (($) 18 T CONST)) (-1408 (((-665 $) (-980 $)) 94 T ELT) (((-665 $) (-1202 $)) 93 T ELT) (((-665 $) (-1202 $) (-1206)) 92 T ELT) (((-665 $) $) 142 T ELT) (((-665 $) $ (-1206)) 140 T ELT)) (-2312 (($ (-980 $)) 97 T ELT) (($ (-1202 $)) 96 T ELT) (($ (-1202 $) (-1206)) 95 T ELT) (($ $) 143 T ELT) (($ $ (-1206)) 141 T ELT)) (-2817 (((-3 (-980 |#1|) "failed") $) 258 (|has| |#1| (-1079)) ELT) (((-3 (-420 (-980 |#1|)) "failed") $) 241 (|has| |#1| (-569)) ELT) (((-3 |#1| "failed") $) 203 T ELT) (((-3 (-577) "failed") $) 200 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1206) "failed") $) 194 T ELT) (((-3 (-630 $) "failed") $) 145 T ELT) (((-3 (-420 (-577)) "failed") $) 133 (-2229 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3514 (((-980 |#1|) $) 257 (|has| |#1| (-1079)) ELT) (((-420 (-980 |#1|)) $) 240 (|has| |#1| (-569)) ELT) ((|#1| $) 202 T ELT) (((-577) $) 201 (|has| |#1| (-1068 (-577))) ELT) (((-1206) $) 193 T ELT) (((-630 $) $) 144 T ELT) (((-420 (-577)) $) 134 (-2229 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3152 (($ $ $) 61 T ELT)) (-1953 (((-710 |#1|) (-710 $)) 246 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 245 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 132 (-2229 (-2319 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (((-710 (-577)) (-710 $)) 131 (-2229 (-2319 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 199 (|has| |#1| (-910 (-391))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 198 (|has| |#1| (-910 (-577))) ELT)) (-3555 (($ (-665 $)) 164 T ELT) (($ $) 163 T ELT)) (-2941 (((-665 (-115)) $) 171 T ELT)) (-4396 (((-115) (-115)) 172 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3356 (((-112) $) 192 (|has| $ (-1068 (-577))) ELT)) (-2614 (($ $) 224 (|has| |#1| (-1079)) ELT)) (-2518 (((-1155 |#1| (-630 $)) $) 223 (|has| |#1| (-1079)) ELT)) (-4341 (($ $ (-577)) 99 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-4338 (((-1202 $) (-630 $)) 189 (|has| $ (-1079)) ELT)) (-3609 (($ (-1 $ $) (-630 $)) 178 T ELT)) (-1924 (((-3 (-630 $) "failed") $) 168 T ELT)) (-2796 (((-710 |#1|) (-1297 $)) 248 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 247 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 130 (-2229 (-2319 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (((-710 (-577)) (-1297 $)) 129 (-2229 (-2319 (|has| |#1| (-1079)) (|has| |#1| (-659 (-577)))) (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4385 (((-665 (-630 $)) $) 169 T ELT)) (-2593 (($ (-115) (-665 $)) 177 T ELT) (($ (-115) $) 176 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 218 (|has| |#1| (-1142)) ELT)) (-2200 (((-3 (-2 (|:| |val| $) (|:| -2182 (-577))) "failed") $) 227 (|has| |#1| (-1079)) ELT)) (-3124 (((-3 (-665 $) "failed") $) 220 (|has| |#1| (-25)) ELT)) (-4271 (((-3 (-2 (|:| -2671 (-577)) (|:| |var| (-630 $))) "failed") $) 221 (|has| |#1| (-25)) ELT)) (-2315 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-1206)) 226 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-115)) 225 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $) 219 (|has| |#1| (-1142)) ELT)) (-4450 (((-112) $ (-1206)) 175 T ELT) (((-112) $ (-115)) 174 T ELT)) (-3055 (($ $) 78 T ELT)) (-1736 (((-792) $) 167 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3069 (((-112) $) 205 T ELT)) (-3081 ((|#1| $) 206 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-1603 (((-112) $ (-1206)) 180 T ELT) (((-112) $ $) 179 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2793 (((-112) $) 191 (|has| $ (-1068 (-577))) ELT)) (-3362 (($ $ (-1206) (-792) (-1 $ $)) 231 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) 230 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) 229 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) 228 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 217 (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) $ (-1206)) 216 (|has| |#1| (-632 (-549))) ELT) (($ $) 215 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206))) 214 (|has| |#1| (-632 (-549))) ELT) (($ $ (-1206)) 213 (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) (-1 $ $)) 188 T ELT) (($ $ (-115) (-1 $ (-665 $))) 187 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 186 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 185 T ELT) (($ $ (-1206) (-1 $ $)) 184 T ELT) (($ $ (-1206) (-1 $ (-665 $))) 183 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 182 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 181 T ELT) (($ $ (-665 $) (-665 $)) 152 T ELT) (($ $ $ $) 151 T ELT) (($ $ (-305 $)) 150 T ELT) (($ $ (-665 (-305 $))) 149 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 148 T ELT) (($ $ (-630 $) $) 147 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-2435 (($ (-115) (-665 $)) 157 T ELT) (($ (-115) $ $ $ $) 156 T ELT) (($ (-115) $ $ $) 155 T ELT) (($ (-115) $ $) 154 T ELT) (($ (-115) $) 153 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2830 (($ $ $) 166 T ELT) (($ $) 165 T ELT)) (-2030 (($ $ (-665 (-1206)) (-665 (-792))) 253 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 252 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 251 (|has| |#1| (-1079)) ELT) (($ $ (-1206)) 249 (|has| |#1| (-1079)) ELT)) (-2430 (($ $) 234 (|has| |#1| (-569)) ELT)) (-2528 (((-1155 |#1| (-630 $)) $) 233 (|has| |#1| (-569)) ELT)) (-1773 (($ $) 190 (|has| $ (-1079)) ELT)) (-3341 (((-549) $) 262 (|has| |#1| (-632 (-549))) ELT) (($ (-431 $)) 232 (|has| |#1| (-569)) ELT) (((-916 (-391)) $) 197 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-916 (-577)) $) 196 (|has| |#1| (-632 (-916 (-577)))) ELT)) (-2744 (($ $ $) 261 (|has| |#1| (-486)) ELT)) (-4365 (($ $ $) 260 (|has| |#1| (-486)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-980 |#1|)) 259 (|has| |#1| (-1079)) ELT) (($ (-420 (-980 |#1|))) 242 (|has| |#1| (-569)) ELT) (($ (-420 (-980 (-420 |#1|)))) 238 (|has| |#1| (-569)) ELT) (($ (-980 (-420 |#1|))) 237 (|has| |#1| (-569)) ELT) (($ (-420 |#1|)) 236 (|has| |#1| (-569)) ELT) (($ (-1155 |#1| (-630 $))) 222 (|has| |#1| (-1079)) ELT) (($ |#1|) 204 T ELT) (($ (-1206)) 195 T ELT) (($ (-630 $)) 146 T ELT)) (-2580 (((-3 $ "failed") $) 244 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2208 (($ (-665 $)) 162 T ELT) (($ $) 161 T ELT)) (-3540 (((-112) (-115)) 173 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-1629 (($ (-1206) (-665 $)) 212 T ELT) (($ (-1206) $ $ $ $) 211 T ELT) (($ (-1206) $ $ $) 210 T ELT) (($ (-1206) $ $) 209 T ELT) (($ (-1206) $) 208 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-665 (-1206)) (-665 (-792))) 256 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 255 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 254 (|has| |#1| (-1079)) ELT) (($ $ (-1206)) 250 (|has| |#1| (-1079)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 73 T ELT) (($ (-1155 |#1| (-630 $)) (-1155 |#1| (-630 $))) 235 (|has| |#1| (-569)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 98 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 243 (|has| |#1| (-174)) ELT) (($ |#1| $) 135 (|has| |#1| (-1079)) ELT))) -(((-29 |#1|) (-141) (-569)) (T -29)) -((-2312 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1408 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3)))) (-2312 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1408 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *4)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-2883 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-2883 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-443 |t#1|) (-10 -8 (-15 -2312 ($ $)) (-15 -1408 ((-665 $) $)) (-15 -2312 ($ $ (-1206))) (-15 -1408 ((-665 $) $ (-1206))) (-15 -3292 ($ $)) (-15 -2883 ((-665 $) $)) (-15 -3292 ($ $ (-1206))) (-15 -2883 ((-665 $) $ (-1206))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 #1=(-420 (-980 |#1|))) |has| |#1| (-569)) ((-634 (-577)) . T) ((-634 #2=(-630 $)) . T) ((-634 #3=(-980 |#1|)) |has| |#1| (-1079)) ((-634 #4=(-1206)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-249) . T) ((-301) . T) ((-318) . T) ((-320 $) . T) ((-313) . T) ((-375) . T) ((-389 |#1|) |has| |#1| (-1079)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-443 |#1|) . T) ((-465) . T) ((-486) |has| |#1| (-486)) ((-527 (-630 $) $) . T) ((-527 $ $) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) -2229 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-667 $) . T) ((-669 #0#) . T) ((-669 #5=(-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-669 |#1|) -2229 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) . T) ((-659 #5#) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-659 |#1|) |has| |#1| (-1079)) ((-738 #0#) . T) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) . T) ((-747) . T) ((-920 $ #6=(-1206)) |has| |#1| (-1079)) ((-926 #6#) |has| |#1| (-1079)) ((-928 #6#) |has| |#1| (-1079)) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-948) . T) ((-1032) . T) ((-1068 (-420 (-577))) -2229 (|has| |#1| (-1068 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577))))) ((-1068 #1#) |has| |#1| (-569)) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #2#) . T) ((-1068 #3#) |has| |#1| (-1079)) ((-1068 #4#) . T) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) |has| |#1| (-174)) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-3416 (((-1124 (-228)) $) NIL T ELT)) (-3405 (((-1124 (-228)) $) NIL T ELT)) (-3647 (($ $ (-228)) 164 T ELT)) (-1478 (($ (-980 (-577)) (-1206) (-1206) (-1124 (-420 (-577))) (-1124 (-420 (-577)))) 104 T ELT)) (-1606 (((-665 (-665 (-971 (-228)))) $) 180 T ELT)) (-2410 (((-885) $) 194 T ELT))) -(((-30) (-13 (-983) (-10 -8 (-15 -1478 ($ (-980 (-577)) (-1206) (-1206) (-1124 (-420 (-577))) (-1124 (-420 (-577))))) (-15 -3647 ($ $ (-228)))))) (T -30)) -((-1478 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-980 (-577))) (-5 *3 (-1206)) (-5 *4 (-1124 (-420 (-577)))) (-5 *1 (-30)))) (-3647 (*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30))))) -(-13 (-983) (-10 -8 (-15 -1478 ($ (-980 (-577)) (-1206) (-1206) (-1124 (-420 (-577))) (-1124 (-420 (-577))))) (-15 -3647 ($ $ (-228))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-1165) $) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (((-1165) $) 9 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-31) (-13 (-1113) (-10 -8 (-15 -3646 ((-1165) $)) (-15 -4115 ((-1165) $))))) (T -31)) -((-3646 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31))))) -(-13 (-1113) (-10 -8 (-15 -3646 ((-1165) $)) (-15 -4115 ((-1165) $)))) -((-2312 ((|#2| (-1202 |#2|) (-1206)) 41 T ELT)) (-4396 (((-115) (-115)) 55 T ELT)) (-4338 (((-1202 |#2|) (-630 |#2|)) 149 (|has| |#1| (-1068 (-577))) ELT)) (-2944 ((|#2| |#1| (-577)) 137 (|has| |#1| (-1068 (-577))) ELT)) (-2714 ((|#2| (-1202 |#2|) |#2|) 29 T ELT)) (-3253 (((-885) (-665 |#2|)) 86 T ELT)) (-1773 ((|#2| |#2|) 144 (|has| |#1| (-1068 (-577))) ELT)) (-3540 (((-112) (-115)) 17 T ELT)) (** ((|#2| |#2| (-420 (-577))) 103 (|has| |#1| (-1068 (-577))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2312 (|#2| (-1202 |#2|) (-1206))) (-15 -4396 ((-115) (-115))) (-15 -3540 ((-112) (-115))) (-15 -2714 (|#2| (-1202 |#2|) |#2|)) (-15 -3253 ((-885) (-665 |#2|))) (IF (|has| |#1| (-1068 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -4338 ((-1202 |#2|) (-630 |#2|))) (-15 -1773 (|#2| |#2|)) (-15 -2944 (|#2| |#1| (-577)))) |%noBranch|)) (-569) (-443 |#1|)) (T -32)) -((-2944 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1068 *4)) (-4 *3 (-569)))) (-1773 (*1 *2 *2) (-12 (-4 *3 (-1068 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-443 *3)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1068 (-577))) (-4 *4 (-569)) (-5 *2 (-1202 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1068 (-577))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-443 *4)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) (-5 *2 (-885)) (-5 *1 (-32 *4 *5)))) (-2714 (*1 *2 *3 *2) (-12 (-5 *3 (-1202 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-443 *4)))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-443 *3)))) (-2312 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *2)) (-5 *4 (-1206)) (-4 *2 (-443 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569))))) -(-10 -7 (-15 -2312 (|#2| (-1202 |#2|) (-1206))) (-15 -4396 ((-115) (-115))) (-15 -3540 ((-112) (-115))) (-15 -2714 (|#2| (-1202 |#2|) |#2|)) (-15 -3253 ((-885) (-665 |#2|))) (IF (|has| |#1| (-1068 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -4338 ((-1202 |#2|) (-630 |#2|))) (-15 -1773 (|#2| |#2|)) (-15 -2944 (|#2| |#1| (-577)))) |%noBranch|)) -((-2641 (((-112) $ (-792)) 20 T ELT)) (-2762 (($) 10 T ELT)) (-1967 (((-112) $ (-792)) 19 T ELT)) (-3417 (((-112) $ (-792)) 17 T ELT)) (-3674 (((-112) $ $) 8 T ELT)) (-2392 (((-112) $) 15 T ELT))) -(((-33 |#1|) (-10 -8 (-15 -2762 (|#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792))) (-15 -2392 ((-112) |#1|)) (-15 -3674 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -2762 (|#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792))) (-15 -2392 ((-112) |#1|)) (-15 -3674 ((-112) |#1| |#1|))) -((-2641 (((-112) $ (-792)) 8 T ELT)) (-2762 (($) 7 T CONST)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-3978 (($ $) 13 T ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-34) (-141)) (T -34)) -((-3674 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3978 (*1 *1 *1) (-4 *1 (-34))) (-3414 (*1 *1) (-4 *1 (-34))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3417 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) (-1967 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) (-2762 (*1 *1) (-4 *1 (-34))) (-3224 (*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-34)) (-5 *2 (-792))))) -(-13 (-1247) (-10 -8 (-15 -3674 ((-112) $ $)) (-15 -3978 ($ $)) (-15 -3414 ($)) (-15 -2392 ((-112) $)) (-15 -3417 ((-112) $ (-792))) (-15 -1967 ((-112) $ (-792))) (-15 -2641 ((-112) $ (-792))) (-15 -2762 ($) -1528) (IF (|has| $ (-6 -4499)) (-15 -3224 ((-792) $)) |%noBranch|))) -(((-1247) . T)) -((-1575 (($ $) 11 T ELT)) (-1551 (($ $) 10 T ELT)) (-1597 (($ $) 9 T ELT)) (-3501 (($ $) 8 T ELT)) (-1586 (($ $) 7 T ELT)) (-1562 (($ $) 6 T ELT))) -(((-35) (-141)) (T -35)) -((-1575 (*1 *1 *1) (-4 *1 (-35))) (-1551 (*1 *1 *1) (-4 *1 (-35))) (-1597 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-1586 (*1 *1 *1) (-4 *1 (-35))) (-1562 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -1562 ($ $)) (-15 -1586 ($ $)) (-15 -3501 ($ $)) (-15 -1597 ($ $)) (-15 -1551 ($ $)) (-15 -1575 ($ $)))) -((-3211 (((-112) $ $) 20 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ELT)) (-4119 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 127 T ELT)) (-3932 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 150 T ELT)) (-3840 (($ $) 148 T ELT)) (-3735 (($) 73 T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 72 T ELT)) (-3425 (((-1302) $ |#1| |#1|) 100 (|has| $ (-6 -4500)) ELT) (((-1302) $ (-577) (-577)) 180 (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) 161 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 211 T ELT) (((-112) $) 205 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-1461 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 202 (|has| $ (-6 -4500)) ELT) (($ $) 201 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) (|has| $ (-6 -4500))) ELT)) (-2040 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 212 T ELT) (($ $) 206 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 136 (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 157 (|has| $ (-6 -4500)) ELT)) (-4306 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 159 (|has| $ (-6 -4500)) ELT)) (-3445 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 155 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#2| $ |#1| |#2|) 74 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 191 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-1264 (-577)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 162 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "last" (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 160 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 158 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "first" (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 156 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "value" (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 135 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 134 (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 46 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 218 T ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 56 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 177 (|has| $ (-6 -4499)) ELT)) (-3919 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 149 T ELT)) (-3255 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2762 (($) 7 T CONST)) (-3823 (($ $) 203 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 213 T ELT)) (-4197 (($ $ (-792)) 144 T ELT) (($ $) 142 T ELT)) (-3237 (($ $) 216 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-3860 (($ $) 59 (-2229 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499)))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 47 (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 222 T ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 217 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 55 (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 176 (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 57 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 54 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 53 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 178 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 175 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 174 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 192 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) 89 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) 190 T ELT)) (-1631 (((-112) $) 194 T ELT)) (-3886 (((-577) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 210 T ELT) (((-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 209 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT) (((-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) 208 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 31 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 80 (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 116 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 125 T ELT)) (-2975 (((-112) $ $) 133 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-3748 (($ (-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 170 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 ((|#1| $) 97 (|has| |#1| (-870)) ELT) (((-577) $) 182 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 195 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2044 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ $) 219 T ELT) (($ $ $) 215 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2223 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ $) 214 T ELT) (($ $ $) 207 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 30 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 81 (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 117 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT) (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 ((|#1| $) 96 (|has| |#1| (-870)) ELT) (((-577) $) 183 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 196 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 35 (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4500)) ELT) (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 112 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT) (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ $) 167 T ELT) (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 111 T ELT)) (-2605 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 227 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-1503 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 130 T ELT)) (-1452 (((-112) $) 126 T ELT)) (-3384 (((-1188) $) 23 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-2756 (($ $ (-792)) 147 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 145 T ELT)) (-3242 (((-665 |#1|) $) 64 T ELT)) (-2404 (((-112) |#1| $) 65 T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 40 T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 41 T ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) 221 T ELT) (($ $ $ (-577)) 220 T ELT)) (-4272 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) 164 T ELT) (($ $ $ (-577)) 163 T ELT)) (-3887 (((-665 |#1|) $) 94 T ELT) (((-665 (-577)) $) 185 T ELT)) (-1593 (((-112) |#1| $) 93 T ELT) (((-112) (-577) $) 186 T ELT)) (-4312 (((-1150) $) 22 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-4188 ((|#2| $) 98 (|has| |#1| (-870)) ELT) (($ $ (-792)) 141 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 139 T ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 52 T ELT) (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 173 T ELT)) (-3482 (($ $ |#2|) 99 (|has| $ (-6 -4500)) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 181 (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 42 T ELT)) (-2005 (((-112) $) 193 T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 33 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 114 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) 27 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 26 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 25 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 24 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 123 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 122 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 121 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) 120 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 184 (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-3485 (((-665 |#2|) $) 92 T ELT) (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 187 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 189 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) 188 T ELT) (($ $ (-1264 (-577))) 171 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "last") 146 T ELT) (($ $ "rest") 143 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "first") 140 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "value") 128 T ELT)) (-1722 (((-577) $ $) 131 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 49 T ELT)) (-2209 (($ $ (-577)) 224 T ELT) (($ $ (-1264 (-577))) 223 T ELT)) (-1704 (($ $ (-577)) 166 T ELT) (($ $ (-1264 (-577))) 165 T ELT)) (-2110 (((-112) $) 129 T ELT)) (-1751 (($ $) 153 T ELT)) (-4123 (($ $) 154 (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) 152 T ELT)) (-3252 (($ $) 151 T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) |#2| $) 82 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 115 (|has| $ (-6 -4499)) ELT)) (-1530 (($ $ $ (-577)) 204 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549)))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 51 T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 172 T ELT)) (-2872 (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 226 T ELT) (($ $ $) 225 T ELT)) (-3702 (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 169 T ELT) (($ (-665 $)) 168 T ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 138 T ELT) (($ $ $) 137 T ELT)) (-2410 (((-885) $) 18 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885)))) ELT)) (-2421 (((-665 $) $) 124 T ELT)) (-3737 (((-112) $ $) 132 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-2525 (((-112) $ $) 21 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 43 T ELT)) (-2766 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") |#1| $) 110 T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 34 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 113 (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) 197 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2415 (((-112) $ $) 199 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2383 (((-112) $ $) 19 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ELT)) (-2428 (((-112) $ $) 198 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2403 (((-112) $ $) 200 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-36 |#1| |#2|) (-141) (-1130) (-1130)) (T -36)) -((-2766 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| -3171 *3) (|:| -2753 *4)))))) -(-13 (-1223 |t#1| |t#2|) (-687 (-2 (|:| -3171 |t#1|) (|:| -2753 |t#2|))) (-10 -8 (-15 -2766 ((-3 (-2 (|:| -3171 |t#1|) (|:| -2753 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) ((-102) -2229 (|has| |#2| (-1130)) (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ((-631 (-885)) -2229 (|has| |#2| (-1130)) (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885)))) ((-152 #1=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) ((-632 (-549)) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 #2=(-577) #1#) . T) ((-297 (-1264 (-577)) $) . T) ((-297 |#1| |#2|) . T) ((-299 #2# #1#) . T) ((-299 |#1| |#2|) . T) ((-320 #1#) -12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-293 #1#) . T) ((-385 #1#) . T) ((-502 #1#) . T) ((-502 |#2|) . T) ((-617 #2# #1#) . T) ((-617 |#1| |#2|) . T) ((-527 #1# #1#) -12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-628 |#1| |#2|) . T) ((-672 #1#) . T) ((-687 #1#) . T) ((-870) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ((-873) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ((-1040 #1#) . T) ((-1130) -2229 (|has| |#2| (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870))) ((-1179 #1#) . T) ((-1223 |#1| |#2|) . T) ((-1247) . T) ((-1285 #1#) . T)) -((-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-38 |#1|) (-141) (-174)) (T -38)) -NIL -(-13 (-1079) (-738 |t#1|) (-634 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2574 (((-431 |#1|) |#1|) 41 T ELT)) (-2799 (((-431 |#1|) |#1|) 30 T ELT) (((-431 |#1|) |#1| (-665 (-48))) 33 T ELT)) (-2418 (((-112) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -2799 ((-431 |#1|) |#1| (-665 (-48)))) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -2574 ((-431 |#1|) |#1|)) (-15 -2418 ((-112) |#1|))) (-1273 (-48))) (T -39)) -((-2418 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-2574 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))) -(-10 -7 (-15 -2799 ((-431 |#1|) |#1| (-665 (-48)))) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -2574 ((-431 |#1|) |#1|)) (-15 -2418 ((-112) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3675 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3913 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4244 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2716 (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|))) NIL T ELT)) (-1880 (((-420 |#2|) $) NIL T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3397 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2221 (((-792)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2266 (((-112)) NIL T ELT)) (-1948 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-420 |#2|) $) NIL T ELT)) (-1912 (($ (-1297 (-420 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-420 |#2|))) 61 T ELT) (($ (-1297 |#2|) |#2|) 131 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3152 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3449 (((-710 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-710 $)) NIL T ELT)) (-3495 (((-1297 $) (-1297 $)) NIL T ELT)) (-2511 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2720 (((-665 (-665 |#1|))) NIL (|has| |#1| (-380)) ELT)) (-2280 (((-112) |#1| |#1|) NIL T ELT)) (-1875 (((-949)) NIL T ELT)) (-2060 (($) NIL (|has| (-420 |#2|) (-380)) ELT)) (-1694 (((-112)) NIL T ELT)) (-4409 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-3164 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3008 (($ $) NIL T ELT)) (-3619 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3390 (((-112) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2202 (($ $ (-792)) NIL (|has| (-420 |#2|) (-361)) ELT) (($ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1632 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3890 (((-949) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-854 (-949)) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-1763 (((-792)) NIL T ELT)) (-1644 (((-1297 $) (-1297 $)) 106 T ELT)) (-2755 (((-420 |#2|) $) NIL T ELT)) (-2351 (((-665 (-980 |#1|)) (-1206)) NIL (|has| |#1| (-375)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4067 ((|#3| $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2553 (((-949) $) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2500 ((|#3| $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-1297 $) $) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1761 (((-1302) (-792)) 84 T ELT)) (-4330 (((-710 (-420 |#2|))) 56 T ELT)) (-2633 (((-710 (-420 |#2|))) 49 T ELT)) (-3055 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4352 (($ (-1297 |#2|) |#2|) 132 T ELT)) (-3099 (((-710 (-420 |#2|))) 50 T ELT)) (-2169 (((-710 (-420 |#2|))) 48 T ELT)) (-3205 (((-2 (|:| |num| (-710 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-3256 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-4377 (((-1297 $)) 47 T ELT)) (-2544 (((-1297 $)) 46 T ELT)) (-2645 (((-112) $) NIL T ELT)) (-1932 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-2199 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-2085 (($ (-949)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2133 (((-3 |#2| "failed")) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3541 (((-792)) NIL T ELT)) (-2846 (($) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2799 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2442 (((-792) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2435 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1943 (((-3 |#2| "failed")) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1611 (((-420 |#2|) (-1297 $)) NIL T ELT) (((-420 |#2|)) 44 T ELT)) (-2723 (((-792) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2030 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-1935 (((-710 (-420 |#2|)) (-1297 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1773 ((|#3|) 55 T ELT)) (-1494 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2119 (((-1297 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-420 |#2|)) $) 62 T ELT) (((-710 (-420 |#2|)) (-1297 $)) 107 T ELT)) (-3341 (((-1297 (-420 |#2|)) $) NIL T ELT) (($ (-1297 (-420 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-4160 (((-1297 $) (-1297 $)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 |#2|)) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| (-420 |#2|) (-1068 (-420 (-577)))) (|has| (-420 |#2|) (-375))) ELT) (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2580 (($ $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)) ELT)) (-3400 ((|#3| $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2588 (((-112)) 42 T ELT)) (-2237 (((-112) |#1|) 54 T ELT) (((-112) |#2|) 138 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3072 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-2373 (((-112)) NIL T ELT)) (-2367 (($) 17 T CONST)) (-2378 (($) 27 T CONST)) (-1675 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 |#2|)) NIL T ELT) (($ (-420 |#2|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -1761 ((-1302) (-792))))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) |#3|) (T -40)) -((-1761 (*1 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *2 (-1302)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-420 *5))) (-14 *7 *6)))) -(-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -1761 ((-1302) (-792))))) -((-2826 ((|#2| |#2|) 47 T ELT)) (-4057 ((|#2| |#2|) 139 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-2977 ((|#2| |#2|) 100 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-1570 ((|#2| |#2|) 101 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-3969 ((|#2| (-115) |#2| (-792)) 135 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1068 (-577))))) ELT)) (-2863 (((-1202 |#2|) |#2|) 44 T ELT)) (-4374 ((|#2| |#2| (-665 (-630 |#2|))) 18 T ELT) ((|#2| |#2| (-665 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2826 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -4374 (|#2| |#2| |#2|)) (-15 -4374 (|#2| |#2| (-665 |#2|))) (-15 -4374 (|#2| |#2| (-665 (-630 |#2|)))) (-15 -2863 ((-1202 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1068 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -1570 (|#2| |#2|)) (-15 -2977 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -3969 (|#2| (-115) |#2| (-792)))) |%noBranch|) |%noBranch|)) (-569) (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 |#1| (-630 $)) $)) (-15 -2528 ((-1155 |#1| (-630 $)) $)) (-15 -2410 ($ (-1155 |#1| (-630 $))))))) (T -41)) -((-3969 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-792)) (-4 *5 (-13 (-465) (-1068 (-577)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *5 (-630 $)) $)) (-15 -2528 ((-1155 *5 (-630 $)) $)) (-15 -2410 ($ (-1155 *5 (-630 $))))))))) (-4057 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) (-15 -2528 ((-1155 *3 (-630 $)) $)) (-15 -2410 ($ (-1155 *3 (-630 $))))))))) (-2977 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) (-15 -2528 ((-1155 *3 (-630 $)) $)) (-15 -2410 ($ (-1155 *3 (-630 $))))))))) (-1570 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) (-15 -2528 ((-1155 *3 (-630 $)) $)) (-15 -2410 ($ (-1155 *3 (-630 $))))))))) (-2863 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1202 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *4 (-630 $)) $)) (-15 -2528 ((-1155 *4 (-630 $)) $)) (-15 -2410 ($ (-1155 *4 (-630 $))))))))) (-4374 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-630 *2))) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *4 (-630 $)) $)) (-15 -2528 ((-1155 *4 (-630 $)) $)) (-15 -2410 ($ (-1155 *4 (-630 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-4374 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *4 (-630 $)) $)) (-15 -2528 ((-1155 *4 (-630 $)) $)) (-15 -2410 ($ (-1155 *4 (-630 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-4374 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) (-15 -2528 ((-1155 *3 (-630 $)) $)) (-15 -2410 ($ (-1155 *3 (-630 $))))))))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) (-15 -2528 ((-1155 *3 (-630 $)) $)) (-15 -2410 ($ (-1155 *3 (-630 $))))))))) (-2826 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) (-15 -2528 ((-1155 *3 (-630 $)) $)) (-15 -2410 ($ (-1155 *3 (-630 $)))))))))) -(-10 -7 (-15 -2826 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -4374 (|#2| |#2| |#2|)) (-15 -4374 (|#2| |#2| (-665 |#2|))) (-15 -4374 (|#2| |#2| (-665 (-630 |#2|)))) (-15 -2863 ((-1202 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1068 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -1570 (|#2| |#2|)) (-15 -2977 (|#2| |#2|)) (-15 -4057 (|#2| |#2|)) (-15 -3969 (|#2| (-115) |#2| (-792)))) |%noBranch|) |%noBranch|)) -((-2799 (((-431 (-1202 |#3|)) (-1202 |#3|) (-665 (-48))) 23 T ELT) (((-431 |#3|) |#3| (-665 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-431 |#3|) |#3| (-665 (-48)))) (-15 -2799 ((-431 (-1202 |#3|)) (-1202 |#3|) (-665 (-48))))) (-870) (-814) (-977 (-48) |#2| |#1|)) (T -42)) -((-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *7 (-977 (-48) *6 *5)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-977 (-48) *6 *5))))) -(-10 -7 (-15 -2799 ((-431 |#3|) |#3| (-665 (-48)))) (-15 -2799 ((-431 (-1202 |#3|)) (-1202 |#3|) (-665 (-48))))) -((-2568 (((-792) |#2|) 70 T ELT)) (-2949 (((-792) |#2|) 74 T ELT)) (-3135 (((-665 |#2|)) 37 T ELT)) (-3914 (((-792) |#2|) 73 T ELT)) (-2251 (((-792) |#2|) 69 T ELT)) (-3954 (((-792) |#2|) 72 T ELT)) (-3474 (((-665 (-710 |#1|))) 65 T ELT)) (-3749 (((-665 |#2|)) 60 T ELT)) (-2853 (((-665 |#2|) |#2|) 48 T ELT)) (-2875 (((-665 |#2|)) 62 T ELT)) (-3454 (((-665 |#2|)) 61 T ELT)) (-2546 (((-665 (-710 |#1|))) 53 T ELT)) (-2526 (((-665 |#2|)) 59 T ELT)) (-1664 (((-665 |#2|) |#2|) 47 T ELT)) (-4376 (((-665 |#2|)) 55 T ELT)) (-3355 (((-665 (-710 |#1|))) 66 T ELT)) (-3527 (((-665 |#2|)) 64 T ELT)) (-2225 (((-1297 |#2|) (-1297 |#2|)) 99 (|has| |#1| (-318)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3914 ((-792) |#2|)) (-15 -2949 ((-792) |#2|)) (-15 -2251 ((-792) |#2|)) (-15 -2568 ((-792) |#2|)) (-15 -3954 ((-792) |#2|)) (-15 -4376 ((-665 |#2|))) (-15 -1664 ((-665 |#2|) |#2|)) (-15 -2853 ((-665 |#2|) |#2|)) (-15 -2526 ((-665 |#2|))) (-15 -3749 ((-665 |#2|))) (-15 -3454 ((-665 |#2|))) (-15 -2875 ((-665 |#2|))) (-15 -3527 ((-665 |#2|))) (-15 -2546 ((-665 (-710 |#1|)))) (-15 -3474 ((-665 (-710 |#1|)))) (-15 -3355 ((-665 (-710 |#1|)))) (-15 -3135 ((-665 |#2|))) (IF (|has| |#1| (-318)) (-15 -2225 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) (-569) (-430 |#1|)) (T -43)) -((-2225 (*1 *2 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) (-3135 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3355 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3474 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2546 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3527 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2875 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3454 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3749 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2526 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2853 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1664 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-4376 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-2568 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-2251 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-2949 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3914 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) -(-10 -7 (-15 -3914 ((-792) |#2|)) (-15 -2949 ((-792) |#2|)) (-15 -2251 ((-792) |#2|)) (-15 -2568 ((-792) |#2|)) (-15 -3954 ((-792) |#2|)) (-15 -4376 ((-665 |#2|))) (-15 -1664 ((-665 |#2|) |#2|)) (-15 -2853 ((-665 |#2|) |#2|)) (-15 -2526 ((-665 |#2|))) (-15 -3749 ((-665 |#2|))) (-15 -3454 ((-665 |#2|))) (-15 -2875 ((-665 |#2|))) (-15 -3527 ((-665 |#2|))) (-15 -2546 ((-665 (-710 |#1|)))) (-15 -3474 ((-665 (-710 |#1|)))) (-15 -3355 ((-665 (-710 |#1|)))) (-15 -3135 ((-665 |#2|))) (IF (|has| |#1| (-318)) (-15 -2225 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2117 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1985 (((-1297 (-710 |#1|)) (-1297 $)) NIL T ELT) (((-1297 (-710 |#1|))) 24 T ELT)) (-3955 (((-1297 $)) 52 T ELT)) (-2762 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (|has| |#1| (-569)) ELT)) (-3666 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-2470 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) NIL T ELT)) (-1677 ((|#1| $) NIL T ELT)) (-1826 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-1488 (((-3 $ "failed") $) NIL (|has| |#1| (-569)) ELT)) (-3185 (((-1202 (-980 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-1380 (($ $ (-949)) NIL T ELT)) (-2932 ((|#1| $) NIL T ELT)) (-2993 (((-1202 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-2829 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3661 (((-1202 |#1|) $) NIL T ELT)) (-1550 (((-112)) 99 T ELT)) (-1912 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-4281 (((-3 $ "failed") $) 14 (|has| |#1| (-569)) ELT)) (-1875 (((-949)) 53 T ELT)) (-3506 (((-112)) NIL T ELT)) (-3328 (($ $ (-949)) NIL T ELT)) (-3842 (((-112)) NIL T ELT)) (-3195 (((-112)) NIL T ELT)) (-3950 (((-112)) 101 T ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (|has| |#1| (-569)) ELT)) (-2249 (((-3 $ "failed")) NIL (|has| |#1| (-569)) ELT)) (-2164 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) NIL T ELT)) (-4470 ((|#1| $) NIL T ELT)) (-3065 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-3258 (((-3 $ "failed") $) NIL (|has| |#1| (-569)) ELT)) (-4235 (((-1202 (-980 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-1748 (($ $ (-949)) NIL T ELT)) (-1591 ((|#1| $) NIL T ELT)) (-2369 (((-1202 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-3570 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3163 (((-1202 |#1|) $) NIL T ELT)) (-3677 (((-112)) 98 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4404 (((-112)) 106 T ELT)) (-2027 (((-112)) 105 T ELT)) (-1796 (((-112)) 107 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1342 (((-112)) 100 T ELT)) (-2435 ((|#1| $ (-577)) 55 T ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 48 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 28 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3341 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-3463 (((-665 (-980 |#1|)) (-1297 $)) NIL T ELT) (((-665 (-980 |#1|))) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2137 (((-112)) 95 T ELT)) (-2410 (((-885) $) 71 T ELT) (($ (-1297 |#1|)) 22 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) 51 T ELT)) (-3898 (((-665 (-1297 |#1|))) NIL (|has| |#1| (-569)) ELT)) (-3899 (($ $ $ $) NIL T ELT)) (-1984 (((-112)) 91 T ELT)) (-4177 (($ (-710 |#1|) $) 18 T ELT)) (-1416 (($ $ $) NIL T ELT)) (-2989 (((-112)) 97 T ELT)) (-4176 (((-112)) 92 T ELT)) (-2102 (((-112)) 90 T ELT)) (-2367 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1172 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-669 (-1172 |#2| |#1|)) (-10 -8 (-15 -2410 ($ (-1297 |#1|))))) (-375) (-949) (-665 (-1206)) (-1297 (-710 |#1|))) (T -44)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-14 *6 (-1297 (-710 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-665 (-1206)))))) -(-13 (-430 |#1|) (-669 (-1172 |#2| |#1|)) (-10 -8 (-15 -2410 ($ (-1297 |#1|))))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4119 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3932 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3840 (($ $) NIL T ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-3425 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT) (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (((-112) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-1461 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870))) ELT)) (-2040 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 33 (|has| $ (-6 -4500)) ELT)) (-4306 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-3445 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 35 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-1264 (-577)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "last" (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "first" (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "value" (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3919 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3255 (((-3 |#2| "failed") |#1| $) 43 T ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-4197 (($ $ (-792)) NIL T ELT) (($ $) 29 T ELT)) (-3237 (($ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 56 T ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) NIL T ELT)) (-1631 (((-112) $) NIL T ELT)) (-3886 (((-577) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (((-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT) (((-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 20 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 20 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-3748 (($ (-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 ((|#1| $) NIL (|has| |#1| (-870)) ELT) (((-577) $) 38 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2044 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2223 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1962 ((|#1| $) NIL (|has| |#1| (-870)) ELT) (((-577) $) 40 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-2605 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-1503 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-1452 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) 49 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-2756 (($ $ (-792)) NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3242 (((-665 |#1|) $) 22 T ELT)) (-2404 (((-112) |#1| $) NIL T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-4272 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 |#1|) $) NIL T ELT) (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) |#1| $) NIL T ELT) (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#2| $) NIL (|has| |#1| (-870)) ELT) (($ $ (-792)) NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 27 T ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-2005 (((-112) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT) (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 19 T ELT)) (-2392 (((-112) $) 18 T ELT)) (-3414 (($) 14 T ELT)) (-2435 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "last") NIL T ELT) (($ $ "rest") NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "first") NIL T ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $ "value") NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2427 (($) 13 T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2209 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-2110 (((-112) $) NIL T ELT)) (-1751 (($ $) NIL T ELT)) (-4123 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2872 (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3702 (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL T ELT) (($ (-665 $)) NIL T ELT) (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2766 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") |#1| $) 51 T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2428 (((-112) $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-870)) ELT)) (-3224 (((-792) $) 25 (|has| $ (-6 -4499)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1130) (-1130)) (T -45)) +(3471929 . 3497168601) +((-2442 (((-112) (-1 (-112) |#2| |#2|) $) 86 T ELT) (((-112) $) NIL T ELT)) (-4101 (($ (-1 (-112) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-2590 ((|#2| $ (-578) |#2|) NIL T ELT) ((|#2| $ (-1265 (-578)) |#2|) 44 T ELT)) (-1464 (($ $) 80 T ELT)) (-2512 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3887 (((-578) (-1 (-112) |#2|) $) 27 T ELT) (((-578) |#2| $) NIL T ELT) (((-578) |#2| $ (-578)) 96 T ELT)) (-2729 (((-666 |#2|) $) 13 T ELT)) (-3176 (($ (-1 (-112) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-3439 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-4273 (($ |#2| $ (-578)) NIL T ELT) (($ $ $ (-578)) 67 T ELT)) (-3668 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29 T ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-2436 ((|#2| $ (-578) |#2|) NIL T ELT) ((|#2| $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) 66 T ELT)) (-1705 (($ $ (-578)) 76 T ELT) (($ $ (-1265 (-578))) 75 T ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) 34 T ELT) (((-793) |#2| $) NIL T ELT)) (-3751 (($ $ $ (-578)) 69 T ELT)) (-3979 (($ $) 68 T ELT)) (-2423 (($ (-666 |#2|)) 73 T ELT)) (-3703 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-666 $)) 85 T ELT)) (-2411 (((-886) $) 92 T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 22 T ELT)) (-2384 (((-112) $ $) 95 T ELT)) (-2404 (((-112) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2404 ((-112) |#1| |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1464 (|#1| |#1|)) (-15 -3751 (|#1| |#1| |#1| (-578))) (-15 -2442 ((-112) |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -3887 ((-578) |#2| |#1| (-578))) (-15 -3887 ((-578) |#2| |#1|)) (-15 -3887 ((-578) (-1 (-112) |#2|) |#1|)) (-15 -2442 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3176 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2590 (|#2| |#1| (-1265 (-578)) |#2|)) (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -1705 (|#1| |#1| (-1265 (-578)))) (-15 -1705 (|#1| |#1| (-578))) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3703 (|#1| (-666 |#1|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -2423 (|#1| (-666 |#2|))) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2436 (|#2| |#1| (-578))) (-15 -2436 (|#2| |#1| (-578) |#2|)) (-15 -2590 (|#2| |#1| (-578) |#2|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -2729 ((-666 |#2|) |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3979 (|#1| |#1|))) (-19 |#2|) (-1248)) (T -18)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2404 ((-112) |#1| |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1464 (|#1| |#1|)) (-15 -3751 (|#1| |#1| |#1| (-578))) (-15 -2442 ((-112) |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -3887 ((-578) |#2| |#1| (-578))) (-15 -3887 ((-578) |#2| |#1|)) (-15 -3887 ((-578) (-1 (-112) |#2|) |#1|)) (-15 -2442 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3176 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2590 (|#2| |#1| (-1265 (-578)) |#2|)) (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -1705 (|#1| |#1| (-1265 (-578)))) (-15 -1705 (|#1| |#1| (-578))) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3703 (|#1| (-666 |#1|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -2423 (|#1| (-666 |#2|))) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2436 (|#2| |#1| (-578))) (-15 -2436 (|#2| |#1| (-578) |#2|)) (-15 -2590 (|#2| |#1| (-578) |#2|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -2729 ((-666 |#2|) |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3979 (|#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4501)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4501))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#1| $ (-578) |#1|) 53 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 60 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-1464 (($ $) 93 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 103 T ELT)) (-3776 (($ $) 80 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#1| $) 79 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 52 T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) 100 T ELT) (((-578) |#1| $) 99 (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) 98 (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) 70 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) 62 T ELT) (($ $ $ (-578)) 61 T ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 43 (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-4291 (($ $ |#1|) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) |#1|) 51 T ELT) ((|#1| $ (-578)) 50 T ELT) (($ $ (-1265 (-578))) 71 T ELT)) (-1705 (($ $ (-578)) 64 T ELT) (($ $ (-1265 (-578))) 63 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3751 (($ $ $ (-578)) 94 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 81 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 72 T ELT)) (-3703 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-666 $)) 66 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) 87 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 89 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) 88 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 90 (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-19 |#1|) (-142) (-1248)) (T -19)) +NIL +(-13 (-386 |t#1|) (-10 -7 (-6 -4501))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-386 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1131) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871))) ((-1248) . T)) +((-4028 (((-3 $ "failed") $ $) 12 T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 26 T ELT))) +(((-20 |#1|) (-10 -8 (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 -4028 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 -4028 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT))) +(((-21) (-142)) (T -21)) +((-2484 (*1 *1 *1) (-4 *1 (-21))) (-2484 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-133) (-668 (-578)) (-10 -8 (-15 -2484 ($ $)) (-15 -2484 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-1131) . T) ((-1248) . T)) +((-3623 (((-112) $) 10 T ELT)) (-3534 (($) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 19 T ELT))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 -3534 (|#1|)) (-15 * (|#1| (-950) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 -3534 (|#1|)) (-15 * (|#1| (-950) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT))) +(((-23) (-142)) (T -23)) +((-2368 (*1 *1) (-4 *1 (-23))) (-3534 (*1 *1) (-4 *1 (-23))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-793))))) +(-13 (-25) (-10 -8 (-15 (-2368) ($) -1529) (-15 -3534 ($) -1529) (-15 -3623 ((-112) $)) (-15 * ($ (-793) $)))) +(((-25) . T) ((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((* (($ (-950) $) 10 T ELT))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-950) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-950) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT))) +(((-25) (-142)) (T -25)) +((-2472 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-950))))) +(-13 (-1131) (-10 -8 (-15 -2472 ($ $ $)) (-15 * ($ (-950) $)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3456 (((-666 $) (-981 $)) 32 T ELT) (((-666 $) (-1203 $)) 16 T ELT) (((-666 $) (-1203 $) (-1207)) 20 T ELT)) (-3007 (($ (-981 $)) 30 T ELT) (($ (-1203 $)) 11 T ELT) (($ (-1203 $) (-1207)) 60 T ELT)) (-4268 (((-666 $) (-981 $)) 33 T ELT) (((-666 $) (-1203 $)) 18 T ELT) (((-666 $) (-1203 $) (-1207)) 19 T ELT)) (-1567 (($ (-981 $)) 31 T ELT) (($ (-1203 $)) 13 T ELT) (($ (-1203 $) (-1207)) NIL T ELT))) +(((-26 |#1|) (-10 -8 (-15 -3456 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -3456 ((-666 |#1|) (-1203 |#1|))) (-15 -3456 ((-666 |#1|) (-981 |#1|))) (-15 -3007 (|#1| (-1203 |#1|) (-1207))) (-15 -3007 (|#1| (-1203 |#1|))) (-15 -3007 (|#1| (-981 |#1|))) (-15 -4268 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -4268 ((-666 |#1|) (-1203 |#1|))) (-15 -4268 ((-666 |#1|) (-981 |#1|))) (-15 -1567 (|#1| (-1203 |#1|) (-1207))) (-15 -1567 (|#1| (-1203 |#1|))) (-15 -1567 (|#1| (-981 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3456 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -3456 ((-666 |#1|) (-1203 |#1|))) (-15 -3456 ((-666 |#1|) (-981 |#1|))) (-15 -3007 (|#1| (-1203 |#1|) (-1207))) (-15 -3007 (|#1| (-1203 |#1|))) (-15 -3007 (|#1| (-981 |#1|))) (-15 -4268 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -4268 ((-666 |#1|) (-1203 |#1|))) (-15 -4268 ((-666 |#1|) (-981 |#1|))) (-15 -1567 (|#1| (-1203 |#1|) (-1207))) (-15 -1567 (|#1| (-1203 |#1|))) (-15 -1567 (|#1| (-981 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3456 (((-666 $) (-981 $)) 88 T ELT) (((-666 $) (-1203 $)) 87 T ELT) (((-666 $) (-1203 $) (-1207)) 86 T ELT)) (-3007 (($ (-981 $)) 91 T ELT) (($ (-1203 $)) 90 T ELT) (($ (-1203 $) (-1207)) 89 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2811 (($ $) 100 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-3534 (($) 18 T CONST)) (-4268 (((-666 $) (-981 $)) 94 T ELT) (((-666 $) (-1203 $)) 93 T ELT) (((-666 $) (-1203 $) (-1207)) 92 T ELT)) (-1567 (($ (-981 $)) 97 T ELT) (($ (-1203 $)) 96 T ELT) (($ (-1203 $) (-1207)) 95 T ELT)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 99 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 73 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT) (($ $ (-421 (-578))) 98 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT))) +(((-27) (-142)) (T -27)) +((-1567 (*1 *1 *2) (-12 (-5 *2 (-981 *1)) (-4 *1 (-27)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) (-1567 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-981 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) (-4268 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) (-3007 (*1 *1 *2) (-12 (-5 *2 (-981 *1)) (-4 *1 (-27)))) (-3007 (*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) (-3007 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-981 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-666 *1))))) +(-13 (-376) (-1033) (-10 -8 (-15 -1567 ($ (-981 $))) (-15 -1567 ($ (-1203 $))) (-15 -1567 ($ (-1203 $) (-1207))) (-15 -4268 ((-666 $) (-981 $))) (-15 -4268 ((-666 $) (-1203 $))) (-15 -4268 ((-666 $) (-1203 $) (-1207))) (-15 -3007 ($ (-981 $))) (-15 -3007 ($ (-1203 $))) (-15 -3007 ($ (-1203 $) (-1207))) (-15 -3456 ((-666 $) (-981 $))) (-15 -3456 ((-666 $) (-1203 $))) (-15 -3456 ((-666 $) (-1203 $) (-1207))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1033) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-3456 (((-666 $) (-981 $)) NIL T ELT) (((-666 $) (-1203 $)) NIL T ELT) (((-666 $) (-1203 $) (-1207)) 55 T ELT) (((-666 $) $) 22 T ELT) (((-666 $) $ (-1207)) 46 T ELT)) (-3007 (($ (-981 $)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-1203 $) (-1207)) 57 T ELT) (($ $) 20 T ELT) (($ $ (-1207)) 40 T ELT)) (-4268 (((-666 $) (-981 $)) NIL T ELT) (((-666 $) (-1203 $)) NIL T ELT) (((-666 $) (-1203 $) (-1207)) 53 T ELT) (((-666 $) $) 18 T ELT) (((-666 $) $ (-1207)) 48 T ELT)) (-1567 (($ (-981 $)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-1203 $) (-1207)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1207)) 42 T ELT))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3456 ((-666 |#1|) |#1| (-1207))) (-15 -3007 (|#1| |#1| (-1207))) (-15 -3456 ((-666 |#1|) |#1|)) (-15 -3007 (|#1| |#1|)) (-15 -4268 ((-666 |#1|) |#1| (-1207))) (-15 -1567 (|#1| |#1| (-1207))) (-15 -4268 ((-666 |#1|) |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3456 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -3456 ((-666 |#1|) (-1203 |#1|))) (-15 -3456 ((-666 |#1|) (-981 |#1|))) (-15 -3007 (|#1| (-1203 |#1|) (-1207))) (-15 -3007 (|#1| (-1203 |#1|))) (-15 -3007 (|#1| (-981 |#1|))) (-15 -4268 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -4268 ((-666 |#1|) (-1203 |#1|))) (-15 -4268 ((-666 |#1|) (-981 |#1|))) (-15 -1567 (|#1| (-1203 |#1|) (-1207))) (-15 -1567 (|#1| (-1203 |#1|))) (-15 -1567 (|#1| (-981 |#1|)))) (-29 |#2|) (-570)) (T -28)) +NIL +(-10 -8 (-15 -3456 ((-666 |#1|) |#1| (-1207))) (-15 -3007 (|#1| |#1| (-1207))) (-15 -3456 ((-666 |#1|) |#1|)) (-15 -3007 (|#1| |#1|)) (-15 -4268 ((-666 |#1|) |#1| (-1207))) (-15 -1567 (|#1| |#1| (-1207))) (-15 -4268 ((-666 |#1|) |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3456 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -3456 ((-666 |#1|) (-1203 |#1|))) (-15 -3456 ((-666 |#1|) (-981 |#1|))) (-15 -3007 (|#1| (-1203 |#1|) (-1207))) (-15 -3007 (|#1| (-1203 |#1|))) (-15 -3007 (|#1| (-981 |#1|))) (-15 -4268 ((-666 |#1|) (-1203 |#1|) (-1207))) (-15 -4268 ((-666 |#1|) (-1203 |#1|))) (-15 -4268 ((-666 |#1|) (-981 |#1|))) (-15 -1567 (|#1| (-1203 |#1|) (-1207))) (-15 -1567 (|#1| (-1203 |#1|))) (-15 -1567 (|#1| (-981 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3456 (((-666 $) (-981 $)) 88 T ELT) (((-666 $) (-1203 $)) 87 T ELT) (((-666 $) (-1203 $) (-1207)) 86 T ELT) (((-666 $) $) 138 T ELT) (((-666 $) $ (-1207)) 136 T ELT)) (-3007 (($ (-981 $)) 91 T ELT) (($ (-1203 $)) 90 T ELT) (($ (-1203 $) (-1207)) 89 T ELT) (($ $) 139 T ELT) (($ $ (-1207)) 137 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 (-1207)) $) 207 T ELT)) (-4420 (((-421 (-1203 $)) $ (-631 $)) 239 (|has| |#1| (-570)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4318 (((-666 (-631 $)) $) 170 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3584 (($ $ (-666 (-631 $)) (-666 $)) 160 T ELT) (($ $ (-666 (-306 $))) 159 T ELT) (($ $ (-306 $)) 158 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2811 (($ $) 100 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-3534 (($) 18 T CONST)) (-4268 (((-666 $) (-981 $)) 94 T ELT) (((-666 $) (-1203 $)) 93 T ELT) (((-666 $) (-1203 $) (-1207)) 92 T ELT) (((-666 $) $) 142 T ELT) (((-666 $) $ (-1207)) 140 T ELT)) (-1567 (($ (-981 $)) 97 T ELT) (($ (-1203 $)) 96 T ELT) (($ (-1203 $) (-1207)) 95 T ELT) (($ $) 143 T ELT) (($ $ (-1207)) 141 T ELT)) (-2818 (((-3 (-981 |#1|) "failed") $) 258 (|has| |#1| (-1080)) ELT) (((-3 (-421 (-981 |#1|)) "failed") $) 241 (|has| |#1| (-570)) ELT) (((-3 |#1| "failed") $) 203 T ELT) (((-3 (-578) "failed") $) 200 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-1207) "failed") $) 194 T ELT) (((-3 (-631 $) "failed") $) 145 T ELT) (((-3 (-421 (-578)) "failed") $) 133 (-2230 (-12 (|has| |#1| (-1069 (-578))) (|has| |#1| (-570))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3516 (((-981 |#1|) $) 257 (|has| |#1| (-1080)) ELT) (((-421 (-981 |#1|)) $) 240 (|has| |#1| (-570)) ELT) ((|#1| $) 202 T ELT) (((-578) $) 201 (|has| |#1| (-1069 (-578))) ELT) (((-1207) $) 193 T ELT) (((-631 $) $) 144 T ELT) (((-421 (-578)) $) 134 (-2230 (-12 (|has| |#1| (-1069 (-578))) (|has| |#1| (-570))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3154 (($ $ $) 61 T ELT)) (-2242 (((-711 |#1|) (-711 $)) 246 (|has| |#1| (-1080)) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 245 (|has| |#1| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 132 (-2230 (-2320 (|has| |#1| (-1080)) (|has| |#1| (-660 (-578)))) (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT) (((-711 (-578)) (-711 $)) 131 (-2230 (-2320 (|has| |#1| (-1080)) (|has| |#1| (-660 (-578)))) (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 199 (|has| |#1| (-911 (-392))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 198 (|has| |#1| (-911 (-578))) ELT)) (-3783 (($ (-666 $)) 164 T ELT) (($ $) 163 T ELT)) (-3968 (((-666 (-116)) $) 171 T ELT)) (-4397 (((-116) (-116)) 172 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2382 (((-112) $) 192 (|has| $ (-1069 (-578))) ELT)) (-2544 (($ $) 224 (|has| |#1| (-1080)) ELT)) (-2519 (((-1156 |#1| (-631 $)) $) 223 (|has| |#1| (-1080)) ELT)) (-2812 (($ $ (-578)) 99 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-2782 (((-1203 $) (-631 $)) 189 (|has| $ (-1080)) ELT)) (-3611 (($ (-1 $ $) (-631 $)) 178 T ELT)) (-3238 (((-3 (-631 $) "failed") $) 168 T ELT)) (-3908 (((-711 |#1|) (-1298 $)) 248 (|has| |#1| (-1080)) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 247 (|has| |#1| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 130 (-2230 (-2320 (|has| |#1| (-1080)) (|has| |#1| (-660 (-578)))) (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT) (((-711 (-578)) (-1298 $)) 129 (-2230 (-2320 (|has| |#1| (-1080)) (|has| |#1| (-660 (-578)))) (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4386 (((-666 (-631 $)) $) 169 T ELT)) (-2594 (($ (-116) (-666 $)) 177 T ELT) (($ (-116) $) 176 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 218 (|has| |#1| (-1143)) ELT)) (-2929 (((-3 (-2 (|:| |val| $) (|:| -2764 (-578))) "failed") $) 227 (|has| |#1| (-1080)) ELT)) (-1968 (((-3 (-666 $) "failed") $) 220 (|has| |#1| (-25)) ELT)) (-3395 (((-3 (-2 (|:| -2672 (-578)) (|:| |var| (-631 $))) "failed") $) 221 (|has| |#1| (-25)) ELT)) (-1590 (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-1207)) 226 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-116)) 225 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $) 219 (|has| |#1| (-1143)) ELT)) (-1413 (((-112) $ (-1207)) 175 T ELT) (((-112) $ (-116)) 174 T ELT)) (-3057 (($ $) 78 T ELT)) (-1737 (((-793) $) 167 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3067 (((-112) $) 205 T ELT)) (-3080 ((|#1| $) 206 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-3139 (((-112) $ (-1207)) 180 T ELT) (((-112) $ $) 179 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-3873 (((-112) $) 191 (|has| $ (-1069 (-578))) ELT)) (-3364 (($ $ (-1207) (-793) (-1 $ $)) 231 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-666 $))) 230 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ (-666 $)))) 229 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ $))) 228 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-116)) (-666 $) (-1207)) 217 (|has| |#1| (-633 (-550))) ELT) (($ $ (-116) $ (-1207)) 216 (|has| |#1| (-633 (-550))) ELT) (($ $) 215 (|has| |#1| (-633 (-550))) ELT) (($ $ (-666 (-1207))) 214 (|has| |#1| (-633 (-550))) ELT) (($ $ (-1207)) 213 (|has| |#1| (-633 (-550))) ELT) (($ $ (-116) (-1 $ $)) 188 T ELT) (($ $ (-116) (-1 $ (-666 $))) 187 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) 186 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) 185 T ELT) (($ $ (-1207) (-1 $ $)) 184 T ELT) (($ $ (-1207) (-1 $ (-666 $))) 183 T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) 182 T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) 181 T ELT) (($ $ (-666 $) (-666 $)) 152 T ELT) (($ $ $ $) 151 T ELT) (($ $ (-306 $)) 150 T ELT) (($ $ (-666 (-306 $))) 149 T ELT) (($ $ (-666 (-631 $)) (-666 $)) 148 T ELT) (($ $ (-631 $) $) 147 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2436 (($ (-116) (-666 $)) 157 T ELT) (($ (-116) $ $ $ $) 156 T ELT) (($ (-116) $ $ $) 155 T ELT) (($ (-116) $ $) 154 T ELT) (($ (-116) $) 153 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-2909 (($ $ $) 166 T ELT) (($ $) 165 T ELT)) (-2031 (($ $ (-666 (-1207)) (-666 (-793))) 253 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 252 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207))) 251 (|has| |#1| (-1080)) ELT) (($ $ (-1207)) 249 (|has| |#1| (-1080)) ELT)) (-1363 (($ $) 234 (|has| |#1| (-570)) ELT)) (-2530 (((-1156 |#1| (-631 $)) $) 233 (|has| |#1| (-570)) ELT)) (-4269 (($ $) 190 (|has| $ (-1080)) ELT)) (-3343 (((-550) $) 262 (|has| |#1| (-633 (-550))) ELT) (($ (-432 $)) 232 (|has| |#1| (-570)) ELT) (((-917 (-392)) $) 197 (|has| |#1| (-633 (-917 (-392)))) ELT) (((-917 (-578)) $) 196 (|has| |#1| (-633 (-917 (-578)))) ELT)) (-1433 (($ $ $) 261 (|has| |#1| (-487)) ELT)) (-1863 (($ $ $) 260 (|has| |#1| (-487)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT) (($ (-981 |#1|)) 259 (|has| |#1| (-1080)) ELT) (($ (-421 (-981 |#1|))) 242 (|has| |#1| (-570)) ELT) (($ (-421 (-981 (-421 |#1|)))) 238 (|has| |#1| (-570)) ELT) (($ (-981 (-421 |#1|))) 237 (|has| |#1| (-570)) ELT) (($ (-421 |#1|)) 236 (|has| |#1| (-570)) ELT) (($ (-1156 |#1| (-631 $))) 222 (|has| |#1| (-1080)) ELT) (($ |#1|) 204 T ELT) (($ (-1207)) 195 T ELT) (($ (-631 $)) 146 T ELT)) (-2213 (((-3 $ "failed") $) 244 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2209 (($ (-666 $)) 162 T ELT) (($ $) 161 T ELT)) (-3619 (((-112) (-116)) 173 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-1630 (($ (-1207) (-666 $)) 212 T ELT) (($ (-1207) $ $ $ $) 211 T ELT) (($ (-1207) $ $ $) 210 T ELT) (($ (-1207) $ $) 209 T ELT) (($ (-1207) $) 208 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-666 (-1207)) (-666 (-793))) 256 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 255 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207))) 254 (|has| |#1| (-1080)) ELT) (($ $ (-1207)) 250 (|has| |#1| (-1080)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 73 T ELT) (($ (-1156 |#1| (-631 $)) (-1156 |#1| (-631 $))) 235 (|has| |#1| (-570)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT) (($ $ (-421 (-578))) 98 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT) (($ $ |#1|) 243 (|has| |#1| (-175)) ELT) (($ |#1| $) 135 (|has| |#1| (-1080)) ELT))) +(((-29 |#1|) (-142) (-570)) (T -29)) +((-1567 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-570)))) (-4268 (*1 *2 *1) (-12 (-4 *3 (-570)) (-5 *2 (-666 *1)) (-4 *1 (-29 *3)))) (-1567 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-570)))) (-4268 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *2 (-666 *1)) (-4 *1 (-29 *4)))) (-3007 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-570)))) (-3456 (*1 *2 *1) (-12 (-4 *3 (-570)) (-5 *2 (-666 *1)) (-4 *1 (-29 *3)))) (-3007 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-570)))) (-3456 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *2 (-666 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-444 |t#1|) (-10 -8 (-15 -1567 ($ $)) (-15 -4268 ((-666 $) $)) (-15 -1567 ($ $ (-1207))) (-15 -4268 ((-666 $) $ (-1207))) (-15 -3007 ($ $)) (-15 -3456 ((-666 $) $)) (-15 -3007 ($ $ (-1207))) (-15 -3456 ((-666 $) $ (-1207))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 #1=(-421 (-981 |#1|))) |has| |#1| (-570)) ((-635 (-578)) . T) ((-635 #2=(-631 $)) . T) ((-635 #3=(-981 |#1|)) |has| |#1| (-1080)) ((-635 #4=(-1207)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-633 (-917 (-392))) |has| |#1| (-633 (-917 (-392)))) ((-633 (-917 (-578))) |has| |#1| (-633 (-917 (-578)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-314) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1080)) ((-414 |#1|) . T) ((-425 |#1|) . T) ((-444 |#1|) . T) ((-466) . T) ((-487) |has| |#1| (-487)) ((-528 (-631 $) $) . T) ((-528 $ $) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 |#1|) -2230 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-668 $) . T) ((-670 #0#) . T) ((-670 #5=(-578)) -12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ((-670 |#1|) -2230 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) . T) ((-660 #5#) -12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ((-660 |#1|) |has| |#1| (-1080)) ((-739 #0#) . T) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) . T) ((-748) . T) ((-921 $ #6=(-1207)) |has| |#1| (-1080)) ((-927 #6#) |has| |#1| (-1080)) ((-929 #6#) |has| |#1| (-1080)) ((-911 (-392)) |has| |#1| (-911 (-392))) ((-911 (-578)) |has| |#1| (-911 (-578))) ((-909 |#1|) . T) ((-949) . T) ((-1033) . T) ((-1069 (-421 (-578))) -2230 (|has| |#1| (-1069 (-421 (-578)))) (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578))))) ((-1069 #1#) |has| |#1| (-570)) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 #2#) . T) ((-1069 #3#) |has| |#1| (-1080)) ((-1069 #4#) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) |has| |#1| (-175)) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) |has| |#1| (-175)) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-3419 (((-1125 (-229)) $) NIL T ELT)) (-3407 (((-1125 (-229)) $) NIL T ELT)) (-3437 (($ $ (-229)) 164 T ELT)) (-3020 (($ (-981 (-578)) (-1207) (-1207) (-1125 (-421 (-578))) (-1125 (-421 (-578)))) 104 T ELT)) (-3174 (((-666 (-666 (-972 (-229)))) $) 180 T ELT)) (-2411 (((-886) $) 194 T ELT))) +(((-30) (-13 (-984) (-10 -8 (-15 -3020 ($ (-981 (-578)) (-1207) (-1207) (-1125 (-421 (-578))) (-1125 (-421 (-578))))) (-15 -3437 ($ $ (-229)))))) (T -30)) +((-3020 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-981 (-578))) (-5 *3 (-1207)) (-5 *4 (-1125 (-421 (-578)))) (-5 *1 (-30)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))) +(-13 (-984) (-10 -8 (-15 -3020 ($ (-981 (-578)) (-1207) (-1207) (-1125 (-421 (-578))) (-1125 (-421 (-578))))) (-15 -3437 ($ $ (-229))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-1166) $) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (((-1166) $) 9 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-31) (-13 (-1114) (-10 -8 (-15 -3648 ((-1166) $)) (-15 -4117 ((-1166) $))))) (T -31)) +((-3648 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31))))) +(-13 (-1114) (-10 -8 (-15 -3648 ((-1166) $)) (-15 -4117 ((-1166) $)))) +((-1567 ((|#2| (-1203 |#2|) (-1207)) 41 T ELT)) (-4397 (((-116) (-116)) 55 T ELT)) (-2782 (((-1203 |#2|) (-631 |#2|)) 149 (|has| |#1| (-1069 (-578))) ELT)) (-3992 ((|#2| |#1| (-578)) 137 (|has| |#1| (-1069 (-578))) ELT)) (-4286 ((|#2| (-1203 |#2|) |#2|) 29 T ELT)) (-3941 (((-886) (-666 |#2|)) 86 T ELT)) (-4269 ((|#2| |#2|) 144 (|has| |#1| (-1069 (-578))) ELT)) (-3619 (((-112) (-116)) 17 T ELT)) (** ((|#2| |#2| (-421 (-578))) 103 (|has| |#1| (-1069 (-578))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -1567 (|#2| (-1203 |#2|) (-1207))) (-15 -4397 ((-116) (-116))) (-15 -3619 ((-112) (-116))) (-15 -4286 (|#2| (-1203 |#2|) |#2|)) (-15 -3941 ((-886) (-666 |#2|))) (IF (|has| |#1| (-1069 (-578))) (PROGN (-15 ** (|#2| |#2| (-421 (-578)))) (-15 -2782 ((-1203 |#2|) (-631 |#2|))) (-15 -4269 (|#2| |#2|)) (-15 -3992 (|#2| |#1| (-578)))) |%noBranch|)) (-570) (-444 |#1|)) (T -32)) +((-3992 (*1 *2 *3 *4) (-12 (-5 *4 (-578)) (-4 *2 (-444 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1069 *4)) (-4 *3 (-570)))) (-4269 (*1 *2 *2) (-12 (-4 *3 (-1069 (-578))) (-4 *3 (-570)) (-5 *1 (-32 *3 *2)) (-4 *2 (-444 *3)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-444 *4)) (-4 *4 (-1069 (-578))) (-4 *4 (-570)) (-5 *2 (-1203 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-578))) (-4 *4 (-1069 (-578))) (-4 *4 (-570)) (-5 *1 (-32 *4 *2)) (-4 *2 (-444 *4)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-666 *5)) (-4 *5 (-444 *4)) (-4 *4 (-570)) (-5 *2 (-886)) (-5 *1 (-32 *4 *5)))) (-4286 (*1 *2 *3 *2) (-12 (-5 *3 (-1203 *2)) (-4 *2 (-444 *4)) (-4 *4 (-570)) (-5 *1 (-32 *4 *2)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-444 *4)))) (-4397 (*1 *2 *2) (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-32 *3 *4)) (-4 *4 (-444 *3)))) (-1567 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *2)) (-5 *4 (-1207)) (-4 *2 (-444 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-570))))) +(-10 -7 (-15 -1567 (|#2| (-1203 |#2|) (-1207))) (-15 -4397 ((-116) (-116))) (-15 -3619 ((-112) (-116))) (-15 -4286 (|#2| (-1203 |#2|) |#2|)) (-15 -3941 ((-886) (-666 |#2|))) (IF (|has| |#1| (-1069 (-578))) (PROGN (-15 ** (|#2| |#2| (-421 (-578)))) (-15 -2782 ((-1203 |#2|) (-631 |#2|))) (-15 -4269 (|#2| |#2|)) (-15 -3992 (|#2| |#1| (-578)))) |%noBranch|)) +((-1628 (((-112) $ (-793)) 20 T ELT)) (-3534 (($) 10 T ELT)) (-2363 (((-112) $ (-793)) 19 T ELT)) (-1719 (((-112) $ (-793)) 17 T ELT)) (-2428 (((-112) $ $) 8 T ELT)) (-4186 (((-112) $) 15 T ELT))) +(((-33 |#1|) (-10 -8 (-15 -3534 (|#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793))) (-15 -4186 ((-112) |#1|)) (-15 -2428 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3534 (|#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793))) (-15 -4186 ((-112) |#1|)) (-15 -2428 ((-112) |#1| |#1|))) +((-1628 (((-112) $ (-793)) 8 T ELT)) (-3534 (($) 7 T CONST)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-3979 (($ $) 13 T ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-34) (-142)) (T -34)) +((-2428 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3979 (*1 *1 *1) (-4 *1 (-34))) (-1696 (*1 *1) (-4 *1 (-34))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1719 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-112)))) (-2363 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-112)))) (-1628 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-112)))) (-3534 (*1 *1) (-4 *1 (-34))) (-3226 (*1 *2 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-34)) (-5 *2 (-793))))) +(-13 (-1248) (-10 -8 (-15 -2428 ((-112) $ $)) (-15 -3979 ($ $)) (-15 -1696 ($)) (-15 -4186 ((-112) $)) (-15 -1719 ((-112) $ (-793))) (-15 -2363 ((-112) $ (-793))) (-15 -1628 ((-112) $ (-793))) (-15 -3534 ($) -1529) (IF (|has| $ (-6 -4500)) (-15 -3226 ((-793) $)) |%noBranch|))) +(((-1248) . T)) +((-1576 (($ $) 11 T ELT)) (-1552 (($ $) 10 T ELT)) (-1598 (($ $) 9 T ELT)) (-3502 (($ $) 8 T ELT)) (-1587 (($ $) 7 T ELT)) (-1564 (($ $) 6 T ELT))) +(((-35) (-142)) (T -35)) +((-1576 (*1 *1 *1) (-4 *1 (-35))) (-1552 (*1 *1 *1) (-4 *1 (-35))) (-1598 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-1587 (*1 *1 *1) (-4 *1 (-35))) (-1564 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -1564 ($ $)) (-15 -1587 ($ $)) (-15 -3502 ($ $)) (-15 -1598 ($ $)) (-15 -1552 ($ $)) (-15 -1576 ($ $)))) +((-3213 (((-112) $ $) 20 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ELT)) (-4120 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 127 T ELT)) (-3933 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 150 T ELT)) (-3841 (($ $) 148 T ELT)) (-3736 (($) 73 T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 72 T ELT)) (-1794 (((-1303) $ |#1| |#1|) 100 (|has| $ (-6 -4501)) ELT) (((-1303) $ (-578) (-578)) 180 (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) 161 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 211 T ELT) (((-112) $) 205 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-4101 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 202 (|has| $ (-6 -4501)) ELT) (($ $) 201 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) (|has| $ (-6 -4501))) ELT)) (-2042 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 212 T ELT) (($ $) 206 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 136 (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 157 (|has| $ (-6 -4501)) ELT)) (-2466 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 159 (|has| $ (-6 -4501)) ELT)) (-1983 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 155 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#2| $ |#1| |#2|) 74 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 191 (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-1265 (-578)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 162 (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "last" (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 160 (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) 158 (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "first" (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 156 (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "value" (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 135 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 134 (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 46 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 218 T ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 56 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 177 (|has| $ (-6 -4500)) ELT)) (-3920 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 149 T ELT)) (-3257 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3534 (($) 7 T CONST)) (-1464 (($ $) 203 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 213 T ELT)) (-4198 (($ $ (-793)) 144 T ELT) (($ $) 142 T ELT)) (-3777 (($ $) 216 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-3776 (($ $) 59 (-2230 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500)))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 47 (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 222 T ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 217 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 55 (|has| $ (-6 -4500)) ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 179 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 176 (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 57 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 54 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 53 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 178 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 175 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 174 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 192 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) 89 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) 190 T ELT)) (-2149 (((-112) $) 194 T ELT)) (-3887 (((-578) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 210 T ELT) (((-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 209 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT) (((-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) 208 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 31 (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) 80 (|has| $ (-6 -4500)) ELT) (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 116 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 125 T ELT)) (-2989 (((-112) $ $) 133 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-3749 (($ (-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 170 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 ((|#1| $) 97 (|has| |#1| (-871)) ELT) (((-578) $) 182 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 195 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-1957 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ $) 219 T ELT) (($ $ $) 215 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-3176 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ $) 214 T ELT) (($ $ $) 207 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 30 (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) 81 (|has| $ (-6 -4500)) ELT) (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 117 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT) (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 119 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 ((|#1| $) 96 (|has| |#1| (-871)) ELT) (((-578) $) 183 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 196 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 35 (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4501)) ELT) (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 112 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT) (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ $) 167 T ELT) (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 111 T ELT)) (-2606 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 227 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-1504 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 130 T ELT)) (-3821 (((-112) $) 126 T ELT)) (-2617 (((-1189) $) 23 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2757 (($ $ (-793)) 147 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 145 T ELT)) (-3244 (((-666 |#1|) $) 64 T ELT)) (-4300 (((-112) |#1| $) 65 T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 40 T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 41 T ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) 221 T ELT) (($ $ $ (-578)) 220 T ELT)) (-4273 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) 164 T ELT) (($ $ $ (-578)) 163 T ELT)) (-4030 (((-666 |#1|) $) 94 T ELT) (((-666 (-578)) $) 185 T ELT)) (-3023 (((-112) |#1| $) 93 T ELT) (((-112) (-578) $) 186 T ELT)) (-4313 (((-1151) $) 22 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-4189 ((|#2| $) 98 (|has| |#1| (-871)) ELT) (($ $ (-793)) 141 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 139 T ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 52 T ELT) (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 173 T ELT)) (-4291 (($ $ |#2|) 99 (|has| $ (-6 -4501)) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 181 (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 42 T ELT)) (-1583 (((-112) $) 193 T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 33 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 114 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) 27 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 26 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 25 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 24 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) 87 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) 85 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) 84 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 123 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 122 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 121 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) 120 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 184 (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-4322 (((-666 |#2|) $) 92 T ELT) (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 187 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 189 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) 188 T ELT) (($ $ (-1265 (-578))) 171 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "last") 146 T ELT) (($ $ "rest") 143 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "first") 140 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "value") 128 T ELT)) (-1842 (((-578) $ $) 131 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 49 T ELT)) (-3022 (($ $ (-578)) 224 T ELT) (($ $ (-1265 (-578))) 223 T ELT)) (-1705 (($ $ (-578)) 166 T ELT) (($ $ (-1265 (-578))) 165 T ELT)) (-1368 (((-112) $) 129 T ELT)) (-4076 (($ $) 153 T ELT)) (-4436 (($ $) 154 (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) 152 T ELT)) (-3931 (($ $) 151 T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) |#2| $) 82 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 115 (|has| $ (-6 -4500)) ELT)) (-3751 (($ $ $ (-578)) 204 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550)))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 51 T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 172 T ELT)) (-3342 (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 226 T ELT) (($ $ $) 225 T ELT)) (-3703 (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 169 T ELT) (($ (-666 $)) 168 T ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 138 T ELT) (($ $ $) 137 T ELT)) (-2411 (((-886) $) 18 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886)))) ELT)) (-4435 (((-666 $) $) 124 T ELT)) (-1849 (((-112) $ $) 132 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-2876 (((-112) $ $) 21 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 43 T ELT)) (-2767 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") |#1| $) 110 T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 34 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 113 (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) 197 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-2416 (((-112) $ $) 199 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-2384 (((-112) $ $) 19 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ELT)) (-2429 (((-112) $ $) 198 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-2404 (((-112) $ $) 200 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-36 |#1| |#2|) (-142) (-1131) (-1131)) (T -36)) +((-2767 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| -3173 *3) (|:| -2754 *4)))))) +(-13 (-1224 |t#1| |t#2|) (-688 (-2 (|:| -3173 |t#1|) (|:| -2754 |t#2|))) (-10 -8 (-15 -2767 ((-3 (-2 (|:| -3173 |t#1|) (|:| -2754 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) ((-102) -2230 (|has| |#2| (-1131)) (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ((-632 (-886)) -2230 (|has| |#2| (-1131)) (|has| |#2| (-632 (-886))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886)))) ((-153 #1=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) ((-633 (-550)) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ((-233 #0#) . T) ((-242 #0#) . T) ((-298 #2=(-578) #1#) . T) ((-298 (-1265 (-578)) $) . T) ((-298 |#1| |#2|) . T) ((-300 #2# #1#) . T) ((-300 |#1| |#2|) . T) ((-321 #1#) -12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-294 #1#) . T) ((-386 #1#) . T) ((-503 #1#) . T) ((-503 |#2|) . T) ((-618 #2# #1#) . T) ((-618 |#1| |#2|) . T) ((-528 #1# #1#) -12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-629 |#1| |#2|) . T) ((-673 #1#) . T) ((-688 #1#) . T) ((-871) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ((-874) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ((-1041 #1#) . T) ((-1131) -2230 (|has| |#2| (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871))) ((-1180 #1#) . T) ((-1224 |#1| |#2|) . T) ((-1248) . T) ((-1286 #1#) . T)) +((-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-38 |#2|) (-175)) (T -37)) +NIL +(-10 -8 (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 44 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-38 |#1|) (-142) (-175)) (T -38)) +NIL +(-13 (-1080) (-739 |t#1|) (-635 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3427 (((-432 |#1|) |#1|) 41 T ELT)) (-2800 (((-432 |#1|) |#1|) 30 T ELT) (((-432 |#1|) |#1| (-666 (-48))) 33 T ELT)) (-4408 (((-112) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -2800 ((-432 |#1|) |#1| (-666 (-48)))) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3427 ((-432 |#1|) |#1|)) (-15 -4408 ((-112) |#1|))) (-1274 (-48))) (T -39)) +((-4408 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1274 (-48))))) (-3427 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1274 (-48))))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1274 (-48))))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-48))) (-5 *2 (-432 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1274 (-48)))))) +(-10 -7 (-15 -2800 ((-432 |#1|) |#1| (-666 (-48)))) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3427 ((-432 |#1|) |#1|)) (-15 -4408 ((-112) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2444 (((-2 (|:| |num| (-1298 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2987 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3087 (((-112) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4306 (((-711 (-421 |#2|)) (-1298 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-1881 (((-421 |#2|) $) NIL T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| (-421 |#2|) (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2732 (((-112) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2222 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2311 (((-112)) NIL T ELT)) (-2201 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-421 (-578)))) ELT) (((-3 (-421 |#2|) "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| (-421 |#2|) (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| (-421 |#2|) (-1069 (-421 (-578)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-3095 (($ (-1298 (-421 |#2|)) (-1298 $)) NIL T ELT) (($ (-1298 (-421 |#2|))) 61 T ELT) (($ (-1298 |#2|) |#2|) 131 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-362)) ELT)) (-3154 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2009 (((-711 (-421 |#2|)) $ (-1298 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-421 |#2|))) (|:| |vec| (-1298 (-421 |#2|)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-4411 (((-1298 $) (-1298 $)) NIL T ELT)) (-2512 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4345 (((-666 (-666 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-2459 (((-112) |#1| |#1|) NIL T ELT)) (-1875 (((-950)) NIL T ELT)) (-2062 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1577 (((-112)) NIL T ELT)) (-4204 (((-112) |#1|) NIL T ELT) (((-112) |#2|) NIL T ELT)) (-3166 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2111 (($ $) NIL T ELT)) (-3146 (($) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2681 (((-112) $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2953 (($ $ (-793)) NIL (|has| (-421 |#2|) (-362)) ELT) (($ $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2159 (((-112) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4059 (((-950) $) NIL (|has| (-421 |#2|) (-362)) ELT) (((-855 (-950)) $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-4174 (((-793)) NIL T ELT)) (-2277 (((-1298 $) (-1298 $)) 106 T ELT)) (-1550 (((-421 |#2|) $) NIL T ELT)) (-1910 (((-666 (-981 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1993 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3193 (((-950) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2501 ((|#3| $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-421 |#2|))) (|:| |vec| (-1298 (-421 |#2|)))) (-1298 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1298 $)) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4157 (((-1303) (-793)) 84 T ELT)) (-2698 (((-711 (-421 |#2|))) 56 T ELT)) (-2738 (((-711 (-421 |#2|))) 49 T ELT)) (-3057 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1727 (($ (-1298 |#2|) |#2|) 132 T ELT)) (-1722 (((-711 (-421 |#2|))) 50 T ELT)) (-3928 (((-711 (-421 |#2|))) 48 T ELT)) (-3454 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-3963 (((-2 (|:| |num| (-1298 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1971 (((-1298 $)) 47 T ELT)) (-3098 (((-1298 $)) 46 T ELT)) (-1669 (((-112) $) NIL T ELT)) (-3321 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-2199 (($) NIL (|has| (-421 |#2|) (-362)) CONST)) (-2087 (($ (-950)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-3542 (((-3 |#2| "failed")) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3631 (((-793)) NIL T ELT)) (-2847 (($) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2800 (((-432 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1449 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2436 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2153 (((-3 |#2| "failed")) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3232 (((-421 |#2|) (-1298 $)) NIL T ELT) (((-421 |#2|)) 44 T ELT)) (-4375 (((-793) $) NIL (|has| (-421 |#2|) (-362)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2031 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT) (($ $) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT)) (-3345 (((-711 (-421 |#2|)) (-1298 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4269 ((|#3|) 55 T ELT)) (-3430 (($) NIL (|has| (-421 |#2|) (-362)) ELT)) (-1453 (((-1298 (-421 |#2|)) $ (-1298 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 (-421 |#2|)) $) 62 T ELT) (((-711 (-421 |#2|)) (-1298 $)) 107 T ELT)) (-3343 (((-1298 (-421 |#2|)) $) NIL T ELT) (($ (-1298 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-362)) ELT)) (-3597 (((-1298 $) (-1298 $)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| (-421 |#2|) (-1069 (-421 (-578)))) (|has| (-421 |#2|) (-376))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2213 (($ $) NIL (|has| (-421 |#2|) (-362)) ELT) (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-1566 ((|#3| $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2285 (((-112)) 42 T ELT)) (-3316 (((-112) |#1|) 54 T ELT) (((-112) |#2|) 138 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2684 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-2069 (((-112)) NIL T ELT)) (-2368 (($) 17 T CONST)) (-2379 (($) 27 T CONST)) (-1676 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT) (($ $) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-578))) NIL (|has| (-421 |#2|) (-376)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -4157 ((-1303) (-793))))) (-376) (-1274 |#1|) (-1274 (-421 |#2|)) |#3|) (T -40)) +((-4157 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1274 *4)) (-5 *2 (-1303)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1274 (-421 *5))) (-14 *7 *6)))) +(-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -4157 ((-1303) (-793))))) +((-2862 ((|#2| |#2|) 47 T ELT)) (-1912 ((|#2| |#2|) 139 (-12 (|has| |#2| (-444 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-578))))) ELT)) (-3013 ((|#2| |#2|) 100 (-12 (|has| |#2| (-444 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-578))))) ELT)) (-2802 ((|#2| |#2|) 101 (-12 (|has| |#2| (-444 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-578))))) ELT)) (-2270 ((|#2| (-116) |#2| (-793)) 135 (-12 (|has| |#2| (-444 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-578))))) ELT)) (-3255 (((-1203 |#2|) |#2|) 44 T ELT)) (-1939 ((|#2| |#2| (-666 (-631 |#2|))) 18 T ELT) ((|#2| |#2| (-666 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -2862 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -1939 (|#2| |#2| |#2|)) (-15 -1939 (|#2| |#2| (-666 |#2|))) (-15 -1939 (|#2| |#2| (-666 (-631 |#2|)))) (-15 -3255 ((-1203 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1069 (-578)))) (IF (|has| |#2| (-444 |#1|)) (PROGN (-15 -2802 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2270 (|#2| (-116) |#2| (-793)))) |%noBranch|) |%noBranch|)) (-570) (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 |#1| (-631 $)) $)) (-15 -2530 ((-1156 |#1| (-631 $)) $)) (-15 -2411 ($ (-1156 |#1| (-631 $))))))) (T -41)) +((-2270 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-116)) (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-578)))) (-4 *5 (-570)) (-5 *1 (-41 *5 *2)) (-4 *2 (-444 *5)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *5 (-631 $)) $)) (-15 -2530 ((-1156 *5 (-631 $)) $)) (-15 -2411 ($ (-1156 *5 (-631 $))))))))) (-1912 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)))) (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) (-4 *2 (-444 *3)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) (-15 -2530 ((-1156 *3 (-631 $)) $)) (-15 -2411 ($ (-1156 *3 (-631 $))))))))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)))) (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) (-4 *2 (-444 *3)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) (-15 -2530 ((-1156 *3 (-631 $)) $)) (-15 -2411 ($ (-1156 *3 (-631 $))))))))) (-2802 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)))) (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) (-4 *2 (-444 *3)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) (-15 -2530 ((-1156 *3 (-631 $)) $)) (-15 -2411 ($ (-1156 *3 (-631 $))))))))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-1203 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *4 (-631 $)) $)) (-15 -2530 ((-1156 *4 (-631 $)) $)) (-15 -2411 ($ (-1156 *4 (-631 $))))))))) (-1939 (*1 *2 *2 *3) (-12 (-5 *3 (-666 (-631 *2))) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *4 (-631 $)) $)) (-15 -2530 ((-1156 *4 (-631 $)) $)) (-15 -2411 ($ (-1156 *4 (-631 $))))))) (-4 *4 (-570)) (-5 *1 (-41 *4 *2)))) (-1939 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *4 (-631 $)) $)) (-15 -2530 ((-1156 *4 (-631 $)) $)) (-15 -2411 ($ (-1156 *4 (-631 $))))))) (-4 *4 (-570)) (-5 *1 (-41 *4 *2)))) (-1939 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) (-15 -2530 ((-1156 *3 (-631 $)) $)) (-15 -2411 ($ (-1156 *3 (-631 $))))))))) (-1939 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) (-15 -2530 ((-1156 *3 (-631 $)) $)) (-15 -2411 ($ (-1156 *3 (-631 $))))))))) (-2862 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-314) (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) (-15 -2530 ((-1156 *3 (-631 $)) $)) (-15 -2411 ($ (-1156 *3 (-631 $)))))))))) +(-10 -7 (-15 -2862 (|#2| |#2|)) (-15 -1939 (|#2| |#2|)) (-15 -1939 (|#2| |#2| |#2|)) (-15 -1939 (|#2| |#2| (-666 |#2|))) (-15 -1939 (|#2| |#2| (-666 (-631 |#2|)))) (-15 -3255 ((-1203 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1069 (-578)))) (IF (|has| |#2| (-444 |#1|)) (PROGN (-15 -2802 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -1912 (|#2| |#2|)) (-15 -2270 (|#2| (-116) |#2| (-793)))) |%noBranch|) |%noBranch|)) +((-2800 (((-432 (-1203 |#3|)) (-1203 |#3|) (-666 (-48))) 23 T ELT) (((-432 |#3|) |#3| (-666 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2800 ((-432 |#3|) |#3| (-666 (-48)))) (-15 -2800 ((-432 (-1203 |#3|)) (-1203 |#3|) (-666 (-48))))) (-871) (-815) (-978 (-48) |#2| |#1|)) (T -42)) +((-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *7 (-978 (-48) *6 *5)) (-5 *2 (-432 (-1203 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *2 (-432 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-978 (-48) *6 *5))))) +(-10 -7 (-15 -2800 ((-432 |#3|) |#3| (-666 (-48)))) (-15 -2800 ((-432 (-1203 |#3|)) (-1203 |#3|) (-666 (-48))))) +((-3357 (((-793) |#2|) 70 T ELT)) (-2724 (((-793) |#2|) 74 T ELT)) (-2053 (((-666 |#2|)) 37 T ELT)) (-2993 (((-793) |#2|) 73 T ELT)) (-2187 (((-793) |#2|) 69 T ELT)) (-3400 (((-793) |#2|) 72 T ELT)) (-4205 (((-666 (-711 |#1|))) 65 T ELT)) (-1958 (((-666 |#2|)) 60 T ELT)) (-3142 (((-666 |#2|) |#2|) 48 T ELT)) (-3374 (((-666 |#2|)) 62 T ELT)) (-2050 (((-666 |#2|)) 61 T ELT)) (-3119 (((-666 (-711 |#1|))) 53 T ELT)) (-2890 (((-666 |#2|)) 59 T ELT)) (-2491 (((-666 |#2|) |#2|) 47 T ELT)) (-1960 (((-666 |#2|)) 55 T ELT)) (-2370 (((-666 (-711 |#1|))) 66 T ELT)) (-3480 (((-666 |#2|)) 64 T ELT)) (-3198 (((-1298 |#2|) (-1298 |#2|)) 99 (|has| |#1| (-319)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2993 ((-793) |#2|)) (-15 -2724 ((-793) |#2|)) (-15 -2187 ((-793) |#2|)) (-15 -3357 ((-793) |#2|)) (-15 -3400 ((-793) |#2|)) (-15 -1960 ((-666 |#2|))) (-15 -2491 ((-666 |#2|) |#2|)) (-15 -3142 ((-666 |#2|) |#2|)) (-15 -2890 ((-666 |#2|))) (-15 -1958 ((-666 |#2|))) (-15 -2050 ((-666 |#2|))) (-15 -3374 ((-666 |#2|))) (-15 -3480 ((-666 |#2|))) (-15 -3119 ((-666 (-711 |#1|)))) (-15 -4205 ((-666 (-711 |#1|)))) (-15 -2370 ((-666 (-711 |#1|)))) (-15 -2053 ((-666 |#2|))) (IF (|has| |#1| (-319)) (-15 -3198 ((-1298 |#2|) (-1298 |#2|))) |%noBranch|)) (-570) (-431 |#1|)) (T -43)) +((-3198 (*1 *2 *2) (-12 (-5 *2 (-1298 *4)) (-4 *4 (-431 *3)) (-4 *3 (-319)) (-4 *3 (-570)) (-5 *1 (-43 *3 *4)))) (-2053 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-2370 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-4205 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-3119 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-3480 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-3374 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-2050 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-1958 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-2890 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-3142 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-666 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-431 *4)))) (-2491 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-666 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-431 *4)))) (-1960 (*1 *2) (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-431 *3)))) (-3400 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-431 *4)))) (-3357 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-431 *4)))) (-2187 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-431 *4)))) (-2724 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-431 *4)))) (-2993 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-431 *4))))) +(-10 -7 (-15 -2993 ((-793) |#2|)) (-15 -2724 ((-793) |#2|)) (-15 -2187 ((-793) |#2|)) (-15 -3357 ((-793) |#2|)) (-15 -3400 ((-793) |#2|)) (-15 -1960 ((-666 |#2|))) (-15 -2491 ((-666 |#2|) |#2|)) (-15 -3142 ((-666 |#2|) |#2|)) (-15 -2890 ((-666 |#2|))) (-15 -1958 ((-666 |#2|))) (-15 -2050 ((-666 |#2|))) (-15 -3374 ((-666 |#2|))) (-15 -3480 ((-666 |#2|))) (-15 -3119 ((-666 (-711 |#1|)))) (-15 -4205 ((-666 (-711 |#1|)))) (-15 -2370 ((-666 (-711 |#1|)))) (-15 -2053 ((-666 |#2|))) (IF (|has| |#1| (-319)) (-15 -3198 ((-1298 |#2|) (-1298 |#2|))) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-1430 (((-3 $ "failed")) NIL (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2564 (((-1298 (-711 |#1|)) (-1298 $)) NIL T ELT) (((-1298 (-711 |#1|))) 24 T ELT)) (-3411 (((-1298 $)) 52 T ELT)) (-3534 (($) NIL T CONST)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (|has| |#1| (-570)) ELT)) (-2341 (((-3 $ "failed")) NIL (|has| |#1| (-570)) ELT)) (-3676 (((-711 |#1|) (-1298 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-2615 ((|#1| $) NIL T ELT)) (-3567 (((-711 |#1|) $ (-1298 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-3373 (((-3 $ "failed") $) NIL (|has| |#1| (-570)) ELT)) (-1332 (((-1203 (-981 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-1640 (($ $ (-950)) NIL T ELT)) (-3875 ((|#1| $) NIL T ELT)) (-3214 (((-1203 |#1|) $) NIL (|has| |#1| (-570)) ELT)) (-2898 ((|#1| (-1298 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-2294 (((-1203 |#1|) $) NIL T ELT)) (-3929 (((-112)) 99 T ELT)) (-3095 (($ (-1298 |#1|) (-1298 $)) NIL T ELT) (($ (-1298 |#1|)) NIL T ELT)) (-3493 (((-3 $ "failed") $) 14 (|has| |#1| (-570)) ELT)) (-1875 (((-950)) 53 T ELT)) (-1351 (((-112)) NIL T ELT)) (-3398 (($ $ (-950)) NIL T ELT)) (-3585 (((-112)) NIL T ELT)) (-1419 (((-112)) NIL T ELT)) (-3354 (((-112)) 101 T ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (|has| |#1| (-570)) ELT)) (-2170 (((-3 $ "failed")) NIL (|has| |#1| (-570)) ELT)) (-3881 (((-711 |#1|) (-1298 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2630 (((-711 |#1|) $ (-1298 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-3988 (((-3 $ "failed") $) NIL (|has| |#1| (-570)) ELT)) (-2972 (((-1203 (-981 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-4051 (($ $ (-950)) NIL T ELT)) (-2994 ((|#1| $) NIL T ELT)) (-2040 (((-1203 |#1|) $) NIL (|has| |#1| (-570)) ELT)) (-3949 ((|#1| (-1298 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-4284 (((-1203 |#1|) $) NIL T ELT)) (-2465 (((-112)) 98 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2205 (((-112)) 106 T ELT)) (-1808 (((-112)) 105 T ELT)) (-4465 (((-112)) 107 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2589 (((-112)) 100 T ELT)) (-2436 ((|#1| $ (-578)) 55 T ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 48 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 |#1|) $) 28 T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3343 (((-1298 |#1|) $) NIL T ELT) (($ (-1298 |#1|)) NIL T ELT)) (-4104 (((-666 (-981 |#1|)) (-1298 $)) NIL T ELT) (((-666 (-981 |#1|))) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-3588 (((-112)) 95 T ELT)) (-2411 (((-886) $) 71 T ELT) (($ (-1298 |#1|)) 22 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) 51 T ELT)) (-2839 (((-666 (-1298 |#1|))) NIL (|has| |#1| (-570)) ELT)) (-2851 (($ $ $ $) NIL T ELT)) (-2553 (((-112)) 91 T ELT)) (-4178 (($ (-711 |#1|) $) 18 T ELT)) (-3021 (($ $ $) NIL T ELT)) (-3167 (((-112)) 97 T ELT)) (-3762 (((-112)) 92 T ELT)) (-4427 (((-112)) 90 T ELT)) (-2368 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1173 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-431 |#1|) (-670 (-1173 |#2| |#1|)) (-10 -8 (-15 -2411 ($ (-1298 |#1|))))) (-376) (-950) (-666 (-1207)) (-1298 (-711 |#1|))) (T -44)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-376)) (-14 *6 (-1298 (-711 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-950)) (-14 *5 (-666 (-1207)))))) +(-13 (-431 |#1|) (-670 (-1173 |#2| |#1|)) (-10 -8 (-15 -2411 ($ (-1298 |#1|))))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4120 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-3933 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-1794 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4501)) ELT) (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (((-112) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-4101 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871))) ELT)) (-2042 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 33 (|has| $ (-6 -4501)) ELT)) (-2466 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT)) (-1983 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 35 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-1265 (-578)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "last" (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "first" (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "value" (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3920 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-3257 (((-3 |#2| "failed") |#1| $) 43 T ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-4198 (($ $ (-793)) NIL T ELT) (($ $) 29 T ELT)) (-3777 (($ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) 56 T ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4501)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) NIL T ELT)) (-2149 (((-112) $) NIL T ELT)) (-3887 (((-578) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (((-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT) (((-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 20 (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 20 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-3749 (($ (-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 ((|#1| $) NIL (|has| |#1| (-871)) ELT) (((-578) $) 38 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-1957 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-3176 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2316 ((|#1| $) NIL (|has| |#1| (-871)) ELT) (((-578) $) 40 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-2606 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-1504 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-3821 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) 49 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-2757 (($ $ (-793)) NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-3244 (((-666 |#1|) $) 22 T ELT)) (-4300 (((-112) |#1| $) NIL T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4273 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 |#1|) $) NIL T ELT) (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) |#1| $) NIL T ELT) (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#2| $) NIL (|has| |#1| (-871)) ELT) (($ $ (-793)) NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 27 T ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-1583 (((-112) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT) (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 19 T ELT)) (-4186 (((-112) $) 18 T ELT)) (-1696 (($) 14 T ELT)) (-2436 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "last") NIL T ELT) (($ $ "rest") NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "first") NIL T ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $ "value") NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-1338 (($) 13 T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3022 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4076 (($ $) NIL T ELT)) (-4436 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) NIL T ELT)) (-3931 (($ $) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3342 (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3703 (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL T ELT) (($ (-666 $)) NIL T ELT) (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886)))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-2767 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") |#1| $) 51 T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2429 (((-112) $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-871)) ELT)) (-3226 (((-793) $) 25 (|has| $ (-6 -4500)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1131) (-1131)) (T -45)) NIL (-36 |#1| |#2|) -((-2338 (((-112) $) 12 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-420 (-577)) $) 25 T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2338 ((-112) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-47 |#2| |#3|) (-1079) (-813)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2338 ((-112) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2776 ((|#2| $) 76 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-2778 ((|#1| $ |#2|) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-47 |#1| |#2|) (-141) (-1079) (-813)) (T -47)) -((-3109 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-112)))) (-2925 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-375))))) -(-13 (-1079) (-111 |t#1| |t#1|) (-10 -8 (-15 -3109 (|t#1| $)) (-15 -3095 ($ $)) (-15 -2776 (|t#2| $)) (-15 -3609 ($ (-1 |t#1| |t#1|) $)) (-15 -2338 ((-112) $)) (-15 -2925 ($ |t#1| |t#2|)) (-15 -3134 ($ $)) (-15 -2778 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-375)) (-15 -2494 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-569)) (-6 (-569)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-6 (-38 (-420 (-577)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-2883 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-3292 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-1516 (((-112) $) 9 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-4317 (((-665 (-630 $)) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3583 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-2809 (($ $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1408 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-2312 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-2817 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3514 (((-630 $) $) NIL T ELT) (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 (-577))) (-710 $)) NIL T ELT)) (-2511 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3555 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2941 (((-665 (-115)) $) NIL T ELT)) (-4396 (((-115) (-115)) NIL T ELT)) (-2097 (((-112) $) 11 T ELT)) (-3356 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-2518 (((-1155 (-577) (-630 $)) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL T ELT)) (-2755 (((-1202 $) (-1202 $) (-630 $)) NIL T ELT) (((-1202 $) (-1202 $) (-665 (-630 $))) NIL T ELT) (($ $ (-630 $)) NIL T ELT) (($ $ (-665 (-630 $))) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4338 (((-1202 $) (-630 $)) NIL (|has| $ (-1079)) ELT)) (-3609 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-1924 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2796 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-1297 $) $) NIL T ELT) (((-710 (-420 (-577))) (-1297 $)) NIL T ELT)) (-2388 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4385 (((-665 (-630 $)) $) NIL T ELT)) (-2593 (($ (-115) $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4450 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-1736 (((-792) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1603 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2793 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3362 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2830 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2030 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2528 (((-1155 (-577) (-630 $)) $) NIL T ELT)) (-1773 (($ $) NIL (|has| $ (-1079)) ELT)) (-3341 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1155 (-577) (-630 $))) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2208 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3540 (((-112) (-115)) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) 6 T CONST)) (-2378 (($) 10 T CONST)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2383 (((-112) $ $) 13 T ELT)) (-2494 (($ $ $) NIL T ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-420 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-48) (-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -2410 ($ (-1155 (-577) (-630 $)))) (-15 -2518 ((-1155 (-577) (-630 $)) $)) (-15 -2528 ((-1155 (-577) (-630 $)) $)) (-15 -2511 ($ $)) (-15 -2755 ((-1202 $) (-1202 $) (-630 $))) (-15 -2755 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2755 ($ $ (-630 $))) (-15 -2755 ($ $ (-665 (-630 $))))))) (T -48)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) (-2511 (*1 *1 *1) (-5 *1 (-48))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-665 (-630 (-48)))) (-5 *1 (-48)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-48)))) (-5 *1 (-48))))) -(-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -2410 ($ (-1155 (-577) (-630 $)))) (-15 -2518 ((-1155 (-577) (-630 $)) $)) (-15 -2528 ((-1155 (-577) (-630 $)) $)) (-15 -2511 ($ $)) (-15 -2755 ((-1202 $) (-1202 $) (-630 $))) (-15 -2755 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2755 ($ $ (-630 $))) (-15 -2755 ($ $ (-665 (-630 $)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2274 (((-665 (-519)) $) 17 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 7 T ELT)) (-4115 (((-1211) $) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-49) (-13 (-1130) (-10 -8 (-15 -2274 ((-665 (-519)) $)) (-15 -4115 ((-1211) $))))) (T -49)) -((-2274 (*1 *2 *1) (-12 (-5 *2 (-665 (-519))) (-5 *1 (-49)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-49))))) -(-13 (-1130) (-10 -8 (-15 -2274 ((-665 (-519)) $)) (-15 -4115 ((-1211) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 85 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1699 (((-112) $) 30 T ELT)) (-2817 (((-3 |#1| "failed") $) 33 T ELT)) (-3514 ((|#1| $) 34 T ELT)) (-3134 (($ $) 40 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3109 ((|#1| $) 31 T ELT)) (-2845 (($ $) 74 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2595 (((-112) $) 43 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($ (-792)) 72 T ELT)) (-3585 (($ (-665 (-577))) 73 T ELT)) (-2776 (((-792) $) 44 T ELT)) (-2410 (((-885) $) 91 T ELT) (($ (-577)) 69 T ELT) (($ |#1|) 67 T ELT)) (-2778 ((|#1| $ $) 28 T ELT)) (-3234 (((-792)) 71 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 45 T CONST)) (-2378 (($) 17 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 64 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) -(((-50 |#1| |#2|) (-13 (-638 |#1|) (-1068 |#1|) (-10 -8 (-15 -3109 (|#1| $)) (-15 -2845 ($ $)) (-15 -3134 ($ $)) (-15 -2778 (|#1| $ $)) (-15 -2846 ($ (-792))) (-15 -3585 ($ (-665 (-577)))) (-15 -2595 ((-112) $)) (-15 -1699 ((-112) $)) (-15 -2776 ((-792) $)) (-15 -3609 ($ (-1 |#1| |#1|) $)))) (-1079) (-665 (-1206))) (T -50)) -((-3109 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) (-2845 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) (-2778 (*1 *2 *1 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) (-2846 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) (-14 *4 (-665 (-1206))))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-50 *3 *4)) (-14 *4 (-665 (-1206)))))) -(-13 (-638 |#1|) (-1068 |#1|) (-10 -8 (-15 -3109 (|#1| $)) (-15 -2845 ($ $)) (-15 -3134 ($ $)) (-15 -2778 (|#1| $ $)) (-15 -2846 ($ (-792))) (-15 -3585 ($ (-665 (-577)))) (-15 -2595 ((-112) $)) (-15 -1699 ((-112) $)) (-15 -2776 ((-792) $)) (-15 -3609 ($ (-1 |#1| |#1|) $)))) -((-1699 (((-112) (-52)) 18 T ELT)) (-2817 (((-3 |#1| "failed") (-52)) 20 T ELT)) (-3514 ((|#1| (-52)) 21 T ELT)) (-2410 (((-52) |#1|) 14 T ELT))) -(((-51 |#1|) (-10 -7 (-15 -2410 ((-52) |#1|)) (-15 -2817 ((-3 |#1| "failed") (-52))) (-15 -1699 ((-112) (-52))) (-15 -3514 (|#1| (-52)))) (-1247)) (T -51)) -((-3514 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1247)))) (-2817 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1247))))) -(-10 -7 (-15 -2410 ((-52) |#1|)) (-15 -2817 ((-3 |#1| "failed") (-52))) (-15 -1699 ((-112) (-52))) (-15 -3514 (|#1| (-52)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3742 (((-795) $) 8 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3318 (((-1134) $) 10 T ELT)) (-2410 (((-885) $) 15 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3284 (($ (-1134) (-795)) 16 T ELT)) (-2383 (((-112) $ $) 12 T ELT))) -(((-52) (-13 (-1130) (-10 -8 (-15 -3284 ($ (-1134) (-795))) (-15 -3318 ((-1134) $)) (-15 -3742 ((-795) $))))) (T -52)) -((-3284 (*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-52)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-52)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-52))))) -(-13 (-1130) (-10 -8 (-15 -3284 ($ (-1134) (-795))) (-15 -3318 ((-1134) $)) (-15 -3742 ((-795) $)))) -((-4177 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4177 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1079) (-669 |#1|) (-875 |#1|)) (T -53)) -((-4177 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-669 *5)) (-4 *5 (-1079)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-875 *5))))) -(-10 -7 (-15 -4177 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1787 ((|#3| |#3| (-665 (-1206))) 44 T ELT)) (-3288 ((|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3| (-949)) 32 T ELT) ((|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3288 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -3288 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3| (-949))) (-15 -1787 (|#3| |#3| (-665 (-1206))))) (-1130) (-13 (-1079) (-910 |#1|) (-632 (-916 |#1|))) (-13 (-443 |#2|) (-910 |#1|) (-632 (-916 |#1|)))) (T -54)) -((-1787 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) (-3288 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 (-1106 *5 *6 *2))) (-5 *4 (-949)) (-4 *5 (-1130)) (-4 *6 (-13 (-1079) (-910 *5) (-632 (-916 *5)))) (-4 *2 (-13 (-443 *6) (-910 *5) (-632 (-916 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3288 (*1 *2 *3 *2) (-12 (-5 *3 (-665 (-1106 *4 *5 *2))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -3288 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -3288 (|#3| (-665 (-1106 |#1| |#2| |#3|)) |#3| (-949))) (-15 -1787 (|#3| |#3| (-665 (-1206))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 14 T ELT)) (-2817 (((-3 (-792) "failed") $) 34 T ELT)) (-3514 (((-792) $) NIL T ELT)) (-2097 (((-112) $) 16 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) 18 T ELT)) (-2410 (((-885) $) 23 T ELT) (($ (-792)) 29 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2963 (($) 11 T CONST)) (-2383 (((-112) $ $) 20 T ELT))) -(((-55) (-13 (-1130) (-1068 (-792)) (-10 -8 (-15 -2963 ($) -1528) (-15 -1516 ((-112) $)) (-15 -2097 ((-112) $))))) (T -55)) -((-2963 (*1 *1) (-5 *1 (-55))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1130) (-1068 (-792)) (-10 -8 (-15 -2963 ($) -1528) (-15 -1516 ((-112) $)) (-15 -2097 ((-112) $)))) -((-2641 (((-112) $ (-792)) 27 T ELT)) (-1543 (($ $ (-577) |#3|) 66 T ELT)) (-1403 (($ $ (-577) |#4|) 70 T ELT)) (-2803 ((|#3| $ (-577)) 79 T ELT)) (-2728 (((-665 |#2|) $) 47 T ELT)) (-1967 (((-112) $ (-792)) 31 T ELT)) (-2318 (((-112) |#2| $) 74 T ELT)) (-3437 (($ (-1 |#2| |#2|) $) 55 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 54 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 58 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62 T ELT)) (-3417 (((-112) $ (-792)) 29 T ELT)) (-3482 (($ $ |#2|) 52 T ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-2435 ((|#2| $ (-577) (-577)) NIL T ELT) ((|#2| $ (-577) (-577) |#2|) 35 T ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) 41 T ELT) (((-792) |#2| $) 76 T ELT)) (-3978 (($ $) 51 T ELT)) (-2397 ((|#4| $ (-577)) 82 T ELT)) (-2410 (((-885) $) 88 T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 20 T ELT)) (-2383 (((-112) $ $) 73 T ELT)) (-3224 (((-792) $) 32 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1403 (|#1| |#1| (-577) |#4|)) (-15 -1543 (|#1| |#1| (-577) |#3|)) (-15 -2728 ((-665 |#2|) |#1|)) (-15 -2397 (|#4| |#1| (-577))) (-15 -2803 (|#3| |#1| (-577))) (-15 -2435 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) (-577))) (-15 -3482 (|#1| |#1| |#2|)) (-15 -2318 ((-112) |#2| |#1|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792))) (-15 -3978 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1247) (-385 |#2|) (-385 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1403 (|#1| |#1| (-577) |#4|)) (-15 -1543 (|#1| |#1| (-577) |#3|)) (-15 -2728 ((-665 |#2|) |#1|)) (-15 -2397 (|#4| |#1| (-577))) (-15 -2803 (|#3| |#1| (-577))) (-15 -2435 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) (-577))) (-15 -3482 (|#1| |#1| |#2|)) (-15 -2318 ((-112) |#2| |#1|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792))) (-15 -3978 (|#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) 45 T ELT)) (-1543 (($ $ (-577) |#2|) 43 T ELT)) (-1403 (($ $ (-577) |#3|) 42 T ELT)) (-2762 (($) 7 T CONST)) (-2803 ((|#2| $ (-577)) 47 T ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) 44 T ELT)) (-3381 ((|#1| $ (-577) (-577)) 49 T ELT)) (-2728 (((-665 |#1|) $) 31 T ELT)) (-3066 (((-792) $) 52 T ELT)) (-3748 (($ (-792) (-792) |#1|) 58 T ELT)) (-3080 (((-792) $) 51 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-2664 (((-577) $) 56 T ELT)) (-2988 (((-577) $) 54 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1707 (((-577) $) 55 T ELT)) (-2529 (((-577) $) 53 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) 57 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) (-577)) 50 T ELT) ((|#1| $ (-577) (-577) |#1|) 48 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2397 ((|#3| $ (-577)) 46 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-57 |#1| |#2| |#3|) (-141) (-1247) (-385 |t#1|) (-385 |t#1|)) (T -57)) -((-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3748 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-792)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3482 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-792)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-792)))) (-2435 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-3381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-2435 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-2397 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-665 *3)))) (-2589 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3448 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1543 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-1403 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3609 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3609 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(-13 (-502 |t#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -3748 ($ (-792) (-792) |t#1|)) (-15 -3482 ($ $ |t#1|)) (-15 -2664 ((-577) $)) (-15 -1707 ((-577) $)) (-15 -2988 ((-577) $)) (-15 -2529 ((-577) $)) (-15 -3066 ((-792) $)) (-15 -3080 ((-792) $)) (-15 -2435 (|t#1| $ (-577) (-577))) (-15 -3381 (|t#1| $ (-577) (-577))) (-15 -2435 (|t#1| $ (-577) (-577) |t#1|)) (-15 -2803 (|t#2| $ (-577))) (-15 -2397 (|t#3| $ (-577))) (-15 -2728 ((-665 |t#1|) $)) (-15 -2589 (|t#1| $ (-577) (-577) |t#1|)) (-15 -3448 (|t#1| $ (-577) (-577) |t#1|)) (-15 -1543 ($ $ (-577) |t#2|)) (-15 -1403 ($ $ (-577) |t#3|)) (-15 -3609 ($ (-1 |t#1| |t#1|) $)) (-15 -3437 ($ (-1 |t#1| |t#1|) $)) (-15 -3609 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3609 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-2090 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16 T ELT)) (-2511 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18 T ELT)) (-3609 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13 T ELT))) -(((-58 |#1| |#2|) (-10 -7 (-15 -2090 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3609 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1247) (-1247)) (T -58)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-58 *5 *2)))) (-2090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -2090 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3609 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1733 (($ (-665 |#1|)) 11 T ELT) (($ (-792) |#1|) 14 T ELT)) (-3748 (($ (-792) |#1|) 13 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 10 T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1733 ($ (-665 |#1|))) (-15 -1733 ($ (-792) |#1|)))) (-1247)) (T -59)) -((-1733 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-59 *3)))) (-1733 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-59 *3)) (-4 *3 (-1247))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1733 ($ (-665 |#1|))) (-15 -1733 ($ (-792) |#1|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1543 (($ $ (-577) (-59 |#1|)) NIL T ELT)) (-1403 (($ $ (-577) (-59 |#1|)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2803 (((-59 |#1|) $ (-577)) NIL T ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-3381 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL T ELT)) (-3066 (((-792) $) NIL T ELT)) (-3748 (($ (-792) (-792) |#1|) NIL T ELT)) (-3080 (((-792) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-2664 (((-577) $) NIL T ELT)) (-2988 (((-577) $) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1707 (((-577) $) NIL T ELT)) (-2529 (((-577) $) NIL T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2397 (((-59 |#1|) $ (-577)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4500))) (-1247)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4500))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 74 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 63 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 94 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 84 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 52 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 39 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 70 T ELT) (($ (-1297 (-327 (-577)))) 59 T ELT) (($ (-1297 (-980 (-391)))) 90 T ELT) (($ (-1297 (-980 (-577)))) 80 T ELT) (($ (-1297 (-420 (-980 (-391))))) 48 T ELT) (($ (-1297 (-420 (-980 (-577))))) 32 T ELT)) (-1902 (((-1302) $) 124 T ELT)) (-2410 (((-885) $) 118 T ELT) (($ (-665 (-341))) 103 T ELT) (($ (-341)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 101 T ELT) (($ (-1297 (-351 (-2422 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2422) (-720)))) 31 T ELT))) -(((-61 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2422) (-720))))))) (-1206)) (T -61)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2422) (-720)))) (-5 *1 (-61 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2422) (-720))))))) -((-1902 (((-1302) $) 54 T ELT) (((-1302)) 55 T ELT)) (-2410 (((-885) $) 51 T ELT))) -(((-62 |#1|) (-13 (-408) (-10 -7 (-15 -1902 ((-1302))))) (-1206)) (T -62)) -((-1902 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-62 *3)) (-14 *3 (-1206))))) -(-13 (-408) (-10 -7 (-15 -1902 ((-1302))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 150 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 140 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 170 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 160 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 129 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 117 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 146 T ELT) (($ (-1297 (-327 (-577)))) 136 T ELT) (($ (-1297 (-980 (-391)))) 166 T ELT) (($ (-1297 (-980 (-577)))) 156 T ELT) (($ (-1297 (-420 (-980 (-391))))) 125 T ELT) (($ (-1297 (-420 (-980 (-577))))) 110 T ELT)) (-1902 (((-1302) $) 103 T ELT)) (-2410 (((-885) $) 97 T ELT) (($ (-665 (-341))) 30 T ELT) (($ (-341)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 33 T ELT) (($ (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720)))) 95 T ELT))) -(((-63 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720))))))) (-1206)) (T -63)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720)))) (-5 *1 (-63 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720))))))) -((-2817 (((-3 $ "failed") (-327 (-391))) 41 T ELT) (((-3 $ "failed") (-327 (-577))) 46 T ELT) (((-3 $ "failed") (-980 (-391))) 50 T ELT) (((-3 $ "failed") (-980 (-577))) 54 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 36 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 29 T ELT)) (-3514 (($ (-327 (-391))) 39 T ELT) (($ (-327 (-577))) 44 T ELT) (($ (-980 (-391))) 48 T ELT) (($ (-980 (-577))) 52 T ELT) (($ (-420 (-980 (-391)))) 34 T ELT) (($ (-420 (-980 (-577)))) 26 T ELT)) (-1902 (((-1302) $) 76 T ELT)) (-2410 (((-885) $) 69 T ELT) (($ (-665 (-341))) 61 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 64 T ELT) (($ (-351 (-2422 (QUOTE X)) (-2422) (-720))) 25 T ELT))) -(((-64 |#1|) (-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422 (QUOTE X)) (-2422) (-720)))))) (-1206)) (T -64)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-351 (-2422 (QUOTE X)) (-2422) (-720))) (-5 *1 (-64 *3)) (-14 *3 (-1206))))) -(-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422 (QUOTE X)) (-2422) (-720)))))) -((-2817 (((-3 $ "failed") (-710 (-327 (-391)))) 111 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 99 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 133 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 122 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 87 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 73 T ELT)) (-3514 (($ (-710 (-327 (-391)))) 107 T ELT) (($ (-710 (-327 (-577)))) 95 T ELT) (($ (-710 (-980 (-391)))) 129 T ELT) (($ (-710 (-980 (-577)))) 118 T ELT) (($ (-710 (-420 (-980 (-391))))) 83 T ELT) (($ (-710 (-420 (-980 (-577))))) 66 T ELT)) (-1902 (((-1302) $) 141 T ELT)) (-2410 (((-885) $) 135 T ELT) (($ (-665 (-341))) 29 T ELT) (($ (-341)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 32 T ELT) (($ (-710 (-351 (-2422) (-2422 (QUOTE X) (QUOTE HESS)) (-720)))) 56 T ELT))) -(((-65 |#1|) (-13 (-396) (-634 (-710 (-351 (-2422) (-2422 (QUOTE X) (QUOTE HESS)) (-720))))) (-1206)) (T -65)) -NIL -(-13 (-396) (-634 (-710 (-351 (-2422) (-2422 (QUOTE X) (QUOTE HESS)) (-720))))) -((-2817 (((-3 $ "failed") (-327 (-391))) 60 T ELT) (((-3 $ "failed") (-327 (-577))) 65 T ELT) (((-3 $ "failed") (-980 (-391))) 69 T ELT) (((-3 $ "failed") (-980 (-577))) 73 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 55 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 48 T ELT)) (-3514 (($ (-327 (-391))) 58 T ELT) (($ (-327 (-577))) 63 T ELT) (($ (-980 (-391))) 67 T ELT) (($ (-980 (-577))) 71 T ELT) (($ (-420 (-980 (-391)))) 53 T ELT) (($ (-420 (-980 (-577)))) 45 T ELT)) (-1902 (((-1302) $) 82 T ELT)) (-2410 (((-885) $) 76 T ELT) (($ (-665 (-341))) 29 T ELT) (($ (-341)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 32 T ELT) (($ (-351 (-2422) (-2422 (QUOTE XC)) (-720))) 40 T ELT))) -(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422) (-2422 (QUOTE XC)) (-720)))))) (-1206)) (T -66)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-351 (-2422) (-2422 (QUOTE XC)) (-720))) (-5 *1 (-66 *3)) (-14 *3 (-1206))))) -(-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422) (-2422 (QUOTE XC)) (-720)))))) -((-1902 (((-1302) $) 65 T ELT)) (-2410 (((-885) $) 59 T ELT) (($ (-710 (-720))) 51 T ELT) (($ (-665 (-341))) 50 T ELT) (($ (-341)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 55 T ELT))) -(((-67 |#1|) (-395) (-1206)) (T -67)) -NIL -(-395) -((-1902 (((-1302) $) 66 T ELT)) (-2410 (((-885) $) 60 T ELT) (($ (-710 (-720))) 52 T ELT) (($ (-665 (-341))) 51 T ELT) (($ (-341)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 57 T ELT))) -(((-68 |#1|) (-395) (-1206)) (T -68)) -NIL -(-395) -((-1902 (((-1302) $) NIL T ELT) (((-1302)) 33 T ELT)) (-2410 (((-885) $) NIL T ELT))) -(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -1902 ((-1302))))) (-1206)) (T -69)) -((-1902 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-69 *3)) (-14 *3 (-1206))))) -(-13 (-408) (-10 -7 (-15 -1902 ((-1302))))) -((-1902 (((-1302) $) 75 T ELT)) (-2410 (((-885) $) 69 T ELT) (($ (-710 (-720))) 61 T ELT) (($ (-665 (-341))) 63 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 60 T ELT))) -(((-70 |#1|) (-395) (-1206)) (T -70)) -NIL -(-395) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 109 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 98 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 129 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 119 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 87 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 74 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 105 T ELT) (($ (-1297 (-327 (-577)))) 94 T ELT) (($ (-1297 (-980 (-391)))) 125 T ELT) (($ (-1297 (-980 (-577)))) 115 T ELT) (($ (-1297 (-420 (-980 (-391))))) 83 T ELT) (($ (-1297 (-420 (-980 (-577))))) 67 T ELT)) (-1902 (((-1302) $) 142 T ELT)) (-2410 (((-885) $) 136 T ELT) (($ (-665 (-341))) 131 T ELT) (($ (-341)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 59 T ELT) (($ (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720)))) 60 T ELT))) -(((-71 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720))))))) (-1206)) (T -71)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720)))) (-5 *1 (-71 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720))))))) -((-1902 (((-1302) $) 33 T ELT) (((-1302)) 32 T ELT)) (-2410 (((-885) $) 36 T ELT))) -(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -1902 ((-1302))))) (-1206)) (T -72)) -((-1902 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-72 *3)) (-14 *3 (-1206))))) -(-13 (-408) (-10 -7 (-15 -1902 ((-1302))))) -((-1902 (((-1302) $) 65 T ELT)) (-2410 (((-885) $) 59 T ELT) (($ (-710 (-720))) 51 T ELT) (($ (-665 (-341))) 53 T ELT) (($ (-341)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 50 T ELT))) -(((-73 |#1|) (-395) (-1206)) (T -73)) -NIL -(-395) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 127 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 117 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 147 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 137 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 107 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 95 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 123 T ELT) (($ (-1297 (-327 (-577)))) 113 T ELT) (($ (-1297 (-980 (-391)))) 143 T ELT) (($ (-1297 (-980 (-577)))) 133 T ELT) (($ (-1297 (-420 (-980 (-391))))) 103 T ELT) (($ (-1297 (-420 (-980 (-577))))) 88 T ELT)) (-1902 (((-1302) $) 80 T ELT)) (-2410 (((-885) $) 28 T ELT) (($ (-665 (-341))) 70 T ELT) (($ (-341)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 73 T ELT) (($ (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720)))) 67 T ELT))) -(((-74 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720))))))) (-1206)) (T -74)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720)))) (-5 *1 (-74 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720))))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 132 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 121 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 152 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 142 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 110 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 97 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 128 T ELT) (($ (-1297 (-327 (-577)))) 117 T ELT) (($ (-1297 (-980 (-391)))) 148 T ELT) (($ (-1297 (-980 (-577)))) 138 T ELT) (($ (-1297 (-420 (-980 (-391))))) 106 T ELT) (($ (-1297 (-420 (-980 (-577))))) 90 T ELT)) (-1902 (((-1302) $) 82 T ELT)) (-2410 (((-885) $) 74 T ELT) (($ (-665 (-341))) NIL T ELT) (($ (-341)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) NIL T ELT) (($ (-1297 (-351 (-2422 (QUOTE X) (QUOTE EPS)) (-2422 (QUOTE -2584)) (-720)))) 69 T ELT))) -(((-75 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X) (QUOTE EPS)) (-2422 (QUOTE -2584)) (-720))))))) (-1206) (-1206) (-1206)) (T -75)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422 (QUOTE X) (QUOTE EPS)) (-2422 (QUOTE -2584)) (-720)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) (-14 *5 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X) (QUOTE EPS)) (-2422 (QUOTE -2584)) (-720))))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 138 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 127 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 158 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 148 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 116 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 103 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 134 T ELT) (($ (-1297 (-327 (-577)))) 123 T ELT) (($ (-1297 (-980 (-391)))) 154 T ELT) (($ (-1297 (-980 (-577)))) 144 T ELT) (($ (-1297 (-420 (-980 (-391))))) 112 T ELT) (($ (-1297 (-420 (-980 (-577))))) 96 T ELT)) (-1902 (((-1302) $) 88 T ELT)) (-2410 (((-885) $) 80 T ELT) (($ (-665 (-341))) NIL T ELT) (($ (-341)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) NIL T ELT) (($ (-1297 (-351 (-2422 (QUOTE EPS)) (-2422 (QUOTE YA) (QUOTE YB)) (-720)))) 75 T ELT))) -(((-76 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE EPS)) (-2422 (QUOTE YA) (QUOTE YB)) (-720))))))) (-1206) (-1206) (-1206)) (T -76)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422 (QUOTE EPS)) (-2422 (QUOTE YA) (QUOTE YB)) (-720)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) (-14 *5 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE EPS)) (-2422 (QUOTE YA) (QUOTE YB)) (-720))))))) -((-2817 (((-3 $ "failed") (-327 (-391))) 83 T ELT) (((-3 $ "failed") (-327 (-577))) 88 T ELT) (((-3 $ "failed") (-980 (-391))) 92 T ELT) (((-3 $ "failed") (-980 (-577))) 96 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 78 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 71 T ELT)) (-3514 (($ (-327 (-391))) 81 T ELT) (($ (-327 (-577))) 86 T ELT) (($ (-980 (-391))) 90 T ELT) (($ (-980 (-577))) 94 T ELT) (($ (-420 (-980 (-391)))) 76 T ELT) (($ (-420 (-980 (-577)))) 68 T ELT)) (-1902 (((-1302) $) 63 T ELT)) (-2410 (((-885) $) 51 T ELT) (($ (-665 (-341))) 47 T ELT) (($ (-341)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 55 T ELT) (($ (-351 (-2422) (-2422 (QUOTE X)) (-720))) 48 T ELT))) -(((-77 |#1|) (-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422) (-2422 (QUOTE X)) (-720)))))) (-1206)) (T -77)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-351 (-2422) (-2422 (QUOTE X)) (-720))) (-5 *1 (-77 *3)) (-14 *3 (-1206))))) -(-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422) (-2422 (QUOTE X)) (-720)))))) -((-2817 (((-3 $ "failed") (-327 (-391))) 47 T ELT) (((-3 $ "failed") (-327 (-577))) 52 T ELT) (((-3 $ "failed") (-980 (-391))) 56 T ELT) (((-3 $ "failed") (-980 (-577))) 60 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 42 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 35 T ELT)) (-3514 (($ (-327 (-391))) 45 T ELT) (($ (-327 (-577))) 50 T ELT) (($ (-980 (-391))) 54 T ELT) (($ (-980 (-577))) 58 T ELT) (($ (-420 (-980 (-391)))) 40 T ELT) (($ (-420 (-980 (-577)))) 32 T ELT)) (-1902 (((-1302) $) 81 T ELT)) (-2410 (((-885) $) 75 T ELT) (($ (-665 (-341))) 67 T ELT) (($ (-341)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 70 T ELT) (($ (-351 (-2422) (-2422 (QUOTE X)) (-720))) 31 T ELT))) -(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422) (-2422 (QUOTE X)) (-720)))))) (-1206)) (T -78)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-351 (-2422) (-2422 (QUOTE X)) (-720))) (-5 *1 (-78 *3)) (-14 *3 (-1206))))) -(-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422) (-2422 (QUOTE X)) (-720)))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 90 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 79 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 110 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 100 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 68 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 55 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 86 T ELT) (($ (-1297 (-327 (-577)))) 75 T ELT) (($ (-1297 (-980 (-391)))) 106 T ELT) (($ (-1297 (-980 (-577)))) 96 T ELT) (($ (-1297 (-420 (-980 (-391))))) 64 T ELT) (($ (-1297 (-420 (-980 (-577))))) 48 T ELT)) (-1902 (((-1302) $) 126 T ELT)) (-2410 (((-885) $) 120 T ELT) (($ (-665 (-341))) 113 T ELT) (($ (-341)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 116 T ELT) (($ (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720)))) 39 T ELT))) -(((-79 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720))))))) (-1206)) (T -79)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720)))) (-5 *1 (-79 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE XC)) (-720))))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 151 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 141 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 171 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 161 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 131 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 119 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 147 T ELT) (($ (-1297 (-327 (-577)))) 137 T ELT) (($ (-1297 (-980 (-391)))) 167 T ELT) (($ (-1297 (-980 (-577)))) 157 T ELT) (($ (-1297 (-420 (-980 (-391))))) 127 T ELT) (($ (-1297 (-420 (-980 (-577))))) 112 T ELT)) (-1902 (((-1302) $) 105 T ELT)) (-2410 (((-885) $) 99 T ELT) (($ (-665 (-341))) 90 T ELT) (($ (-341)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 95 T ELT) (($ (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720)))) 91 T ELT))) -(((-80 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720))))))) (-1206)) (T -80)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720)))) (-5 *1 (-80 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720))))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 79 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 68 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 99 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 89 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 57 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 44 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 75 T ELT) (($ (-1297 (-327 (-577)))) 64 T ELT) (($ (-1297 (-980 (-391)))) 95 T ELT) (($ (-1297 (-980 (-577)))) 85 T ELT) (($ (-1297 (-420 (-980 (-391))))) 53 T ELT) (($ (-1297 (-420 (-980 (-577))))) 37 T ELT)) (-1902 (((-1302) $) 125 T ELT)) (-2410 (((-885) $) 119 T ELT) (($ (-665 (-341))) 110 T ELT) (($ (-341)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 114 T ELT) (($ (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720)))) 36 T ELT))) -(((-81 |#1|) (-13 (-454) (-634 (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720))))) (-1206)) (T -81)) -NIL -(-13 (-454) (-634 (-1297 (-351 (-2422) (-2422 (QUOTE X)) (-720))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 98 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 87 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 118 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 108 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 76 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 63 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 94 T ELT) (($ (-1297 (-327 (-577)))) 83 T ELT) (($ (-1297 (-980 (-391)))) 114 T ELT) (($ (-1297 (-980 (-577)))) 104 T ELT) (($ (-1297 (-420 (-980 (-391))))) 72 T ELT) (($ (-1297 (-420 (-980 (-577))))) 56 T ELT)) (-1902 (((-1302) $) 48 T ELT)) (-2410 (((-885) $) 42 T ELT) (($ (-665 (-341))) 32 T ELT) (($ (-341)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 38 T ELT) (($ (-1297 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720)))) 33 T ELT))) -(((-82 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720))))))) (-1206)) (T -82)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720)))) (-5 *1 (-82 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720))))))) -((-2817 (((-3 $ "failed") (-710 (-327 (-391)))) 118 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 107 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 140 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 129 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 96 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 83 T ELT)) (-3514 (($ (-710 (-327 (-391)))) 114 T ELT) (($ (-710 (-327 (-577)))) 103 T ELT) (($ (-710 (-980 (-391)))) 136 T ELT) (($ (-710 (-980 (-577)))) 125 T ELT) (($ (-710 (-420 (-980 (-391))))) 92 T ELT) (($ (-710 (-420 (-980 (-577))))) 76 T ELT)) (-1902 (((-1302) $) 66 T ELT)) (-2410 (((-885) $) 53 T ELT) (($ (-665 (-341))) 60 T ELT) (($ (-341)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 58 T ELT) (($ (-710 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720)))) 50 T ELT))) -(((-83 |#1|) (-13 (-396) (-10 -8 (-15 -2410 ($ (-710 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720))))))) (-1206)) (T -83)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-710 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720)))) (-5 *1 (-83 *3)) (-14 *3 (-1206))))) -(-13 (-396) (-10 -8 (-15 -2410 ($ (-710 (-351 (-2422 (QUOTE X) (QUOTE -2584)) (-2422) (-720))))))) -((-2817 (((-3 $ "failed") (-710 (-327 (-391)))) 113 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 101 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 135 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 124 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 89 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 75 T ELT)) (-3514 (($ (-710 (-327 (-391)))) 109 T ELT) (($ (-710 (-327 (-577)))) 97 T ELT) (($ (-710 (-980 (-391)))) 131 T ELT) (($ (-710 (-980 (-577)))) 120 T ELT) (($ (-710 (-420 (-980 (-391))))) 85 T ELT) (($ (-710 (-420 (-980 (-577))))) 68 T ELT)) (-1902 (((-1302) $) 60 T ELT)) (-2410 (((-885) $) 54 T ELT) (($ (-665 (-341))) 48 T ELT) (($ (-341)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 45 T ELT) (($ (-710 (-351 (-2422 (QUOTE X)) (-2422) (-720)))) 46 T ELT))) -(((-84 |#1|) (-13 (-396) (-10 -8 (-15 -2410 ($ (-710 (-351 (-2422 (QUOTE X)) (-2422) (-720))))))) (-1206)) (T -84)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-710 (-351 (-2422 (QUOTE X)) (-2422) (-720)))) (-5 *1 (-84 *3)) (-14 *3 (-1206))))) -(-13 (-396) (-10 -8 (-15 -2410 ($ (-710 (-351 (-2422 (QUOTE X)) (-2422) (-720))))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 105 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 94 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 125 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 115 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 83 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 70 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 101 T ELT) (($ (-1297 (-327 (-577)))) 90 T ELT) (($ (-1297 (-980 (-391)))) 121 T ELT) (($ (-1297 (-980 (-577)))) 111 T ELT) (($ (-1297 (-420 (-980 (-391))))) 79 T ELT) (($ (-1297 (-420 (-980 (-577))))) 63 T ELT)) (-1902 (((-1302) $) 47 T ELT)) (-2410 (((-885) $) 41 T ELT) (($ (-665 (-341))) 50 T ELT) (($ (-341)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 53 T ELT) (($ (-1297 (-351 (-2422 (QUOTE X)) (-2422) (-720)))) 38 T ELT))) -(((-85 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X)) (-2422) (-720))))))) (-1206)) (T -85)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422 (QUOTE X)) (-2422) (-720)))) (-5 *1 (-85 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X)) (-2422) (-720))))))) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 80 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 69 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 100 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 90 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 58 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 45 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 76 T ELT) (($ (-1297 (-327 (-577)))) 65 T ELT) (($ (-1297 (-980 (-391)))) 96 T ELT) (($ (-1297 (-980 (-577)))) 86 T ELT) (($ (-1297 (-420 (-980 (-391))))) 54 T ELT) (($ (-1297 (-420 (-980 (-577))))) 38 T ELT)) (-1902 (((-1302) $) 126 T ELT)) (-2410 (((-885) $) 120 T ELT) (($ (-665 (-341))) 111 T ELT) (($ (-341)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 115 T ELT) (($ (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720)))) 37 T ELT))) -(((-86 |#1|) (-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720))))))) (-1206)) (T -86)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720)))) (-5 *1 (-86 *3)) (-14 *3 (-1206))))) -(-13 (-454) (-10 -8 (-15 -2410 ($ (-1297 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720))))))) -((-2817 (((-3 $ "failed") (-710 (-327 (-391)))) 117 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 105 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 139 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 128 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 93 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 79 T ELT)) (-3514 (($ (-710 (-327 (-391)))) 113 T ELT) (($ (-710 (-327 (-577)))) 101 T ELT) (($ (-710 (-980 (-391)))) 135 T ELT) (($ (-710 (-980 (-577)))) 124 T ELT) (($ (-710 (-420 (-980 (-391))))) 89 T ELT) (($ (-710 (-420 (-980 (-577))))) 72 T ELT)) (-1902 (((-1302) $) 63 T ELT)) (-2410 (((-885) $) 57 T ELT) (($ (-665 (-341))) 47 T ELT) (($ (-341)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 52 T ELT) (($ (-710 (-351 (-2422 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2422) (-720)))) 48 T ELT))) -(((-87 |#1|) (-13 (-396) (-10 -8 (-15 -2410 ($ (-710 (-351 (-2422 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2422) (-720))))))) (-1206)) (T -87)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-710 (-351 (-2422 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2422) (-720)))) (-5 *1 (-87 *3)) (-14 *3 (-1206))))) -(-13 (-396) (-10 -8 (-15 -2410 ($ (-710 (-351 (-2422 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2422) (-720))))))) -((-1902 (((-1302) $) 45 T ELT)) (-2410 (((-885) $) 39 T ELT) (($ (-1297 (-720))) 100 T ELT) (($ (-665 (-341))) 31 T ELT) (($ (-341)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 34 T ELT))) -(((-88 |#1|) (-453) (-1206)) (T -88)) -NIL -(-453) -((-2817 (((-3 $ "failed") (-327 (-391))) 48 T ELT) (((-3 $ "failed") (-327 (-577))) 53 T ELT) (((-3 $ "failed") (-980 (-391))) 57 T ELT) (((-3 $ "failed") (-980 (-577))) 61 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 43 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 36 T ELT)) (-3514 (($ (-327 (-391))) 46 T ELT) (($ (-327 (-577))) 51 T ELT) (($ (-980 (-391))) 55 T ELT) (($ (-980 (-577))) 59 T ELT) (($ (-420 (-980 (-391)))) 41 T ELT) (($ (-420 (-980 (-577)))) 33 T ELT)) (-1902 (((-1302) $) 91 T ELT)) (-2410 (((-885) $) 85 T ELT) (($ (-665 (-341))) 79 T ELT) (($ (-341)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 77 T ELT) (($ (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720))) 32 T ELT))) -(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720)))))) (-1206)) (T -89)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720))) (-5 *1 (-89 *3)) (-14 *3 (-1206))))) -(-13 (-409) (-10 -8 (-15 -2410 ($ (-351 (-2422 (QUOTE X)) (-2422 (QUOTE -2584)) (-720)))))) -((-1647 (((-1297 (-710 |#1|)) (-710 |#1|)) 61 T ELT)) (-4151 (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 (-665 (-949))))) |#2| (-949)) 49 T ELT)) (-2711 (((-2 (|:| |minor| (-665 (-949))) (|:| -3503 |#2|) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 |#2|))) |#2| (-949)) 72 (|has| |#1| (-375)) ELT))) -(((-90 |#1| |#2|) (-10 -7 (-15 -4151 ((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 (-665 (-949))))) |#2| (-949))) (-15 -1647 ((-1297 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-375)) (-15 -2711 ((-2 (|:| |minor| (-665 (-949))) (|:| -3503 |#2|) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 |#2|))) |#2| (-949))) |%noBranch|)) (-569) (-677 |#1|)) (T -90)) -((-2711 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |minor| (-665 (-949))) (|:| -3503 *3) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5)))) (-1647 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-710 *4)) (-4 *5 (-677 *4)))) (-4151 (*1 *2 *3 *4) (-12 (-4 *5 (-569)) (-5 *2 (-2 (|:| -1670 (-710 *5)) (|:| |vec| (-1297 (-665 (-949)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5))))) -(-10 -7 (-15 -4151 ((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 (-665 (-949))))) |#2| (-949))) (-15 -1647 ((-1297 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-375)) (-15 -2711 ((-2 (|:| |minor| (-665 (-949))) (|:| -3503 |#2|) (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 |#2|))) |#2| (-949))) |%noBranch|)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2852 ((|#1| $) 40 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3073 ((|#1| |#1| $) 35 T ELT)) (-2908 ((|#1| $) 33 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) NIL T ELT)) (-3795 (($ |#1| $) 36 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3127 ((|#1| $) 34 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 18 T ELT)) (-3414 (($) 45 T ELT)) (-3300 (((-792) $) 31 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 17 T ELT)) (-2410 (((-885) $) 30 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) NIL T ELT)) (-2149 (($ (-665 |#1|)) 42 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 15 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 12 (|has| $ (-6 -4499)) ELT))) -(((-91 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -2149 ($ (-665 |#1|))))) (-1130)) (T -91)) -((-2149 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-91 *3))))) -(-13 (-1151 |#1|) (-10 -8 (-15 -2149 ($ (-665 |#1|))))) -((-2410 (((-885) $) 13 T ELT) (($ (-1211)) 9 T ELT) (((-1211) $) 8 T ELT))) -(((-92 |#1|) (-10 -8 (-15 -2410 ((-1211) |#1|)) (-15 -2410 (|#1| (-1211))) (-15 -2410 ((-885) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2410 ((-1211) |#1|)) (-15 -2410 (|#1| (-1211))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-1211)) 17 T ELT) (((-1211) $) 16 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-93) (-141)) (T -93)) -NIL -(-13 (-1130) (-503 (-1211))) -(((-102) . T) ((-634 #0=(-1211)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1247) . T)) -((-1456 (($ $) 10 T ELT)) (-1466 (($ $) 12 T ELT))) -(((-94 |#1|) (-10 -8 (-15 -1466 (|#1| |#1|)) (-15 -1456 (|#1| |#1|))) (-95)) (T -94)) -NIL -(-10 -8 (-15 -1466 (|#1| |#1|)) (-15 -1456 (|#1| |#1|))) -((-1435 (($ $) 11 T ELT)) (-1413 (($ $) 10 T ELT)) (-1456 (($ $) 9 T ELT)) (-1466 (($ $) 8 T ELT)) (-1446 (($ $) 7 T ELT)) (-1423 (($ $) 6 T ELT))) -(((-95) (-141)) (T -95)) -((-1435 (*1 *1 *1) (-4 *1 (-95))) (-1413 (*1 *1 *1) (-4 *1 (-95))) (-1456 (*1 *1 *1) (-4 *1 (-95))) (-1466 (*1 *1 *1) (-4 *1 (-95))) (-1446 (*1 *1 *1) (-4 *1 (-95))) (-1423 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -1423 ($ $)) (-15 -1446 ($ $)) (-15 -1466 ($ $)) (-15 -1456 ($ $)) (-15 -1413 ($ $)) (-15 -1435 ($ $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4105 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-96) (-13 (-1113) (-10 -8 (-15 -4105 ((-1165) $))))) (T -96)) -((-4105 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-96))))) -(-13 (-1113) (-10 -8 (-15 -4105 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2855 (((-391) (-1188) (-391)) 46 T ELT) (((-391) (-1188) (-1188) (-391)) 44 T ELT)) (-3303 (((-391) (-391)) 35 T ELT)) (-1672 (((-1302)) 37 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2353 (((-391) (-1188) (-1188)) 50 T ELT) (((-391) (-1188)) 52 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3238 (((-391) (-1188) (-1188)) 51 T ELT)) (-3214 (((-391) (-1188) (-1188)) 53 T ELT) (((-391) (-1188)) 54 T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-97) (-13 (-1130) (-10 -7 (-15 -2353 ((-391) (-1188) (-1188))) (-15 -2353 ((-391) (-1188))) (-15 -3214 ((-391) (-1188) (-1188))) (-15 -3214 ((-391) (-1188))) (-15 -3238 ((-391) (-1188) (-1188))) (-15 -1672 ((-1302))) (-15 -3303 ((-391) (-391))) (-15 -2855 ((-391) (-1188) (-391))) (-15 -2855 ((-391) (-1188) (-1188) (-391))) (-6 -4499)))) (T -97)) -((-2353 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3214 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3238 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1672 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-97)))) (-3303 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97)))) (-2855 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97))))) -(-13 (-1130) (-10 -7 (-15 -2353 ((-391) (-1188) (-1188))) (-15 -2353 ((-391) (-1188))) (-15 -3214 ((-391) (-1188) (-1188))) (-15 -3214 ((-391) (-1188))) (-15 -3238 ((-391) (-1188) (-1188))) (-15 -1672 ((-1302))) (-15 -3303 ((-391) (-391))) (-15 -2855 ((-391) (-1188) (-391))) (-15 -2855 ((-391) (-1188) (-1188) (-391))) (-6 -4499))) -NIL -(((-98) (-141)) (T -98)) -NIL -(-13 (-10 -7 (-6 -4499) (-6 (-4501 "*")) (-6 -4500) (-6 -4496) (-6 -4494) (-6 -4493) (-6 -4492) (-6 -4497) (-6 -4491) (-6 -4490) (-6 -4489) (-6 -4488) (-6 -4487) (-6 -4495) (-6 -4498) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4486))) -((-3211 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-1588 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-577))) 24 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 16 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 ((|#1| $ |#1|) 13 T ELT)) (-2744 (($ $ $) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2410 (((-885) $) 22 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 8 T CONST)) (-2383 (((-112) $ $) 10 T ELT)) (-2494 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 32 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 18 T ELT)) (* (($ $ $) 33 T ELT))) -(((-99 |#1|) (-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -1588 ($ (-1 |#1| |#1|))) (-15 -1588 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1588 ($ (-1 |#1| |#1| (-577)))))) (-1079)) (T -99)) -((-1588 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) (-1588 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) (-1588 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-99 *3))))) -(-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -1588 ($ (-1 |#1| |#1|))) (-15 -1588 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1588 ($ (-1 |#1| |#1| (-577)))))) -((-1349 (((-431 |#2|) |#2| (-665 |#2|)) 10 T ELT) (((-431 |#2|) |#2| |#2|) 11 T ELT))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1349 ((-431 |#2|) |#2| |#2|)) (-15 -1349 ((-431 |#2|) |#2| (-665 |#2|)))) (-13 (-465) (-148)) (-1273 |#1|)) (T -100)) -((-1349 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3)))) (-1349 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -1349 ((-431 |#2|) |#2| |#2|)) (-15 -1349 ((-431 |#2|) |#2| (-665 |#2|)))) -((-3211 (((-112) $ $) 13 T ELT)) (-2525 (((-112) $ $) 14 T ELT)) (-2383 (((-112) $ $) 11 T ELT))) -(((-101 |#1|) (-10 -8 (-15 -2525 ((-112) |#1| |#1|)) (-15 -3211 ((-112) |#1| |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2525 ((-112) |#1| |#1|)) (-15 -3211 ((-112) |#1| |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-102) (-141)) (T -102)) -((-2383 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3211 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2525 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-1247) (-10 -8 (-15 -2383 ((-112) $ $)) (-15 -3211 ((-112) $ $)) (-15 -2525 ((-112) $ $)))) -(((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) 24 (|has| $ (-6 -4500)) ELT)) (-3142 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-1916 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-2155 (($ $ (-665 |#1|)) 30 T ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-3867 (($ $) 12 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2313 (($ $ |#1| $) 32 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2029 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1491 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-665 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3854 (($ $) 11 T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) 13 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 9 T ELT)) (-3414 (($) 31 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2110 (((-112) $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2858 (($ (-792) |#1|) 33 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -2858 ($ (-792) |#1|)) (-15 -2155 ($ $ (-665 |#1|))) (-15 -2029 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2029 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1491 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1491 ($ $ |#1| (-1 (-665 |#1|) |#1| |#1| |#1|))))) (-1130)) (T -103)) -((-2858 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-103 *3)) (-4 *3 (-1130)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3)))) (-2029 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1130)))) (-2029 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3)))) (-1491 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (-5 *1 (-103 *2)))) (-1491 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-665 *2) *2 *2 *2)) (-4 *2 (-1130)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -2858 ($ (-792) |#1|)) (-15 -2155 ($ $ (-665 |#1|))) (-15 -2029 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2029 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1491 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1491 ($ $ |#1| (-1 (-665 |#1|) |#1| |#1| |#1|))))) -((-3856 ((|#3| |#2| |#2|) 34 T ELT)) (-1568 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-2402 ((|#3| |#2| |#2|) 36 T ELT)) (-1804 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4501 "*"))) ELT))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3856 (|#3| |#2| |#2|)) (-15 -2402 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4501 "*"))) (PROGN (-15 -1568 (|#1| |#2| |#2|)) (-15 -1804 (|#1| |#2|))) |%noBranch|)) (-1079) (-1273 |#1|) (-708 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) -((-1804 (*1 *2 *3) (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-1568 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-2402 (*1 *2 *3 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3856 (*1 *2 *3 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -(-10 -7 (-15 -3856 (|#3| |#2| |#2|)) (-15 -2402 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4501 "*"))) (PROGN (-15 -1568 (|#1| |#2| |#2|)) (-15 -1804 (|#1| |#2|))) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2469 (((-665 (-1206))) 37 T ELT)) (-3367 (((-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228)))) (-1206)) 39 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-105) (-13 (-1130) (-10 -7 (-15 -2469 ((-665 (-1206)))) (-15 -3367 ((-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228)))) (-1206))) (-6 -4499)))) (T -105)) -((-2469 (*1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-105)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228))))) (-5 *1 (-105))))) -(-13 (-1130) (-10 -7 (-15 -2469 ((-665 (-1206)))) (-15 -3367 ((-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) (|:| |singularities| (-1187 (-228)))) (-1206))) (-6 -4499))) -((-3236 (($ (-665 |#2|)) 11 T ELT))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3236 (|#1| (-665 |#2|)))) (-107 |#2|) (-1247)) (T -106)) -NIL -(-10 -8 (-15 -3236 (|#1| (-665 |#2|)))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2762 (($) 7 T CONST)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-107 |#1|) (-141) (-1247)) (T -107)) -((-3236 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-3795 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) -(-13 (-502 |t#1|) (-10 -8 (-6 -4500) (-15 -3236 ($ (-665 |t#1|))) (-15 -3127 (|t#1| $)) (-15 -3795 ($ |t#1| $)) (-15 -3398 (|t#1| $)))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3514 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-577) (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 (((-577) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-3609 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-577) (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-2136 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 (((-577) $) NIL T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1034 2) $) 10 T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2324 (($ (-420 (-577))) 9 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2494 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) -(((-108) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 2)) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -2324 ($ (-420 (-577))))))) (T -108)) -((-2687 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) (-2324 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108))))) -(-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 2)) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -2324 ($ (-420 (-577)))))) -((-1927 (((-665 (-993)) $) 13 T ELT)) (-4105 (((-519) $) 9 T ELT)) (-2410 (((-885) $) 20 T ELT)) (-4153 (($ (-519) (-665 (-993))) 15 T ELT))) -(((-109) (-13 (-631 (-885)) (-10 -8 (-15 -4105 ((-519) $)) (-15 -1927 ((-665 (-993)) $)) (-15 -4153 ($ (-519) (-665 (-993))))))) (T -109)) -((-4105 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-109)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-665 (-993))) (-5 *1 (-109)))) (-4153 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-109))))) -(-13 (-631 (-885)) (-10 -8 (-15 -4105 ((-519) $)) (-15 -1927 ((-665 (-993)) $)) (-15 -4153 ($ (-519) (-665 (-993)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-2343 (($ $ $) NIL T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) $) NIL (|has| (-112) (-870)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-870))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2040 (($ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 (((-112) $ (-1264 (-577)) (-112)) NIL (|has| $ (-6 -4500)) ELT) (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-2736 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-2511 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-3448 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-3381 (((-112) $ (-577)) NIL T ELT)) (-3886 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1130)) ELT) (((-577) (-112) $) NIL (|has| (-112) (-1130)) ELT) (((-577) (-1 (-112) (-112)) $) NIL T ELT)) (-2728 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2331 (($ $ $) NIL T ELT)) (-2308 (($ $) NIL T ELT)) (-4389 (($ $ $) NIL T ELT)) (-3748 (($ (-792) (-112)) 10 T ELT)) (-2896 (($ $ $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL T ELT)) (-2223 (($ $ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-4138 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL T ELT)) (-3437 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4272 (($ $ $ (-577)) NIL T ELT) (($ (-112) $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-112) $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-3482 (($ $ (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-112)) (-665 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-665 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-3485 (((-665 (-112)) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 (($ $ (-1264 (-577))) NIL T ELT) (((-112) $ (-577)) NIL T ELT) (((-112) $ (-577) (-112)) NIL T ELT)) (-1704 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-4323 (((-792) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT) (((-792) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-112) (-632 (-549))) ELT)) (-2422 (($ (-665 (-112))) NIL T ELT)) (-3702 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-1750 (($ (-792) (-112)) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2319 (($ $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-110) (-13 (-124) (-10 -8 (-15 -1750 ($ (-792) (-112)))))) (T -110)) -((-1750 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -1750 ($ (-792) (-112))))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) -(((-111 |#1| |#2|) (-141) (-1079) (-1079)) (T -111)) -NIL -(-13 (-669 |t#1|) (-1086 |t#2|) (-10 -7 (-6 -4494) (-6 -4493))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) 10 T ELT)) (-2343 (($ $ $) 15 T ELT)) (-4301 (($) 7 T CONST)) (-4032 (($ $) 6 T ELT)) (-2221 (((-792)) 24 T ELT)) (-2060 (($) 32 T ELT)) (-2331 (($ $ $) 13 T ELT)) (-2308 (($ $) 9 T ELT)) (-4389 (($ $ $) 16 T ELT)) (-2896 (($ $ $) 17 T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) 30 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) 28 T ELT)) (-4265 (($ $ $) 20 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2434 (($) 8 T CONST)) (-2211 (($ $ $) 21 T ELT)) (-3341 (((-549) $) 34 T ELT)) (-2410 (((-885) $) 36 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2319 (($ $ $) 11 T ELT)) (-3285 (($ $ $) 14 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 19 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 22 T ELT)) (-3272 (($ $ $) 12 T ELT))) -(((-112) (-13 (-865) (-997) (-632 (-549)) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -4389 ($ $ $)) (-15 -4032 ($ $))))) (T -112)) -((-2343 (*1 *1 *1 *1) (-5 *1 (-112))) (-2896 (*1 *1 *1 *1) (-5 *1 (-112))) (-4389 (*1 *1 *1 *1) (-5 *1 (-112))) (-4032 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-865) (-997) (-632 (-549)) (-10 -8 (-15 -2343 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -4389 ($ $ $)) (-15 -4032 ($ $)))) -((-3235 (($ $) 8 T ELT)) (-2331 (($ $ $) 9 T ELT)) (-2308 (($ $) 11 T ELT)) (-2319 (($ $ $) 10 T ELT)) (-3285 (($ $ $) 6 T ELT)) (-3272 (($ $ $) 7 T ELT))) -(((-113) (-141)) (T -113)) -((-2308 (*1 *1 *1) (-4 *1 (-113))) (-2319 (*1 *1 *1 *1) (-4 *1 (-113))) (-2331 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-682) (-10 -8 (-15 -2308 ($ $)) (-15 -2319 ($ $ $)) (-15 -2331 ($ $ $)))) -(((-682) . T) ((-1247) . T)) -((-4452 (((-3 (-1 |#1| (-665 |#1|)) "failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-665 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-115) (-665 |#1|)) 25 T ELT)) (-3201 (((-3 (-665 (-1 |#1| (-665 |#1|))) "failed") (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-665 (-1 |#1| (-665 |#1|)))) 30 T ELT)) (-1917 (((-115) |#1|) 63 T ELT)) (-2827 (((-3 |#1| "failed") (-115)) 58 T ELT))) -(((-114 |#1|) (-10 -7 (-15 -4452 ((-3 |#1| "failed") (-115) (-665 |#1|))) (-15 -4452 ((-115) (-115) (-1 |#1| (-665 |#1|)))) (-15 -4452 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4452 ((-3 (-1 |#1| (-665 |#1|)) "failed") (-115))) (-15 -3201 ((-115) (-115) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3201 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3201 ((-3 (-665 (-1 |#1| (-665 |#1|))) "failed") (-115))) (-15 -1917 ((-115) |#1|)) (-15 -2827 ((-3 |#1| "failed") (-115)))) (-1130)) (T -114)) -((-2827 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1130)))) (-1917 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1130)))) (-3201 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-1 *4 (-665 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1130)))) (-3201 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-3201 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 (-1 *4 (-665 *4)))) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-4452 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-665 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1130)))) (-4452 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-4452 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-665 *4))) (-4 *4 (-1130)) (-5 *1 (-114 *4)))) (-4452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-665 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1130))))) -(-10 -7 (-15 -4452 ((-3 |#1| "failed") (-115) (-665 |#1|))) (-15 -4452 ((-115) (-115) (-1 |#1| (-665 |#1|)))) (-15 -4452 ((-115) (-115) (-1 |#1| |#1|))) (-15 -4452 ((-3 (-1 |#1| (-665 |#1|)) "failed") (-115))) (-15 -3201 ((-115) (-115) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3201 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3201 ((-3 (-665 (-1 |#1| (-665 |#1|))) "failed") (-115))) (-15 -1917 ((-115) |#1|)) (-15 -2827 ((-3 |#1| "failed") (-115)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1975 (((-792) $) 92 T ELT) (($ $ (-792)) 37 T ELT)) (-1424 (((-112) $) 41 T ELT)) (-4088 (($ $ (-1188) (-795)) 59 T ELT) (($ $ (-519) (-795)) 33 T ELT)) (-1545 (($ $ (-45 (-1188) (-795))) 16 T ELT)) (-3181 (((-3 (-795) "failed") $ (-1188)) 27 T ELT) (((-712 (-795)) $ (-519)) 32 T ELT)) (-1927 (((-45 (-1188) (-795)) $) 15 T ELT)) (-4396 (($ (-1206)) 20 T ELT) (($ (-1206) (-792)) 23 T ELT) (($ (-1206) (-55)) 24 T ELT)) (-2125 (((-112) $) 39 T ELT)) (-1807 (((-112) $) 43 T ELT)) (-4105 (((-1206) $) 8 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4450 (((-112) $ (-1206)) 11 T ELT)) (-1697 (($ $ (-1 (-549) (-665 (-549)))) 65 T ELT) (((-3 (-1 (-549) (-665 (-549))) "failed") $) 72 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4478 (((-112) $ (-519)) 36 T ELT)) (-4076 (($ $ (-1 (-112) $ $)) 45 T ELT)) (-1646 (((-3 (-1 (-885) (-665 (-885))) "failed") $) 70 T ELT) (($ $ (-1 (-885) (-665 (-885)))) 51 T ELT) (($ $ (-1 (-885) (-885))) 53 T ELT)) (-2386 (($ $ (-1188)) 55 T ELT) (($ $ (-519)) 57 T ELT)) (-3978 (($ $) 78 T ELT)) (-4472 (($ $ (-1 (-112) $ $)) 46 T ELT)) (-2410 (((-885) $) 61 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4256 (($ $ (-519)) 34 T ELT)) (-3089 (((-55) $) 73 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 90 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 104 T ELT))) -(((-115) (-13 (-870) (-856 (-1206)) (-10 -8 (-15 -1927 ((-45 (-1188) (-795)) $)) (-15 -3978 ($ $)) (-15 -4396 ($ (-1206))) (-15 -4396 ($ (-1206) (-792))) (-15 -4396 ($ (-1206) (-55))) (-15 -2125 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -1807 ((-112) $)) (-15 -1975 ((-792) $)) (-15 -1975 ($ $ (-792))) (-15 -4076 ($ $ (-1 (-112) $ $))) (-15 -4472 ($ $ (-1 (-112) $ $))) (-15 -1646 ((-3 (-1 (-885) (-665 (-885))) "failed") $)) (-15 -1646 ($ $ (-1 (-885) (-665 (-885))))) (-15 -1646 ($ $ (-1 (-885) (-885)))) (-15 -1697 ($ $ (-1 (-549) (-665 (-549))))) (-15 -1697 ((-3 (-1 (-549) (-665 (-549))) "failed") $)) (-15 -4478 ((-112) $ (-519))) (-15 -4256 ($ $ (-519))) (-15 -2386 ($ $ (-1188))) (-15 -2386 ($ $ (-519))) (-15 -3181 ((-3 (-795) "failed") $ (-1188))) (-15 -3181 ((-712 (-795)) $ (-519))) (-15 -4088 ($ $ (-1188) (-795))) (-15 -4088 ($ $ (-519) (-795))) (-15 -1545 ($ $ (-45 (-1188) (-795))))))) (T -115)) -((-1927 (*1 *2 *1) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115)))) (-3978 (*1 *1 *1) (-5 *1 (-115))) (-4396 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-115)))) (-4396 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *1 (-115)))) (-4396 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) (-1975 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) (-4076 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-4472 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1646 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) (-1646 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) (-1646 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-885))) (-5 *1 (-115)))) (-1697 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) (-1697 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) (-4478 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115)))) (-4256 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115)))) (-2386 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-3181 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-795)) (-5 *1 (-115)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-795))) (-5 *1 (-115)))) (-4088 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-795)) (-5 *1 (-115)))) (-4088 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-795)) (-5 *1 (-115)))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115))))) -(-13 (-870) (-856 (-1206)) (-10 -8 (-15 -1927 ((-45 (-1188) (-795)) $)) (-15 -3978 ($ $)) (-15 -4396 ($ (-1206))) (-15 -4396 ($ (-1206) (-792))) (-15 -4396 ($ (-1206) (-55))) (-15 -2125 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -1807 ((-112) $)) (-15 -1975 ((-792) $)) (-15 -1975 ($ $ (-792))) (-15 -4076 ($ $ (-1 (-112) $ $))) (-15 -4472 ($ $ (-1 (-112) $ $))) (-15 -1646 ((-3 (-1 (-885) (-665 (-885))) "failed") $)) (-15 -1646 ($ $ (-1 (-885) (-665 (-885))))) (-15 -1646 ($ $ (-1 (-885) (-885)))) (-15 -1697 ($ $ (-1 (-549) (-665 (-549))))) (-15 -1697 ((-3 (-1 (-549) (-665 (-549))) "failed") $)) (-15 -4478 ((-112) $ (-519))) (-15 -4256 ($ $ (-519))) (-15 -2386 ($ $ (-1188))) (-15 -2386 ($ $ (-519))) (-15 -3181 ((-3 (-795) "failed") $ (-1188))) (-15 -3181 ((-712 (-795)) $ (-519))) (-15 -4088 ($ $ (-1188) (-795))) (-15 -4088 ($ $ (-519) (-795))) (-15 -1545 ($ $ (-45 (-1188) (-795)))))) -((-4242 (((-577) |#2|) 41 T ELT))) -(((-116 |#1| |#2|) (-10 -7 (-15 -4242 ((-577) |#2|))) (-13 (-375) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -116)) -((-4242 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-1068 (-420 *2)))) (-5 *2 (-577)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -4242 ((-577) |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $ (-577)) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2299 (($ (-1202 (-577)) (-577)) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1653 (($ $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3890 (((-792) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2305 (((-577)) NIL T ELT)) (-2224 (((-577) $) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-4013 (($ $ (-577)) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-4279 (((-1187 (-577)) $) NIL T ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3908 (((-577) $ (-577)) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-117 |#1|) (-892 |#1|) (-577)) (T -117)) -NIL -(-892 |#1|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-117 |#1|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-117 |#1|) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT)) (-3514 (((-117 |#1|) $) NIL T ELT) (((-1206) $) NIL (|has| (-117 |#1|) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-117 |#1|) (-1068 (-577))) ELT)) (-3931 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-117 |#1|))) (|:| |vec| (-1297 (-117 |#1|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-117 |#1|)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-117 |#1|) (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-117 |#1|) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-117 |#1|) (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 (((-117 |#1|) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-3609 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-117 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-117 |#1|))) (|:| |vec| (-1297 (-117 |#1|)))) (-1297 $) $) NIL T ELT) (((-710 (-117 |#1|)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-117 |#1|) (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-117 |#1|) (-318)) ELT)) (-2136 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-117 |#1|) (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 (-117 |#1|)) (-665 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-305 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-665 (-305 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|))) ELT) (($ $ (-665 (-1206)) (-665 (-117 |#1|))) NIL (|has| (-117 |#1|) (-527 (-1206) (-117 |#1|))) ELT) (($ $ (-1206) (-117 |#1|)) NIL (|has| (-117 |#1|) (-527 (-1206) (-117 |#1|))) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-297 (-117 |#1|) (-117 |#1|))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL T ELT) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-117 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-117 |#1|) (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 (((-117 |#1|) $) NIL T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| (-117 |#1|) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-117 |#1|) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-117 |#1|) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-117 |#1|) (-1052)) ELT) (((-228) $) NIL (|has| (-117 |#1|) (-1052)) ELT)) (-2758 (((-176 (-420 (-577))) $) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-117 |#1|)) NIL T ELT) (($ (-1206)) NIL (|has| (-117 |#1|) (-1068 (-1206))) ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-937))) (|has| (-117 |#1|) (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3908 (((-420 (-577)) $ (-577)) NIL T ELT)) (-3385 (($ $) NIL (|has| (-117 |#1|) (-841)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL T ELT) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-117 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-117 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-117 |#1|) (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-117 |#1|) (-870)) ELT)) (-2494 (($ $ $) NIL T ELT) (($ (-117 |#1|) (-117 |#1|)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-117 |#1|) $) NIL T ELT) (($ $ (-117 |#1|)) NIL T ELT))) -(((-118 |#1|) (-13 (-1022 (-117 |#1|)) (-10 -8 (-15 -3908 ((-420 (-577)) $ (-577))) (-15 -2758 ((-176 (-420 (-577))) $)) (-15 -3931 ($ $)) (-15 -3931 ($ (-577) $)))) (-577)) (T -118)) -((-3908 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) (-3931 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) (-3931 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1022 (-117 |#1|)) (-10 -8 (-15 -3908 ((-420 (-577)) $ (-577))) (-15 -2758 ((-176 (-420 (-577))) $)) (-15 -3931 ($ $)) (-15 -3931 ($ (-577) $)))) -((-2589 ((|#2| $ "value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-4284 (((-665 $) $) 31 T ELT)) (-2975 (((-112) $ $) 36 T ELT)) (-2318 (((-112) |#2| $) 40 T ELT)) (-1503 (((-665 |#2|) $) 25 T ELT)) (-1452 (((-112) $) 18 T ELT)) (-2435 ((|#2| $ "value") NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-2110 (((-112) $) 57 T ELT)) (-2410 (((-885) $) 47 T ELT)) (-2421 (((-665 $) $) 32 T ELT)) (-2383 (((-112) $ $) 38 T ELT)) (-3224 (((-792) $) 50 T ELT))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2589 (|#1| |#1| "right" |#1|)) (-15 -2589 (|#1| |#1| "left" |#1|)) (-15 -2435 (|#1| |#1| "right")) (-15 -2435 (|#1| |#1| "left")) (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -2975 ((-112) |#1| |#1|)) (-15 -1503 ((-665 |#2|) |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2435 (|#2| |#1| "value")) (-15 -1452 ((-112) |#1|)) (-15 -4284 ((-665 |#1|) |#1|)) (-15 -2421 ((-665 |#1|) |#1|)) (-15 -2318 ((-112) |#2| |#1|)) (-15 -3224 ((-792) |#1|))) (-120 |#2|) (-1247)) (T -119)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2589 (|#1| |#1| "right" |#1|)) (-15 -2589 (|#1| |#1| "left" |#1|)) (-15 -2435 (|#1| |#1| "right")) (-15 -2435 (|#1| |#1| "left")) (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -2975 ((-112) |#1| |#1|)) (-15 -1503 ((-665 |#2|) |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2435 (|#2| |#1| "value")) (-15 -1452 ((-112) |#1|)) (-15 -4284 ((-665 |#1|) |#1|)) (-15 -2421 ((-665 |#1|) |#1|)) (-15 -2318 ((-112) |#2| |#1|)) (-15 -3224 ((-792) |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-3142 (($ $ $) 53 (|has| $ (-6 -4500)) ELT)) (-1916 (($ $ $) 55 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4500)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2762 (($) 7 T CONST)) (-3867 (($ $) 58 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3854 (($ $) 60 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-120 |#1|) (-141) (-1247)) (T -120)) -((-3854 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-3867 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-2589 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-1916 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247)))) (-2589 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) (-4 *3 (-1247)))) (-3142 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247))))) -(-13 (-1040 |t#1|) (-10 -8 (-15 -3854 ($ $)) (-15 -2435 ($ $ "left")) (-15 -3867 ($ $)) (-15 -2435 ($ $ "right")) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2589 ($ $ "left" $)) (-15 -1916 ($ $ $)) (-15 -2589 ($ $ "right" $)) (-15 -3142 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-4089 (((-112) |#1|) 29 T ELT)) (-1681 (((-792) (-792)) 28 T ELT) (((-792)) 27 T ELT)) (-2581 (((-112) |#1| (-112)) 30 T ELT) (((-112) |#1|) 31 T ELT))) -(((-121 |#1|) (-10 -7 (-15 -2581 ((-112) |#1|)) (-15 -2581 ((-112) |#1| (-112))) (-15 -1681 ((-792))) (-15 -1681 ((-792) (-792))) (-15 -4089 ((-112) |#1|))) (-1273 (-577))) (T -121)) -((-4089 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-1681 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-2581 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) (-2581 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) -(-10 -7 (-15 -2581 ((-112) |#1|)) (-15 -2581 ((-112) |#1| (-112))) (-15 -1681 ((-792))) (-15 -1681 ((-792) (-792))) (-15 -4089 ((-112) |#1|))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 18 T ELT)) (-2574 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3142 (($ $ $) 21 (|has| $ (-6 -4500)) ELT)) (-1916 (($ $ $) 23 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-3867 (($ $) 20 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2313 (($ $ |#1| $) 27 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3854 (($ $) 22 T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4204 (($ |#1| $) 28 T ELT)) (-3795 (($ |#1| $) 15 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 17 T ELT)) (-3414 (($) 11 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2110 (((-112) $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3948 (($ (-665 |#1|)) 16 T ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -3948 ($ (-665 |#1|))) (-15 -3795 ($ |#1| $)) (-15 -4204 ($ |#1| $)) (-15 -2574 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-870)) (T -122)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-122 *3)))) (-3795 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870)))) (-4204 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870)))) (-2574 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-870))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -3948 ($ (-665 |#1|))) (-15 -3795 ($ |#1| $)) (-15 -4204 ($ |#1| $)) (-15 -2574 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3235 (($ $) 13 T ELT)) (-2308 (($ $) 11 T ELT)) (-4389 (($ $ $) 23 T ELT)) (-2896 (($ $ $) 21 T ELT)) (-3285 (($ $ $) 19 T ELT)) (-3272 (($ $ $) 17 T ELT))) -(((-123 |#1|) (-10 -8 (-15 -4389 (|#1| |#1| |#1|)) (-15 -2896 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3272 (|#1| |#1| |#1|)) (-15 -3285 (|#1| |#1| |#1|)) (-15 -2308 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -4389 (|#1| |#1| |#1|)) (-15 -2896 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3272 (|#1| |#1| |#1|)) (-15 -3285 (|#1| |#1| |#1|)) (-15 -2308 (|#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-3235 (($ $) 103 T ELT)) (-2343 (($ $ $) 28 T ELT)) (-3425 (((-1302) $ (-577) (-577)) 66 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) $) 98 (|has| (-112) (-870)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) 92 T ELT)) (-1461 (($ $) 102 (-12 (|has| (-112) (-870)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4500)) ELT)) (-2040 (($ $) 97 (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $) 91 T ELT)) (-2641 (((-112) $ (-792)) 37 T ELT)) (-2589 (((-112) $ (-1264 (-577)) (-112)) 88 (|has| $ (-6 -4500)) ELT) (((-112) $ (-577) (-112)) 54 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 38 T CONST)) (-3823 (($ $) 100 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 90 T ELT)) (-3860 (($ $) 68 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4499)) ELT) (($ (-112) $) 69 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-2511 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-3448 (((-112) $ (-577) (-112)) 53 (|has| $ (-6 -4500)) ELT)) (-3381 (((-112) $ (-577)) 55 T ELT)) (-3886 (((-577) (-112) $ (-577)) 95 (|has| (-112) (-1130)) ELT) (((-577) (-112) $) 94 (|has| (-112) (-1130)) ELT) (((-577) (-1 (-112) (-112)) $) 93 T ELT)) (-2728 (((-665 (-112)) $) 45 (|has| $ (-6 -4499)) ELT)) (-2331 (($ $ $) 108 T ELT)) (-2308 (($ $) 106 T ELT)) (-4389 (($ $ $) 29 T ELT)) (-3748 (($ (-792) (-112)) 78 T ELT)) (-2896 (($ $ $) 30 T ELT)) (-1967 (((-112) $ (-792)) 36 T ELT)) (-3167 (((-577) $) 63 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 20 T ELT)) (-2223 (($ $ $) 96 (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) 89 T ELT)) (-4138 (((-665 (-112)) $) 46 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 62 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 19 T ELT)) (-3437 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-112) (-112) (-112)) $ $) 83 T ELT) (($ (-1 (-112) (-112)) $) 40 T ELT)) (-3417 (((-112) $ (-792)) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4272 (($ $ $ (-577)) 87 T ELT) (($ (-112) $ (-577)) 86 T ELT)) (-3887 (((-665 (-577)) $) 60 T ELT)) (-1593 (((-112) (-577) $) 59 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4188 (((-112) $) 64 (|has| (-577) (-870)) ELT)) (-1520 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75 T ELT)) (-3482 (($ $ (-112)) 65 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-112)) (-665 (-112))) 52 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-305 (-112))) 50 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-665 (-305 (-112)))) 49 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT)) (-3674 (((-112) $ $) 31 T ELT)) (-3153 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-3485 (((-665 (-112)) $) 58 T ELT)) (-2392 (((-112) $) 34 T ELT)) (-3414 (($) 33 T ELT)) (-2435 (($ $ (-1264 (-577))) 77 T ELT) (((-112) $ (-577)) 57 T ELT) (((-112) $ (-577) (-112)) 56 T ELT)) (-1704 (($ $ (-1264 (-577))) 85 T ELT) (($ $ (-577)) 84 T ELT)) (-4323 (((-792) (-112) $) 47 (-12 (|has| (-112) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4499)) ELT)) (-1530 (($ $ $ (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 32 T ELT)) (-3341 (((-549) $) 67 (|has| (-112) (-632 (-549))) ELT)) (-2422 (($ (-665 (-112))) 76 T ELT)) (-3702 (($ (-665 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-112) $) 80 T ELT) (($ $ (-112)) 79 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1835 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4499)) ELT)) (-2319 (($ $ $) 107 T ELT)) (-3285 (($ $ $) 105 T ELT)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (-3272 (($ $ $) 104 T ELT)) (-3224 (((-792) $) 39 (|has| $ (-6 -4499)) ELT))) -(((-124) (-141)) (T -124)) -((-2896 (*1 *1 *1 *1) (-4 *1 (-124))) (-4389 (*1 *1 *1 *1) (-4 *1 (-124))) (-2343 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-870) (-113) (-682) (-19 (-112)) (-10 -8 (-15 -2896 ($ $ $)) (-15 -4389 ($ $ $)) (-15 -2343 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-631 (-885)) . T) ((-152 #0=(-112)) . T) ((-632 (-549)) |has| (-112) (-632 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ((-672 #0#) . T) ((-682) . T) ((-19 #0#) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-3437 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3978 (($ $) 16 T ELT)) (-3224 (((-792) $) 25 T ELT))) -(((-125 |#1| |#2|) (-10 -8 (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -3978 (|#1| |#1|))) (-126 |#2|) (-1130)) (T -125)) -NIL -(-10 -8 (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -3978 (|#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-3142 (($ $ $) 53 (|has| $ (-6 -4500)) ELT)) (-1916 (($ $ $) 55 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4500)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2762 (($) 7 T CONST)) (-3867 (($ $) 58 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-2313 (($ $ |#1| $) 61 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3854 (($ $) 60 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-126 |#1|) (-141) (-1130)) (T -126)) -((-2313 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1130))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -2313 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 18 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) 22 (|has| $ (-6 -4500)) ELT)) (-3142 (($ $ $) 23 (|has| $ (-6 -4500)) ELT)) (-1916 (($ $ $) 21 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-3867 (($ $) 24 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2313 (($ $ |#1| $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3854 (($ $) NIL T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3795 (($ |#1| $) 15 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 17 T ELT)) (-3414 (($) 11 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2110 (((-112) $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 20 T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2992 (($ (-665 |#1|)) 16 T ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4500) (-15 -2992 ($ (-665 |#1|))) (-15 -3795 ($ |#1| $)))) (-870)) (T -127)) -((-2992 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-127 *3)))) (-3795 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-870))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4500) (-15 -2992 ($ (-665 |#1|))) (-15 -3795 ($ |#1| $)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 30 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) 32 (|has| $ (-6 -4500)) ELT)) (-3142 (($ $ $) 36 (|has| $ (-6 -4500)) ELT)) (-1916 (($ $ $) 34 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-3867 (($ $) 23 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2313 (($ $ |#1| $) 16 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3854 (($ $) 22 T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) 25 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 20 T ELT)) (-3414 (($) 11 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2110 (((-112) $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2277 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 10 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2277 ($ |#1|)) (-15 -2277 ($ $ |#1| $)))) (-1130)) (T -128)) -((-2277 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130)))) (-2277 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130))))) -(-13 (-126 |#1|) (-10 -8 (-15 -2277 ($ |#1|)) (-15 -2277 ($ $ |#1| $)))) -((-3211 (((-112) $ $) NIL (|has| (-130) (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) (-130) (-130)) $) NIL T ELT) (((-112) $) NIL (|has| (-130) (-870)) ELT)) (-1461 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-130) (-870))) ELT)) (-2040 (($ (-1 (-112) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 (((-130) $ (-577) (-130)) 26 (|has| $ (-6 -4500)) ELT) (((-130) $ (-1264 (-577)) (-130)) NIL (|has| $ (-6 -4500)) ELT)) (-3250 (((-792) $ (-792)) 34 T ELT)) (-4232 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-2736 (($ (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4499)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 (((-130) $ (-577) (-130)) 25 (|has| $ (-6 -4500)) ELT)) (-3381 (((-130) $ (-577)) 20 T ELT)) (-3886 (((-577) (-1 (-112) (-130)) $) NIL T ELT) (((-577) (-130) $) NIL (|has| (-130) (-1130)) ELT) (((-577) (-130) $ (-577)) NIL (|has| (-130) (-1130)) ELT)) (-2728 (((-665 (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) (-130)) 14 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 27 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-2223 (($ (-1 (-112) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-4138 (((-665 (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-1962 (((-577) $) 30 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-130) (-870)) ELT)) (-3437 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| (-130) (-1130)) ELT)) (-4272 (($ (-130) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| (-130) (-1130)) ELT)) (-4188 (((-130) $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL T ELT)) (-3482 (($ $ (-130)) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-130)))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT) (($ $ (-665 (-130)) (-665 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-3485 (((-665 (-130)) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 12 T ELT)) (-2435 (((-130) $ (-577) (-130)) NIL T ELT) (((-130) $ (-577)) 23 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-130) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-130) (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-130) (-632 (-549))) ELT)) (-2422 (($ (-665 (-130))) 46 T ELT)) (-3702 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 47 T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-986 (-130)) $) 35 T ELT) (((-1188) $) 43 T ELT) (((-885) $) NIL (|has| (-130) (-631 (-885))) ELT)) (-1895 (((-792) $) 18 T ELT)) (-2781 (($ (-792)) 8 T ELT)) (-2525 (((-112) $ $) NIL (|has| (-130) (-102)) ELT)) (-1835 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-2383 (((-112) $ $) 32 (|has| (-130) (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-130) (-870)) ELT)) (-3224 (((-792) $) 15 (|has| $ (-6 -4499)) ELT))) -(((-129) (-13 (-19 (-130)) (-631 (-986 (-130))) (-631 (-1188)) (-10 -8 (-15 -2781 ($ (-792))) (-15 -1895 ((-792) $)) (-15 -3250 ((-792) $ (-792))) (-6 -4499)))) (T -129)) -((-2781 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-129)))) (-3250 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-631 (-986 (-130))) (-631 (-1188)) (-10 -8 (-15 -2781 ($ (-792))) (-15 -1895 ((-792) $)) (-15 -3250 ((-792) $ (-792))) (-6 -4499))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) 40 T ELT)) (-2221 (((-792)) 26 T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) 35 T ELT)) (-1344 (($ $ $) NIL T ELT) (($) 24 T CONST)) (-4167 (($ $ $) NIL T ELT) (($) 25 T CONST)) (-2553 (((-949) $) 33 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) 31 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-145)) 15 T ELT) (((-145) $) 17 T ELT)) (-3537 (($ (-792)) 8 T ELT)) (-1866 (($ $ $) 37 T ELT)) (-1854 (($ $ $) 36 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) 39 T ELT)) (-2440 (((-112) $ $) 22 T ELT)) (-2415 (((-112) $ $) 20 T ELT)) (-2383 (((-112) $ $) 18 T ELT)) (-2428 (((-112) $ $) 21 T ELT)) (-2403 (((-112) $ $) 19 T ELT)) (-3272 (($ $ $) 38 T ELT))) -(((-130) (-13 (-865) (-503 (-145)) (-682) (-10 -8 (-15 -3537 ($ (-792))) (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528)))) (T -130)) -((-3537 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-130)))) (-1854 (*1 *1 *1 *1) (-5 *1 (-130))) (-1866 (*1 *1 *1 *1) (-5 *1 (-130))) (-2762 (*1 *1) (-5 *1 (-130)))) -(-13 (-865) (-503 (-145)) (-682) (-10 -8 (-15 -3537 ($ (-792))) (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528))) +((-1796 (((-112) $) 12 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-421 (-578)) $) 25 T ELT) (($ $ (-421 (-578))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) (-47 |#2| |#3|) (-1080) (-814)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3683 ((|#2| $) 76 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-3708 ((|#1| $ |#2|) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-47 |#1| |#2|) (-142) (-1080) (-814)) (T -47)) +((-3110 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-3097 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-112)))) (-2925 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-3708 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-2495 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-376))))) +(-13 (-1080) (-111 |t#1| |t#1|) (-10 -8 (-15 -3110 (|t#1| $)) (-15 -3097 ($ $)) (-15 -3683 (|t#2| $)) (-15 -3611 ($ (-1 |t#1| |t#1|) $)) (-15 -1796 ((-112) $)) (-15 -2925 ($ |t#1| |t#2|)) (-15 -3136 ($ $)) (-15 -3708 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -2495 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-570)) (-6 (-570)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-578)))) (-6 (-38 (-421 (-578)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-570)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-570)) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-302) |has| |#1| (-570)) ((-570) |has| |#1| (-570)) ((-668 #0#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-578)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-570)) ((-739 #0#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-570)) ((-748) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3456 (((-666 $) (-1203 $) (-1207)) NIL T ELT) (((-666 $) (-1203 $)) NIL T ELT) (((-666 $) (-981 $)) NIL T ELT)) (-3007 (($ (-1203 $) (-1207)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-981 $)) NIL T ELT)) (-3623 (((-112) $) 9 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4318 (((-666 (-631 $)) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3584 (($ $ (-306 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2811 (($ $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-4268 (((-666 $) (-1203 $) (-1207)) NIL T ELT) (((-666 $) (-1203 $)) NIL T ELT) (((-666 $) (-981 $)) NIL T ELT)) (-1567 (($ (-1203 $) (-1207)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-981 $)) NIL T ELT)) (-2818 (((-3 (-631 $) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-3516 (((-631 $) $) NIL T ELT) (((-578) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-421 (-578)))) (|:| |vec| (-1298 (-421 (-578))))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-421 (-578))) (-711 $)) NIL T ELT)) (-2512 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3783 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3968 (((-666 (-116)) $) NIL T ELT)) (-4397 (((-116) (-116)) NIL T ELT)) (-4382 (((-112) $) 11 T ELT)) (-2382 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-2519 (((-1156 (-578) (-631 $)) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL T ELT)) (-1550 (((-1203 $) (-1203 $) (-631 $)) NIL T ELT) (((-1203 $) (-1203 $) (-666 (-631 $))) NIL T ELT) (($ $ (-631 $)) NIL T ELT) (($ $ (-666 (-631 $))) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2782 (((-1203 $) (-631 $)) NIL (|has| $ (-1080)) ELT)) (-3611 (($ (-1 $ $) (-631 $)) NIL T ELT)) (-3238 (((-3 (-631 $) "failed") $) NIL T ELT)) (-3908 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-421 (-578)))) (|:| |vec| (-1298 (-421 (-578))))) (-1298 $) $) NIL T ELT) (((-711 (-421 (-578))) (-1298 $)) NIL T ELT)) (-2389 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4386 (((-666 (-631 $)) $) NIL T ELT)) (-2594 (($ (-116) $) NIL T ELT) (($ (-116) (-666 $)) NIL T ELT)) (-1413 (((-112) $ (-116)) NIL T ELT) (((-112) $ (-1207)) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-1737 (((-793) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3139 (((-112) $ $) NIL T ELT) (((-112) $ (-1207)) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3873 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-3364 (($ $ (-631 $) $) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-666 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-116) (-1 $ (-666 $))) NIL T ELT) (($ $ (-116) (-1 $ $)) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ (-116) $) NIL T ELT) (($ (-116) $ $) NIL T ELT) (($ (-116) $ $ $) NIL T ELT) (($ (-116) $ $ $ $) NIL T ELT) (($ (-116) (-666 $)) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2909 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2031 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2530 (((-1156 (-578) (-631 $)) $) NIL T ELT)) (-4269 (($ $) NIL (|has| $ (-1080)) ELT)) (-3343 (((-392) $) NIL T ELT) (((-229) $) NIL T ELT) (((-172 (-392)) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-631 $)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-1156 (-578) (-631 $))) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2209 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3619 (((-112) (-116)) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) 6 T CONST)) (-2379 (($) 10 T CONST)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2384 (((-112) $ $) 13 T ELT)) (-2495 (($ $ $) NIL T ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT)) (* (($ (-421 (-578)) $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-950) $) NIL T ELT))) +(((-48) (-13 (-314) (-27) (-1069 (-578)) (-1069 (-421 (-578))) (-660 (-578)) (-1053) (-660 (-421 (-578))) (-149) (-633 (-172 (-392))) (-240) (-10 -8 (-15 -2411 ($ (-1156 (-578) (-631 $)))) (-15 -2519 ((-1156 (-578) (-631 $)) $)) (-15 -2530 ((-1156 (-578) (-631 $)) $)) (-15 -2512 ($ $)) (-15 -1550 ((-1203 $) (-1203 $) (-631 $))) (-15 -1550 ((-1203 $) (-1203 $) (-666 (-631 $)))) (-15 -1550 ($ $ (-631 $))) (-15 -1550 ($ $ (-666 (-631 $))))))) (T -48)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1156 (-578) (-631 (-48)))) (-5 *1 (-48)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-48)))) (-5 *1 (-48)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-48)))) (-5 *1 (-48)))) (-2512 (*1 *1 *1) (-5 *1 (-48))) (-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-631 (-48))) (-5 *1 (-48)))) (-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-666 (-631 (-48)))) (-5 *1 (-48)))) (-1550 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-48))) (-5 *1 (-48)))) (-1550 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-631 (-48)))) (-5 *1 (-48))))) +(-13 (-314) (-27) (-1069 (-578)) (-1069 (-421 (-578))) (-660 (-578)) (-1053) (-660 (-421 (-578))) (-149) (-633 (-172 (-392))) (-240) (-10 -8 (-15 -2411 ($ (-1156 (-578) (-631 $)))) (-15 -2519 ((-1156 (-578) (-631 $)) $)) (-15 -2530 ((-1156 (-578) (-631 $)) $)) (-15 -2512 ($ $)) (-15 -1550 ((-1203 $) (-1203 $) (-631 $))) (-15 -1550 ((-1203 $) (-1203 $) (-666 (-631 $)))) (-15 -1550 ($ $ (-631 $))) (-15 -1550 ($ $ (-666 (-631 $)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2276 (((-666 (-520)) $) 17 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 7 T ELT)) (-4117 (((-1212) $) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-49) (-13 (-1131) (-10 -8 (-15 -2276 ((-666 (-520)) $)) (-15 -4117 ((-1212) $))))) (T -49)) +((-2276 (*1 *2 *1) (-12 (-5 *2 (-666 (-520))) (-5 *1 (-49)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49))))) +(-13 (-1131) (-10 -8 (-15 -2276 ((-666 (-520)) $)) (-15 -4117 ((-1212) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 85 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1622 (((-112) $) 30 T ELT)) (-2818 (((-3 |#1| "failed") $) 33 T ELT)) (-3516 ((|#1| $) 34 T ELT)) (-3136 (($ $) 40 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3110 ((|#1| $) 31 T ELT)) (-3061 (($ $) 74 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2340 (((-112) $) 43 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($ (-793)) 72 T ELT)) (-3587 (($ (-666 (-578))) 73 T ELT)) (-3683 (((-793) $) 44 T ELT)) (-2411 (((-886) $) 91 T ELT) (($ (-578)) 69 T ELT) (($ |#1|) 67 T ELT)) (-3708 ((|#1| $ $) 28 T ELT)) (-3753 (((-793)) 71 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 45 T CONST)) (-2379 (($) 17 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 64 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) +(((-50 |#1| |#2|) (-13 (-639 |#1|) (-1069 |#1|) (-10 -8 (-15 -3110 (|#1| $)) (-15 -3061 ($ $)) (-15 -3136 ($ $)) (-15 -3708 (|#1| $ $)) (-15 -2847 ($ (-793))) (-15 -3587 ($ (-666 (-578)))) (-15 -2340 ((-112) $)) (-15 -1622 ((-112) $)) (-15 -3683 ((-793) $)) (-15 -3611 ($ (-1 |#1| |#1|) $)))) (-1080) (-666 (-1207))) (T -50)) +((-3110 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-666 (-1207))))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-666 (-1207))))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-666 (-1207))))) (-3708 (*1 *2 *1 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-666 (-1207))))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-666 (-1207))))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-666 (-1207))))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-666 (-1207))))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-666 (-1207))))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-666 (-1207))))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-50 *3 *4)) (-14 *4 (-666 (-1207)))))) +(-13 (-639 |#1|) (-1069 |#1|) (-10 -8 (-15 -3110 (|#1| $)) (-15 -3061 ($ $)) (-15 -3136 ($ $)) (-15 -3708 (|#1| $ $)) (-15 -2847 ($ (-793))) (-15 -3587 ($ (-666 (-578)))) (-15 -2340 ((-112) $)) (-15 -1622 ((-112) $)) (-15 -3683 ((-793) $)) (-15 -3611 ($ (-1 |#1| |#1|) $)))) +((-1622 (((-112) (-52)) 18 T ELT)) (-2818 (((-3 |#1| "failed") (-52)) 20 T ELT)) (-3516 ((|#1| (-52)) 21 T ELT)) (-2411 (((-52) |#1|) 14 T ELT))) +(((-51 |#1|) (-10 -7 (-15 -2411 ((-52) |#1|)) (-15 -2818 ((-3 |#1| "failed") (-52))) (-15 -1622 ((-112) (-52))) (-15 -3516 (|#1| (-52)))) (-1248)) (T -51)) +((-3516 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1248)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1248)))) (-2818 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1248)))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1248))))) +(-10 -7 (-15 -2411 ((-52) |#1|)) (-15 -2818 ((-3 |#1| "failed") (-52))) (-15 -1622 ((-112) (-52))) (-15 -3516 (|#1| (-52)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3743 (((-796) $) 8 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3320 (((-1135) $) 10 T ELT)) (-2411 (((-886) $) 15 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3286 (($ (-1135) (-796)) 16 T ELT)) (-2384 (((-112) $ $) 12 T ELT))) +(((-52) (-13 (-1131) (-10 -8 (-15 -3286 ($ (-1135) (-796))) (-15 -3320 ((-1135) $)) (-15 -3743 ((-796) $))))) (T -52)) +((-3286 (*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-796)) (-5 *1 (-52)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-52)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-52))))) +(-13 (-1131) (-10 -8 (-15 -3286 ($ (-1135) (-796))) (-15 -3320 ((-1135) $)) (-15 -3743 ((-796) $)))) +((-4178 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4178 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1080) (-670 |#1|) (-876 |#1|)) (T -53)) +((-4178 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1080)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-876 *5))))) +(-10 -7 (-15 -4178 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-4378 ((|#3| |#3| (-666 (-1207))) 44 T ELT)) (-2964 ((|#3| (-666 (-1107 |#1| |#2| |#3|)) |#3| (-950)) 32 T ELT) ((|#3| (-666 (-1107 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2964 (|#3| (-666 (-1107 |#1| |#2| |#3|)) |#3|)) (-15 -2964 (|#3| (-666 (-1107 |#1| |#2| |#3|)) |#3| (-950))) (-15 -4378 (|#3| |#3| (-666 (-1207))))) (-1131) (-13 (-1080) (-911 |#1|) (-633 (-917 |#1|))) (-13 (-444 |#2|) (-911 |#1|) (-633 (-917 |#1|)))) (T -54)) +((-4378 (*1 *2 *2 *3) (-12 (-5 *3 (-666 (-1207))) (-4 *4 (-1131)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))))) (-2964 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-666 (-1107 *5 *6 *2))) (-5 *4 (-950)) (-4 *5 (-1131)) (-4 *6 (-13 (-1080) (-911 *5) (-633 (-917 *5)))) (-4 *2 (-13 (-444 *6) (-911 *5) (-633 (-917 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2964 (*1 *2 *3 *2) (-12 (-5 *3 (-666 (-1107 *4 *5 *2))) (-4 *4 (-1131)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2964 (|#3| (-666 (-1107 |#1| |#2| |#3|)) |#3|)) (-15 -2964 (|#3| (-666 (-1107 |#1| |#2| |#3|)) |#3| (-950))) (-15 -4378 (|#3| |#3| (-666 (-1207))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 14 T ELT)) (-2818 (((-3 (-793) "failed") $) 34 T ELT)) (-3516 (((-793) $) NIL T ELT)) (-4382 (((-112) $) 16 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) 18 T ELT)) (-2411 (((-886) $) 23 T ELT) (($ (-793)) 29 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2854 (($) 11 T CONST)) (-2384 (((-112) $ $) 20 T ELT))) +(((-55) (-13 (-1131) (-1069 (-793)) (-10 -8 (-15 -2854 ($) -1529) (-15 -3623 ((-112) $)) (-15 -4382 ((-112) $))))) (T -55)) +((-2854 (*1 *1) (-5 *1 (-55))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1131) (-1069 (-793)) (-10 -8 (-15 -2854 ($) -1529) (-15 -3623 ((-112) $)) (-15 -4382 ((-112) $)))) +((-1628 (((-112) $ (-793)) 27 T ELT)) (-3869 (($ $ (-578) |#3|) 66 T ELT)) (-3697 (($ $ (-578) |#4|) 70 T ELT)) (-3978 ((|#3| $ (-578)) 79 T ELT)) (-2729 (((-666 |#2|) $) 47 T ELT)) (-2363 (((-112) $ (-793)) 31 T ELT)) (-1624 (((-112) |#2| $) 74 T ELT)) (-3439 (($ (-1 |#2| |#2|) $) 55 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 54 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 58 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62 T ELT)) (-1719 (((-112) $ (-793)) 29 T ELT)) (-4291 (($ $ |#2|) 52 T ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-2436 ((|#2| $ (-578) (-578)) NIL T ELT) ((|#2| $ (-578) (-578) |#2|) 35 T ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) 41 T ELT) (((-793) |#2| $) 76 T ELT)) (-3979 (($ $) 51 T ELT)) (-4240 ((|#4| $ (-578)) 82 T ELT)) (-2411 (((-886) $) 88 T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 20 T ELT)) (-2384 (((-112) $ $) 73 T ELT)) (-3226 (((-793) $) 32 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3697 (|#1| |#1| (-578) |#4|)) (-15 -3869 (|#1| |#1| (-578) |#3|)) (-15 -2729 ((-666 |#2|) |#1|)) (-15 -4240 (|#4| |#1| (-578))) (-15 -3978 (|#3| |#1| (-578))) (-15 -2436 (|#2| |#1| (-578) (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) (-578))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -1624 ((-112) |#2| |#1|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793))) (-15 -3979 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1248) (-386 |#2|) (-386 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3697 (|#1| |#1| (-578) |#4|)) (-15 -3869 (|#1| |#1| (-578) |#3|)) (-15 -2729 ((-666 |#2|) |#1|)) (-15 -4240 (|#4| |#1| (-578))) (-15 -3978 (|#3| |#1| (-578))) (-15 -2436 (|#2| |#1| (-578) (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) (-578))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -1624 ((-112) |#2| |#1|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793))) (-15 -3979 (|#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) 45 T ELT)) (-3869 (($ $ (-578) |#2|) 43 T ELT)) (-3697 (($ $ (-578) |#3|) 42 T ELT)) (-3534 (($) 7 T CONST)) (-3978 ((|#2| $ (-578)) 47 T ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) 44 T ELT)) (-3382 ((|#1| $ (-578) (-578)) 49 T ELT)) (-2729 (((-666 |#1|) $) 31 T ELT)) (-3068 (((-793) $) 52 T ELT)) (-3749 (($ (-793) (-793) |#1|) 58 T ELT)) (-3082 (((-793) $) 51 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1850 (((-578) $) 56 T ELT)) (-3156 (((-578) $) 54 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-1694 (((-578) $) 55 T ELT)) (-2915 (((-578) $) 53 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) 57 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) (-578)) 50 T ELT) ((|#1| $ (-578) (-578) |#1|) 48 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-4240 ((|#3| $ (-578)) 46 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-57 |#1| |#2| |#3|) (-142) (-1248) (-386 |t#1|) (-386 |t#1|)) (T -57)) +((-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-3749 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1248)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-4291 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1248)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-578)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-578)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-578)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-578)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-793)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-793)))) (-2436 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-1248)))) (-3382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-1248)))) (-2436 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1248)) (-4 *4 (-386 *2)) (-4 *5 (-386 *2)))) (-3978 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1248)) (-4 *5 (-386 *4)) (-4 *2 (-386 *4)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1248)) (-4 *5 (-386 *4)) (-4 *2 (-386 *4)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-666 *3)))) (-2590 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1248)) (-4 *4 (-386 *2)) (-4 *5 (-386 *2)))) (-3450 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1248)) (-4 *4 (-386 *2)) (-4 *5 (-386 *2)))) (-3869 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1248)) (-4 *3 (-386 *4)) (-4 *5 (-386 *4)))) (-3697 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1248)) (-4 *5 (-386 *4)) (-4 *3 (-386 *4)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-3611 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-3611 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3))))) +(-13 (-503 |t#1|) (-10 -8 (-6 -4501) (-6 -4500) (-15 -3749 ($ (-793) (-793) |t#1|)) (-15 -4291 ($ $ |t#1|)) (-15 -1850 ((-578) $)) (-15 -1694 ((-578) $)) (-15 -3156 ((-578) $)) (-15 -2915 ((-578) $)) (-15 -3068 ((-793) $)) (-15 -3082 ((-793) $)) (-15 -2436 (|t#1| $ (-578) (-578))) (-15 -3382 (|t#1| $ (-578) (-578))) (-15 -2436 (|t#1| $ (-578) (-578) |t#1|)) (-15 -3978 (|t#2| $ (-578))) (-15 -4240 (|t#3| $ (-578))) (-15 -2729 ((-666 |t#1|) $)) (-15 -2590 (|t#1| $ (-578) (-578) |t#1|)) (-15 -3450 (|t#1| $ (-578) (-578) |t#1|)) (-15 -3869 ($ $ (-578) |t#2|)) (-15 -3697 ($ $ (-578) |t#3|)) (-15 -3611 ($ (-1 |t#1| |t#1|) $)) (-15 -3439 ($ (-1 |t#1| |t#1|) $)) (-15 -3611 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3611 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-4315 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16 T ELT)) (-2512 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18 T ELT)) (-3611 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13 T ELT))) +(((-58 |#1| |#2|) (-10 -7 (-15 -4315 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3611 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1248) (-1248)) (T -58)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1248)) (-4 *2 (-1248)) (-5 *1 (-58 *5 *2)))) (-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1248)) (-4 *5 (-1248)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -4315 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3611 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1950 (($ (-666 |#1|)) 11 T ELT) (($ (-793) |#1|) 14 T ELT)) (-3749 (($ (-793) |#1|) 13 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 10 T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1950 ($ (-666 |#1|))) (-15 -1950 ($ (-793) |#1|)))) (-1248)) (T -59)) +((-1950 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-59 *3)))) (-1950 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-59 *3)) (-4 *3 (-1248))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1950 ($ (-666 |#1|))) (-15 -1950 ($ (-793) |#1|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-3869 (($ $ (-578) (-59 |#1|)) NIL T ELT)) (-3697 (($ $ (-578) (-59 |#1|)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3978 (((-59 |#1|) $ (-578)) NIL T ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-3382 ((|#1| $ (-578) (-578)) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL T ELT)) (-3068 (((-793) $) NIL T ELT)) (-3749 (($ (-793) (-793) |#1|) NIL T ELT)) (-3082 (((-793) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1850 (((-578) $) NIL T ELT)) (-3156 (((-578) $) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-1694 (((-578) $) NIL T ELT)) (-2915 (((-578) $) NIL T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) (-578)) NIL T ELT) ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-4240 (((-59 |#1|) $ (-578)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4501))) (-1248)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4501))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 74 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 63 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 94 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 84 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 52 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 39 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 70 T ELT) (($ (-1298 (-328 (-578)))) 59 T ELT) (($ (-1298 (-981 (-392)))) 90 T ELT) (($ (-1298 (-981 (-578)))) 80 T ELT) (($ (-1298 (-421 (-981 (-392))))) 48 T ELT) (($ (-1298 (-421 (-981 (-578))))) 32 T ELT)) (-1903 (((-1303) $) 124 T ELT)) (-2411 (((-886) $) 118 T ELT) (($ (-666 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 101 T ELT) (($ (-1298 (-352 (-2423 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2423) (-721)))) 31 T ELT))) +(((-61 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2423) (-721))))))) (-1207)) (T -61)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2423) (-721)))) (-5 *1 (-61 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2423) (-721))))))) +((-1903 (((-1303) $) 54 T ELT) (((-1303)) 55 T ELT)) (-2411 (((-886) $) 51 T ELT))) +(((-62 |#1|) (-13 (-409) (-10 -7 (-15 -1903 ((-1303))))) (-1207)) (T -62)) +((-1903 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-62 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -7 (-15 -1903 ((-1303))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 150 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 140 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 170 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 160 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 129 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 117 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 146 T ELT) (($ (-1298 (-328 (-578)))) 136 T ELT) (($ (-1298 (-981 (-392)))) 166 T ELT) (($ (-1298 (-981 (-578)))) 156 T ELT) (($ (-1298 (-421 (-981 (-392))))) 125 T ELT) (($ (-1298 (-421 (-981 (-578))))) 110 T ELT)) (-1903 (((-1303) $) 103 T ELT)) (-2411 (((-886) $) 97 T ELT) (($ (-666 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 33 T ELT) (($ (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721)))) 95 T ELT))) +(((-63 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721))))))) (-1207)) (T -63)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721)))) (-5 *1 (-63 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721))))))) +((-2818 (((-3 $ "failed") (-328 (-392))) 41 T ELT) (((-3 $ "failed") (-328 (-578))) 46 T ELT) (((-3 $ "failed") (-981 (-392))) 50 T ELT) (((-3 $ "failed") (-981 (-578))) 54 T ELT) (((-3 $ "failed") (-421 (-981 (-392)))) 36 T ELT) (((-3 $ "failed") (-421 (-981 (-578)))) 29 T ELT)) (-3516 (($ (-328 (-392))) 39 T ELT) (($ (-328 (-578))) 44 T ELT) (($ (-981 (-392))) 48 T ELT) (($ (-981 (-578))) 52 T ELT) (($ (-421 (-981 (-392)))) 34 T ELT) (($ (-421 (-981 (-578)))) 26 T ELT)) (-1903 (((-1303) $) 76 T ELT)) (-2411 (((-886) $) 69 T ELT) (($ (-666 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 64 T ELT) (($ (-352 (-2423 (QUOTE X)) (-2423) (-721))) 25 T ELT))) +(((-64 |#1|) (-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423 (QUOTE X)) (-2423) (-721)))))) (-1207)) (T -64)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-352 (-2423 (QUOTE X)) (-2423) (-721))) (-5 *1 (-64 *3)) (-14 *3 (-1207))))) +(-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423 (QUOTE X)) (-2423) (-721)))))) +((-2818 (((-3 $ "failed") (-711 (-328 (-392)))) 111 T ELT) (((-3 $ "failed") (-711 (-328 (-578)))) 99 T ELT) (((-3 $ "failed") (-711 (-981 (-392)))) 133 T ELT) (((-3 $ "failed") (-711 (-981 (-578)))) 122 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-392))))) 87 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-578))))) 73 T ELT)) (-3516 (($ (-711 (-328 (-392)))) 107 T ELT) (($ (-711 (-328 (-578)))) 95 T ELT) (($ (-711 (-981 (-392)))) 129 T ELT) (($ (-711 (-981 (-578)))) 118 T ELT) (($ (-711 (-421 (-981 (-392))))) 83 T ELT) (($ (-711 (-421 (-981 (-578))))) 66 T ELT)) (-1903 (((-1303) $) 141 T ELT)) (-2411 (((-886) $) 135 T ELT) (($ (-666 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 32 T ELT) (($ (-711 (-352 (-2423) (-2423 (QUOTE X) (QUOTE HESS)) (-721)))) 56 T ELT))) +(((-65 |#1|) (-13 (-397) (-635 (-711 (-352 (-2423) (-2423 (QUOTE X) (QUOTE HESS)) (-721))))) (-1207)) (T -65)) +NIL +(-13 (-397) (-635 (-711 (-352 (-2423) (-2423 (QUOTE X) (QUOTE HESS)) (-721))))) +((-2818 (((-3 $ "failed") (-328 (-392))) 60 T ELT) (((-3 $ "failed") (-328 (-578))) 65 T ELT) (((-3 $ "failed") (-981 (-392))) 69 T ELT) (((-3 $ "failed") (-981 (-578))) 73 T ELT) (((-3 $ "failed") (-421 (-981 (-392)))) 55 T ELT) (((-3 $ "failed") (-421 (-981 (-578)))) 48 T ELT)) (-3516 (($ (-328 (-392))) 58 T ELT) (($ (-328 (-578))) 63 T ELT) (($ (-981 (-392))) 67 T ELT) (($ (-981 (-578))) 71 T ELT) (($ (-421 (-981 (-392)))) 53 T ELT) (($ (-421 (-981 (-578)))) 45 T ELT)) (-1903 (((-1303) $) 82 T ELT)) (-2411 (((-886) $) 76 T ELT) (($ (-666 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 32 T ELT) (($ (-352 (-2423) (-2423 (QUOTE XC)) (-721))) 40 T ELT))) +(((-66 |#1|) (-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423) (-2423 (QUOTE XC)) (-721)))))) (-1207)) (T -66)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-352 (-2423) (-2423 (QUOTE XC)) (-721))) (-5 *1 (-66 *3)) (-14 *3 (-1207))))) +(-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423) (-2423 (QUOTE XC)) (-721)))))) +((-1903 (((-1303) $) 65 T ELT)) (-2411 (((-886) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-666 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 55 T ELT))) +(((-67 |#1|) (-396) (-1207)) (T -67)) +NIL +(-396) +((-1903 (((-1303) $) 66 T ELT)) (-2411 (((-886) $) 60 T ELT) (($ (-711 (-721))) 52 T ELT) (($ (-666 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 57 T ELT))) +(((-68 |#1|) (-396) (-1207)) (T -68)) +NIL +(-396) +((-1903 (((-1303) $) NIL T ELT) (((-1303)) 33 T ELT)) (-2411 (((-886) $) NIL T ELT))) +(((-69 |#1|) (-13 (-409) (-10 -7 (-15 -1903 ((-1303))))) (-1207)) (T -69)) +((-1903 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -7 (-15 -1903 ((-1303))))) +((-1903 (((-1303) $) 75 T ELT)) (-2411 (((-886) $) 69 T ELT) (($ (-711 (-721))) 61 T ELT) (($ (-666 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 60 T ELT))) +(((-70 |#1|) (-396) (-1207)) (T -70)) +NIL +(-396) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 109 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 98 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 129 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 119 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 87 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 74 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 105 T ELT) (($ (-1298 (-328 (-578)))) 94 T ELT) (($ (-1298 (-981 (-392)))) 125 T ELT) (($ (-1298 (-981 (-578)))) 115 T ELT) (($ (-1298 (-421 (-981 (-392))))) 83 T ELT) (($ (-1298 (-421 (-981 (-578))))) 67 T ELT)) (-1903 (((-1303) $) 142 T ELT)) (-2411 (((-886) $) 136 T ELT) (($ (-666 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 59 T ELT) (($ (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721)))) 60 T ELT))) +(((-71 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721))))))) (-1207)) (T -71)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721)))) (-5 *1 (-71 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721))))))) +((-1903 (((-1303) $) 33 T ELT) (((-1303)) 32 T ELT)) (-2411 (((-886) $) 36 T ELT))) +(((-72 |#1|) (-13 (-409) (-10 -7 (-15 -1903 ((-1303))))) (-1207)) (T -72)) +((-1903 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207))))) +(-13 (-409) (-10 -7 (-15 -1903 ((-1303))))) +((-1903 (((-1303) $) 65 T ELT)) (-2411 (((-886) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-666 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 50 T ELT))) +(((-73 |#1|) (-396) (-1207)) (T -73)) +NIL +(-396) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 127 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 117 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 147 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 137 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 107 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 95 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 123 T ELT) (($ (-1298 (-328 (-578)))) 113 T ELT) (($ (-1298 (-981 (-392)))) 143 T ELT) (($ (-1298 (-981 (-578)))) 133 T ELT) (($ (-1298 (-421 (-981 (-392))))) 103 T ELT) (($ (-1298 (-421 (-981 (-578))))) 88 T ELT)) (-1903 (((-1303) $) 80 T ELT)) (-2411 (((-886) $) 28 T ELT) (($ (-666 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 73 T ELT) (($ (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721)))) 67 T ELT))) +(((-74 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721))))))) (-1207)) (T -74)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721)))) (-5 *1 (-74 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721))))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 132 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 121 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 152 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 142 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 110 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 97 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 128 T ELT) (($ (-1298 (-328 (-578)))) 117 T ELT) (($ (-1298 (-981 (-392)))) 148 T ELT) (($ (-1298 (-981 (-578)))) 138 T ELT) (($ (-1298 (-421 (-981 (-392))))) 106 T ELT) (($ (-1298 (-421 (-981 (-578))))) 90 T ELT)) (-1903 (((-1303) $) 82 T ELT)) (-2411 (((-886) $) 74 T ELT) (($ (-666 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) NIL T ELT) (($ (-1298 (-352 (-2423 (QUOTE X) (QUOTE EPS)) (-2423 (QUOTE -2585)) (-721)))) 69 T ELT))) +(((-75 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X) (QUOTE EPS)) (-2423 (QUOTE -2585)) (-721))))))) (-1207) (-1207) (-1207)) (T -75)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423 (QUOTE X) (QUOTE EPS)) (-2423 (QUOTE -2585)) (-721)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X) (QUOTE EPS)) (-2423 (QUOTE -2585)) (-721))))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 138 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 127 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 158 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 148 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 116 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 103 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 134 T ELT) (($ (-1298 (-328 (-578)))) 123 T ELT) (($ (-1298 (-981 (-392)))) 154 T ELT) (($ (-1298 (-981 (-578)))) 144 T ELT) (($ (-1298 (-421 (-981 (-392))))) 112 T ELT) (($ (-1298 (-421 (-981 (-578))))) 96 T ELT)) (-1903 (((-1303) $) 88 T ELT)) (-2411 (((-886) $) 80 T ELT) (($ (-666 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) NIL T ELT) (($ (-1298 (-352 (-2423 (QUOTE EPS)) (-2423 (QUOTE YA) (QUOTE YB)) (-721)))) 75 T ELT))) +(((-76 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE EPS)) (-2423 (QUOTE YA) (QUOTE YB)) (-721))))))) (-1207) (-1207) (-1207)) (T -76)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423 (QUOTE EPS)) (-2423 (QUOTE YA) (QUOTE YB)) (-721)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE EPS)) (-2423 (QUOTE YA) (QUOTE YB)) (-721))))))) +((-2818 (((-3 $ "failed") (-328 (-392))) 83 T ELT) (((-3 $ "failed") (-328 (-578))) 88 T ELT) (((-3 $ "failed") (-981 (-392))) 92 T ELT) (((-3 $ "failed") (-981 (-578))) 96 T ELT) (((-3 $ "failed") (-421 (-981 (-392)))) 78 T ELT) (((-3 $ "failed") (-421 (-981 (-578)))) 71 T ELT)) (-3516 (($ (-328 (-392))) 81 T ELT) (($ (-328 (-578))) 86 T ELT) (($ (-981 (-392))) 90 T ELT) (($ (-981 (-578))) 94 T ELT) (($ (-421 (-981 (-392)))) 76 T ELT) (($ (-421 (-981 (-578)))) 68 T ELT)) (-1903 (((-1303) $) 63 T ELT)) (-2411 (((-886) $) 51 T ELT) (($ (-666 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 55 T ELT) (($ (-352 (-2423) (-2423 (QUOTE X)) (-721))) 48 T ELT))) +(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423) (-2423 (QUOTE X)) (-721)))))) (-1207)) (T -77)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-352 (-2423) (-2423 (QUOTE X)) (-721))) (-5 *1 (-77 *3)) (-14 *3 (-1207))))) +(-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423) (-2423 (QUOTE X)) (-721)))))) +((-2818 (((-3 $ "failed") (-328 (-392))) 47 T ELT) (((-3 $ "failed") (-328 (-578))) 52 T ELT) (((-3 $ "failed") (-981 (-392))) 56 T ELT) (((-3 $ "failed") (-981 (-578))) 60 T ELT) (((-3 $ "failed") (-421 (-981 (-392)))) 42 T ELT) (((-3 $ "failed") (-421 (-981 (-578)))) 35 T ELT)) (-3516 (($ (-328 (-392))) 45 T ELT) (($ (-328 (-578))) 50 T ELT) (($ (-981 (-392))) 54 T ELT) (($ (-981 (-578))) 58 T ELT) (($ (-421 (-981 (-392)))) 40 T ELT) (($ (-421 (-981 (-578)))) 32 T ELT)) (-1903 (((-1303) $) 81 T ELT)) (-2411 (((-886) $) 75 T ELT) (($ (-666 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 70 T ELT) (($ (-352 (-2423) (-2423 (QUOTE X)) (-721))) 31 T ELT))) +(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423) (-2423 (QUOTE X)) (-721)))))) (-1207)) (T -78)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-352 (-2423) (-2423 (QUOTE X)) (-721))) (-5 *1 (-78 *3)) (-14 *3 (-1207))))) +(-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423) (-2423 (QUOTE X)) (-721)))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 90 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 79 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 110 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 100 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 68 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 55 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 86 T ELT) (($ (-1298 (-328 (-578)))) 75 T ELT) (($ (-1298 (-981 (-392)))) 106 T ELT) (($ (-1298 (-981 (-578)))) 96 T ELT) (($ (-1298 (-421 (-981 (-392))))) 64 T ELT) (($ (-1298 (-421 (-981 (-578))))) 48 T ELT)) (-1903 (((-1303) $) 126 T ELT)) (-2411 (((-886) $) 120 T ELT) (($ (-666 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 116 T ELT) (($ (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721)))) 39 T ELT))) +(((-79 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721))))))) (-1207)) (T -79)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721)))) (-5 *1 (-79 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE XC)) (-721))))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 151 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 141 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 171 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 161 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 131 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 119 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 147 T ELT) (($ (-1298 (-328 (-578)))) 137 T ELT) (($ (-1298 (-981 (-392)))) 167 T ELT) (($ (-1298 (-981 (-578)))) 157 T ELT) (($ (-1298 (-421 (-981 (-392))))) 127 T ELT) (($ (-1298 (-421 (-981 (-578))))) 112 T ELT)) (-1903 (((-1303) $) 105 T ELT)) (-2411 (((-886) $) 99 T ELT) (($ (-666 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 95 T ELT) (($ (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721)))) 91 T ELT))) +(((-80 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721))))))) (-1207)) (T -80)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721)))) (-5 *1 (-80 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721))))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 79 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 68 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 99 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 89 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 57 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 44 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 75 T ELT) (($ (-1298 (-328 (-578)))) 64 T ELT) (($ (-1298 (-981 (-392)))) 95 T ELT) (($ (-1298 (-981 (-578)))) 85 T ELT) (($ (-1298 (-421 (-981 (-392))))) 53 T ELT) (($ (-1298 (-421 (-981 (-578))))) 37 T ELT)) (-1903 (((-1303) $) 125 T ELT)) (-2411 (((-886) $) 119 T ELT) (($ (-666 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 114 T ELT) (($ (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721)))) 36 T ELT))) +(((-81 |#1|) (-13 (-455) (-635 (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721))))) (-1207)) (T -81)) +NIL +(-13 (-455) (-635 (-1298 (-352 (-2423) (-2423 (QUOTE X)) (-721))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 98 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 87 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 118 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 108 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 76 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 63 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 94 T ELT) (($ (-1298 (-328 (-578)))) 83 T ELT) (($ (-1298 (-981 (-392)))) 114 T ELT) (($ (-1298 (-981 (-578)))) 104 T ELT) (($ (-1298 (-421 (-981 (-392))))) 72 T ELT) (($ (-1298 (-421 (-981 (-578))))) 56 T ELT)) (-1903 (((-1303) $) 48 T ELT)) (-2411 (((-886) $) 42 T ELT) (($ (-666 (-342))) 32 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 38 T ELT) (($ (-1298 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721)))) 33 T ELT))) +(((-82 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721))))))) (-1207)) (T -82)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721)))) (-5 *1 (-82 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721))))))) +((-2818 (((-3 $ "failed") (-711 (-328 (-392)))) 118 T ELT) (((-3 $ "failed") (-711 (-328 (-578)))) 107 T ELT) (((-3 $ "failed") (-711 (-981 (-392)))) 140 T ELT) (((-3 $ "failed") (-711 (-981 (-578)))) 129 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-392))))) 96 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-578))))) 83 T ELT)) (-3516 (($ (-711 (-328 (-392)))) 114 T ELT) (($ (-711 (-328 (-578)))) 103 T ELT) (($ (-711 (-981 (-392)))) 136 T ELT) (($ (-711 (-981 (-578)))) 125 T ELT) (($ (-711 (-421 (-981 (-392))))) 92 T ELT) (($ (-711 (-421 (-981 (-578))))) 76 T ELT)) (-1903 (((-1303) $) 66 T ELT)) (-2411 (((-886) $) 53 T ELT) (($ (-666 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 58 T ELT) (($ (-711 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721)))) 50 T ELT))) +(((-83 |#1|) (-13 (-397) (-10 -8 (-15 -2411 ($ (-711 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721))))))) (-1207)) (T -83)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721)))) (-5 *1 (-83 *3)) (-14 *3 (-1207))))) +(-13 (-397) (-10 -8 (-15 -2411 ($ (-711 (-352 (-2423 (QUOTE X) (QUOTE -2585)) (-2423) (-721))))))) +((-2818 (((-3 $ "failed") (-711 (-328 (-392)))) 113 T ELT) (((-3 $ "failed") (-711 (-328 (-578)))) 101 T ELT) (((-3 $ "failed") (-711 (-981 (-392)))) 135 T ELT) (((-3 $ "failed") (-711 (-981 (-578)))) 124 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-392))))) 89 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-578))))) 75 T ELT)) (-3516 (($ (-711 (-328 (-392)))) 109 T ELT) (($ (-711 (-328 (-578)))) 97 T ELT) (($ (-711 (-981 (-392)))) 131 T ELT) (($ (-711 (-981 (-578)))) 120 T ELT) (($ (-711 (-421 (-981 (-392))))) 85 T ELT) (($ (-711 (-421 (-981 (-578))))) 68 T ELT)) (-1903 (((-1303) $) 60 T ELT)) (-2411 (((-886) $) 54 T ELT) (($ (-666 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 45 T ELT) (($ (-711 (-352 (-2423 (QUOTE X)) (-2423) (-721)))) 46 T ELT))) +(((-84 |#1|) (-13 (-397) (-10 -8 (-15 -2411 ($ (-711 (-352 (-2423 (QUOTE X)) (-2423) (-721))))))) (-1207)) (T -84)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-2423 (QUOTE X)) (-2423) (-721)))) (-5 *1 (-84 *3)) (-14 *3 (-1207))))) +(-13 (-397) (-10 -8 (-15 -2411 ($ (-711 (-352 (-2423 (QUOTE X)) (-2423) (-721))))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 105 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 94 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 125 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 115 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 83 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 70 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 101 T ELT) (($ (-1298 (-328 (-578)))) 90 T ELT) (($ (-1298 (-981 (-392)))) 121 T ELT) (($ (-1298 (-981 (-578)))) 111 T ELT) (($ (-1298 (-421 (-981 (-392))))) 79 T ELT) (($ (-1298 (-421 (-981 (-578))))) 63 T ELT)) (-1903 (((-1303) $) 47 T ELT)) (-2411 (((-886) $) 41 T ELT) (($ (-666 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 53 T ELT) (($ (-1298 (-352 (-2423 (QUOTE X)) (-2423) (-721)))) 38 T ELT))) +(((-85 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X)) (-2423) (-721))))))) (-1207)) (T -85)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423 (QUOTE X)) (-2423) (-721)))) (-5 *1 (-85 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X)) (-2423) (-721))))))) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 80 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 69 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 100 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 90 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 58 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 45 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 76 T ELT) (($ (-1298 (-328 (-578)))) 65 T ELT) (($ (-1298 (-981 (-392)))) 96 T ELT) (($ (-1298 (-981 (-578)))) 86 T ELT) (($ (-1298 (-421 (-981 (-392))))) 54 T ELT) (($ (-1298 (-421 (-981 (-578))))) 38 T ELT)) (-1903 (((-1303) $) 126 T ELT)) (-2411 (((-886) $) 120 T ELT) (($ (-666 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 115 T ELT) (($ (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721)))) 37 T ELT))) +(((-86 |#1|) (-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721))))))) (-1207)) (T -86)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721)))) (-5 *1 (-86 *3)) (-14 *3 (-1207))))) +(-13 (-455) (-10 -8 (-15 -2411 ($ (-1298 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721))))))) +((-2818 (((-3 $ "failed") (-711 (-328 (-392)))) 117 T ELT) (((-3 $ "failed") (-711 (-328 (-578)))) 105 T ELT) (((-3 $ "failed") (-711 (-981 (-392)))) 139 T ELT) (((-3 $ "failed") (-711 (-981 (-578)))) 128 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-392))))) 93 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-578))))) 79 T ELT)) (-3516 (($ (-711 (-328 (-392)))) 113 T ELT) (($ (-711 (-328 (-578)))) 101 T ELT) (($ (-711 (-981 (-392)))) 135 T ELT) (($ (-711 (-981 (-578)))) 124 T ELT) (($ (-711 (-421 (-981 (-392))))) 89 T ELT) (($ (-711 (-421 (-981 (-578))))) 72 T ELT)) (-1903 (((-1303) $) 63 T ELT)) (-2411 (((-886) $) 57 T ELT) (($ (-666 (-342))) 47 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 52 T ELT) (($ (-711 (-352 (-2423 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2423) (-721)))) 48 T ELT))) +(((-87 |#1|) (-13 (-397) (-10 -8 (-15 -2411 ($ (-711 (-352 (-2423 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2423) (-721))))))) (-1207)) (T -87)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-2423 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2423) (-721)))) (-5 *1 (-87 *3)) (-14 *3 (-1207))))) +(-13 (-397) (-10 -8 (-15 -2411 ($ (-711 (-352 (-2423 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2423) (-721))))))) +((-1903 (((-1303) $) 45 T ELT)) (-2411 (((-886) $) 39 T ELT) (($ (-1298 (-721))) 100 T ELT) (($ (-666 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 34 T ELT))) +(((-88 |#1|) (-454) (-1207)) (T -88)) +NIL +(-454) +((-2818 (((-3 $ "failed") (-328 (-392))) 48 T ELT) (((-3 $ "failed") (-328 (-578))) 53 T ELT) (((-3 $ "failed") (-981 (-392))) 57 T ELT) (((-3 $ "failed") (-981 (-578))) 61 T ELT) (((-3 $ "failed") (-421 (-981 (-392)))) 43 T ELT) (((-3 $ "failed") (-421 (-981 (-578)))) 36 T ELT)) (-3516 (($ (-328 (-392))) 46 T ELT) (($ (-328 (-578))) 51 T ELT) (($ (-981 (-392))) 55 T ELT) (($ (-981 (-578))) 59 T ELT) (($ (-421 (-981 (-392)))) 41 T ELT) (($ (-421 (-981 (-578)))) 33 T ELT)) (-1903 (((-1303) $) 91 T ELT)) (-2411 (((-886) $) 85 T ELT) (($ (-666 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 77 T ELT) (($ (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721))) 32 T ELT))) +(((-89 |#1|) (-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721)))))) (-1207)) (T -89)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721))) (-5 *1 (-89 *3)) (-14 *3 (-1207))))) +(-13 (-410) (-10 -8 (-15 -2411 ($ (-352 (-2423 (QUOTE X)) (-2423 (QUOTE -2585)) (-721)))))) +((-2299 (((-1298 (-711 |#1|)) (-711 |#1|)) 61 T ELT)) (-1580 (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 (-666 (-950))))) |#2| (-950)) 49 T ELT)) (-4255 (((-2 (|:| |minor| (-666 (-950))) (|:| -3505 |#2|) (|:| |minors| (-666 (-666 (-950)))) (|:| |ops| (-666 |#2|))) |#2| (-950)) 72 (|has| |#1| (-376)) ELT))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1580 ((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 (-666 (-950))))) |#2| (-950))) (-15 -2299 ((-1298 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -4255 ((-2 (|:| |minor| (-666 (-950))) (|:| -3505 |#2|) (|:| |minors| (-666 (-666 (-950)))) (|:| |ops| (-666 |#2|))) |#2| (-950))) |%noBranch|)) (-570) (-678 |#1|)) (T -90)) +((-4255 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-570)) (-5 *2 (-2 (|:| |minor| (-666 (-950))) (|:| -3505 *3) (|:| |minors| (-666 (-666 (-950)))) (|:| |ops| (-666 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-950)) (-4 *3 (-678 *5)))) (-2299 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-1298 (-711 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-711 *4)) (-4 *5 (-678 *4)))) (-1580 (*1 *2 *3 *4) (-12 (-4 *5 (-570)) (-5 *2 (-2 (|:| -2547 (-711 *5)) (|:| |vec| (-1298 (-666 (-950)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-950)) (-4 *3 (-678 *5))))) +(-10 -7 (-15 -1580 ((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 (-666 (-950))))) |#2| (-950))) (-15 -2299 ((-1298 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -4255 ((-2 (|:| |minor| (-666 (-950))) (|:| -3505 |#2|) (|:| |minors| (-666 (-666 (-950)))) (|:| |ops| (-666 |#2|))) |#2| (-950))) |%noBranch|)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2853 ((|#1| $) 40 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2694 ((|#1| |#1| $) 35 T ELT)) (-3604 ((|#1| $) 33 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) NIL T ELT)) (-4328 (($ |#1| $) 36 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-1994 ((|#1| $) 34 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 18 T ELT)) (-1696 (($) 45 T ELT)) (-3302 (((-793) $) 31 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 17 T ELT)) (-2411 (((-886) $) 30 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) NIL T ELT)) (-3715 (($ (-666 |#1|)) 42 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 15 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 12 (|has| $ (-6 -4500)) ELT))) +(((-91 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -3715 ($ (-666 |#1|))))) (-1131)) (T -91)) +((-3715 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-91 *3))))) +(-13 (-1152 |#1|) (-10 -8 (-15 -3715 ($ (-666 |#1|))))) +((-2411 (((-886) $) 13 T ELT) (($ (-1212)) 9 T ELT) (((-1212) $) 8 T ELT))) +(((-92 |#1|) (-10 -8 (-15 -2411 ((-1212) |#1|)) (-15 -2411 (|#1| (-1212))) (-15 -2411 ((-886) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -2411 ((-1212) |#1|)) (-15 -2411 (|#1| (-1212))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-93) (-142)) (T -93)) +NIL +(-13 (-1131) (-504 (-1212))) +(((-102) . T) ((-635 #0=(-1212)) . T) ((-632 (-886)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1131) . T) ((-1248) . T)) +((-1456 (($ $) 10 T ELT)) (-1467 (($ $) 12 T ELT))) +(((-94 |#1|) (-10 -8 (-15 -1467 (|#1| |#1|)) (-15 -1456 (|#1| |#1|))) (-95)) (T -94)) +NIL +(-10 -8 (-15 -1467 (|#1| |#1|)) (-15 -1456 (|#1| |#1|))) +((-1436 (($ $) 11 T ELT)) (-1414 (($ $) 10 T ELT)) (-1456 (($ $) 9 T ELT)) (-1467 (($ $) 8 T ELT)) (-1447 (($ $) 7 T ELT)) (-1424 (($ $) 6 T ELT))) +(((-95) (-142)) (T -95)) +((-1436 (*1 *1 *1) (-4 *1 (-95))) (-1414 (*1 *1 *1) (-4 *1 (-95))) (-1456 (*1 *1 *1) (-4 *1 (-95))) (-1467 (*1 *1 *1) (-4 *1 (-95))) (-1447 (*1 *1 *1) (-4 *1 (-95))) (-1424 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -1424 ($ $)) (-15 -1447 ($ $)) (-15 -1467 ($ $)) (-15 -1456 ($ $)) (-15 -1414 ($ $)) (-15 -1436 ($ $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4107 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-96) (-13 (-1114) (-10 -8 (-15 -4107 ((-1166) $))))) (T -96)) +((-4107 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-96))))) +(-13 (-1114) (-10 -8 (-15 -4107 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3163 (((-392) (-1189) (-392)) 46 T ELT) (((-392) (-1189) (-1189) (-392)) 44 T ELT)) (-3140 (((-392) (-392)) 35 T ELT)) (-2569 (((-1303)) 37 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1928 (((-392) (-1189) (-1189)) 50 T ELT) (((-392) (-1189)) 52 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3786 (((-392) (-1189) (-1189)) 51 T ELT)) (-3539 (((-392) (-1189) (-1189)) 53 T ELT) (((-392) (-1189)) 54 T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-97) (-13 (-1131) (-10 -7 (-15 -1928 ((-392) (-1189) (-1189))) (-15 -1928 ((-392) (-1189))) (-15 -3539 ((-392) (-1189) (-1189))) (-15 -3539 ((-392) (-1189))) (-15 -3786 ((-392) (-1189) (-1189))) (-15 -2569 ((-1303))) (-15 -3140 ((-392) (-392))) (-15 -3163 ((-392) (-1189) (-392))) (-15 -3163 ((-392) (-1189) (-1189) (-392))) (-6 -4500)))) (T -97)) +((-1928 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97)))) (-3539 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97)))) (-3786 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97)))) (-2569 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-97)))) (-3163 (*1 *2 *3 *2) (-12 (-5 *2 (-392)) (-5 *3 (-1189)) (-5 *1 (-97)))) (-3163 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-392)) (-5 *3 (-1189)) (-5 *1 (-97))))) +(-13 (-1131) (-10 -7 (-15 -1928 ((-392) (-1189) (-1189))) (-15 -1928 ((-392) (-1189))) (-15 -3539 ((-392) (-1189) (-1189))) (-15 -3539 ((-392) (-1189))) (-15 -3786 ((-392) (-1189) (-1189))) (-15 -2569 ((-1303))) (-15 -3140 ((-392) (-392))) (-15 -3163 ((-392) (-1189) (-392))) (-15 -3163 ((-392) (-1189) (-1189) (-392))) (-6 -4500))) +NIL +(((-98) (-142)) (T -98)) +NIL +(-13 (-10 -7 (-6 -4500) (-6 (-4502 "*")) (-6 -4501) (-6 -4497) (-6 -4495) (-6 -4494) (-6 -4493) (-6 -4498) (-6 -4492) (-6 -4491) (-6 -4490) (-6 -4489) (-6 -4488) (-6 -4496) (-6 -4499) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4487))) +((-3213 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2963 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-578))) 24 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 16 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 ((|#1| $ |#1|) 13 T ELT)) (-1433 (($ $ $) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-2411 (((-886) $) 22 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 8 T CONST)) (-2384 (((-112) $ $) 10 T ELT)) (-2495 (($ $ $) NIL T ELT)) (** (($ $ (-950)) 32 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 18 T ELT)) (* (($ $ $) 33 T ELT))) +(((-99 |#1|) (-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -2963 ($ (-1 |#1| |#1|))) (-15 -2963 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2963 ($ (-1 |#1| |#1| (-578)))))) (-1080)) (T -99)) +((-2963 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) (-2963 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-578))) (-4 *3 (-1080)) (-5 *1 (-99 *3))))) +(-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -2963 ($ (-1 |#1| |#1|))) (-15 -2963 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2963 ($ (-1 |#1| |#1| (-578)))))) +((-2645 (((-432 |#2|) |#2| (-666 |#2|)) 10 T ELT) (((-432 |#2|) |#2| |#2|) 11 T ELT))) +(((-100 |#1| |#2|) (-10 -7 (-15 -2645 ((-432 |#2|) |#2| |#2|)) (-15 -2645 ((-432 |#2|) |#2| (-666 |#2|)))) (-13 (-466) (-149)) (-1274 |#1|)) (T -100)) +((-2645 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-13 (-466) (-149))) (-5 *2 (-432 *3)) (-5 *1 (-100 *5 *3)))) (-2645 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-432 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -2645 ((-432 |#2|) |#2| |#2|)) (-15 -2645 ((-432 |#2|) |#2| (-666 |#2|)))) +((-3213 (((-112) $ $) 13 T ELT)) (-2876 (((-112) $ $) 14 T ELT)) (-2384 (((-112) $ $) 11 T ELT))) +(((-101 |#1|) (-10 -8 (-15 -2876 ((-112) |#1| |#1|)) (-15 -3213 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2876 ((-112) |#1| |#1|)) (-15 -3213 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-102) (-142)) (T -102)) +((-2384 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3213 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2876 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-1248) (-10 -8 (-15 -2384 ((-112) $ $)) (-15 -3213 ((-112) $ $)) (-15 -2876 ((-112) $ $)))) +(((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) 24 (|has| $ (-6 -4501)) ELT)) (-4090 (($ $ $) NIL (|has| $ (-6 -4501)) ELT)) (-3144 (($ $ $) NIL (|has| $ (-6 -4501)) ELT)) (-3774 (($ $ (-666 |#1|)) 30 T ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4501)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-3868 (($ $) 12 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2314 (($ $ |#1| $) 32 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-1827 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-3396 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-666 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3855 (($ $) 11 T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) 13 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 9 T ELT)) (-1696 (($) 31 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3200 (($ (-793) |#1|) 33 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4500) (-6 -4501) (-15 -3200 ($ (-793) |#1|)) (-15 -3774 ($ $ (-666 |#1|))) (-15 -1827 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1827 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3396 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3396 ($ $ |#1| (-1 (-666 |#1|) |#1| |#1| |#1|))))) (-1131)) (T -103)) +((-3200 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1131)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3)))) (-1827 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1131)))) (-1827 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3)))) (-3396 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (-5 *1 (-103 *2)))) (-3396 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-666 *2) *2 *2 *2)) (-4 *2 (-1131)) (-5 *1 (-103 *2))))) +(-13 (-127 |#1|) (-10 -8 (-6 -4500) (-6 -4501) (-15 -3200 ($ (-793) |#1|)) (-15 -3774 ($ $ (-666 |#1|))) (-15 -1827 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1827 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3396 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3396 ($ $ |#1| (-1 (-666 |#1|) |#1| |#1| |#1|))))) +((-3728 ((|#3| |#2| |#2|) 34 T ELT)) (-2783 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4502 "*"))) ELT)) (-4290 ((|#3| |#2| |#2|) 36 T ELT)) (-1393 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4502 "*"))) ELT))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3728 (|#3| |#2| |#2|)) (-15 -4290 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4502 "*"))) (PROGN (-15 -2783 (|#1| |#2| |#2|)) (-15 -1393 (|#1| |#2|))) |%noBranch|)) (-1080) (-1274 |#1|) (-709 |#1| |#4| |#5|) (-386 |#1|) (-386 |#1|)) (T -104)) +((-1393 (*1 *2 *3) (-12 (|has| *2 (-6 (-4502 "*"))) (-4 *5 (-386 *2)) (-4 *6 (-386 *2)) (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1274 *2)) (-4 *4 (-709 *2 *5 *6)))) (-2783 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4502 "*"))) (-4 *5 (-386 *2)) (-4 *6 (-386 *2)) (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1274 *2)) (-4 *4 (-709 *2 *5 *6)))) (-4290 (*1 *2 *3 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-709 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1274 *4)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)))) (-3728 (*1 *2 *3 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-709 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1274 *4)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4))))) +(-10 -7 (-15 -3728 (|#3| |#2| |#2|)) (-15 -4290 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4502 "*"))) (PROGN (-15 -2783 (|#1| |#2| |#2|)) (-15 -1393 (|#1| |#2|))) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-3662 (((-666 (-1207))) 37 T ELT)) (-2480 (((-2 (|:| |zeros| (-1188 (-229))) (|:| |ones| (-1188 (-229))) (|:| |singularities| (-1188 (-229)))) (-1207)) 39 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-105) (-13 (-1131) (-10 -7 (-15 -3662 ((-666 (-1207)))) (-15 -2480 ((-2 (|:| |zeros| (-1188 (-229))) (|:| |ones| (-1188 (-229))) (|:| |singularities| (-1188 (-229)))) (-1207))) (-6 -4500)))) (T -105)) +((-3662 (*1 *2) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-105)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-2 (|:| |zeros| (-1188 (-229))) (|:| |ones| (-1188 (-229))) (|:| |singularities| (-1188 (-229))))) (-5 *1 (-105))))) +(-13 (-1131) (-10 -7 (-15 -3662 ((-666 (-1207)))) (-15 -2480 ((-2 (|:| |zeros| (-1188 (-229))) (|:| |ones| (-1188 (-229))) (|:| |singularities| (-1188 (-229)))) (-1207))) (-6 -4500))) +((-3764 (($ (-666 |#2|)) 11 T ELT))) +(((-106 |#1| |#2|) (-10 -8 (-15 -3764 (|#1| (-666 |#2|)))) (-107 |#2|) (-1248)) (T -106)) +NIL +(-10 -8 (-15 -3764 (|#1| (-666 |#2|)))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-3534 (($) 7 T CONST)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-107 |#1|) (-142) (-1248)) (T -107)) +((-3764 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-4 *1 (-107 *3)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1248)))) (-4328 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1248)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1248))))) +(-13 (-503 |t#1|) (-10 -8 (-6 -4501) (-15 -3764 ($ (-666 |t#1|))) (-15 -1994 (|t#1| $)) (-15 -4328 ($ |t#1| $)) (-15 -2743 (|t#1| $)))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 (((-578) $) NIL (|has| (-578) (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| (-578) (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-578) (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| (-578) (-1069 (-578))) ELT)) (-3516 (((-578) $) NIL T ELT) (((-1207) $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| (-578) (-1069 (-578))) ELT) (((-578) $) NIL (|has| (-578) (-1069 (-578))) ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-578) (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-578) (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-578) (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 (((-578) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-578) (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3611 (($ (-1 (-578) (-578)) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-578) (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| (-578) (-319)) ELT) (((-421 (-578)) $) NIL T ELT)) (-3575 (((-578) $) NIL (|has| (-578) (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 (-578)) (-666 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-578) (-578)) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-306 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-306 (-578)))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-1207)) (-666 (-578))) NIL (|has| (-578) (-528 (-1207) (-578))) ELT) (($ $ (-1207) (-578)) NIL (|has| (-578) (-528 (-1207) (-578))) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ (-578)) NIL (|has| (-578) (-298 (-578) (-578))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) NIL (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 (((-578) $) NIL T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| (-578) (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| (-578) (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| (-578) (-633 (-550))) ELT) (((-392) $) NIL (|has| (-578) (-1053)) ELT) (((-229) $) NIL (|has| (-578) (-1053)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-578) (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 8 T ELT) (($ (-578)) NIL T ELT) (($ (-1207)) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL T ELT) (((-1035 2) $) 10 T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-578) (-938))) (|has| (-578) (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (((-578) $) NIL (|has| (-578) (-559)) ELT)) (-1674 (($ (-421 (-578))) 9 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| (-578) (-842)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) NIL (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2495 (($ $ $) NIL T ELT) (($ (-578) (-578)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ (-578)) NIL T ELT))) +(((-108) (-13 (-1023 (-578)) (-632 (-421 (-578))) (-632 (-1035 2)) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -1674 ($ (-421 (-578))))))) (T -108)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-108)))) (-1674 (*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-108))))) +(-13 (-1023 (-578)) (-632 (-421 (-578))) (-632 (-1035 2)) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -1674 ($ (-421 (-578)))))) +((-1929 (((-666 (-994)) $) 13 T ELT)) (-4107 (((-520) $) 9 T ELT)) (-2411 (((-886) $) 20 T ELT)) (-1602 (($ (-520) (-666 (-994))) 15 T ELT))) +(((-109) (-13 (-632 (-886)) (-10 -8 (-15 -4107 ((-520) $)) (-15 -1929 ((-666 (-994)) $)) (-15 -1602 ($ (-520) (-666 (-994))))))) (T -109)) +((-4107 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-666 (-994))) (-5 *1 (-109)))) (-1602 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-666 (-994))) (-5 *1 (-109))))) +(-13 (-632 (-886)) (-10 -8 (-15 -4107 ((-520) $)) (-15 -1929 ((-666 (-994)) $)) (-15 -1602 ($ (-520) (-666 (-994)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2344 (($ $ $) NIL T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) $) NIL (|has| (-112) (-871)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-4101 (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| (-112) (-871))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4501)) ELT)) (-2042 (($ $) NIL (|has| (-112) (-871)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 (((-112) $ (-1265 (-578)) (-112)) NIL (|has| $ (-6 -4501)) ELT) (((-112) $ (-578) (-112)) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-2737 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-2512 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-3450 (((-112) $ (-578) (-112)) NIL (|has| $ (-6 -4501)) ELT)) (-3382 (((-112) $ (-578)) NIL T ELT)) (-3887 (((-578) (-112) $ (-578)) NIL (|has| (-112) (-1131)) ELT) (((-578) (-112) $) NIL (|has| (-112) (-1131)) ELT) (((-578) (-1 (-112) (-112)) $) NIL T ELT)) (-2729 (((-666 (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2332 (($ $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-2067 (($ $ $) NIL T ELT)) (-3749 (($ (-793) (-112)) 10 T ELT)) (-3478 (($ $ $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL T ELT)) (-3176 (($ $ $) NIL (|has| (-112) (-871)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-1441 (((-666 (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL T ELT)) (-3439 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4273 (($ $ $ (-578)) NIL T ELT) (($ (-112) $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-112) $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-4291 (($ $ (-112)) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-112)) (-666 (-112))) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-306 (-112))) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-666 (-306 (-112)))) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-4322 (((-666 (-112)) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 (($ $ (-1265 (-578))) NIL T ELT) (((-112) $ (-578)) NIL T ELT) (((-112) $ (-578) (-112)) NIL T ELT)) (-1705 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-4324 (((-793) (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT) (((-793) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-112) (-633 (-550))) ELT)) (-2423 (($ (-666 (-112))) NIL T ELT)) (-3703 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-4068 (($ (-793) (-112)) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2320 (($ $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-110) (-13 (-125) (-10 -8 (-15 -4068 ($ (-793) (-112)))))) (T -110)) +((-4068 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-125) (-10 -8 (-15 -4068 ($ (-793) (-112))))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) +(((-111 |#1| |#2|) (-142) (-1080) (-1080)) (T -111)) +NIL +(-13 (-670 |t#1|) (-1087 |t#2|) (-10 -7 (-6 -4495) (-6 -4494))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) 10 T ELT)) (-2344 (($ $ $) 15 T ELT)) (-4303 (($) 7 T CONST)) (-4033 (($ $) 6 T ELT)) (-2222 (((-793)) 24 T ELT)) (-2062 (($) 32 T ELT)) (-2332 (($ $ $) 13 T ELT)) (-2309 (($ $) 9 T ELT)) (-2067 (($ $ $) 16 T ELT)) (-3478 (($ $ $) 17 T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) 30 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) 28 T ELT)) (-3326 (($ $ $) 20 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2435 (($) 8 T CONST)) (-3051 (($ $ $) 21 T ELT)) (-3343 (((-550) $) 34 T ELT)) (-2411 (((-886) $) 36 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2320 (($ $ $) 11 T ELT)) (-3287 (($ $ $) 14 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 19 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 22 T ELT)) (-3274 (($ $ $) 12 T ELT))) +(((-112) (-13 (-866) (-998) (-633 (-550)) (-10 -8 (-15 -2344 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -2067 ($ $ $)) (-15 -4033 ($ $))))) (T -112)) +((-2344 (*1 *1 *1 *1) (-5 *1 (-112))) (-3478 (*1 *1 *1 *1) (-5 *1 (-112))) (-2067 (*1 *1 *1 *1) (-5 *1 (-112))) (-4033 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-866) (-998) (-633 (-550)) (-10 -8 (-15 -2344 ($ $ $)) (-15 -3478 ($ $ $)) (-15 -2067 ($ $ $)) (-15 -4033 ($ $)))) +((-3237 (($ $) 8 T ELT))) +(((-113 |#1|) (-10 -8 (-15 -3237 (|#1| |#1|))) (-114)) (T -113)) +NIL +(-10 -8 (-15 -3237 (|#1| |#1|))) +((-3237 (($ $) 8 T ELT)) (-2332 (($ $ $) 9 T ELT)) (-2309 (($ $) 11 T ELT)) (-2320 (($ $ $) 10 T ELT)) (-3287 (($ $ $) 6 T ELT)) (-3274 (($ $ $) 7 T ELT))) +(((-114) (-142)) (T -114)) +((-2309 (*1 *1 *1) (-4 *1 (-114))) (-2320 (*1 *1 *1 *1) (-4 *1 (-114))) (-2332 (*1 *1 *1 *1) (-4 *1 (-114)))) +(-13 (-683) (-10 -8 (-15 -2309 ($ $)) (-15 -2320 ($ $ $)) (-15 -2332 ($ $ $)))) +(((-683) . T) ((-1248) . T)) +((-1423 (((-3 (-1 |#1| (-666 |#1|)) "failed") (-116)) 23 T ELT) (((-116) (-116) (-1 |#1| |#1|)) 13 T ELT) (((-116) (-116) (-1 |#1| (-666 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-116) (-666 |#1|)) 25 T ELT)) (-1472 (((-3 (-666 (-1 |#1| (-666 |#1|))) "failed") (-116)) 29 T ELT) (((-116) (-116) (-1 |#1| |#1|)) 33 T ELT) (((-116) (-116) (-666 (-1 |#1| (-666 |#1|)))) 30 T ELT)) (-3155 (((-116) |#1|) 63 T ELT)) (-2874 (((-3 |#1| "failed") (-116)) 58 T ELT))) +(((-115 |#1|) (-10 -7 (-15 -1423 ((-3 |#1| "failed") (-116) (-666 |#1|))) (-15 -1423 ((-116) (-116) (-1 |#1| (-666 |#1|)))) (-15 -1423 ((-116) (-116) (-1 |#1| |#1|))) (-15 -1423 ((-3 (-1 |#1| (-666 |#1|)) "failed") (-116))) (-15 -1472 ((-116) (-116) (-666 (-1 |#1| (-666 |#1|))))) (-15 -1472 ((-116) (-116) (-1 |#1| |#1|))) (-15 -1472 ((-3 (-666 (-1 |#1| (-666 |#1|))) "failed") (-116))) (-15 -3155 ((-116) |#1|)) (-15 -2874 ((-3 |#1| "failed") (-116)))) (-1131)) (T -115)) +((-2874 (*1 *2 *3) (|partial| -12 (-5 *3 (-116)) (-5 *1 (-115 *2)) (-4 *2 (-1131)))) (-3155 (*1 *2 *3) (-12 (-5 *2 (-116)) (-5 *1 (-115 *3)) (-4 *3 (-1131)))) (-1472 (*1 *2 *3) (|partial| -12 (-5 *3 (-116)) (-5 *2 (-666 (-1 *4 (-666 *4)))) (-5 *1 (-115 *4)) (-4 *4 (-1131)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) (-5 *1 (-115 *4)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-666 (-1 *4 (-666 *4)))) (-4 *4 (-1131)) (-5 *1 (-115 *4)))) (-1423 (*1 *2 *3) (|partial| -12 (-5 *3 (-116)) (-5 *2 (-1 *4 (-666 *4))) (-5 *1 (-115 *4)) (-4 *4 (-1131)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) (-5 *1 (-115 *4)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-1 *4 (-666 *4))) (-4 *4 (-1131)) (-5 *1 (-115 *4)))) (-1423 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-116)) (-5 *4 (-666 *2)) (-5 *1 (-115 *2)) (-4 *2 (-1131))))) +(-10 -7 (-15 -1423 ((-3 |#1| "failed") (-116) (-666 |#1|))) (-15 -1423 ((-116) (-116) (-1 |#1| (-666 |#1|)))) (-15 -1423 ((-116) (-116) (-1 |#1| |#1|))) (-15 -1423 ((-3 (-1 |#1| (-666 |#1|)) "failed") (-116))) (-15 -1472 ((-116) (-116) (-666 (-1 |#1| (-666 |#1|))))) (-15 -1472 ((-116) (-116) (-1 |#1| |#1|))) (-15 -1472 ((-3 (-666 (-1 |#1| (-666 |#1|))) "failed") (-116))) (-15 -3155 ((-116) |#1|)) (-15 -2874 ((-3 |#1| "failed") (-116)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2452 (((-793) $) 92 T ELT) (($ $ (-793)) 37 T ELT)) (-3458 (((-112) $) 41 T ELT)) (-2179 (($ $ (-1189) (-796)) 59 T ELT) (($ $ (-520) (-796)) 33 T ELT)) (-3880 (($ $ (-45 (-1189) (-796))) 16 T ELT)) (-4438 (((-3 (-796) "failed") $ (-1189)) 27 T ELT) (((-713 (-796)) $ (-520)) 32 T ELT)) (-1929 (((-45 (-1189) (-796)) $) 15 T ELT)) (-4397 (($ (-1207)) 20 T ELT) (($ (-1207) (-793)) 23 T ELT) (($ (-1207) (-55)) 24 T ELT)) (-3452 (((-112) $) 39 T ELT)) (-1425 (((-112) $) 43 T ELT)) (-4107 (((-1207) $) 8 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1413 (((-112) $ (-1207)) 11 T ELT)) (-1698 (($ $ (-1 (-550) (-666 (-550)))) 65 T ELT) (((-3 (-1 (-550) (-666 (-550))) "failed") $) 72 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3616 (((-112) $ (-520)) 36 T ELT)) (-2081 (($ $ (-1 (-112) $ $)) 45 T ELT)) (-1647 (((-3 (-1 (-886) (-666 (-886))) "failed") $) 70 T ELT) (($ $ (-1 (-886) (-666 (-886)))) 51 T ELT) (($ $ (-1 (-886) (-886))) 53 T ELT)) (-4140 (($ $ (-1189)) 55 T ELT) (($ $ (-520)) 57 T ELT)) (-3979 (($ $) 78 T ELT)) (-1618 (($ $ (-1 (-112) $ $)) 46 T ELT)) (-2411 (((-886) $) 61 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4257 (($ $ (-520)) 34 T ELT)) (-1639 (((-55) $) 73 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 90 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 104 T ELT))) +(((-116) (-13 (-871) (-857 (-1207)) (-10 -8 (-15 -1929 ((-45 (-1189) (-796)) $)) (-15 -3979 ($ $)) (-15 -4397 ($ (-1207))) (-15 -4397 ($ (-1207) (-793))) (-15 -4397 ($ (-1207) (-55))) (-15 -3452 ((-112) $)) (-15 -3458 ((-112) $)) (-15 -1425 ((-112) $)) (-15 -2452 ((-793) $)) (-15 -2452 ($ $ (-793))) (-15 -2081 ($ $ (-1 (-112) $ $))) (-15 -1618 ($ $ (-1 (-112) $ $))) (-15 -1647 ((-3 (-1 (-886) (-666 (-886))) "failed") $)) (-15 -1647 ($ $ (-1 (-886) (-666 (-886))))) (-15 -1647 ($ $ (-1 (-886) (-886)))) (-15 -1698 ($ $ (-1 (-550) (-666 (-550))))) (-15 -1698 ((-3 (-1 (-550) (-666 (-550))) "failed") $)) (-15 -3616 ((-112) $ (-520))) (-15 -4257 ($ $ (-520))) (-15 -4140 ($ $ (-1189))) (-15 -4140 ($ $ (-520))) (-15 -4438 ((-3 (-796) "failed") $ (-1189))) (-15 -4438 ((-713 (-796)) $ (-520))) (-15 -2179 ($ $ (-1189) (-796))) (-15 -2179 ($ $ (-520) (-796))) (-15 -3880 ($ $ (-45 (-1189) (-796))))))) (T -116)) +((-1929 (*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-796))) (-5 *1 (-116)))) (-3979 (*1 *1 *1) (-5 *1 (-116))) (-4397 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-116)))) (-4397 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *1 (-116)))) (-4397 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-116)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-116)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-116)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-116)))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-116)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-116)))) (-2081 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-116) (-116))) (-5 *1 (-116)))) (-1618 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-116) (-116))) (-5 *1 (-116)))) (-1647 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-886) (-666 (-886)))) (-5 *1 (-116)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-666 (-886)))) (-5 *1 (-116)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-886))) (-5 *1 (-116)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-550) (-666 (-550)))) (-5 *1 (-116)))) (-1698 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-550) (-666 (-550)))) (-5 *1 (-116)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-112)) (-5 *1 (-116)))) (-4257 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-116)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-116)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-116)))) (-4438 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-796)) (-5 *1 (-116)))) (-4438 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-796))) (-5 *1 (-116)))) (-2179 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-796)) (-5 *1 (-116)))) (-2179 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-796)) (-5 *1 (-116)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-796))) (-5 *1 (-116))))) +(-13 (-871) (-857 (-1207)) (-10 -8 (-15 -1929 ((-45 (-1189) (-796)) $)) (-15 -3979 ($ $)) (-15 -4397 ($ (-1207))) (-15 -4397 ($ (-1207) (-793))) (-15 -4397 ($ (-1207) (-55))) (-15 -3452 ((-112) $)) (-15 -3458 ((-112) $)) (-15 -1425 ((-112) $)) (-15 -2452 ((-793) $)) (-15 -2452 ($ $ (-793))) (-15 -2081 ($ $ (-1 (-112) $ $))) (-15 -1618 ($ $ (-1 (-112) $ $))) (-15 -1647 ((-3 (-1 (-886) (-666 (-886))) "failed") $)) (-15 -1647 ($ $ (-1 (-886) (-666 (-886))))) (-15 -1647 ($ $ (-1 (-886) (-886)))) (-15 -1698 ($ $ (-1 (-550) (-666 (-550))))) (-15 -1698 ((-3 (-1 (-550) (-666 (-550))) "failed") $)) (-15 -3616 ((-112) $ (-520))) (-15 -4257 ($ $ (-520))) (-15 -4140 ($ $ (-1189))) (-15 -4140 ($ $ (-520))) (-15 -4438 ((-3 (-796) "failed") $ (-1189))) (-15 -4438 ((-713 (-796)) $ (-520))) (-15 -2179 ($ $ (-1189) (-796))) (-15 -2179 ($ $ (-520) (-796))) (-15 -3880 ($ $ (-45 (-1189) (-796)))))) +((-3060 (((-578) |#2|) 41 T ELT))) +(((-117 |#1| |#2|) (-10 -7 (-15 -3060 ((-578) |#2|))) (-13 (-376) (-1069 (-421 (-578)))) (-1274 |#1|)) (T -117)) +((-3060 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1069 (-421 *2)))) (-5 *2 (-578)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -3060 ((-578) |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $ (-578)) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2647 (($ (-1203 (-578)) (-578)) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2369 (($ $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-4059 (((-793) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2703 (((-578)) NIL T ELT)) (-3186 (((-578) $) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2704 (($ $ (-578)) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3472 (((-1188 (-578)) $) NIL T ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3909 (((-578) $ (-578)) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-118 |#1|) (-893 |#1|) (-578)) (T -118)) +NIL +(-893 |#1|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-118 |#1|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-578))) ELT)) (-3516 (((-118 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| (-118 |#1|) (-1069 (-578))) ELT) (((-578) $) NIL (|has| (-118 |#1|) (-1069 (-578))) ELT)) (-3178 (($ $) NIL T ELT) (($ (-578) $) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-118 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-118 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-118 |#1|))) (|:| |vec| (-1298 (-118 |#1|)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-118 |#1|)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-118 |#1|) (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-118 |#1|) (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-118 |#1|) (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 (((-118 |#1|) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-118 |#1|) (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-3611 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-118 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-118 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-118 |#1|))) (|:| |vec| (-1298 (-118 |#1|)))) (-1298 $) $) NIL T ELT) (((-711 (-118 |#1|)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-118 |#1|) (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3575 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-118 |#1|) (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 (-118 |#1|)) (-666 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-306 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-666 (-306 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-666 (-1207)) (-666 (-118 |#1|))) NIL (|has| (-118 |#1|) (-528 (-1207) (-118 |#1|))) ELT) (($ $ (-1207) (-118 |#1|)) NIL (|has| (-118 |#1|) (-528 (-1207) (-118 |#1|))) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 (((-118 |#1|) $) NIL T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| (-118 |#1|) (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| (-118 |#1|) (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| (-118 |#1|) (-633 (-550))) ELT) (((-392) $) NIL (|has| (-118 |#1|) (-1053)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1053)) ELT)) (-1562 (((-177 (-421 (-578))) $) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-938))) (|has| (-118 |#1|) (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3909 (((-421 (-578)) $ (-578)) NIL T ELT)) (-2628 (($ $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2495 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT))) +(((-119 |#1|) (-13 (-1023 (-118 |#1|)) (-10 -8 (-15 -3909 ((-421 (-578)) $ (-578))) (-15 -1562 ((-177 (-421 (-578))) $)) (-15 -3178 ($ $)) (-15 -3178 ($ (-578) $)))) (-578)) (T -119)) +((-3909 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-578)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-578)))) (-5 *1 (-119 *3)) (-14 *3 (-578)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-578)))) (-3178 (*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-119 *3)) (-14 *3 *2)))) +(-13 (-1023 (-118 |#1|)) (-10 -8 (-15 -3909 ((-421 (-578)) $ (-578))) (-15 -1562 ((-177 (-421 (-578))) $)) (-15 -3178 ($ $)) (-15 -3178 ($ (-578) $)))) +((-2590 ((|#2| $ "value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-3528 (((-666 $) $) 31 T ELT)) (-2989 (((-112) $ $) 36 T ELT)) (-1624 (((-112) |#2| $) 40 T ELT)) (-1504 (((-666 |#2|) $) 25 T ELT)) (-3821 (((-112) $) 18 T ELT)) (-2436 ((|#2| $ "value") NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-1368 (((-112) $) 57 T ELT)) (-2411 (((-886) $) 47 T ELT)) (-4435 (((-666 $) $) 32 T ELT)) (-2384 (((-112) $ $) 38 T ELT)) (-3226 (((-793) $) 50 T ELT))) +(((-120 |#1| |#2|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2590 (|#1| |#1| "right" |#1|)) (-15 -2590 (|#1| |#1| "left" |#1|)) (-15 -2436 (|#1| |#1| "right")) (-15 -2436 (|#1| |#1| "left")) (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -2989 ((-112) |#1| |#1|)) (-15 -1504 ((-666 |#2|) |#1|)) (-15 -1368 ((-112) |#1|)) (-15 -2436 (|#2| |#1| "value")) (-15 -3821 ((-112) |#1|)) (-15 -3528 ((-666 |#1|) |#1|)) (-15 -4435 ((-666 |#1|) |#1|)) (-15 -1624 ((-112) |#2| |#1|)) (-15 -3226 ((-793) |#1|))) (-121 |#2|) (-1248)) (T -120)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2590 (|#1| |#1| "right" |#1|)) (-15 -2590 (|#1| |#1| "left" |#1|)) (-15 -2436 (|#1| |#1| "right")) (-15 -2436 (|#1| |#1| "left")) (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -2989 ((-112) |#1| |#1|)) (-15 -1504 ((-666 |#2|) |#1|)) (-15 -1368 ((-112) |#1|)) (-15 -2436 (|#2| |#1| "value")) (-15 -3821 ((-112) |#1|)) (-15 -3528 ((-666 |#1|) |#1|)) (-15 -4435 ((-666 |#1|) |#1|)) (-15 -1624 ((-112) |#2| |#1|)) (-15 -3226 ((-793) |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-4090 (($ $ $) 53 (|has| $ (-6 -4501)) ELT)) (-3144 (($ $ $) 55 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4501)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-3534 (($) 7 T CONST)) (-3868 (($ $) 58 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-3855 (($ $) 60 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-121 |#1|) (-142) (-1248)) (T -121)) +((-3855 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1248)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1248)))) (-3868 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1248)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1248)))) (-2590 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4501)) (-4 *1 (-121 *3)) (-4 *3 (-1248)))) (-3144 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-121 *2)) (-4 *2 (-1248)))) (-2590 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4501)) (-4 *1 (-121 *3)) (-4 *3 (-1248)))) (-4090 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-121 *2)) (-4 *2 (-1248))))) +(-13 (-1041 |t#1|) (-10 -8 (-15 -3855 ($ $)) (-15 -2436 ($ $ "left")) (-15 -3868 ($ $)) (-15 -2436 ($ $ "right")) (IF (|has| $ (-6 -4501)) (PROGN (-15 -2590 ($ $ "left" $)) (-15 -3144 ($ $ $)) (-15 -2590 ($ $ "right" $)) (-15 -4090 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1041 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-2189 (((-112) |#1|) 29 T ELT)) (-2646 (((-793) (-793)) 28 T ELT) (((-793)) 27 T ELT)) (-2223 (((-112) |#1| (-112)) 30 T ELT) (((-112) |#1|) 31 T ELT))) +(((-122 |#1|) (-10 -7 (-15 -2223 ((-112) |#1|)) (-15 -2223 ((-112) |#1| (-112))) (-15 -2646 ((-793))) (-15 -2646 ((-793) (-793))) (-15 -2189 ((-112) |#1|))) (-1274 (-578))) (T -122)) +((-2189 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578))))) (-2646 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578))))) (-2646 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578))))) (-2223 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578))))) (-2223 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578)))))) +(-10 -7 (-15 -2223 ((-112) |#1|)) (-15 -2223 ((-112) |#1| (-112))) (-15 -2646 ((-793))) (-15 -2646 ((-793) (-793))) (-15 -2189 ((-112) |#1|))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 18 T ELT)) (-3427 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4090 (($ $ $) 21 (|has| $ (-6 -4501)) ELT)) (-3144 (($ $ $) 23 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4501)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-3868 (($ $) 20 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2314 (($ $ |#1| $) 27 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3855 (($ $) 22 T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4017 (($ |#1| $) 28 T ELT)) (-4328 (($ |#1| $) 15 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 17 T ELT)) (-1696 (($) 11 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3330 (($ (-666 |#1|)) 16 T ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4501) (-6 -4500) (-15 -3330 ($ (-666 |#1|))) (-15 -4328 ($ |#1| $)) (-15 -4017 ($ |#1| $)) (-15 -3427 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-871)) (T -123)) +((-3330 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-123 *3)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))) (-4017 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))) (-3427 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-871))))) +(-13 (-127 |#1|) (-10 -8 (-6 -4501) (-6 -4500) (-15 -3330 ($ (-666 |#1|))) (-15 -4328 ($ |#1| $)) (-15 -4017 ($ |#1| $)) (-15 -3427 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3237 (($ $) 13 T ELT)) (-2309 (($ $) 11 T ELT)) (-2067 (($ $ $) 23 T ELT)) (-3478 (($ $ $) 21 T ELT)) (-3287 (($ $ $) 19 T ELT)) (-3274 (($ $ $) 17 T ELT))) +(((-124 |#1|) (-10 -8 (-15 -2067 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3274 (|#1| |#1| |#1|)) (-15 -3287 (|#1| |#1| |#1|)) (-15 -2309 (|#1| |#1|))) (-125)) (T -124)) +NIL +(-10 -8 (-15 -2067 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3274 (|#1| |#1| |#1|)) (-15 -3287 (|#1| |#1| |#1|)) (-15 -2309 (|#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3237 (($ $) 103 T ELT)) (-2344 (($ $ $) 28 T ELT)) (-1794 (((-1303) $ (-578) (-578)) 66 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) $) 98 (|has| (-112) (-871)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) 92 T ELT)) (-4101 (($ $) 102 (-12 (|has| (-112) (-871)) (|has| $ (-6 -4501))) ELT) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4501)) ELT)) (-2042 (($ $) 97 (|has| (-112) (-871)) ELT) (($ (-1 (-112) (-112) (-112)) $) 91 T ELT)) (-1628 (((-112) $ (-793)) 37 T ELT)) (-2590 (((-112) $ (-1265 (-578)) (-112)) 88 (|has| $ (-6 -4501)) ELT) (((-112) $ (-578) (-112)) 54 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 38 T CONST)) (-1464 (($ $) 100 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 90 T ELT)) (-3776 (($ $) 68 (-12 (|has| (-112) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4500)) ELT) (($ (-112) $) 69 (-12 (|has| (-112) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2512 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1131)) (|has| $ (-6 -4500))) ELT)) (-3450 (((-112) $ (-578) (-112)) 53 (|has| $ (-6 -4501)) ELT)) (-3382 (((-112) $ (-578)) 55 T ELT)) (-3887 (((-578) (-112) $ (-578)) 95 (|has| (-112) (-1131)) ELT) (((-578) (-112) $) 94 (|has| (-112) (-1131)) ELT) (((-578) (-1 (-112) (-112)) $) 93 T ELT)) (-2729 (((-666 (-112)) $) 45 (|has| $ (-6 -4500)) ELT)) (-2332 (($ $ $) 108 T ELT)) (-2309 (($ $) 106 T ELT)) (-2067 (($ $ $) 29 T ELT)) (-3749 (($ (-793) (-112)) 78 T ELT)) (-3478 (($ $ $) 30 T ELT)) (-2363 (((-112) $ (-793)) 36 T ELT)) (-4314 (((-578) $) 63 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 20 T ELT)) (-3176 (($ $ $) 96 (|has| (-112) (-871)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) 89 T ELT)) (-1441 (((-666 (-112)) $) 46 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 62 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 19 T ELT)) (-3439 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-112) (-112) (-112)) $ $) 83 T ELT) (($ (-1 (-112) (-112)) $) 40 T ELT)) (-1719 (((-112) $ (-793)) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4273 (($ $ $ (-578)) 87 T ELT) (($ (-112) $ (-578)) 86 T ELT)) (-4030 (((-666 (-578)) $) 60 T ELT)) (-3023 (((-112) (-578) $) 59 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4189 (((-112) $) 64 (|has| (-578) (-871)) ELT)) (-3668 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75 T ELT)) (-4291 (($ $ (-112)) 65 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-112)) (-666 (-112))) 52 (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-306 (-112))) 50 (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-666 (-306 (-112)))) 49 (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT)) (-2428 (((-112) $ $) 31 T ELT)) (-4179 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-4322 (((-666 (-112)) $) 58 T ELT)) (-4186 (((-112) $) 34 T ELT)) (-1696 (($) 33 T ELT)) (-2436 (($ $ (-1265 (-578))) 77 T ELT) (((-112) $ (-578)) 57 T ELT) (((-112) $ (-578) (-112)) 56 T ELT)) (-1705 (($ $ (-1265 (-578))) 85 T ELT) (($ $ (-578)) 84 T ELT)) (-4324 (((-793) (-112) $) 47 (-12 (|has| (-112) (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4500)) ELT)) (-3751 (($ $ $ (-578)) 99 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 32 T ELT)) (-3343 (((-550) $) 67 (|has| (-112) (-633 (-550))) ELT)) (-2423 (($ (-666 (-112))) 76 T ELT)) (-3703 (($ (-666 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-112) $) 80 T ELT) (($ $ (-112)) 79 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3673 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4500)) ELT)) (-2320 (($ $ $) 107 T ELT)) (-3287 (($ $ $) 105 T ELT)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (-3274 (($ $ $) 104 T ELT)) (-3226 (((-793) $) 39 (|has| $ (-6 -4500)) ELT))) +(((-125) (-142)) (T -125)) +((-3478 (*1 *1 *1 *1) (-4 *1 (-125))) (-2067 (*1 *1 *1 *1) (-4 *1 (-125))) (-2344 (*1 *1 *1 *1) (-4 *1 (-125)))) +(-13 (-871) (-114) (-683) (-19 (-112)) (-10 -8 (-15 -3478 ($ $ $)) (-15 -2067 ($ $ $)) (-15 -2344 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-114) . T) ((-632 (-886)) . T) ((-153 #0=(-112)) . T) ((-633 (-550)) |has| (-112) (-633 (-550))) ((-298 #1=(-578) #0#) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #1# #0#) . T) ((-321 #0#) -12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ((-386 #0#) . T) ((-503 #0#) . T) ((-618 #1# #0#) . T) ((-528 #0# #0#) -12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ((-673 #0#) . T) ((-683) . T) ((-19 #0#) . T) ((-871) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3439 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3979 (($ $) 16 T ELT)) (-3226 (((-793) $) 25 T ELT))) +(((-126 |#1| |#2|) (-10 -8 (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -3979 (|#1| |#1|))) (-127 |#2|) (-1131)) (T -126)) +NIL +(-10 -8 (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -3979 (|#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-4090 (($ $ $) 53 (|has| $ (-6 -4501)) ELT)) (-3144 (($ $ $) 55 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4501)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-3534 (($) 7 T CONST)) (-3868 (($ $) 58 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-2314 (($ $ |#1| $) 61 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-3855 (($ $) 60 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-127 |#1|) (-142) (-1131)) (T -127)) +((-2314 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1131))))) +(-13 (-121 |t#1|) (-10 -8 (-6 -4501) (-6 -4500) (-15 -2314 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1041 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 18 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) 22 (|has| $ (-6 -4501)) ELT)) (-4090 (($ $ $) 23 (|has| $ (-6 -4501)) ELT)) (-3144 (($ $ $) 21 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4501)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-3868 (($ $) 24 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2314 (($ $ |#1| $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3855 (($ $) NIL T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4328 (($ |#1| $) 15 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 17 T ELT)) (-1696 (($) 11 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 20 T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3203 (($ (-666 |#1|)) 16 T ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4501) (-15 -3203 ($ (-666 |#1|))) (-15 -4328 ($ |#1| $)))) (-871)) (T -128)) +((-3203 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-128 *3)))) (-4328 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-871))))) +(-13 (-127 |#1|) (-10 -8 (-6 -4501) (-15 -3203 ($ (-666 |#1|))) (-15 -4328 ($ |#1| $)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 30 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) 32 (|has| $ (-6 -4501)) ELT)) (-4090 (($ $ $) 36 (|has| $ (-6 -4501)) ELT)) (-3144 (($ $ $) 34 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4501)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-3868 (($ $) 23 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2314 (($ $ |#1| $) 16 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3855 (($ $) 22 T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) 25 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 20 T ELT)) (-1696 (($) 11 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2425 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 10 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -2425 ($ |#1|)) (-15 -2425 ($ $ |#1| $)))) (-1131)) (T -129)) +((-2425 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131)))) (-2425 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131))))) +(-13 (-127 |#1|) (-10 -8 (-15 -2425 ($ |#1|)) (-15 -2425 ($ $ |#1| $)))) +((-3213 (((-112) $ $) NIL (|has| (-131) (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) (-131) (-131)) $) NIL T ELT) (((-112) $) NIL (|has| (-131) (-871)) ELT)) (-4101 (($ (-1 (-112) (-131) (-131)) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| (-131) (-871))) ELT)) (-2042 (($ (-1 (-112) (-131) (-131)) $) NIL T ELT) (($ $) NIL (|has| (-131) (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 (((-131) $ (-578) (-131)) 26 (|has| $ (-6 -4501)) ELT) (((-131) $ (-1265 (-578)) (-131)) NIL (|has| $ (-6 -4501)) ELT)) (-3905 (((-793) $ (-793)) 34 T ELT)) (-4233 (($ (-1 (-112) (-131)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-131) (-1131))) ELT)) (-2737 (($ (-131) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-131) (-1131))) ELT) (($ (-1 (-112) (-131)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4500)) (|has| (-131) (-1131))) ELT) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4500)) ELT) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 (((-131) $ (-578) (-131)) 25 (|has| $ (-6 -4501)) ELT)) (-3382 (((-131) $ (-578)) 20 T ELT)) (-3887 (((-578) (-1 (-112) (-131)) $) NIL T ELT) (((-578) (-131) $) NIL (|has| (-131) (-1131)) ELT) (((-578) (-131) $ (-578)) NIL (|has| (-131) (-1131)) ELT)) (-2729 (((-666 (-131)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) (-131)) 14 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 27 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| (-131) (-871)) ELT)) (-3176 (($ (-1 (-112) (-131) (-131)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-131) (-871)) ELT)) (-1441 (((-666 (-131)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-131) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-131) (-1131))) ELT)) (-2316 (((-578) $) 30 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-131) (-871)) ELT)) (-3439 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-131) (-131)) $) NIL T ELT) (($ (-1 (-131) (-131) (-131)) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| (-131) (-1131)) ELT)) (-4273 (($ (-131) $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| (-131) (-1131)) ELT)) (-4189 (((-131) $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 (-131) "failed") (-1 (-112) (-131)) $) NIL T ELT)) (-4291 (($ $ (-131)) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) (-131)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-131)))) NIL (-12 (|has| (-131) (-321 (-131))) (|has| (-131) (-1131))) ELT) (($ $ (-306 (-131))) NIL (-12 (|has| (-131) (-321 (-131))) (|has| (-131) (-1131))) ELT) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-321 (-131))) (|has| (-131) (-1131))) ELT) (($ $ (-666 (-131)) (-666 (-131))) NIL (-12 (|has| (-131) (-321 (-131))) (|has| (-131) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-131) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-131) (-1131))) ELT)) (-4322 (((-666 (-131)) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 12 T ELT)) (-2436 (((-131) $ (-578) (-131)) NIL T ELT) (((-131) $ (-578)) 23 T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-131)) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-131) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-131) (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-131) (-633 (-550))) ELT)) (-2423 (($ (-666 (-131))) 46 T ELT)) (-3703 (($ $ (-131)) NIL T ELT) (($ (-131) $) NIL T ELT) (($ $ $) 47 T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-987 (-131)) $) 35 T ELT) (((-1189) $) 43 T ELT) (((-886) $) NIL (|has| (-131) (-632 (-886))) ELT)) (-2899 (((-793) $) 18 T ELT)) (-3741 (($ (-793)) 8 T ELT)) (-2876 (((-112) $ $) NIL (|has| (-131) (-102)) ELT)) (-3673 (((-112) (-1 (-112) (-131)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-131) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-131) (-871)) ELT)) (-2384 (((-112) $ $) 32 (|has| (-131) (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| (-131) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-131) (-871)) ELT)) (-3226 (((-793) $) 15 (|has| $ (-6 -4500)) ELT))) +(((-130) (-13 (-19 (-131)) (-632 (-987 (-131))) (-632 (-1189)) (-10 -8 (-15 -3741 ($ (-793))) (-15 -2899 ((-793) $)) (-15 -3905 ((-793) $ (-793))) (-6 -4500)))) (T -130)) +((-3741 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-130)))) (-3905 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130))))) +(-13 (-19 (-131)) (-632 (-987 (-131))) (-632 (-1189)) (-10 -8 (-15 -3741 ($ (-793))) (-15 -2899 ((-793) $)) (-15 -3905 ((-793) $ (-793))) (-6 -4500))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) 40 T ELT)) (-2222 (((-793)) 26 T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) 35 T ELT)) (-1345 (($ $ $) NIL T ELT) (($) 24 T CONST)) (-3667 (($ $ $) NIL T ELT) (($) 25 T CONST)) (-3193 (((-950) $) 33 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) 31 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-146)) 15 T ELT) (((-146) $) 17 T ELT)) (-3541 (($ (-793)) 8 T ELT)) (-1867 (($ $ $) 37 T ELT)) (-1855 (($ $ $) 36 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) 39 T ELT)) (-2441 (((-112) $ $) 22 T ELT)) (-2416 (((-112) $ $) 20 T ELT)) (-2384 (((-112) $ $) 18 T ELT)) (-2429 (((-112) $ $) 21 T ELT)) (-2404 (((-112) $ $) 19 T ELT)) (-3274 (($ $ $) 38 T ELT))) +(((-131) (-13 (-866) (-504 (-146)) (-683) (-10 -8 (-15 -3541 ($ (-793))) (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529)))) (T -131)) +((-3541 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))) (-1855 (*1 *1 *1 *1) (-5 *1 (-131))) (-1867 (*1 *1 *1 *1) (-5 *1 (-131))) (-3534 (*1 *1) (-5 *1 (-131)))) +(-13 (-866) (-504 (-146)) (-683) (-10 -8 (-15 -3541 ($ (-793))) (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-3211 (((-112) $ $) NIL T ELT)) (-3302 (($) 6 T CONST)) (-1396 (($) 7 T CONST)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 14 T ELT)) (-2235 (($) 8 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 10 T ELT))) -(((-131) (-13 (-1130) (-10 -8 (-15 -1396 ($) -1528) (-15 -2235 ($) -1528) (-15 -3302 ($) -1528)))) (T -131)) -((-1396 (*1 *1) (-5 *1 (-131))) (-2235 (*1 *1) (-5 *1 (-131))) (-3302 (*1 *1) (-5 *1 (-131)))) -(-13 (-1130) (-10 -8 (-15 -1396 ($) -1528) (-15 -2235 ($) -1528) (-15 -3302 ($) -1528))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) -(((-132) (-141)) (T -132)) -((-3262 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -3262 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-3058 (((-1302) $ (-792)) 14 T ELT)) (-3886 (((-792) $) 15 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-133) (-141)) (T -133)) -((-3886 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-792)))) (-3058 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-792)) (-5 *2 (-1302))))) -(-13 (-1130) (-10 -8 (-15 -3886 ((-792) $)) (-15 -3058 ((-1302) $ (-792))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-665 (-1165)) $) 10 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-134) (-13 (-1113) (-10 -8 (-15 -4115 ((-665 (-1165)) $))))) (T -134)) -((-4115 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-134))))) -(-13 (-1113) (-10 -8 (-15 -4115 ((-665 (-1165)) $)))) -((-3211 (((-112) $ $) 49 T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-792) "failed") $) 58 T ELT)) (-3514 (((-792) $) 56 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) 37 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4392 (((-112)) 59 T ELT)) (-2017 (((-112) (-112)) 61 T ELT)) (-1468 (((-112) $) 30 T ELT)) (-3730 (((-112) $) 55 T ELT)) (-2410 (((-885) $) 28 T ELT) (($ (-792)) 20 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 18 T CONST)) (-2378 (($) 19 T CONST)) (-2551 (($ (-792)) 21 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) 40 T ELT)) (-2383 (((-112) $ $) 32 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 35 T ELT)) (-2483 (((-3 $ "failed") $ $) 42 T ELT)) (-2471 (($ $ $) 38 T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-792) $) 48 T ELT) (($ (-949) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-135) (-13 (-870) (-23) (-747) (-1068 (-792)) (-10 -8 (-6 (-4501 "*")) (-15 -2483 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2551 ($ (-792))) (-15 -1468 ((-112) $)) (-15 -3730 ((-112) $)) (-15 -4392 ((-112))) (-15 -2017 ((-112) (-112)))))) (T -135)) -((-2483 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-135)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4392 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-870) (-23) (-747) (-1068 (-792)) (-10 -8 (-6 (-4501 "*")) (-15 -2483 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2551 ($ (-792))) (-15 -1468 ((-112) $)) (-15 -3730 ((-112) $)) (-15 -4392 ((-112))) (-15 -2017 ((-112) (-112))))) -((-3767 (((-137 |#1| |#2| |#4|) (-665 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-3609 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3767 ((-137 |#1| |#2| |#4|) (-665 |#4|) (-137 |#1| |#2| |#3|))) (-15 -3609 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-577) (-792) (-174) (-174)) (T -136)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -3767 ((-137 |#1| |#2| |#4|) (-665 |#4|) (-137 |#1| |#2| |#3|))) (-15 -3609 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2709 (($ (-665 |#3|)) 61 T ELT)) (-3439 (($ $) 123 T ELT) (($ $ (-577) (-577)) 122 T ELT)) (-2762 (($) 20 T ELT)) (-2817 (((-3 |#3| "failed") $) 83 T ELT)) (-3514 ((|#3| $) NIL T ELT)) (-2836 (($ $ (-665 (-577))) 124 T ELT)) (-3755 (((-665 |#3|) $) 56 T ELT)) (-1875 (((-792) $) 66 T ELT)) (-3526 (($ $ $) 117 T ELT)) (-1577 (($) 65 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2248 (($) 19 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 ((|#3| $ (-577)) 69 T ELT) ((|#3| $) 68 T ELT) ((|#3| $ (-577) (-577)) 70 T ELT) ((|#3| $ (-577) (-577) (-577)) 71 T ELT) ((|#3| $ (-577) (-577) (-577) (-577)) 72 T ELT) ((|#3| $ (-665 (-577))) 73 T ELT)) (-2776 (((-792) $) 67 T ELT)) (-2608 (($ $ (-577) $ (-577)) 118 T ELT) (($ $ (-577) (-577)) 120 T ELT)) (-2410 (((-885) $) 91 T ELT) (($ |#3|) 92 T ELT) (($ (-246 |#2| |#3|)) 99 T ELT) (($ (-1172 |#2| |#3|)) 102 T ELT) (($ (-665 |#3|)) 74 T ELT) (($ (-665 $)) 80 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 93 T CONST)) (-2378 (($) 94 T CONST)) (-2383 (((-112) $ $) 104 T ELT)) (-2483 (($ $) 110 T ELT) (($ $ $) 108 T ELT)) (-2471 (($ $ $) 106 T ELT)) (* (($ |#3| $) 115 T ELT) (($ $ |#3|) 116 T ELT) (($ $ (-577)) 113 T ELT) (($ (-577) $) 112 T ELT) (($ $ $) 119 T ELT))) -(((-137 |#1| |#2| |#3|) (-13 (-478 |#3| (-792)) (-483 (-577) (-792)) (-297 (-577) |#3|) (-10 -8 (-15 -2410 ($ (-246 |#2| |#3|))) (-15 -2410 ($ (-1172 |#2| |#3|))) (-15 -2410 ($ (-665 |#3|))) (-15 -2410 ($ (-665 $))) (-15 -1875 ((-792) $)) (-15 -2435 (|#3| $)) (-15 -2435 (|#3| $ (-577) (-577))) (-15 -2435 (|#3| $ (-577) (-577) (-577))) (-15 -2435 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2435 (|#3| $ (-665 (-577)))) (-15 -3526 ($ $ $)) (-15 * ($ $ $)) (-15 -2608 ($ $ (-577) $ (-577))) (-15 -2608 ($ $ (-577) (-577))) (-15 -3439 ($ $)) (-15 -3439 ($ $ (-577) (-577))) (-15 -2836 ($ $ (-665 (-577)))) (-15 -2248 ($)) (-15 -1577 ($)) (-15 -3755 ((-665 |#3|) $)) (-15 -2709 ($ (-665 |#3|))) (-15 -2762 ($)))) (-577) (-792) (-174)) (T -137)) -((-3526 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1172 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 *2) (-4 *5 (-174)))) (-2435 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-577)) (-14 *4 (-792)))) (-2435 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-792)))) (-2435 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-792)))) (-2435 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-792)))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 (-665 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-577)) (-14 *5 (-792)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-2608 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-792)) (-4 *5 (-174)))) (-2608 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-792)) (-4 *5 (-174)))) (-3439 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-3439 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-792)) (-4 *5 (-174)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) (-2248 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-1577 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-665 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) (-2709 (*1 *1 *2) (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-792)))) (-2762 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) (-4 *4 (-174))))) -(-13 (-478 |#3| (-792)) (-483 (-577) (-792)) (-297 (-577) |#3|) (-10 -8 (-15 -2410 ($ (-246 |#2| |#3|))) (-15 -2410 ($ (-1172 |#2| |#3|))) (-15 -2410 ($ (-665 |#3|))) (-15 -2410 ($ (-665 $))) (-15 -1875 ((-792) $)) (-15 -2435 (|#3| $)) (-15 -2435 (|#3| $ (-577) (-577))) (-15 -2435 (|#3| $ (-577) (-577) (-577))) (-15 -2435 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2435 (|#3| $ (-665 (-577)))) (-15 -3526 ($ $ $)) (-15 * ($ $ $)) (-15 -2608 ($ $ (-577) $ (-577))) (-15 -2608 ($ $ (-577) (-577))) (-15 -3439 ($ $)) (-15 -3439 ($ $ (-577) (-577))) (-15 -2836 ($ $ (-665 (-577)))) (-15 -2248 ($)) (-15 -1577 ($)) (-15 -3755 ((-665 |#3|) $)) (-15 -2709 ($ (-665 |#3|))) (-15 -2762 ($)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3664 (((-1165) $) 11 T ELT)) (-3653 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-138) (-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $))))) (T -138)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138))))) -(-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4407 (((-188) $) 10 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-665 (-1165)) $) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-139) (-13 (-1113) (-10 -8 (-15 -4407 ((-188) $)) (-15 -4115 ((-665 (-1165)) $))))) (T -139)) -((-4407 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-139))))) -(-13 (-1113) (-10 -8 (-15 -4407 ((-188) $)) (-15 -4115 ((-665 (-1165)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2301 (((-665 (-888)) $) NIL T ELT)) (-4105 (((-519) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4407 (((-188) $) NIL T ELT)) (-4450 (((-112) $ (-519)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1337 (((-665 (-112)) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (((-189) $) 6 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3089 (((-55) $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-140) (-13 (-187) (-631 (-189)))) (T -140)) -NIL -(-13 (-187) (-631 (-189))) -((-2493 (((-665 (-185 (-140))) $) 13 T ELT)) (-2476 (((-665 (-185 (-140))) $) 14 T ELT)) (-3593 (((-665 (-859)) $) 10 T ELT)) (-1532 (((-140) $) 7 T ELT)) (-2410 (((-885) $) 16 T ELT))) -(((-141) (-13 (-631 (-885)) (-10 -8 (-15 -1532 ((-140) $)) (-15 -3593 ((-665 (-859)) $)) (-15 -2493 ((-665 (-185 (-140))) $)) (-15 -2476 ((-665 (-185 (-140))) $))))) (T -141)) -((-1532 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-665 (-859))) (-5 *1 (-141)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-631 (-885)) (-10 -8 (-15 -1532 ((-140) $)) (-15 -3593 ((-665 (-859)) $)) (-15 -2493 ((-665 (-185 (-140))) $)) (-15 -2476 ((-665 (-185 (-140))) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1900 (($) 17 T CONST)) (-4194 (($) NIL (|has| (-145) (-380)) ELT)) (-1339 (($ $ $) 19 T ELT) (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT)) (-2729 (($ $ $) NIL T ELT)) (-2171 (((-112) $ $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| (-145) (-380)) ELT)) (-1753 (($) NIL T ELT) (($ (-665 (-145))) NIL T ELT)) (-3402 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1991 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-145) $) 60 (|has| $ (-6 -4499)) ELT)) (-2736 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2511 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2060 (($) NIL (|has| (-145) (-380)) ELT)) (-2728 (((-665 (-145)) $) 69 (|has| $ (-6 -4499)) ELT)) (-3283 (((-112) $ $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-1344 (((-145) $) NIL (|has| (-145) (-870)) ELT)) (-4138 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-4167 (((-145) $) NIL (|has| (-145) (-870)) ELT)) (-3437 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-145) (-145)) $) 64 T ELT)) (-3028 (($) 18 T CONST)) (-2553 (((-949) $) NIL (|has| (-145) (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3959 (($ $ $) 30 T ELT)) (-3398 (((-145) $) 61 T ELT)) (-3795 (($ (-145) $) 59 T ELT)) (-2085 (($ (-949)) NIL (|has| (-145) (-380)) ELT)) (-4315 (($) 16 T CONST)) (-4312 (((-1150) $) NIL T ELT)) (-1520 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-3127 (((-145) $) 62 T ELT)) (-2519 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-145)) (-665 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 57 T ELT)) (-3071 (($) 15 T CONST)) (-2964 (($ $ $) 32 T ELT) (($ $ (-145)) NIL T ELT)) (-2427 (($ (-665 (-145))) NIL T ELT) (($) NIL T ELT)) (-4323 (((-792) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (((-792) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-1188) $) 37 T ELT) (((-549) $) NIL (|has| (-145) (-632 (-549))) ELT) (((-665 (-145)) $) 35 T ELT)) (-2422 (($ (-665 (-145))) NIL T ELT)) (-2698 (($ $) 33 (|has| (-145) (-380)) ELT)) (-2410 (((-885) $) 53 T ELT)) (-2695 (($ (-1188)) 14 T ELT) (($ (-665 (-145))) 50 T ELT)) (-2986 (((-792) $) NIL T ELT)) (-2868 (($) 58 T ELT) (($ (-665 (-145))) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3236 (($ (-665 (-145))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2186 (($) 21 T CONST)) (-2979 (($) 20 T CONST)) (-2383 (((-112) $ $) 24 T ELT)) (-3224 (((-792) $) 56 (|has| $ (-6 -4499)) ELT))) -(((-142) (-13 (-1130) (-632 (-1188)) (-438 (-145)) (-632 (-665 (-145))) (-10 -8 (-15 -2695 ($ (-1188))) (-15 -2695 ($ (-665 (-145)))) (-15 -3071 ($) -1528) (-15 -4315 ($) -1528) (-15 -1900 ($) -1528) (-15 -3028 ($) -1528) (-15 -2979 ($) -1528) (-15 -2186 ($) -1528)))) (T -142)) -((-2695 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-142)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-665 (-145))) (-5 *1 (-142)))) (-3071 (*1 *1) (-5 *1 (-142))) (-4315 (*1 *1) (-5 *1 (-142))) (-1900 (*1 *1) (-5 *1 (-142))) (-3028 (*1 *1) (-5 *1 (-142))) (-2979 (*1 *1) (-5 *1 (-142))) (-2186 (*1 *1) (-5 *1 (-142)))) -(-13 (-1130) (-632 (-1188)) (-438 (-145)) (-632 (-665 (-145))) (-10 -8 (-15 -2695 ($ (-1188))) (-15 -2695 ($ (-665 (-145)))) (-15 -3071 ($) -1528) (-15 -4315 ($) -1528) (-15 -1900 ($) -1528) (-15 -3028 ($) -1528) (-15 -2979 ($) -1528) (-15 -2186 ($) -1528))) -((-2116 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-4162 ((|#1| |#3|) 9 T ELT)) (-2362 ((|#3| |#3|) 15 T ELT))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -4162 (|#1| |#3|)) (-15 -2362 (|#3| |#3|)) (-15 -2116 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1022 |#1|) (-385 |#2|)) (T -143)) -((-2116 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-385 *5)))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-385 *4)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-385 *4))))) -(-10 -7 (-15 -4162 (|#1| |#3|)) (-15 -2362 (|#3| |#3|)) (-15 -2116 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2283 (($ $ $) 8 T ELT)) (-2606 (($ $) 7 T ELT)) (-3267 (($ $ $) 6 T ELT))) -(((-144) (-141)) (T -144)) -((-2283 (*1 *1 *1 *1) (-4 *1 (-144))) (-2606 (*1 *1 *1) (-4 *1 (-144))) (-3267 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -3267 ($ $ $)) (-15 -2606 ($ $)) (-15 -2283 ($ $ $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2805 (((-112) $) 39 T ELT)) (-1900 (($ $) 55 T ELT)) (-1523 (($) 26 T CONST)) (-2221 (((-792)) 13 T ELT)) (-2060 (($) 25 T ELT)) (-3165 (($) 27 T CONST)) (-2828 (((-792) $) 21 T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2228 (((-112) $) 41 T ELT)) (-3028 (($ $) 56 T ELT)) (-2553 (((-949) $) 23 T ELT)) (-3384 (((-1188) $) 49 T ELT)) (-2085 (($ (-949)) 20 T ELT)) (-2848 (((-112) $) 37 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4237 (($) 28 T CONST)) (-3478 (((-112) $) 35 T ELT)) (-2410 (((-885) $) 30 T ELT)) (-3169 (($ (-792)) 19 T ELT) (($ (-1188)) 54 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2424 (((-112) $) 45 T ELT)) (-1666 (((-112) $) 43 T ELT)) (-2440 (((-112) $ $) 11 T ELT)) (-2415 (((-112) $ $) 9 T ELT)) (-2383 (((-112) $ $) 7 T ELT)) (-2428 (((-112) $ $) 10 T ELT)) (-2403 (((-112) $ $) 8 T ELT))) -(((-145) (-13 (-865) (-10 -8 (-15 -2828 ((-792) $)) (-15 -3169 ($ (-792))) (-15 -3169 ($ (-1188))) (-15 -1523 ($) -1528) (-15 -3165 ($) -1528) (-15 -4237 ($) -1528) (-15 -1900 ($ $)) (-15 -3028 ($ $)) (-15 -3478 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -1666 ((-112) $)) (-15 -2805 ((-112) $)) (-15 -2228 ((-112) $)) (-15 -2424 ((-112) $))))) (T -145)) -((-2828 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-145)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-145)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-145)))) (-1523 (*1 *1) (-5 *1 (-145))) (-3165 (*1 *1) (-5 *1 (-145))) (-4237 (*1 *1) (-5 *1 (-145))) (-1900 (*1 *1 *1) (-5 *1 (-145))) (-3028 (*1 *1 *1) (-5 *1 (-145))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-865) (-10 -8 (-15 -2828 ((-792) $)) (-15 -3169 ($ (-792))) (-15 -3169 ($ (-1188))) (-15 -1523 ($) -1528) (-15 -3165 ($) -1528) (-15 -4237 ($) -1528) (-15 -1900 ($ $)) (-15 -3028 ($ $)) (-15 -3478 ((-112) $)) (-15 -2848 ((-112) $)) (-15 -1666 ((-112) $)) (-15 -2805 ((-112) $)) (-15 -2228 ((-112) $)) (-15 -2424 ((-112) $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-2580 (((-3 $ "failed") $) 39 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-146) (-141)) (T -146)) -((-2580 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1079) (-10 -8 (-15 -2580 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3400 ((|#1| (-710 |#1|) |#1|) 19 T ELT))) -(((-147 |#1|) (-10 -7 (-15 -3400 (|#1| (-710 |#1|) |#1|))) (-174)) (T -147)) -((-3400 (*1 *2 *3 *2) (-12 (-5 *3 (-710 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -3400 (|#1| (-710 |#1|) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-148) (-141)) (T -148)) -NIL -(-13 (-1079)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2394 (((-2 (|:| -2182 (-792)) (|:| -2671 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-792)) 76 T ELT)) (-1883 (((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-792))) "failed") |#3|) 56 T ELT)) (-1388 (((-2 (|:| -2671 (-420 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-2965 ((|#1| |#3| |#3|) 44 T ELT)) (-3362 ((|#3| |#3| (-420 |#2|) (-420 |#2|)) 20 T ELT)) (-3372 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-792))) |#3| |#3|) 53 T ELT))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1388 ((-2 (|:| -2671 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1883 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-792))) "failed") |#3|)) (-15 -2394 ((-2 (|:| -2182 (-792)) (|:| -2671 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-792))) (-15 -2965 (|#1| |#3| |#3|)) (-15 -3362 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -3372 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-792))) |#3| |#3|))) (-1251) (-1273 |#1|) (-1273 (-420 |#2|))) (T -149)) -((-3372 (*1 *2 *3 *3) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) (|:| |c2| (-420 *5)) (|:| |deg| (-792)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5))))) (-3362 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1273 *3)))) (-2965 (*1 *2 *3 *3) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1251)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1273 (-420 *4))))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *6)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-792)) (-4 *7 (-1273 *3)))) (-1883 (*1 *2 *3) (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-792)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5))))) (-1388 (*1 *2 *3) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2671 (-420 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) -(-10 -7 (-15 -1388 ((-2 (|:| -2671 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1883 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-792))) "failed") |#3|)) (-15 -2394 ((-2 (|:| -2182 (-792)) (|:| -2671 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-792))) (-15 -2965 (|#1| |#3| |#3|)) (-15 -3362 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -3372 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-792))) |#3| |#3|))) -((-1440 (((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)) 35 T ELT))) -(((-150 |#1| |#2|) (-10 -7 (-15 -1440 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)))) (-558) (-167 |#1|)) (T -150)) -((-1440 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -1440 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)))) -((-4232 (($ (-1 (-112) |#2|) $) 37 T ELT)) (-3860 (($ $) 44 T ELT)) (-2736 (($ (-1 (-112) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-2511 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1520 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27 T ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 24 T ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) 18 T ELT) (((-792) |#2| $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-3224 (((-792) $) 12 T ELT))) -(((-151 |#1| |#2|) (-10 -8 (-15 -3860 (|#1| |#1|)) (-15 -2736 (|#1| |#2| |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4232 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1520 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3224 ((-792) |#1|))) (-152 |#2|) (-1247)) (T -151)) -NIL -(-10 -8 (-15 -3860 (|#1| |#1|)) (-15 -2736 (|#1| |#2| |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4232 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1520 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3224 ((-792) |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4232 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3860 (($ $) 42 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT) (($ |#1| $) 43 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 41 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 50 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-152 |#1|) (-141) (-1247)) (T -152)) -((-2422 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-152 *3)))) (-1520 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-2511 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-2511 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) (-4 *3 (-1247)))) (-4232 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) (-4 *3 (-1247)))) (-2511 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)))) (-2736 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) (-3860 (*1 *1 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) (-4 *2 (-1130))))) -(-13 (-502 |t#1|) (-10 -8 (-15 -2422 ($ (-665 |t#1|))) (-15 -1520 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4499)) (PROGN (-15 -2511 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2511 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2736 ($ (-1 (-112) |t#1|) $)) (-15 -4232 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -2511 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2736 ($ |t#1| $)) (-15 -3860 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) 111 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-665 (-949))) 71 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3411 (($ (-949)) 57 T ELT)) (-2419 (((-135)) 23 T ELT)) (-2410 (((-885) $) 86 T ELT) (($ (-577)) 53 T ELT) (($ |#2|) 54 T ELT)) (-2778 ((|#2| $ (-665 (-949))) 74 T ELT)) (-3234 (((-792)) 20 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 47 T CONST)) (-2378 (($) 51 T CONST)) (-2383 (((-112) $ $) 33 T ELT)) (-2494 (($ $ |#2|) NIL T ELT)) (-2483 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-2471 (($ $ $) 38 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) -(((-153 |#1| |#2| |#3|) (-13 (-1079) (-38 |#2|) (-1304 |#2|) (-10 -8 (-15 -3411 ($ (-949))) (-15 -2925 ($ |#2| (-665 (-949)))) (-15 -2778 (|#2| $ (-665 (-949)))) (-15 -4281 ((-3 $ "failed") $)))) (-949) (-375) (-1023 |#1| |#2|)) (T -153)) -((-4281 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-949)) (-4 *3 (-375)) (-14 *4 (-1023 *2 *3)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-375)) (-14 *5 (-1023 *3 *4)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-949)) (-4 *2 (-375)) (-14 *5 (-1023 *4 *2)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-665 (-949))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-949)) (-14 *5 (-1023 *4 *2))))) -(-13 (-1079) (-38 |#2|) (-1304 |#2|) (-10 -8 (-15 -3411 ($ (-949))) (-15 -2925 ($ |#2| (-665 (-949)))) (-15 -2778 (|#2| $ (-665 (-949)))) (-15 -4281 ((-3 $ "failed") $)))) -((-3225 (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))) (-228) (-228) (-228) (-228)) 59 T ELT)) (-2678 (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577))) 95 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955)) 96 T ELT)) (-3231 (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228))))) 99 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-971 (-228)))) 98 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577))) 90 T ELT) (((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955)) 91 T ELT))) -(((-154) (-10 -7 (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -2678 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -2678 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -3225 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))) (-228) (-228) (-228) (-228))) (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-971 (-228))))) (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))))))) (T -154)) -((-3231 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 (-228))))))) (-3231 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)) (-5 *3 (-665 (-971 (-228)))))) (-3225 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-228)) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 *4)))) (|:| |xValues| (-1124 *4)) (|:| |yValues| (-1124 *4)))) (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 *4)))))) (-2678 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-955)) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)))) (-3231 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-955)) (-5 *2 (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) (-5 *1 (-154))))) -(-10 -7 (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -2678 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955))) (-15 -2678 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-955) (-420 (-577)) (-420 (-577)))) (-15 -3225 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228)))) (-228) (-228) (-228) (-228))) (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-971 (-228))))) (-15 -3231 ((-2 (|:| |brans| (-665 (-665 (-971 (-228))))) (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228)))) (-665 (-665 (-971 (-228))))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3979 (((-665 (-1165)) $) 20 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 27 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-1165) $) 9 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-155) (-13 (-1113) (-10 -8 (-15 -3979 ((-665 (-1165)) $)) (-15 -4115 ((-1165) $))))) (T -155)) -((-3979 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-155)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-155))))) -(-13 (-1113) (-10 -8 (-15 -3979 ((-665 (-1165)) $)) (-15 -4115 ((-1165) $)))) -((-3086 (((-665 (-171 |#2|)) |#1| |#2|) 50 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -3086 ((-665 (-171 |#2|)) |#1| |#2|))) (-1273 (-171 (-577))) (-13 (-375) (-869))) (T -156)) -((-3086 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1273 (-171 (-577)))) (-4 *4 (-13 (-375) (-869)))))) -(-10 -7 (-15 -3086 ((-665 (-171 |#2|)) |#1| |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3664 (((-1246) $) 12 T ELT)) (-3653 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-157) (-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1246) $))))) (T -157)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-157)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-157))))) -(-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1246) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2321 (($) 41 T ELT)) (-3324 (($) 40 T ELT)) (-3078 (((-949)) 46 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2638 (((-577) $) 44 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4319 (($) 42 T ELT)) (-4230 (($ (-577)) 47 T ELT)) (-2410 (((-885) $) 53 T ELT)) (-1382 (($) 43 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 38 T ELT)) (-2471 (($ $ $) 35 T ELT)) (* (($ (-949) $) 45 T ELT) (($ (-228) $) 11 T ELT))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-949) $)) (-15 * ($ (-228) $)) (-15 -2471 ($ $ $)) (-15 -3324 ($)) (-15 -2321 ($)) (-15 -4319 ($)) (-15 -1382 ($)) (-15 -2638 ((-577) $)) (-15 -3078 ((-949))) (-15 -4230 ($ (-577)))))) (T -158)) -((-2471 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-158)))) (-3324 (*1 *1) (-5 *1 (-158))) (-2321 (*1 *1) (-5 *1 (-158))) (-4319 (*1 *1) (-5 *1 (-158))) (-1382 (*1 *1) (-5 *1 (-158))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) (-3078 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-158)))) (-4230 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-949) $)) (-15 * ($ (-228) $)) (-15 -2471 ($ $ $)) (-15 -3324 ($)) (-15 -2321 ($)) (-15 -4319 ($)) (-15 -1382 ($)) (-15 -2638 ((-577) $)) (-15 -3078 ((-949))) (-15 -4230 ($ (-577))))) -((-4320 ((|#2| |#2| (-1122 |#2|)) 98 T ELT) ((|#2| |#2| (-1206)) 75 T ELT)) (-3526 ((|#2| |#2| (-1122 |#2|)) 97 T ELT) ((|#2| |#2| (-1206)) 74 T ELT)) (-2283 ((|#2| |#2| |#2|) 25 T ELT)) (-4396 (((-115) (-115)) 111 T ELT)) (-4124 ((|#2| (-665 |#2|)) 130 T ELT)) (-2502 ((|#2| (-665 |#2|)) 151 T ELT)) (-1957 ((|#2| (-665 |#2|)) 138 T ELT)) (-3970 ((|#2| |#2|) 136 T ELT)) (-3894 ((|#2| (-665 |#2|)) 124 T ELT)) (-1486 ((|#2| (-665 |#2|)) 125 T ELT)) (-2108 ((|#2| (-665 |#2|)) 149 T ELT)) (-1887 ((|#2| |#2| (-1206)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-2606 ((|#2| |#2|) 21 T ELT)) (-3267 ((|#2| |#2| |#2|) 24 T ELT)) (-3540 (((-112) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-159 |#1| |#2|) (-10 -7 (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3267 (|#2| |#2| |#2|)) (-15 -2283 (|#2| |#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1887 (|#2| |#2| (-1206))) (-15 -4320 (|#2| |#2| (-1206))) (-15 -4320 (|#2| |#2| (-1122 |#2|))) (-15 -3526 (|#2| |#2| (-1206))) (-15 -3526 (|#2| |#2| (-1122 |#2|))) (-15 -3970 (|#2| |#2|)) (-15 -2108 (|#2| (-665 |#2|))) (-15 -1957 (|#2| (-665 |#2|))) (-15 -2502 (|#2| (-665 |#2|))) (-15 -3894 (|#2| (-665 |#2|))) (-15 -1486 (|#2| (-665 |#2|))) (-15 -4124 (|#2| (-665 |#2|)))) (-569) (-443 |#1|)) (T -159)) -((-4124 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-4320 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-4320 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-1887 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2606 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2283 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-3267 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) (-4 *4 (-443 *3)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4))))) -(-10 -7 (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3267 (|#2| |#2| |#2|)) (-15 -2283 (|#2| |#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1887 (|#2| |#2| (-1206))) (-15 -4320 (|#2| |#2| (-1206))) (-15 -4320 (|#2| |#2| (-1122 |#2|))) (-15 -3526 (|#2| |#2| (-1206))) (-15 -3526 (|#2| |#2| (-1122 |#2|))) (-15 -3970 (|#2| |#2|)) (-15 -2108 (|#2| (-665 |#2|))) (-15 -1957 (|#2| (-665 |#2|))) (-15 -2502 (|#2| (-665 |#2|))) (-15 -3894 (|#2| (-665 |#2|))) (-15 -1486 (|#2| (-665 |#2|))) (-15 -4124 (|#2| (-665 |#2|)))) -((-1627 ((|#1| |#1| |#1|) 64 T ELT)) (-2602 ((|#1| |#1| |#1|) 61 T ELT)) (-2283 ((|#1| |#1| |#1|) 55 T ELT)) (-2061 ((|#1| |#1|) 42 T ELT)) (-2278 ((|#1| |#1| (-665 |#1|)) 53 T ELT)) (-2606 ((|#1| |#1|) 46 T ELT)) (-3267 ((|#1| |#1| |#1|) 49 T ELT))) -(((-160 |#1|) (-10 -7 (-15 -3267 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -2278 (|#1| |#1| (-665 |#1|))) (-15 -2061 (|#1| |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| |#1|)) (-15 -1627 (|#1| |#1| |#1|))) (-558)) (T -160)) -((-1627 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2602 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2061 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2278 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2)))) (-2606 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-3267 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(-10 -7 (-15 -3267 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -2278 (|#1| |#1| (-665 |#1|))) (-15 -2061 (|#1| |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| |#1|)) (-15 -1627 (|#1| |#1| |#1|))) -((-4320 (($ $ (-1206)) 12 T ELT) (($ $ (-1122 $)) 11 T ELT)) (-3526 (($ $ (-1206)) 10 T ELT) (($ $ (-1122 $)) 9 T ELT)) (-2283 (($ $ $) 8 T ELT)) (-1887 (($ $) 14 T ELT) (($ $ (-1206)) 13 T ELT)) (-2606 (($ $) 7 T ELT)) (-3267 (($ $ $) 6 T ELT))) -(((-161) (-141)) (T -161)) -((-1887 (*1 *1 *1) (-4 *1 (-161))) (-1887 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) (-4320 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) (-4320 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161)))) (-3526 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -1887 ($ $)) (-15 -1887 ($ $ (-1206))) (-15 -4320 ($ $ (-1206))) (-15 -4320 ($ $ (-1122 $))) (-15 -3526 ($ $ (-1206))) (-15 -3526 ($ $ (-1122 $))))) -(((-144) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-665 (-1165)) $) 10 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-162) (-13 (-1113) (-10 -8 (-15 -4115 ((-665 (-1165)) $))))) (T -162)) -((-4115 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-162))))) -(-13 (-1113) (-10 -8 (-15 -4115 ((-665 (-1165)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3040 (($ (-577)) 14 T ELT) (($ $ $) 15 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 9 T ELT))) -(((-163) (-13 (-1130) (-10 -8 (-15 -3040 ($ (-577))) (-15 -3040 ($ $ $))))) (T -163)) -((-3040 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163)))) (-3040 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1130) (-10 -8 (-15 -3040 ($ (-577))) (-15 -3040 ($ $ $)))) -((-4396 (((-115) (-1206)) 102 T ELT))) -(((-164) (-10 -7 (-15 -4396 ((-115) (-1206))))) (T -164)) -((-4396 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -4396 ((-115) (-1206)))) -((-2269 ((|#3| |#3|) 19 T ELT))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -2269 (|#3| |#3|))) (-1079) (-1273 |#1|) (-1273 |#2|)) (T -165)) -((-2269 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-4 *4 (-1273 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1273 *4))))) -(-10 -7 (-15 -2269 (|#3| |#3|))) -((-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 223 T ELT)) (-1880 ((|#2| $) 102 T ELT)) (-1501 (($ $) 256 T ELT)) (-1371 (($ $) 250 T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 47 T ELT)) (-1477 (($ $) 254 T ELT)) (-1348 (($ $) 248 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 146 T ELT)) (-3514 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-3152 (($ $ $) 229 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 160 T ELT) (((-710 |#2|) (-710 $)) 154 T ELT)) (-2511 (($ (-1202 |#2|)) 125 T ELT) (((-3 $ "failed") (-420 (-1202 |#2|))) NIL T ELT)) (-4281 (((-3 $ "failed") $) 214 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 204 T ELT)) (-2748 (((-112) $) 199 T ELT)) (-3557 (((-420 (-577)) $) 202 T ELT)) (-1875 (((-949)) 96 T ELT)) (-3164 (($ $ $) 231 T ELT)) (-2071 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269 T ELT)) (-2549 (($) 245 T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 193 T ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 198 T ELT)) (-2755 ((|#2| $) 100 T ELT)) (-4067 (((-1202 |#2|) $) 127 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3863 (($ $) 247 T ELT)) (-2500 (((-1202 |#2|) $) 126 T ELT)) (-3055 (($ $) 207 T ELT)) (-4098 (($) 103 T ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 95 T ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 64 T ELT)) (-3200 (((-3 $ "failed") $ |#2|) 209 T ELT) (((-3 $ "failed") $ $) 212 T ELT)) (-3585 (($ $) 246 T ELT)) (-2442 (((-792) $) 226 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 236 T ELT)) (-1611 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-2030 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-1773 (((-1202 |#2|)) 120 T ELT)) (-1489 (($ $) 255 T ELT)) (-1360 (($ $) 249 T ELT)) (-2119 (((-1297 |#2|) $ (-1297 $)) 136 T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 116 T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3341 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT) (($ (-1202 |#2|)) NIL T ELT) (((-916 (-577)) $) 184 T ELT) (((-916 (-391)) $) 188 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-228)) $) 167 T ELT) (((-549) $) 180 T ELT)) (-2744 (($ $) 104 T ELT)) (-2410 (((-885) $) 143 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-3400 (((-1202 |#2|) $) 32 T ELT)) (-3234 (((-792)) 106 T ELT)) (-2525 (((-112) $ $) 13 T ELT)) (-1575 (($ $) 259 T ELT)) (-1435 (($ $) 253 T ELT)) (-1551 (($ $) 257 T ELT)) (-1413 (($ $) 251 T ELT)) (-4278 ((|#2| $) 242 T ELT)) (-1562 (($ $) 258 T ELT)) (-1423 (($ $) 252 T ELT)) (-3385 (($ $) 162 T ELT)) (-2383 (((-112) $ $) 110 T ELT)) (-2483 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 111 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-420 (-577))) 276 T ELT) (($ $ $) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-166 |#1| |#2|) (-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2410 (|#1| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1936 ((-2 (|:| -2117 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2442 ((-792) |#1|)) (-15 -4384 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3341 ((-549) |#1|)) (-15 -3341 ((-171 (-228)) |#1|)) (-15 -3341 ((-171 (-391)) |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -1348 (|#1| |#1|)) (-15 -1360 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1435 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2549 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -4275 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2583 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -2071 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4278 (|#2| |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2744 (|#1| |#1|)) (-15 -4098 (|#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2511 ((-3 |#1| "failed") (-420 (-1202 |#2|)))) (-15 -2500 ((-1202 |#2|) |#1|)) (-15 -3341 (|#1| (-1202 |#2|))) (-15 -2511 (|#1| (-1202 |#2|))) (-15 -1773 ((-1202 |#2|))) (-15 -1953 ((-710 |#2|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3341 ((-1202 |#2|) |#1|)) (-15 -1611 (|#2|)) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -4067 ((-1202 |#2|) |#1|)) (-15 -3400 ((-1202 |#2|) |#1|)) (-15 -1611 (|#2| (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2755 (|#2| |#1|)) (-15 -1880 (|#2| |#1|)) (-15 -1875 ((-949))) (-15 -2410 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2525 ((-112) |#1| |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-3234 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1875 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-949)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1611 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1773 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1202 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2410 (|#1| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1936 ((-2 (|:| -2117 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2442 ((-792) |#1|)) (-15 -4384 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3341 ((-549) |#1|)) (-15 -3341 ((-171 (-228)) |#1|)) (-15 -3341 ((-171 (-391)) |#1|)) (-15 -1371 (|#1| |#1|)) (-15 -1348 (|#1| |#1|)) (-15 -1360 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1435 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2549 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -4275 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2583 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -2071 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4278 (|#2| |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2744 (|#1| |#1|)) (-15 -4098 (|#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2511 ((-3 |#1| "failed") (-420 (-1202 |#2|)))) (-15 -2500 ((-1202 |#2|) |#1|)) (-15 -3341 (|#1| (-1202 |#2|))) (-15 -2511 (|#1| (-1202 |#2|))) (-15 -1773 ((-1202 |#2|))) (-15 -1953 ((-710 |#2|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3341 ((-1202 |#2|) |#1|)) (-15 -1611 (|#2|)) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -4067 ((-1202 |#2|) |#1|)) (-15 -3400 ((-1202 |#2|) |#1|)) (-15 -1611 (|#2| (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2755 (|#2| |#1|)) (-15 -1880 (|#2| |#1|)) (-15 -1875 ((-949))) (-15 -2410 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2525 ((-112) |#1| |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 105 (-2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-3913 (($ $) 106 (-2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-4244 (((-112) $) 108 (-2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2716 (((-710 |#1|) (-1297 $)) 53 T ELT) (((-710 |#1|)) 68 T ELT)) (-1880 ((|#1| $) 59 T ELT)) (-1501 (($ $) 236 (|has| |#1| (-1232)) ELT)) (-1371 (($ $) 219 (|has| |#1| (-1232)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 158 (|has| |#1| (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 250 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-4456 (($ $) 125 (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-4240 (((-431 $) $) 126 (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-2809 (($ $) 249 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 253 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-3397 (((-112) $ $) 116 (|has| |#1| (-318)) ELT)) (-2221 (((-792)) 99 (|has| |#1| (-380)) ELT)) (-1477 (($ $) 235 (|has| |#1| (-1232)) ELT)) (-1348 (($ $) 220 (|has| |#1| (-1232)) ELT)) (-1527 (($ $) 234 (|has| |#1| (-1232)) ELT)) (-1391 (($ $) 221 (|has| |#1| (-1232)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3514 (((-577) $) 184 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 182 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 181 T ELT)) (-1912 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)) ELT)) (-3152 (($ $ $) 120 (|has| |#1| (-318)) ELT)) (-3449 (((-710 |#1|) $ (-1297 $)) 60 T ELT) (((-710 |#1|) $) 66 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 177 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 176 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 175 T ELT) (((-710 |#1|) (-710 $)) 174 T ELT)) (-2511 (($ (-1202 |#1|)) 169 T ELT) (((-3 $ "failed") (-420 (-1202 |#1|))) 166 (|has| |#1| (-375)) ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2821 ((|#1| $) 261 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 254 (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) 256 (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) 255 (|has| |#1| (-558)) ELT)) (-1875 (((-949)) 61 T ELT)) (-2060 (($) 102 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) 119 (|has| |#1| (-318)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 114 (|has| |#1| (-318)) ELT)) (-3619 (($) 160 (|has| |#1| (-361)) ELT)) (-3390 (((-112) $) 161 (|has| |#1| (-361)) ELT)) (-2202 (($ $ (-792)) 152 (|has| |#1| (-361)) ELT) (($ $) 151 (|has| |#1| (-361)) ELT)) (-1632 (((-112) $) 127 (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-2071 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1090)) (|has| |#1| (-1232))) ELT)) (-2549 (($) 246 (|has| |#1| (-1232)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 269 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 268 (|has| |#1| (-910 (-391))) ELT)) (-3890 (((-949) $) 163 (|has| |#1| (-361)) ELT) (((-854 (-949)) $) 149 (|has| |#1| (-361)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 248 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-2755 ((|#1| $) 58 T ELT)) (-3651 (((-3 $ "failed") $) 153 (|has| |#1| (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 123 (|has| |#1| (-318)) ELT)) (-4067 (((-1202 |#1|) $) 51 (|has| |#1| (-375)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 270 T ELT)) (-2553 (((-949) $) 101 (|has| |#1| (-380)) ELT)) (-3863 (($ $) 243 (|has| |#1| (-1232)) ELT)) (-2500 (((-1202 |#1|) $) 167 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 179 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 178 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-710 |#1|) (-1297 $)) 172 T ELT)) (-2388 (($ (-665 $)) 112 (-2229 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT) (($ $ $) 111 (-2229 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 128 (|has| |#1| (-375)) ELT)) (-2199 (($) 154 (|has| |#1| (-361)) CONST)) (-2085 (($ (-949)) 100 (|has| |#1| (-380)) ELT)) (-4098 (($) 265 T ELT)) (-2833 ((|#1| $) 262 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2846 (($) 171 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 113 (-2229 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2420 (($ (-665 $)) 110 (-2229 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT) (($ $ $) 109 (-2229 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 157 (|has| |#1| (-361)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 252 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 251 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2799 (((-431 $) $) 124 (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 121 (|has| |#1| (-318)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 104 (-2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 115 (|has| |#1| (-318)) ELT)) (-3585 (($ $) 244 (|has| |#1| (-1232)) ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) 276 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 275 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 274 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 273 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 272 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 271 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2442 (((-792) $) 117 (|has| |#1| (-318)) ELT)) (-2435 (($ $ |#1|) 277 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 118 (|has| |#1| (-318)) ELT)) (-1611 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2723 (((-792) $) 162 (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) 150 (|has| |#1| (-361)) ELT)) (-2030 (($ $ (-1 |#1| |#1|)) 136 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 135 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 141 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) 140 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) 139 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) 137 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) 147 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2319 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT) (($ $) 145 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2319 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT)) (-1935 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)) ELT)) (-1773 (((-1202 |#1|)) 170 T ELT)) (-1540 (($ $) 233 (|has| |#1| (-1232)) ELT)) (-1402 (($ $) 222 (|has| |#1| (-1232)) ELT)) (-1494 (($) 159 (|has| |#1| (-361)) ELT)) (-1515 (($ $) 232 (|has| |#1| (-1232)) ELT)) (-1381 (($ $) 223 (|has| |#1| (-1232)) ELT)) (-1489 (($ $) 231 (|has| |#1| (-1232)) ELT)) (-1360 (($ $) 224 (|has| |#1| (-1232)) ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-710 |#1|) (-1297 $)) 72 T ELT)) (-3341 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) (((-1202 |#1|) $) 186 T ELT) (($ (-1202 |#1|)) 168 T ELT) (((-916 (-577)) $) 267 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 266 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-171 (-391)) $) 218 (|has| |#1| (-1052)) ELT) (((-171 (-228)) $) 217 (|has| |#1| (-1052)) ELT) (((-549) $) 216 (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $) 264 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 156 (-2229 (-2319 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (|has| |#1| (-361))) ELT)) (-3920 (($ |#1| |#1|) 263 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 98 (-2229 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) 103 (-2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-2580 (($ $) 155 (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) 50 (-2229 (-2319 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (|has| |#1| (-146))) ELT)) (-3400 (((-1202 |#1|) $) 52 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2225 (((-1297 $)) 74 T ELT)) (-1575 (($ $) 242 (|has| |#1| (-1232)) ELT)) (-1435 (($ $) 230 (|has| |#1| (-1232)) ELT)) (-1370 (((-112) $ $) 107 (-2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) ELT)) (-1551 (($ $) 241 (|has| |#1| (-1232)) ELT)) (-1413 (($ $) 229 (|has| |#1| (-1232)) ELT)) (-1597 (($ $) 240 (|has| |#1| (-1232)) ELT)) (-1456 (($ $) 228 (|has| |#1| (-1232)) ELT)) (-4278 ((|#1| $) 258 (|has| |#1| (-1232)) ELT)) (-3501 (($ $) 239 (|has| |#1| (-1232)) ELT)) (-1466 (($ $) 227 (|has| |#1| (-1232)) ELT)) (-1586 (($ $) 238 (|has| |#1| (-1232)) ELT)) (-1446 (($ $) 226 (|has| |#1| (-1232)) ELT)) (-1562 (($ $) 237 (|has| |#1| (-1232)) ELT)) (-1423 (($ $) 225 (|has| |#1| (-1232)) ELT)) (-3385 (($ $) 259 (|has| |#1| (-1090)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 133 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 144 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) 143 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) 142 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) 138 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) 148 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2319 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT) (($ $) 146 (-2229 (-2319 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2319 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2319 (|has| |#1| (-238)) (|has| |#1| (-375)))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 132 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-420 (-577))) 247 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT) (($ $ $) 245 (|has| |#1| (-1232)) ELT) (($ $ (-577)) 129 (|has| |#1| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-375)) ELT))) -(((-167 |#1|) (-141) (-174)) (T -167)) -((-2755 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4098 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2744 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3920 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3200 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1232)))) (-2071 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1090)) (-4 *3 (-1232)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-2751 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) -(-13 (-745 |t#1| (-1202 |t#1|)) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-413 |t#1|) (-908 |t#1|) (-389 |t#1|) (-174) (-10 -8 (-6 -3920) (-15 -4098 ($)) (-15 -2744 ($ $)) (-15 -3920 ($ |t#1| |t#1|)) (-15 -2833 (|t#1| $)) (-15 -2821 (|t#1| $)) (-15 -2755 (|t#1| $)) (IF (|has| |t#1| (-569)) (PROGN (-6 (-569)) (-15 -3200 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-6 -4498)) (-6 -4498) |%noBranch|) (IF (|has| |t#1| (-6 -4495)) (-6 -4495) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-6 (-632 (-171 (-228)))) (-6 (-632 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -3385 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1232)) (PROGN (-6 (-1232)) (-15 -4278 (|t#1| $)) (IF (|has| |t#1| (-1032)) (-6 (-1032)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -2071 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-937)) (IF (|has| |t#1| (-318)) (-6 (-937)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-35) |has| |#1| (-1232)) ((-95) |has| |#1| (-1232)) ((-102) . T) ((-111 #0# #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2229 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-631 (-885)) . T) ((-174) . T) ((-632 (-171 (-228))) |has| |#1| (-1052)) ((-632 (-171 (-391))) |has| |#1| (-1052)) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-632 #1=(-1202 |#1|)) . T) ((-235 $) -2229 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2229 (|has| |#1| (-361)) (|has| |#1| (-239))) ((-238) -2229 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-295) |has| |#1| (-1232)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2229 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-318) -2229 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2229 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| #1#) . T) ((-422 |#1| #1#) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) -2229 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-506) |has| |#1| (-1232)) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) -2229 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-667 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-669 #2=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-661 |#1|) . T) ((-661 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-659 #2#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-738 |#1|) . T) ((-738 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-745 |#1| #1#) . T) ((-747) . T) ((-920 $ #3=(-1206)) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #3#) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-937) -12 (|has| |#1| (-318)) (|has| |#1| (-937))) ((-948) -2229 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-1032) -12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-361)) ((-1232) |has| |#1| (-1232)) ((-1235) |has| |#1| (-1232)) ((-1247) . T) ((-1251) -2229 (|has| |#1| (-361)) (|has| |#1| (-375)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937))))) -((-2799 (((-431 |#2|) |#2|) 67 T ELT))) -(((-168 |#1| |#2|) (-10 -7 (-15 -2799 ((-431 |#2|) |#2|))) (-318) (-1273 (-171 |#1|))) (T -168)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) -(-10 -7 (-15 -2799 ((-431 |#2|) |#2|))) -((-4387 (((-1165) (-1165) (-302)) 8 T ELT)) (-4055 (((-665 (-712 (-291))) (-1188)) 81 T ELT)) (-1716 (((-712 (-291)) (-1165)) 76 T ELT))) -(((-169) (-13 (-1247) (-10 -7 (-15 -4387 ((-1165) (-1165) (-302))) (-15 -1716 ((-712 (-291)) (-1165))) (-15 -4055 ((-665 (-712 (-291))) (-1188)))))) (T -169)) -((-4387 (*1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-302)) (-5 *1 (-169)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-1165)) (-5 *2 (-712 (-291))) (-5 *1 (-169)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-712 (-291)))) (-5 *1 (-169))))) -(-13 (-1247) (-10 -7 (-15 -4387 ((-1165) (-1165) (-302))) (-15 -1716 ((-712 (-291)) (-1165))) (-15 -4055 ((-665 (-712 (-291))) (-1188))))) -((-3609 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -3609 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -3609 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 34 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-3913 (($ $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-4244 (((-112) $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-2716 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) NIL T ELT)) (-1880 ((|#1| $) NIL T ELT)) (-1501 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1371 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-4456 (($ $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-4240 (((-431 $) $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-2809 (($ $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-318)) ELT)) (-2221 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-1477 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1348 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1527 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1391 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-1912 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)) ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3449 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-2511 (($ (-1202 |#1|)) NIL T ELT) (((-3 $ "failed") (-420 (-1202 |#1|))) NIL (|has| |#1| (-375)) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2821 ((|#1| $) 13 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-1875 (((-949)) NIL T ELT)) (-2060 (($) NIL (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-318)) ELT)) (-3619 (($) NIL (|has| |#1| (-361)) ELT)) (-3390 (((-112) $) NIL (|has| |#1| (-361)) ELT)) (-2202 (($ $ (-792)) NIL (|has| |#1| (-361)) ELT) (($ $) NIL (|has| |#1| (-361)) ELT)) (-1632 (((-112) $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-2071 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1090)) (|has| |#1| (-1232))) ELT)) (-2549 (($) NIL (|has| |#1| (-1232)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-910 (-391))) ELT)) (-3890 (((-949) $) NIL (|has| |#1| (-361)) ELT) (((-854 (-949)) $) NIL (|has| |#1| (-361)) ELT)) (-2097 (((-112) $) 36 T ELT)) (-4341 (($ $ (-577)) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT)) (-2755 ((|#1| $) 47 T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-318)) ELT)) (-4067 (((-1202 |#1|) $) NIL (|has| |#1| (-375)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3863 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2500 (((-1202 |#1|) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2199 (($) NIL (|has| |#1| (-361)) CONST)) (-2085 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-4098 (($) NIL T ELT)) (-2833 ((|#1| $) 15 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-318)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-318)) ELT) (($ $ $) NIL (|has| |#1| (-318)) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| |#1| (-361)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) ELT)) (-2799 (((-431 $) $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-375))) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 48 (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-318)) ELT)) (-3585 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-318)) ELT)) (-2435 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-318)) ELT)) (-1611 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-2723 (((-792) $) NIL (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| |#1| (-361)) ELT)) (-2030 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT) (($ $) NIL (-2229 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT)) (-1935 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT)) (-1773 (((-1202 |#1|)) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1402 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1494 (($) NIL (|has| |#1| (-361)) ELT)) (-1515 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1381 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1489 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1360 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3341 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) (((-1202 |#1|) $) NIL T ELT) (($ (-1202 |#1|)) NIL T ELT) (((-916 (-577)) $) NIL (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-632 (-916 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1052)) ELT) (((-171 (-228)) $) NIL (|has| |#1| (-1052)) ELT) (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $) 46 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-361))) ELT)) (-3920 (($ |#1| |#1|) 38 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-2580 (($ $) NIL (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3400 (((-1202 |#1|) $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1435 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1370 (((-112) $ $) NIL (-2229 (-12 (|has| |#1| (-318)) (|has| |#1| (-937))) (|has| |#1| (-569))) ELT)) (-1551 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1413 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1597 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1456 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-4278 ((|#1| $) NIL (|has| |#1| (-1232)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1466 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1586 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1446 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1562 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-1423 (($ $) NIL (|has| |#1| (-1232)) ELT)) (-3385 (($ $) NIL (|has| |#1| (-1090)) ELT)) (-2367 (($) 28 T CONST)) (-2378 (($) 30 T CONST)) (-2792 (((-1188) $) 23 (|has| |#1| (-849)) ELT) (((-1188) $ (-112)) 25 (|has| |#1| (-849)) ELT) (((-1302) (-843) $) 26 (|has| |#1| (-849)) ELT) (((-1302) (-843) $ (-112)) 27 (|has| |#1| (-849)) ELT)) (-1675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT) (($ $) NIL (-2229 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 40 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-420 (-577))) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1232))) ELT) (($ $ $) NIL (|has| |#1| (-1232)) ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT))) -(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) (-174)) (T -171)) -NIL -(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) -((-3341 (((-916 |#1|) |#3|) 22 T ELT))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -3341 ((-916 |#1|) |#3|))) (-1130) (-13 (-632 (-916 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-3341 (*1 *2 *3) (-12 (-4 *5 (-13 (-632 *2) (-174))) (-5 *2 (-916 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1130)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -3341 ((-916 |#1|) |#3|))) -((-3211 (((-112) $ $) NIL T ELT)) (-2889 (((-112) $) 9 T ELT)) (-2649 (((-112) $ (-112)) 11 T ELT)) (-3748 (($) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3978 (($ $) 14 T ELT)) (-2410 (((-885) $) 18 T ELT)) (-4270 (((-112) $) 8 T ELT)) (-1624 (((-112) $ (-112)) 10 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-173) (-13 (-1130) (-10 -8 (-15 -3748 ($)) (-15 -4270 ((-112) $)) (-15 -2889 ((-112) $)) (-15 -1624 ((-112) $ (-112))) (-15 -2649 ((-112) $ (-112))) (-15 -3978 ($ $))))) (T -173)) -((-3748 (*1 *1) (-5 *1 (-173))) (-4270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1624 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2649 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3978 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1130) (-10 -8 (-15 -3748 ($)) (-15 -4270 ((-112) $)) (-15 -2889 ((-112) $)) (-15 -1624 ((-112) $ (-112))) (-15 -2649 ((-112) $ (-112))) (-15 -3978 ($ $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-174) (-141)) (T -174)) -NIL -(-13 (-1079) (-111 $ $) (-10 -7 (-6 (-4501 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2996 (($ $) 6 T ELT))) -(((-175) (-141)) (T -175)) -((-2996 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -2996 ($ $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 ((|#1| $) 81 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) NIL T ELT)) (-1993 (($ $) 21 T ELT)) (-3940 (($ |#1| (-1187 |#1|)) 50 T ELT)) (-4281 (((-3 $ "failed") $) 123 T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3871 (((-1187 |#1|) $) 88 T ELT)) (-3246 (((-1187 |#1|) $) 85 T ELT)) (-3177 (((-1187 |#1|) $) 86 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4199 (((-1187 |#1|) $) 94 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2388 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT)) (-4013 (($ $ (-577)) 97 T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-4267 (((-1187 |#1|) $) 95 T ELT)) (-3753 (((-1187 (-420 |#1|)) $) 14 T ELT)) (-2758 (($ (-420 |#1|)) 17 T ELT) (($ |#1| (-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-1470 (($ $) 99 T ELT)) (-2410 (((-885) $) 139 T ELT) (($ (-577)) 53 T ELT) (($ |#1|) 54 T ELT) (($ (-420 |#1|)) 38 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-3234 (((-792)) 69 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-1676 (((-1187 (-420 |#1|)) $) 20 T ELT)) (-2367 (($) 27 T CONST)) (-2378 (($) 30 T CONST)) (-2383 (((-112) $ $) 37 T ELT)) (-2494 (($ $ $) 121 T ELT)) (-2483 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-2471 (($ $ $) 107 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-420 |#1|) $) 117 T ELT) (($ $ (-420 |#1|)) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2758 ($ (-420 |#1|))) (-15 -2758 ($ |#1| (-1187 |#1|) (-1187 |#1|))) (-15 -3940 ($ |#1| (-1187 |#1|))) (-15 -3246 ((-1187 |#1|) $)) (-15 -3177 ((-1187 |#1|) $)) (-15 -3871 ((-1187 |#1|) $)) (-15 -3277 (|#1| $)) (-15 -1993 ($ $)) (-15 -1676 ((-1187 (-420 |#1|)) $)) (-15 -3753 ((-1187 (-420 |#1|)) $)) (-15 -4199 ((-1187 |#1|) $)) (-15 -4267 ((-1187 |#1|) $)) (-15 -4013 ($ $ (-577))) (-15 -1470 ($ $)))) (-318)) (T -176)) -((-2758 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) (-2758 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-3940 (*1 *1 *2 *3) (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-3277 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-1993 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-1470 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) -(-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2758 ($ (-420 |#1|))) (-15 -2758 ($ |#1| (-1187 |#1|) (-1187 |#1|))) (-15 -3940 ($ |#1| (-1187 |#1|))) (-15 -3246 ((-1187 |#1|) $)) (-15 -3177 ((-1187 |#1|) $)) (-15 -3871 ((-1187 |#1|) $)) (-15 -3277 (|#1| $)) (-15 -1993 ($ $)) (-15 -1676 ((-1187 (-420 |#1|)) $)) (-15 -3753 ((-1187 (-420 |#1|)) $)) (-15 -4199 ((-1187 |#1|) $)) (-15 -4267 ((-1187 |#1|) $)) (-15 -4013 ($ $ (-577))) (-15 -1470 ($ $)))) -((-2156 (($ (-109) $) 15 T ELT)) (-2050 (((-712 (-109)) (-519) $) 14 T ELT)) (-2410 (((-885) $) 18 T ELT)) (-1960 (((-665 (-109)) $) 8 T ELT))) -(((-177) (-13 (-631 (-885)) (-10 -8 (-15 -1960 ((-665 (-109)) $)) (-15 -2156 ($ (-109) $)) (-15 -2050 ((-712 (-109)) (-519) $))))) (T -177)) -((-1960 (*1 *2 *1) (-12 (-5 *2 (-665 (-109))) (-5 *1 (-177)))) (-2156 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2050 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-177))))) -(-13 (-631 (-885)) (-10 -8 (-15 -1960 ((-665 (-109)) $)) (-15 -2156 ($ (-109) $)) (-15 -2050 ((-712 (-109)) (-519) $)))) -((-4432 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 38 T ELT)) (-1782 (((-971 |#1|) (-971 |#1|)) 22 T ELT)) (-2945 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 34 T ELT)) (-2838 (((-971 |#1|) (-971 |#1|)) 20 T ELT)) (-2717 (((-971 |#1|) (-971 |#1|)) 28 T ELT)) (-1565 (((-971 |#1|) (-971 |#1|)) 27 T ELT)) (-4390 (((-971 |#1|) (-971 |#1|)) 26 T ELT)) (-3632 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 35 T ELT)) (-3531 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 33 T ELT)) (-1943 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 32 T ELT)) (-3143 (((-971 |#1|) (-971 |#1|)) 21 T ELT)) (-3033 (((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|) 41 T ELT)) (-2081 (((-971 |#1|) (-971 |#1|)) 8 T ELT)) (-3580 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 37 T ELT)) (-2285 (((-1 (-971 |#1|) (-971 |#1|)) |#1|) 36 T ELT))) -(((-178 |#1|) (-10 -7 (-15 -2081 ((-971 |#1|) (-971 |#1|))) (-15 -2838 ((-971 |#1|) (-971 |#1|))) (-15 -3143 ((-971 |#1|) (-971 |#1|))) (-15 -1782 ((-971 |#1|) (-971 |#1|))) (-15 -4390 ((-971 |#1|) (-971 |#1|))) (-15 -1565 ((-971 |#1|) (-971 |#1|))) (-15 -2717 ((-971 |#1|) (-971 |#1|))) (-15 -1943 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3531 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2945 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3632 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2285 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3580 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -4432 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3033 ((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|))) (-13 (-375) (-1232) (-1032))) (T -178)) -((-3033 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-4432 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-3580 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-2285 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-3632 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-2945 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-3531 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-1943 (*1 *2 *3) (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))))) (-2717 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-1565 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-3143 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-2838 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -2081 ((-971 |#1|) (-971 |#1|))) (-15 -2838 ((-971 |#1|) (-971 |#1|))) (-15 -3143 ((-971 |#1|) (-971 |#1|))) (-15 -1782 ((-971 |#1|) (-971 |#1|))) (-15 -4390 ((-971 |#1|) (-971 |#1|))) (-15 -1565 ((-971 |#1|) (-971 |#1|))) (-15 -2717 ((-971 |#1|) (-971 |#1|))) (-15 -1943 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3531 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2945 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3632 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -2285 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3580 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -4432 ((-1 (-971 |#1|) (-971 |#1|)) |#1|)) (-15 -3033 ((-1 (-971 |#1|) (-971 |#1|)) |#1| |#1|))) -((-3400 ((|#2| |#3|) 28 T ELT))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -3400 (|#2| |#3|))) (-174) (-1273 |#1|) (-745 |#1| |#2|)) (T -179)) -((-3400 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1273 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-745 *4 *2))))) -(-10 -7 (-15 -3400 (|#2| |#3|))) -((-2244 (((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)) 44 (|has| (-980 |#2|) (-910 |#1|)) ELT))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-980 |#2|) (-910 |#1|)) (-15 -2244 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) |%noBranch|)) (-1130) (-13 (-910 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *3 (-167 *6)) (-4 (-980 *6) (-910 *5)) (-4 *6 (-13 (-910 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-980 |#2|) (-910 |#1|)) (-15 -2244 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) |%noBranch|)) -((-1792 (((-665 |#1|) (-665 |#1|) |#1|) 41 T ELT)) (-3772 (((-665 |#1|) |#1| (-665 |#1|)) 20 T ELT)) (-3614 (((-665 |#1|) (-665 (-665 |#1|)) (-665 |#1|)) 36 T ELT) ((|#1| (-665 |#1|) (-665 |#1|)) 32 T ELT))) -(((-181 |#1|) (-10 -7 (-15 -3772 ((-665 |#1|) |#1| (-665 |#1|))) (-15 -3614 (|#1| (-665 |#1|) (-665 |#1|))) (-15 -3614 ((-665 |#1|) (-665 (-665 |#1|)) (-665 |#1|))) (-15 -1792 ((-665 |#1|) (-665 |#1|) |#1|))) (-318)) (T -181)) -((-1792 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3)))) (-3614 (*1 *2 *3 *2) (-12 (-5 *3 (-665 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-318)) (-5 *1 (-181 *4)))) (-3614 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) (-3772 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -3772 ((-665 |#1|) |#1| (-665 |#1|))) (-15 -3614 (|#1| (-665 |#1|) (-665 |#1|))) (-15 -3614 ((-665 |#1|) (-665 (-665 |#1|)) (-665 |#1|))) (-15 -1792 ((-665 |#1|) (-665 |#1|) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1892 (((-1246) $) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2076 (((-1165) $) 10 T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-182) (-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -1892 ((-1246) $))))) (T -182)) -((-2076 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-182)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-182))))) -(-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -1892 ((-1246) $)))) -((-4051 (((-2 (|:| |start| |#2|) (|:| -1679 (-431 |#2|))) |#2|) 66 T ELT)) (-3633 ((|#1| |#1|) 58 T ELT)) (-4467 (((-171 |#1|) |#2|) 93 T ELT)) (-1397 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-3546 ((|#2| |#2|) 91 T ELT)) (-2521 (((-431 |#2|) |#2| |#1|) 118 T ELT) (((-431 |#2|) |#2| |#1| (-112)) 88 T ELT)) (-2755 ((|#1| |#2|) 117 T ELT)) (-1743 ((|#2| |#2|) 130 T ELT)) (-2799 (((-431 |#2|) |#2|) 153 T ELT) (((-431 |#2|) |#2| |#1|) 33 T ELT) (((-431 |#2|) |#2| |#1| (-112)) 152 T ELT)) (-3627 (((-665 (-2 (|:| -1679 (-665 |#2|)) (|:| -3395 |#1|))) |#2| |#2|) 151 T ELT) (((-665 (-2 (|:| -1679 (-665 |#2|)) (|:| -3395 |#1|))) |#2| |#2| (-112)) 81 T ELT)) (-3086 (((-665 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-665 (-171 |#1|)) |#2|) 43 T ELT))) -(((-183 |#1| |#2|) (-10 -7 (-15 -3086 ((-665 (-171 |#1|)) |#2|)) (-15 -3086 ((-665 (-171 |#1|)) |#2| |#1|)) (-15 -3627 ((-665 (-2 (|:| -1679 (-665 |#2|)) (|:| -3395 |#1|))) |#2| |#2| (-112))) (-15 -3627 ((-665 (-2 (|:| -1679 (-665 |#2|)) (|:| -3395 |#1|))) |#2| |#2|)) (-15 -2799 ((-431 |#2|) |#2| |#1| (-112))) (-15 -2799 ((-431 |#2|) |#2| |#1|)) (-15 -2799 ((-431 |#2|) |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -2755 (|#1| |#2|)) (-15 -2521 ((-431 |#2|) |#2| |#1| (-112))) (-15 -2521 ((-431 |#2|) |#2| |#1|)) (-15 -3546 (|#2| |#2|)) (-15 -1397 (|#1| |#2| |#1|)) (-15 -1397 (|#1| |#2|)) (-15 -4467 ((-171 |#1|) |#2|)) (-15 -3633 (|#1| |#1|)) (-15 -4051 ((-2 (|:| |start| |#2|) (|:| -1679 (-431 |#2|))) |#2|))) (-13 (-375) (-869)) (-1273 (-171 |#1|))) (T -183)) -((-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-2 (|:| |start| *3) (|:| -1679 (-431 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3633 (*1 *2 *2) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-4467 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-375) (-869))) (-4 *3 (-1273 *2)))) (-1397 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1397 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-3546 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-2521 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2521 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2755 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2799 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2799 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3627 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-2 (|:| -1679 (-665 *3)) (|:| -3395 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3627 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-869))) (-5 *2 (-665 (-2 (|:| -1679 (-665 *3)) (|:| -3395 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1273 (-171 *5))))) (-3086 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3086 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) -(-10 -7 (-15 -3086 ((-665 (-171 |#1|)) |#2|)) (-15 -3086 ((-665 (-171 |#1|)) |#2| |#1|)) (-15 -3627 ((-665 (-2 (|:| -1679 (-665 |#2|)) (|:| -3395 |#1|))) |#2| |#2| (-112))) (-15 -3627 ((-665 (-2 (|:| -1679 (-665 |#2|)) (|:| -3395 |#1|))) |#2| |#2|)) (-15 -2799 ((-431 |#2|) |#2| |#1| (-112))) (-15 -2799 ((-431 |#2|) |#2| |#1|)) (-15 -2799 ((-431 |#2|) |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -2755 (|#1| |#2|)) (-15 -2521 ((-431 |#2|) |#2| |#1| (-112))) (-15 -2521 ((-431 |#2|) |#2| |#1|)) (-15 -3546 (|#2| |#2|)) (-15 -1397 (|#1| |#2| |#1|)) (-15 -1397 (|#1| |#2|)) (-15 -4467 ((-171 |#1|) |#2|)) (-15 -3633 (|#1| |#1|)) (-15 -4051 ((-2 (|:| |start| |#2|) (|:| -1679 (-431 |#2|))) |#2|))) -((-1968 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-2971 (((-792) |#2|) 18 T ELT)) (-1848 ((|#2| |#2| |#2|) 20 T ELT))) -(((-184 |#1| |#2|) (-10 -7 (-15 -1968 ((-3 |#2| "failed") |#2|)) (-15 -2971 ((-792) |#2|)) (-15 -1848 (|#2| |#2| |#2|))) (-1247) (-695 |#1|)) (T -184)) -((-1848 (*1 *2 *2 *2) (-12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) (-4 *2 (-695 *3)))) (-2971 (*1 *2 *3) (-12 (-4 *4 (-1247)) (-5 *2 (-792)) (-5 *1 (-184 *4 *3)) (-4 *3 (-695 *4)))) (-1968 (*1 *2 *2) (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) (-4 *2 (-695 *3))))) -(-10 -7 (-15 -1968 ((-3 |#2| "failed") |#2|)) (-15 -2971 ((-792) |#2|)) (-15 -1848 (|#2| |#2| |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1532 ((|#1| $) 7 T ELT)) (-2410 (((-885) $) 14 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4085 (((-665 (-1211)) $) 10 T ELT)) (-2383 (((-112) $ $) 12 T ELT))) -(((-185 |#1|) (-13 (-1130) (-10 -8 (-15 -1532 (|#1| $)) (-15 -4085 ((-665 (-1211)) $)))) (-187)) (T -185)) -((-1532 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1130) (-10 -8 (-15 -1532 (|#1| $)) (-15 -4085 ((-665 (-1211)) $)))) -((-2301 (((-665 (-888)) $) 16 T ELT)) (-4407 (((-188) $) 8 T ELT)) (-1337 (((-665 (-112)) $) 13 T ELT)) (-3089 (((-55) $) 10 T ELT))) -(((-186 |#1|) (-10 -8 (-15 -2301 ((-665 (-888)) |#1|)) (-15 -1337 ((-665 (-112)) |#1|)) (-15 -4407 ((-188) |#1|)) (-15 -3089 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -2301 ((-665 (-888)) |#1|)) (-15 -1337 ((-665 (-112)) |#1|)) (-15 -4407 ((-188) |#1|)) (-15 -3089 ((-55) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-2301 (((-665 (-888)) $) 19 T ELT)) (-4105 (((-519) $) 16 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4407 (((-188) $) 21 T ELT)) (-4450 (((-112) $ (-519)) 14 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1337 (((-665 (-112)) $) 20 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3089 (((-55) $) 15 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-187) (-141)) (T -187)) -((-4407 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-112))))) (-2301 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-888)))))) -(-13 (-856 (-519)) (-10 -8 (-15 -4407 ((-188) $)) (-15 -1337 ((-665 (-112)) $)) (-15 -2301 ((-665 (-888)) $)))) -(((-102) . T) ((-631 (-885)) . T) ((-856 (-519)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-2410 (((-885) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 10 T ELT))) -(((-188) (-13 (-1130) (-10 -8 (-15 -9 ($) -1528) (-15 -8 ($) -1528) (-15 -7 ($) -1528)))) (T -188)) -((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1130) (-10 -8 (-15 -9 ($) -1528) (-15 -8 ($) -1528) (-15 -7 ($) -1528))) -((-3211 (((-112) $ $) NIL T ELT)) (-2301 (((-665 (-888)) $) NIL T ELT)) (-4105 (((-519) $) 8 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4407 (((-188) $) 10 T ELT)) (-4450 (((-112) $ (-519)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1608 (((-712 $) (-519)) 17 T ELT)) (-1337 (((-665 (-112)) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3089 (((-55) $) 12 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-189) (-13 (-187) (-10 -8 (-15 -1608 ((-712 $) (-519)))))) (T -189)) -((-1608 (*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -1608 ((-712 $) (-519))))) -((-1862 ((|#2| |#2|) 28 T ELT)) (-1428 (((-112) |#2|) 19 T ELT)) (-2821 (((-327 |#1|) |#2|) 12 T ELT)) (-2833 (((-327 |#1|) |#2|) 14 T ELT)) (-3230 ((|#2| |#2| (-1206)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-1437 (((-171 (-327 |#1|)) |#2|) 10 T ELT)) (-3434 ((|#2| |#2| (-1206)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-190 |#1| |#2|) (-10 -7 (-15 -3230 (|#2| |#2|)) (-15 -3230 (|#2| |#2| (-1206))) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1206))) (-15 -2821 ((-327 |#1|) |#2|)) (-15 -2833 ((-327 |#1|) |#2|)) (-15 -1428 ((-112) |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -1437 ((-171 (-327 |#1|)) |#2|))) (-13 (-569) (-1068 (-577))) (-13 (-27) (-1232) (-443 (-171 |#1|)))) (T -190)) -((-1437 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-171 (-327 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-2821 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-3434 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) (-3230 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) (-3230 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3))))))) -(-10 -7 (-15 -3230 (|#2| |#2|)) (-15 -3230 (|#2| |#2| (-1206))) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1206))) (-15 -2821 ((-327 |#1|) |#2|)) (-15 -2833 ((-327 |#1|) |#2|)) (-15 -1428 ((-112) |#2|)) (-15 -1862 (|#2| |#2|)) (-15 -1437 ((-171 (-327 |#1|)) |#2|))) -((-3602 (((-1297 (-710 (-980 |#1|))) (-1297 (-710 |#1|))) 26 T ELT)) (-2410 (((-1297 (-710 (-420 (-980 |#1|)))) (-1297 (-710 |#1|))) 37 T ELT))) -(((-191 |#1|) (-10 -7 (-15 -3602 ((-1297 (-710 (-980 |#1|))) (-1297 (-710 |#1|)))) (-15 -2410 ((-1297 (-710 (-420 (-980 |#1|)))) (-1297 (-710 |#1|))))) (-174)) (T -191)) -((-2410 (*1 *2 *3) (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) (-5 *2 (-1297 (-710 (-420 (-980 *4))))) (-5 *1 (-191 *4)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) (-5 *2 (-1297 (-710 (-980 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -3602 ((-1297 (-710 (-980 |#1|))) (-1297 (-710 |#1|)))) (-15 -2410 ((-1297 (-710 (-420 (-980 |#1|)))) (-1297 (-710 |#1|))))) -((-2291 (((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577)))) 93 T ELT)) (-3011 (((-1208 (-420 (-577))) (-665 (-577)) (-665 (-577))) 107 T ELT)) (-1418 (((-1208 (-420 (-577))) (-949)) 54 T ELT)) (-2822 (((-1208 (-420 (-577))) (-949)) 79 T ELT)) (-3362 (((-420 (-577)) (-1208 (-420 (-577)))) 89 T ELT)) (-3486 (((-1208 (-420 (-577))) (-949)) 37 T ELT)) (-3342 (((-1208 (-420 (-577))) (-949)) 66 T ELT)) (-2333 (((-1208 (-420 (-577))) (-949)) 61 T ELT)) (-3911 (((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577)))) 87 T ELT)) (-1470 (((-1208 (-420 (-577))) (-949)) 29 T ELT)) (-3472 (((-420 (-577)) (-1208 (-420 (-577))) (-1208 (-420 (-577)))) 91 T ELT)) (-3620 (((-1208 (-420 (-577))) (-949)) 35 T ELT)) (-3714 (((-1208 (-420 (-577))) (-665 (-949))) 100 T ELT))) -(((-192) (-10 -7 (-15 -1470 ((-1208 (-420 (-577))) (-949))) (-15 -1418 ((-1208 (-420 (-577))) (-949))) (-15 -3486 ((-1208 (-420 (-577))) (-949))) (-15 -3620 ((-1208 (-420 (-577))) (-949))) (-15 -2333 ((-1208 (-420 (-577))) (-949))) (-15 -3342 ((-1208 (-420 (-577))) (-949))) (-15 -2822 ((-1208 (-420 (-577))) (-949))) (-15 -3472 ((-420 (-577)) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3911 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3362 ((-420 (-577)) (-1208 (-420 (-577))))) (-15 -2291 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3714 ((-1208 (-420 (-577))) (-665 (-949)))) (-15 -3011 ((-1208 (-420 (-577))) (-665 (-577)) (-665 (-577)))))) (T -192)) -((-3011 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-2291 (*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-3911 (*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3472 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) -(-10 -7 (-15 -1470 ((-1208 (-420 (-577))) (-949))) (-15 -1418 ((-1208 (-420 (-577))) (-949))) (-15 -3486 ((-1208 (-420 (-577))) (-949))) (-15 -3620 ((-1208 (-420 (-577))) (-949))) (-15 -2333 ((-1208 (-420 (-577))) (-949))) (-15 -3342 ((-1208 (-420 (-577))) (-949))) (-15 -2822 ((-1208 (-420 (-577))) (-949))) (-15 -3472 ((-420 (-577)) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3911 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3362 ((-420 (-577)) (-1208 (-420 (-577))))) (-15 -2291 ((-1208 (-420 (-577))) (-1208 (-420 (-577))) (-1208 (-420 (-577))))) (-15 -3714 ((-1208 (-420 (-577))) (-665 (-949)))) (-15 -3011 ((-1208 (-420 (-577))) (-665 (-577)) (-665 (-577))))) -((-4246 (((-431 (-1202 (-577))) (-577)) 38 T ELT)) (-3962 (((-665 (-1202 (-577))) (-577)) 33 T ELT)) (-4174 (((-1202 (-577)) (-577)) 28 T ELT))) -(((-193) (-10 -7 (-15 -3962 ((-665 (-1202 (-577))) (-577))) (-15 -4174 ((-1202 (-577)) (-577))) (-15 -4246 ((-431 (-1202 (-577))) (-577))))) (T -193)) -((-4246 (*1 *2 *3) (-12 (-5 *2 (-431 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577)))) (-4174 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) (-3962 (*1 *2 *3) (-12 (-5 *2 (-665 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) -(-10 -7 (-15 -3962 ((-665 (-1202 (-577))) (-577))) (-15 -4174 ((-1202 (-577)) (-577))) (-15 -4246 ((-431 (-1202 (-577))) (-577)))) -((-1698 (((-1187 (-228)) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 132 T ELT)) (-2653 (((-665 (-1188)) (-1187 (-228))) NIL T ELT)) (-3836 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109 T ELT)) (-2256 (((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228)))) NIL T ELT)) (-3020 (((-665 (-1188)) (-665 (-228))) NIL T ELT)) (-2064 (((-228) (-1124 (-864 (-228)))) 31 T ELT)) (-3404 (((-228) (-1124 (-864 (-228)))) 32 T ELT)) (-4381 (((-391) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 126 T ELT)) (-2967 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 67 T ELT)) (-3140 (((-1188) (-228)) NIL T ELT)) (-1385 (((-1188) (-665 (-1188))) 27 T ELT)) (-3826 (((-1065) (-1206) (-1206) (-1065)) 13 T ELT))) -(((-194) (-10 -7 (-15 -3836 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2967 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2064 ((-228) (-1124 (-864 (-228))))) (-15 -3404 ((-228) (-1124 (-864 (-228))))) (-15 -4381 ((-391) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2256 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -1698 ((-1187 (-228)) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3140 ((-1188) (-228))) (-15 -3020 ((-665 (-1188)) (-665 (-228)))) (-15 -2653 ((-665 (-1188)) (-1187 (-228)))) (-15 -1385 ((-1188) (-665 (-1188)))) (-15 -3826 ((-1065) (-1206) (-1206) (-1065))))) (T -194)) -((-3826 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-194)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-194)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-194)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-194)))) (-2256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-194)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-194)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -3836 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2967 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2064 ((-228) (-1124 (-864 (-228))))) (-15 -3404 ((-228) (-1124 (-864 (-228))))) (-15 -4381 ((-391) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2256 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -1698 ((-1187 (-228)) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3140 ((-1188) (-228))) (-15 -3020 ((-665 (-1188)) (-665 (-228)))) (-15 -2653 ((-665 (-1188)) (-1187 (-228)))) (-15 -1385 ((-1188) (-665 (-1188)))) (-15 -3826 ((-1065) (-1206) (-1206) (-1065)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 61 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 33 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-195) (-808)) (T -195)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 66 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-196) (-808)) (T -196)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 81 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 46 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-197) (-808)) (T -197)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 63 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 36 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-198) (-808)) (T -198)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 76 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-199) (-808)) (T -199)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 93 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-200) (-808)) (T -200)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 90 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 51 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-201) (-808)) (T -201)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 78 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-202) (-808)) (T -202)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 76 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 35 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-203) (-808)) (T -203)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 77 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 42 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-204) (-808)) (T -204)) -NIL -(-808) -((-3211 (((-112) $ $) NIL T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 105 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 86 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-205) (-808)) (T -205)) -NIL -(-808) -((-2159 (((-3 (-2 (|:| -4422 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109 T ELT)) (-4000 (((-577) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 59 T ELT)) (-2745 (((-3 (-665 (-228)) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 90 T ELT))) -(((-206) (-10 -7 (-15 -2159 ((-3 (-2 (|:| -4422 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2745 ((-3 (-665 (-228)) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4000 ((-577) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -206)) -((-4000 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-577)) (-5 *1 (-206)))) (-2745 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-206)))) (-2159 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -4422 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) -(-10 -7 (-15 -2159 ((-3 (-2 (|:| -4422 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2745 ((-3 (-665 (-228)) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4000 ((-577) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-4127 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49 T ELT)) (-2495 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 157 T ELT)) (-3904 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-710 (-327 (-228)))) 112 T ELT)) (-2188 (((-391) (-710 (-327 (-228)))) 140 T ELT)) (-3464 (((-710 (-327 (-228))) (-1297 (-327 (-228))) (-665 (-1206))) 136 T ELT)) (-3289 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 37 T ELT)) (-2769 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 53 T ELT)) (-3362 (((-710 (-327 (-228))) (-710 (-327 (-228))) (-665 (-1206)) (-1297 (-327 (-228)))) 125 T ELT)) (-1726 (((-391) (-391) (-665 (-391))) 133 T ELT) (((-391) (-391) (-391)) 128 T ELT)) (-3874 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 45 T ELT))) -(((-207) (-10 -7 (-15 -1726 ((-391) (-391) (-391))) (-15 -1726 ((-391) (-391) (-665 (-391)))) (-15 -2188 ((-391) (-710 (-327 (-228))))) (-15 -3464 ((-710 (-327 (-228))) (-1297 (-327 (-228))) (-665 (-1206)))) (-15 -3362 ((-710 (-327 (-228))) (-710 (-327 (-228))) (-665 (-1206)) (-1297 (-327 (-228))))) (-15 -3904 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-710 (-327 (-228))))) (-15 -2495 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4127 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2769 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3874 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3289 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -207)) -((-3289 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-710 (-327 (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-3362 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-710 (-327 (-228)))) (-5 *3 (-665 (-1206))) (-5 *4 (-1297 (-327 (-228)))) (-5 *1 (-207)))) (-3464 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) (-5 *2 (-710 (-327 (-228)))) (-5 *1 (-207)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-710 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1726 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-391))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1726 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207))))) -(-10 -7 (-15 -1726 ((-391) (-391) (-391))) (-15 -1726 ((-391) (-391) (-665 (-391)))) (-15 -2188 ((-391) (-710 (-327 (-228))))) (-15 -3464 ((-710 (-327 (-228))) (-1297 (-327 (-228))) (-665 (-1206)))) (-15 -3362 ((-710 (-327 (-228))) (-710 (-327 (-228))) (-665 (-1206)) (-1297 (-327 (-228))))) (-15 -3904 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-710 (-327 (-228))))) (-15 -2495 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4127 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2769 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3874 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3289 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2946 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 75 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-208) (-821)) (T -208)) -NIL -(-821) -((-3211 (((-112) $ $) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2946 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 73 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-209) (-821)) (T -209)) -NIL -(-821) -((-3211 (((-112) $ $) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2946 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 76 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-210) (-821)) (T -210)) -NIL -(-821) -((-3211 (((-112) $ $) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 48 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2946 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 88 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-211) (-821)) (T -211)) -NIL -(-821) -((-4417 (((-665 (-1206)) (-1206) (-792)) 26 T ELT)) (-1668 (((-327 (-228)) (-327 (-228))) 35 T ELT)) (-1851 (((-112) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 87 T ELT)) (-2572 (((-112) (-228) (-228) (-665 (-327 (-228)))) 47 T ELT))) -(((-212) (-10 -7 (-15 -4417 ((-665 (-1206)) (-1206) (-792))) (-15 -1668 ((-327 (-228)) (-327 (-228)))) (-15 -2572 ((-112) (-228) (-228) (-665 (-327 (-228))))) (-15 -1851 ((-112) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))))) (T -212)) -((-1851 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2572 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-665 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-212)))) (-1668 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-665 (-1206))) (-5 *1 (-212)) (-5 *3 (-1206))))) -(-10 -7 (-15 -4417 ((-665 (-1206)) (-1206) (-792))) (-15 -1668 ((-327 (-228)) (-327 (-228)))) (-15 -2572 ((-112) (-228) (-228) (-665 (-327 (-228))))) (-15 -1851 ((-112) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 28 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3747 (((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 70 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-213) (-921)) (T -213)) -NIL -(-921) -((-3211 (((-112) $ $) NIL T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 24 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3747 (((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-214) (-921)) (T -214)) -NIL -(-921) -((-3211 (((-112) $ $) NIL T ELT)) (-3392 ((|#2| $ (-792) |#2|) 11 T ELT)) (-3381 ((|#2| $ (-792)) 10 T ELT)) (-3748 (($) 8 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 23 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 13 T ELT))) -(((-215 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3748 ($)) (-15 -3381 (|#2| $ (-792))) (-15 -3392 (|#2| $ (-792) |#2|)))) (-949) (-1130)) (T -215)) -((-3748 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1130)))) (-3381 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *2 (-1130)) (-5 *1 (-215 *4 *2)) (-14 *4 (-949)))) (-3392 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-215 *4 *2)) (-14 *4 (-949)) (-4 *2 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -3748 ($)) (-15 -3381 (|#2| $ (-792))) (-15 -3392 (|#2| $ (-792) |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3060 (((-1302) $) 37 T ELT) (((-1302) $ (-949) (-949)) 41 T ELT)) (-2435 (($ $ (-1019)) 19 T ELT) (((-251 (-1188)) $ (-1206)) 15 T ELT)) (-1646 (((-1302) $) 35 T ELT)) (-2410 (((-885) $) 32 T ELT) (($ (-665 |#1|)) 8 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $ $) 27 T ELT)) (-2471 (($ $ $) 22 T ELT))) -(((-216 |#1|) (-13 (-1130) (-634 (-665 |#1|)) (-10 -8 (-15 -2435 ($ $ (-1019))) (-15 -2435 ((-251 (-1188)) $ (-1206))) (-15 -2471 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $)) (-15 -3060 ((-1302) $ (-949) (-949))))) (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $))))) (T -216)) -((-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $))))))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-251 (-1188))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ *3)) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $))))))) (-2471 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $))))))) (-2483 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $))))))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 (*2 $)) (-15 -3060 (*2 $))))))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 (*2 $)) (-15 -3060 (*2 $))))))) (-3060 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 (*2 $)) (-15 -3060 (*2 $)))))))) -(-13 (-1130) (-634 (-665 |#1|)) (-10 -8 (-15 -2435 ($ $ (-1019))) (-15 -2435 ((-251 (-1188)) $ (-1206))) (-15 -2471 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $)) (-15 -3060 ((-1302) $ (-949) (-949))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) 10 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3958 (($ (-656 |#1|)) 11 T ELT)) (-2410 (((-885) $) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-217 |#1|) (-13 (-865) (-10 -8 (-15 -3958 ($ (-656 |#1|))))) (-665 (-1206))) (T -217)) -((-3958 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-217 *3))))) -(-13 (-865) (-10 -8 (-15 -3958 ($ (-656 |#1|))))) -((-2004 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-218 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2004 (|#2| |#4| (-1 |#2| |#2|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -218)) -((-2004 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1273 (-420 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-218 *5 *2 *6 *3)) (-4 *3 (-354 *5 *2 *6))))) -(-10 -7 (-15 -2004 (|#2| |#4| (-1 |#2| |#2|)))) -((-1633 ((|#2| |#2| (-792) |#2|) 55 T ELT)) (-1445 ((|#2| |#2| (-792) |#2|) 51 T ELT)) (-2552 (((-665 |#2|) (-665 (-2 (|:| |deg| (-792)) (|:| -3801 |#2|)))) 79 T ELT)) (-3330 (((-665 (-2 (|:| |deg| (-792)) (|:| -3801 |#2|))) |#2|) 73 T ELT)) (-2515 (((-112) |#2|) 71 T ELT)) (-4255 (((-431 |#2|) |#2|) 91 T ELT)) (-2799 (((-431 |#2|) |#2|) 90 T ELT)) (-2579 ((|#2| |#2| (-792) |#2|) 49 T ELT)) (-3745 (((-2 (|:| |cont| |#1|) (|:| -1679 (-665 (-2 (|:| |irr| |#2|) (|:| -2938 (-577)))))) |#2| (-112)) 85 T ELT))) -(((-219 |#1| |#2|) (-10 -7 (-15 -2799 ((-431 |#2|) |#2|)) (-15 -4255 ((-431 |#2|) |#2|)) (-15 -3745 ((-2 (|:| |cont| |#1|) (|:| -1679 (-665 (-2 (|:| |irr| |#2|) (|:| -2938 (-577)))))) |#2| (-112))) (-15 -3330 ((-665 (-2 (|:| |deg| (-792)) (|:| -3801 |#2|))) |#2|)) (-15 -2552 ((-665 |#2|) (-665 (-2 (|:| |deg| (-792)) (|:| -3801 |#2|))))) (-15 -2579 (|#2| |#2| (-792) |#2|)) (-15 -1445 (|#2| |#2| (-792) |#2|)) (-15 -1633 (|#2| |#2| (-792) |#2|)) (-15 -2515 ((-112) |#2|))) (-361) (-1273 |#1|)) (T -219)) -((-2515 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4)))) (-1633 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1273 *4)))) (-1445 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1273 *4)))) (-2579 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1273 *4)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |deg| (-792)) (|:| -3801 *5)))) (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *2 (-665 *5)) (-5 *1 (-219 *4 *5)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -3801 *3)))) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-361)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) (-5 *1 (-219 *5 *3)) (-4 *3 (-1273 *5)))) (-4255 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4)))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -2799 ((-431 |#2|) |#2|)) (-15 -4255 ((-431 |#2|) |#2|)) (-15 -3745 ((-2 (|:| |cont| |#1|) (|:| -1679 (-665 (-2 (|:| |irr| |#2|) (|:| -2938 (-577)))))) |#2| (-112))) (-15 -3330 ((-665 (-2 (|:| |deg| (-792)) (|:| -3801 |#2|))) |#2|)) (-15 -2552 ((-665 |#2|) (-665 (-2 (|:| |deg| (-792)) (|:| -3801 |#2|))))) (-15 -2579 (|#2| |#2| (-792) |#2|)) (-15 -1445 (|#2| |#2| (-792) |#2|)) (-15 -1633 (|#2| |#2| (-792) |#2|)) (-15 -2515 ((-112) |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3514 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-577) (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 (((-577) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-3609 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-577) (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-2136 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 (((-577) $) NIL T ELT)) (-3159 (($ (-420 (-577))) 9 T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1034 10) $) 10 T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2494 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) -(((-220) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 10)) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -3159 ($ (-420 (-577))))))) (T -220)) -((-2687 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) (-3159 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) -(-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 10)) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -3159 ($ (-420 (-577)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3383 (((-1148) $) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3133 (((-496) $) 10 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 23 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-1165) $) 15 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-221) (-13 (-1113) (-10 -8 (-15 -3133 ((-496) $)) (-15 -3383 ((-1148) $)) (-15 -4115 ((-1165) $))))) (T -221)) -((-3133 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-221)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-221))))) -(-13 (-1113) (-10 -8 (-15 -3133 ((-496) $)) (-15 -3383 ((-1148) $)) (-15 -4115 ((-1165) $)))) -((-3491 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)) (-1188)) 29 T ELT) (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|))) 25 T ELT)) (-2143 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1206) (-864 |#2|) (-864 |#2|) (-112)) 17 T ELT))) -(((-222 |#1| |#2|) (-10 -7 (-15 -3491 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)))) (-15 -3491 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)) (-1188))) (-15 -2143 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1206) (-864 |#2|) (-864 |#2|) (-112)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-29 |#1|))) (T -222)) -((-2143 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1206)) (-5 *6 (-112)) (-4 *7 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-4 *3 (-13 (-1232) (-987) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *7 *3)) (-5 *5 (-864 *3)))) (-3491 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-864 *3))) (-5 *5 (-1188)) (-4 *3 (-13 (-1232) (-987) (-29 *6))) (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6 *3)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-864 *3))) (-4 *3 (-13 (-1232) (-987) (-29 *5))) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5 *3))))) -(-10 -7 (-15 -3491 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)))) (-15 -3491 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1122 (-864 |#2|)) (-1188))) (-15 -2143 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-665 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1206) (-864 |#2|) (-864 |#2|) (-112)))) -((-3491 (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))) (-1188)) 49 T ELT) (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))) (-1188)) 50 T ELT) (((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|)))) 22 T ELT))) -(((-223 |#1|) (-10 -7 (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))))) (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))) (-1188))) (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))))) (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))) (-1188)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (T -223)) -((-3491 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-864 (-420 (-980 *6))))) (-5 *5 (-1188)) (-5 *3 (-420 (-980 *6))) (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-864 (-420 (-980 *5))))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5)))) (-3491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1122 (-864 (-327 *6)))) (-5 *5 (-1188)) (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1122 (-864 (-327 *5)))) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5))))) -(-10 -7 (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))))) (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-327 |#1|))) (-1188))) (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))))) (-15 -3491 ((-3 (|:| |f1| (-864 (-327 |#1|))) (|:| |f2| (-665 (-864 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-980 |#1|)) (-1122 (-864 (-420 (-980 |#1|)))) (-1188)))) -((-2511 (((-2 (|:| -1524 (-1202 |#1|)) (|:| |deg| (-949))) (-1202 |#1|)) 26 T ELT)) (-4198 (((-665 (-327 |#2|)) (-327 |#2|) (-949)) 51 T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -2511 ((-2 (|:| -1524 (-1202 |#1|)) (|:| |deg| (-949))) (-1202 |#1|))) (-15 -4198 ((-665 (-327 |#2|)) (-327 |#2|) (-949)))) (-1079) (-569)) (T -224)) -((-4198 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *6 (-569)) (-5 *2 (-665 (-327 *6))) (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1079)))) (-2511 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-2 (|:| -1524 (-1202 *4)) (|:| |deg| (-949)))) (-5 *1 (-224 *4 *5)) (-5 *3 (-1202 *4)) (-4 *5 (-569))))) -(-10 -7 (-15 -2511 ((-2 (|:| -1524 (-1202 |#1|)) (|:| |deg| (-949))) (-1202 |#1|))) (-15 -4198 ((-665 (-327 |#2|)) (-327 |#2|) (-949)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1507 ((|#1| $) NIL T ELT)) (-2852 ((|#1| $) 30 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4171 (($ $) NIL T ELT)) (-3823 (($ $) 39 T ELT)) (-3073 ((|#1| |#1| $) NIL T ELT)) (-2908 ((|#1| $) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3490 (((-792) $) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) NIL T ELT)) (-3059 ((|#1| |#1| $) 35 T ELT)) (-3984 ((|#1| |#1| $) 37 T ELT)) (-3795 (($ |#1| $) NIL T ELT)) (-1736 (((-792) $) 33 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-1818 ((|#1| $) NIL T ELT)) (-3004 ((|#1| $) 31 T ELT)) (-3946 ((|#1| $) 29 T ELT)) (-3127 ((|#1| $) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-1930 ((|#1| |#1| $) NIL T ELT)) (-2392 (((-112) $) 9 T ELT)) (-3414 (($) NIL T ELT)) (-4038 ((|#1| $) NIL T ELT)) (-2068 (($) NIL T ELT) (($ (-665 |#1|)) 16 T ELT)) (-3300 (((-792) $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-3765 ((|#1| $) 13 T ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) NIL T ELT)) (-3290 ((|#1| $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-225 |#1|) (-13 (-262 |#1|) (-10 -8 (-15 -2068 ($ (-665 |#1|))))) (-1130)) (T -225)) -((-2068 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-225 *3))))) -(-13 (-262 |#1|) (-10 -8 (-15 -2068 ($ (-665 |#1|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2092 (($ (-327 |#1|)) 24 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1699 (((-112) $) NIL T ELT)) (-2817 (((-3 (-327 |#1|) "failed") $) NIL T ELT)) (-3514 (((-327 |#1|) $) NIL T ELT)) (-3134 (($ $) 32 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3609 (($ (-1 (-327 |#1|) (-327 |#1|)) $) NIL T ELT)) (-3109 (((-327 |#1|) $) NIL T ELT)) (-2845 (($ $) 31 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2595 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($ (-792)) NIL T ELT)) (-1822 (($ $) 33 T ELT)) (-2776 (((-577) $) NIL T ELT)) (-2410 (((-885) $) 65 T ELT) (($ (-577)) NIL T ELT) (($ (-327 |#1|)) NIL T ELT)) (-2778 (((-327 |#1|) $ $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 26 T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) 29 T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-327 |#1|) $) 19 T ELT))) -(((-226 |#1| |#2|) (-13 (-638 (-327 |#1|)) (-1068 (-327 |#1|)) (-10 -8 (-15 -3109 ((-327 |#1|) $)) (-15 -2845 ($ $)) (-15 -3134 ($ $)) (-15 -2778 ((-327 |#1|) $ $)) (-15 -2846 ($ (-792))) (-15 -2595 ((-112) $)) (-15 -1699 ((-112) $)) (-15 -2776 ((-577) $)) (-15 -3609 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -2092 ($ (-327 |#1|))) (-15 -1822 ($ $)))) (-13 (-1079) (-870)) (-665 (-1206))) (T -226)) -((-3109 (*1 *2 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-2845 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-665 (-1206))))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-665 (-1206))))) (-2778 (*1 *2 *1 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-2846 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1079) (-870))) (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206))))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1079) (-870))) (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206))))) (-1822 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) (-14 *3 (-665 (-1206)))))) -(-13 (-638 (-327 |#1|)) (-1068 (-327 |#1|)) (-10 -8 (-15 -3109 ((-327 |#1|) $)) (-15 -2845 ($ $)) (-15 -3134 ($ $)) (-15 -2778 ((-327 |#1|) $ $)) (-15 -2846 ($ (-792))) (-15 -2595 ((-112) $)) (-15 -1699 ((-112) $)) (-15 -2776 ((-577) $)) (-15 -3609 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -2092 ($ (-327 |#1|))) (-15 -1822 ($ $)))) -((-1443 (((-112) (-1188)) 26 T ELT)) (-3770 (((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-112)) 35 T ELT)) (-3743 (((-3 (-112) "failed") (-1202 |#2|) (-864 |#2|) (-864 |#2|) (-112)) 84 T ELT) (((-3 (-112) "failed") (-980 |#1|) (-1206) (-864 |#2|) (-864 |#2|) (-112)) 85 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -1443 ((-112) (-1188))) (-15 -3770 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-112))) (-15 -3743 ((-3 (-112) "failed") (-980 |#1|) (-1206) (-864 |#2|) (-864 |#2|) (-112))) (-15 -3743 ((-3 (-112) "failed") (-1202 |#2|) (-864 |#2|) (-864 |#2|) (-112)))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-29 |#1|))) (T -227)) -((-3743 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1202 *6)) (-5 *4 (-864 *6)) (-4 *6 (-13 (-1232) (-29 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-227 *5 *6)))) (-3743 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-980 *6)) (-5 *4 (-1206)) (-5 *5 (-864 *7)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *7 (-13 (-1232) (-29 *6))) (-5 *1 (-227 *6 *7)))) (-3770 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1232) (-29 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-227 *6 *4)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1232) (-29 *4)))))) -(-10 -7 (-15 -1443 ((-112) (-1188))) (-15 -3770 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-112))) (-15 -3743 ((-3 (-112) "failed") (-980 |#1|) (-1206) (-864 |#2|) (-864 |#2|) (-112))) (-15 -3743 ((-3 (-112) "failed") (-1202 |#2|) (-864 |#2|) (-864 |#2|) (-112)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 98 T ELT)) (-3277 (((-577) $) 33 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-4083 (($ $) NIL T ELT)) (-1501 (($ $) 87 T ELT)) (-1371 (($ $) 75 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-2809 (($ $) 66 T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-1477 (($ $) 85 T ELT)) (-1348 (($ $) 73 T ELT)) (-4459 (((-577) $) 127 T ELT)) (-1527 (($ $) 90 T ELT)) (-1391 (($ $) 77 T ELT)) (-2762 (($) NIL T CONST)) (-4019 (($ $) NIL T ELT)) (-2817 (((-3 (-577) "failed") $) 126 T ELT) (((-3 (-420 (-577)) "failed") $) 123 T ELT)) (-3514 (((-577) $) 124 T ELT) (((-420 (-577)) $) 121 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 103 T ELT)) (-1511 (((-420 (-577)) $ (-792)) 117 T ELT) (((-420 (-577)) $ (-792) (-792)) 116 T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3130 (((-949)) 28 T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-2785 (((-112) $) NIL T ELT)) (-2549 (($) 46 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL T ELT)) (-3890 (((-577) $) 40 T ELT)) (-2097 (((-112) $) 99 T ELT)) (-4341 (($ $ (-577)) NIL T ELT)) (-2755 (($ $) NIL T ELT)) (-1434 (((-112) $) 97 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) 63 T ELT) (($) 36 (-12 (-2308 (|has| $ (-6 -4482))) (-2308 (|has| $ (-6 -4490)))) ELT)) (-4167 (($ $ $) 62 T ELT) (($) 35 (-12 (-2308 (|has| $ (-6 -4482))) (-2308 (|has| $ (-6 -4490)))) ELT)) (-3031 (((-577) $) 26 T ELT)) (-3708 (($ $) 31 T ELT)) (-1842 (($ $) 67 T ELT)) (-3863 (($ $) 72 T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-3101 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-4312 (((-1150) $) 101 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL T ELT)) (-2136 (($ $) NIL T ELT)) (-3241 (($ (-577) (-577)) NIL T ELT) (($ (-577) (-577) (-949)) 110 T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2182 (((-577) $) 27 T ELT)) (-1819 (($) 45 T ELT)) (-3585 (($ $) 71 T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-4279 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-2030 (($ $) 104 T ELT) (($ $ (-792)) NIL T ELT)) (-2688 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-1540 (($ $) 88 T ELT)) (-1402 (($ $) 78 T ELT)) (-1515 (($ $) 89 T ELT)) (-1381 (($ $) 76 T ELT)) (-1489 (($ $) 86 T ELT)) (-1360 (($ $) 74 T ELT)) (-3341 (((-391) $) 113 T ELT) (((-228) $) 14 T ELT) (((-916 (-391)) $) NIL T ELT) (((-549) $) 52 T ELT)) (-2410 (((-885) $) 49 T ELT) (($ (-577)) 152 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) 152 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (($ $) NIL T ELT)) (-1750 (((-949)) 34 T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (((-949)) 24 T ELT)) (-1575 (($ $) 93 T ELT)) (-1435 (($ $) 81 T ELT) (($ $ $) 119 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-1551 (($ $) 91 T ELT)) (-1413 (($ $) 79 T ELT)) (-1597 (($ $) 96 T ELT)) (-1456 (($ $) 84 T ELT)) (-3501 (($ $) 94 T ELT)) (-1466 (($ $) 82 T ELT)) (-1586 (($ $) 95 T ELT)) (-1446 (($ $) 83 T ELT)) (-1562 (($ $) 92 T ELT)) (-1423 (($ $) 80 T ELT)) (-3385 (($ $) 118 T ELT)) (-2367 (($) 42 T CONST)) (-2378 (($) 43 T CONST)) (-2792 (((-1188) $) 18 T ELT) (((-1188) $ (-112)) 20 T ELT) (((-1302) (-843) $) 21 T ELT) (((-1302) (-843) $ (-112)) 22 T ELT)) (-2667 (($ $) 107 T ELT)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3587 (($ $ $) 109 T ELT)) (-2440 (((-112) $ $) 56 T ELT)) (-2415 (((-112) $ $) 54 T ELT)) (-2383 (((-112) $ $) 64 T ELT)) (-2428 (((-112) $ $) 55 T ELT)) (-2403 (((-112) $ $) 53 T ELT)) (-2494 (($ $ $) 44 T ELT) (($ $ (-577)) 65 T ELT)) (-2483 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-2471 (($ $ $) 58 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 68 T ELT) (($ $ (-420 (-577))) 151 T ELT) (($ $ $) 69 T ELT)) (* (($ (-949) $) 32 T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-228) (-13 (-417) (-239) (-849) (-1232) (-632 (-549)) (-10 -8 (-15 -2494 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -1819 ($)) (-15 -3708 ($ $)) (-15 -1842 ($ $)) (-15 -1435 ($ $ $)) (-15 -2667 ($ $)) (-15 -3587 ($ $ $)) (-15 -1511 ((-420 (-577)) $ (-792))) (-15 -1511 ((-420 (-577)) $ (-792) (-792)))))) (T -228)) -((** (*1 *1 *1 *1) (-5 *1 (-228))) (-2494 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-228)))) (-1819 (*1 *1) (-5 *1 (-228))) (-3708 (*1 *1 *1) (-5 *1 (-228))) (-1842 (*1 *1 *1) (-5 *1 (-228))) (-1435 (*1 *1 *1 *1) (-5 *1 (-228))) (-2667 (*1 *1 *1) (-5 *1 (-228))) (-3587 (*1 *1 *1 *1) (-5 *1 (-228))) (-1511 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) (-1511 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228))))) -(-13 (-417) (-239) (-849) (-1232) (-632 (-549)) (-10 -8 (-15 -2494 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -1819 ($)) (-15 -3708 ($ $)) (-15 -1842 ($ $)) (-15 -1435 ($ $ $)) (-15 -2667 ($ $)) (-15 -3587 ($ $ $)) (-15 -1511 ((-420 (-577)) $ (-792))) (-15 -1511 ((-420 (-577)) $ (-792) (-792))))) -((-3992 (((-171 (-228)) (-792) (-171 (-228))) 11 T ELT) (((-228) (-792) (-228)) 12 T ELT)) (-1534 (((-171 (-228)) (-171 (-228))) 13 T ELT) (((-228) (-228)) 14 T ELT)) (-2639 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 19 T ELT) (((-228) (-228) (-228)) 22 T ELT)) (-4302 (((-171 (-228)) (-171 (-228))) 27 T ELT) (((-228) (-228)) 26 T ELT)) (-3591 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 57 T ELT) (((-228) (-228) (-228)) 49 T ELT)) (-2227 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 62 T ELT) (((-228) (-228) (-228)) 60 T ELT)) (-3639 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 15 T ELT) (((-228) (-228) (-228)) 16 T ELT)) (-3321 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 17 T ELT) (((-228) (-228) (-228)) 18 T ELT)) (-2058 (((-171 (-228)) (-171 (-228))) 74 T ELT) (((-228) (-228)) 73 T ELT)) (-2668 (((-228) (-228)) 68 T ELT) (((-171 (-228)) (-171 (-228))) 72 T ELT)) (-2667 (((-171 (-228)) (-171 (-228))) 8 T ELT) (((-228) (-228)) 9 T ELT)) (-3587 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 35 T ELT) (((-228) (-228) (-228)) 31 T ELT))) -(((-229) (-10 -7 (-15 -2667 ((-228) (-228))) (-15 -2667 ((-171 (-228)) (-171 (-228)))) (-15 -3587 ((-228) (-228) (-228))) (-15 -3587 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1534 ((-228) (-228))) (-15 -1534 ((-171 (-228)) (-171 (-228)))) (-15 -4302 ((-228) (-228))) (-15 -4302 ((-171 (-228)) (-171 (-228)))) (-15 -3992 ((-228) (-792) (-228))) (-15 -3992 ((-171 (-228)) (-792) (-171 (-228)))) (-15 -3639 ((-228) (-228) (-228))) (-15 -3639 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3591 ((-228) (-228) (-228))) (-15 -3591 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3321 ((-228) (-228) (-228))) (-15 -3321 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2227 ((-228) (-228) (-228))) (-15 -2227 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2668 ((-171 (-228)) (-171 (-228)))) (-15 -2668 ((-228) (-228))) (-15 -2058 ((-228) (-228))) (-15 -2058 ((-171 (-228)) (-171 (-228)))) (-15 -2639 ((-228) (-228) (-228))) (-15 -2639 ((-171 (-228)) (-171 (-228)) (-171 (-228)))))) (T -229)) -((-2639 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2639 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2227 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2227 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3321 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3321 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3591 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3591 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3639 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3639 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3992 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-228))) (-5 *3 (-792)) (-5 *1 (-229)))) (-3992 (*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-792)) (-5 *1 (-229)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3587 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3587 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229))))) -(-10 -7 (-15 -2667 ((-228) (-228))) (-15 -2667 ((-171 (-228)) (-171 (-228)))) (-15 -3587 ((-228) (-228) (-228))) (-15 -3587 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1534 ((-228) (-228))) (-15 -1534 ((-171 (-228)) (-171 (-228)))) (-15 -4302 ((-228) (-228))) (-15 -4302 ((-171 (-228)) (-171 (-228)))) (-15 -3992 ((-228) (-792) (-228))) (-15 -3992 ((-171 (-228)) (-792) (-171 (-228)))) (-15 -3639 ((-228) (-228) (-228))) (-15 -3639 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3591 ((-228) (-228) (-228))) (-15 -3591 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3321 ((-228) (-228) (-228))) (-15 -3321 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2227 ((-228) (-228) (-228))) (-15 -2227 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -2668 ((-171 (-228)) (-171 (-228)))) (-15 -2668 ((-228) (-228))) (-15 -2058 ((-228) (-228))) (-15 -2058 ((-171 (-228)) (-171 (-228)))) (-15 -2639 ((-228) (-228) (-228))) (-15 -2639 ((-171 (-228)) (-171 (-228)) (-171 (-228))))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1525 (($ (-792) (-792)) NIL T ELT)) (-2555 (($ $ $) NIL T ELT)) (-3439 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-1939 (($ |#1| |#1| |#1|) 33 T ELT)) (-3387 (((-112) $) NIL T ELT)) (-3119 (($ $ (-577) (-577)) NIL T ELT)) (-1448 (($ $ (-577) (-577)) NIL T ELT)) (-3734 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-1937 (($ $) NIL T ELT)) (-4405 (((-112) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-1554 (($ $ (-577) (-577) $) NIL T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) NIL T ELT)) (-1543 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-1403 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-1405 (($ |#1| |#1| |#1|) 32 T ELT)) (-2831 (($ (-792) |#1|) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1433 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2803 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-2985 (($ |#1|) 31 T ELT)) (-2414 (($ |#1|) 30 T ELT)) (-3459 (($ |#1|) 29 T ELT)) (-1875 (((-792) $) NIL (|has| |#1| (-569)) ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-3381 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL T ELT)) (-3309 (((-792) $) NIL (|has| |#1| (-569)) ELT)) (-4111 (((-665 (-1297 |#1|)) $) NIL (|has| |#1| (-569)) ELT)) (-3066 (((-792) $) NIL T ELT)) (-3748 (($ (-792) (-792) |#1|) NIL T ELT)) (-3080 (((-792) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3845 ((|#1| $) NIL (|has| |#1| (-6 (-4501 "*"))) ELT)) (-2664 (((-577) $) NIL T ELT)) (-2988 (((-577) $) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1707 (((-577) $) NIL T ELT)) (-2529 (((-577) $) NIL T ELT)) (-1868 (($ (-665 (-665 |#1|))) 11 T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) NIL T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1522 (((-665 (-665 |#1|)) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2566 (((-3 $ "failed") $) NIL (|has| |#1| (-375)) ELT)) (-4412 (($) 12 T ELT)) (-1394 (($ $ $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) NIL T ELT)) (-4260 (($ (-665 |#1|)) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2101 (((-112) $) NIL T ELT)) (-2620 ((|#1| $) NIL (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2397 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-2410 (($ (-1297 |#1|)) NIL T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) NIL T ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) 15 T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT) (((-971 |#1|) $ (-971 |#1|)) 21 T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-230 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-971 |#1|) $ (-971 |#1|))) (-15 -4412 ($)) (-15 -3459 ($ |#1|)) (-15 -2414 ($ |#1|)) (-15 -2985 ($ |#1|)) (-15 -1405 ($ |#1| |#1| |#1|)) (-15 -1939 ($ |#1| |#1| |#1|)))) (-13 (-375) (-1232))) (T -230)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232))) (-5 *1 (-230 *3)))) (-4412 (*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-3459 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-2414 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-2985 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-1405 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) (-1939 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) -(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-971 |#1|) $ (-971 |#1|))) (-15 -4412 ($)) (-15 -3459 ($ |#1|)) (-15 -2414 ($ |#1|)) (-15 -2985 ($ |#1|)) (-15 -1405 ($ |#1| |#1| |#1|)) (-15 -1939 ($ |#1| |#1| |#1|)))) -((-3402 (($ (-1 (-112) |#2|) $) 16 T ELT)) (-1991 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 28 T ELT)) (-2427 (($) NIL T ELT) (($ (-665 |#2|)) 11 T ELT)) (-2383 (((-112) $ $) 26 T ELT))) -(((-231 |#1| |#2|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -3402 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| |#2| |#1|)) (-15 -2427 (|#1| (-665 |#2|))) (-15 -2427 (|#1|))) (-232 |#2|) (-1130)) (T -231)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -3402 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| |#2| |#1|)) (-15 -2427 (|#1| (-665 |#2|))) (-15 -2427 (|#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3860 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 51 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-232 |#1|) (-141) (-1130)) (T -232)) -NIL -(-13 (-241 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2030 (($ $ (-1 |#1| |#1|) (-792)) 57 T ELT) (($ $ (-1 |#1| |#1|)) 56 T ELT) (($ $ (-1206)) 55 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 53 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 52 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 51 (|has| |#1| (-928 (-1206))) ELT) (($ $) 47 (|has| |#1| (-238)) ELT) (($ $ (-792)) 45 (|has| |#1| (-238)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1 |#1| |#1|) (-792)) 59 T ELT) (($ $ (-1 |#1| |#1|)) 58 T ELT) (($ $ (-1206)) 54 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 50 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 49 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 48 (|has| |#1| (-928 (-1206))) ELT) (($ $) 46 (|has| |#1| (-238)) ELT) (($ $ (-792)) 44 (|has| |#1| (-238)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-233 |#1|) (-141) (-1079)) (T -233)) -NIL -(-13 (-1079) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-235 $) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-239) |has| |#1| (-239)) ((-238) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-920 $ #0=(-1206)) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #0#) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-1675 ((|#2| $) 9 T ELT))) -(((-234 |#1| |#2|) (-10 -8 (-15 -1675 (|#2| |#1|))) (-235 |#2|) (-1247)) (T -234)) -NIL -(-10 -8 (-15 -1675 (|#2| |#1|))) -((-2030 ((|#1| $) 7 T ELT)) (-1675 ((|#1| $) 6 T ELT))) -(((-235 |#1|) (-141) (-1247)) (T -235)) -((-2030 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247)))) (-1675 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247))))) -(-13 (-1247) (-10 -8 (-15 -2030 (|t#1| $)) (-15 -1675 (|t#1| $)))) -(((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2030 (($ $ (-792)) 37 T ELT) (($ $) 35 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-1675 (($ $ (-792)) 38 T ELT) (($ $) 36 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-236 |#1|) (-141) (-1079)) (T -236)) -NIL -(-13 (-111 |t#1| |t#1|) (-238) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-738 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-235 $) . T) ((-238) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-2030 (($ $) NIL T ELT) (($ $ (-792)) 9 T ELT)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) 11 T ELT))) -(((-237 |#1|) (-10 -8 (-15 -1675 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-792))) (-15 -1675 (|#1| |#1|)) (-15 -2030 (|#1| |#1|))) (-238)) (T -237)) -NIL -(-10 -8 (-15 -1675 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-792))) (-15 -1675 (|#1| |#1|)) (-15 -2030 (|#1| |#1|))) -((-2030 (($ $) 7 T ELT) (($ $ (-792)) 10 T ELT)) (-1675 (($ $) 6 T ELT) (($ $ (-792)) 9 T ELT))) -(((-238) (-141)) (T -238)) -((-2030 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792)))) (-1675 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792))))) -(-13 (-235 $) (-10 -8 (-15 -2030 ($ $ (-792))) (-15 -1675 ($ $ (-792))))) -(((-235 $) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2030 (($ $ (-792)) 42 T ELT) (($ $) 40 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-792)) 43 T ELT) (($ $) 41 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-239) (-141)) (T -239)) -NIL -(-13 (-1079) (-238)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-235 $) . T) ((-238) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2427 (($) 12 T ELT) (($ (-665 |#2|)) NIL T ELT)) (-3978 (($ $) 14 T ELT)) (-2422 (($ (-665 |#2|)) 10 T ELT)) (-2410 (((-885) $) 21 T ELT))) -(((-240 |#1| |#2|) (-10 -8 (-15 -2410 ((-885) |#1|)) (-15 -2427 (|#1| (-665 |#2|))) (-15 -2427 (|#1|)) (-15 -2422 (|#1| (-665 |#2|))) (-15 -3978 (|#1| |#1|))) (-241 |#2|) (-1130)) (T -240)) -NIL -(-10 -8 (-15 -2410 ((-885) |#1|)) (-15 -2427 (|#1| (-665 |#2|))) (-15 -2427 (|#1|)) (-15 -2422 (|#1| (-665 |#2|))) (-15 -3978 (|#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3860 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 51 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-241 |#1|) (-141) (-1130)) (T -241)) -((-2427 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1130)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-241 *3)))) (-1991 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-241 *2)) (-4 *2 (-1130)))) (-1991 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) (-4 *3 (-1130)))) (-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) (-4 *3 (-1130))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2427 ($)) (-15 -2427 ($ (-665 |t#1|))) (IF (|has| $ (-6 -4499)) (PROGN (-15 -1991 ($ |t#1| $)) (-15 -1991 ($ (-1 (-112) |t#1|) $)) (-15 -3402 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-1710 (((-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792))))) (-305 (-980 (-577)))) 42 T ELT))) -(((-242) (-10 -7 (-15 -1710 ((-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792))))) (-305 (-980 (-577))))))) (T -242)) -((-1710 (*1 *2 *3) (-12 (-5 *3 (-305 (-980 (-577)))) (-5 *2 (-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792)))))) (-5 *1 (-242))))) -(-10 -7 (-15 -1710 ((-2 (|:| |varOrder| (-665 (-1206))) (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) (|:| |hom| (-665 (-1297 (-792))))) (-305 (-980 (-577)))))) -((-2221 (((-792)) 56 T ELT)) (-1953 (((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) 53 T ELT) (((-710 |#3|) (-710 $)) 44 T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-2419 (((-135)) 62 T ELT)) (-2030 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2410 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-885) $) NIL T ELT) (($ (-577)) 12 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3234 (((-792)) 15 T ELT)) (-2494 (($ $ |#3|) 59 T ELT))) -(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| (-577))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2410 ((-885) |#1|)) (-15 -3234 ((-792))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -2410 (|#1| |#3|)) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1953 ((-710 |#3|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -2221 ((-792))) (-15 -2494 (|#1| |#1| |#3|)) (-15 -2419 ((-135))) (-15 -2410 ((-1297 |#3|) |#1|))) (-244 |#2| |#3|) (-792) (-1247)) (T -243)) -((-2419 (*1 *2) (-12 (-14 *4 (-792)) (-4 *5 (-1247)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-2221 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-3234 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) -(-10 -8 (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| (-577))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2410 ((-885) |#1|)) (-15 -3234 ((-792))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -2410 (|#1| |#3|)) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1953 ((-710 |#3|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -2221 ((-792))) (-15 -2494 (|#1| |#1| |#3|)) (-15 -2419 ((-135))) (-15 -2410 ((-1297 |#3|) |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-1516 (((-112) $) 76 (|has| |#2| (-23)) ELT)) (-1997 (($ (-949)) 129 (|has| |#2| (-1079)) ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-1658 (($ $ $) 125 (|has| |#2| (-814)) ELT)) (-3262 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2221 (((-792)) 115 (|has| |#2| (-380)) ELT)) (-2589 ((|#2| $ (-577) |#2|) 53 (|has| $ (-6 -4500)) ELT)) (-2762 (($) 7 T CONST)) (-2817 (((-3 (-577) "failed") $) 71 (-2319 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) 68 (-2319 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1130)) ELT)) (-3514 (((-577) $) 70 (-2319 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) 67 (-2319 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) 66 (|has| |#2| (-1130)) ELT)) (-1953 (((-710 (-577)) (-710 $)) 112 (-2319 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 111 (-2319 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 110 (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) 109 (|has| |#2| (-1079)) ELT)) (-4281 (((-3 $ "failed") $) 86 (|has| |#2| (-1079)) ELT)) (-2060 (($) 118 (|has| |#2| (-380)) ELT)) (-3448 ((|#2| $ (-577) |#2|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ (-577)) 52 T ELT)) (-2728 (((-665 |#2|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) 88 (|has| |#2| (-1079)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 119 (|has| |#2| (-870)) ELT)) (-4138 (((-665 |#2|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 120 (|has| |#2| (-870)) ELT)) (-3437 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-2553 (((-949) $) 117 (|has| |#2| (-380)) ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 114 (-2319 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 113 (-2319 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 108 (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) 107 (|has| |#2| (-1079)) ELT)) (-3384 (((-1188) $) 23 (|has| |#2| (-1130)) ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-2085 (($ (-949)) 116 (|has| |#2| (-380)) ELT)) (-4312 (((-1150) $) 22 (|has| |#2| (-1130)) ELT)) (-4188 ((|#2| $) 43 (|has| (-577) (-870)) ELT)) (-3482 (($ $ |#2|) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#2| $ (-577) |#2|) 51 T ELT) ((|#2| $ (-577)) 50 T ELT)) (-3511 ((|#2| $ $) 128 (|has| |#2| (-1079)) ELT)) (-2840 (($ (-1297 |#2|)) 130 T ELT)) (-2419 (((-135)) 127 (|has| |#2| (-375)) ELT)) (-2030 (($ $ (-792)) 105 (-2319 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) 103 (-2319 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 99 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) 98 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) 97 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) 95 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) 93 (|has| |#2| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) 29 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-1297 |#2|) $) 131 T ELT) (($ (-577)) 72 (-2229 (-2319 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) 69 (-2319 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) 64 (|has| |#2| (-1130)) ELT) (((-885) $) 18 (|has| |#2| (-631 (-885))) ELT)) (-3234 (((-792)) 90 (|has| |#2| (-1079)) CONST)) (-2525 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2367 (($) 75 (|has| |#2| (-23)) CONST)) (-2378 (($) 89 (|has| |#2| (-1079)) CONST)) (-1675 (($ $ (-792)) 106 (-2319 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) 104 (-2319 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 102 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) 101 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) 100 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) 96 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) 91 (|has| |#2| (-1079)) ELT)) (-2440 (((-112) $ $) 121 (|has| |#2| (-870)) ELT)) (-2415 (((-112) $ $) 123 (|has| |#2| (-870)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-2428 (((-112) $ $) 122 (|has| |#2| (-870)) ELT)) (-2403 (((-112) $ $) 124 (|has| |#2| (-870)) ELT)) (-2494 (($ $ |#2|) 126 (|has| |#2| (-375)) ELT)) (-2483 (($ $ $) 81 (|has| |#2| (-21)) ELT) (($ $) 80 (|has| |#2| (-21)) ELT)) (-2471 (($ $ $) 73 (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) 87 (|has| |#2| (-1079)) ELT) (($ $ (-949)) 84 (|has| |#2| (-1079)) ELT)) (* (($ $ $) 85 (|has| |#2| (-1079)) ELT) (($ $ |#2|) 83 (|has| |#2| (-747)) ELT) (($ |#2| $) 82 (|has| |#2| (-747)) ELT) (($ (-577) $) 79 (|has| |#2| (-21)) ELT) (($ (-792) $) 77 (|has| |#2| (-23)) ELT) (($ (-949) $) 74 (|has| |#2| (-25)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-244 |#1| |#2|) (-141) (-792) (-1247)) (T -244)) -((-2840 (*1 *1 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-244 *3 *4)))) (-1997 (*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1079)) (-4 *4 (-1247)))) (-3511 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) -(-13 (-617 (-577) |t#2|) (-631 (-1297 |t#2|)) (-10 -8 (-6 -4499) (-15 -2840 ($ (-1297 |t#2|))) (IF (|has| |t#2| (-1130)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1079)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-389 |t#2|)) (-15 -1997 ($ (-949))) (-15 -3511 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-747)) (-6 (-661 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-738 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4496)) (-6 -4496) |%noBranch|) (IF (|has| |t#2| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#2| (-814)) (-6 (-814)) |%noBranch|) (IF (|has| |t#2| (-375)) (-6 (-1304 |t#2|)) |%noBranch|))) -(((-21) -2229 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2229 (|has| |#2| (-1079)) (|has| |#2| (-814)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2229 (|has| |#2| (-1079)) (|has| |#2| (-814)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2229 (|has| |#2| (-1130)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-814)) (|has| |#2| (-747)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2229 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-132) -2229 (|has| |#2| (-1079)) (|has| |#2| (-814)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-634 #0=(-420 (-577))) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ((-634 (-577)) -2229 (|has| |#2| (-1079)) (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130)))) ((-634 |#2|) |has| |#2| (-1130)) ((-631 (-885)) -2229 (|has| |#2| (-1130)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-814)) (|has| |#2| (-747)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-631 (-885))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-631 (-1297 |#2|)) . T) ((-235 $) -2229 (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079)))) ((-233 |#2|) |has| |#2| (-1079)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1079))) ((-238) -2229 (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1079)))) ((-273 |#2|) |has| |#2| (-1079)) ((-297 #1=(-577) |#2|) . T) ((-299 #1# |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-380) |has| |#2| (-380)) ((-389 |#2|) |has| |#2| (-1079)) ((-424 |#2|) |has| |#2| (-1130)) ((-502 |#2|) . T) ((-617 #1# |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-667 (-577)) -2229 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-667 |#2|) -2229 (|has| |#2| (-1079)) (|has| |#2| (-747)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-667 $) |has| |#2| (-1079)) ((-669 #2=(-577)) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ((-669 |#2|) -2229 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-669 $) |has| |#2| (-1079)) ((-661 |#2|) -2229 (|has| |#2| (-747)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-659 #2#) -12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ((-659 |#2|) |has| |#2| (-1079)) ((-738 |#2|) -2229 (|has| |#2| (-375)) (|has| |#2| (-174))) ((-747) |has| |#2| (-1079)) ((-813) |has| |#2| (-814)) ((-814) |has| |#2| (-814)) ((-815) |has| |#2| (-814)) ((-816) |has| |#2| (-814)) ((-870) -2229 (|has| |#2| (-870)) (|has| |#2| (-814))) ((-873) -2229 (|has| |#2| (-870)) (|has| |#2| (-814))) ((-920 $ #3=(-1206)) -2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) ((-926 (-1206)) -12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079))) ((-928 #3#) -2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) (-12 (|has| |#2| (-926 (-1206))) (|has| |#2| (-1079)))) ((-1068 #0#) -12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ((-1068 (-577)) -12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ((-1068 |#2|) |has| |#2| (-1130)) ((-1081 |#2|) -2229 (|has| |#2| (-1079)) (|has| |#2| (-747)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1086 |#2|) -2229 (|has| |#2| (-1079)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1079) |has| |#2| (-1079)) ((-1088) |has| |#2| (-1079)) ((-1142) |has| |#2| (-1079)) ((-1130) -2229 (|has| |#2| (-1130)) (|has| |#2| (-1079)) (|has| |#2| (-870)) (|has| |#2| (-814)) (|has| |#2| (-747)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1247) . T) ((-1304 |#2|) |has| |#2| (-375))) -((-2090 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-2511 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-3609 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) -(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -2090 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2511 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -3609 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-792) (-1247) (-1247)) (T -245)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-245 *5 *6 *2)))) (-2090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-792)) (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) -(-10 -7 (-15 -2090 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2511 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -3609 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) -((-3211 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1516 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-1997 (($ (-949)) 62 (|has| |#2| (-1079)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1658 (($ $ $) 68 (|has| |#2| (-814)) ELT)) (-3262 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#2| (-380)) ELT)) (-2589 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1130)) ELT)) (-3514 (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) 28 (|has| |#2| (-1130)) ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) NIL (|has| |#2| (-1079)) ELT)) (-4281 (((-3 $ "failed") $) 58 (|has| |#2| (-1079)) ELT)) (-2060 (($) NIL (|has| |#2| (-380)) ELT)) (-3448 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ (-577)) 56 T ELT)) (-2728 (((-665 |#2|) $) 14 (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL (|has| |#2| (-1079)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 19 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4138 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3437 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#2| (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3384 (((-1188) $) NIL (|has| |#2| (-1130)) ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-2085 (($ (-949)) NIL (|has| |#2| (-380)) ELT)) (-4312 (((-1150) $) NIL (|has| |#2| (-1130)) ELT)) (-4188 ((|#2| $) NIL (|has| (-577) (-870)) ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) 20 T ELT)) (-3511 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-2840 (($ (-1297 |#2|)) 17 T ELT)) (-2419 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-2030 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-1297 |#2|) $) 9 T ELT) (($ (-577)) NIL (-2229 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) 12 (|has| |#2| (-1130)) ELT) (((-885) $) NIL (|has| |#2| (-631 (-885))) ELT)) (-3234 (((-792)) NIL (|has| |#2| (-1079)) CONST)) (-2525 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2367 (($) 36 (|has| |#2| (-23)) CONST)) (-2378 (($) 40 (|has| |#2| (-1079)) CONST)) (-1675 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2383 (((-112) $ $) 27 (|has| |#2| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2403 (((-112) $ $) 66 (|has| |#2| (-870)) ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2471 (($ $ $) 34 (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) 46 (|has| |#2| (-1079)) ELT) (($ $ |#2|) 44 (|has| |#2| (-747)) ELT) (($ |#2| $) 45 (|has| |#2| (-747)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-792) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-246 |#1| |#2|) (-244 |#1| |#2|) (-792) (-1247)) (T -246)) -NIL -(-244 |#1| |#2|) -((-2219 (((-577) (-665 (-1188))) 36 T ELT) (((-577) (-1188)) 29 T ELT)) (-1364 (((-1302) (-665 (-1188))) 40 T ELT) (((-1302) (-1188)) 39 T ELT)) (-2066 (((-1188)) 16 T ELT)) (-2628 (((-1188) (-577) (-1188)) 23 T ELT)) (-4368 (((-665 (-1188)) (-665 (-1188)) (-577) (-1188)) 37 T ELT) (((-1188) (-1188) (-577) (-1188)) 35 T ELT)) (-3337 (((-665 (-1188)) (-665 (-1188))) 15 T ELT) (((-665 (-1188)) (-1188)) 11 T ELT))) -(((-247) (-10 -7 (-15 -3337 ((-665 (-1188)) (-1188))) (-15 -3337 ((-665 (-1188)) (-665 (-1188)))) (-15 -2066 ((-1188))) (-15 -2628 ((-1188) (-577) (-1188))) (-15 -4368 ((-1188) (-1188) (-577) (-1188))) (-15 -4368 ((-665 (-1188)) (-665 (-1188)) (-577) (-1188))) (-15 -1364 ((-1302) (-1188))) (-15 -1364 ((-1302) (-665 (-1188)))) (-15 -2219 ((-577) (-1188))) (-15 -2219 ((-577) (-665 (-1188)))))) (T -247)) -((-2219 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-577)) (-5 *1 (-247)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-247)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1302)) (-5 *1 (-247)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-247)))) (-4368 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 (-1188))) (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *1 (-247)))) (-4368 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247)))) (-2628 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247)))) (-2066 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-247)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)))) (-3337 (*1 *2 *3) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)) (-5 *3 (-1188))))) -(-10 -7 (-15 -3337 ((-665 (-1188)) (-1188))) (-15 -3337 ((-665 (-1188)) (-665 (-1188)))) (-15 -2066 ((-1188))) (-15 -2628 ((-1188) (-577) (-1188))) (-15 -4368 ((-1188) (-1188) (-577) (-1188))) (-15 -4368 ((-665 (-1188)) (-665 (-1188)) (-577) (-1188))) (-15 -1364 ((-1302) (-1188))) (-15 -1364 ((-1302) (-665 (-1188)))) (-15 -2219 ((-577) (-1188))) (-15 -2219 ((-577) (-665 (-1188))))) -((** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 20 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-420 (-577)) $) 27 T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-249)) (T -248)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 47 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 51 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 48 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-420 (-577)) $) 50 T ELT) (($ $ (-420 (-577))) 49 T ELT))) -(((-249) (-141)) (T -249)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-577)))) (-3055 (*1 *1 *1) (-4 *1 (-249)))) -(-13 (-301) (-38 (-420 (-577))) (-10 -8 (-15 ** ($ $ (-577))) (-15 -3055 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-301) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-738 #0#) . T) ((-747) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-3840 (($ $) 58 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-3382 (($ $ $) 54 (|has| $ (-6 -4500)) ELT)) (-3879 (($ $ $) 53 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2762 (($) 7 T CONST)) (-3773 (($ $) 57 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-4060 (($ $) 56 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) 60 T ELT)) (-3133 (($ $) 59 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2872 (($ $ $) 55 (|has| $ (-6 -4500)) ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-250 |#1|) (-141) (-1247)) (T -250)) -((-2756 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-3133 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-4060 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-2872 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-3382 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247)))) (-3879 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247))))) -(-13 (-1040 |t#1|) (-10 -8 (-15 -2756 (|t#1| $)) (-15 -3133 ($ $)) (-15 -3840 ($ $)) (-15 -3773 ($ $)) (-15 -4060 ($ $)) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2872 ($ $ $)) (-15 -3382 ($ $ $)) (-15 -3879 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) NIL T ELT)) (-3932 ((|#1| $) NIL T ELT)) (-3840 (($ $) NIL T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) $) NIL (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2040 (($ $) 10 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-4306 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3919 ((|#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-4197 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3237 (($ $) NIL (|has| |#1| (-1130)) ELT)) (-3860 (($ $) 7 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2736 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-1631 (((-112) $) NIL T ELT)) (-3886 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2044 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2223 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2605 (($ |#1|) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3795 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-4272 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2005 (((-112) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) ((|#1| $ (-577) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-792) $ "count") 16 T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2209 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1704 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-2806 (($ (-665 |#1|)) 22 T ELT)) (-2110 (((-112) $) NIL T ELT)) (-1751 (($ $) NIL T ELT)) (-4123 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) NIL T ELT)) (-2872 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3702 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-665 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2410 (($ (-665 |#1|)) 17 T ELT) (((-665 |#1|) $) 18 T ELT) (((-885) $) 21 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 14 (|has| $ (-6 -4499)) ELT))) -(((-251 |#1|) (-13 (-687 |#1|) (-503 (-665 |#1|)) (-10 -8 (-15 -2806 ($ (-665 |#1|))) (-15 -2435 ($ $ "unique")) (-15 -2435 ($ $ "sort")) (-15 -2435 ((-792) $ "count")))) (-870)) (T -251)) -((-2806 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-251 *3)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-870)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-870)))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-792)) (-5 *1 (-251 *4)) (-4 *4 (-870))))) -(-13 (-687 |#1|) (-503 (-665 |#1|)) (-10 -8 (-15 -2806 ($ (-665 |#1|))) (-15 -2435 ($ $ "unique")) (-15 -2435 ($ $ "sort")) (-15 -2435 ((-792) $ "count")))) -((-2856 (((-3 (-792) "failed") |#1| |#1| (-792)) 40 T ELT))) -(((-252 |#1|) (-10 -7 (-15 -2856 ((-3 (-792) "failed") |#1| |#1| (-792)))) (-13 (-747) (-380) (-10 -7 (-15 ** (|#1| |#1| (-577)))))) (T -252)) -((-2856 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-792)) (-4 *3 (-13 (-747) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) (-5 *1 (-252 *3))))) -(-10 -7 (-15 -2856 ((-3 (-792) "failed") |#1| |#1| (-792)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2030 (($ $) 54 (|has| |#1| (-238)) ELT) (($ $ (-792)) 52 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 50 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 48 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 47 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 46 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1 |#1| |#1|) (-792)) 40 T ELT) (($ $ (-1 |#1| |#1|)) 39 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-1675 (($ $) 53 (|has| |#1| (-238)) ELT) (($ $ (-792)) 51 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 49 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 45 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 44 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 43 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1 |#1| |#1|) (-792)) 42 T ELT) (($ $ (-1 |#1| |#1|)) 41 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-253 |#1|) (-141) (-1079)) (T -253)) -NIL -(-13 (-111 |t#1| |t#1|) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-236 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-928 (-1206))) (-6 (-925 |t#1| (-1206))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-235 $) |has| |#1| (-238)) ((-236 |#1|) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-273 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) -2229 (-12 (|has| |#1| (-174)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-738 |#1|) -2229 (-12 (|has| |#1| (-174)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-920 $ #0=(-1206)) |has| |#1| (-928 (-1206))) ((-925 |#1| (-1206)) |has| |#1| (-928 (-1206))) ((-928 #0#) |has| |#1| (-928 (-1206))) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-887 |#1|)) $) NIL T ELT)) (-4419 (((-1202 $) $ (-887 |#1|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#2| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#2| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3760 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-1471 (($ $ (-665 (-577))) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4313 (($ $ |#2| (-246 (-3224 |#1|) (-792)) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2935 (($ (-1202 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1202 $) (-887 |#1|)) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-246 (-3224 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3569 (((-246 (-3224 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4309 (($ (-1 (-246 (-3224 |#1|) (-792)) (-246 (-3224 |#1|) (-792))) $) NIL T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2505 (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#2| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#2| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) NIL T ELT)) (-1611 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-2030 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-2776 (((-246 (-3224 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2091 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-246 (-3224 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-254 |#1| |#2|) (-13 (-977 |#2| (-246 (-3224 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -1471 ($ $ (-665 (-577)))))) (-665 (-1206)) (-1079)) (T -254)) -((-1471 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-254 *3 *4)) (-14 *3 (-665 (-1206))) (-4 *4 (-1079))))) -(-13 (-977 |#2| (-246 (-3224 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -1471 ($ $ (-665 (-577)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2189 (((-1302) $) 17 T ELT)) (-1890 (((-185 (-256)) $) 11 T ELT)) (-1487 (($ (-185 (-256))) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1532 (((-256) $) 7 T ELT)) (-2410 (((-885) $) 9 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 15 T ELT))) -(((-255) (-13 (-1130) (-10 -8 (-15 -1532 ((-256) $)) (-15 -1890 ((-185 (-256)) $)) (-15 -1487 ($ (-185 (-256)))) (-15 -2189 ((-1302) $))))) (T -255)) -((-1532 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-255)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-1487 (*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-255))))) -(-13 (-1130) (-10 -8 (-15 -1532 ((-256) $)) (-15 -1890 ((-185 (-256)) $)) (-15 -1487 ($ (-185 (-256)))) (-15 -2189 ((-1302) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2301 (((-665 (-888)) $) NIL T ELT)) (-4105 (((-519) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4407 (((-188) $) NIL T ELT)) (-4450 (((-112) $ (-519)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2715 (((-344) $) 7 T ELT)) (-1337 (((-665 (-112)) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (((-189) $) 8 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3089 (((-55) $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-256) (-13 (-187) (-631 (-189)) (-10 -8 (-15 -2715 ((-344) $))))) (T -256)) -((-2715 (*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) -(-13 (-187) (-631 (-189)) (-10 -8 (-15 -2715 ((-344) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 (((-1211) $ (-792)) 13 T ELT)) (-2410 (((-885) $) 20 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 16 T ELT)) (-3224 (((-792) $) 9 T ELT))) -(((-257) (-13 (-1130) (-297 (-792) (-1211)) (-10 -8 (-15 -3224 ((-792) $))))) (T -257)) -((-3224 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-257))))) -(-13 (-1130) (-297 (-792) (-1211)) (-10 -8 (-15 -3224 ((-792) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1997 (($ (-949)) NIL (|has| |#4| (-1079)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1658 (($ $ $) NIL (|has| |#4| (-814)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#4| (-380)) ELT)) (-2589 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1130)) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130))) ELT)) (-3514 ((|#4| $) NIL (|has| |#4| (-1130)) ELT) (((-577) $) NIL (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130))) ELT)) (-1953 (((-2 (|:| -1670 (-710 |#4|)) (|:| |vec| (-1297 |#4|))) (-710 $) (-1297 $)) NIL (|has| |#4| (-1079)) ELT) (((-710 |#4|) (-710 $)) NIL (|has| |#4| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT)) (-4281 (((-3 $ "failed") $) NIL (|has| |#4| (-1079)) ELT)) (-2060 (($) NIL (|has| |#4| (-380)) ELT)) (-3448 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#4| $ (-577)) NIL T ELT)) (-2728 (((-665 |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL (|has| |#4| (-1079)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#4| (-870)) ELT)) (-4138 (((-665 |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#4| (-870)) ELT)) (-3437 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#4| (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2796 (((-2 (|:| -1670 (-710 |#4|)) (|:| |vec| (-1297 |#4|))) (-1297 $) $) NIL (|has| |#4| (-1079)) ELT) (((-710 |#4|) (-1297 $)) NIL (|has| |#4| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#4| (-659 (-577))) (|has| |#4| (-1079))) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-2085 (($ (-949)) NIL (|has| |#4| (-380)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 ((|#4| $) NIL (|has| (-577) (-870)) ELT)) (-3482 (($ $ |#4|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3485 (((-665 |#4|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#4| $ (-577) |#4|) NIL T ELT) ((|#4| $ (-577)) 12 T ELT)) (-3511 ((|#4| $ $) NIL (|has| |#4| (-1079)) ELT)) (-2840 (($ (-1297 |#4|)) NIL T ELT)) (-2419 (((-135)) NIL (|has| |#4| (-375)) ELT)) (-2030 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-1 |#4| |#4|) (-792)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT) (($ $) NIL (-2229 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT)) (-4323 (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-1297 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1130)) ELT) (((-885) $) NIL T ELT) (($ (-577)) NIL (-2229 (-12 (|has| |#4| (-1068 (-577))) (|has| |#4| (-1130))) (|has| |#4| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#4| (-1068 (-420 (-577)))) (|has| |#4| (-1130))) ELT)) (-3234 (((-792)) NIL (|has| |#4| (-1079)) CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL (|has| |#4| (-1079)) CONST)) (-1675 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-1 |#4| |#4|) (-792)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#4| (-926 (-1206))) (|has| |#4| (-1079))) (-12 (|has| |#4| (-928 (-1206))) (|has| |#4| (-1079)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT) (($ $) NIL (-2229 (-12 (|has| |#4| (-239)) (|has| |#4| (-1079))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1079)))) ELT)) (-2440 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#4| (-870)) ELT)) (-2494 (($ $ |#4|) NIL (|has| |#4| (-375)) ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL (|has| |#4| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#4| (-1079)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-747)) ELT) (($ |#4| $) NIL (|has| |#4| (-747)) ELT) (($ $ $) NIL (|has| |#4| (-1079)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-258 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-669 |#2|) (-669 |#3|)) (-949) (-1079) (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-669 |#2|)) (T -258)) -NIL -(-13 (-244 |#1| |#4|) (-669 |#2|) (-669 |#3|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1997 (($ (-949)) NIL (|has| |#3| (-1079)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1658 (($ $ $) NIL (|has| |#3| (-814)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#3| (-380)) ELT)) (-2589 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1130)) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT)) (-3514 ((|#3| $) NIL (|has| |#3| (-1130)) ELT) (((-577) $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT)) (-1953 (((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-710 $)) NIL (|has| |#3| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT)) (-4281 (((-3 $ "failed") $) NIL (|has| |#3| (-1079)) ELT)) (-2060 (($) NIL (|has| |#3| (-380)) ELT)) (-3448 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#3| $ (-577)) NIL T ELT)) (-2728 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL (|has| |#3| (-1079)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-4138 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-3437 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#3| (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2796 (((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-2085 (($ (-949)) NIL (|has| |#3| (-380)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 ((|#3| $) NIL (|has| (-577) (-870)) ELT)) (-3482 (($ $ |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 |#3|) (-665 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-3485 (((-665 |#3|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#3| $ (-577) |#3|) NIL T ELT) ((|#3| $ (-577)) 11 T ELT)) (-3511 ((|#3| $ $) NIL (|has| |#3| (-1079)) ELT)) (-2840 (($ (-1297 |#3|)) NIL T ELT)) (-2419 (((-135)) NIL (|has| |#3| (-375)) ELT)) (-2030 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT) (($ $) NIL (-2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT)) (-4323 (((-792) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1130)) ELT) (((-885) $) NIL T ELT) (($ (-577)) NIL (-2229 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT)) (-3234 (((-792)) NIL (|has| |#3| (-1079)) CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL (|has| |#3| (-1079)) CONST)) (-1675 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#3| (-926 (-1206))) (|has| |#3| (-1079))) (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT) (($ $) NIL (-2229 (-12 (|has| |#3| (-239)) (|has| |#3| (-1079))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1079)))) ELT)) (-2440 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-2494 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#3| (-1079)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-747)) ELT) (($ |#3| $) NIL (|has| |#3| (-747)) ELT) (($ $ $) NIL (|has| |#3| (-1079)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-259 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-669 |#2|)) (-792) (-1079) (-669 |#2|)) (T -259)) -NIL -(-13 (-244 |#1| |#3|) (-669 |#2|)) -((-3450 (((-665 (-792)) $) 56 T ELT) (((-665 (-792)) $ |#3|) 59 T ELT)) (-1975 (((-792) $) 58 T ELT) (((-792) $ |#3|) 61 T ELT)) (-3138 (($ $) 76 T ELT)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 83 T ELT)) (-3890 (((-792) $ |#3|) 43 T ELT) (((-792) $) 38 T ELT)) (-3727 (((-1 $ (-792)) |#3|) 15 T ELT) (((-1 $ (-792)) $) 88 T ELT)) (-2823 ((|#4| $) 69 T ELT)) (-3533 (((-112) $) 67 T ELT)) (-4347 (($ $) 75 T ELT)) (-3362 (($ $ (-665 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-665 |#4|) (-665 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-665 |#4|) (-665 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-665 |#3|) (-665 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-665 |#3|) (-665 |#2|)) 97 T ELT)) (-2030 (($ $ (-665 |#4|) (-665 (-792))) NIL T ELT) (($ $ |#4| (-792)) NIL T ELT) (($ $ (-665 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3667 (((-665 |#3|) $) 86 T ELT)) (-2776 ((|#5| $) NIL T ELT) (((-792) $ |#4|) NIL T ELT) (((-665 (-792)) $ (-665 |#4|)) NIL T ELT) (((-792) $ |#3|) 49 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT))) -(((-260 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2410 (|#1| |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3362 (|#1| |#1| (-665 |#3|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#3| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#3|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#3| |#1|)) (-15 -3727 ((-1 |#1| (-792)) |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -4347 (|#1| |#1|)) (-15 -2823 (|#4| |#1|)) (-15 -3533 ((-112) |#1|)) (-15 -1975 ((-792) |#1| |#3|)) (-15 -3450 ((-665 (-792)) |#1| |#3|)) (-15 -1975 ((-792) |#1|)) (-15 -3450 ((-665 (-792)) |#1|)) (-15 -2776 ((-792) |#1| |#3|)) (-15 -3890 ((-792) |#1|)) (-15 -3890 ((-792) |#1| |#3|)) (-15 -3667 ((-665 |#3|) |#1|)) (-15 -3727 ((-1 |#1| (-792)) |#3|)) (-15 -2410 (|#1| |#3|)) (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2776 ((-665 (-792)) |#1| (-665 |#4|))) (-15 -2776 ((-792) |#1| |#4|)) (-15 -2410 (|#1| |#4|)) (-15 -2817 ((-3 |#4| "failed") |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#4| |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#4| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -2776 (|#5| |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2030 (|#1| |#1| |#4|)) (-15 -2030 (|#1| |#1| (-665 |#4|))) (-15 -2030 (|#1| |#1| |#4| (-792))) (-15 -2030 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-261 |#2| |#3| |#4| |#5|) (-1079) (-870) (-276 |#3|) (-814)) (T -260)) -NIL -(-10 -8 (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2410 (|#1| |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3362 (|#1| |#1| (-665 |#3|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#3| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#3|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#3| |#1|)) (-15 -3727 ((-1 |#1| (-792)) |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -4347 (|#1| |#1|)) (-15 -2823 (|#4| |#1|)) (-15 -3533 ((-112) |#1|)) (-15 -1975 ((-792) |#1| |#3|)) (-15 -3450 ((-665 (-792)) |#1| |#3|)) (-15 -1975 ((-792) |#1|)) (-15 -3450 ((-665 (-792)) |#1|)) (-15 -2776 ((-792) |#1| |#3|)) (-15 -3890 ((-792) |#1|)) (-15 -3890 ((-792) |#1| |#3|)) (-15 -3667 ((-665 |#3|) |#1|)) (-15 -3727 ((-1 |#1| (-792)) |#3|)) (-15 -2410 (|#1| |#3|)) (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2776 ((-665 (-792)) |#1| (-665 |#4|))) (-15 -2776 ((-792) |#1| |#4|)) (-15 -2410 (|#1| |#4|)) (-15 -2817 ((-3 |#4| "failed") |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#4| |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#4| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -2776 (|#5| |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2030 (|#1| |#1| |#4|)) (-15 -2030 (|#1| |#1| (-665 |#4|))) (-15 -2030 (|#1| |#1| |#4| (-792))) (-15 -2030 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3450 (((-665 (-792)) $) 236 T ELT) (((-665 (-792)) $ |#2|) 234 T ELT)) (-1975 (((-792) $) 235 T ELT) (((-792) $ |#2|) 233 T ELT)) (-2948 (((-665 |#3|) $) 113 T ELT)) (-4419 (((-1202 $) $ |#3|) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 91 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) 115 T ELT) (((-792) $ (-665 |#3|)) 114 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-4456 (($ $) 101 (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-3138 (($ $) 229 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 |#2| "failed") $) 243 T ELT)) (-3514 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) 144 T ELT) ((|#2| $) 244 T ELT)) (-3760 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT)) (-3134 (($ $) 161 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3008 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) 112 T ELT)) (-1632 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| |#4| $) 179 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| |#3| (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3890 (((-792) $ |#2|) 239 T ELT) (((-792) $) 238 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3641 (((-792) $) 176 T ELT)) (-2935 (($ (-1202 |#1|) |#3|) 120 T ELT) (($ (-1202 $) |#3|) 119 T ELT)) (-1387 (((-665 $) $) 129 T ELT)) (-2338 (((-112) $) 159 T ELT)) (-2925 (($ |#1| |#4|) 160 T ELT) (($ $ |#3| (-792)) 122 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 121 T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |#3|) 123 T ELT)) (-3569 ((|#4| $) 177 T ELT) (((-792) $ |#3|) 125 T ELT) (((-665 (-792)) $ (-665 |#3|)) 124 T ELT)) (-4309 (($ (-1 |#4| |#4|) $) 178 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-3727 (((-1 $ (-792)) |#2|) 241 T ELT) (((-1 $ (-792)) $) 228 (|has| |#1| (-239)) ELT)) (-2505 (((-3 |#3| "failed") $) 126 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-3095 (($ $) 156 T ELT)) (-3109 ((|#1| $) 155 T ELT)) (-2823 ((|#3| $) 231 T ELT)) (-2388 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3533 (((-112) $) 232 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 117 T ELT)) (-3124 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2315 (((-3 (-2 (|:| |var| |#3|) (|:| -2182 (-792))) "failed") $) 116 T ELT)) (-4347 (($ $) 230 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3069 (((-112) $) 173 T ELT)) (-3081 ((|#1| $) 174 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-665 |#3|) (-665 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-665 |#3|) (-665 $)) 145 T ELT) (($ $ |#2| $) 227 (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 $)) 226 (|has| |#1| (-239)) ELT) (($ $ |#2| |#1|) 225 (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 |#1|)) 224 (|has| |#1| (-239)) ELT)) (-1611 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 |#3|) (-665 (-792))) 44 T ELT) (($ $ |#3| (-792)) 43 T ELT) (($ $ (-665 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT) (($ $ (-1 |#1| |#1|)) 248 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 247 T ELT) (($ $) 223 (|has| |#1| (-238)) ELT) (($ $ (-792)) 221 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 219 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 217 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 216 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 215 (|has| |#1| (-928 (-1206))) ELT)) (-3667 (((-665 |#2|) $) 240 T ELT)) (-2776 ((|#4| $) 157 T ELT) (((-792) $ |#3|) 133 T ELT) (((-665 (-792)) $ (-665 |#3|)) 132 T ELT) (((-792) $ |#2|) 237 T ELT)) (-3341 (((-916 (-391)) $) 85 (-12 (|has| |#3| (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| |#3| (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ |#2|) 242 T ELT) (($ (-420 (-577))) 81 (-2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) 175 T ELT)) (-2778 ((|#1| $ |#4|) 162 T ELT) (($ $ |#3| (-792)) 131 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 130 T ELT)) (-2580 (((-3 $ "failed") $) 82 (-2229 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 32 T CONST)) (-3668 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-665 |#3|) (-665 (-792))) 47 T ELT) (($ $ |#3| (-792)) 46 T ELT) (($ $ (-665 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT) (($ $ (-1 |#1| |#1|)) 246 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 245 T ELT) (($ $) 222 (|has| |#1| (-238)) ELT) (($ $ (-792)) 220 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 218 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 214 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 213 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 212 (|has| |#1| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-261 |#1| |#2| |#3| |#4|) (-141) (-1079) (-870) (-276 |t#2|) (-814)) (T -261)) -((-3727 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *4 *3 *5 *6)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 *4)))) (-3890 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) (-2776 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 (-792))))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) (-3450 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-665 (-792))))) (-1975 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-112)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-814)) (-4 *2 (-276 *4)))) (-4347 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-276 *3)) (-4 *5 (-814)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-276 *3)) (-4 *5 (-814)))) (-3727 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *3 *4 *5 *6))))) -(-13 (-977 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1068 |t#2|) (-10 -8 (-15 -3727 ((-1 $ (-792)) |t#2|)) (-15 -3667 ((-665 |t#2|) $)) (-15 -3890 ((-792) $ |t#2|)) (-15 -3890 ((-792) $)) (-15 -2776 ((-792) $ |t#2|)) (-15 -3450 ((-665 (-792)) $)) (-15 -1975 ((-792) $)) (-15 -3450 ((-665 (-792)) $ |t#2|)) (-15 -1975 ((-792) $ |t#2|)) (-15 -3533 ((-112) $)) (-15 -2823 (|t#3| $)) (-15 -4347 ($ $)) (-15 -3138 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-527 |t#2| |t#1|)) (-6 (-527 |t#2| $)) (-6 (-320 $)) (-15 -3727 ((-1 $ (-792)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 |#2|) . T) ((-634 |#3|) . T) ((-634 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ((-235 $) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-301) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#4|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2229 (|has| |#1| (-937)) (|has| |#1| (-465))) ((-527 |#2| |#1|) |has| |#1| (-239)) ((-527 |#2| $) |has| |#1| (-239)) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-747) . T) ((-920 $ #2=(-1206)) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-920 $ |#3|) . T) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-926 |#3|) . T) ((-928 #2#) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ((-977 |#1| |#4| |#3|) . T) ((-937) |has| |#1| (-937)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1068 |#2|) . T) ((-1068 |#3|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-937))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1507 ((|#1| $) 55 T ELT)) (-2852 ((|#1| $) 45 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2762 (($) 7 T CONST)) (-4171 (($ $) 61 T ELT)) (-3823 (($ $) 49 T ELT)) (-3073 ((|#1| |#1| $) 47 T ELT)) (-2908 ((|#1| $) 46 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3490 (((-792) $) 62 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3059 ((|#1| |#1| $) 53 T ELT)) (-3984 ((|#1| |#1| $) 52 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-1736 (((-792) $) 56 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-1818 ((|#1| $) 63 T ELT)) (-3004 ((|#1| $) 51 T ELT)) (-3946 ((|#1| $) 50 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-1930 ((|#1| |#1| $) 59 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-4038 ((|#1| $) 60 T ELT)) (-2068 (($) 58 T ELT) (($ (-665 |#1|)) 57 T ELT)) (-3300 (((-792) $) 44 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-3765 ((|#1| $) 54 T ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-3290 ((|#1| $) 64 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-262 |#1|) (-141) (-1247)) (T -262)) -((-2068 (*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-2068 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-262 *3)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3059 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3984 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) (-3823 (*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) -(-13 (-1151 |t#1|) (-1025 |t#1|) (-10 -8 (-15 -2068 ($)) (-15 -2068 ($ (-665 |t#1|))) (-15 -1736 ((-792) $)) (-15 -1507 (|t#1| $)) (-15 -3765 (|t#1| $)) (-15 -3059 (|t#1| |t#1| $)) (-15 -3984 (|t#1| |t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3946 (|t#1| $)) (-15 -3823 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1025 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1151 |#1|) . T) ((-1247) . T)) -((-2670 (((-1 (-971 (-228)) (-228) (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 153 T ELT)) (-2659 (((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391))) 173 T ELT) (((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 171 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 176 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 172 T ELT) (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 164 T ELT) (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 163 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391))) 145 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271))) 143 T ELT) (((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391))) 144 T ELT) (((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271))) 141 T ELT)) (-2617 (((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391))) 175 T ELT) (((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 174 T ELT) (((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 178 T ELT) (((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 177 T ELT) (((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391))) 166 T ELT) (((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271))) 165 T ELT) (((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391))) 151 T ELT) (((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271))) 150 T ELT) (((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391))) 149 T ELT) (((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271))) 148 T ELT) (((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391))) 113 T ELT) (((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271))) 112 T ELT) (((-1298) (-1 (-228) (-228)) (-1124 (-391))) 107 T ELT) (((-1298) (-1 (-228) (-228)) (-1124 (-391)) (-665 (-271))) 105 T ELT))) -(((-263) (-10 -7 (-15 -2617 ((-1298) (-1 (-228) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) (-1 (-228) (-228)) (-1124 (-391)))) (-15 -2617 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -2617 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -2617 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2617 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -2670 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -263)) -((-2670 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228) (-228))) (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *2 (-1298)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *2 (-1298)) (-5 *1 (-263)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263))))) -(-10 -7 (-15 -2617 ((-1298) (-1 (-228) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) (-1 (-228) (-228)) (-1124 (-391)))) (-15 -2617 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) (-901 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -2617 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-903 (-1 (-228) (-228))) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228)) (-1124 (-391)))) (-15 -2617 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-391)) (-1124 (-391)))) (-15 -2617 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -2659 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-906 (-1 (-228) (-228) (-228))) (-1124 (-391)) (-1124 (-391)))) (-15 -2670 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) -((-2617 (((-1298) (-305 |#2|) (-1206) (-1206) (-665 (-271))) 101 T ELT))) -(((-264 |#1| |#2|) (-10 -7 (-15 -2617 ((-1298) (-305 |#2|) (-1206) (-1206) (-665 (-271))))) (-13 (-569) (-870) (-1068 (-577))) (-443 |#1|)) (T -264)) -((-2617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1206)) (-5 *5 (-665 (-271))) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-870) (-1068 (-577)))) (-5 *2 (-1298)) (-5 *1 (-264 *6 *7))))) -(-10 -7 (-15 -2617 ((-1298) (-305 |#2|) (-1206) (-1206) (-665 (-271))))) -((-3351 (((-577) (-577)) 71 T ELT)) (-2885 (((-577) (-577)) 72 T ELT)) (-1938 (((-228) (-228)) 73 T ELT)) (-3803 (((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228))) 70 T ELT)) (-1508 (((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)) (-112)) 68 T ELT))) -(((-265) (-10 -7 (-15 -1508 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)) (-112))) (-15 -3803 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -3351 ((-577) (-577))) (-15 -2885 ((-577) (-577))) (-15 -1938 ((-228) (-228))))) (T -265)) -((-1938 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265)))) (-2885 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-3803 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) (-5 *2 (-1299)) (-5 *1 (-265)))) (-1508 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) (-5 *5 (-112)) (-5 *2 (-1299)) (-5 *1 (-265))))) -(-10 -7 (-15 -1508 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)) (-112))) (-15 -3803 ((-1299) (-1 (-171 (-228)) (-171 (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -3351 ((-577) (-577))) (-15 -2885 ((-577) (-577))) (-15 -1938 ((-228) (-228)))) -((-2410 (((-1122 (-391)) (-1122 (-327 |#1|))) 16 T ELT))) -(((-266 |#1|) (-10 -7 (-15 -2410 ((-1122 (-391)) (-1122 (-327 |#1|))))) (-13 (-870) (-569) (-632 (-391)))) (T -266)) -((-2410 (*1 *2 *3) (-12 (-5 *3 (-1122 (-327 *4))) (-4 *4 (-13 (-870) (-569) (-632 (-391)))) (-5 *2 (-1122 (-391))) (-5 *1 (-266 *4))))) -(-10 -7 (-15 -2410 ((-1122 (-391)) (-1122 (-327 |#1|))))) -((-2659 (((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))) 75 T ELT) (((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 74 T ELT) (((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391))) 65 T ELT) (((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 64 T ELT) (((-1163 (-228)) (-903 |#1|) (-1122 (-391))) 56 T ELT) (((-1163 (-228)) (-903 |#1|) (-1122 (-391)) (-665 (-271))) 55 T ELT)) (-2617 (((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391))) 78 T ELT) (((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 77 T ELT) (((-1299) |#1| (-1122 (-391)) (-1122 (-391))) 68 T ELT) (((-1299) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271))) 67 T ELT) (((-1299) (-903 |#1|) (-1122 (-391))) 60 T ELT) (((-1299) (-903 |#1|) (-1122 (-391)) (-665 (-271))) 59 T ELT) (((-1298) (-901 |#1|) (-1122 (-391))) 47 T ELT) (((-1298) (-901 |#1|) (-1122 (-391)) (-665 (-271))) 46 T ELT) (((-1298) |#1| (-1122 (-391))) 38 T ELT) (((-1298) |#1| (-1122 (-391)) (-665 (-271))) 36 T ELT))) -(((-267 |#1|) (-10 -7 (-15 -2617 ((-1298) |#1| (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) |#1| (-1122 (-391)))) (-15 -2617 ((-1298) (-901 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) (-901 |#1|) (-1122 (-391)))) (-15 -2617 ((-1299) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-903 |#1|) (-1122 (-391)))) (-15 -2659 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)))) (-15 -2617 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -2659 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -2617 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)))) (-15 -2659 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))))) (-13 (-632 (-549)) (-1130))) (T -267)) -((-2659 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *5)))) (-2659 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *6)))) (-2617 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *5)))) (-2617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *6)))) (-2659 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-2659 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-2617 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1299)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-2617 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *5)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *6)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *5)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) (-5 *1 (-267 *6)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-901 *5)) (-5 *4 (-1122 (-391))) (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) (-5 *1 (-267 *5)))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-901 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) (-5 *1 (-267 *6)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1298)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) (-2617 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130)))))) -(-10 -7 (-15 -2617 ((-1298) |#1| (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) |#1| (-1122 (-391)))) (-15 -2617 ((-1298) (-901 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1298) (-901 |#1|) (-1122 (-391)))) (-15 -2617 ((-1299) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-903 |#1|) (-1122 (-391)))) (-15 -2659 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-903 |#1|) (-1122 (-391)))) (-15 -2617 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -2659 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) |#1| (-1122 (-391)) (-1122 (-391)))) (-15 -2617 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2617 ((-1299) (-906 |#1|) (-1122 (-391)) (-1122 (-391)))) (-15 -2659 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391)) (-665 (-271)))) (-15 -2659 ((-1163 (-228)) (-906 |#1|) (-1122 (-391)) (-1122 (-391))))) -((-2617 (((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)) (-665 (-271))) 23 T ELT) (((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228))) 24 T ELT) (((-1298) (-665 (-971 (-228))) (-665 (-271))) 16 T ELT) (((-1298) (-665 (-971 (-228)))) 17 T ELT) (((-1298) (-665 (-228)) (-665 (-228)) (-665 (-271))) 20 T ELT) (((-1298) (-665 (-228)) (-665 (-228))) 21 T ELT))) -(((-268) (-10 -7 (-15 -2617 ((-1298) (-665 (-228)) (-665 (-228)))) (-15 -2617 ((-1298) (-665 (-228)) (-665 (-228)) (-665 (-271)))) (-15 -2617 ((-1298) (-665 (-971 (-228))))) (-15 -2617 ((-1298) (-665 (-971 (-228))) (-665 (-271)))) (-15 -2617 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)))) (-15 -2617 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)) (-665 (-271)))))) (T -268)) -((-2617 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-268)))) (-2617 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1299)) (-5 *1 (-268)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-268)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *2 (-1298)) (-5 *1 (-268)))) (-2617 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-268)))) (-2617 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1298)) (-5 *1 (-268))))) -(-10 -7 (-15 -2617 ((-1298) (-665 (-228)) (-665 (-228)))) (-15 -2617 ((-1298) (-665 (-228)) (-665 (-228)) (-665 (-271)))) (-15 -2617 ((-1298) (-665 (-971 (-228))))) (-15 -2617 ((-1298) (-665 (-971 (-228))) (-665 (-271)))) (-15 -2617 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)))) (-15 -2617 ((-1299) (-665 (-228)) (-665 (-228)) (-665 (-228)) (-665 (-271))))) -((-4314 (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-665 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 25 T ELT)) (-3184 (((-949) (-665 (-271)) (-949)) 52 T ELT)) (-2847 (((-949) (-665 (-271)) (-949)) 51 T ELT)) (-3939 (((-665 (-391)) (-665 (-271)) (-665 (-391))) 68 T ELT)) (-3524 (((-391) (-665 (-271)) (-391)) 57 T ELT)) (-4224 (((-949) (-665 (-271)) (-949)) 53 T ELT)) (-4398 (((-112) (-665 (-271)) (-112)) 27 T ELT)) (-3377 (((-1188) (-665 (-271)) (-1188)) 19 T ELT)) (-3964 (((-1188) (-665 (-271)) (-1188)) 26 T ELT)) (-1523 (((-1163 (-228)) (-665 (-271))) 46 T ELT)) (-1898 (((-665 (-1124 (-391))) (-665 (-271)) (-665 (-1124 (-391)))) 40 T ELT)) (-2663 (((-897) (-665 (-271)) (-897)) 32 T ELT)) (-4252 (((-897) (-665 (-271)) (-897)) 33 T ELT)) (-3550 (((-1 (-971 (-228)) (-971 (-228))) (-665 (-271)) (-1 (-971 (-228)) (-971 (-228)))) 63 T ELT)) (-2270 (((-112) (-665 (-271)) (-112)) 14 T ELT)) (-2459 (((-112) (-665 (-271)) (-112)) 13 T ELT))) -(((-269) (-10 -7 (-15 -2459 ((-112) (-665 (-271)) (-112))) (-15 -2270 ((-112) (-665 (-271)) (-112))) (-15 -4314 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-665 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3377 ((-1188) (-665 (-271)) (-1188))) (-15 -3964 ((-1188) (-665 (-271)) (-1188))) (-15 -4398 ((-112) (-665 (-271)) (-112))) (-15 -2663 ((-897) (-665 (-271)) (-897))) (-15 -4252 ((-897) (-665 (-271)) (-897))) (-15 -1898 ((-665 (-1124 (-391))) (-665 (-271)) (-665 (-1124 (-391))))) (-15 -2847 ((-949) (-665 (-271)) (-949))) (-15 -3184 ((-949) (-665 (-271)) (-949))) (-15 -1523 ((-1163 (-228)) (-665 (-271)))) (-15 -4224 ((-949) (-665 (-271)) (-949))) (-15 -3524 ((-391) (-665 (-271)) (-391))) (-15 -3550 ((-1 (-971 (-228)) (-971 (-228))) (-665 (-271)) (-1 (-971 (-228)) (-971 (-228))))) (-15 -3939 ((-665 (-391)) (-665 (-271)) (-665 (-391)))))) (T -269)) -((-3939 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-391))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3550 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3524 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-4224 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-269)))) (-3184 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2847 (*1 *2 *3 *2) (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-1898 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-4252 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2663 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-4398 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3964 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-3377 (*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-4314 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2270 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) (-2459 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) -(-10 -7 (-15 -2459 ((-112) (-665 (-271)) (-112))) (-15 -2270 ((-112) (-665 (-271)) (-112))) (-15 -4314 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-665 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3377 ((-1188) (-665 (-271)) (-1188))) (-15 -3964 ((-1188) (-665 (-271)) (-1188))) (-15 -4398 ((-112) (-665 (-271)) (-112))) (-15 -2663 ((-897) (-665 (-271)) (-897))) (-15 -4252 ((-897) (-665 (-271)) (-897))) (-15 -1898 ((-665 (-1124 (-391))) (-665 (-271)) (-665 (-1124 (-391))))) (-15 -2847 ((-949) (-665 (-271)) (-949))) (-15 -3184 ((-949) (-665 (-271)) (-949))) (-15 -1523 ((-1163 (-228)) (-665 (-271)))) (-15 -4224 ((-949) (-665 (-271)) (-949))) (-15 -3524 ((-391) (-665 (-271)) (-391))) (-15 -3550 ((-1 (-971 (-228)) (-971 (-228))) (-665 (-271)) (-1 (-971 (-228)) (-971 (-228))))) (-15 -3939 ((-665 (-391)) (-665 (-271)) (-665 (-391))))) -((-2757 (((-3 |#1| "failed") (-665 (-271)) (-1206)) 17 T ELT))) -(((-270 |#1|) (-10 -7 (-15 -2757 ((-3 |#1| "failed") (-665 (-271)) (-1206)))) (-1247)) (T -270)) -((-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *1 (-270 *2)) (-4 *2 (-1247))))) -(-10 -7 (-15 -2757 ((-3 |#1| "failed") (-665 (-271)) (-1206)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4314 (($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 24 T ELT)) (-3184 (($ (-949)) 81 T ELT)) (-2847 (($ (-949)) 80 T ELT)) (-2117 (($ (-665 (-391))) 87 T ELT)) (-3524 (($ (-391)) 66 T ELT)) (-4224 (($ (-949)) 82 T ELT)) (-4398 (($ (-112)) 33 T ELT)) (-3377 (($ (-1188)) 28 T ELT)) (-3964 (($ (-1188)) 29 T ELT)) (-1523 (($ (-1163 (-228))) 76 T ELT)) (-1898 (($ (-665 (-1124 (-391)))) 72 T ELT)) (-1641 (($ (-665 (-1124 (-391)))) 68 T ELT) (($ (-665 (-1124 (-420 (-577))))) 71 T ELT)) (-4201 (($ (-391)) 38 T ELT) (($ (-897)) 42 T ELT)) (-2098 (((-112) (-665 $) (-1206)) 100 T ELT)) (-2757 (((-3 (-52) "failed") (-665 $) (-1206)) 102 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3895 (($ (-391)) 43 T ELT) (($ (-897)) 44 T ELT)) (-2119 (($ (-1 (-971 (-228)) (-971 (-228)))) 65 T ELT)) (-3550 (($ (-1 (-971 (-228)) (-971 (-228)))) 83 T ELT)) (-3528 (($ (-1 (-228) (-228))) 48 T ELT) (($ (-1 (-228) (-228) (-228))) 52 T ELT) (($ (-1 (-228) (-228) (-228) (-228))) 56 T ELT)) (-2410 (((-885) $) 93 T ELT)) (-3231 (($ (-112)) 34 T ELT) (($ (-665 (-1124 (-391)))) 60 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2459 (($ (-112)) 35 T ELT)) (-2383 (((-112) $ $) 97 T ELT))) -(((-271) (-13 (-1130) (-10 -8 (-15 -2459 ($ (-112))) (-15 -3231 ($ (-112))) (-15 -4314 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3377 ($ (-1188))) (-15 -3964 ($ (-1188))) (-15 -4398 ($ (-112))) (-15 -3231 ($ (-665 (-1124 (-391))))) (-15 -2119 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -4201 ($ (-391))) (-15 -4201 ($ (-897))) (-15 -3895 ($ (-391))) (-15 -3895 ($ (-897))) (-15 -3528 ($ (-1 (-228) (-228)))) (-15 -3528 ($ (-1 (-228) (-228) (-228)))) (-15 -3528 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -3524 ($ (-391))) (-15 -1641 ($ (-665 (-1124 (-391))))) (-15 -1641 ($ (-665 (-1124 (-420 (-577)))))) (-15 -1898 ($ (-665 (-1124 (-391))))) (-15 -1523 ($ (-1163 (-228)))) (-15 -2847 ($ (-949))) (-15 -3184 ($ (-949))) (-15 -4224 ($ (-949))) (-15 -3550 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -2117 ($ (-665 (-391)))) (-15 -2757 ((-3 (-52) "failed") (-665 $) (-1206))) (-15 -2098 ((-112) (-665 $) (-1206)))))) (T -271)) -((-2459 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-4314 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-271)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271)))) (-4398 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) (-2119 (*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) (-4201 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-4201 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-420 (-577))))) (-5 *1 (-271)))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-271)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271)))) (-3184 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271)))) (-4224 (*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271)))) (-3550 (*1 *1 *2) (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-271)))) (-2757 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-52)) (-5 *1 (-271)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-112)) (-5 *1 (-271))))) -(-13 (-1130) (-10 -8 (-15 -2459 ($ (-112))) (-15 -3231 ($ (-112))) (-15 -4314 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3377 ($ (-1188))) (-15 -3964 ($ (-1188))) (-15 -4398 ($ (-112))) (-15 -3231 ($ (-665 (-1124 (-391))))) (-15 -2119 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -4201 ($ (-391))) (-15 -4201 ($ (-897))) (-15 -3895 ($ (-391))) (-15 -3895 ($ (-897))) (-15 -3528 ($ (-1 (-228) (-228)))) (-15 -3528 ($ (-1 (-228) (-228) (-228)))) (-15 -3528 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -3524 ($ (-391))) (-15 -1641 ($ (-665 (-1124 (-391))))) (-15 -1641 ($ (-665 (-1124 (-420 (-577)))))) (-15 -1898 ($ (-665 (-1124 (-391))))) (-15 -1523 ($ (-1163 (-228)))) (-15 -2847 ($ (-949))) (-15 -3184 ($ (-949))) (-15 -4224 ($ (-949))) (-15 -3550 ($ (-1 (-971 (-228)) (-971 (-228))))) (-15 -2117 ($ (-665 (-391)))) (-15 -2757 ((-3 (-52) "failed") (-665 $) (-1206))) (-15 -2098 ((-112) (-665 $) (-1206))))) -((-2030 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) 11 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) 19 T ELT) (($ $ (-792)) NIL T ELT) (($ $) 16 T ELT)) (-1675 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-792)) 14 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT))) -(((-272 |#1| |#2|) (-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -1675 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -1675 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -1675 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -1675 (|#1| |#1| (-665 (-1206)))) (-15 -1675 (|#1| |#1| (-1206) (-792))) (-15 -1675 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -1675 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -1675 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|)))) (-273 |#2|) (-1247)) (T -272)) -NIL -(-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -1675 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -1675 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -1675 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -1675 (|#1| |#1| (-665 (-1206)))) (-15 -1675 (|#1| |#1| (-1206) (-792))) (-15 -1675 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -1675 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -1675 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|)))) -((-2030 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 22 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 16 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 15 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 14 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206)) 12 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-792)) 10 (|has| |#1| (-238)) ELT) (($ $) 8 (|has| |#1| (-238)) ELT)) (-1675 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 20 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 19 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 18 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 17 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206)) 13 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-792)) 11 (|has| |#1| (-238)) ELT) (($ $) 9 (|has| |#1| (-238)) ELT))) -(((-273 |#1|) (-141) (-1247)) (T -273)) -((-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) (-4 *4 (-1247)))) (-1675 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) (-1675 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) (-4 *4 (-1247))))) -(-13 (-1247) (-10 -8 (-15 -2030 ($ $ (-1 |t#1| |t#1|))) (-15 -2030 ($ $ (-1 |t#1| |t#1|) (-792))) (-15 -1675 ($ $ (-1 |t#1| |t#1|))) (-15 -1675 ($ $ (-1 |t#1| |t#1|) (-792))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-928 (-1206))) (-6 (-928 (-1206))) |%noBranch|))) -(((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-920 $ #0=(-1206)) |has| |#1| (-928 (-1206))) ((-928 #0#) |has| |#1| (-928 (-1206))) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3450 (((-665 (-792)) $) NIL T ELT) (((-665 (-792)) $ |#2|) NIL T ELT)) (-1975 (((-792) $) NIL T ELT) (((-792) $ |#2|) NIL T ELT)) (-2948 (((-665 |#3|) $) NIL T ELT)) (-4419 (((-1202 $) $ |#3|) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 |#3|)) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3138 (($ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1155 |#1| |#2|) "failed") $) 23 T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1155 |#1| |#2|) $) NIL T ELT)) (-3760 (($ $ $ |#3|) NIL (|has| |#1| (-174)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#3|) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-544 |#3|) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ELT)) (-3890 (((-792) $ |#2|) NIL T ELT) (((-792) $) 10 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2935 (($ (-1202 |#1|) |#3|) NIL T ELT) (($ (-1202 $) |#3|) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-544 |#3|)) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |#3|) NIL T ELT)) (-3569 (((-544 |#3|) $) NIL T ELT) (((-792) $ |#3|) NIL T ELT) (((-665 (-792)) $ (-665 |#3|)) NIL T ELT)) (-4309 (($ (-1 (-544 |#3|) (-544 |#3|)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3727 (((-1 $ (-792)) |#2|) NIL T ELT) (((-1 $ (-792)) $) NIL (|has| |#1| (-239)) ELT)) (-2505 (((-3 |#3| "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2823 ((|#3| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3533 (((-112) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| |#3|) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4347 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-665 |#3|) (-665 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-665 |#3|) (-665 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 $)) NIL (|has| |#1| (-239)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 |#2|) (-665 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-1611 (($ $ |#3|) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-3667 (((-665 |#2|) $) NIL T ELT)) (-2776 (((-544 |#3|) $) NIL T ELT) (((-792) $ |#3|) NIL T ELT) (((-665 (-792)) $ (-665 |#3|)) NIL T ELT) (((-792) $ |#2|) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ |#3|) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1155 |#1| |#2|)) 32 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-544 |#3|)) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 |#3|) (-665 (-792))) NIL T ELT) (($ $ |#3| (-792)) NIL T ELT) (($ $ (-665 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-274 |#1| |#2| |#3|) (-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1068 (-1155 |#1| |#2|))) (-1079) (-870) (-276 |#2|)) (T -274)) -NIL -(-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1068 (-1155 |#1| |#2|))) -((-1975 (((-792) $) 37 T ELT)) (-2817 (((-3 |#2| "failed") $) 22 T ELT)) (-3514 ((|#2| $) 33 T ELT)) (-2030 (($ $ (-792)) 18 T ELT) (($ $) 14 T ELT)) (-2410 (((-885) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-2383 (((-112) $ $) 26 T ELT)) (-2403 (((-112) $ $) 36 T ELT))) -(((-275 |#1| |#2|) (-10 -8 (-15 -1975 ((-792) |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2403 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-276 |#2|) (-870)) (T -275)) -NIL -(-10 -8 (-15 -1975 ((-792) |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2403 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1975 (((-792) $) 23 T ELT)) (-3966 ((|#1| $) 24 T ELT)) (-2817 (((-3 |#1| "failed") $) 28 T ELT)) (-3514 ((|#1| $) 29 T ELT)) (-3890 (((-792) $) 25 T ELT)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3727 (($ |#1| (-792)) 26 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2030 (($ $ (-792)) 32 T ELT) (($ $) 30 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ |#1|) 27 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1675 (($ $ (-792)) 33 T ELT) (($ $) 31 T ELT)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT))) -(((-276 |#1|) (-141) (-870)) (T -276)) -((-2410 (*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) (-3727 (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-276 *2)) (-4 *2 (-870)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792))))) -(-13 (-870) (-238) (-1068 |t#1|) (-10 -8 (-15 -3727 ($ |t#1| (-792))) (-15 -3890 ((-792) $)) (-15 -3966 (|t#1| $)) (-15 -1975 ((-792) $)) (-15 -2410 ($ |t#1|)))) -(((-102) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-235 $) . T) ((-238) . T) ((-870) . T) ((-873) . T) ((-1068 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-2948 (((-665 (-1206)) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 53 T ELT)) (-4417 (((-665 (-1206)) (-327 (-228)) (-792)) 94 T ELT)) (-3207 (((-3 (-327 (-228)) "failed") (-327 (-228))) 63 T ELT)) (-2286 (((-327 (-228)) (-327 (-228))) 79 T ELT)) (-2998 (((-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 38 T ELT)) (-1995 (((-112) (-665 (-327 (-228)))) 104 T ELT)) (-2782 (((-112) (-327 (-228))) 36 T ELT)) (-2973 (((-665 (-1188)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))))) 132 T ELT)) (-3227 (((-665 (-327 (-228))) (-665 (-327 (-228)))) 108 T ELT)) (-2162 (((-665 (-327 (-228))) (-665 (-327 (-228)))) 106 T ELT)) (-3018 (((-710 (-228)) (-665 (-327 (-228))) (-792)) 120 T ELT)) (-1815 (((-112) (-327 (-228))) 31 T ELT) (((-112) (-665 (-327 (-228)))) 105 T ELT)) (-1692 (((-665 (-228)) (-665 (-864 (-228))) (-228)) 15 T ELT)) (-2439 (((-391) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 126 T ELT)) (-3349 (((-1065) (-1206) (-1065)) 46 T ELT))) -(((-277) (-10 -7 (-15 -1692 ((-665 (-228)) (-665 (-864 (-228))) (-228))) (-15 -2998 ((-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -3207 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -2286 ((-327 (-228)) (-327 (-228)))) (-15 -1995 ((-112) (-665 (-327 (-228))))) (-15 -1815 ((-112) (-665 (-327 (-228))))) (-15 -1815 ((-112) (-327 (-228)))) (-15 -3018 ((-710 (-228)) (-665 (-327 (-228))) (-792))) (-15 -2162 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -3227 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -2782 ((-112) (-327 (-228)))) (-15 -2948 ((-665 (-1206)) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -4417 ((-665 (-1206)) (-327 (-228)) (-792))) (-15 -3349 ((-1065) (-1206) (-1065))) (-15 -2439 ((-391) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -2973 ((-665 (-1188)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))))))) (T -277)) -((-2973 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))))) (-5 *2 (-665 (-1188))) (-5 *1 (-277)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) (-5 *2 (-391)) (-5 *1 (-277)))) (-3349 (*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-277)))) (-4417 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-792)) (-5 *2 (-665 (-1206))) (-5 *1 (-277)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) (-5 *2 (-665 (-1206))) (-5 *1 (-277)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *4 (-792)) (-5 *2 (-710 (-228))) (-5 *1 (-277)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-3207 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-2998 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *1 (-277)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-864 (-228)))) (-5 *4 (-228)) (-5 *2 (-665 *4)) (-5 *1 (-277))))) -(-10 -7 (-15 -1692 ((-665 (-228)) (-665 (-864 (-228))) (-228))) (-15 -2998 ((-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -3207 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -2286 ((-327 (-228)) (-327 (-228)))) (-15 -1995 ((-112) (-665 (-327 (-228))))) (-15 -1815 ((-112) (-665 (-327 (-228))))) (-15 -1815 ((-112) (-327 (-228)))) (-15 -3018 ((-710 (-228)) (-665 (-327 (-228))) (-792))) (-15 -2162 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -3227 ((-665 (-327 (-228))) (-665 (-327 (-228))))) (-15 -2782 ((-112) (-327 (-228)))) (-15 -2948 ((-665 (-1206)) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -4417 ((-665 (-1206)) (-327 (-228)) (-792))) (-15 -3349 ((-1065) (-1206) (-1065))) (-15 -2439 ((-391) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -2973 ((-665 (-1188)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 56 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 32 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-278) (-860)) (T -278)) -NIL -(-860) -((-3211 (((-112) $ $) NIL T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 72 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 63 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 41 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 43 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-279) (-860)) (T -279)) -NIL -(-860) -((-3211 (((-112) $ $) NIL T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 90 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 85 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 52 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 65 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-280) (-860)) (T -280)) -NIL -(-860) -((-3211 (((-112) $ $) NIL T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 73 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 45 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-281) (-860)) (T -281)) -NIL -(-860) -((-3211 (((-112) $ $) NIL T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 65 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 31 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-282) (-860)) (T -282)) -NIL -(-860) -((-3211 (((-112) $ $) NIL T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 90 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 33 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-283) (-860)) (T -283)) -NIL -(-860) -((-3211 (((-112) $ $) NIL T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 87 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 32 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-284) (-860)) (T -284)) -NIL -(-860) -((-3211 (((-112) $ $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3451 (((-665 (-577)) $) 29 T ELT)) (-2776 (((-792) $) 27 T ELT)) (-2410 (((-885) $) 33 T ELT) (($ (-665 (-577))) 23 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1901 (($ (-792)) 30 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 9 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 17 T ELT))) -(((-285) (-13 (-870) (-10 -8 (-15 -2410 ($ (-665 (-577)))) (-15 -2776 ((-792) $)) (-15 -3451 ((-665 (-577)) $)) (-15 -1901 ($ (-792)))))) (T -285)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-285)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-285))))) -(-13 (-870) (-10 -8 (-15 -2410 ($ (-665 (-577)))) (-15 -2776 ((-792) $)) (-15 -3451 ((-665 (-577)) $)) (-15 -1901 ($ (-792))))) -((-1501 ((|#2| |#2|) 77 T ELT)) (-1371 ((|#2| |#2|) 65 T ELT)) (-3829 (((-3 |#2| "failed") |#2| (-665 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125 T ELT)) (-1477 ((|#2| |#2|) 75 T ELT)) (-1348 ((|#2| |#2|) 63 T ELT)) (-1527 ((|#2| |#2|) 79 T ELT)) (-1391 ((|#2| |#2|) 67 T ELT)) (-2549 ((|#2|) 46 T ELT)) (-4396 (((-115) (-115)) 100 T ELT)) (-3863 ((|#2| |#2|) 61 T ELT)) (-4344 (((-112) |#2|) 147 T ELT)) (-2262 ((|#2| |#2|) 195 T ELT)) (-3906 ((|#2| |#2|) 171 T ELT)) (-4372 ((|#2|) 59 T ELT)) (-2545 ((|#2|) 58 T ELT)) (-3386 ((|#2| |#2|) 191 T ELT)) (-2287 ((|#2| |#2|) 167 T ELT)) (-1350 ((|#2| |#2|) 199 T ELT)) (-2441 ((|#2| |#2|) 175 T ELT)) (-2537 ((|#2| |#2|) 163 T ELT)) (-1986 ((|#2| |#2|) 165 T ELT)) (-2082 ((|#2| |#2|) 201 T ELT)) (-2115 ((|#2| |#2|) 177 T ELT)) (-1805 ((|#2| |#2|) 197 T ELT)) (-2951 ((|#2| |#2|) 173 T ELT)) (-2959 ((|#2| |#2|) 193 T ELT)) (-2861 ((|#2| |#2|) 169 T ELT)) (-2096 ((|#2| |#2|) 207 T ELT)) (-4182 ((|#2| |#2|) 183 T ELT)) (-1517 ((|#2| |#2|) 203 T ELT)) (-1951 ((|#2| |#2|) 179 T ELT)) (-2006 ((|#2| |#2|) 211 T ELT)) (-2697 ((|#2| |#2|) 187 T ELT)) (-1436 ((|#2| |#2|) 213 T ELT)) (-3487 ((|#2| |#2|) 189 T ELT)) (-3348 ((|#2| |#2|) 209 T ELT)) (-1970 ((|#2| |#2|) 185 T ELT)) (-2160 ((|#2| |#2|) 205 T ELT)) (-2190 ((|#2| |#2|) 181 T ELT)) (-3585 ((|#2| |#2|) 62 T ELT)) (-1540 ((|#2| |#2|) 80 T ELT)) (-1402 ((|#2| |#2|) 68 T ELT)) (-1515 ((|#2| |#2|) 78 T ELT)) (-1381 ((|#2| |#2|) 66 T ELT)) (-1489 ((|#2| |#2|) 76 T ELT)) (-1360 ((|#2| |#2|) 64 T ELT)) (-3540 (((-112) (-115)) 98 T ELT)) (-1575 ((|#2| |#2|) 83 T ELT)) (-1435 ((|#2| |#2|) 71 T ELT)) (-1551 ((|#2| |#2|) 81 T ELT)) (-1413 ((|#2| |#2|) 69 T ELT)) (-1597 ((|#2| |#2|) 85 T ELT)) (-1456 ((|#2| |#2|) 73 T ELT)) (-3501 ((|#2| |#2|) 86 T ELT)) (-1466 ((|#2| |#2|) 74 T ELT)) (-1586 ((|#2| |#2|) 84 T ELT)) (-1446 ((|#2| |#2|) 72 T ELT)) (-1562 ((|#2| |#2|) 82 T ELT)) (-1423 ((|#2| |#2|) 70 T ELT))) -(((-286 |#1| |#2|) (-10 -7 (-15 -3585 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -1360 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -1381 (|#2| |#2|)) (-15 -1391 (|#2| |#2|)) (-15 -1402 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1466 (|#2| |#2|)) (-15 -1477 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1501 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -2549 (|#2|)) (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -2545 (|#2|)) (-15 -4372 (|#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2861 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -2959 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -2082 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -1436 (|#2| |#2|)) (-15 -3829 ((-3 |#2| "failed") |#2| (-665 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4344 ((-112) |#2|))) (-569) (-13 (-443 |#1|) (-1032))) (T -286)) -((-4344 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) (-4 *3 (-13 (-443 *4) (-1032))))) (-3829 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-665 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-443 *4) (-1032))) (-4 *4 (-569)) (-5 *1 (-286 *4 *2)))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2096 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2160 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2082 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2959 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4182 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2190 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1951 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2115 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2951 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2861 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-2537 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-4372 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-2545 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) (-4 *4 (-13 (-443 *3) (-1032))))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032))))) (-2549 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1477 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1466 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1402 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1391 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1381 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032))))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032)))))) -(-10 -7 (-15 -3585 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -1360 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -1381 (|#2| |#2|)) (-15 -1391 (|#2| |#2|)) (-15 -1402 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1466 (|#2| |#2|)) (-15 -1477 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1501 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -2549 (|#2|)) (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -2545 (|#2|)) (-15 -4372 (|#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2861 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (-15 -2441 (|#2| |#2|)) (-15 -2115 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -4182 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -2959 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -2082 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -2096 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -1436 (|#2| |#2|)) (-15 -3829 ((-3 |#2| "failed") |#2| (-665 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4344 ((-112) |#2|))) -((-3409 (((-3 |#2| "failed") (-665 (-630 |#2|)) |#2| (-1206)) 151 T ELT)) (-1783 ((|#2| (-420 (-577)) |#2|) 49 T ELT)) (-3985 ((|#2| |#2| (-630 |#2|)) 144 T ELT)) (-2881 (((-2 (|:| |func| |#2|) (|:| |kers| (-665 (-630 |#2|))) (|:| |vals| (-665 |#2|))) |#2| (-1206)) 143 T ELT)) (-2486 ((|#2| |#2| (-1206)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-3310 ((|#2| |#2| (-1206)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -3310 (|#2| |#2|)) (-15 -3310 (|#2| |#2| (-1206))) (-15 -2881 ((-2 (|:| |func| |#2|) (|:| |kers| (-665 (-630 |#2|))) (|:| |vals| (-665 |#2|))) |#2| (-1206))) (-15 -2486 (|#2| |#2|)) (-15 -2486 (|#2| |#2| (-1206))) (-15 -3409 ((-3 |#2| "failed") (-665 (-630 |#2|)) |#2| (-1206))) (-15 -3985 (|#2| |#2| (-630 |#2|))) (-15 -1783 (|#2| (-420 (-577)) |#2|))) (-13 (-569) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -287)) -((-1783 (*1 *2 *3 *2) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-3985 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)))) (-3409 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-1206)) (-4 *2 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *5 *2)))) (-2486 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-2881 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-665 (-630 *3))) (|:| |vals| (-665 *3)))) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3310 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-3310 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) -(-10 -7 (-15 -3310 (|#2| |#2|)) (-15 -3310 (|#2| |#2| (-1206))) (-15 -2881 ((-2 (|:| |func| |#2|) (|:| |kers| (-665 (-630 |#2|))) (|:| |vals| (-665 |#2|))) |#2| (-1206))) (-15 -2486 (|#2| |#2|)) (-15 -2486 (|#2| |#2| (-1206))) (-15 -3409 ((-3 |#2| "failed") (-665 (-630 |#2|)) |#2| (-1206))) (-15 -3985 (|#2| |#2| (-630 |#2|))) (-15 -1783 (|#2| (-420 (-577)) |#2|))) -((-3306 (((-3 |#3| "failed") |#3|) 120 T ELT)) (-1501 ((|#3| |#3|) 142 T ELT)) (-2019 (((-3 |#3| "failed") |#3|) 89 T ELT)) (-1371 ((|#3| |#3|) 132 T ELT)) (-3399 (((-3 |#3| "failed") |#3|) 65 T ELT)) (-1477 ((|#3| |#3|) 140 T ELT)) (-2344 (((-3 |#3| "failed") |#3|) 53 T ELT)) (-1348 ((|#3| |#3|) 130 T ELT)) (-2508 (((-3 |#3| "failed") |#3|) 122 T ELT)) (-1527 ((|#3| |#3|) 144 T ELT)) (-2707 (((-3 |#3| "failed") |#3|) 91 T ELT)) (-1391 ((|#3| |#3|) 134 T ELT)) (-1888 (((-3 |#3| "failed") |#3| (-792)) 41 T ELT)) (-2146 (((-3 |#3| "failed") |#3|) 81 T ELT)) (-3863 ((|#3| |#3|) 129 T ELT)) (-3986 (((-3 |#3| "failed") |#3|) 51 T ELT)) (-3585 ((|#3| |#3|) 128 T ELT)) (-1526 (((-3 |#3| "failed") |#3|) 123 T ELT)) (-1540 ((|#3| |#3|) 145 T ELT)) (-4066 (((-3 |#3| "failed") |#3|) 92 T ELT)) (-1402 ((|#3| |#3|) 135 T ELT)) (-2597 (((-3 |#3| "failed") |#3|) 121 T ELT)) (-1515 ((|#3| |#3|) 143 T ELT)) (-2884 (((-3 |#3| "failed") |#3|) 90 T ELT)) (-1381 ((|#3| |#3|) 133 T ELT)) (-2618 (((-3 |#3| "failed") |#3|) 67 T ELT)) (-1489 ((|#3| |#3|) 141 T ELT)) (-2034 (((-3 |#3| "failed") |#3|) 55 T ELT)) (-1360 ((|#3| |#3|) 131 T ELT)) (-3350 (((-3 |#3| "failed") |#3|) 73 T ELT)) (-1575 ((|#3| |#3|) 148 T ELT)) (-1561 (((-3 |#3| "failed") |#3|) 114 T ELT)) (-1435 ((|#3| |#3|) 152 T ELT)) (-3427 (((-3 |#3| "failed") |#3|) 69 T ELT)) (-1551 ((|#3| |#3|) 146 T ELT)) (-3719 (((-3 |#3| "failed") |#3|) 57 T ELT)) (-1413 ((|#3| |#3|) 136 T ELT)) (-1398 (((-3 |#3| "failed") |#3|) 77 T ELT)) (-1597 ((|#3| |#3|) 150 T ELT)) (-1821 (((-3 |#3| "failed") |#3|) 61 T ELT)) (-1456 ((|#3| |#3|) 138 T ELT)) (-3444 (((-3 |#3| "failed") |#3|) 79 T ELT)) (-3501 ((|#3| |#3|) 151 T ELT)) (-2259 (((-3 |#3| "failed") |#3|) 63 T ELT)) (-1466 ((|#3| |#3|) 139 T ELT)) (-3515 (((-3 |#3| "failed") |#3|) 75 T ELT)) (-1586 ((|#3| |#3|) 149 T ELT)) (-3291 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-1446 ((|#3| |#3|) 153 T ELT)) (-2022 (((-3 |#3| "failed") |#3|) 71 T ELT)) (-1562 ((|#3| |#3|) 147 T ELT)) (-3325 (((-3 |#3| "failed") |#3|) 59 T ELT)) (-1423 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-420 (-577))) 47 (|has| |#1| (-375)) ELT))) -(((-288 |#1| |#2| |#3|) (-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -3585 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -1348 (|#3| |#3|)) (-15 -1360 (|#3| |#3|)) (-15 -1371 (|#3| |#3|)) (-15 -1381 (|#3| |#3|)) (-15 -1391 (|#3| |#3|)) (-15 -1402 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1423 (|#3| |#3|)) (-15 -1435 (|#3| |#3|)) (-15 -1446 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1466 (|#3| |#3|)) (-15 -1477 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1527 (|#3| |#3|)) (-15 -1540 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) (-38 (-420 (-577))) (-1288 |#1|) (-1259 |#1| |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1288 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1259 *4 *5)))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1381 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1391 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1402 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1466 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1477 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4))))) -(-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -3585 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -1348 (|#3| |#3|)) (-15 -1360 (|#3| |#3|)) (-15 -1371 (|#3| |#3|)) (-15 -1381 (|#3| |#3|)) (-15 -1391 (|#3| |#3|)) (-15 -1402 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1423 (|#3| |#3|)) (-15 -1435 (|#3| |#3|)) (-15 -1446 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1466 (|#3| |#3|)) (-15 -1477 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1527 (|#3| |#3|)) (-15 -1540 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) -((-3306 (((-3 |#3| "failed") |#3|) 70 T ELT)) (-1501 ((|#3| |#3|) 137 T ELT)) (-2019 (((-3 |#3| "failed") |#3|) 54 T ELT)) (-1371 ((|#3| |#3|) 125 T ELT)) (-3399 (((-3 |#3| "failed") |#3|) 66 T ELT)) (-1477 ((|#3| |#3|) 135 T ELT)) (-2344 (((-3 |#3| "failed") |#3|) 50 T ELT)) (-1348 ((|#3| |#3|) 123 T ELT)) (-2508 (((-3 |#3| "failed") |#3|) 74 T ELT)) (-1527 ((|#3| |#3|) 139 T ELT)) (-2707 (((-3 |#3| "failed") |#3|) 58 T ELT)) (-1391 ((|#3| |#3|) 127 T ELT)) (-1888 (((-3 |#3| "failed") |#3| (-792)) 38 T ELT)) (-2146 (((-3 |#3| "failed") |#3|) 48 T ELT)) (-3863 ((|#3| |#3|) 111 T ELT)) (-3986 (((-3 |#3| "failed") |#3|) 46 T ELT)) (-3585 ((|#3| |#3|) 122 T ELT)) (-1526 (((-3 |#3| "failed") |#3|) 76 T ELT)) (-1540 ((|#3| |#3|) 140 T ELT)) (-4066 (((-3 |#3| "failed") |#3|) 60 T ELT)) (-1402 ((|#3| |#3|) 128 T ELT)) (-2597 (((-3 |#3| "failed") |#3|) 72 T ELT)) (-1515 ((|#3| |#3|) 138 T ELT)) (-2884 (((-3 |#3| "failed") |#3|) 56 T ELT)) (-1381 ((|#3| |#3|) 126 T ELT)) (-2618 (((-3 |#3| "failed") |#3|) 68 T ELT)) (-1489 ((|#3| |#3|) 136 T ELT)) (-2034 (((-3 |#3| "failed") |#3|) 52 T ELT)) (-1360 ((|#3| |#3|) 124 T ELT)) (-3350 (((-3 |#3| "failed") |#3|) 78 T ELT)) (-1575 ((|#3| |#3|) 143 T ELT)) (-1561 (((-3 |#3| "failed") |#3|) 62 T ELT)) (-1435 ((|#3| |#3|) 131 T ELT)) (-3427 (((-3 |#3| "failed") |#3|) 112 T ELT)) (-1551 ((|#3| |#3|) 141 T ELT)) (-3719 (((-3 |#3| "failed") |#3|) 100 T ELT)) (-1413 ((|#3| |#3|) 129 T ELT)) (-1398 (((-3 |#3| "failed") |#3|) 116 T ELT)) (-1597 ((|#3| |#3|) 145 T ELT)) (-1821 (((-3 |#3| "failed") |#3|) 107 T ELT)) (-1456 ((|#3| |#3|) 133 T ELT)) (-3444 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-3501 ((|#3| |#3|) 146 T ELT)) (-2259 (((-3 |#3| "failed") |#3|) 109 T ELT)) (-1466 ((|#3| |#3|) 134 T ELT)) (-3515 (((-3 |#3| "failed") |#3|) 80 T ELT)) (-1586 ((|#3| |#3|) 144 T ELT)) (-3291 (((-3 |#3| "failed") |#3|) 64 T ELT)) (-1446 ((|#3| |#3|) 132 T ELT)) (-2022 (((-3 |#3| "failed") |#3|) 113 T ELT)) (-1562 ((|#3| |#3|) 142 T ELT)) (-3325 (((-3 |#3| "failed") |#3|) 103 T ELT)) (-1423 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-420 (-577))) 44 (|has| |#1| (-375)) ELT))) -(((-289 |#1| |#2| |#3| |#4|) (-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -3585 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -1348 (|#3| |#3|)) (-15 -1360 (|#3| |#3|)) (-15 -1371 (|#3| |#3|)) (-15 -1381 (|#3| |#3|)) (-15 -1391 (|#3| |#3|)) (-15 -1402 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1423 (|#3| |#3|)) (-15 -1435 (|#3| |#3|)) (-15 -1446 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1466 (|#3| |#3|)) (-15 -1477 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1527 (|#3| |#3|)) (-15 -1540 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) (-38 (-420 (-577))) (-1257 |#1|) (-1280 |#1| |#2|) (-1013 |#2|)) (T -289)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1257 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1280 *4 *5)) (-4 *6 (-1013 *5)))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1381 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1391 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1402 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1466 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1477 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1501 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4))))) -(-13 (-1013 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -3585 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -1348 (|#3| |#3|)) (-15 -1360 (|#3| |#3|)) (-15 -1371 (|#3| |#3|)) (-15 -1381 (|#3| |#3|)) (-15 -1391 (|#3| |#3|)) (-15 -1402 (|#3| |#3|)) (-15 -1413 (|#3| |#3|)) (-15 -1423 (|#3| |#3|)) (-15 -1435 (|#3| |#3|)) (-15 -1446 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1466 (|#3| |#3|)) (-15 -1477 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1501 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1527 (|#3| |#3|)) (-15 -1540 (|#3| |#3|)) (-15 -1551 (|#3| |#3|)) (-15 -1562 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1586 (|#3| |#3|)) (-15 -1597 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) -((-3186 (((-112) $) 20 T ELT)) (-3098 (((-1211) $) 7 T ELT)) (-2677 (((-3 (-519) "failed") $) 14 T ELT)) (-2304 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3452 (((-3 (-519) "failed") $) 21 T ELT)) (-3305 (((-3 (-1134) "failed") $) 18 T ELT)) (-2995 (((-112) $) 16 T ELT)) (-2410 (((-885) $) NIL T ELT)) (-4061 (((-112) $) 9 T ELT))) -(((-290) (-13 (-631 (-885)) (-10 -8 (-15 -3098 ((-1211) $)) (-15 -2995 ((-112) $)) (-15 -3305 ((-3 (-1134) "failed") $)) (-15 -3186 ((-112) $)) (-15 -3452 ((-3 (-519) "failed") $)) (-15 -4061 ((-112) $)) (-15 -2677 ((-3 (-519) "failed") $)) (-15 -2304 ((-3 (-665 $) "failed") $))))) (T -290)) -((-3098 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-290)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-3305 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-290)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-3452 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-2677 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-2304 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-290))) (-5 *1 (-290))))) -(-13 (-631 (-885)) (-10 -8 (-15 -3098 ((-1211) $)) (-15 -2995 ((-112) $)) (-15 -3305 ((-3 (-1134) "failed") $)) (-15 -3186 ((-112) $)) (-15 -3452 ((-3 (-519) "failed") $)) (-15 -4061 ((-112) $)) (-15 -2677 ((-3 (-519) "failed") $)) (-15 -2304 ((-3 (-665 $) "failed") $)))) -((-1496 (((-610) $) 10 T ELT)) (-3980 (((-598) $) 8 T ELT)) (-3629 (((-302) $) 12 T ELT)) (-1643 (($ (-598) (-610) (-302)) NIL T ELT)) (-2410 (((-885) $) 19 T ELT))) -(((-291) (-13 (-631 (-885)) (-10 -8 (-15 -1643 ($ (-598) (-610) (-302))) (-15 -3980 ((-598) $)) (-15 -1496 ((-610) $)) (-15 -3629 ((-302) $))))) (T -291)) -((-1643 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) -(-13 (-631 (-885)) (-10 -8 (-15 -1643 ($ (-598) (-610) (-302))) (-15 -3980 ((-598) $)) (-15 -1496 ((-610) $)) (-15 -3629 ((-302) $)))) -((-4232 (($ (-1 (-112) |#2|) $) 24 T ELT)) (-3860 (($ $) 38 T ELT)) (-1991 (($ (-1 (-112) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-2736 (($ |#2| $) 34 T ELT) (($ (-1 (-112) |#2|) $) 18 T ELT)) (-2044 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-4272 (($ |#2| $ (-577)) 20 T ELT) (($ $ $ (-577)) 22 T ELT)) (-1704 (($ $ (-577)) 11 T ELT) (($ $ (-1264 (-577))) 14 T ELT)) (-2872 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3702 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-665 $)) NIL T ELT))) -(((-292 |#1| |#2|) (-10 -8 (-15 -2044 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#2| |#1|)) (-15 -2044 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1991 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#2|)) (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -1704 (|#1| |#1| (-1264 (-577)))) (-15 -1704 (|#1| |#1| (-577))) (-15 -3702 (|#1| (-665 |#1|))) (-15 -3702 (|#1| |#1| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#2|)) (-15 -2736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4232 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2736 (|#1| |#2| |#1|)) (-15 -3860 (|#1| |#1|))) (-293 |#2|) (-1247)) (T -292)) -NIL -(-10 -8 (-15 -2044 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#2| |#1|)) (-15 -2044 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1991 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#2|)) (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -1704 (|#1| |#1| (-1264 (-577)))) (-15 -1704 (|#1| |#1| (-577))) (-15 -3702 (|#1| (-665 |#1|))) (-15 -3702 (|#1| |#1| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#2|)) (-15 -2736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4232 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2736 (|#1| |#2| |#1|)) (-15 -3860 (|#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) |#1|) $) 88 T ELT)) (-4232 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3237 (($ $) 86 (|has| |#1| (-1130)) ELT)) (-3860 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ (-1 (-112) |#1|) $) 92 T ELT) (($ |#1| $) 87 (|has| |#1| (-1130)) ELT)) (-2736 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 52 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) 70 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-2044 (($ (-1 (-112) |#1| |#1|) $ $) 89 T ELT) (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3795 (($ |#1| $ (-577)) 91 T ELT) (($ $ $ (-577)) 90 T ELT)) (-4272 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-3482 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-2209 (($ $ (-577)) 94 T ELT) (($ $ (-1264 (-577))) 93 T ELT)) (-1704 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 72 T ELT)) (-2872 (($ $ |#1|) 96 T ELT) (($ $ $) 95 T ELT)) (-3702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-293 |#1|) (-141) (-1247)) (T -293)) -((-2872 (*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) (-2872 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-2209 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-1991 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-3795 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1247)))) (-3795 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-2044 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) (-1991 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) (-2044 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-870))))) -(-13 (-672 |t#1|) (-10 -8 (-6 -4500) (-15 -2872 ($ $ |t#1|)) (-15 -2872 ($ $ $)) (-15 -2209 ($ $ (-577))) (-15 -2209 ($ $ (-1264 (-577)))) (-15 -1991 ($ (-1 (-112) |t#1|) $)) (-15 -3795 ($ |t#1| $ (-577))) (-15 -3795 ($ $ $ (-577))) (-15 -2044 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3402 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -1991 ($ |t#1| $)) (-15 -3237 ($ $))) |%noBranch|) (IF (|has| |t#1| (-870)) (-15 -2044 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3127 (($) 6 T CONST)) (-1571 (($) 7 T CONST)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 14 T ELT)) (-3294 (($) 8 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 10 T ELT))) +(((-132) (-13 (-1131) (-10 -8 (-15 -1571 ($) -1529) (-15 -3294 ($) -1529) (-15 -3127 ($) -1529)))) (T -132)) +((-1571 (*1 *1) (-5 *1 (-132))) (-3294 (*1 *1) (-5 *1 (-132))) (-3127 (*1 *1) (-5 *1 (-132)))) +(-13 (-1131) (-10 -8 (-15 -1571 ($) -1529) (-15 -3294 ($) -1529) (-15 -3127 ($) -1529))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT))) +(((-133) (-142)) (T -133)) +((-4028 (*1 *1 *1 *1) (|partial| -4 *1 (-133)))) +(-13 (-23) (-10 -8 (-15 -4028 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-2552 (((-1303) $ (-793)) 14 T ELT)) (-3887 (((-793) $) 15 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-134) (-142)) (T -134)) +((-3887 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793)))) (-2552 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1303))))) +(-13 (-1131) (-10 -8 (-15 -3887 ((-793) $)) (-15 -2552 ((-1303) $ (-793))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-666 (-1166)) $) 10 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-135) (-13 (-1114) (-10 -8 (-15 -4117 ((-666 (-1166)) $))))) (T -135)) +((-4117 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-135))))) +(-13 (-1114) (-10 -8 (-15 -4117 ((-666 (-1166)) $)))) +((-3213 (((-112) $ $) 49 T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-793) "failed") $) 58 T ELT)) (-3516 (((-793) $) 56 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) 37 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2097 (((-112)) 59 T ELT)) (-1711 (((-112) (-112)) 61 T ELT)) (-1760 (((-112) $) 30 T ELT)) (-1801 (((-112) $) 55 T ELT)) (-2411 (((-886) $) 28 T ELT) (($ (-793)) 20 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 18 T CONST)) (-2379 (($) 19 T CONST)) (-3169 (($ (-793)) 21 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) 40 T ELT)) (-2384 (((-112) $ $) 32 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 35 T ELT)) (-2484 (((-3 $ "failed") $ $) 42 T ELT)) (-2472 (($ $ $) 38 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-793) $) 48 T ELT) (($ (-950) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-136) (-13 (-871) (-23) (-748) (-1069 (-793)) (-10 -8 (-6 (-4502 "*")) (-15 -2484 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3169 ($ (-793))) (-15 -1760 ((-112) $)) (-15 -1801 ((-112) $)) (-15 -2097 ((-112))) (-15 -1711 ((-112) (-112)))))) (T -136)) +((-2484 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-136)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-136)))) (-2097 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-136)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-136))))) +(-13 (-871) (-23) (-748) (-1069 (-793)) (-10 -8 (-6 (-4502 "*")) (-15 -2484 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3169 ($ (-793))) (-15 -1760 ((-112) $)) (-15 -1801 ((-112) $)) (-15 -2097 ((-112))) (-15 -1711 ((-112) (-112))))) +((-3768 (((-138 |#1| |#2| |#4|) (-666 |#4|) (-138 |#1| |#2| |#3|)) 14 T ELT)) (-3611 (((-138 |#1| |#2| |#4|) (-1 |#4| |#3|) (-138 |#1| |#2| |#3|)) 18 T ELT))) +(((-137 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3768 ((-138 |#1| |#2| |#4|) (-666 |#4|) (-138 |#1| |#2| |#3|))) (-15 -3611 ((-138 |#1| |#2| |#4|) (-1 |#4| |#3|) (-138 |#1| |#2| |#3|)))) (-578) (-793) (-175) (-175)) (T -137)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-138 *5 *6 *7)) (-14 *5 (-578)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-138 *5 *6 *8)) (-5 *1 (-137 *5 *6 *7 *8)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-138 *5 *6 *7)) (-14 *5 (-578)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-138 *5 *6 *8)) (-5 *1 (-137 *5 *6 *7 *8))))) +(-10 -7 (-15 -3768 ((-138 |#1| |#2| |#4|) (-666 |#4|) (-138 |#1| |#2| |#3|))) (-15 -3611 ((-138 |#1| |#2| |#4|) (-1 |#4| |#3|) (-138 |#1| |#2| |#3|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4236 (($ (-666 |#3|)) 61 T ELT)) (-1921 (($ $) 123 T ELT) (($ $ (-578) (-578)) 122 T ELT)) (-3534 (($) 20 T ELT)) (-2818 (((-3 |#3| "failed") $) 83 T ELT)) (-3516 ((|#3| $) NIL T ELT)) (-2966 (($ $ (-666 (-578))) 124 T ELT)) (-3756 (((-666 |#3|) $) 56 T ELT)) (-1875 (((-793) $) 66 T ELT)) (-3471 (($ $ $) 117 T ELT)) (-2859 (($) 65 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2160 (($) 19 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 ((|#3| $ (-578)) 69 T ELT) ((|#3| $) 68 T ELT) ((|#3| $ (-578) (-578)) 70 T ELT) ((|#3| $ (-578) (-578) (-578)) 71 T ELT) ((|#3| $ (-578) (-578) (-578) (-578)) 72 T ELT) ((|#3| $ (-666 (-578))) 73 T ELT)) (-3683 (((-793) $) 67 T ELT)) (-2475 (($ $ (-578) $ (-578)) 118 T ELT) (($ $ (-578) (-578)) 120 T ELT)) (-2411 (((-886) $) 91 T ELT) (($ |#3|) 92 T ELT) (($ (-247 |#2| |#3|)) 99 T ELT) (($ (-1173 |#2| |#3|)) 102 T ELT) (($ (-666 |#3|)) 74 T ELT) (($ (-666 $)) 80 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 93 T CONST)) (-2379 (($) 94 T CONST)) (-2384 (((-112) $ $) 104 T ELT)) (-2484 (($ $) 110 T ELT) (($ $ $) 108 T ELT)) (-2472 (($ $ $) 106 T ELT)) (* (($ |#3| $) 115 T ELT) (($ $ |#3|) 116 T ELT) (($ $ (-578)) 113 T ELT) (($ (-578) $) 112 T ELT) (($ $ $) 119 T ELT))) +(((-138 |#1| |#2| |#3|) (-13 (-479 |#3| (-793)) (-484 (-578) (-793)) (-298 (-578) |#3|) (-10 -8 (-15 -2411 ($ (-247 |#2| |#3|))) (-15 -2411 ($ (-1173 |#2| |#3|))) (-15 -2411 ($ (-666 |#3|))) (-15 -2411 ($ (-666 $))) (-15 -1875 ((-793) $)) (-15 -2436 (|#3| $)) (-15 -2436 (|#3| $ (-578) (-578))) (-15 -2436 (|#3| $ (-578) (-578) (-578))) (-15 -2436 (|#3| $ (-578) (-578) (-578) (-578))) (-15 -2436 (|#3| $ (-666 (-578)))) (-15 -3471 ($ $ $)) (-15 * ($ $ $)) (-15 -2475 ($ $ (-578) $ (-578))) (-15 -2475 ($ $ (-578) (-578))) (-15 -1921 ($ $)) (-15 -1921 ($ $ (-578) (-578))) (-15 -2966 ($ $ (-666 (-578)))) (-15 -2160 ($)) (-15 -2859 ($)) (-15 -3756 ((-666 |#3|) $)) (-15 -4236 ($ (-666 |#3|))) (-15 -3534 ($)))) (-578) (-793) (-175)) (T -138)) +((-3471 (*1 *1 *1 *1) (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-247 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1173 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 *5)) (-4 *5 (-175)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) (-14 *4 (-793)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-138 *3 *4 *5))) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) (-14 *4 (-793)) (-4 *5 (-175)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) (-14 *4 *2) (-4 *5 (-175)))) (-2436 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-138 *3 *4 *2)) (-14 *3 (-578)) (-14 *4 (-793)))) (-2436 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-2436 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-578)) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-2436 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-578)) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 (-666 (-578))) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) (-14 *4 (-578)) (-14 *5 (-793)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2475 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-2475 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-1921 (*1 *1 *1) (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) (-4 *4 (-175)))) (-1921 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-2966 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) (-14 *4 (-793)) (-4 *5 (-175)))) (-2160 (*1 *1) (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2859 (*1 *1) (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) (-4 *4 (-175)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-666 *5)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) (-14 *4 (-793)) (-4 *5 (-175)))) (-4236 (*1 *1 *2) (-12 (-5 *2 (-666 *5)) (-4 *5 (-175)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) (-14 *4 (-793)))) (-3534 (*1 *1) (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) (-4 *4 (-175))))) +(-13 (-479 |#3| (-793)) (-484 (-578) (-793)) (-298 (-578) |#3|) (-10 -8 (-15 -2411 ($ (-247 |#2| |#3|))) (-15 -2411 ($ (-1173 |#2| |#3|))) (-15 -2411 ($ (-666 |#3|))) (-15 -2411 ($ (-666 $))) (-15 -1875 ((-793) $)) (-15 -2436 (|#3| $)) (-15 -2436 (|#3| $ (-578) (-578))) (-15 -2436 (|#3| $ (-578) (-578) (-578))) (-15 -2436 (|#3| $ (-578) (-578) (-578) (-578))) (-15 -2436 (|#3| $ (-666 (-578)))) (-15 -3471 ($ $ $)) (-15 * ($ $ $)) (-15 -2475 ($ $ (-578) $ (-578))) (-15 -2475 ($ $ (-578) (-578))) (-15 -1921 ($ $)) (-15 -1921 ($ $ (-578) (-578))) (-15 -2966 ($ $ (-666 (-578)))) (-15 -2160 ($)) (-15 -2859 ($)) (-15 -3756 ((-666 |#3|) $)) (-15 -4236 ($ (-666 |#3|))) (-15 -3534 ($)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3666 (((-1166) $) 11 T ELT)) (-3655 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-139) (-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $))))) (T -139)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139))))) +(-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4410 (((-189) $) 10 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-666 (-1166)) $) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-140) (-13 (-1114) (-10 -8 (-15 -4410 ((-189) $)) (-15 -4117 ((-666 (-1166)) $))))) (T -140)) +((-4410 (*1 *2 *1) (-12 (-5 *2 (-189)) (-5 *1 (-140)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-140))))) +(-13 (-1114) (-10 -8 (-15 -4410 ((-189) $)) (-15 -4117 ((-666 (-1166)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2302 (((-666 (-889)) $) NIL T ELT)) (-4107 (((-520) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4410 (((-189) $) NIL T ELT)) (-1413 (((-112) $ (-520)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2546 (((-666 (-112)) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (((-190) $) 6 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1639 (((-55) $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-141) (-13 (-188) (-632 (-190)))) (T -141)) +NIL +(-13 (-188) (-632 (-190))) +((-3888 (((-666 (-186 (-141))) $) 13 T ELT)) (-2477 (((-666 (-186 (-141))) $) 14 T ELT)) (-2856 (((-666 (-860)) $) 10 T ELT)) (-1533 (((-141) $) 7 T ELT)) (-2411 (((-886) $) 16 T ELT))) +(((-142) (-13 (-632 (-886)) (-10 -8 (-15 -1533 ((-141) $)) (-15 -2856 ((-666 (-860)) $)) (-15 -3888 ((-666 (-186 (-141))) $)) (-15 -2477 ((-666 (-186 (-141))) $))))) (T -142)) +((-1533 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-666 (-860))) (-5 *1 (-142)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-666 (-186 (-141)))) (-5 *1 (-142)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-666 (-186 (-141)))) (-5 *1 (-142))))) +(-13 (-632 (-886)) (-10 -8 (-15 -1533 ((-141) $)) (-15 -2856 ((-666 (-860)) $)) (-15 -3888 ((-666 (-186 (-141))) $)) (-15 -2477 ((-666 (-186 (-141))) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2959 (($) 17 T CONST)) (-3927 (($) NIL (|has| (-146) (-381)) ELT)) (-1340 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-4430 (($ $ $) NIL T ELT)) (-3954 (((-112) $ $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| (-146) (-381)) ELT)) (-1754 (($) NIL T ELT) (($ (-666 (-146))) NIL T ELT)) (-1589 (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-2631 (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-146) $) 60 (|has| $ (-6 -4500)) ELT)) (-2737 (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-2512 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4500)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4500)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-2062 (($) NIL (|has| (-146) (-381)) ELT)) (-2729 (((-666 (-146)) $) 69 (|has| $ (-6 -4500)) ELT)) (-2930 (((-112) $ $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1345 (((-146) $) NIL (|has| (-146) (-871)) ELT)) (-1441 (((-666 (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-146) $) 27 (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-3667 (((-146) $) NIL (|has| (-146) (-871)) ELT)) (-3439 (($ (-1 (-146) (-146)) $) 68 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-146) (-146)) $) 64 T ELT)) (-2283 (($) 18 T CONST)) (-3193 (((-950) $) NIL (|has| (-146) (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3457 (($ $ $) 30 T ELT)) (-2743 (((-146) $) 61 T ELT)) (-4328 (($ (-146) $) 59 T ELT)) (-2087 (($ (-950)) NIL (|has| (-146) (-381)) ELT)) (-2556 (($) 16 T CONST)) (-4313 (((-1151) $) NIL T ELT)) (-3668 (((-3 (-146) "failed") (-1 (-112) (-146)) $) NIL T ELT)) (-1994 (((-146) $) 62 T ELT)) (-2808 (((-112) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-146)) (-666 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-306 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-666 (-306 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 57 T ELT)) (-2673 (($) 15 T CONST)) (-2867 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-1338 (($ (-666 (-146))) NIL T ELT) (($) NIL T ELT)) (-4324 (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT) (((-793) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-1189) $) 37 T ELT) (((-550) $) NIL (|has| (-146) (-633 (-550))) ELT) (((-666 (-146)) $) 35 T ELT)) (-2423 (($ (-666 (-146))) NIL T ELT)) (-2166 (($ $) 33 (|has| (-146) (-381)) ELT)) (-2411 (((-886) $) 53 T ELT)) (-2134 (($ (-1189)) 14 T ELT) (($ (-666 (-146))) 50 T ELT)) (-3131 (((-793) $) NIL T ELT)) (-2869 (($) 58 T ELT) (($ (-666 (-146))) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3764 (($ (-666 (-146))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2793 (($) 21 T CONST)) (-3042 (($) 20 T CONST)) (-2384 (((-112) $ $) 24 T ELT)) (-3226 (((-793) $) 56 (|has| $ (-6 -4500)) ELT))) +(((-143) (-13 (-1131) (-633 (-1189)) (-439 (-146)) (-633 (-666 (-146))) (-10 -8 (-15 -2134 ($ (-1189))) (-15 -2134 ($ (-666 (-146)))) (-15 -2673 ($) -1529) (-15 -2556 ($) -1529) (-15 -2959 ($) -1529) (-15 -2283 ($) -1529) (-15 -3042 ($) -1529) (-15 -2793 ($) -1529)))) (T -143)) +((-2134 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143)))) (-2134 (*1 *1 *2) (-12 (-5 *2 (-666 (-146))) (-5 *1 (-143)))) (-2673 (*1 *1) (-5 *1 (-143))) (-2556 (*1 *1) (-5 *1 (-143))) (-2959 (*1 *1) (-5 *1 (-143))) (-2283 (*1 *1) (-5 *1 (-143))) (-3042 (*1 *1) (-5 *1 (-143))) (-2793 (*1 *1) (-5 *1 (-143)))) +(-13 (-1131) (-633 (-1189)) (-439 (-146)) (-633 (-666 (-146))) (-10 -8 (-15 -2134 ($ (-1189))) (-15 -2134 ($ (-666 (-146)))) (-15 -2673 ($) -1529) (-15 -2556 ($) -1529) (-15 -2959 ($) -1529) (-15 -2283 ($) -1529) (-15 -3042 ($) -1529) (-15 -2793 ($) -1529))) +((-1420 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3621 ((|#1| |#3|) 9 T ELT)) (-1992 ((|#3| |#3|) 15 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3621 (|#1| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -1420 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-570) (-1023 |#1|) (-386 |#2|)) (T -144)) +((-1420 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-386 *5)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-570)) (-4 *4 (-1023 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-386 *4)))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-1023 *2)) (-4 *2 (-570)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-386 *4))))) +(-10 -7 (-15 -3621 (|#1| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -1420 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2492 (($ $ $) 8 T ELT)) (-2454 (($ $) 7 T ELT)) (-2776 (($ $ $) 6 T ELT))) +(((-145) (-142)) (T -145)) +((-2492 (*1 *1 *1 *1) (-4 *1 (-145))) (-2454 (*1 *1 *1) (-4 *1 (-145))) (-2776 (*1 *1 *1 *1) (-4 *1 (-145)))) +(-13 (-10 -8 (-15 -2776 ($ $ $)) (-15 -2454 ($ $)) (-15 -2492 ($ $ $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4001 (((-112) $) 39 T ELT)) (-2959 (($ $) 55 T ELT)) (-3704 (($) 26 T CONST)) (-2222 (((-793)) 13 T ELT)) (-2062 (($) 25 T ELT)) (-4294 (($) 27 T CONST)) (-2886 (((-793) $) 21 T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3233 (((-112) $) 41 T ELT)) (-2283 (($ $) 56 T ELT)) (-3193 (((-950) $) 23 T ELT)) (-2617 (((-1189) $) 49 T ELT)) (-2087 (($ (-950)) 20 T ELT)) (-3088 (((-112) $) 37 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2992 (($) 28 T CONST)) (-4248 (((-112) $) 35 T ELT)) (-2411 (((-886) $) 30 T ELT)) (-3171 (($ (-793)) 19 T ELT) (($ (-1189)) 54 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4456 (((-112) $) 45 T ELT)) (-2503 (((-112) $) 43 T ELT)) (-2441 (((-112) $ $) 11 T ELT)) (-2416 (((-112) $ $) 9 T ELT)) (-2384 (((-112) $ $) 7 T ELT)) (-2429 (((-112) $ $) 10 T ELT)) (-2404 (((-112) $ $) 8 T ELT))) +(((-146) (-13 (-866) (-10 -8 (-15 -2886 ((-793) $)) (-15 -3171 ($ (-793))) (-15 -3171 ($ (-1189))) (-15 -3704 ($) -1529) (-15 -4294 ($) -1529) (-15 -2992 ($) -1529) (-15 -2959 ($ $)) (-15 -2283 ($ $)) (-15 -4248 ((-112) $)) (-15 -3088 ((-112) $)) (-15 -2503 ((-112) $)) (-15 -4001 ((-112) $)) (-15 -3233 ((-112) $)) (-15 -4456 ((-112) $))))) (T -146)) +((-2886 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-3171 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146)))) (-3704 (*1 *1) (-5 *1 (-146))) (-4294 (*1 *1) (-5 *1 (-146))) (-2992 (*1 *1) (-5 *1 (-146))) (-2959 (*1 *1 *1) (-5 *1 (-146))) (-2283 (*1 *1 *1) (-5 *1 (-146))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146)))) (-4456 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146))))) +(-13 (-866) (-10 -8 (-15 -2886 ((-793) $)) (-15 -3171 ($ (-793))) (-15 -3171 ($ (-1189))) (-15 -3704 ($) -1529) (-15 -4294 ($) -1529) (-15 -2992 ($) -1529) (-15 -2959 ($ $)) (-15 -2283 ($ $)) (-15 -4248 ((-112) $)) (-15 -3088 ((-112) $)) (-15 -2503 ((-112) $)) (-15 -4001 ((-112) $)) (-15 -3233 ((-112) $)) (-15 -4456 ((-112) $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-2213 (((-3 $ "failed") $) 39 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-147) (-142)) (T -147)) +((-2213 (*1 *1 *1) (|partial| -4 *1 (-147)))) +(-13 (-1080) (-10 -8 (-15 -2213 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-1566 ((|#1| (-711 |#1|) |#1|) 19 T ELT))) +(((-148 |#1|) (-10 -7 (-15 -1566 (|#1| (-711 |#1|) |#1|))) (-175)) (T -148)) +((-1566 (*1 *2 *3 *2) (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))) +(-10 -7 (-15 -1566 (|#1| (-711 |#1|) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-149) (-142)) (T -149)) +NIL +(-13 (-1080)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-4206 (((-2 (|:| -2764 (-793)) (|:| -2672 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793)) 76 T ELT)) (-2796 (((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|) 56 T ELT)) (-4441 (((-2 (|:| -2672 (-421 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-2877 ((|#1| |#3| |#3|) 44 T ELT)) (-3364 ((|#3| |#3| (-421 |#2|) (-421 |#2|)) 20 T ELT)) (-2527 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|) 53 T ELT))) +(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -4441 ((-2 (|:| -2672 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2796 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -4206 ((-2 (|:| -2764 (-793)) (|:| -2672 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -2877 (|#1| |#3| |#3|)) (-15 -3364 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -2527 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|))) (-1252) (-1274 |#1|) (-1274 (-421 |#2|))) (T -150)) +((-2527 (*1 *2 *3 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5)) (|:| |c2| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1274 (-421 *5))))) (-3364 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1274 *3)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-1274 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1274 (-421 *4))))) (-4206 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *6)) (-4 *5 (-1252)) (-4 *6 (-1274 *5)) (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-793)) (-4 *7 (-1274 *3)))) (-2796 (*1 *2 *3) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1274 (-421 *5))))) (-4441 (*1 *2 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| -2672 (-421 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1274 (-421 *5)))))) +(-10 -7 (-15 -4441 ((-2 (|:| -2672 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2796 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -4206 ((-2 (|:| -2764 (-793)) (|:| -2672 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -2877 (|#1| |#3| |#3|)) (-15 -3364 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -2527 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|))) +((-3273 (((-3 (-666 (-1203 |#2|)) "failed") (-666 (-1203 |#2|)) (-1203 |#2|)) 35 T ELT))) +(((-151 |#1| |#2|) (-10 -7 (-15 -3273 ((-3 (-666 (-1203 |#2|)) "failed") (-666 (-1203 |#2|)) (-1203 |#2|)))) (-559) (-168 |#1|)) (T -151)) +((-3273 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 (-1203 *5))) (-5 *3 (-1203 *5)) (-4 *5 (-168 *4)) (-4 *4 (-559)) (-5 *1 (-151 *4 *5))))) +(-10 -7 (-15 -3273 ((-3 (-666 (-1203 |#2|)) "failed") (-666 (-1203 |#2|)) (-1203 |#2|)))) +((-4233 (($ (-1 (-112) |#2|) $) 37 T ELT)) (-3776 (($ $) 44 T ELT)) (-2737 (($ (-1 (-112) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-2512 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-3668 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27 T ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 24 T ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) 18 T ELT) (((-793) |#2| $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 21 T ELT)) (-3226 (((-793) $) 12 T ELT))) +(((-152 |#1| |#2|) (-10 -8 (-15 -3776 (|#1| |#1|)) (-15 -2737 (|#1| |#2| |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4233 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2737 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3226 ((-793) |#1|))) (-153 |#2|) (-1248)) (T -152)) +NIL +(-10 -8 (-15 -3776 (|#1| |#1|)) (-15 -2737 (|#1| |#2| |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4233 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2737 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3226 ((-793) |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4233 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3776 (($ $) 42 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4500)) ELT) (($ |#1| $) 43 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 41 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 50 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-153 |#1|) (-142) (-1248)) (T -153)) +((-2423 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-4 *1 (-153 *3)))) (-3668 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1248)))) (-2512 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) (-4 *2 (-1248)))) (-2512 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) (-4 *2 (-1248)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *3)) (-4 *3 (-1248)))) (-4233 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *3)) (-4 *3 (-1248)))) (-2512 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) (-4 *2 (-1248)))) (-2737 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) (-4 *2 (-1248)) (-4 *2 (-1131)))) (-3776 (*1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) (-4 *2 (-1248)) (-4 *2 (-1131))))) +(-13 (-503 |t#1|) (-10 -8 (-15 -2423 ($ (-666 |t#1|))) (-15 -3668 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2512 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2512 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2737 ($ (-1 (-112) |t#1|) $)) (-15 -4233 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -2512 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2737 ($ |t#1| $)) (-15 -3776 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) 111 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-666 (-950))) 71 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3413 (($ (-950)) 57 T ELT)) (-4425 (((-136)) 23 T ELT)) (-2411 (((-886) $) 86 T ELT) (($ (-578)) 53 T ELT) (($ |#2|) 54 T ELT)) (-3708 ((|#2| $ (-666 (-950))) 74 T ELT)) (-3753 (((-793)) 20 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 47 T CONST)) (-2379 (($) 51 T CONST)) (-2384 (((-112) $ $) 33 T ELT)) (-2495 (($ $ |#2|) NIL T ELT)) (-2484 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-2472 (($ $ $) 38 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) +(((-154 |#1| |#2| |#3|) (-13 (-1080) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -3413 ($ (-950))) (-15 -2925 ($ |#2| (-666 (-950)))) (-15 -3708 (|#2| $ (-666 (-950)))) (-15 -3493 ((-3 $ "failed") $)))) (-950) (-376) (-1024 |#1| |#2|)) (T -154)) +((-3493 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-950)) (-4 *3 (-376)) (-14 *4 (-1024 *2 *3)))) (-3413 (*1 *1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1024 *3 *4)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-666 (-950))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-950)) (-4 *2 (-376)) (-14 *5 (-1024 *4 *2)))) (-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-666 (-950))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-950)) (-14 *5 (-1024 *4 *2))))) +(-13 (-1080) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -3413 ($ (-950))) (-15 -2925 ($ |#2| (-666 (-950)))) (-15 -3708 (|#2| $ (-666 (-950)))) (-15 -3493 ((-3 $ "failed") $)))) +((-3645 (((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-666 (-972 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-1969 (((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956) (-421 (-578)) (-421 (-578))) 95 T ELT) (((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956)) 96 T ELT)) (-3716 (((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-666 (-972 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-972 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956) (-421 (-578)) (-421 (-578))) 90 T ELT) (((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956)) 91 T ELT))) +(((-155) (-10 -7 (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956))) (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956) (-421 (-578)) (-421 (-578)))) (-15 -1969 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956))) (-15 -1969 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956) (-421 (-578)) (-421 (-578)))) (-15 -3645 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-666 (-972 (-229)))) (-229) (-229) (-229) (-229))) (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-972 (-229))))) (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-666 (-972 (-229)))))))) (T -155)) +((-3716 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) (-5 *1 (-155)) (-5 *3 (-666 (-666 (-972 (-229))))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) (-5 *1 (-155)) (-5 *3 (-666 (-972 (-229)))))) (-3645 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-666 (-666 (-972 *4)))) (|:| |xValues| (-1125 *4)) (|:| |yValues| (-1125 *4)))) (-5 *1 (-155)) (-5 *3 (-666 (-666 (-972 *4)))))) (-1969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-956)) (-5 *4 (-421 (-578))) (-5 *2 (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) (-5 *1 (-155)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-956)) (-5 *2 (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) (-5 *1 (-155)))) (-3716 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-956)) (-5 *4 (-421 (-578))) (-5 *2 (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) (-5 *1 (-155)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-956)) (-5 *2 (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) (-5 *1 (-155))))) +(-10 -7 (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956))) (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956) (-421 (-578)) (-421 (-578)))) (-15 -1969 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956))) (-15 -1969 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-956) (-421 (-578)) (-421 (-578)))) (-15 -3645 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-666 (-972 (-229)))) (-229) (-229) (-229) (-229))) (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-972 (-229))))) (-15 -3716 ((-2 (|:| |brans| (-666 (-666 (-972 (-229))))) (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229)))) (-666 (-666 (-972 (-229))))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3980 (((-666 (-1166)) $) 20 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-1166) $) 9 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-156) (-13 (-1114) (-10 -8 (-15 -3980 ((-666 (-1166)) $)) (-15 -4117 ((-1166) $))))) (T -156)) +((-3980 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-156)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-156))))) +(-13 (-1114) (-10 -8 (-15 -3980 ((-666 (-1166)) $)) (-15 -4117 ((-1166) $)))) +((-1604 (((-666 (-172 |#2|)) |#1| |#2|) 50 T ELT))) +(((-157 |#1| |#2|) (-10 -7 (-15 -1604 ((-666 (-172 |#2|)) |#1| |#2|))) (-1274 (-172 (-578))) (-13 (-376) (-870))) (T -157)) +((-1604 (*1 *2 *3 *4) (-12 (-5 *2 (-666 (-172 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1274 (-172 (-578)))) (-4 *4 (-13 (-376) (-870)))))) +(-10 -7 (-15 -1604 ((-666 (-172 |#2|)) |#1| |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3666 (((-1247) $) 12 T ELT)) (-3655 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-158) (-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1247) $))))) (T -158)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-158)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-158))))) +(-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1247) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-1644 (($) 41 T ELT)) (-3352 (($) 40 T ELT)) (-1546 (((-950)) 46 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1594 (((-578) $) 44 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2588 (($) 42 T ELT)) (-2927 (($ (-578)) 47 T ELT)) (-2411 (((-886) $) 53 T ELT)) (-1652 (($) 43 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 38 T ELT)) (-2472 (($ $ $) 35 T ELT)) (* (($ (-950) $) 45 T ELT) (($ (-229) $) 11 T ELT))) +(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-950) $)) (-15 * ($ (-229) $)) (-15 -2472 ($ $ $)) (-15 -3352 ($)) (-15 -1644 ($)) (-15 -2588 ($)) (-15 -1652 ($)) (-15 -1594 ((-578) $)) (-15 -1546 ((-950))) (-15 -2927 ($ (-578)))))) (T -159)) +((-2472 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-3352 (*1 *1) (-5 *1 (-159))) (-1644 (*1 *1) (-5 *1 (-159))) (-2588 (*1 *1) (-5 *1 (-159))) (-1652 (*1 *1) (-5 *1 (-159))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-159)))) (-1546 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-159)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-159))))) +(-13 (-25) (-10 -8 (-15 * ($ (-950) $)) (-15 * ($ (-229) $)) (-15 -2472 ($ $ $)) (-15 -3352 ($)) (-15 -1644 ($)) (-15 -2588 ($)) (-15 -1652 ($)) (-15 -1594 ((-578) $)) (-15 -1546 ((-950))) (-15 -2927 ($ (-578))))) +((-2600 ((|#2| |#2| (-1123 |#2|)) 98 T ELT) ((|#2| |#2| (-1207)) 75 T ELT)) (-3471 ((|#2| |#2| (-1123 |#2|)) 97 T ELT) ((|#2| |#2| (-1207)) 74 T ELT)) (-2492 ((|#2| |#2| |#2|) 25 T ELT)) (-4397 (((-116) (-116)) 111 T ELT)) (-4446 ((|#2| (-666 |#2|)) 130 T ELT)) (-3970 ((|#2| (-666 |#2|)) 151 T ELT)) (-2271 ((|#2| (-666 |#2|)) 138 T ELT)) (-2280 ((|#2| |#2|) 136 T ELT)) (-4093 ((|#2| (-666 |#2|)) 124 T ELT)) (-3350 ((|#2| (-666 |#2|)) 125 T ELT)) (-1343 ((|#2| (-666 |#2|)) 149 T ELT)) (-2829 ((|#2| |#2| (-1207)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-2454 ((|#2| |#2|) 21 T ELT)) (-2776 ((|#2| |#2| |#2|) 24 T ELT)) (-3619 (((-112) (-116)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-160 |#1| |#2|) (-10 -7 (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 ** (|#2| |#2| |#2|)) (-15 -2776 (|#2| |#2| |#2|)) (-15 -2492 (|#2| |#2| |#2|)) (-15 -2454 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -2829 (|#2| |#2| (-1207))) (-15 -2600 (|#2| |#2| (-1207))) (-15 -2600 (|#2| |#2| (-1123 |#2|))) (-15 -3471 (|#2| |#2| (-1207))) (-15 -3471 (|#2| |#2| (-1123 |#2|))) (-15 -2280 (|#2| |#2|)) (-15 -1343 (|#2| (-666 |#2|))) (-15 -2271 (|#2| (-666 |#2|))) (-15 -3970 (|#2| (-666 |#2|))) (-15 -4093 (|#2| (-666 |#2|))) (-15 -3350 (|#2| (-666 |#2|))) (-15 -4446 (|#2| (-666 |#2|)))) (-570) (-444 |#1|)) (T -160)) +((-4446 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-570)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-570)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-570)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-570)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-570)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-570)))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) (-3471 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-444 *4)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)))) (-3471 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)) (-4 *2 (-444 *4)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-444 *4)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)) (-4 *2 (-444 *4)))) (-2829 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)) (-4 *2 (-444 *4)))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) (-2454 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) (-2492 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) (-2776 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) (-4397 (*1 *2 *2) (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-160 *3 *4)) (-4 *4 (-444 *3)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-160 *4 *5)) (-4 *5 (-444 *4))))) +(-10 -7 (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 ** (|#2| |#2| |#2|)) (-15 -2776 (|#2| |#2| |#2|)) (-15 -2492 (|#2| |#2| |#2|)) (-15 -2454 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -2829 (|#2| |#2| (-1207))) (-15 -2600 (|#2| |#2| (-1207))) (-15 -2600 (|#2| |#2| (-1123 |#2|))) (-15 -3471 (|#2| |#2| (-1207))) (-15 -3471 (|#2| |#2| (-1123 |#2|))) (-15 -2280 (|#2| |#2|)) (-15 -1343 (|#2| (-666 |#2|))) (-15 -2271 (|#2| (-666 |#2|))) (-15 -3970 (|#2| (-666 |#2|))) (-15 -4093 (|#2| (-666 |#2|))) (-15 -3350 (|#2| (-666 |#2|))) (-15 -4446 (|#2| (-666 |#2|)))) +((-2116 ((|#1| |#1| |#1|) 64 T ELT)) (-2419 ((|#1| |#1| |#1|) 61 T ELT)) (-2492 ((|#1| |#1| |#1|) 55 T ELT)) (-4073 ((|#1| |#1|) 42 T ELT)) (-2438 ((|#1| |#1| (-666 |#1|)) 53 T ELT)) (-2454 ((|#1| |#1|) 46 T ELT)) (-2776 ((|#1| |#1| |#1|) 49 T ELT))) +(((-161 |#1|) (-10 -7 (-15 -2776 (|#1| |#1| |#1|)) (-15 -2454 (|#1| |#1|)) (-15 -2438 (|#1| |#1| (-666 |#1|))) (-15 -4073 (|#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2419 (|#1| |#1| |#1|)) (-15 -2116 (|#1| |#1| |#1|))) (-559)) (T -161)) +((-2116 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2419 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2492 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-4073 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2438 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2)))) (-2454 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2776 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) +(-10 -7 (-15 -2776 (|#1| |#1| |#1|)) (-15 -2454 (|#1| |#1|)) (-15 -2438 (|#1| |#1| (-666 |#1|))) (-15 -4073 (|#1| |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2419 (|#1| |#1| |#1|)) (-15 -2116 (|#1| |#1| |#1|))) +((-2600 (($ $ (-1207)) 12 T ELT) (($ $ (-1123 $)) 11 T ELT)) (-3471 (($ $ (-1207)) 10 T ELT) (($ $ (-1123 $)) 9 T ELT)) (-2492 (($ $ $) 8 T ELT)) (-2829 (($ $) 14 T ELT) (($ $ (-1207)) 13 T ELT)) (-2454 (($ $) 7 T ELT)) (-2776 (($ $ $) 6 T ELT))) +(((-162) (-142)) (T -162)) +((-2829 (*1 *1 *1) (-4 *1 (-162))) (-2829 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-2600 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-2600 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162)))) (-3471 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-3471 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162))))) +(-13 (-145) (-10 -8 (-15 -2829 ($ $)) (-15 -2829 ($ $ (-1207))) (-15 -2600 ($ $ (-1207))) (-15 -2600 ($ $ (-1123 $))) (-15 -3471 ($ $ (-1207))) (-15 -3471 ($ $ (-1123 $))))) +(((-145) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-666 (-1166)) $) 10 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-163) (-13 (-1114) (-10 -8 (-15 -4117 ((-666 (-1166)) $))))) (T -163)) +((-4117 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-163))))) +(-13 (-1114) (-10 -8 (-15 -4117 ((-666 (-1166)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2385 (($ (-578)) 14 T ELT) (($ $ $) 15 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 9 T ELT))) +(((-164) (-13 (-1131) (-10 -8 (-15 -2385 ($ (-578))) (-15 -2385 ($ $ $))))) (T -164)) +((-2385 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-164)))) (-2385 (*1 *1 *1 *1) (-5 *1 (-164)))) +(-13 (-1131) (-10 -8 (-15 -2385 ($ (-578))) (-15 -2385 ($ $ $)))) +((-4397 (((-116) (-1207)) 102 T ELT))) +(((-165) (-10 -7 (-15 -4397 ((-116) (-1207))))) (T -165)) +((-4397 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-116)) (-5 *1 (-165))))) +(-10 -7 (-15 -4397 ((-116) (-1207)))) +((-2346 ((|#3| |#3|) 19 T ELT))) +(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -2346 (|#3| |#3|))) (-1080) (-1274 |#1|) (-1274 |#2|)) (T -166)) +((-2346 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-4 *4 (-1274 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1274 *4))))) +(-10 -7 (-15 -2346 (|#3| |#3|))) +((-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 223 T ELT)) (-1881 ((|#2| $) 102 T ELT)) (-1502 (($ $) 256 T ELT)) (-1372 (($ $) 250 T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 47 T ELT)) (-1478 (($ $) 254 T ELT)) (-1349 (($ $) 248 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 146 T ELT)) (-3516 (((-578) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-3154 (($ $ $) 229 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) 160 T ELT) (((-711 |#2|) (-711 $)) 154 T ELT)) (-2512 (($ (-1203 |#2|)) 125 T ELT) (((-3 $ "failed") (-421 (-1203 |#2|))) NIL T ELT)) (-3493 (((-3 $ "failed") $) 214 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 204 T ELT)) (-1474 (((-112) $) 199 T ELT)) (-3805 (((-421 (-578)) $) 202 T ELT)) (-1875 (((-950)) 96 T ELT)) (-3166 (($ $ $) 231 T ELT)) (-4152 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269 T ELT)) (-2551 (($) 245 T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 193 T ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 198 T ELT)) (-1550 ((|#2| $) 100 T ELT)) (-1993 (((-1203 |#2|) $) 127 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3864 (($ $) 247 T ELT)) (-2501 (((-1203 |#2|) $) 126 T ELT)) (-3057 (($ $) 207 T ELT)) (-4221 (($) 103 T ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 95 T ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 64 T ELT)) (-3202 (((-3 $ "failed") $ |#2|) 209 T ELT) (((-3 $ "failed") $ $) 212 T ELT)) (-3587 (($ $) 246 T ELT)) (-1449 (((-793) $) 226 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 236 T ELT)) (-3232 ((|#2| (-1298 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-2031 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-4269 (((-1203 |#2|)) 120 T ELT)) (-1489 (($ $) 255 T ELT)) (-1361 (($ $) 249 T ELT)) (-1453 (((-1298 |#2|) $ (-1298 $)) 136 T ELT) (((-711 |#2|) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 |#2|) $) 116 T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-3343 (((-1298 |#2|) $) NIL T ELT) (($ (-1298 |#2|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT) (($ (-1203 |#2|)) NIL T ELT) (((-917 (-578)) $) 184 T ELT) (((-917 (-392)) $) 188 T ELT) (((-172 (-392)) $) 172 T ELT) (((-172 (-229)) $) 167 T ELT) (((-550) $) 180 T ELT)) (-1433 (($ $) 104 T ELT)) (-2411 (((-886) $) 143 T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT)) (-1566 (((-1203 |#2|) $) 32 T ELT)) (-3753 (((-793)) 106 T ELT)) (-2876 (((-112) $ $) 13 T ELT)) (-1576 (($ $) 259 T ELT)) (-1436 (($ $) 253 T ELT)) (-1552 (($ $) 257 T ELT)) (-1414 (($ $) 251 T ELT)) (-3461 ((|#2| $) 242 T ELT)) (-1564 (($ $) 258 T ELT)) (-1424 (($ $) 252 T ELT)) (-2628 (($ $) 162 T ELT)) (-2384 (((-112) $ $) 110 T ELT)) (-2484 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 111 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-578))) 276 T ELT) (($ $ $) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT))) +(((-167 |#1| |#2|) (-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2411 (|#1| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3355 ((-2 (|:| -1430 |#1|) (|:| -4487 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1449 ((-793) |#1|)) (-15 -2036 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3343 ((-550) |#1|)) (-15 -3343 ((-172 (-229)) |#1|)) (-15 -3343 ((-172 (-392)) |#1|)) (-15 -1372 (|#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1424 (|#1| |#1|)) (-15 -1414 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3587 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2551 (|#1|)) (-15 ** (|#1| |#1| (-421 (-578)))) (-15 -3428 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -2245 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -4152 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3461 (|#2| |#1|)) (-15 -2628 (|#1| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1433 (|#1| |#1|)) (-15 -4221 (|#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2512 ((-3 |#1| "failed") (-421 (-1203 |#2|)))) (-15 -2501 ((-1203 |#2|) |#1|)) (-15 -3343 (|#1| (-1203 |#2|))) (-15 -2512 (|#1| (-1203 |#2|))) (-15 -4269 ((-1203 |#2|))) (-15 -2242 ((-711 |#2|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3343 ((-1203 |#2|) |#1|)) (-15 -3232 (|#2|)) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -1993 ((-1203 |#2|) |#1|)) (-15 -1566 ((-1203 |#2|) |#1|)) (-15 -3232 (|#2| (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -1550 (|#2| |#1|)) (-15 -1881 (|#2| |#1|)) (-15 -1875 ((-950))) (-15 -2411 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 ** (|#1| |#1| (-793))) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-950))) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2876 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-168 |#2|) (-175)) (T -167)) +((-3753 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-1875 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-950)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-3232 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-4269 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1203 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4))))) +(-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2411 (|#1| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3355 ((-2 (|:| -1430 |#1|) (|:| -4487 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1449 ((-793) |#1|)) (-15 -2036 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3343 ((-550) |#1|)) (-15 -3343 ((-172 (-229)) |#1|)) (-15 -3343 ((-172 (-392)) |#1|)) (-15 -1372 (|#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1424 (|#1| |#1|)) (-15 -1414 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3587 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2551 (|#1|)) (-15 ** (|#1| |#1| (-421 (-578)))) (-15 -3428 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -2245 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -4152 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3461 (|#2| |#1|)) (-15 -2628 (|#1| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1433 (|#1| |#1|)) (-15 -4221 (|#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2512 ((-3 |#1| "failed") (-421 (-1203 |#2|)))) (-15 -2501 ((-1203 |#2|) |#1|)) (-15 -3343 (|#1| (-1203 |#2|))) (-15 -2512 (|#1| (-1203 |#2|))) (-15 -4269 ((-1203 |#2|))) (-15 -2242 ((-711 |#2|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3343 ((-1203 |#2|) |#1|)) (-15 -3232 (|#2|)) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -1993 ((-1203 |#2|) |#1|)) (-15 -1566 ((-1203 |#2|) |#1|)) (-15 -3232 (|#2| (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -1550 (|#2| |#1|)) (-15 -1881 (|#2| |#1|)) (-15 -1875 ((-950))) (-15 -2411 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 ** (|#1| |#1| (-793))) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-950))) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2876 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 105 (-2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2987 (($ $) 106 (-2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-3087 (((-112) $) 108 (-2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-4306 (((-711 |#1|) (-1298 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-1881 ((|#1| $) 59 T ELT)) (-1502 (($ $) 236 (|has| |#1| (-1233)) ELT)) (-1372 (($ $) 219 (|has| |#1| (-1233)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 158 (|has| |#1| (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 250 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-1457 (($ $) 125 (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-3034 (((-432 $) $) 126 (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-2811 (($ $) 249 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 253 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-2732 (((-112) $ $) 116 (|has| |#1| (-319)) ELT)) (-2222 (((-793)) 99 (|has| |#1| (-381)) ELT)) (-1478 (($ $) 235 (|has| |#1| (-1233)) ELT)) (-1349 (($ $) 220 (|has| |#1| (-1233)) ELT)) (-1528 (($ $) 234 (|has| |#1| (-1233)) ELT)) (-1392 (($ $) 221 (|has| |#1| (-1233)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 185 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 183 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3516 (((-578) $) 184 (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) 182 (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 181 T ELT)) (-3095 (($ (-1298 |#1|) (-1298 $)) 55 T ELT) (($ (-1298 |#1|)) 71 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-362)) ELT)) (-3154 (($ $ $) 120 (|has| |#1| (-319)) ELT)) (-2009 (((-711 |#1|) $ (-1298 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 177 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 176 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 175 T ELT) (((-711 |#1|) (-711 $)) 174 T ELT)) (-2512 (($ (-1203 |#1|)) 169 T ELT) (((-3 $ "failed") (-421 (-1203 |#1|))) 166 (|has| |#1| (-376)) ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2823 ((|#1| $) 261 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 254 (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) 256 (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) 255 (|has| |#1| (-559)) ELT)) (-1875 (((-950)) 61 T ELT)) (-2062 (($) 102 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) 119 (|has| |#1| (-319)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 114 (|has| |#1| (-319)) ELT)) (-3146 (($) 160 (|has| |#1| (-362)) ELT)) (-2681 (((-112) $) 161 (|has| |#1| (-362)) ELT)) (-2953 (($ $ (-793)) 152 (|has| |#1| (-362)) ELT) (($ $) 151 (|has| |#1| (-362)) ELT)) (-2159 (((-112) $) 127 (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-4152 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1091)) (|has| |#1| (-1233))) ELT)) (-2551 (($) 246 (|has| |#1| (-1233)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 269 (|has| |#1| (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 268 (|has| |#1| (-911 (-392))) ELT)) (-4059 (((-950) $) 163 (|has| |#1| (-362)) ELT) (((-855 (-950)) $) 149 (|has| |#1| (-362)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 248 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-1550 ((|#1| $) 58 T ELT)) (-2204 (((-3 $ "failed") $) 153 (|has| |#1| (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 123 (|has| |#1| (-319)) ELT)) (-1993 (((-1203 |#1|) $) 51 (|has| |#1| (-376)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 270 T ELT)) (-3193 (((-950) $) 101 (|has| |#1| (-381)) ELT)) (-3864 (($ $) 243 (|has| |#1| (-1233)) ELT)) (-2501 (((-1203 |#1|) $) 167 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 179 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 178 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 173 T ELT) (((-711 |#1|) (-1298 $)) 172 T ELT)) (-2389 (($ (-666 $)) 112 (-2230 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT) (($ $ $) 111 (-2230 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 128 (|has| |#1| (-376)) ELT)) (-2199 (($) 154 (|has| |#1| (-362)) CONST)) (-2087 (($ (-950)) 100 (|has| |#1| (-381)) ELT)) (-4221 (($) 265 T ELT)) (-2834 ((|#1| $) 262 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2847 (($) 171 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 113 (-2230 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2421 (($ (-666 $)) 110 (-2230 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT) (($ $ $) 109 (-2230 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 157 (|has| |#1| (-362)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 252 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 251 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-2800 (((-432 $) $) 124 (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 121 (|has| |#1| (-319)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 104 (-2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 115 (|has| |#1| (-319)) ELT)) (-3587 (($ $) 244 (|has| |#1| (-1233)) ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) 276 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 275 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) 274 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) 273 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) 272 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 271 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1449 (((-793) $) 117 (|has| |#1| (-319)) ELT)) (-2436 (($ $ |#1|) 277 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 118 (|has| |#1| (-319)) ELT)) (-3232 ((|#1| (-1298 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-4375 (((-793) $) 162 (|has| |#1| (-362)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| |#1| (-362)) ELT)) (-2031 (($ $ (-1 |#1| |#1|)) 136 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 135 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) 141 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) 140 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) 139 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) 137 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) 147 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2320 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 145 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2320 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3345 (((-711 |#1|) (-1298 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-376)) ELT)) (-4269 (((-1203 |#1|)) 170 T ELT)) (-1541 (($ $) 233 (|has| |#1| (-1233)) ELT)) (-1403 (($ $) 222 (|has| |#1| (-1233)) ELT)) (-3430 (($) 159 (|has| |#1| (-362)) ELT)) (-1515 (($ $) 232 (|has| |#1| (-1233)) ELT)) (-1382 (($ $) 223 (|has| |#1| (-1233)) ELT)) (-1489 (($ $) 231 (|has| |#1| (-1233)) ELT)) (-1361 (($ $) 224 (|has| |#1| (-1233)) ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 57 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) 56 T ELT) (((-1298 |#1|) $) 73 T ELT) (((-711 |#1|) (-1298 $)) 72 T ELT)) (-3343 (((-1298 |#1|) $) 70 T ELT) (($ (-1298 |#1|)) 69 T ELT) (((-1203 |#1|) $) 186 T ELT) (($ (-1203 |#1|)) 168 T ELT) (((-917 (-578)) $) 267 (|has| |#1| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) 266 (|has| |#1| (-633 (-917 (-392)))) ELT) (((-172 (-392)) $) 218 (|has| |#1| (-1053)) ELT) (((-172 (-229)) $) 217 (|has| |#1| (-1053)) ELT) (((-550) $) 216 (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $) 264 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 156 (-2230 (-2320 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (|has| |#1| (-362))) ELT)) (-3921 (($ |#1| |#1|) 263 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-578))) 98 (-2230 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) 103 (-2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-2213 (($ $) 155 (|has| |#1| (-362)) ELT) (((-3 $ "failed") $) 50 (-2230 (-2320 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (|has| |#1| (-147))) ELT)) (-1566 (((-1203 |#1|) $) 52 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3198 (((-1298 $)) 74 T ELT)) (-1576 (($ $) 242 (|has| |#1| (-1233)) ELT)) (-1436 (($ $) 230 (|has| |#1| (-1233)) ELT)) (-3138 (((-112) $ $) 107 (-2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) ELT)) (-1552 (($ $) 241 (|has| |#1| (-1233)) ELT)) (-1414 (($ $) 229 (|has| |#1| (-1233)) ELT)) (-1598 (($ $) 240 (|has| |#1| (-1233)) ELT)) (-1456 (($ $) 228 (|has| |#1| (-1233)) ELT)) (-3461 ((|#1| $) 258 (|has| |#1| (-1233)) ELT)) (-3502 (($ $) 239 (|has| |#1| (-1233)) ELT)) (-1467 (($ $) 227 (|has| |#1| (-1233)) ELT)) (-1587 (($ $) 238 (|has| |#1| (-1233)) ELT)) (-1447 (($ $) 226 (|has| |#1| (-1233)) ELT)) (-1564 (($ $) 237 (|has| |#1| (-1233)) ELT)) (-1424 (($ $) 225 (|has| |#1| (-1233)) ELT)) (-2628 (($ $) 259 (|has| |#1| (-1091)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 133 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) 144 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) 143 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) 142 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) 138 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) 148 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2320 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 146 (-2230 (-2320 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2320 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2320 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 132 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-421 (-578))) 247 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT) (($ $ $) 245 (|has| |#1| (-1233)) ELT) (($ $ (-578)) 129 (|has| |#1| (-376)) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-421 (-578)) $) 131 (|has| |#1| (-376)) ELT) (($ $ (-421 (-578))) 130 (|has| |#1| (-376)) ELT))) +(((-168 |#1|) (-142) (-175)) (T -168)) +((-1550 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4221 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1433 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3921 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3202 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) (-2628 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1091)) (-4 *3 (-1233)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-578))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-578)))))) +(-13 (-746 |t#1| (-1203 |t#1|)) (-425 |t#1|) (-234 |t#1|) (-351 |t#1|) (-414 |t#1|) (-909 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -3921) (-15 -4221 ($)) (-15 -1433 ($ $)) (-15 -3921 ($ |t#1| |t#1|)) (-15 -2834 (|t#1| $)) (-15 -2823 (|t#1| $)) (-15 -1550 (|t#1| $)) (IF (|has| |t#1| (-570)) (PROGN (-6 (-570)) (-15 -3202 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4499)) (-6 -4499) |%noBranch|) (IF (|has| |t#1| (-6 -4496)) (-6 -4496) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1053)) (PROGN (-6 (-633 (-172 (-229)))) (-6 (-633 (-172 (-392))))) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2628 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1233)) (PROGN (-6 (-1233)) (-15 -3461 (|t#1| $)) (IF (|has| |t#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -4152 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-319)) (-6 (-938)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1233)) ((-95) |has| |#1| (-1233)) ((-102) . T) ((-111 #0# #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2230 (|has| |#1| (-362)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-362)) (|has| |#1| (-376))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-632 (-886)) . T) ((-175) . T) ((-633 (-172 (-229))) |has| |#1| (-1053)) ((-633 (-172 (-392))) |has| |#1| (-1053)) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-633 (-917 (-392))) |has| |#1| (-633 (-917 (-392)))) ((-633 (-917 (-578))) |has| |#1| (-633 (-917 (-578)))) ((-633 #1=(-1203 |#1|)) . T) ((-236 $) -2230 (|has| |#1| (-362)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -2230 (|has| |#1| (-362)) (|has| |#1| (-240))) ((-239) -2230 (|has| |#1| (-362)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1233)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -2230 (|has| |#1| (-570)) (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -2230 (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-416) |has| |#1| (-362)) ((-381) -2230 (|has| |#1| (-381)) (|has| |#1| (-362))) ((-362) |has| |#1| (-362)) ((-383 |#1| #1#) . T) ((-423 |#1| #1#) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-425 |#1|) . T) ((-466) -2230 (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-507) |has| |#1| (-1233)) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-570) -2230 (|has| |#1| (-570)) (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-668 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-670 #2=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-660 #2#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-746 |#1| #1#) . T) ((-748) . T) ((-921 $ #3=(-1207)) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #3#) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-392)) |has| |#1| (-911 (-392))) ((-911 (-578)) |has| |#1| (-911 (-578))) ((-909 |#1|) . T) ((-938) -12 (|has| |#1| (-319)) (|has| |#1| (-938))) ((-949) -2230 (|has| |#1| (-362)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1033) -12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1082 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) |has| |#1| (-362)) ((-1233) |has| |#1| (-1233)) ((-1236) |has| |#1| (-1233)) ((-1248) . T) ((-1252) -2230 (|has| |#1| (-362)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938))))) +((-2800 (((-432 |#2|) |#2|) 67 T ELT))) +(((-169 |#1| |#2|) (-10 -7 (-15 -2800 ((-432 |#2|) |#2|))) (-319) (-1274 (-172 |#1|))) (T -169)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-432 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1274 (-172 *4)))))) +(-10 -7 (-15 -2800 ((-432 |#2|) |#2|))) +((-4388 (((-1166) (-1166) (-303)) 8 T ELT)) (-1891 (((-666 (-713 (-292))) (-1189)) 81 T ELT)) (-1783 (((-713 (-292)) (-1166)) 76 T ELT))) +(((-170) (-13 (-1248) (-10 -7 (-15 -4388 ((-1166) (-1166) (-303))) (-15 -1783 ((-713 (-292)) (-1166))) (-15 -1891 ((-666 (-713 (-292))) (-1189)))))) (T -170)) +((-4388 (*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-303)) (-5 *1 (-170)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-713 (-292))) (-5 *1 (-170)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-666 (-713 (-292)))) (-5 *1 (-170))))) +(-13 (-1248) (-10 -7 (-15 -4388 ((-1166) (-1166) (-303))) (-15 -1783 ((-713 (-292)) (-1166))) (-15 -1891 ((-666 (-713 (-292))) (-1189))))) +((-3611 (((-172 |#2|) (-1 |#2| |#1|) (-172 |#1|)) 14 T ELT))) +(((-171 |#1| |#2|) (-10 -7 (-15 -3611 ((-172 |#2|) (-1 |#2| |#1|) (-172 |#1|)))) (-175) (-175)) (T -171)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-172 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-172 *6)) (-5 *1 (-171 *5 *6))))) +(-10 -7 (-15 -3611 ((-172 |#2|) (-1 |#2| |#1|) (-172 |#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 34 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-570))) ELT)) (-2987 (($ $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-570))) ELT)) (-3087 (((-112) $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-570))) ELT)) (-4306 (((-711 |#1|) (-1298 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-1881 ((|#1| $) NIL T ELT)) (-1502 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1372 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| |#1| (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-1457 (($ $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-3034 (((-432 $) $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-2811 (($ $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-319)) ELT)) (-2222 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-1478 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1349 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1528 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1392 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3095 (($ (-1298 |#1|) (-1298 $)) NIL T ELT) (($ (-1298 |#1|)) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)) ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-2009 (((-711 |#1|) $ (-1298 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2512 (($ (-1203 |#1|)) NIL T ELT) (((-3 $ "failed") (-421 (-1203 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2823 ((|#1| $) 13 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) NIL (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) NIL (|has| |#1| (-559)) ELT)) (-1875 (((-950)) NIL T ELT)) (-2062 (($) NIL (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-319)) ELT)) (-3146 (($) NIL (|has| |#1| (-362)) ELT)) (-2681 (((-112) $) NIL (|has| |#1| (-362)) ELT)) (-2953 (($ $ (-793)) NIL (|has| |#1| (-362)) ELT) (($ $) NIL (|has| |#1| (-362)) ELT)) (-2159 (((-112) $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-4152 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1091)) (|has| |#1| (-1233))) ELT)) (-2551 (($) NIL (|has| |#1| (-1233)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| |#1| (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| |#1| (-911 (-392))) ELT)) (-4059 (((-950) $) NIL (|has| |#1| (-362)) ELT) (((-855 (-950)) $) NIL (|has| |#1| (-362)) ELT)) (-4382 (((-112) $) 36 T ELT)) (-2812 (($ $ (-578)) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-1550 ((|#1| $) 47 T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-319)) ELT)) (-1993 (((-1203 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#1| (-381)) ELT)) (-3864 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2501 (((-1203 |#1|) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2199 (($) NIL (|has| |#1| (-362)) CONST)) (-2087 (($ (-950)) NIL (|has| |#1| (-381)) ELT)) (-4221 (($) NIL T ELT)) (-2834 ((|#1| $) 15 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-319)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| |#1| (-362)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) ELT)) (-2800 (((-432 $) $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-376))) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 48 (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-570))) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-319)) ELT)) (-3587 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-319)) ELT)) (-2436 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-3232 ((|#1| (-1298 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-4375 (((-793) $) NIL (|has| |#1| (-362)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-362)) ELT)) (-2031 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-2230 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3345 (((-711 |#1|) (-1298 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-4269 (((-1203 |#1|)) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1403 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3430 (($) NIL (|has| |#1| (-362)) ELT)) (-1515 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1382 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1489 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1361 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) NIL T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 |#1|) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3343 (((-1298 |#1|) $) NIL T ELT) (($ (-1298 |#1|)) NIL T ELT) (((-1203 |#1|) $) NIL T ELT) (($ (-1203 |#1|)) NIL T ELT) (((-917 (-578)) $) NIL (|has| |#1| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| |#1| (-633 (-917 (-392)))) ELT) (((-172 (-392)) $) NIL (|has| |#1| (-1053)) ELT) (((-172 (-229)) $) NIL (|has| |#1| (-1053)) ELT) (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $) 46 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-362))) ELT)) (-3921 (($ |#1| |#1|) 38 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-570))) ELT)) (-2213 (($ $) NIL (|has| |#1| (-362)) ELT) (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-1566 (((-1203 |#1|) $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1436 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3138 (((-112) $ $) NIL (-2230 (-12 (|has| |#1| (-319)) (|has| |#1| (-938))) (|has| |#1| (-570))) ELT)) (-1552 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1414 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1598 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1456 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3461 ((|#1| $) NIL (|has| |#1| (-1233)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1467 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1587 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1447 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1564 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1424 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2628 (($ $) NIL (|has| |#1| (-1091)) ELT)) (-2368 (($) 28 T CONST)) (-2379 (($) 30 T CONST)) (-3859 (((-1189) $) 23 (|has| |#1| (-850)) ELT) (((-1189) $ (-112)) 25 (|has| |#1| (-850)) ELT) (((-1303) (-844) $) 26 (|has| |#1| (-850)) ELT) (((-1303) (-844) $ (-112)) 27 (|has| |#1| (-850)) ELT)) (-1676 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-2230 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 40 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-578))) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT) (($ $ $) NIL (|has| |#1| (-1233)) ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-376)) ELT))) +(((-172 |#1|) (-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-175)) (T -172)) +NIL +(-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) +((-3343 (((-917 |#1|) |#3|) 22 T ELT))) +(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -3343 ((-917 |#1|) |#3|))) (-1131) (-13 (-633 (-917 |#1|)) (-175)) (-168 |#2|)) (T -173)) +((-3343 (*1 *2 *3) (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-917 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1131)) (-4 *3 (-168 *5))))) +(-10 -7 (-15 -3343 ((-917 |#1|) |#3|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3414 (((-112) $) 9 T ELT)) (-1712 (((-112) $ (-112)) 11 T ELT)) (-3749 (($) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3979 (($ $) 14 T ELT)) (-2411 (((-886) $) 18 T ELT)) (-3383 (((-112) $) 8 T ELT)) (-1625 (((-112) $ (-112)) 10 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-174) (-13 (-1131) (-10 -8 (-15 -3749 ($)) (-15 -3383 ((-112) $)) (-15 -3414 ((-112) $)) (-15 -1625 ((-112) $ (-112))) (-15 -1712 ((-112) $ (-112))) (-15 -3979 ($ $))))) (T -174)) +((-3749 (*1 *1) (-5 *1 (-174))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-174)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-174)))) (-1625 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-174)))) (-1712 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-174)))) (-3979 (*1 *1 *1) (-5 *1 (-174)))) +(-13 (-1131) (-10 -8 (-15 -3749 ($)) (-15 -3383 ((-112) $)) (-15 -3414 ((-112) $)) (-15 -1625 ((-112) $ (-112))) (-15 -1712 ((-112) $ (-112))) (-15 -3979 ($ $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-175) (-142)) (T -175)) +NIL +(-13 (-1080) (-111 $ $) (-10 -7 (-6 (-4502 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3250 (($ $) 6 T ELT))) +(((-176) (-142)) (T -176)) +((-3250 (*1 *1 *1) (-4 *1 (-176)))) +(-13 (-10 -8 (-15 -3250 ($ $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 ((|#1| $) 81 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) NIL T ELT)) (-2650 (($ $) 21 T ELT)) (-3248 (($ |#1| (-1188 |#1|)) 50 T ELT)) (-3493 (((-3 $ "failed") $) 123 T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3872 (((-1188 |#1|) $) 88 T ELT)) (-3857 (((-1188 |#1|) $) 85 T ELT)) (-4393 (((-1188 |#1|) $) 86 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3961 (((-1188 |#1|) $) 94 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2389 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT)) (-2704 (($ $ (-578)) 97 T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3348 (((-1188 |#1|) $) 95 T ELT)) (-1996 (((-1188 (-421 |#1|)) $) 14 T ELT)) (-1562 (($ (-421 |#1|)) 17 T ELT) (($ |#1| (-1188 |#1|) (-1188 |#1|)) 40 T ELT)) (-2117 (($ $) 99 T ELT)) (-2411 (((-886) $) 139 T ELT) (($ (-578)) 53 T ELT) (($ |#1|) 54 T ELT) (($ (-421 |#1|)) 38 T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT)) (-3753 (((-793)) 69 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2602 (((-1188 (-421 |#1|)) $) 20 T ELT)) (-2368 (($) 27 T CONST)) (-2379 (($) 30 T CONST)) (-2384 (((-112) $ $) 37 T ELT)) (-2495 (($ $ $) 121 T ELT)) (-2484 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-2472 (($ $ $) 107 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-421 |#1|) $) 117 T ELT) (($ $ (-421 |#1|)) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT))) +(((-177 |#1|) (-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -1562 ($ (-421 |#1|))) (-15 -1562 ($ |#1| (-1188 |#1|) (-1188 |#1|))) (-15 -3248 ($ |#1| (-1188 |#1|))) (-15 -3857 ((-1188 |#1|) $)) (-15 -4393 ((-1188 |#1|) $)) (-15 -3872 ((-1188 |#1|) $)) (-15 -2873 (|#1| $)) (-15 -2650 ($ $)) (-15 -2602 ((-1188 (-421 |#1|)) $)) (-15 -1996 ((-1188 (-421 |#1|)) $)) (-15 -3961 ((-1188 |#1|) $)) (-15 -3348 ((-1188 |#1|) $)) (-15 -2704 ($ $ (-578))) (-15 -2117 ($ $)))) (-319)) (T -177)) +((-1562 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-1562 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1188 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-3248 (*1 *1 *2 *3) (-12 (-5 *3 (-1188 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-2873 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-2650 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-1188 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-1188 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-2117 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) +(-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -1562 ($ (-421 |#1|))) (-15 -1562 ($ |#1| (-1188 |#1|) (-1188 |#1|))) (-15 -3248 ($ |#1| (-1188 |#1|))) (-15 -3857 ((-1188 |#1|) $)) (-15 -4393 ((-1188 |#1|) $)) (-15 -3872 ((-1188 |#1|) $)) (-15 -2873 (|#1| $)) (-15 -2650 ($ $)) (-15 -2602 ((-1188 (-421 |#1|)) $)) (-15 -1996 ((-1188 (-421 |#1|)) $)) (-15 -3961 ((-1188 |#1|) $)) (-15 -3348 ((-1188 |#1|) $)) (-15 -2704 ($ $ (-578))) (-15 -2117 ($ $)))) +((-3787 (($ (-109) $) 15 T ELT)) (-2003 (((-713 (-109)) (-520) $) 14 T ELT)) (-2411 (((-886) $) 18 T ELT)) (-1961 (((-666 (-109)) $) 8 T ELT))) +(((-178) (-13 (-632 (-886)) (-10 -8 (-15 -1961 ((-666 (-109)) $)) (-15 -3787 ($ (-109) $)) (-15 -2003 ((-713 (-109)) (-520) $))))) (T -178)) +((-1961 (*1 *2 *1) (-12 (-5 *2 (-666 (-109))) (-5 *1 (-178)))) (-3787 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-2003 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178))))) +(-13 (-632 (-886)) (-10 -8 (-15 -1961 ((-666 (-109)) $)) (-15 -3787 ($ (-109) $)) (-15 -2003 ((-713 (-109)) (-520) $)))) +((-4377 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 38 T ELT)) (-4339 (((-972 |#1|) (-972 |#1|)) 22 T ELT)) (-4003 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 34 T ELT)) (-2986 (((-972 |#1|) (-972 |#1|)) 20 T ELT)) (-4316 (((-972 |#1|) (-972 |#1|)) 28 T ELT)) (-2751 (((-972 |#1|) (-972 |#1|)) 27 T ELT)) (-2076 (((-972 |#1|) (-972 |#1|)) 26 T ELT)) (-3290 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 35 T ELT)) (-3526 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 33 T ELT)) (-2153 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 32 T ELT)) (-4099 (((-972 |#1|) (-972 |#1|)) 21 T ELT)) (-2315 (((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|) 41 T ELT)) (-4243 (((-972 |#1|) (-972 |#1|)) 8 T ELT)) (-4052 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 37 T ELT)) (-2516 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 36 T ELT))) +(((-179 |#1|) (-10 -7 (-15 -4243 ((-972 |#1|) (-972 |#1|))) (-15 -2986 ((-972 |#1|) (-972 |#1|))) (-15 -4099 ((-972 |#1|) (-972 |#1|))) (-15 -4339 ((-972 |#1|) (-972 |#1|))) (-15 -2076 ((-972 |#1|) (-972 |#1|))) (-15 -2751 ((-972 |#1|) (-972 |#1|))) (-15 -4316 ((-972 |#1|) (-972 |#1|))) (-15 -2153 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3526 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4003 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3290 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2516 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4052 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4377 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2315 ((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|))) (-13 (-376) (-1233) (-1033))) (T -179)) +((-2315 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-4377 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-4052 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2516 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-3290 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-4003 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-3526 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2153 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-4316 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-4099 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2986 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-4243 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -4243 ((-972 |#1|) (-972 |#1|))) (-15 -2986 ((-972 |#1|) (-972 |#1|))) (-15 -4099 ((-972 |#1|) (-972 |#1|))) (-15 -4339 ((-972 |#1|) (-972 |#1|))) (-15 -2076 ((-972 |#1|) (-972 |#1|))) (-15 -2751 ((-972 |#1|) (-972 |#1|))) (-15 -4316 ((-972 |#1|) (-972 |#1|))) (-15 -2153 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3526 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4003 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3290 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2516 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4052 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4377 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2315 ((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|))) +((-1566 ((|#2| |#3|) 28 T ELT))) +(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -1566 (|#2| |#3|))) (-175) (-1274 |#1|) (-746 |#1| |#2|)) (T -180)) +((-1566 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1274 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-746 *4 *2))))) +(-10 -7 (-15 -1566 (|#2| |#3|))) +((-3386 (((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)) 44 (|has| (-981 |#2|) (-911 |#1|)) ELT))) +(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-981 |#2|) (-911 |#1|)) (-15 -3386 ((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|))) |%noBranch|)) (-1131) (-13 (-911 |#1|) (-175)) (-168 |#2|)) (T -181)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-4 *3 (-168 *6)) (-4 (-981 *6) (-911 *5)) (-4 *6 (-13 (-911 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))) +(-10 -7 (IF (|has| (-981 |#2|) (-911 |#1|)) (-15 -3386 ((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|))) |%noBranch|)) +((-4433 (((-666 |#1|) (-666 |#1|) |#1|) 41 T ELT)) (-2144 (((-666 |#1|) |#1| (-666 |#1|)) 20 T ELT)) (-3081 (((-666 |#1|) (-666 (-666 |#1|)) (-666 |#1|)) 36 T ELT) ((|#1| (-666 |#1|) (-666 |#1|)) 32 T ELT))) +(((-182 |#1|) (-10 -7 (-15 -2144 ((-666 |#1|) |#1| (-666 |#1|))) (-15 -3081 (|#1| (-666 |#1|) (-666 |#1|))) (-15 -3081 ((-666 |#1|) (-666 (-666 |#1|)) (-666 |#1|))) (-15 -4433 ((-666 |#1|) (-666 |#1|) |#1|))) (-319)) (T -182)) +((-4433 (*1 *2 *2 *3) (-12 (-5 *2 (-666 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-3081 (*1 *2 *3 *2) (-12 (-5 *3 (-666 (-666 *4))) (-5 *2 (-666 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-3081 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-2144 (*1 *2 *3 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) +(-10 -7 (-15 -2144 ((-666 |#1|) |#1| (-666 |#1|))) (-15 -3081 (|#1| (-666 |#1|) (-666 |#1|))) (-15 -3081 ((-666 |#1|) (-666 (-666 |#1|)) (-666 |#1|))) (-15 -4433 ((-666 |#1|) (-666 |#1|) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1893 (((-1247) $) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2077 (((-1166) $) 10 T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-183) (-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -1893 ((-1247) $))))) (T -183)) +((-2077 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-183)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-183))))) +(-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -1893 ((-1247) $)))) +((-1856 (((-2 (|:| |start| |#2|) (|:| -2636 (-432 |#2|))) |#2|) 66 T ELT)) (-3300 ((|#1| |#1|) 58 T ELT)) (-1575 (((-172 |#1|) |#2|) 93 T ELT)) (-1584 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-3675 ((|#2| |#2|) 91 T ELT)) (-2831 (((-432 |#2|) |#2| |#1|) 118 T ELT) (((-432 |#2|) |#2| |#1| (-112)) 88 T ELT)) (-1550 ((|#1| |#2|) 117 T ELT)) (-2037 ((|#2| |#2|) 130 T ELT)) (-2800 (((-432 |#2|) |#2|) 153 T ELT) (((-432 |#2|) |#2| |#1|) 33 T ELT) (((-432 |#2|) |#2| |#1| (-112)) 152 T ELT)) (-3229 (((-666 (-2 (|:| -2636 (-666 |#2|)) (|:| -3397 |#1|))) |#2| |#2|) 151 T ELT) (((-666 (-2 (|:| -2636 (-666 |#2|)) (|:| -3397 |#1|))) |#2| |#2| (-112)) 81 T ELT)) (-1604 (((-666 (-172 |#1|)) |#2| |#1|) 42 T ELT) (((-666 (-172 |#1|)) |#2|) 43 T ELT))) +(((-184 |#1| |#2|) (-10 -7 (-15 -1604 ((-666 (-172 |#1|)) |#2|)) (-15 -1604 ((-666 (-172 |#1|)) |#2| |#1|)) (-15 -3229 ((-666 (-2 (|:| -2636 (-666 |#2|)) (|:| -3397 |#1|))) |#2| |#2| (-112))) (-15 -3229 ((-666 (-2 (|:| -2636 (-666 |#2|)) (|:| -3397 |#1|))) |#2| |#2|)) (-15 -2800 ((-432 |#2|) |#2| |#1| (-112))) (-15 -2800 ((-432 |#2|) |#2| |#1|)) (-15 -2800 ((-432 |#2|) |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -1550 (|#1| |#2|)) (-15 -2831 ((-432 |#2|) |#2| |#1| (-112))) (-15 -2831 ((-432 |#2|) |#2| |#1|)) (-15 -3675 (|#2| |#2|)) (-15 -1584 (|#1| |#2| |#1|)) (-15 -1584 (|#1| |#2|)) (-15 -1575 ((-172 |#1|) |#2|)) (-15 -3300 (|#1| |#1|)) (-15 -1856 ((-2 (|:| |start| |#2|) (|:| -2636 (-432 |#2|))) |#2|))) (-13 (-376) (-870)) (-1274 (-172 |#1|))) (T -184)) +((-1856 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-2 (|:| |start| *3) (|:| -2636 (-432 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-3300 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1274 (-172 *2))))) (-1575 (*1 *2 *3) (-12 (-5 *2 (-172 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-870))) (-4 *3 (-1274 *2)))) (-1584 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1274 (-172 *2))))) (-1584 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1274 (-172 *2))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1274 (-172 *3))))) (-2831 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-2831 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-1550 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1274 (-172 *2))))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1274 (-172 *3))))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-2800 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-2800 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-3229 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-666 (-2 (|:| -2636 (-666 *3)) (|:| -3397 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-3229 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-376) (-870))) (-5 *2 (-666 (-2 (|:| -2636 (-666 *3)) (|:| -3397 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1274 (-172 *5))))) (-1604 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-666 (-172 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) (-1604 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-666 (-172 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4)))))) +(-10 -7 (-15 -1604 ((-666 (-172 |#1|)) |#2|)) (-15 -1604 ((-666 (-172 |#1|)) |#2| |#1|)) (-15 -3229 ((-666 (-2 (|:| -2636 (-666 |#2|)) (|:| -3397 |#1|))) |#2| |#2| (-112))) (-15 -3229 ((-666 (-2 (|:| -2636 (-666 |#2|)) (|:| -3397 |#1|))) |#2| |#2|)) (-15 -2800 ((-432 |#2|) |#2| |#1| (-112))) (-15 -2800 ((-432 |#2|) |#2| |#1|)) (-15 -2800 ((-432 |#2|) |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -1550 (|#1| |#2|)) (-15 -2831 ((-432 |#2|) |#2| |#1| (-112))) (-15 -2831 ((-432 |#2|) |#2| |#1|)) (-15 -3675 (|#2| |#2|)) (-15 -1584 (|#1| |#2| |#1|)) (-15 -1584 (|#1| |#2|)) (-15 -1575 ((-172 |#1|) |#2|)) (-15 -3300 (|#1| |#1|)) (-15 -1856 ((-2 (|:| |start| |#2|) (|:| -2636 (-432 |#2|))) |#2|))) +((-2373 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-2945 (((-793) |#2|) 18 T ELT)) (-3801 ((|#2| |#2| |#2|) 20 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -2373 ((-3 |#2| "failed") |#2|)) (-15 -2945 ((-793) |#2|)) (-15 -3801 (|#2| |#2| |#2|))) (-1248) (-696 |#1|)) (T -185)) +((-3801 (*1 *2 *2 *2) (-12 (-4 *3 (-1248)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))) (-2945 (*1 *2 *3) (-12 (-4 *4 (-1248)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3)) (-4 *3 (-696 *4)))) (-2373 (*1 *2 *2) (|partial| -12 (-4 *3 (-1248)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3))))) +(-10 -7 (-15 -2373 ((-3 |#2| "failed") |#2|)) (-15 -2945 ((-793) |#2|)) (-15 -3801 (|#2| |#2| |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1533 ((|#1| $) 7 T ELT)) (-2411 (((-886) $) 14 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4086 (((-666 (-1212)) $) 10 T ELT)) (-2384 (((-112) $ $) 12 T ELT))) +(((-186 |#1|) (-13 (-1131) (-10 -8 (-15 -1533 (|#1| $)) (-15 -4086 ((-666 (-1212)) $)))) (-188)) (T -186)) +((-1533 (*1 *2 *1) (-12 (-5 *1 (-186 *2)) (-4 *2 (-188)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-186 *3)) (-4 *3 (-188))))) +(-13 (-1131) (-10 -8 (-15 -1533 (|#1| $)) (-15 -4086 ((-666 (-1212)) $)))) +((-2302 (((-666 (-889)) $) 16 T ELT)) (-4410 (((-189) $) 8 T ELT)) (-2546 (((-666 (-112)) $) 13 T ELT)) (-1639 (((-55) $) 10 T ELT))) +(((-187 |#1|) (-10 -8 (-15 -2302 ((-666 (-889)) |#1|)) (-15 -2546 ((-666 (-112)) |#1|)) (-15 -4410 ((-189) |#1|)) (-15 -1639 ((-55) |#1|))) (-188)) (T -187)) +NIL +(-10 -8 (-15 -2302 ((-666 (-889)) |#1|)) (-15 -2546 ((-666 (-112)) |#1|)) (-15 -4410 ((-189) |#1|)) (-15 -1639 ((-55) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2302 (((-666 (-889)) $) 19 T ELT)) (-4107 (((-520) $) 16 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4410 (((-189) $) 21 T ELT)) (-1413 (((-112) $ (-520)) 14 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2546 (((-666 (-112)) $) 20 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1639 (((-55) $) 15 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-188) (-142)) (T -188)) +((-4410 (*1 *2 *1) (-12 (-4 *1 (-188)) (-5 *2 (-189)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-188)) (-5 *2 (-666 (-112))))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-188)) (-5 *2 (-666 (-889)))))) +(-13 (-857 (-520)) (-10 -8 (-15 -4410 ((-189) $)) (-15 -2546 ((-666 (-112)) $)) (-15 -2302 ((-666 (-889)) $)))) +(((-102) . T) ((-632 (-886)) . T) ((-857 (-520)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-2411 (((-886) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 10 T ELT))) +(((-189) (-13 (-1131) (-10 -8 (-15 -9 ($) -1529) (-15 -8 ($) -1529) (-15 -7 ($) -1529)))) (T -189)) +((-9 (*1 *1) (-5 *1 (-189))) (-8 (*1 *1) (-5 *1 (-189))) (-7 (*1 *1) (-5 *1 (-189)))) +(-13 (-1131) (-10 -8 (-15 -9 ($) -1529) (-15 -8 ($) -1529) (-15 -7 ($) -1529))) +((-3213 (((-112) $ $) NIL T ELT)) (-2302 (((-666 (-889)) $) NIL T ELT)) (-4107 (((-520) $) 8 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4410 (((-189) $) 10 T ELT)) (-1413 (((-112) $ (-520)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3197 (((-713 $) (-520)) 17 T ELT)) (-2546 (((-666 (-112)) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1639 (((-55) $) 12 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-190) (-13 (-188) (-10 -8 (-15 -3197 ((-713 $) (-520)))))) (T -190)) +((-3197 (*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-190))) (-5 *1 (-190))))) +(-13 (-188) (-10 -8 (-15 -3197 ((-713 $) (-520))))) +((-3936 ((|#2| |#2|) 28 T ELT)) (-2147 (((-112) |#2|) 19 T ELT)) (-2823 (((-328 |#1|) |#2|) 12 T ELT)) (-2834 (((-328 |#1|) |#2|) 14 T ELT)) (-3706 ((|#2| |#2| (-1207)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-2130 (((-172 (-328 |#1|)) |#2|) 10 T ELT)) (-1878 ((|#2| |#2| (-1207)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-191 |#1| |#2|) (-10 -7 (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| (-1207))) (-15 -1878 (|#2| |#2|)) (-15 -1878 (|#2| |#2| (-1207))) (-15 -2823 ((-328 |#1|) |#2|)) (-15 -2834 ((-328 |#1|) |#2|)) (-15 -2147 ((-112) |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -2130 ((-172 (-328 |#1|)) |#2|))) (-13 (-570) (-1069 (-578))) (-13 (-27) (-1233) (-444 (-172 |#1|)))) (T -191)) +((-2130 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-172 (-328 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 (-172 *3)))))) (-2147 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-112)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) (-2834 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-328 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-328 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) (-1878 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 (-172 *4)))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 (-172 *3)))))) (-3706 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 (-172 *4)))))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 (-172 *3))))))) +(-10 -7 (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| (-1207))) (-15 -1878 (|#2| |#2|)) (-15 -1878 (|#2| |#2| (-1207))) (-15 -2823 ((-328 |#1|) |#2|)) (-15 -2834 ((-328 |#1|) |#2|)) (-15 -2147 ((-112) |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -2130 ((-172 (-328 |#1|)) |#2|))) +((-2960 (((-1298 (-711 (-981 |#1|))) (-1298 (-711 |#1|))) 26 T ELT)) (-2411 (((-1298 (-711 (-421 (-981 |#1|)))) (-1298 (-711 |#1|))) 37 T ELT))) +(((-192 |#1|) (-10 -7 (-15 -2960 ((-1298 (-711 (-981 |#1|))) (-1298 (-711 |#1|)))) (-15 -2411 ((-1298 (-711 (-421 (-981 |#1|)))) (-1298 (-711 |#1|))))) (-175)) (T -192)) +((-2411 (*1 *2 *3) (-12 (-5 *3 (-1298 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1298 (-711 (-421 (-981 *4))))) (-5 *1 (-192 *4)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-1298 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1298 (-711 (-981 *4)))) (-5 *1 (-192 *4))))) +(-10 -7 (-15 -2960 ((-1298 (-711 (-981 |#1|))) (-1298 (-711 |#1|)))) (-15 -2411 ((-1298 (-711 (-421 (-981 |#1|)))) (-1298 (-711 |#1|))))) +((-2580 (((-1209 (-421 (-578))) (-1209 (-421 (-578))) (-1209 (-421 (-578)))) 93 T ELT)) (-2141 (((-1209 (-421 (-578))) (-666 (-578)) (-666 (-578))) 107 T ELT)) (-3582 (((-1209 (-421 (-578))) (-950)) 54 T ELT)) (-4123 (((-1209 (-421 (-578))) (-950)) 79 T ELT)) (-3364 (((-421 (-578)) (-1209 (-421 (-578)))) 89 T ELT)) (-4331 (((-1209 (-421 (-578))) (-950)) 37 T ELT)) (-2238 (((-1209 (-421 (-578))) (-950)) 66 T ELT)) (-1751 (((-1209 (-421 (-578))) (-950)) 61 T ELT)) (-2967 (((-1209 (-421 (-578))) (-1209 (-421 (-578))) (-1209 (-421 (-578)))) 87 T ELT)) (-2117 (((-1209 (-421 (-578))) (-950)) 29 T ELT)) (-4183 (((-421 (-578)) (-1209 (-421 (-578))) (-1209 (-421 (-578)))) 91 T ELT)) (-3157 (((-1209 (-421 (-578))) (-950)) 35 T ELT)) (-1629 (((-1209 (-421 (-578))) (-666 (-950))) 100 T ELT))) +(((-193) (-10 -7 (-15 -2117 ((-1209 (-421 (-578))) (-950))) (-15 -3582 ((-1209 (-421 (-578))) (-950))) (-15 -4331 ((-1209 (-421 (-578))) (-950))) (-15 -3157 ((-1209 (-421 (-578))) (-950))) (-15 -1751 ((-1209 (-421 (-578))) (-950))) (-15 -2238 ((-1209 (-421 (-578))) (-950))) (-15 -4123 ((-1209 (-421 (-578))) (-950))) (-15 -4183 ((-421 (-578)) (-1209 (-421 (-578))) (-1209 (-421 (-578))))) (-15 -2967 ((-1209 (-421 (-578))) (-1209 (-421 (-578))) (-1209 (-421 (-578))))) (-15 -3364 ((-421 (-578)) (-1209 (-421 (-578))))) (-15 -2580 ((-1209 (-421 (-578))) (-1209 (-421 (-578))) (-1209 (-421 (-578))))) (-15 -1629 ((-1209 (-421 (-578))) (-666 (-950)))) (-15 -2141 ((-1209 (-421 (-578))) (-666 (-578)) (-666 (-578)))))) (T -193)) +((-2141 (*1 *2 *3 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-666 (-950))) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-2580 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-1209 (-421 (-578)))) (-5 *2 (-421 (-578))) (-5 *1 (-193)))) (-2967 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-4183 (*1 *2 *3 *3) (-12 (-5 *3 (-1209 (-421 (-578)))) (-5 *2 (-421 (-578))) (-5 *1 (-193)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) +(-10 -7 (-15 -2117 ((-1209 (-421 (-578))) (-950))) (-15 -3582 ((-1209 (-421 (-578))) (-950))) (-15 -4331 ((-1209 (-421 (-578))) (-950))) (-15 -3157 ((-1209 (-421 (-578))) (-950))) (-15 -1751 ((-1209 (-421 (-578))) (-950))) (-15 -2238 ((-1209 (-421 (-578))) (-950))) (-15 -4123 ((-1209 (-421 (-578))) (-950))) (-15 -4183 ((-421 (-578)) (-1209 (-421 (-578))) (-1209 (-421 (-578))))) (-15 -2967 ((-1209 (-421 (-578))) (-1209 (-421 (-578))) (-1209 (-421 (-578))))) (-15 -3364 ((-421 (-578)) (-1209 (-421 (-578))))) (-15 -2580 ((-1209 (-421 (-578))) (-1209 (-421 (-578))) (-1209 (-421 (-578))))) (-15 -1629 ((-1209 (-421 (-578))) (-666 (-950)))) (-15 -2141 ((-1209 (-421 (-578))) (-666 (-578)) (-666 (-578))))) +((-3112 (((-432 (-1203 (-578))) (-578)) 38 T ELT)) (-3486 (((-666 (-1203 (-578))) (-578)) 33 T ELT)) (-3735 (((-1203 (-578)) (-578)) 28 T ELT))) +(((-194) (-10 -7 (-15 -3486 ((-666 (-1203 (-578))) (-578))) (-15 -3735 ((-1203 (-578)) (-578))) (-15 -3112 ((-432 (-1203 (-578))) (-578))))) (T -194)) +((-3112 (*1 *2 *3) (-12 (-5 *2 (-432 (-1203 (-578)))) (-5 *1 (-194)) (-5 *3 (-578)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-194)) (-5 *3 (-578)))) (-3486 (*1 *2 *3) (-12 (-5 *2 (-666 (-1203 (-578)))) (-5 *1 (-194)) (-5 *3 (-578))))) +(-10 -7 (-15 -3486 ((-666 (-1203 (-578))) (-578))) (-15 -3735 ((-1203 (-578)) (-578))) (-15 -3112 ((-432 (-1203 (-578))) (-578)))) +((-1609 (((-1188 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 132 T ELT)) (-1757 (((-666 (-1189)) (-1188 (-229))) NIL T ELT)) (-3533 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 109 T ELT)) (-2227 (((-666 (-229)) (-328 (-229)) (-1207) (-1125 (-865 (-229)))) NIL T ELT)) (-2210 (((-666 (-1189)) (-666 (-229))) NIL T ELT)) (-4100 (((-229) (-1125 (-865 (-229)))) 31 T ELT)) (-1610 (((-229) (-1125 (-865 (-229)))) 32 T ELT)) (-2007 (((-392) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 126 T ELT)) (-2900 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-4072 (((-1189) (-229)) NIL T ELT)) (-2819 (((-1189) (-666 (-1189))) 27 T ELT)) (-1487 (((-1066) (-1207) (-1207) (-1066)) 13 T ELT))) +(((-195) (-10 -7 (-15 -3533 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2900 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4100 ((-229) (-1125 (-865 (-229))))) (-15 -1610 ((-229) (-1125 (-865 (-229))))) (-15 -2007 ((-392) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2227 ((-666 (-229)) (-328 (-229)) (-1207) (-1125 (-865 (-229))))) (-15 -1609 ((-1188 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4072 ((-1189) (-229))) (-15 -2210 ((-666 (-1189)) (-666 (-229)))) (-15 -1757 ((-666 (-1189)) (-1188 (-229)))) (-15 -2819 ((-1189) (-666 (-1189)))) (-15 -1487 ((-1066) (-1207) (-1207) (-1066))))) (T -195)) +((-1487 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-195)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1188 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-195)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-666 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-195)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195)))) (-1609 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1188 (-229))) (-5 *1 (-195)))) (-2227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 (-229))) (-5 *4 (-1207)) (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-666 (-229))) (-5 *1 (-195)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-392)) (-5 *1 (-195)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) +(-10 -7 (-15 -3533 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2900 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4100 ((-229) (-1125 (-865 (-229))))) (-15 -1610 ((-229) (-1125 (-865 (-229))))) (-15 -2007 ((-392) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2227 ((-666 (-229)) (-328 (-229)) (-1207) (-1125 (-865 (-229))))) (-15 -1609 ((-1188 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4072 ((-1189) (-229))) (-15 -2210 ((-666 (-1189)) (-666 (-229)))) (-15 -1757 ((-666 (-1189)) (-1188 (-229)))) (-15 -2819 ((-1189) (-666 (-1189)))) (-15 -1487 ((-1066) (-1207) (-1207) (-1066)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 61 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-196) (-809)) (T -196)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 66 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-197) (-809)) (T -197)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 81 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-198) (-809)) (T -198)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 63 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-199) (-809)) (T -199)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 76 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-200) (-809)) (T -200)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 93 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-201) (-809)) (T -201)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 90 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-202) (-809)) (T -202)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 78 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-203) (-809)) (T -203)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 76 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-204) (-809)) (T -204)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 77 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-205) (-809)) (T -205)) +NIL +(-809) +((-3213 (((-112) $ $) NIL T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 105 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-206) (-809)) (T -206)) +NIL +(-809) +((-3818 (((-3 (-2 (|:| -4424 (-116)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 109 T ELT)) (-2561 (((-578) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1444 (((-3 (-666 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 90 T ELT))) +(((-207) (-10 -7 (-15 -3818 ((-3 (-2 (|:| -4424 (-116)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1444 ((-3 (-666 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2561 ((-578) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207)) +((-2561 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-578)) (-5 *1 (-207)))) (-1444 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-666 (-229))) (-5 *1 (-207)))) (-3818 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -4424 (-116)) (|:| |w| (-229)))) (-5 *1 (-207))))) +(-10 -7 (-15 -3818 ((-3 (-2 (|:| -4424 (-116)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1444 ((-3 (-666 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2561 ((-578) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-4479 (((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT)) (-3899 (((-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-2897 (((-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392))) (-711 (-328 (-229)))) 112 T ELT)) (-2814 (((-392) (-711 (-328 (-229)))) 140 T ELT)) (-4116 (((-711 (-328 (-229))) (-1298 (-328 (-229))) (-666 (-1207))) 136 T ELT)) (-2974 (((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 37 T ELT)) (-3601 (((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 53 T ELT)) (-3364 (((-711 (-328 (-229))) (-711 (-328 (-229))) (-666 (-1207)) (-1298 (-328 (-229)))) 125 T ELT)) (-1888 (((-392) (-392) (-666 (-392))) 133 T ELT) (((-392) (-392) (-392)) 128 T ELT)) (-3895 (((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT))) +(((-208) (-10 -7 (-15 -1888 ((-392) (-392) (-392))) (-15 -1888 ((-392) (-392) (-666 (-392)))) (-15 -2814 ((-392) (-711 (-328 (-229))))) (-15 -4116 ((-711 (-328 (-229))) (-1298 (-328 (-229))) (-666 (-1207)))) (-15 -3364 ((-711 (-328 (-229))) (-711 (-328 (-229))) (-666 (-1207)) (-1298 (-328 (-229))))) (-15 -2897 ((-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392))) (-711 (-328 (-229))))) (-15 -3899 ((-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4479 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3601 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3895 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2974 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208)) +((-2974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-392)) (-5 *1 (-208)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-392)) (-5 *1 (-208)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-392)) (-5 *1 (-208)))) (-4479 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-392)) (-5 *1 (-208)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392)))) (-5 *1 (-208)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-711 (-328 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392)))) (-5 *1 (-208)))) (-3364 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-711 (-328 (-229)))) (-5 *3 (-666 (-1207))) (-5 *4 (-1298 (-328 (-229)))) (-5 *1 (-208)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *4 (-666 (-1207))) (-5 *2 (-711 (-328 (-229)))) (-5 *1 (-208)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-711 (-328 (-229)))) (-5 *2 (-392)) (-5 *1 (-208)))) (-1888 (*1 *2 *2 *3) (-12 (-5 *3 (-666 (-392))) (-5 *2 (-392)) (-5 *1 (-208)))) (-1888 (*1 *2 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-208))))) +(-10 -7 (-15 -1888 ((-392) (-392) (-392))) (-15 -1888 ((-392) (-392) (-666 (-392)))) (-15 -2814 ((-392) (-711 (-328 (-229))))) (-15 -4116 ((-711 (-328 (-229))) (-1298 (-328 (-229))) (-666 (-1207)))) (-15 -3364 ((-711 (-328 (-229))) (-711 (-328 (-229))) (-666 (-1207)) (-1298 (-328 (-229))))) (-15 -2897 ((-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392))) (-711 (-328 (-229))))) (-15 -3899 ((-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4479 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3601 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3895 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2974 ((-392) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4014 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 75 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-209) (-822)) (T -209)) +NIL +(-822) +((-3213 (((-112) $ $) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4014 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-210) (-822)) (T -210)) +NIL +(-822) +((-3213 (((-112) $ $) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4014 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-211) (-822)) (T -211)) +NIL +(-822) +((-3213 (((-112) $ $) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4014 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 88 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-212) (-822)) (T -212)) +NIL +(-822) +((-4418 (((-666 (-1207)) (-1207) (-793)) 26 T ELT)) (-2526 (((-328 (-229)) (-328 (-229))) 35 T ELT)) (-3837 (((-112) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 87 T ELT)) (-3404 (((-112) (-229) (-229) (-666 (-328 (-229)))) 47 T ELT))) +(((-213) (-10 -7 (-15 -4418 ((-666 (-1207)) (-1207) (-793))) (-15 -2526 ((-328 (-229)) (-328 (-229)))) (-15 -3404 ((-112) (-229) (-229) (-666 (-328 (-229))))) (-15 -3837 ((-112) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))) (T -213)) +((-3837 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-112)) (-5 *1 (-213)))) (-3404 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-666 (-328 (-229)))) (-5 *3 (-229)) (-5 *2 (-112)) (-5 *1 (-213)))) (-2526 (*1 *2 *2) (-12 (-5 *2 (-328 (-229))) (-5 *1 (-213)))) (-4418 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-666 (-1207))) (-5 *1 (-213)) (-5 *3 (-1207))))) +(-10 -7 (-15 -4418 ((-666 (-1207)) (-1207) (-793))) (-15 -2526 ((-328 (-229)) (-328 (-229)))) (-15 -3404 ((-112) (-229) (-229) (-666 (-328 (-229))))) (-15 -3837 ((-112) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 28 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1948 (((-1066) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 70 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-214) (-922)) (T -214)) +NIL +(-922) +((-3213 (((-112) $ $) NIL T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 24 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1948 (((-1066) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-215) (-922)) (T -215)) +NIL +(-922) +((-3213 (((-112) $ $) NIL T ELT)) (-3394 ((|#2| $ (-793) |#2|) 11 T ELT)) (-3382 ((|#2| $ (-793)) 10 T ELT)) (-3749 (($) 8 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 23 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 13 T ELT))) +(((-216 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -3749 ($)) (-15 -3382 (|#2| $ (-793))) (-15 -3394 (|#2| $ (-793) |#2|)))) (-950) (-1131)) (T -216)) +((-3749 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1131)))) (-3382 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-1131)) (-5 *1 (-216 *4 *2)) (-14 *4 (-950)))) (-3394 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-950)) (-4 *2 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3749 ($)) (-15 -3382 (|#2| $ (-793))) (-15 -3394 (|#2| $ (-793) |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2574 (((-1303) $) 37 T ELT) (((-1303) $ (-950) (-950)) 41 T ELT)) (-2436 (($ $ (-1020)) 19 T ELT) (((-252 (-1189)) $ (-1207)) 15 T ELT)) (-1647 (((-1303) $) 35 T ELT)) (-2411 (((-886) $) 32 T ELT) (($ (-666 |#1|)) 8 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $ $) 27 T ELT)) (-2472 (($ $ $) 22 T ELT))) +(((-217 |#1|) (-13 (-1131) (-635 (-666 |#1|)) (-10 -8 (-15 -2436 ($ $ (-1020))) (-15 -2436 ((-252 (-1189)) $ (-1207))) (-15 -2472 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $)) (-15 -2574 ((-1303) $ (-950) (-950))))) (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $))))) (T -217)) +((-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $))))))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ *3)) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $))))))) (-2472 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $))))))) (-2484 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $))))))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 (*2 $)) (-15 -2574 (*2 $))))))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 (*2 $)) (-15 -2574 (*2 $))))))) (-2574 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1303)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 (*2 $)) (-15 -2574 (*2 $)))))))) +(-13 (-1131) (-635 (-666 |#1|)) (-10 -8 (-15 -2436 ($ $ (-1020))) (-15 -2436 ((-252 (-1189)) $ (-1207))) (-15 -2472 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $)) (-15 -2574 ((-1303) $ (-950) (-950))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) 10 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3445 (($ (-657 |#1|)) 11 T ELT)) (-2411 (((-886) $) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-218 |#1|) (-13 (-866) (-10 -8 (-15 -3445 ($ (-657 |#1|))))) (-666 (-1207))) (T -218)) +((-3445 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-14 *3 (-666 (-1207))) (-5 *1 (-218 *3))))) +(-13 (-866) (-10 -8 (-15 -3445 ($ (-657 |#1|))))) +((-1569 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1569 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -219)) +((-1569 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1274 (-421 *2))) (-4 *2 (-1274 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) +(-10 -7 (-15 -1569 (|#2| |#4| (-1 |#2| |#2|)))) +((-2169 ((|#2| |#2| (-793) |#2|) 55 T ELT)) (-1918 ((|#2| |#2| (-793) |#2|) 51 T ELT)) (-3182 (((-666 |#2|) (-666 (-2 (|:| |deg| (-793)) (|:| -4385 |#2|)))) 79 T ELT)) (-2150 (((-666 (-2 (|:| |deg| (-793)) (|:| -4385 |#2|))) |#2|) 73 T ELT)) (-4077 (((-112) |#2|) 71 T ELT)) (-3218 (((-432 |#2|) |#2|) 91 T ELT)) (-2800 (((-432 |#2|) |#2|) 90 T ELT)) (-2203 ((|#2| |#2| (-793) |#2|) 49 T ELT)) (-1925 (((-2 (|:| |cont| |#1|) (|:| -2636 (-666 (-2 (|:| |irr| |#2|) (|:| -3935 (-578)))))) |#2| (-112)) 85 T ELT))) +(((-220 |#1| |#2|) (-10 -7 (-15 -2800 ((-432 |#2|) |#2|)) (-15 -3218 ((-432 |#2|) |#2|)) (-15 -1925 ((-2 (|:| |cont| |#1|) (|:| -2636 (-666 (-2 (|:| |irr| |#2|) (|:| -3935 (-578)))))) |#2| (-112))) (-15 -2150 ((-666 (-2 (|:| |deg| (-793)) (|:| -4385 |#2|))) |#2|)) (-15 -3182 ((-666 |#2|) (-666 (-2 (|:| |deg| (-793)) (|:| -4385 |#2|))))) (-15 -2203 (|#2| |#2| (-793) |#2|)) (-15 -1918 (|#2| |#2| (-793) |#2|)) (-15 -2169 (|#2| |#2| (-793) |#2|)) (-15 -4077 ((-112) |#2|))) (-362) (-1274 |#1|)) (T -220)) +((-4077 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-112)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1274 *4)))) (-2169 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-362)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1274 *4)))) (-1918 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-362)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1274 *4)))) (-2203 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-362)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1274 *4)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| |deg| (-793)) (|:| -4385 *5)))) (-4 *5 (-1274 *4)) (-4 *4 (-362)) (-5 *2 (-666 *5)) (-5 *1 (-220 *4 *5)))) (-2150 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-666 (-2 (|:| |deg| (-793)) (|:| -4385 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1274 *4)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-362)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1274 *5)))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-432 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1274 *4)))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-432 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -2800 ((-432 |#2|) |#2|)) (-15 -3218 ((-432 |#2|) |#2|)) (-15 -1925 ((-2 (|:| |cont| |#1|) (|:| -2636 (-666 (-2 (|:| |irr| |#2|) (|:| -3935 (-578)))))) |#2| (-112))) (-15 -2150 ((-666 (-2 (|:| |deg| (-793)) (|:| -4385 |#2|))) |#2|)) (-15 -3182 ((-666 |#2|) (-666 (-2 (|:| |deg| (-793)) (|:| -4385 |#2|))))) (-15 -2203 (|#2| |#2| (-793) |#2|)) (-15 -1918 (|#2| |#2| (-793) |#2|)) (-15 -2169 (|#2| |#2| (-793) |#2|)) (-15 -4077 ((-112) |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 (((-578) $) NIL (|has| (-578) (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| (-578) (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-578) (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| (-578) (-1069 (-578))) ELT)) (-3516 (((-578) $) NIL T ELT) (((-1207) $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| (-578) (-1069 (-578))) ELT) (((-578) $) NIL (|has| (-578) (-1069 (-578))) ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-578) (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-578) (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-578) (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 (((-578) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-578) (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3611 (($ (-1 (-578) (-578)) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-578) (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| (-578) (-319)) ELT) (((-421 (-578)) $) NIL T ELT)) (-3575 (((-578) $) NIL (|has| (-578) (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 (-578)) (-666 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-578) (-578)) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-306 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-306 (-578)))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-1207)) (-666 (-578))) NIL (|has| (-578) (-528 (-1207) (-578))) ELT) (($ $ (-1207) (-578)) NIL (|has| (-578) (-528 (-1207) (-578))) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ (-578)) NIL (|has| (-578) (-298 (-578) (-578))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) NIL (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 (((-578) $) NIL T ELT)) (-4244 (($ (-421 (-578))) 9 T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| (-578) (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| (-578) (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| (-578) (-633 (-550))) ELT) (((-392) $) NIL (|has| (-578) (-1053)) ELT) (((-229) $) NIL (|has| (-578) (-1053)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-578) (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 8 T ELT) (($ (-578)) NIL T ELT) (($ (-1207)) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL T ELT) (((-1035 10) $) 10 T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-578) (-938))) (|has| (-578) (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (((-578) $) NIL (|has| (-578) (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| (-578) (-842)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) NIL (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2495 (($ $ $) NIL T ELT) (($ (-578) (-578)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ (-578)) NIL T ELT))) +(((-221) (-13 (-1023 (-578)) (-632 (-421 (-578))) (-632 (-1035 10)) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -4244 ($ (-421 (-578))))))) (T -221)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-221)))) (-4244 (*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-221))))) +(-13 (-1023 (-578)) (-632 (-421 (-578))) (-632 (-1035 10)) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -4244 ($ (-421 (-578)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3385 (((-1149) $) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2045 (((-497) $) 10 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 23 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-1166) $) 15 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-222) (-13 (-1114) (-10 -8 (-15 -2045 ((-497) $)) (-15 -3385 ((-1149) $)) (-15 -4117 ((-1166) $))))) (T -222)) +((-2045 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-222)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-222))))) +(-13 (-1114) (-10 -8 (-15 -2045 ((-497) $)) (-15 -3385 ((-1149) $)) (-15 -4117 ((-1166) $)))) +((-4371 (((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-865 |#2|)) (-1189)) 29 T ELT) (((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-865 |#2|))) 25 T ELT)) (-3647 (((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-865 |#2|) (-865 |#2|) (-112)) 17 T ELT))) +(((-223 |#1| |#2|) (-10 -7 (-15 -4371 ((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-865 |#2|)))) (-15 -4371 ((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-865 |#2|)) (-1189))) (-15 -3647 ((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-865 |#2|) (-865 |#2|) (-112)))) (-13 (-319) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-988) (-29 |#1|))) (T -223)) +((-3647 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1207)) (-5 *6 (-112)) (-4 *7 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-4 *3 (-13 (-1233) (-988) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-865 *3)) (|:| |f2| (-666 (-865 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-865 *3)))) (-4371 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-865 *3))) (-5 *5 (-1189)) (-4 *3 (-13 (-1233) (-988) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (|:| |f1| (-865 *3)) (|:| |f2| (-666 (-865 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6 *3)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-865 *3))) (-4 *3 (-13 (-1233) (-988) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (|:| |f1| (-865 *3)) (|:| |f2| (-666 (-865 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5 *3))))) +(-10 -7 (-15 -4371 ((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-865 |#2|)))) (-15 -4371 ((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-865 |#2|)) (-1189))) (-15 -3647 ((-3 (|:| |f1| (-865 |#2|)) (|:| |f2| (-666 (-865 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-865 |#2|) (-865 |#2|) (-112)))) +((-4371 (((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-421 (-981 |#1|)))) (-1189)) 49 T ELT) (((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-421 (-981 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-328 |#1|))) (-1189)) 50 T ELT) (((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-328 |#1|)))) 22 T ELT))) +(((-224 |#1|) (-10 -7 (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-328 |#1|))))) (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-328 |#1|))) (-1189))) (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-421 (-981 |#1|)))))) (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-421 (-981 |#1|)))) (-1189)))) (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (T -224)) +((-4371 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-865 (-421 (-981 *6))))) (-5 *5 (-1189)) (-5 *3 (-421 (-981 *6))) (-4 *6 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (|:| |f1| (-865 (-328 *6))) (|:| |f2| (-666 (-865 (-328 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *6)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-865 (-421 (-981 *5))))) (-5 *3 (-421 (-981 *5))) (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (|:| |f1| (-865 (-328 *5))) (|:| |f2| (-666 (-865 (-328 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *5)))) (-4371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-421 (-981 *6))) (-5 *4 (-1123 (-865 (-328 *6)))) (-5 *5 (-1189)) (-4 *6 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (|:| |f1| (-865 (-328 *6))) (|:| |f2| (-666 (-865 (-328 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *6)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1123 (-865 (-328 *5)))) (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (|:| |f1| (-865 (-328 *5))) (|:| |f2| (-666 (-865 (-328 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *5))))) +(-10 -7 (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-328 |#1|))))) (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-328 |#1|))) (-1189))) (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-421 (-981 |#1|)))))) (-15 -4371 ((-3 (|:| |f1| (-865 (-328 |#1|))) (|:| |f2| (-666 (-865 (-328 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-981 |#1|)) (-1123 (-865 (-421 (-981 |#1|)))) (-1189)))) +((-2512 (((-2 (|:| -3714 (-1203 |#1|)) (|:| |deg| (-950))) (-1203 |#1|)) 26 T ELT)) (-4199 (((-666 (-328 |#2|)) (-328 |#2|) (-950)) 51 T ELT))) +(((-225 |#1| |#2|) (-10 -7 (-15 -2512 ((-2 (|:| -3714 (-1203 |#1|)) (|:| |deg| (-950))) (-1203 |#1|))) (-15 -4199 ((-666 (-328 |#2|)) (-328 |#2|) (-950)))) (-1080) (-570)) (T -225)) +((-4199 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *6 (-570)) (-5 *2 (-666 (-328 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-328 *6)) (-4 *5 (-1080)))) (-2512 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-2 (|:| -3714 (-1203 *4)) (|:| |deg| (-950)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1203 *4)) (-4 *5 (-570))))) +(-10 -7 (-15 -2512 ((-2 (|:| -3714 (-1203 |#1|)) (|:| |deg| (-950))) (-1203 |#1|))) (-15 -4199 ((-666 (-328 |#2|)) (-328 |#2|) (-950)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3540 ((|#1| $) NIL T ELT)) (-2853 ((|#1| $) 30 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3702 (($ $) NIL T ELT)) (-1464 (($ $) 39 T ELT)) (-2694 ((|#1| |#1| $) NIL T ELT)) (-3604 ((|#1| $) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3492 (((-793) $) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) NIL T ELT)) (-2563 ((|#1| |#1| $) 35 T ELT)) (-2403 ((|#1| |#1| $) 37 T ELT)) (-4328 (($ |#1| $) NIL T ELT)) (-1737 (((-793) $) 33 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-3479 ((|#1| $) NIL T ELT)) (-3332 ((|#1| $) 31 T ELT)) (-3307 ((|#1| $) 29 T ELT)) (-1994 ((|#1| $) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-3298 ((|#1| |#1| $) NIL T ELT)) (-4186 (((-112) $) 9 T ELT)) (-1696 (($) NIL T ELT)) (-1732 ((|#1| $) NIL T ELT)) (-4128 (($) NIL T ELT) (($ (-666 |#1|)) 16 T ELT)) (-3302 (((-793) $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2083 ((|#1| $) 13 T ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) NIL T ELT)) (-2985 ((|#1| $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -4128 ($ (-666 |#1|))))) (-1131)) (T -226)) +((-4128 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-226 *3))))) +(-13 (-263 |#1|) (-10 -8 (-15 -4128 ($ (-666 |#1|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4334 (($ (-328 |#1|)) 24 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1622 (((-112) $) NIL T ELT)) (-2818 (((-3 (-328 |#1|) "failed") $) NIL T ELT)) (-3516 (((-328 |#1|) $) NIL T ELT)) (-3136 (($ $) 32 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3611 (($ (-1 (-328 |#1|) (-328 |#1|)) $) NIL T ELT)) (-3110 (((-328 |#1|) $) NIL T ELT)) (-3061 (($ $) 31 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2340 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($ (-793)) NIL T ELT)) (-3524 (($ $) 33 T ELT)) (-3683 (((-578) $) NIL T ELT)) (-2411 (((-886) $) 65 T ELT) (($ (-578)) NIL T ELT) (($ (-328 |#1|)) NIL T ELT)) (-3708 (((-328 |#1|) $ $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 26 T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) 29 T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 20 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-328 |#1|) $) 19 T ELT))) +(((-227 |#1| |#2|) (-13 (-639 (-328 |#1|)) (-1069 (-328 |#1|)) (-10 -8 (-15 -3110 ((-328 |#1|) $)) (-15 -3061 ($ $)) (-15 -3136 ($ $)) (-15 -3708 ((-328 |#1|) $ $)) (-15 -2847 ($ (-793))) (-15 -2340 ((-112) $)) (-15 -1622 ((-112) $)) (-15 -3683 ((-578) $)) (-15 -3611 ($ (-1 (-328 |#1|) (-328 |#1|)) $)) (-15 -4334 ($ (-328 |#1|))) (-15 -3524 ($ $)))) (-13 (-1080) (-871)) (-666 (-1207))) (T -227)) +((-3110 (*1 *2 *1) (-12 (-5 *2 (-328 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-666 (-1207))))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-666 (-1207))))) (-3708 (*1 *2 *1 *1) (-12 (-5 *2 (-328 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-328 *3) (-328 *3))) (-4 *3 (-13 (-1080) (-871))) (-5 *1 (-227 *3 *4)) (-14 *4 (-666 (-1207))))) (-4334 (*1 *1 *2) (-12 (-5 *2 (-328 *3)) (-4 *3 (-13 (-1080) (-871))) (-5 *1 (-227 *3 *4)) (-14 *4 (-666 (-1207))))) (-3524 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-666 (-1207)))))) +(-13 (-639 (-328 |#1|)) (-1069 (-328 |#1|)) (-10 -8 (-15 -3110 ((-328 |#1|) $)) (-15 -3061 ($ $)) (-15 -3136 ($ $)) (-15 -3708 ((-328 |#1|) $ $)) (-15 -2847 ($ (-793))) (-15 -2340 ((-112) $)) (-15 -1622 ((-112) $)) (-15 -3683 ((-578) $)) (-15 -3611 ($ (-1 (-328 |#1|) (-328 |#1|)) $)) (-15 -4334 ($ (-328 |#1|))) (-15 -3524 ($ $)))) +((-1508 (((-112) (-1189)) 26 T ELT)) (-2123 (((-3 (-865 |#2|) "failed") (-631 |#2|) |#2| (-865 |#2|) (-865 |#2|) (-112)) 35 T ELT)) (-1906 (((-3 (-112) "failed") (-1203 |#2|) (-865 |#2|) (-865 |#2|) (-112)) 84 T ELT) (((-3 (-112) "failed") (-981 |#1|) (-1207) (-865 |#2|) (-865 |#2|) (-112)) 85 T ELT))) +(((-228 |#1| |#2|) (-10 -7 (-15 -1508 ((-112) (-1189))) (-15 -2123 ((-3 (-865 |#2|) "failed") (-631 |#2|) |#2| (-865 |#2|) (-865 |#2|) (-112))) (-15 -1906 ((-3 (-112) "failed") (-981 |#1|) (-1207) (-865 |#2|) (-865 |#2|) (-112))) (-15 -1906 ((-3 (-112) "failed") (-1203 |#2|) (-865 |#2|) (-865 |#2|) (-112)))) (-13 (-466) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-29 |#1|))) (T -228)) +((-1906 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1203 *6)) (-5 *4 (-865 *6)) (-4 *6 (-13 (-1233) (-29 *5))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-228 *5 *6)))) (-1906 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-981 *6)) (-5 *4 (-1207)) (-5 *5 (-865 *7)) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-2123 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-865 *4)) (-5 *3 (-631 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1233) (-29 *6))) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-228 *6 *4)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-112)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4)))))) +(-10 -7 (-15 -1508 ((-112) (-1189))) (-15 -2123 ((-3 (-865 |#2|) "failed") (-631 |#2|) |#2| (-865 |#2|) (-865 |#2|) (-112))) (-15 -1906 ((-3 (-112) "failed") (-981 |#1|) (-1207) (-865 |#2|) (-865 |#2|) (-112))) (-15 -1906 ((-3 (-112) "failed") (-1203 |#2|) (-865 |#2|) (-865 |#2|) (-112)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 98 T ELT)) (-2873 (((-578) $) 33 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-2140 (($ $) NIL T ELT)) (-1502 (($ $) 87 T ELT)) (-1372 (($ $) 75 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2811 (($ $) 66 T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1478 (($ $) 85 T ELT)) (-1349 (($ $) 73 T ELT)) (-1490 (((-578) $) 127 T ELT)) (-1528 (($ $) 90 T ELT)) (-1392 (($ $) 77 T ELT)) (-3534 (($) NIL T CONST)) (-2753 (($ $) NIL T ELT)) (-2818 (((-3 (-578) "failed") $) 126 T ELT) (((-3 (-421 (-578)) "failed") $) 123 T ELT)) (-3516 (((-578) $) 124 T ELT) (((-421 (-578)) $) 121 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 103 T ELT)) (-3572 (((-421 (-578)) $ (-793)) 117 T ELT) (((-421 (-578)) $ (-793) (-793)) 116 T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3133 (((-950)) 28 T ELT) (((-950) (-950)) NIL (|has| $ (-6 -4491)) ELT)) (-3789 (((-112) $) NIL T ELT)) (-2551 (($) 46 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL T ELT)) (-4059 (((-578) $) 40 T ELT)) (-4382 (((-112) $) 99 T ELT)) (-2812 (($ $ (-578)) NIL T ELT)) (-1550 (($ $) NIL T ELT)) (-1721 (((-112) $) 97 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) 63 T ELT) (($) 36 (-12 (-2309 (|has| $ (-6 -4483))) (-2309 (|has| $ (-6 -4491)))) ELT)) (-3667 (($ $ $) 62 T ELT) (($) 35 (-12 (-2309 (|has| $ (-6 -4483))) (-2309 (|has| $ (-6 -4491)))) ELT)) (-3033 (((-578) $) 26 T ELT)) (-2759 (($ $) 31 T ELT)) (-1841 (($ $) 67 T ELT)) (-3864 (($ $) 72 T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-1744 (((-950) (-578)) NIL (|has| $ (-6 -4491)) ELT)) (-4313 (((-1151) $) 101 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL T ELT)) (-3575 (($ $) NIL T ELT)) (-3243 (($ (-578) (-578)) NIL T ELT) (($ (-578) (-578) (-950)) 110 T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2764 (((-578) $) 27 T ELT)) (-3489 (($) 45 T ELT)) (-3587 (($ $) 71 T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3472 (((-950)) NIL T ELT) (((-950) (-950)) NIL (|has| $ (-6 -4491)) ELT)) (-2031 (($ $) 104 T ELT) (($ $ (-793)) NIL T ELT)) (-2066 (((-950) (-578)) NIL (|has| $ (-6 -4491)) ELT)) (-1541 (($ $) 88 T ELT)) (-1403 (($ $) 78 T ELT)) (-1515 (($ $) 89 T ELT)) (-1382 (($ $) 76 T ELT)) (-1489 (($ $) 86 T ELT)) (-1361 (($ $) 74 T ELT)) (-3343 (((-392) $) 113 T ELT) (((-229) $) 14 T ELT) (((-917 (-392)) $) NIL T ELT) (((-550) $) 52 T ELT)) (-2411 (((-886) $) 49 T ELT) (($ (-578)) 152 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-578)) 152 T ELT) (($ (-421 (-578))) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (($ $) NIL T ELT)) (-4068 (((-950)) 34 T ELT) (((-950) (-950)) NIL (|has| $ (-6 -4491)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (((-950)) 24 T ELT)) (-1576 (($ $) 93 T ELT)) (-1436 (($ $) 81 T ELT) (($ $ $) 119 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-1552 (($ $) 91 T ELT)) (-1414 (($ $) 79 T ELT)) (-1598 (($ $) 96 T ELT)) (-1456 (($ $) 84 T ELT)) (-3502 (($ $) 94 T ELT)) (-1467 (($ $) 82 T ELT)) (-1587 (($ $) 95 T ELT)) (-1447 (($ $) 83 T ELT)) (-1564 (($ $) 92 T ELT)) (-1424 (($ $) 80 T ELT)) (-2628 (($ $) 118 T ELT)) (-2368 (($) 42 T CONST)) (-2379 (($) 43 T CONST)) (-3859 (((-1189) $) 18 T ELT) (((-1189) $ (-112)) 20 T ELT) (((-1303) (-844) $) 21 T ELT) (((-1303) (-844) $ (-112)) 22 T ELT)) (-1885 (($ $) 107 T ELT)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2799 (($ $ $) 109 T ELT)) (-2441 (((-112) $ $) 56 T ELT)) (-2416 (((-112) $ $) 54 T ELT)) (-2384 (((-112) $ $) 64 T ELT)) (-2429 (((-112) $ $) 55 T ELT)) (-2404 (((-112) $ $) 53 T ELT)) (-2495 (($ $ $) 44 T ELT) (($ $ (-578)) 65 T ELT)) (-2484 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-2472 (($ $ $) 58 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 68 T ELT) (($ $ (-421 (-578))) 151 T ELT) (($ $ $) 69 T ELT)) (* (($ (-950) $) 32 T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-229) (-13 (-418) (-240) (-850) (-1233) (-633 (-550)) (-10 -8 (-15 -2495 ($ $ (-578))) (-15 ** ($ $ $)) (-15 -3489 ($)) (-15 -2759 ($ $)) (-15 -1841 ($ $)) (-15 -1436 ($ $ $)) (-15 -1885 ($ $)) (-15 -2799 ($ $ $)) (-15 -3572 ((-421 (-578)) $ (-793))) (-15 -3572 ((-421 (-578)) $ (-793) (-793)))))) (T -229)) +((** (*1 *1 *1 *1) (-5 *1 (-229))) (-2495 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-229)))) (-3489 (*1 *1) (-5 *1 (-229))) (-2759 (*1 *1 *1) (-5 *1 (-229))) (-1841 (*1 *1 *1) (-5 *1 (-229))) (-1436 (*1 *1 *1 *1) (-5 *1 (-229))) (-1885 (*1 *1 *1) (-5 *1 (-229))) (-2799 (*1 *1 *1 *1) (-5 *1 (-229))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-229)))) (-3572 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-229))))) +(-13 (-418) (-240) (-850) (-1233) (-633 (-550)) (-10 -8 (-15 -2495 ($ $ (-578))) (-15 ** ($ $ $)) (-15 -3489 ($)) (-15 -2759 ($ $)) (-15 -1841 ($ $)) (-15 -1436 ($ $ $)) (-15 -1885 ($ $)) (-15 -2799 ($ $ $)) (-15 -3572 ((-421 (-578)) $ (-793))) (-15 -3572 ((-421 (-578)) $ (-793) (-793))))) +((-2482 (((-172 (-229)) (-793) (-172 (-229))) 11 T ELT) (((-229) (-793) (-229)) 12 T ELT)) (-3785 (((-172 (-229)) (-172 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-1606 (((-172 (-229)) (-172 (-229)) (-172 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-2422 (((-172 (-229)) (-172 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-2833 (((-172 (-229)) (-172 (-229)) (-172 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3223 (((-172 (-229)) (-172 (-229)) (-172 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-3358 (((-172 (-229)) (-172 (-229)) (-172 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-3317 (((-172 (-229)) (-172 (-229)) (-172 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-2084 (((-172 (-229)) (-172 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-1897 (((-229) (-229)) 68 T ELT) (((-172 (-229)) (-172 (-229))) 72 T ELT)) (-1885 (((-172 (-229)) (-172 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-2799 (((-172 (-229)) (-172 (-229)) (-172 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT))) +(((-230) (-10 -7 (-15 -1885 ((-229) (-229))) (-15 -1885 ((-172 (-229)) (-172 (-229)))) (-15 -2799 ((-229) (-229) (-229))) (-15 -2799 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -3785 ((-229) (-229))) (-15 -3785 ((-172 (-229)) (-172 (-229)))) (-15 -2422 ((-229) (-229))) (-15 -2422 ((-172 (-229)) (-172 (-229)))) (-15 -2482 ((-229) (-793) (-229))) (-15 -2482 ((-172 (-229)) (-793) (-172 (-229)))) (-15 -3358 ((-229) (-229) (-229))) (-15 -3358 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -2833 ((-229) (-229) (-229))) (-15 -2833 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -3317 ((-229) (-229) (-229))) (-15 -3317 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -3223 ((-229) (-229) (-229))) (-15 -3223 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -1897 ((-172 (-229)) (-172 (-229)))) (-15 -1897 ((-229) (-229))) (-15 -2084 ((-229) (-229))) (-15 -2084 ((-172 (-229)) (-172 (-229)))) (-15 -1606 ((-229) (-229) (-229))) (-15 -1606 ((-172 (-229)) (-172 (-229)) (-172 (-229)))))) (T -230)) +((-1606 (*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-1606 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-3223 (*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-3223 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2833 (*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-2833 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3358 (*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-3358 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2482 (*1 *2 *3 *2) (-12 (-5 *2 (-172 (-229))) (-5 *3 (-793)) (-5 *1 (-230)))) (-2482 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2799 (*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-2799 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))) +(-10 -7 (-15 -1885 ((-229) (-229))) (-15 -1885 ((-172 (-229)) (-172 (-229)))) (-15 -2799 ((-229) (-229) (-229))) (-15 -2799 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -3785 ((-229) (-229))) (-15 -3785 ((-172 (-229)) (-172 (-229)))) (-15 -2422 ((-229) (-229))) (-15 -2422 ((-172 (-229)) (-172 (-229)))) (-15 -2482 ((-229) (-793) (-229))) (-15 -2482 ((-172 (-229)) (-793) (-172 (-229)))) (-15 -3358 ((-229) (-229) (-229))) (-15 -3358 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -2833 ((-229) (-229) (-229))) (-15 -2833 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -3317 ((-229) (-229) (-229))) (-15 -3317 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -3223 ((-229) (-229) (-229))) (-15 -3223 ((-172 (-229)) (-172 (-229)) (-172 (-229)))) (-15 -1897 ((-172 (-229)) (-172 (-229)))) (-15 -1897 ((-229) (-229))) (-15 -2084 ((-229) (-229))) (-15 -2084 ((-172 (-229)) (-172 (-229)))) (-15 -1606 ((-229) (-229) (-229))) (-15 -1606 ((-172 (-229)) (-172 (-229)) (-172 (-229))))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1526 (($ (-793) (-793)) NIL T ELT)) (-3216 (($ $ $) NIL T ELT)) (-1921 (($ (-1298 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-1941 (($ |#1| |#1| |#1|) 33 T ELT)) (-2648 (((-112) $) NIL T ELT)) (-1923 (($ $ (-578) (-578)) NIL T ELT)) (-2701 (($ $ (-578) (-578)) NIL T ELT)) (-1839 (($ $ (-578) (-578) (-578) (-578)) NIL T ELT)) (-3368 (($ $) NIL T ELT)) (-2214 (((-112) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3962 (($ $ (-578) (-578) $) NIL T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578)) $) NIL T ELT)) (-3869 (($ $ (-578) (-1298 |#1|)) NIL T ELT)) (-3697 (($ $ (-578) (-1298 |#1|)) NIL T ELT)) (-3803 (($ |#1| |#1| |#1|) 32 T ELT)) (-2921 (($ (-793) |#1|) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1612 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3978 (((-1298 |#1|) $ (-578)) NIL T ELT)) (-3120 (($ |#1|) 31 T ELT)) (-4379 (($ |#1|) 30 T ELT)) (-2099 (($ |#1|) 29 T ELT)) (-1875 (((-793) $) NIL (|has| |#1| (-570)) ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-3382 ((|#1| $ (-578) (-578)) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL T ELT)) (-3199 (((-793) $) NIL (|has| |#1| (-570)) ELT)) (-4342 (((-666 (-1298 |#1|)) $) NIL (|has| |#1| (-570)) ELT)) (-3068 (((-793) $) NIL T ELT)) (-3749 (($ (-793) (-793) |#1|) NIL T ELT)) (-3082 (((-793) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-3627 ((|#1| $) NIL (|has| |#1| (-6 (-4502 "*"))) ELT)) (-1850 (((-578) $) NIL T ELT)) (-3156 (((-578) $) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-1694 (((-578) $) NIL T ELT)) (-2915 (((-578) $) NIL T ELT)) (-1869 (($ (-666 (-666 |#1|))) 11 T ELT) (($ (-793) (-793) (-1 |#1| (-578) (-578))) NIL T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3692 (((-666 (-666 |#1|)) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3335 (((-3 $ "failed") $) NIL (|has| |#1| (-376)) ELT)) (-4238 (($) 12 T ELT)) (-1499 (($ $ $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) (-578)) NIL T ELT) ((|#1| $ (-578) (-578) |#1|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578))) NIL T ELT)) (-3266 (($ (-666 |#1|)) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-4415 (((-112) $) NIL T ELT)) (-2598 ((|#1| $) NIL (|has| |#1| (-6 (-4502 "*"))) ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-4240 (((-1298 |#1|) $ (-578)) NIL T ELT)) (-2411 (($ (-1298 |#1|)) NIL T ELT) (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) NIL T ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-578) $) NIL T ELT) (((-1298 |#1|) $ (-1298 |#1|)) 15 T ELT) (((-1298 |#1|) (-1298 |#1|) $) NIL T ELT) (((-972 |#1|) $ (-972 |#1|)) 21 T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-231 |#1|) (-13 (-709 |#1| (-1298 |#1|) (-1298 |#1|)) (-10 -8 (-15 * ((-972 |#1|) $ (-972 |#1|))) (-15 -4238 ($)) (-15 -2099 ($ |#1|)) (-15 -4379 ($ |#1|)) (-15 -3120 ($ |#1|)) (-15 -3803 ($ |#1| |#1| |#1|)) (-15 -1941 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1233))) (T -231)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233))) (-5 *1 (-231 *3)))) (-4238 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-2099 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-4379 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-3120 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-3803 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-1941 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(-13 (-709 |#1| (-1298 |#1|) (-1298 |#1|)) (-10 -8 (-15 * ((-972 |#1|) $ (-972 |#1|))) (-15 -4238 ($)) (-15 -2099 ($ |#1|)) (-15 -4379 ($ |#1|)) (-15 -3120 ($ |#1|)) (-15 -3803 ($ |#1| |#1| |#1|)) (-15 -1941 ($ |#1| |#1| |#1|)))) +((-1589 (($ (-1 (-112) |#2|) $) 16 T ELT)) (-2631 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 28 T ELT)) (-1338 (($) NIL T ELT) (($ (-666 |#2|)) 11 T ELT)) (-2384 (((-112) $ $) 26 T ELT))) +(((-232 |#1| |#2|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -1589 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| |#2| |#1|)) (-15 -1338 (|#1| (-666 |#2|))) (-15 -1338 (|#1|))) (-233 |#2|) (-1131)) (T -232)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -1589 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| |#2| |#1|)) (-15 -1338 (|#1| (-666 |#2|))) (-15 -1338 (|#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3776 (($ $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ |#1| $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 |#1|)) 49 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 51 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-233 |#1|) (-142) (-1131)) (T -233)) +NIL +(-13 (-242 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2031 (($ $ (-1 |#1| |#1|) (-793)) 57 T ELT) (($ $ (-1 |#1| |#1|)) 56 T ELT) (($ $ (-1207)) 55 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 53 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 52 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 51 (|has| |#1| (-929 (-1207))) ELT) (($ $) 47 (|has| |#1| (-239)) ELT) (($ $ (-793)) 45 (|has| |#1| (-239)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1 |#1| |#1|) (-793)) 59 T ELT) (($ $ (-1 |#1| |#1|)) 58 T ELT) (($ $ (-1207)) 54 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 50 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 49 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 48 (|has| |#1| (-929 (-1207))) ELT) (($ $) 46 (|has| |#1| (-239)) ELT) (($ $ (-793)) 44 (|has| |#1| (-239)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-234 |#1|) (-142) (-1080)) (T -234)) +NIL +(-13 (-1080) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-240)) (-6 (-240)) |%noBranch|) (IF (|has| |t#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-236 $) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-921 $ #0=(-1207)) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #0#) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-1676 ((|#2| $) 9 T ELT))) +(((-235 |#1| |#2|) (-10 -8 (-15 -1676 (|#2| |#1|))) (-236 |#2|) (-1248)) (T -235)) +NIL +(-10 -8 (-15 -1676 (|#2| |#1|))) +((-2031 ((|#1| $) 7 T ELT)) (-1676 ((|#1| $) 6 T ELT))) +(((-236 |#1|) (-142) (-1248)) (T -236)) +((-2031 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1248)))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1248))))) +(-13 (-1248) (-10 -8 (-15 -2031 (|t#1| $)) (-15 -1676 (|t#1| $)))) +(((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2031 (($ $ (-793)) 37 T ELT) (($ $) 35 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-1676 (($ $ (-793)) 38 T ELT) (($ $) 36 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-237 |#1|) (-142) (-1080)) (T -237)) +NIL +(-13 (-111 |t#1| |t#1|) (-239) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-236 $) . T) ((-239) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-2031 (($ $) NIL T ELT) (($ $ (-793)) 9 T ELT)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) 11 T ELT))) +(((-238 |#1|) (-10 -8 (-15 -1676 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-793))) (-15 -1676 (|#1| |#1|)) (-15 -2031 (|#1| |#1|))) (-239)) (T -238)) +NIL +(-10 -8 (-15 -1676 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-793))) (-15 -1676 (|#1| |#1|)) (-15 -2031 (|#1| |#1|))) +((-2031 (($ $) 7 T ELT) (($ $ (-793)) 10 T ELT)) (-1676 (($ $) 6 T ELT) (($ $ (-793)) 9 T ELT))) +(((-239) (-142)) (T -239)) +((-2031 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) (-1676 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793))))) +(-13 (-236 $) (-10 -8 (-15 -2031 ($ $ (-793))) (-15 -1676 ($ $ (-793))))) +(((-236 $) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2031 (($ $ (-793)) 42 T ELT) (($ $) 40 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-793)) 43 T ELT) (($ $) 41 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-240) (-142)) (T -240)) +NIL +(-13 (-1080) (-239)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-236 $) . T) ((-239) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-1338 (($) 12 T ELT) (($ (-666 |#2|)) NIL T ELT)) (-3979 (($ $) 14 T ELT)) (-2423 (($ (-666 |#2|)) 10 T ELT)) (-2411 (((-886) $) 21 T ELT))) +(((-241 |#1| |#2|) (-10 -8 (-15 -2411 ((-886) |#1|)) (-15 -1338 (|#1| (-666 |#2|))) (-15 -1338 (|#1|)) (-15 -2423 (|#1| (-666 |#2|))) (-15 -3979 (|#1| |#1|))) (-242 |#2|) (-1131)) (T -241)) +NIL +(-10 -8 (-15 -2411 ((-886) |#1|)) (-15 -1338 (|#1| (-666 |#2|))) (-15 -1338 (|#1|)) (-15 -2423 (|#1| (-666 |#2|))) (-15 -3979 (|#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3776 (($ $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ |#1| $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 |#1|)) 49 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 51 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-242 |#1|) (-142) (-1131)) (T -242)) +((-1338 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1131)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-242 *3)))) (-2631 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-242 *2)) (-4 *2 (-1131)))) (-2631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-242 *3)) (-4 *3 (-1131)))) (-1589 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-242 *3)) (-4 *3 (-1131))))) +(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -1338 ($)) (-15 -1338 ($ (-666 |t#1|))) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2631 ($ |t#1| $)) (-15 -2631 ($ (-1 (-112) |t#1|) $)) (-15 -1589 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-1717 (((-2 (|:| |varOrder| (-666 (-1207))) (|:| |inhom| (-3 (-666 (-1298 (-793))) "failed")) (|:| |hom| (-666 (-1298 (-793))))) (-306 (-981 (-578)))) 42 T ELT))) +(((-243) (-10 -7 (-15 -1717 ((-2 (|:| |varOrder| (-666 (-1207))) (|:| |inhom| (-3 (-666 (-1298 (-793))) "failed")) (|:| |hom| (-666 (-1298 (-793))))) (-306 (-981 (-578))))))) (T -243)) +((-1717 (*1 *2 *3) (-12 (-5 *3 (-306 (-981 (-578)))) (-5 *2 (-2 (|:| |varOrder| (-666 (-1207))) (|:| |inhom| (-3 (-666 (-1298 (-793))) "failed")) (|:| |hom| (-666 (-1298 (-793)))))) (-5 *1 (-243))))) +(-10 -7 (-15 -1717 ((-2 (|:| |varOrder| (-666 (-1207))) (|:| |inhom| (-3 (-666 (-1298 (-793))) "failed")) (|:| |hom| (-666 (-1298 (-793))))) (-306 (-981 (-578)))))) +((-2222 (((-793)) 56 T ELT)) (-2242 (((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 $) (-1298 $)) 53 T ELT) (((-711 |#3|) (-711 $)) 44 T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT)) (-4425 (((-136)) 62 T ELT)) (-2031 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2411 (((-1298 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-886) $) NIL T ELT) (($ (-578)) 12 T ELT) (($ (-421 (-578))) NIL T ELT)) (-3753 (((-793)) 15 T ELT)) (-2495 (($ $ |#3|) 59 T ELT))) +(((-244 |#1| |#2| |#3|) (-10 -8 (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| (-578))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2411 ((-886) |#1|)) (-15 -3753 ((-793))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2411 (|#1| |#3|)) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2242 ((-711 |#3|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 |#1|) (-1298 |#1|))) (-15 -2222 ((-793))) (-15 -2495 (|#1| |#1| |#3|)) (-15 -4425 ((-136))) (-15 -2411 ((-1298 |#3|) |#1|))) (-245 |#2| |#3|) (-793) (-1248)) (T -244)) +((-4425 (*1 *2) (-12 (-14 *4 (-793)) (-4 *5 (-1248)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-2222 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1248)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3753 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1248)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))) +(-10 -8 (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| (-578))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2411 ((-886) |#1|)) (-15 -3753 ((-793))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2411 (|#1| |#3|)) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2242 ((-711 |#3|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 |#1|) (-1298 |#1|))) (-15 -2222 ((-793))) (-15 -2495 (|#1| |#1| |#3|)) (-15 -4425 ((-136))) (-15 -2411 ((-1298 |#3|) |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-3623 (((-112) $) 76 (|has| |#2| (-23)) ELT)) (-2695 (($ (-950)) 129 (|has| |#2| (-1080)) ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-2424 (($ $ $) 125 (|has| |#2| (-815)) ELT)) (-4028 (((-3 $ "failed") $ $) 78 (|has| |#2| (-133)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2222 (((-793)) 115 (|has| |#2| (-381)) ELT)) (-2590 ((|#2| $ (-578) |#2|) 53 (|has| $ (-6 -4501)) ELT)) (-3534 (($) 7 T CONST)) (-2818 (((-3 (-578) "failed") $) 71 (-2320 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-3 (-421 (-578)) "failed") $) 68 (-2320 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1131)) ELT)) (-3516 (((-578) $) 70 (-2320 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-421 (-578)) $) 67 (-2320 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) ((|#2| $) 66 (|has| |#2| (-1131)) ELT)) (-2242 (((-711 (-578)) (-711 $)) 112 (-2320 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 111 (-2320 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) 110 (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) 109 (|has| |#2| (-1080)) ELT)) (-3493 (((-3 $ "failed") $) 86 (|has| |#2| (-1080)) ELT)) (-2062 (($) 118 (|has| |#2| (-381)) ELT)) (-3450 ((|#2| $ (-578) |#2|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ (-578)) 52 T ELT)) (-2729 (((-666 |#2|) $) 31 (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) 88 (|has| |#2| (-1080)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 119 (|has| |#2| (-871)) ELT)) (-1441 (((-666 |#2|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 120 (|has| |#2| (-871)) ELT)) (-3439 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-3193 (((-950) $) 117 (|has| |#2| (-381)) ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 114 (-2320 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 113 (-2320 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) 108 (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1298 $)) 107 (|has| |#2| (-1080)) ELT)) (-2617 (((-1189) $) 23 (|has| |#2| (-1131)) ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-2087 (($ (-950)) 116 (|has| |#2| (-381)) ELT)) (-4313 (((-1151) $) 22 (|has| |#2| (-1131)) ELT)) (-4189 ((|#2| $) 43 (|has| (-578) (-871)) ELT)) (-4291 (($ $ |#2|) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) 27 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#2| $ (-578) |#2|) 51 T ELT) ((|#2| $ (-578)) 50 T ELT)) (-1406 ((|#2| $ $) 128 (|has| |#2| (-1080)) ELT)) (-2841 (($ (-1298 |#2|)) 130 T ELT)) (-4425 (((-136)) 127 (|has| |#2| (-376)) ELT)) (-2031 (($ $ (-793)) 105 (-2320 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) 103 (-2320 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 99 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) 98 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) 97 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) 95 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 93 (|has| |#2| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) 29 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-1298 |#2|) $) 131 T ELT) (($ (-578)) 72 (-2230 (-2320 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (|has| |#2| (-1080))) ELT) (($ (-421 (-578))) 69 (-2320 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (($ |#2|) 64 (|has| |#2| (-1131)) ELT) (((-886) $) 18 (|has| |#2| (-632 (-886))) ELT)) (-3753 (((-793)) 90 (|has| |#2| (-1080)) CONST)) (-2876 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2368 (($) 75 (|has| |#2| (-23)) CONST)) (-2379 (($) 89 (|has| |#2| (-1080)) CONST)) (-1676 (($ $ (-793)) 106 (-2320 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) 104 (-2320 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 102 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) 101 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) 100 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) 96 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 91 (|has| |#2| (-1080)) ELT)) (-2441 (((-112) $ $) 121 (|has| |#2| (-871)) ELT)) (-2416 (((-112) $ $) 123 (|has| |#2| (-871)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-2429 (((-112) $ $) 122 (|has| |#2| (-871)) ELT)) (-2404 (((-112) $ $) 124 (|has| |#2| (-871)) ELT)) (-2495 (($ $ |#2|) 126 (|has| |#2| (-376)) ELT)) (-2484 (($ $ $) 81 (|has| |#2| (-21)) ELT) (($ $) 80 (|has| |#2| (-21)) ELT)) (-2472 (($ $ $) 73 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) 87 (|has| |#2| (-1080)) ELT) (($ $ (-950)) 84 (|has| |#2| (-1080)) ELT)) (* (($ $ $) 85 (|has| |#2| (-1080)) ELT) (($ $ |#2|) 83 (|has| |#2| (-748)) ELT) (($ |#2| $) 82 (|has| |#2| (-748)) ELT) (($ (-578) $) 79 (|has| |#2| (-21)) ELT) (($ (-793) $) 77 (|has| |#2| (-23)) ELT) (($ (-950) $) 74 (|has| |#2| (-25)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-245 |#1| |#2|) (-142) (-793) (-1248)) (T -245)) +((-2841 (*1 *1 *2) (-12 (-5 *2 (-1298 *4)) (-4 *4 (-1248)) (-4 *1 (-245 *3 *4)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1080)) (-4 *4 (-1248)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1248)) (-4 *2 (-1080))))) +(-13 (-618 (-578) |t#2|) (-632 (-1298 |t#2|)) (-10 -8 (-6 -4500) (-15 -2841 ($ (-1298 |t#2|))) (IF (|has| |t#2| (-1131)) (-6 (-425 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1080)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -2695 ($ (-950))) (-15 -1406 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-748)) (-6 (-662 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4497)) (-6 -4497) |%noBranch|) (IF (|has| |t#2| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#2| (-815)) (-6 (-815)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1305 |t#2|)) |%noBranch|))) +(((-21) -2230 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -2230 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2230 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2230 (|has| |#2| (-1131)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2230 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -2230 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-635 #0=(-421 (-578))) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ((-635 (-578)) -2230 (|has| |#2| (-1080)) (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131)))) ((-635 |#2|) |has| |#2| (-1131)) ((-632 (-886)) -2230 (|has| |#2| (-1131)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-632 (-886))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-632 (-1298 |#2|)) . T) ((-236 $) -2230 (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))) ((-234 |#2|) |has| |#2| (-1080)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1080))) ((-239) -2230 (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))) ((-274 |#2|) |has| |#2| (-1080)) ((-298 #1=(-578) |#2|) . T) ((-300 #1# |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1080)) ((-425 |#2|) |has| |#2| (-1131)) ((-503 |#2|) . T) ((-618 #1# |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-668 (-578)) -2230 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-668 |#2|) -2230 (|has| |#2| (-1080)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-668 $) |has| |#2| (-1080)) ((-670 #2=(-578)) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ((-670 |#2|) -2230 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-670 $) |has| |#2| (-1080)) ((-662 |#2|) -2230 (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-660 #2#) -12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ((-660 |#2|) |has| |#2| (-1080)) ((-739 |#2|) -2230 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-748) |has| |#2| (-1080)) ((-814) |has| |#2| (-815)) ((-815) |has| |#2| (-815)) ((-816) |has| |#2| (-815)) ((-817) |has| |#2| (-815)) ((-871) -2230 (|has| |#2| (-871)) (|has| |#2| (-815))) ((-874) -2230 (|has| |#2| (-871)) (|has| |#2| (-815))) ((-921 $ #3=(-1207)) -2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) ((-927 (-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) ((-929 #3#) -2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) ((-1069 #0#) -12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ((-1069 (-578)) -12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ((-1069 |#2|) |has| |#2| (-1131)) ((-1082 |#2|) -2230 (|has| |#2| (-1080)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1087 |#2|) -2230 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1080) |has| |#2| (-1080)) ((-1089) |has| |#2| (-1080)) ((-1143) |has| |#2| (-1080)) ((-1131) -2230 (|has| |#2| (-1131)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1248) . T) ((-1305 |#2|) |has| |#2| (-376))) +((-4315 (((-247 |#1| |#3|) (-1 |#3| |#2| |#3|) (-247 |#1| |#2|) |#3|) 21 T ELT)) (-2512 ((|#3| (-1 |#3| |#2| |#3|) (-247 |#1| |#2|) |#3|) 23 T ELT)) (-3611 (((-247 |#1| |#3|) (-1 |#3| |#2|) (-247 |#1| |#2|)) 18 T ELT))) +(((-246 |#1| |#2| |#3|) (-10 -7 (-15 -4315 ((-247 |#1| |#3|) (-1 |#3| |#2| |#3|) (-247 |#1| |#2|) |#3|)) (-15 -2512 (|#3| (-1 |#3| |#2| |#3|) (-247 |#1| |#2|) |#3|)) (-15 -3611 ((-247 |#1| |#3|) (-1 |#3| |#2|) (-247 |#1| |#2|)))) (-793) (-1248) (-1248)) (T -246)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-247 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1248)) (-4 *7 (-1248)) (-5 *2 (-247 *5 *7)) (-5 *1 (-246 *5 *6 *7)))) (-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-247 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1248)) (-4 *2 (-1248)) (-5 *1 (-246 *5 *6 *2)))) (-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-247 *6 *7)) (-14 *6 (-793)) (-4 *7 (-1248)) (-4 *5 (-1248)) (-5 *2 (-247 *6 *5)) (-5 *1 (-246 *6 *7 *5))))) +(-10 -7 (-15 -4315 ((-247 |#1| |#3|) (-1 |#3| |#2| |#3|) (-247 |#1| |#2|) |#3|)) (-15 -2512 (|#3| (-1 |#3| |#2| |#3|) (-247 |#1| |#2|) |#3|)) (-15 -3611 ((-247 |#1| |#3|) (-1 |#3| |#2|) (-247 |#1| |#2|)))) +((-3213 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3623 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-2695 (($ (-950)) 62 (|has| |#2| (-1080)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2424 (($ $ $) 68 (|has| |#2| (-815)) ELT)) (-4028 (((-3 $ "failed") $ $) 53 (|has| |#2| (-133)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-2590 ((|#2| $ (-578) |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1131)) ELT)) (-3516 (((-578) $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-421 (-578)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) ((|#2| $) 28 (|has| |#2| (-1131)) ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-3493 (((-3 $ "failed") $) 58 (|has| |#2| (-1080)) ELT)) (-2062 (($) NIL (|has| |#2| (-381)) ELT)) (-3450 ((|#2| $ (-578) |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ (-578)) 56 T ELT)) (-2729 (((-666 |#2|) $) 14 (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL (|has| |#2| (-1080)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 19 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-1441 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3439 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#2| (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1298 $)) NIL (|has| |#2| (-1080)) ELT)) (-2617 (((-1189) $) NIL (|has| |#2| (-1131)) ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-2087 (($ (-950)) NIL (|has| |#2| (-381)) ELT)) (-4313 (((-1151) $) NIL (|has| |#2| (-1131)) ELT)) (-4189 ((|#2| $) NIL (|has| (-578) (-871)) ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ (-578) |#2|) NIL T ELT) ((|#2| $ (-578)) 20 T ELT)) (-1406 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-2841 (($ (-1298 |#2|)) 17 T ELT)) (-4425 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-2031 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-1298 |#2|) $) 9 T ELT) (($ (-578)) NIL (-2230 (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (|has| |#2| (-1080))) ELT) (($ (-421 (-578))) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (($ |#2|) 12 (|has| |#2| (-1131)) ELT) (((-886) $) NIL (|has| |#2| (-632 (-886))) ELT)) (-3753 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-2876 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2368 (($) 36 (|has| |#2| (-23)) CONST)) (-2379 (($) 40 (|has| |#2| (-1080)) CONST)) (-1676 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2384 (((-112) $ $) 27 (|has| |#2| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2404 (((-112) $ $) 66 (|has| |#2| (-871)) ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2472 (($ $ $) 34 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-950)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) 46 (|has| |#2| (-1080)) ELT) (($ $ |#2|) 44 (|has| |#2| (-748)) ELT) (($ |#2| $) 45 (|has| |#2| (-748)) ELT) (($ (-578) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-950) $) NIL (|has| |#2| (-25)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-247 |#1| |#2|) (-245 |#1| |#2|) (-793) (-1248)) (T -247)) +NIL +(-245 |#1| |#2|) +((-3141 (((-578) (-666 (-1189))) 36 T ELT) (((-578) (-1189)) 29 T ELT)) (-1365 (((-1303) (-666 (-1189))) 40 T ELT) (((-1303) (-1189)) 39 T ELT)) (-4119 (((-1189)) 16 T ELT)) (-2686 (((-1189) (-578) (-1189)) 23 T ELT)) (-4369 (((-666 (-1189)) (-666 (-1189)) (-578) (-1189)) 37 T ELT) (((-1189) (-1189) (-578) (-1189)) 35 T ELT)) (-3339 (((-666 (-1189)) (-666 (-1189))) 15 T ELT) (((-666 (-1189)) (-1189)) 11 T ELT))) +(((-248) (-10 -7 (-15 -3339 ((-666 (-1189)) (-1189))) (-15 -3339 ((-666 (-1189)) (-666 (-1189)))) (-15 -4119 ((-1189))) (-15 -2686 ((-1189) (-578) (-1189))) (-15 -4369 ((-1189) (-1189) (-578) (-1189))) (-15 -4369 ((-666 (-1189)) (-666 (-1189)) (-578) (-1189))) (-15 -1365 ((-1303) (-1189))) (-15 -1365 ((-1303) (-666 (-1189)))) (-15 -3141 ((-578) (-1189))) (-15 -3141 ((-578) (-666 (-1189)))))) (T -248)) +((-3141 (*1 *2 *3) (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-578)) (-5 *1 (-248)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-578)) (-5 *1 (-248)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248)))) (-4369 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-666 (-1189))) (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *1 (-248)))) (-4369 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-578)) (-5 *1 (-248)))) (-2686 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-578)) (-5 *1 (-248)))) (-4119 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-248)))) (-3339 (*1 *2 *3) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189))))) +(-10 -7 (-15 -3339 ((-666 (-1189)) (-1189))) (-15 -3339 ((-666 (-1189)) (-666 (-1189)))) (-15 -4119 ((-1189))) (-15 -2686 ((-1189) (-578) (-1189))) (-15 -4369 ((-1189) (-1189) (-578) (-1189))) (-15 -4369 ((-666 (-1189)) (-666 (-1189)) (-578) (-1189))) (-15 -1365 ((-1303) (-1189))) (-15 -1365 ((-1303) (-666 (-1189)))) (-15 -3141 ((-578) (-1189))) (-15 -3141 ((-578) (-666 (-1189))))) +((** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 20 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-421 (-578)) $) 27 T ELT) (($ $ (-421 (-578))) NIL T ELT))) +(((-249 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-578))) (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-950))) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) (-250)) (T -249)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-578))) (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-950))) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 47 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 51 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 48 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-421 (-578)) $) 50 T ELT) (($ $ (-421 (-578))) 49 T ELT))) +(((-250) (-142)) (T -250)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-578)))) (-3057 (*1 *1 *1) (-4 *1 (-250)))) +(-13 (-302) (-38 (-421 (-578))) (-10 -8 (-15 ** ($ $ (-578))) (-15 -3057 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-302) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-739 #0#) . T) ((-748) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-3841 (($ $) 58 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-2603 (($ $ $) 54 (|has| $ (-6 -4501)) ELT)) (-3955 (($ $ $) 53 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-3534 (($) 7 T CONST)) (-3778 (($ $) 57 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-4061 (($ $) 56 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) 60 T ELT)) (-2045 (($ $) 59 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3342 (($ $ $) 55 (|has| $ (-6 -4501)) ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-251 |#1|) (-142) (-1248)) (T -251)) +((-2757 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) (-2045 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) (-3778 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) (-4061 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) (-3342 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-251 *2)) (-4 *2 (-1248)))) (-2603 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-251 *2)) (-4 *2 (-1248)))) (-3955 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-251 *2)) (-4 *2 (-1248))))) +(-13 (-1041 |t#1|) (-10 -8 (-15 -2757 (|t#1| $)) (-15 -2045 ($ $)) (-15 -3841 ($ $)) (-15 -3778 ($ $)) (-15 -4061 ($ $)) (IF (|has| $ (-6 -4501)) (PROGN (-15 -3342 ($ $ $)) (-15 -2603 ($ $ $)) (-15 -3955 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1041 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) NIL T ELT)) (-3933 ((|#1| $) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) $) NIL (|has| |#1| (-871)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-4101 (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-2042 (($ $) 10 (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) NIL (|has| $ (-6 -4501)) ELT)) (-2466 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3920 ((|#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-4198 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-1131)) ELT)) (-3776 (($ $) 7 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2737 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-2149 (((-112) $) NIL T ELT)) (-3887 (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) (-1 (-112) |#1|) $) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1957 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-3176 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2606 (($ |#1|) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4328 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4273 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1583 (((-112) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT) ((|#1| $ (-578)) NIL T ELT) ((|#1| $ (-578) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-793) $ "count") 16 T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-3022 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-1705 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-2806 (($ (-666 |#1|)) 22 T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4076 (($ $) NIL T ELT)) (-4436 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) NIL T ELT)) (-3931 (($ $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) NIL T ELT)) (-3342 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3703 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-666 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2411 (($ (-666 |#1|)) 17 T ELT) (((-666 |#1|) $) 18 T ELT) (((-886) $) 21 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 14 (|has| $ (-6 -4500)) ELT))) +(((-252 |#1|) (-13 (-688 |#1|) (-504 (-666 |#1|)) (-10 -8 (-15 -2806 ($ (-666 |#1|))) (-15 -2436 ($ $ "unique")) (-15 -2436 ($ $ "sort")) (-15 -2436 ((-793) $ "count")))) (-871)) (T -252)) +((-2806 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-252 *3)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-871)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-871)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-871))))) +(-13 (-688 |#1|) (-504 (-666 |#1|)) (-10 -8 (-15 -2806 ($ (-666 |#1|))) (-15 -2436 ($ $ "unique")) (-15 -2436 ($ $ "sort")) (-15 -2436 ((-793) $ "count")))) +((-3177 (((-3 (-793) "failed") |#1| |#1| (-793)) 40 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -3177 ((-3 (-793) "failed") |#1| |#1| (-793)))) (-13 (-748) (-381) (-10 -7 (-15 ** (|#1| |#1| (-578)))))) (T -253)) +((-3177 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-793)) (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-578)))))) (-5 *1 (-253 *3))))) +(-10 -7 (-15 -3177 ((-3 (-793) "failed") |#1| |#1| (-793)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2031 (($ $) 54 (|has| |#1| (-239)) ELT) (($ $ (-793)) 52 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 50 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 48 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 47 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 46 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 40 T ELT) (($ $ (-1 |#1| |#1|)) 39 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-1676 (($ $) 53 (|has| |#1| (-239)) ELT) (($ $ (-793)) 51 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 49 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 45 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 44 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 43 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 42 T ELT) (($ $ (-1 |#1| |#1|)) 41 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-254 |#1|) (-142) (-1080)) (T -254)) +NIL +(-13 (-111 |t#1| |t#1|) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-237 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-929 (-1207))) (-6 (-926 |t#1| (-1207))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) -2230 (-12 (|has| |#1| (-175)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-739 |#1|) -2230 (-12 (|has| |#1| (-175)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-921 $ #0=(-1207)) |has| |#1| (-929 (-1207))) ((-926 |#1| (-1207)) |has| |#1| (-929 (-1207))) ((-929 #0#) |has| |#1| (-929 (-1207))) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-888 |#1|)) $) NIL T ELT)) (-4420 (((-1203 $) $ (-888 |#1|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#2| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#2| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#2| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-888 |#1|))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#2| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2035 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2127 (($ $ (-666 (-578))) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#2| (-938)) ELT)) (-2535 (($ $ |#2| (-247 (-3226 |#1|) (-793)) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-392))) (|has| |#2| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-578))) (|has| |#2| (-911 (-578)))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2936 (($ (-1203 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1203 $) (-888 |#1|)) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-247 (-3226 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3937 (((-247 (-3226 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) NIL T ELT)) (-2500 (($ (-1 (-247 (-3226 |#1|) (-793)) (-247 (-3226 |#1|) (-793))) $) NIL T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4006 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#2| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#2| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 $)) NIL T ELT)) (-3232 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2031 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3683 (((-247 (-3226 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-888 |#1|) (-633 (-550))) (|has| |#2| (-633 (-550)))) ELT)) (-4325 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#2| (-570)) ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-247 (-3226 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#2| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-255 |#1| |#2|) (-13 (-978 |#2| (-247 (-3226 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -2127 ($ $ (-666 (-578)))))) (-666 (-1207)) (-1080)) (T -255)) +((-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-255 *3 *4)) (-14 *3 (-666 (-1207))) (-4 *4 (-1080))))) +(-13 (-978 |#2| (-247 (-3226 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -2127 ($ $ (-666 (-578)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2190 (((-1303) $) 17 T ELT)) (-2864 (((-186 (-257)) $) 11 T ELT)) (-3361 (($ (-186 (-257))) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1533 (((-257) $) 7 T ELT)) (-2411 (((-886) $) 9 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 15 T ELT))) +(((-256) (-13 (-1131) (-10 -8 (-15 -1533 ((-257) $)) (-15 -2864 ((-186 (-257)) $)) (-15 -3361 ($ (-186 (-257)))) (-15 -2190 ((-1303) $))))) (T -256)) +((-1533 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-186 (-257))) (-5 *1 (-256)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-186 (-257))) (-5 *1 (-256)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256))))) +(-13 (-1131) (-10 -8 (-15 -1533 ((-257) $)) (-15 -2864 ((-186 (-257)) $)) (-15 -3361 ($ (-186 (-257)))) (-15 -2190 ((-1303) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2302 (((-666 (-889)) $) NIL T ELT)) (-4107 (((-520) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4410 (((-189) $) NIL T ELT)) (-1413 (((-112) $ (-520)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4296 (((-345) $) 7 T ELT)) (-2546 (((-666 (-112)) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (((-190) $) 8 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1639 (((-55) $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-257) (-13 (-188) (-632 (-190)) (-10 -8 (-15 -4296 ((-345) $))))) (T -257)) +((-4296 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) +(-13 (-188) (-632 (-190)) (-10 -8 (-15 -4296 ((-345) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 (((-1212) $ (-793)) 13 T ELT)) (-2411 (((-886) $) 20 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 16 T ELT)) (-3226 (((-793) $) 9 T ELT))) +(((-258) (-13 (-1131) (-298 (-793) (-1212)) (-10 -8 (-15 -3226 ((-793) $))))) (T -258)) +((-3226 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258))))) +(-13 (-1131) (-298 (-793) (-1212)) (-10 -8 (-15 -3226 ((-793) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2695 (($ (-950)) NIL (|has| |#4| (-1080)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2424 (($ $ $) NIL (|has| |#4| (-815)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#4| (-381)) ELT)) (-2590 ((|#4| $ (-578) |#4|) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1131)) ELT) (((-3 (-578) "failed") $) NIL (-12 (|has| |#4| (-1069 (-578))) (|has| |#4| (-1131))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| |#4| (-1069 (-421 (-578)))) (|has| |#4| (-1131))) ELT)) (-3516 ((|#4| $) NIL (|has| |#4| (-1131)) ELT) (((-578) $) NIL (-12 (|has| |#4| (-1069 (-578))) (|has| |#4| (-1131))) ELT) (((-421 (-578)) $) NIL (-12 (|has| |#4| (-1069 (-421 (-578)))) (|has| |#4| (-1131))) ELT)) (-2242 (((-2 (|:| -2547 (-711 |#4|)) (|:| |vec| (-1298 |#4|))) (-711 $) (-1298 $)) NIL (|has| |#4| (-1080)) ELT) (((-711 |#4|) (-711 $)) NIL (|has| |#4| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#4| (-660 (-578))) (|has| |#4| (-1080))) ELT) (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#4| (-660 (-578))) (|has| |#4| (-1080))) ELT)) (-3493 (((-3 $ "failed") $) NIL (|has| |#4| (-1080)) ELT)) (-2062 (($) NIL (|has| |#4| (-381)) ELT)) (-3450 ((|#4| $ (-578) |#4|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#4| $ (-578)) NIL T ELT)) (-2729 (((-666 |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL (|has| |#4| (-1080)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#4| (-871)) ELT)) (-1441 (((-666 |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#4| (-871)) ELT)) (-3439 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#4| (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3908 (((-2 (|:| -2547 (-711 |#4|)) (|:| |vec| (-1298 |#4|))) (-1298 $) $) NIL (|has| |#4| (-1080)) ELT) (((-711 |#4|) (-1298 $)) NIL (|has| |#4| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#4| (-660 (-578))) (|has| |#4| (-1080))) ELT) (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#4| (-660 (-578))) (|has| |#4| (-1080))) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-2087 (($ (-950)) NIL (|has| |#4| (-381)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 ((|#4| $) NIL (|has| (-578) (-871)) ELT)) (-4291 (($ $ |#4|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 |#4|) (-666 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-4322 (((-666 |#4|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#4| $ (-578) |#4|) NIL T ELT) ((|#4| $ (-578)) 12 T ELT)) (-1406 ((|#4| $ $) NIL (|has| |#4| (-1080)) ELT)) (-2841 (($ (-1298 |#4|)) NIL T ELT)) (-4425 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-2031 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT) (($ $) NIL (-2230 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT)) (-4324 (((-793) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-1298 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1131)) ELT) (((-886) $) NIL T ELT) (($ (-578)) NIL (-2230 (-12 (|has| |#4| (-1069 (-578))) (|has| |#4| (-1131))) (|has| |#4| (-1080))) ELT) (($ (-421 (-578))) NIL (-12 (|has| |#4| (-1069 (-421 (-578)))) (|has| |#4| (-1131))) ELT)) (-3753 (((-793)) NIL (|has| |#4| (-1080)) CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL (|has| |#4| (-1080)) CONST)) (-1676 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT) (($ $) NIL (-2230 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT)) (-2441 (((-112) $ $) NIL (|has| |#4| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#4| (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| |#4| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#4| (-871)) ELT)) (-2495 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-950)) NIL (|has| |#4| (-1080)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-578) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-950) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-748)) ELT) (($ |#4| $) NIL (|has| |#4| (-748)) ELT) (($ $ $) NIL (|has| |#4| (-1080)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-259 |#1| |#2| |#3| |#4|) (-13 (-245 |#1| |#4|) (-670 |#2|) (-670 |#3|)) (-950) (-1080) (-1154 |#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) (-670 |#2|)) (T -259)) +NIL +(-13 (-245 |#1| |#4|) (-670 |#2|) (-670 |#3|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2695 (($ (-950)) NIL (|has| |#3| (-1080)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2424 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-2590 ((|#3| $ (-578) |#3|) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1131)) ELT) (((-3 (-578) "failed") $) NIL (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131))) ELT)) (-3516 ((|#3| $) NIL (|has| |#3| (-1131)) ELT) (((-578) $) NIL (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) ELT) (((-421 (-578)) $) NIL (-12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131))) ELT)) (-2242 (((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 $) (-1298 $)) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT) (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT)) (-3493 (((-3 $ "failed") $) NIL (|has| |#3| (-1080)) ELT)) (-2062 (($) NIL (|has| |#3| (-381)) ELT)) (-3450 ((|#3| $ (-578) |#3|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#3| $ (-578)) NIL T ELT)) (-2729 (((-666 |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL (|has| |#3| (-1080)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-1441 (((-666 |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3439 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#3| (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3908 (((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-1298 $) $) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-1298 $)) NIL (|has| |#3| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT) (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-2087 (($ (-950)) NIL (|has| |#3| (-381)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 ((|#3| $) NIL (|has| (-578) (-871)) ELT)) (-4291 (($ $ |#3|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-306 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-666 |#3|) (-666 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT)) (-4322 (((-666 |#3|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#3| $ (-578) |#3|) NIL T ELT) ((|#3| $ (-578)) 11 T ELT)) (-1406 ((|#3| $ $) NIL (|has| |#3| (-1080)) ELT)) (-2841 (($ (-1298 |#3|)) NIL T ELT)) (-4425 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-2031 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT) (($ $) NIL (-2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT)) (-4324 (((-793) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-1298 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1131)) ELT) (((-886) $) NIL T ELT) (($ (-578)) NIL (-2230 (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) (|has| |#3| (-1080))) ELT) (($ (-421 (-578))) NIL (-12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131))) ELT)) (-3753 (((-793)) NIL (|has| |#3| (-1080)) CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL (|has| |#3| (-1080)) CONST)) (-1676 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT) (($ $) NIL (-2230 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT)) (-2441 (((-112) $ $) NIL (|has| |#3| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#3| (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| |#3| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#3| (-871)) ELT)) (-2495 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-950)) NIL (|has| |#3| (-1080)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-578) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-950) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ $ $) NIL (|has| |#3| (-1080)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-260 |#1| |#2| |#3|) (-13 (-245 |#1| |#3|) (-670 |#2|)) (-793) (-1080) (-670 |#2|)) (T -260)) +NIL +(-13 (-245 |#1| |#3|) (-670 |#2|)) +((-2018 (((-666 (-793)) $) 56 T ELT) (((-666 (-793)) $ |#3|) 59 T ELT)) (-2452 (((-793) $) 58 T ELT) (((-793) $ |#3|) 61 T ELT)) (-2082 (($ $) 76 T ELT)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 83 T ELT)) (-4059 (((-793) $ |#3|) 43 T ELT) (((-793) $) 38 T ELT)) (-1765 (((-1 $ (-793)) |#3|) 15 T ELT) (((-1 $ (-793)) $) 88 T ELT)) (-2824 ((|#4| $) 69 T ELT)) (-3548 (((-112) $) 67 T ELT)) (-4348 (($ $) 75 T ELT)) (-3364 (($ $ (-666 (-306 $))) 111 T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-666 |#4|) (-666 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-666 |#4|) (-666 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-666 |#3|) (-666 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-666 |#3|) (-666 |#2|)) 97 T ELT)) (-2031 (($ $ (-666 |#4|) (-666 (-793))) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-666 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2352 (((-666 |#3|) $) 86 T ELT)) (-3683 ((|#5| $) NIL T ELT) (((-793) $ |#4|) NIL T ELT) (((-666 (-793)) $ (-666 |#4|)) NIL T ELT) (((-793) $ |#3|) 49 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT))) +(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2411 (|#1| |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3364 (|#1| |#1| (-666 |#3|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#3| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#3|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#3| |#1|)) (-15 -1765 ((-1 |#1| (-793)) |#1|)) (-15 -2082 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -2824 (|#4| |#1|)) (-15 -3548 ((-112) |#1|)) (-15 -2452 ((-793) |#1| |#3|)) (-15 -2018 ((-666 (-793)) |#1| |#3|)) (-15 -2452 ((-793) |#1|)) (-15 -2018 ((-666 (-793)) |#1|)) (-15 -3683 ((-793) |#1| |#3|)) (-15 -4059 ((-793) |#1|)) (-15 -4059 ((-793) |#1| |#3|)) (-15 -2352 ((-666 |#3|) |#1|)) (-15 -1765 ((-1 |#1| (-793)) |#3|)) (-15 -2411 (|#1| |#3|)) (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3683 ((-666 (-793)) |#1| (-666 |#4|))) (-15 -3683 ((-793) |#1| |#4|)) (-15 -2411 (|#1| |#4|)) (-15 -2818 ((-3 |#4| "failed") |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#4| |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#4| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3683 (|#5| |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2031 (|#1| |#1| |#4|)) (-15 -2031 (|#1| |#1| (-666 |#4|))) (-15 -2031 (|#1| |#1| |#4| (-793))) (-15 -2031 (|#1| |#1| (-666 |#4|) (-666 (-793)))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1080) (-871) (-277 |#3|) (-815)) (T -261)) +NIL +(-10 -8 (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2411 (|#1| |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3364 (|#1| |#1| (-666 |#3|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#3| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#3|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#3| |#1|)) (-15 -1765 ((-1 |#1| (-793)) |#1|)) (-15 -2082 (|#1| |#1|)) (-15 -4348 (|#1| |#1|)) (-15 -2824 (|#4| |#1|)) (-15 -3548 ((-112) |#1|)) (-15 -2452 ((-793) |#1| |#3|)) (-15 -2018 ((-666 (-793)) |#1| |#3|)) (-15 -2452 ((-793) |#1|)) (-15 -2018 ((-666 (-793)) |#1|)) (-15 -3683 ((-793) |#1| |#3|)) (-15 -4059 ((-793) |#1|)) (-15 -4059 ((-793) |#1| |#3|)) (-15 -2352 ((-666 |#3|) |#1|)) (-15 -1765 ((-1 |#1| (-793)) |#3|)) (-15 -2411 (|#1| |#3|)) (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3683 ((-666 (-793)) |#1| (-666 |#4|))) (-15 -3683 ((-793) |#1| |#4|)) (-15 -2411 (|#1| |#4|)) (-15 -2818 ((-3 |#4| "failed") |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#4| |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#4| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3683 (|#5| |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2031 (|#1| |#1| |#4|)) (-15 -2031 (|#1| |#1| (-666 |#4|))) (-15 -2031 (|#1| |#1| |#4| (-793))) (-15 -2031 (|#1| |#1| (-666 |#4|) (-666 (-793)))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2018 (((-666 (-793)) $) 236 T ELT) (((-666 (-793)) $ |#2|) 234 T ELT)) (-2452 (((-793) $) 235 T ELT) (((-793) $ |#2|) 233 T ELT)) (-2949 (((-666 |#3|) $) 113 T ELT)) (-4420 (((-1203 $) $ |#3|) 128 T ELT) (((-1203 |#1|) $) 127 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 90 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 91 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 93 (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) 115 T ELT) (((-793) $ (-666 |#3|)) 114 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 103 (|has| |#1| (-938)) ELT)) (-1457 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) 100 (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 106 (|has| |#1| (-938)) ELT)) (-2082 (($ $) 229 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-578)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) 166 (|has| |#1| (-1069 (-578))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 |#2| "failed") $) 243 T ELT)) (-3516 ((|#1| $) 170 T ELT) (((-421 (-578)) $) 169 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) 167 (|has| |#1| (-1069 (-578))) ELT) ((|#3| $) 144 T ELT) ((|#2| $) 244 T ELT)) (-2035 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT)) (-3136 (($ $) 161 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 139 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 138 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2111 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) 112 T ELT)) (-2159 (((-112) $) 99 (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| |#4| $) 179 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 87 (-12 (|has| |#3| (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 86 (-12 (|has| |#3| (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4059 (((-793) $ |#2|) 239 T ELT) (((-793) $) 238 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-3380 (((-793) $) 176 T ELT)) (-2936 (($ (-1203 |#1|) |#3|) 120 T ELT) (($ (-1203 $) |#3|) 119 T ELT)) (-2613 (((-666 $) $) 129 T ELT)) (-1796 (((-112) $) 159 T ELT)) (-2925 (($ |#1| |#4|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-666 |#3|) (-666 (-793))) 121 T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |#3|) 123 T ELT)) (-3937 ((|#4| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-666 (-793)) $ (-666 |#3|)) 124 T ELT)) (-2500 (($ (-1 |#4| |#4|) $) 178 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-1765 (((-1 $ (-793)) |#2|) 241 T ELT) (((-1 $ (-793)) $) 228 (|has| |#1| (-240)) ELT)) (-4006 (((-3 |#3| "failed") $) 126 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 141 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 140 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 135 T ELT) (((-711 |#1|) (-1298 $)) 134 T ELT)) (-3097 (($ $) 156 T ELT)) (-3110 ((|#1| $) 155 T ELT)) (-2824 ((|#3| $) 231 T ELT)) (-2389 (($ (-666 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3548 (((-112) $) 232 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 117 T ELT)) (-1968 (((-3 (-666 $) "failed") $) 118 T ELT)) (-1590 (((-3 (-2 (|:| |var| |#3|) (|:| -2764 (-793))) "failed") $) 116 T ELT)) (-4348 (($ $) 230 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3067 (((-112) $) 173 T ELT)) (-3080 ((|#1| $) 174 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 98 (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 105 (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 104 (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) 102 (|has| |#1| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) 152 T ELT) (($ $ (-306 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-666 $) (-666 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-666 |#3|) (-666 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-666 |#3|) (-666 $)) 145 T ELT) (($ $ |#2| $) 227 (|has| |#1| (-240)) ELT) (($ $ (-666 |#2|) (-666 $)) 226 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 225 (|has| |#1| (-240)) ELT) (($ $ (-666 |#2|) (-666 |#1|)) 224 (|has| |#1| (-240)) ELT)) (-3232 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 |#3|) (-666 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-666 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT) (($ $ (-1 |#1| |#1|)) 248 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 247 T ELT) (($ $) 223 (|has| |#1| (-239)) ELT) (($ $ (-793)) 221 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 219 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 217 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 216 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 215 (|has| |#1| (-929 (-1207))) ELT)) (-2352 (((-666 |#2|) $) 240 T ELT)) (-3683 ((|#4| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-666 (-793)) $ (-666 |#3|)) 132 T ELT) (((-793) $ |#2|) 237 T ELT)) (-3343 (((-917 (-392)) $) 85 (-12 (|has| |#3| (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) 84 (-12 (|has| |#3| (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) 83 (-12 (|has| |#3| (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 107 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ |#2|) 242 T ELT) (($ (-421 (-578))) 81 (-2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ELT) (($ $) 88 (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) 175 T ELT)) (-3708 ((|#1| $ |#4|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-666 |#3|) (-666 (-793))) 130 T ELT)) (-2213 (((-3 $ "failed") $) 82 (-2230 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 32 T CONST)) (-2364 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 92 (|has| |#1| (-570)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-666 |#3|) (-666 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-666 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT) (($ $ (-1 |#1| |#1|)) 246 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 245 T ELT) (($ $) 222 (|has| |#1| (-239)) ELT) (($ $ (-793)) 220 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 218 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 214 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 213 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 212 (|has| |#1| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 165 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) 164 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-262 |#1| |#2| |#3| |#4|) (-142) (-1080) (-871) (-277 |t#2|) (-815)) (T -262)) +((-1765 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-666 *4)))) (-4059 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-666 (-793))))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) (-2018 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-666 (-793))))) (-2452 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-112)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-815)) (-4 *2 (-277 *4)))) (-4348 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-2082 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-1765 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6))))) +(-13 (-978 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1069 |t#2|) (-10 -8 (-15 -1765 ((-1 $ (-793)) |t#2|)) (-15 -2352 ((-666 |t#2|) $)) (-15 -4059 ((-793) $ |t#2|)) (-15 -4059 ((-793) $)) (-15 -3683 ((-793) $ |t#2|)) (-15 -2018 ((-666 (-793)) $)) (-15 -2452 ((-793) $)) (-15 -2018 ((-666 (-793)) $ |t#2|)) (-15 -2452 ((-793) $ |t#2|)) (-15 -3548 ((-112) $)) (-15 -2824 (|t#3| $)) (-15 -4348 ($ $)) (-15 -2082 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-528 |t#2| |t#1|)) (-6 (-528 |t#2| $)) (-6 (-321 $)) (-15 -1765 ((-1 $ (-793)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 |#2|) . T) ((-635 |#3|) . T) ((-635 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-550)) -12 (|has| |#1| (-633 (-550))) (|has| |#3| (-633 (-550)))) ((-633 (-917 (-392))) -12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#3| (-633 (-917 (-392))))) ((-633 (-917 (-578))) -12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#3| (-633 (-917 (-578))))) ((-236 $) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-425 |#1|) . T) ((-466) -2230 (|has| |#1| (-938)) (|has| |#1| (-466))) ((-528 |#2| |#1|) |has| |#1| (-240)) ((-528 |#2| $) |has| |#1| (-240)) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-570) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-578)))) ((-670 #1=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ #2=(-1207)) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-921 $ |#3|) . T) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-927 |#3|) . T) ((-929 #2#) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-929 |#3|) . T) ((-911 (-392)) -12 (|has| |#1| (-911 (-392))) (|has| |#3| (-911 (-392)))) ((-911 (-578)) -12 (|has| |#1| (-911 (-578))) (|has| |#3| (-911 (-578)))) ((-978 |#1| |#4| |#3|) . T) ((-938) |has| |#1| (-938)) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1069 |#2|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) |has| |#1| (-938))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3540 ((|#1| $) 55 T ELT)) (-2853 ((|#1| $) 45 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-3534 (($) 7 T CONST)) (-3702 (($ $) 61 T ELT)) (-1464 (($ $) 49 T ELT)) (-2694 ((|#1| |#1| $) 47 T ELT)) (-3604 ((|#1| $) 46 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-3492 (((-793) $) 62 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-2563 ((|#1| |#1| $) 53 T ELT)) (-2403 ((|#1| |#1| $) 52 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-1737 (((-793) $) 56 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-3479 ((|#1| $) 63 T ELT)) (-3332 ((|#1| $) 51 T ELT)) (-3307 ((|#1| $) 50 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-3298 ((|#1| |#1| $) 59 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-1732 ((|#1| $) 60 T ELT)) (-4128 (($) 58 T ELT) (($ (-666 |#1|)) 57 T ELT)) (-3302 (((-793) $) 44 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2083 ((|#1| $) 54 T ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-2985 ((|#1| $) 64 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-263 |#1|) (-142) (-1248)) (T -263)) +((-4128 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-4 *1 (-263 *3)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1248)) (-5 *2 (-793)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) (-2563 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) (-2403 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) (-1464 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(-13 (-1152 |t#1|) (-1026 |t#1|) (-10 -8 (-15 -4128 ($)) (-15 -4128 ($ (-666 |t#1|))) (-15 -1737 ((-793) $)) (-15 -3540 (|t#1| $)) (-15 -2083 (|t#1| $)) (-15 -2563 (|t#1| |t#1| $)) (-15 -2403 (|t#1| |t#1| $)) (-15 -3332 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -1464 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1026 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1152 |#1|) . T) ((-1248) . T)) +((-1915 (((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 153 T ELT)) (-2660 (((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392))) 173 T ELT) (((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)) (-666 (-272))) 171 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392))) 176 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272))) 172 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392))) 164 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272))) 163 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1125 (-392))) 145 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1125 (-392)) (-666 (-272))) 143 T ELT) (((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1125 (-392))) 144 T ELT) (((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272))) 141 T ELT)) (-2618 (((-1300) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392))) 175 T ELT) (((-1300) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)) (-666 (-272))) 174 T ELT) (((-1300) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392))) 178 T ELT) (((-1300) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272))) 177 T ELT) (((-1300) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392))) 166 T ELT) (((-1300) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272))) 165 T ELT) (((-1300) (-1 (-972 (-229)) (-229)) (-1125 (-392))) 151 T ELT) (((-1300) (-1 (-972 (-229)) (-229)) (-1125 (-392)) (-666 (-272))) 150 T ELT) (((-1300) (-904 (-1 (-229) (-229))) (-1125 (-392))) 149 T ELT) (((-1300) (-904 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272))) 148 T ELT) (((-1299) (-902 (-1 (-229) (-229))) (-1125 (-392))) 113 T ELT) (((-1299) (-902 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272))) 112 T ELT) (((-1299) (-1 (-229) (-229)) (-1125 (-392))) 107 T ELT) (((-1299) (-1 (-229) (-229)) (-1125 (-392)) (-666 (-272))) 105 T ELT))) +(((-264) (-10 -7 (-15 -2618 ((-1299) (-1 (-229) (-229)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) (-1 (-229) (-229)) (-1125 (-392)))) (-15 -2618 ((-1299) (-902 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) (-902 (-1 (-229) (-229))) (-1125 (-392)))) (-15 -2618 ((-1300) (-904 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-904 (-1 (-229) (-229))) (-1125 (-392)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1125 (-392)))) (-15 -2618 ((-1300) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2618 ((-1300) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)))) (-15 -1915 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -264)) +((-1915 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *2 (-1299)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *2 (-1299)) (-5 *1 (-264)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1125 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-264))))) +(-10 -7 (-15 -2618 ((-1299) (-1 (-229) (-229)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) (-1 (-229) (-229)) (-1125 (-392)))) (-15 -2618 ((-1299) (-902 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) (-902 (-1 (-229) (-229))) (-1125 (-392)))) (-15 -2618 ((-1300) (-904 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-904 (-1 (-229) (-229))) (-1125 (-392)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1125 (-392)))) (-15 -2618 ((-1300) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-392)) (-1125 (-392)))) (-15 -2618 ((-1300) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)))) (-15 -2660 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1125 (-392)) (-1125 (-392)))) (-15 -1915 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))))) +((-2618 (((-1299) (-306 |#2|) (-1207) (-1207) (-666 (-272))) 101 T ELT))) +(((-265 |#1| |#2|) (-10 -7 (-15 -2618 ((-1299) (-306 |#2|) (-1207) (-1207) (-666 (-272))))) (-13 (-570) (-871) (-1069 (-578))) (-444 |#1|)) (T -265)) +((-2618 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-306 *7)) (-5 *4 (-1207)) (-5 *5 (-666 (-272))) (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-871) (-1069 (-578)))) (-5 *2 (-1299)) (-5 *1 (-265 *6 *7))))) +(-10 -7 (-15 -2618 ((-1299) (-306 |#2|) (-1207) (-1207) (-666 (-272))))) +((-2322 (((-578) (-578)) 71 T ELT)) (-3476 (((-578) (-578)) 72 T ELT)) (-2110 (((-229) (-229)) 73 T ELT)) (-4405 (((-1300) (-1 (-172 (-229)) (-172 (-229))) (-1125 (-229)) (-1125 (-229))) 70 T ELT)) (-3551 (((-1300) (-1 (-172 (-229)) (-172 (-229))) (-1125 (-229)) (-1125 (-229)) (-112)) 68 T ELT))) +(((-266) (-10 -7 (-15 -3551 ((-1300) (-1 (-172 (-229)) (-172 (-229))) (-1125 (-229)) (-1125 (-229)) (-112))) (-15 -4405 ((-1300) (-1 (-172 (-229)) (-172 (-229))) (-1125 (-229)) (-1125 (-229)))) (-15 -2322 ((-578) (-578))) (-15 -3476 ((-578) (-578))) (-15 -2110 ((-229) (-229))))) (T -266)) +((-2110 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-266)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-266)))) (-2322 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-266)))) (-4405 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-172 (-229)) (-172 (-229)))) (-5 *4 (-1125 (-229))) (-5 *2 (-1300)) (-5 *1 (-266)))) (-3551 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-172 (-229)) (-172 (-229)))) (-5 *4 (-1125 (-229))) (-5 *5 (-112)) (-5 *2 (-1300)) (-5 *1 (-266))))) +(-10 -7 (-15 -3551 ((-1300) (-1 (-172 (-229)) (-172 (-229))) (-1125 (-229)) (-1125 (-229)) (-112))) (-15 -4405 ((-1300) (-1 (-172 (-229)) (-172 (-229))) (-1125 (-229)) (-1125 (-229)))) (-15 -2322 ((-578) (-578))) (-15 -3476 ((-578) (-578))) (-15 -2110 ((-229) (-229)))) +((-2411 (((-1123 (-392)) (-1123 (-328 |#1|))) 16 T ELT))) +(((-267 |#1|) (-10 -7 (-15 -2411 ((-1123 (-392)) (-1123 (-328 |#1|))))) (-13 (-871) (-570) (-633 (-392)))) (T -267)) +((-2411 (*1 *2 *3) (-12 (-5 *3 (-1123 (-328 *4))) (-4 *4 (-13 (-871) (-570) (-633 (-392)))) (-5 *2 (-1123 (-392))) (-5 *1 (-267 *4))))) +(-10 -7 (-15 -2411 ((-1123 (-392)) (-1123 (-328 |#1|))))) +((-2660 (((-1164 (-229)) (-907 |#1|) (-1123 (-392)) (-1123 (-392))) 75 T ELT) (((-1164 (-229)) (-907 |#1|) (-1123 (-392)) (-1123 (-392)) (-666 (-272))) 74 T ELT) (((-1164 (-229)) |#1| (-1123 (-392)) (-1123 (-392))) 65 T ELT) (((-1164 (-229)) |#1| (-1123 (-392)) (-1123 (-392)) (-666 (-272))) 64 T ELT) (((-1164 (-229)) (-904 |#1|) (-1123 (-392))) 56 T ELT) (((-1164 (-229)) (-904 |#1|) (-1123 (-392)) (-666 (-272))) 55 T ELT)) (-2618 (((-1300) (-907 |#1|) (-1123 (-392)) (-1123 (-392))) 78 T ELT) (((-1300) (-907 |#1|) (-1123 (-392)) (-1123 (-392)) (-666 (-272))) 77 T ELT) (((-1300) |#1| (-1123 (-392)) (-1123 (-392))) 68 T ELT) (((-1300) |#1| (-1123 (-392)) (-1123 (-392)) (-666 (-272))) 67 T ELT) (((-1300) (-904 |#1|) (-1123 (-392))) 60 T ELT) (((-1300) (-904 |#1|) (-1123 (-392)) (-666 (-272))) 59 T ELT) (((-1299) (-902 |#1|) (-1123 (-392))) 47 T ELT) (((-1299) (-902 |#1|) (-1123 (-392)) (-666 (-272))) 46 T ELT) (((-1299) |#1| (-1123 (-392))) 38 T ELT) (((-1299) |#1| (-1123 (-392)) (-666 (-272))) 36 T ELT))) +(((-268 |#1|) (-10 -7 (-15 -2618 ((-1299) |#1| (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) |#1| (-1123 (-392)))) (-15 -2618 ((-1299) (-902 |#1|) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) (-902 |#1|) (-1123 (-392)))) (-15 -2618 ((-1300) (-904 |#1|) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-904 |#1|) (-1123 (-392)))) (-15 -2660 ((-1164 (-229)) (-904 |#1|) (-1123 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-904 |#1|) (-1123 (-392)))) (-15 -2618 ((-1300) |#1| (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) |#1| (-1123 (-392)) (-1123 (-392)))) (-15 -2660 ((-1164 (-229)) |#1| (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) |#1| (-1123 (-392)) (-1123 (-392)))) (-15 -2618 ((-1300) (-907 |#1|) (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-907 |#1|) (-1123 (-392)) (-1123 (-392)))) (-15 -2660 ((-1164 (-229)) (-907 |#1|) (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-907 |#1|) (-1123 (-392)) (-1123 (-392))))) (-13 (-633 (-550)) (-1131))) (T -268)) +((-2660 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-392))) (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) (-5 *1 (-268 *5)))) (-2660 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) (-5 *1 (-268 *6)))) (-2618 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-392))) (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-268 *5)))) (-2618 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-268 *6)))) (-2660 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123 (-392))) (-5 *2 (-1164 (-229))) (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131))))) (-2660 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131))))) (-2618 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123 (-392))) (-5 *2 (-1300)) (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131))))) (-2618 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131))))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-392))) (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) (-5 *1 (-268 *5)))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) (-5 *1 (-268 *6)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-392))) (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-268 *5)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) (-5 *1 (-268 *6)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-902 *5)) (-5 *4 (-1123 (-392))) (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1299)) (-5 *1 (-268 *5)))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-902 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1299)) (-5 *1 (-268 *6)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-392))) (-5 *2 (-1299)) (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131))))) (-2618 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131)))))) +(-10 -7 (-15 -2618 ((-1299) |#1| (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) |#1| (-1123 (-392)))) (-15 -2618 ((-1299) (-902 |#1|) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1299) (-902 |#1|) (-1123 (-392)))) (-15 -2618 ((-1300) (-904 |#1|) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-904 |#1|) (-1123 (-392)))) (-15 -2660 ((-1164 (-229)) (-904 |#1|) (-1123 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-904 |#1|) (-1123 (-392)))) (-15 -2618 ((-1300) |#1| (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) |#1| (-1123 (-392)) (-1123 (-392)))) (-15 -2660 ((-1164 (-229)) |#1| (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) |#1| (-1123 (-392)) (-1123 (-392)))) (-15 -2618 ((-1300) (-907 |#1|) (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2618 ((-1300) (-907 |#1|) (-1123 (-392)) (-1123 (-392)))) (-15 -2660 ((-1164 (-229)) (-907 |#1|) (-1123 (-392)) (-1123 (-392)) (-666 (-272)))) (-15 -2660 ((-1164 (-229)) (-907 |#1|) (-1123 (-392)) (-1123 (-392))))) +((-2618 (((-1300) (-666 (-229)) (-666 (-229)) (-666 (-229)) (-666 (-272))) 23 T ELT) (((-1300) (-666 (-229)) (-666 (-229)) (-666 (-229))) 24 T ELT) (((-1299) (-666 (-972 (-229))) (-666 (-272))) 16 T ELT) (((-1299) (-666 (-972 (-229)))) 17 T ELT) (((-1299) (-666 (-229)) (-666 (-229)) (-666 (-272))) 20 T ELT) (((-1299) (-666 (-229)) (-666 (-229))) 21 T ELT))) +(((-269) (-10 -7 (-15 -2618 ((-1299) (-666 (-229)) (-666 (-229)))) (-15 -2618 ((-1299) (-666 (-229)) (-666 (-229)) (-666 (-272)))) (-15 -2618 ((-1299) (-666 (-972 (-229))))) (-15 -2618 ((-1299) (-666 (-972 (-229))) (-666 (-272)))) (-15 -2618 ((-1300) (-666 (-229)) (-666 (-229)) (-666 (-229)))) (-15 -2618 ((-1300) (-666 (-229)) (-666 (-229)) (-666 (-229)) (-666 (-272)))))) (T -269)) +((-2618 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-666 (-229))) (-5 *4 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2618 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-666 (-229))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-972 (-229)))) (-5 *4 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-269)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-666 (-972 (-229)))) (-5 *2 (-1299)) (-5 *1 (-269)))) (-2618 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-666 (-229))) (-5 *4 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-269)))) (-2618 (*1 *2 *3 *3) (-12 (-5 *3 (-666 (-229))) (-5 *2 (-1299)) (-5 *1 (-269))))) +(-10 -7 (-15 -2618 ((-1299) (-666 (-229)) (-666 (-229)))) (-15 -2618 ((-1299) (-666 (-229)) (-666 (-229)) (-666 (-272)))) (-15 -2618 ((-1299) (-666 (-972 (-229))))) (-15 -2618 ((-1299) (-666 (-972 (-229))) (-666 (-272)))) (-15 -2618 ((-1300) (-666 (-229)) (-666 (-229)) (-666 (-229)))) (-15 -2618 ((-1300) (-666 (-229)) (-666 (-229)) (-666 (-229)) (-666 (-272))))) +((-2545 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-666 (-272)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-4471 (((-950) (-666 (-272)) (-950)) 52 T ELT)) (-3074 (((-950) (-666 (-272)) (-950)) 51 T ELT)) (-3940 (((-666 (-392)) (-666 (-272)) (-666 (-392))) 68 T ELT)) (-1518 (((-392) (-666 (-272)) (-392)) 57 T ELT)) (-4150 (((-950) (-666 (-272)) (-950)) 53 T ELT)) (-2146 (((-112) (-666 (-272)) (-112)) 27 T ELT)) (-3379 (((-1189) (-666 (-272)) (-1189)) 19 T ELT)) (-2229 (((-1189) (-666 (-272)) (-1189)) 26 T ELT)) (-3704 (((-1164 (-229)) (-666 (-272))) 46 T ELT)) (-2933 (((-666 (-1125 (-392))) (-666 (-272)) (-666 (-1125 (-392)))) 40 T ELT)) (-1838 (((-898) (-666 (-272)) (-898)) 32 T ELT)) (-3184 (((-898) (-666 (-272)) (-898)) 33 T ELT)) (-3722 (((-1 (-972 (-229)) (-972 (-229))) (-666 (-272)) (-1 (-972 (-229)) (-972 (-229)))) 63 T ELT)) (-2357 (((-112) (-666 (-272)) (-112)) 14 T ELT)) (-3549 (((-112) (-666 (-272)) (-112)) 13 T ELT))) +(((-270) (-10 -7 (-15 -3549 ((-112) (-666 (-272)) (-112))) (-15 -2357 ((-112) (-666 (-272)) (-112))) (-15 -2545 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-666 (-272)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -3379 ((-1189) (-666 (-272)) (-1189))) (-15 -2229 ((-1189) (-666 (-272)) (-1189))) (-15 -2146 ((-112) (-666 (-272)) (-112))) (-15 -1838 ((-898) (-666 (-272)) (-898))) (-15 -3184 ((-898) (-666 (-272)) (-898))) (-15 -2933 ((-666 (-1125 (-392))) (-666 (-272)) (-666 (-1125 (-392))))) (-15 -3074 ((-950) (-666 (-272)) (-950))) (-15 -4471 ((-950) (-666 (-272)) (-950))) (-15 -3704 ((-1164 (-229)) (-666 (-272)))) (-15 -4150 ((-950) (-666 (-272)) (-950))) (-15 -1518 ((-392) (-666 (-272)) (-392))) (-15 -3722 ((-1 (-972 (-229)) (-972 (-229))) (-666 (-272)) (-1 (-972 (-229)) (-972 (-229))))) (-15 -3940 ((-666 (-392)) (-666 (-272)) (-666 (-392)))))) (T -270)) +((-3940 (*1 *2 *3 *2) (-12 (-5 *2 (-666 (-392))) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-3722 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-392)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-270)))) (-4471 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-3074 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-2933 (*1 *2 *3 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-3184 (*1 *2 *3 *2) (-12 (-5 *2 (-898)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-1838 (*1 *2 *3 *2) (-12 (-5 *2 (-898)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-2146 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-2229 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-3379 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-2545 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-2357 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) (-3549 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-666 (-272))) (-5 *1 (-270))))) +(-10 -7 (-15 -3549 ((-112) (-666 (-272)) (-112))) (-15 -2357 ((-112) (-666 (-272)) (-112))) (-15 -2545 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-666 (-272)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -3379 ((-1189) (-666 (-272)) (-1189))) (-15 -2229 ((-1189) (-666 (-272)) (-1189))) (-15 -2146 ((-112) (-666 (-272)) (-112))) (-15 -1838 ((-898) (-666 (-272)) (-898))) (-15 -3184 ((-898) (-666 (-272)) (-898))) (-15 -2933 ((-666 (-1125 (-392))) (-666 (-272)) (-666 (-1125 (-392))))) (-15 -3074 ((-950) (-666 (-272)) (-950))) (-15 -4471 ((-950) (-666 (-272)) (-950))) (-15 -3704 ((-1164 (-229)) (-666 (-272)))) (-15 -4150 ((-950) (-666 (-272)) (-950))) (-15 -1518 ((-392) (-666 (-272)) (-392))) (-15 -3722 ((-1 (-972 (-229)) (-972 (-229))) (-666 (-272)) (-1 (-972 (-229)) (-972 (-229))))) (-15 -3940 ((-666 (-392)) (-666 (-272)) (-666 (-392))))) +((-2758 (((-3 |#1| "failed") (-666 (-272)) (-1207)) 17 T ELT))) +(((-271 |#1|) (-10 -7 (-15 -2758 ((-3 |#1| "failed") (-666 (-272)) (-1207)))) (-1248)) (T -271)) +((-2758 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-666 (-272))) (-5 *4 (-1207)) (-5 *1 (-271 *2)) (-4 *2 (-1248))))) +(-10 -7 (-15 -2758 ((-3 |#1| "failed") (-666 (-272)) (-1207)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2545 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-4471 (($ (-950)) 81 T ELT)) (-3074 (($ (-950)) 80 T ELT)) (-1430 (($ (-666 (-392))) 87 T ELT)) (-1518 (($ (-392)) 66 T ELT)) (-4150 (($ (-950)) 82 T ELT)) (-2146 (($ (-112)) 33 T ELT)) (-3379 (($ (-1189)) 28 T ELT)) (-2229 (($ (-1189)) 29 T ELT)) (-3704 (($ (-1164 (-229))) 76 T ELT)) (-2933 (($ (-666 (-1125 (-392)))) 72 T ELT)) (-2246 (($ (-666 (-1125 (-392)))) 68 T ELT) (($ (-666 (-1125 (-421 (-578))))) 71 T ELT)) (-3985 (($ (-392)) 38 T ELT) (($ (-898)) 42 T ELT)) (-4394 (((-112) (-666 $) (-1207)) 100 T ELT)) (-2758 (((-3 (-52) "failed") (-666 $) (-1207)) 102 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4102 (($ (-392)) 43 T ELT) (($ (-898)) 44 T ELT)) (-1453 (($ (-1 (-972 (-229)) (-972 (-229)))) 65 T ELT)) (-3722 (($ (-1 (-972 (-229)) (-972 (-229)))) 83 T ELT)) (-3488 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-2411 (((-886) $) 93 T ELT)) (-3716 (($ (-112)) 34 T ELT) (($ (-666 (-1125 (-392)))) 60 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3549 (($ (-112)) 35 T ELT)) (-2384 (((-112) $ $) 97 T ELT))) +(((-272) (-13 (-1131) (-10 -8 (-15 -3549 ($ (-112))) (-15 -3716 ($ (-112))) (-15 -2545 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -3379 ($ (-1189))) (-15 -2229 ($ (-1189))) (-15 -2146 ($ (-112))) (-15 -3716 ($ (-666 (-1125 (-392))))) (-15 -1453 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -3985 ($ (-392))) (-15 -3985 ($ (-898))) (-15 -4102 ($ (-392))) (-15 -4102 ($ (-898))) (-15 -3488 ($ (-1 (-229) (-229)))) (-15 -3488 ($ (-1 (-229) (-229) (-229)))) (-15 -3488 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1518 ($ (-392))) (-15 -2246 ($ (-666 (-1125 (-392))))) (-15 -2246 ($ (-666 (-1125 (-421 (-578)))))) (-15 -2933 ($ (-666 (-1125 (-392))))) (-15 -3704 ($ (-1164 (-229)))) (-15 -3074 ($ (-950))) (-15 -4471 ($ (-950))) (-15 -4150 ($ (-950))) (-15 -3722 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -1430 ($ (-666 (-392)))) (-15 -2758 ((-3 (-52) "failed") (-666 $) (-1207))) (-15 -4394 ((-112) (-666 $) (-1207)))))) (T -272)) +((-3549 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-2545 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-272)))) (-3379 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-272)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-272)))) (-2146 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-272)))) (-1453 (*1 *1 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-272)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-272)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-272)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-272)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-272)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-272)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-272)))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-272)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-272)))) (-2246 (*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-272)))) (-2246 (*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-421 (-578))))) (-5 *1 (-272)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-272)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-272)))) (-3074 (*1 *1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-272)))) (-4471 (*1 *1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-272)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-272)))) (-3722 (*1 *1 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-272)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-666 (-392))) (-5 *1 (-272)))) (-2758 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-666 (-272))) (-5 *4 (-1207)) (-5 *2 (-52)) (-5 *1 (-272)))) (-4394 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-272))) (-5 *4 (-1207)) (-5 *2 (-112)) (-5 *1 (-272))))) +(-13 (-1131) (-10 -8 (-15 -3549 ($ (-112))) (-15 -3716 ($ (-112))) (-15 -2545 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -3379 ($ (-1189))) (-15 -2229 ($ (-1189))) (-15 -2146 ($ (-112))) (-15 -3716 ($ (-666 (-1125 (-392))))) (-15 -1453 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -3985 ($ (-392))) (-15 -3985 ($ (-898))) (-15 -4102 ($ (-392))) (-15 -4102 ($ (-898))) (-15 -3488 ($ (-1 (-229) (-229)))) (-15 -3488 ($ (-1 (-229) (-229) (-229)))) (-15 -3488 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1518 ($ (-392))) (-15 -2246 ($ (-666 (-1125 (-392))))) (-15 -2246 ($ (-666 (-1125 (-421 (-578)))))) (-15 -2933 ($ (-666 (-1125 (-392))))) (-15 -3704 ($ (-1164 (-229)))) (-15 -3074 ($ (-950))) (-15 -4471 ($ (-950))) (-15 -4150 ($ (-950))) (-15 -3722 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -1430 ($ (-666 (-392)))) (-15 -2758 ((-3 (-52) "failed") (-666 $) (-1207))) (-15 -4394 ((-112) (-666 $) (-1207))))) +((-2031 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) 11 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) 19 T ELT) (($ $ (-793)) NIL T ELT) (($ $) 16 T ELT)) (-1676 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-793)) 14 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT))) +(((-273 |#1| |#2|) (-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -1676 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -1676 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -1676 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -1676 (|#1| |#1| (-666 (-1207)))) (-15 -1676 (|#1| |#1| (-1207) (-793))) (-15 -1676 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -1676 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -1676 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1248)) (T -273)) +NIL +(-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -1676 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -1676 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -1676 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -1676 (|#1| |#1| (-666 (-1207)))) (-15 -1676 (|#1| |#1| (-1207) (-793))) (-15 -1676 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -1676 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -1676 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|)))) +((-2031 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 22 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) 16 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 15 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 14 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207)) 12 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-793)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-1676 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 20 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) 19 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 18 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 17 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207)) 13 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-793)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT))) +(((-274 |#1|) (-142) (-1248)) (T -274)) +((-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1248)))) (-2031 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1248)))) (-1676 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1248)))) (-1676 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1248))))) +(-13 (-1248) (-10 -8 (-15 -2031 ($ $ (-1 |t#1| |t#1|))) (-15 -2031 ($ $ (-1 |t#1| |t#1|) (-793))) (-15 -1676 ($ $ (-1 |t#1| |t#1|))) (-15 -1676 ($ $ (-1 |t#1| |t#1|) (-793))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-929 (-1207))) (-6 (-929 (-1207))) |%noBranch|))) +(((-236 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-921 $ #0=(-1207)) |has| |#1| (-929 (-1207))) ((-929 #0#) |has| |#1| (-929 (-1207))) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2018 (((-666 (-793)) $) NIL T ELT) (((-666 (-793)) $ |#2|) NIL T ELT)) (-2452 (((-793) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-2949 (((-666 |#3|) $) NIL T ELT)) (-4420 (((-1203 $) $ |#3|) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 |#3|)) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2082 (($ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1156 |#1| |#2|) "failed") $) 23 T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1156 |#1| |#2|) $) NIL T ELT)) (-2035 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-545 |#3|) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| |#1| (-911 (-392))) (|has| |#3| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| |#1| (-911 (-578))) (|has| |#3| (-911 (-578)))) ELT)) (-4059 (((-793) $ |#2|) NIL T ELT) (((-793) $) 10 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2936 (($ (-1203 |#1|) |#3|) NIL T ELT) (($ (-1203 $) |#3|) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-666 |#3|) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |#3|) NIL T ELT)) (-3937 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-666 (-793)) $ (-666 |#3|)) NIL T ELT)) (-2500 (($ (-1 (-545 |#3|) (-545 |#3|)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1765 (((-1 $ (-793)) |#2|) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-4006 (((-3 |#3| "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2824 ((|#3| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3548 (((-112) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| |#3|) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4348 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-666 |#3|) (-666 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-666 |#3|) (-666 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-666 |#2|) (-666 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-666 |#2|) (-666 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-3232 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 |#3|) (-666 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-666 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2352 (((-666 |#2|) $) NIL T ELT)) (-3683 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-666 (-793)) $ (-666 |#3|)) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#3| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#3| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| |#1| (-633 (-550))) (|has| |#3| (-633 (-550)))) ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1156 |#1| |#2|)) 32 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-666 |#3|) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 |#3|) (-666 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-666 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-275 |#1| |#2| |#3|) (-13 (-262 |#1| |#2| |#3| (-545 |#3|)) (-1069 (-1156 |#1| |#2|))) (-1080) (-871) (-277 |#2|)) (T -275)) +NIL +(-13 (-262 |#1| |#2| |#3| (-545 |#3|)) (-1069 (-1156 |#1| |#2|))) +((-2452 (((-793) $) 37 T ELT)) (-2818 (((-3 |#2| "failed") $) 22 T ELT)) (-3516 ((|#2| $) 33 T ELT)) (-2031 (($ $ (-793)) 18 T ELT) (($ $) 14 T ELT)) (-2411 (((-886) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-2384 (((-112) $ $) 26 T ELT)) (-2404 (((-112) $ $) 36 T ELT))) +(((-276 |#1| |#2|) (-10 -8 (-15 -2452 ((-793) |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2404 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-277 |#2|) (-871)) (T -276)) +NIL +(-10 -8 (-15 -2452 ((-793) |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2404 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2452 (((-793) $) 23 T ELT)) (-3967 ((|#1| $) 24 T ELT)) (-2818 (((-3 |#1| "failed") $) 28 T ELT)) (-3516 ((|#1| $) 29 T ELT)) (-4059 (((-793) $) 25 T ELT)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-1765 (($ |#1| (-793)) 26 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2031 (($ $ (-793)) 32 T ELT) (($ $) 30 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ |#1|) 27 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1676 (($ $ (-793)) 33 T ELT) (($ $) 31 T ELT)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT))) +(((-277 |#1|) (-142) (-871)) (T -277)) +((-2411 (*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-1765 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-2452 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793))))) +(-13 (-871) (-239) (-1069 |t#1|) (-10 -8 (-15 -1765 ($ |t#1| (-793))) (-15 -4059 ((-793) $)) (-15 -3967 (|t#1| $)) (-15 -2452 ((-793) $)) (-15 -2411 ($ |t#1|)))) +(((-102) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-236 $) . T) ((-239) . T) ((-871) . T) ((-874) . T) ((-1069 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-2949 (((-666 (-1207)) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 53 T ELT)) (-4418 (((-666 (-1207)) (-328 (-229)) (-793)) 94 T ELT)) (-3474 (((-3 (-328 (-229)) "failed") (-328 (-229))) 63 T ELT)) (-2528 (((-328 (-229)) (-328 (-229))) 79 T ELT)) (-3275 (((-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 38 T ELT)) (-2674 (((-112) (-666 (-328 (-229)))) 104 T ELT)) (-3750 (((-112) (-328 (-229))) 36 T ELT)) (-2968 (((-666 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))))) 132 T ELT)) (-3669 (((-666 (-328 (-229))) (-666 (-328 (-229)))) 108 T ELT)) (-3858 (((-666 (-328 (-229))) (-666 (-328 (-229)))) 106 T ELT)) (-2191 (((-711 (-229)) (-666 (-328 (-229))) (-793)) 120 T ELT)) (-3447 (((-112) (-328 (-229))) 31 T ELT) (((-112) (-666 (-328 (-229)))) 105 T ELT)) (-1553 (((-666 (-229)) (-666 (-865 (-229))) (-229)) 15 T ELT)) (-1426 (((-392) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 126 T ELT)) (-2300 (((-1066) (-1207) (-1066)) 46 T ELT))) +(((-278) (-10 -7 (-15 -1553 ((-666 (-229)) (-666 (-865 (-229))) (-229))) (-15 -3275 ((-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))))) (-15 -3474 ((-3 (-328 (-229)) "failed") (-328 (-229)))) (-15 -2528 ((-328 (-229)) (-328 (-229)))) (-15 -2674 ((-112) (-666 (-328 (-229))))) (-15 -3447 ((-112) (-666 (-328 (-229))))) (-15 -3447 ((-112) (-328 (-229)))) (-15 -2191 ((-711 (-229)) (-666 (-328 (-229))) (-793))) (-15 -3858 ((-666 (-328 (-229))) (-666 (-328 (-229))))) (-15 -3669 ((-666 (-328 (-229))) (-666 (-328 (-229))))) (-15 -3750 ((-112) (-328 (-229)))) (-15 -2949 ((-666 (-1207)) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -4418 ((-666 (-1207)) (-328 (-229)) (-793))) (-15 -2300 ((-1066) (-1207) (-1066))) (-15 -1426 ((-392) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -2968 ((-666 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))))))) (T -278)) +((-2968 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))))) (-5 *2 (-666 (-1189))) (-5 *1 (-278)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) (-5 *2 (-392)) (-5 *1 (-278)))) (-2300 (*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-278)))) (-4418 (*1 *2 *3 *4) (-12 (-5 *3 (-328 (-229))) (-5 *4 (-793)) (-5 *2 (-666 (-1207))) (-5 *1 (-278)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) (-5 *2 (-666 (-1207))) (-5 *1 (-278)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-112)) (-5 *1 (-278)))) (-3669 (*1 *2 *2) (-12 (-5 *2 (-666 (-328 (-229)))) (-5 *1 (-278)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-666 (-328 (-229)))) (-5 *1 (-278)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-328 (-229)))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-278)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-112)) (-5 *1 (-278)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-666 (-328 (-229)))) (-5 *2 (-112)) (-5 *1 (-278)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-666 (-328 (-229)))) (-5 *2 (-112)) (-5 *1 (-278)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-328 (-229))) (-5 *1 (-278)))) (-3474 (*1 *2 *2) (|partial| -12 (-5 *2 (-328 (-229))) (-5 *1 (-278)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (-5 *1 (-278)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-865 (-229)))) (-5 *4 (-229)) (-5 *2 (-666 *4)) (-5 *1 (-278))))) +(-10 -7 (-15 -1553 ((-666 (-229)) (-666 (-865 (-229))) (-229))) (-15 -3275 ((-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))))) (-15 -3474 ((-3 (-328 (-229)) "failed") (-328 (-229)))) (-15 -2528 ((-328 (-229)) (-328 (-229)))) (-15 -2674 ((-112) (-666 (-328 (-229))))) (-15 -3447 ((-112) (-666 (-328 (-229))))) (-15 -3447 ((-112) (-328 (-229)))) (-15 -2191 ((-711 (-229)) (-666 (-328 (-229))) (-793))) (-15 -3858 ((-666 (-328 (-229))) (-666 (-328 (-229))))) (-15 -3669 ((-666 (-328 (-229))) (-666 (-328 (-229))))) (-15 -3750 ((-112) (-328 (-229)))) (-15 -2949 ((-666 (-1207)) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -4418 ((-666 (-1207)) (-328 (-229)) (-793))) (-15 -2300 ((-1066) (-1207) (-1066))) (-15 -1426 ((-392) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -2968 ((-666 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 56 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 32 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-279) (-861)) (T -279)) +NIL +(-861) +((-3213 (((-112) $ $) NIL T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 72 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 63 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 41 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 43 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-280) (-861)) (T -280)) +NIL +(-861) +((-3213 (((-112) $ $) NIL T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 90 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 85 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 52 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 65 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-281) (-861)) (T -281)) +NIL +(-861) +((-3213 (((-112) $ $) NIL T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 73 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 45 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-282) (-861)) (T -282)) +NIL +(-861) +((-3213 (((-112) $ $) NIL T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 65 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 31 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-283) (-861)) (T -283)) +NIL +(-861) +((-3213 (((-112) $ $) NIL T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 90 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 33 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-284) (-861)) (T -284)) +NIL +(-861) +((-3213 (((-112) $ $) NIL T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 87 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 32 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-285) (-861)) (T -285)) +NIL +(-861) +((-3213 (((-112) $ $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2028 (((-666 (-578)) $) 29 T ELT)) (-3683 (((-793) $) 27 T ELT)) (-2411 (((-886) $) 33 T ELT) (($ (-666 (-578))) 23 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2969 (($ (-793)) 30 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 9 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 17 T ELT))) +(((-286) (-13 (-871) (-10 -8 (-15 -2411 ($ (-666 (-578)))) (-15 -3683 ((-793) $)) (-15 -2028 ((-666 (-578)) $)) (-15 -2969 ($ (-793)))))) (T -286)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-286)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-286)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-286)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286))))) +(-13 (-871) (-10 -8 (-15 -2411 ($ (-666 (-578)))) (-15 -3683 ((-793) $)) (-15 -2028 ((-666 (-578)) $)) (-15 -2969 ($ (-793))))) +((-1502 ((|#2| |#2|) 77 T ELT)) (-1372 ((|#2| |#2|) 65 T ELT)) (-1521 (((-3 |#2| "failed") |#2| (-666 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125 T ELT)) (-1478 ((|#2| |#2|) 75 T ELT)) (-1349 ((|#2| |#2|) 63 T ELT)) (-1528 ((|#2| |#2|) 79 T ELT)) (-1392 ((|#2| |#2|) 67 T ELT)) (-2551 ((|#2|) 46 T ELT)) (-4397 (((-116) (-116)) 100 T ELT)) (-3864 ((|#2| |#2|) 61 T ELT)) (-2846 (((-112) |#2|) 147 T ELT)) (-2278 ((|#2| |#2|) 195 T ELT)) (-2920 ((|#2| |#2|) 171 T ELT)) (-1917 ((|#2|) 59 T ELT)) (-3107 ((|#2|) 58 T ELT)) (-2637 ((|#2| |#2|) 191 T ELT)) (-2538 ((|#2| |#2|) 167 T ELT)) (-2655 ((|#2| |#2|) 199 T ELT)) (-1437 ((|#2| |#2|) 175 T ELT)) (-2999 ((|#2| |#2|) 163 T ELT)) (-2573 ((|#2| |#2|) 165 T ELT)) (-4253 ((|#2| |#2|) 201 T ELT)) (-1409 ((|#2| |#2|) 177 T ELT)) (-1404 ((|#2| |#2|) 197 T ELT)) (-2735 ((|#2| |#2|) 173 T ELT)) (-2807 ((|#2| |#2|) 193 T ELT)) (-3235 ((|#2| |#2|) 169 T ELT)) (-4373 ((|#2| |#2|) 207 T ELT)) (-3816 ((|#2| |#2|) 183 T ELT)) (-3634 ((|#2| |#2|) 203 T ELT)) (-2220 ((|#2| |#2|) 179 T ELT)) (-1592 ((|#2| |#2|) 211 T ELT)) (-2156 ((|#2| |#2|) 187 T ELT)) (-1733 ((|#2| |#2|) 213 T ELT)) (-4340 ((|#2| |#2|) 189 T ELT)) (-2288 ((|#2| |#2|) 209 T ELT)) (-2395 ((|#2| |#2|) 185 T ELT)) (-3830 ((|#2| |#2|) 205 T ELT)) (-2827 ((|#2| |#2|) 181 T ELT)) (-3587 ((|#2| |#2|) 62 T ELT)) (-1541 ((|#2| |#2|) 80 T ELT)) (-1403 ((|#2| |#2|) 68 T ELT)) (-1515 ((|#2| |#2|) 78 T ELT)) (-1382 ((|#2| |#2|) 66 T ELT)) (-1489 ((|#2| |#2|) 76 T ELT)) (-1361 ((|#2| |#2|) 64 T ELT)) (-3619 (((-112) (-116)) 98 T ELT)) (-1576 ((|#2| |#2|) 83 T ELT)) (-1436 ((|#2| |#2|) 71 T ELT)) (-1552 ((|#2| |#2|) 81 T ELT)) (-1414 ((|#2| |#2|) 69 T ELT)) (-1598 ((|#2| |#2|) 85 T ELT)) (-1456 ((|#2| |#2|) 73 T ELT)) (-3502 ((|#2| |#2|) 86 T ELT)) (-1467 ((|#2| |#2|) 74 T ELT)) (-1587 ((|#2| |#2|) 84 T ELT)) (-1447 ((|#2| |#2|) 72 T ELT)) (-1564 ((|#2| |#2|) 82 T ELT)) (-1424 ((|#2| |#2|) 70 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3587 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -1372 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -1403 (|#2| |#2|)) (-15 -1414 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1436 (|#2| |#2|)) (-15 -1447 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1478 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2551 (|#2|)) (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -3107 (|#2|)) (-15 -1917 (|#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2999 (|#2| |#2|)) (-15 -2538 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -1437 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -4340 (|#2| |#2|)) (-15 -2637 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -1404 (|#2| |#2|)) (-15 -2655 (|#2| |#2|)) (-15 -4253 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -1521 ((-3 |#2| "failed") |#2| (-666 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2846 ((-112) |#2|))) (-570) (-13 (-444 |#1|) (-1033))) (T -287)) +((-2846 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-444 *4) (-1033))))) (-1521 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-666 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-444 *4) (-1033))) (-4 *4 (-570)) (-5 *1 (-287 *4 *2)))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-3830 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-4253 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2655 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1404 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-4340 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1409 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2920 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-3235 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2538 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2999 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1917 (*1 *2) (-12 (-4 *2 (-13 (-444 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-570)))) (-3107 (*1 *2) (-12 (-4 *2 (-13 (-444 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-570)))) (-4397 (*1 *2 *2) (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-444 *3) (-1033))))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-444 *4) (-1033))))) (-2551 (*1 *2) (-12 (-4 *2 (-13 (-444 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-570)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1478 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1372 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033))))) (-3587 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033)))))) +(-10 -7 (-15 -3587 (|#2| |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -1372 (|#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -1392 (|#2| |#2|)) (-15 -1403 (|#2| |#2|)) (-15 -1414 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1436 (|#2| |#2|)) (-15 -1447 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1478 (|#2| |#2|)) (-15 -1489 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1576 (|#2| |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2551 (|#2|)) (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -3107 (|#2|)) (-15 -1917 (|#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2999 (|#2| |#2|)) (-15 -2538 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -2920 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -1437 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -4340 (|#2| |#2|)) (-15 -2637 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -1404 (|#2| |#2|)) (-15 -2655 (|#2| |#2|)) (-15 -4253 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3830 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -1521 ((-3 |#2| "failed") |#2| (-666 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2846 ((-112) |#2|))) +((-1655 (((-3 |#2| "failed") (-666 (-631 |#2|)) |#2| (-1207)) 151 T ELT)) (-4349 ((|#2| (-421 (-578)) |#2|) 49 T ELT)) (-2415 ((|#2| |#2| (-631 |#2|)) 144 T ELT)) (-3433 (((-2 (|:| |func| |#2|) (|:| |kers| (-666 (-631 |#2|))) (|:| |vals| (-666 |#2|))) |#2| (-1207)) 143 T ELT)) (-3804 ((|#2| |#2| (-1207)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-3210 ((|#2| |#2| (-1207)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-288 |#1| |#2|) (-10 -7 (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1207))) (-15 -3433 ((-2 (|:| |func| |#2|) (|:| |kers| (-666 (-631 |#2|))) (|:| |vals| (-666 |#2|))) |#2| (-1207))) (-15 -3804 (|#2| |#2|)) (-15 -3804 (|#2| |#2| (-1207))) (-15 -1655 ((-3 |#2| "failed") (-666 (-631 |#2|)) |#2| (-1207))) (-15 -2415 (|#2| |#2| (-631 |#2|))) (-15 -4349 (|#2| (-421 (-578)) |#2|))) (-13 (-570) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|))) (T -288)) +((-4349 (*1 *2 *3 *2) (-12 (-5 *3 (-421 (-578))) (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))))) (-2415 (*1 *2 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))) (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-288 *4 *2)))) (-1655 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-666 (-631 *2))) (-5 *4 (-1207)) (-4 *2 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-288 *5 *2)))) (-3804 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) (-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-666 (-631 *3))) (|:| |vals| (-666 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3)))))) +(-10 -7 (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1207))) (-15 -3433 ((-2 (|:| |func| |#2|) (|:| |kers| (-666 (-631 |#2|))) (|:| |vals| (-666 |#2|))) |#2| (-1207))) (-15 -3804 (|#2| |#2|)) (-15 -3804 (|#2| |#2| (-1207))) (-15 -1655 ((-3 |#2| "failed") (-666 (-631 |#2|)) |#2| (-1207))) (-15 -2415 (|#2| |#2| (-631 |#2|))) (-15 -4349 (|#2| (-421 (-578)) |#2|))) +((-3175 (((-3 |#3| "failed") |#3|) 120 T ELT)) (-1502 ((|#3| |#3|) 142 T ELT)) (-1735 (((-3 |#3| "failed") |#3|) 89 T ELT)) (-1372 ((|#3| |#3|) 132 T ELT)) (-1555 (((-3 |#3| "failed") |#3|) 65 T ELT)) (-1478 ((|#3| |#3|) 140 T ELT)) (-1844 (((-3 |#3| "failed") |#3|) 53 T ELT)) (-1349 ((|#3| |#3|) 130 T ELT)) (-4025 (((-3 |#3| "failed") |#3|) 122 T ELT)) (-1528 ((|#3| |#3|) 144 T ELT)) (-4215 (((-3 |#3| "failed") |#3|) 91 T ELT)) (-1392 ((|#3| |#3|) 134 T ELT)) (-2843 (((-3 |#3| "failed") |#3| (-793)) 41 T ELT)) (-3681 (((-3 |#3| "failed") |#3|) 81 T ELT)) (-3864 ((|#3| |#3|) 129 T ELT)) (-2427 (((-3 |#3| "failed") |#3|) 51 T ELT)) (-3587 ((|#3| |#3|) 128 T ELT)) (-3725 (((-3 |#3| "failed") |#3|) 123 T ELT)) (-1541 ((|#3| |#3|) 145 T ELT)) (-1984 (((-3 |#3| "failed") |#3|) 92 T ELT)) (-1403 ((|#3| |#3|) 135 T ELT)) (-2365 (((-3 |#3| "failed") |#3|) 121 T ELT)) (-1515 ((|#3| |#3|) 143 T ELT)) (-3466 (((-3 |#3| "failed") |#3|) 90 T ELT)) (-1382 ((|#3| |#3|) 133 T ELT)) (-2576 (((-3 |#3| "failed") |#3|) 67 T ELT)) (-1489 ((|#3| |#3|) 141 T ELT)) (-1870 (((-3 |#3| "failed") |#3|) 55 T ELT)) (-1361 ((|#3| |#3|) 131 T ELT)) (-2312 (((-3 |#3| "failed") |#3|) 73 T ELT)) (-1576 ((|#3| |#3|) 148 T ELT)) (-2719 (((-3 |#3| "failed") |#3|) 114 T ELT)) (-1436 ((|#3| |#3|) 152 T ELT)) (-1806 (((-3 |#3| "failed") |#3|) 69 T ELT)) (-1552 ((|#3| |#3|) 146 T ELT)) (-1680 (((-3 |#3| "failed") |#3|) 57 T ELT)) (-1414 ((|#3| |#3|) 136 T ELT)) (-3836 (((-3 |#3| "failed") |#3|) 77 T ELT)) (-1598 ((|#3| |#3|) 150 T ELT)) (-3511 (((-3 |#3| "failed") |#3|) 61 T ELT)) (-1456 ((|#3| |#3|) 138 T ELT)) (-1974 (((-3 |#3| "failed") |#3|) 79 T ELT)) (-3502 ((|#3| |#3|) 151 T ELT)) (-2247 (((-3 |#3| "failed") |#3|) 63 T ELT)) (-1467 ((|#3| |#3|) 139 T ELT)) (-1427 (((-3 |#3| "failed") |#3|) 75 T ELT)) (-1587 ((|#3| |#3|) 149 T ELT)) (-2996 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-1447 ((|#3| |#3|) 153 T ELT)) (-1755 (((-3 |#3| "failed") |#3|) 71 T ELT)) (-1564 ((|#3| |#3|) 147 T ELT)) (-3362 (((-3 |#3| "failed") |#3|) 59 T ELT)) (-1424 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-421 (-578))) 47 (|has| |#1| (-376)) ELT))) +(((-289 |#1| |#2| |#3|) (-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-578)))) |%noBranch|) (-15 -3587 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1361 (|#3| |#3|)) (-15 -1372 (|#3| |#3|)) (-15 -1382 (|#3| |#3|)) (-15 -1392 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1414 (|#3| |#3|)) (-15 -1424 (|#3| |#3|)) (-15 -1436 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1478 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1528 (|#3| |#3|)) (-15 -1541 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1598 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-421 (-578))) (-1289 |#1|) (-1260 |#1| |#2|)) (T -289)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-578))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1289 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1260 *4 *5)))) (-3587 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1372 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1478 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4))))) +(-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-578)))) |%noBranch|) (-15 -3587 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1361 (|#3| |#3|)) (-15 -1372 (|#3| |#3|)) (-15 -1382 (|#3| |#3|)) (-15 -1392 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1414 (|#3| |#3|)) (-15 -1424 (|#3| |#3|)) (-15 -1436 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1478 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1528 (|#3| |#3|)) (-15 -1541 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1598 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) +((-3175 (((-3 |#3| "failed") |#3|) 70 T ELT)) (-1502 ((|#3| |#3|) 137 T ELT)) (-1735 (((-3 |#3| "failed") |#3|) 54 T ELT)) (-1372 ((|#3| |#3|) 125 T ELT)) (-1555 (((-3 |#3| "failed") |#3|) 66 T ELT)) (-1478 ((|#3| |#3|) 135 T ELT)) (-1844 (((-3 |#3| "failed") |#3|) 50 T ELT)) (-1349 ((|#3| |#3|) 123 T ELT)) (-4025 (((-3 |#3| "failed") |#3|) 74 T ELT)) (-1528 ((|#3| |#3|) 139 T ELT)) (-4215 (((-3 |#3| "failed") |#3|) 58 T ELT)) (-1392 ((|#3| |#3|) 127 T ELT)) (-2843 (((-3 |#3| "failed") |#3| (-793)) 38 T ELT)) (-3681 (((-3 |#3| "failed") |#3|) 48 T ELT)) (-3864 ((|#3| |#3|) 111 T ELT)) (-2427 (((-3 |#3| "failed") |#3|) 46 T ELT)) (-3587 ((|#3| |#3|) 122 T ELT)) (-3725 (((-3 |#3| "failed") |#3|) 76 T ELT)) (-1541 ((|#3| |#3|) 140 T ELT)) (-1984 (((-3 |#3| "failed") |#3|) 60 T ELT)) (-1403 ((|#3| |#3|) 128 T ELT)) (-2365 (((-3 |#3| "failed") |#3|) 72 T ELT)) (-1515 ((|#3| |#3|) 138 T ELT)) (-3466 (((-3 |#3| "failed") |#3|) 56 T ELT)) (-1382 ((|#3| |#3|) 126 T ELT)) (-2576 (((-3 |#3| "failed") |#3|) 68 T ELT)) (-1489 ((|#3| |#3|) 136 T ELT)) (-1870 (((-3 |#3| "failed") |#3|) 52 T ELT)) (-1361 ((|#3| |#3|) 124 T ELT)) (-2312 (((-3 |#3| "failed") |#3|) 78 T ELT)) (-1576 ((|#3| |#3|) 143 T ELT)) (-2719 (((-3 |#3| "failed") |#3|) 62 T ELT)) (-1436 ((|#3| |#3|) 131 T ELT)) (-1806 (((-3 |#3| "failed") |#3|) 112 T ELT)) (-1552 ((|#3| |#3|) 141 T ELT)) (-1680 (((-3 |#3| "failed") |#3|) 100 T ELT)) (-1414 ((|#3| |#3|) 129 T ELT)) (-3836 (((-3 |#3| "failed") |#3|) 116 T ELT)) (-1598 ((|#3| |#3|) 145 T ELT)) (-3511 (((-3 |#3| "failed") |#3|) 107 T ELT)) (-1456 ((|#3| |#3|) 133 T ELT)) (-1974 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-3502 ((|#3| |#3|) 146 T ELT)) (-2247 (((-3 |#3| "failed") |#3|) 109 T ELT)) (-1467 ((|#3| |#3|) 134 T ELT)) (-1427 (((-3 |#3| "failed") |#3|) 80 T ELT)) (-1587 ((|#3| |#3|) 144 T ELT)) (-2996 (((-3 |#3| "failed") |#3|) 64 T ELT)) (-1447 ((|#3| |#3|) 132 T ELT)) (-1755 (((-3 |#3| "failed") |#3|) 113 T ELT)) (-1564 ((|#3| |#3|) 142 T ELT)) (-3362 (((-3 |#3| "failed") |#3|) 103 T ELT)) (-1424 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-421 (-578))) 44 (|has| |#1| (-376)) ELT))) +(((-290 |#1| |#2| |#3| |#4|) (-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-578)))) |%noBranch|) (-15 -3587 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1361 (|#3| |#3|)) (-15 -1372 (|#3| |#3|)) (-15 -1382 (|#3| |#3|)) (-15 -1392 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1414 (|#3| |#3|)) (-15 -1424 (|#3| |#3|)) (-15 -1436 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1478 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1528 (|#3| |#3|)) (-15 -1541 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1598 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-421 (-578))) (-1258 |#1|) (-1281 |#1| |#2|) (-1014 |#2|)) (T -290)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-578))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1258 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1281 *4 *5)) (-4 *6 (-1014 *5)))) (-3587 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1372 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1392 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1403 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1436 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1478 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1489 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1576 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4))))) +(-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-578)))) |%noBranch|) (-15 -3587 (|#3| |#3|)) (-15 -3864 (|#3| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1361 (|#3| |#3|)) (-15 -1372 (|#3| |#3|)) (-15 -1382 (|#3| |#3|)) (-15 -1392 (|#3| |#3|)) (-15 -1403 (|#3| |#3|)) (-15 -1414 (|#3| |#3|)) (-15 -1424 (|#3| |#3|)) (-15 -1436 (|#3| |#3|)) (-15 -1447 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1478 (|#3| |#3|)) (-15 -1489 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1515 (|#3| |#3|)) (-15 -1528 (|#3| |#3|)) (-15 -1541 (|#3| |#3|)) (-15 -1552 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1576 (|#3| |#3|)) (-15 -1587 (|#3| |#3|)) (-15 -1598 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) +((-1344 (((-112) $) 20 T ELT)) (-3100 (((-1212) $) 7 T ELT)) (-1959 (((-3 (-520) "failed") $) 14 T ELT)) (-2692 (((-3 (-666 $) "failed") $) NIL T ELT)) (-2039 (((-3 (-520) "failed") $) 21 T ELT)) (-3161 (((-3 (-1135) "failed") $) 18 T ELT)) (-3239 (((-112) $) 16 T ELT)) (-2411 (((-886) $) NIL T ELT)) (-1944 (((-112) $) 9 T ELT))) +(((-291) (-13 (-632 (-886)) (-10 -8 (-15 -3100 ((-1212) $)) (-15 -3239 ((-112) $)) (-15 -3161 ((-3 (-1135) "failed") $)) (-15 -1344 ((-112) $)) (-15 -2039 ((-3 (-520) "failed") $)) (-15 -1944 ((-112) $)) (-15 -1959 ((-3 (-520) "failed") $)) (-15 -2692 ((-3 (-666 $) "failed") $))))) (T -291)) +((-3100 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-291)))) (-3161 (*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-291)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-291)))) (-2039 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-291)))) (-1959 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-2692 (*1 *2 *1) (|partial| -12 (-5 *2 (-666 (-291))) (-5 *1 (-291))))) +(-13 (-632 (-886)) (-10 -8 (-15 -3100 ((-1212) $)) (-15 -3239 ((-112) $)) (-15 -3161 ((-3 (-1135) "failed") $)) (-15 -1344 ((-112) $)) (-15 -2039 ((-3 (-520) "failed") $)) (-15 -1944 ((-112) $)) (-15 -1959 ((-3 (-520) "failed") $)) (-15 -2692 ((-3 (-666 $) "failed") $)))) +((-1497 (((-611) $) 10 T ELT)) (-2359 (((-599) $) 8 T ELT)) (-3252 (((-303) $) 12 T ELT)) (-2267 (($ (-599) (-611) (-303)) NIL T ELT)) (-2411 (((-886) $) 19 T ELT))) +(((-292) (-13 (-632 (-886)) (-10 -8 (-15 -2267 ($ (-599) (-611) (-303))) (-15 -2359 ((-599) $)) (-15 -1497 ((-611) $)) (-15 -3252 ((-303) $))))) (T -292)) +((-2267 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-599)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-599)) (-5 *1 (-292)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) +(-13 (-632 (-886)) (-10 -8 (-15 -2267 ($ (-599) (-611) (-303))) (-15 -2359 ((-599) $)) (-15 -1497 ((-611) $)) (-15 -3252 ((-303) $)))) +((-4233 (($ (-1 (-112) |#2|) $) 24 T ELT)) (-3776 (($ $) 38 T ELT)) (-2631 (($ (-1 (-112) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-2737 (($ |#2| $) 34 T ELT) (($ (-1 (-112) |#2|) $) 18 T ELT)) (-1957 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-4273 (($ |#2| $ (-578)) 20 T ELT) (($ $ $ (-578)) 22 T ELT)) (-1705 (($ $ (-578)) 11 T ELT) (($ $ (-1265 (-578))) 14 T ELT)) (-3342 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3703 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-666 $)) NIL T ELT))) +(((-293 |#1| |#2|) (-10 -8 (-15 -1957 (|#1| |#1| |#1|)) (-15 -2631 (|#1| |#2| |#1|)) (-15 -1957 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#2|)) (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -1705 (|#1| |#1| (-1265 (-578)))) (-15 -1705 (|#1| |#1| (-578))) (-15 -3703 (|#1| (-666 |#1|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2737 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4233 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2737 (|#1| |#2| |#1|)) (-15 -3776 (|#1| |#1|))) (-294 |#2|) (-1248)) (T -293)) +NIL +(-10 -8 (-15 -1957 (|#1| |#1| |#1|)) (-15 -2631 (|#1| |#2| |#1|)) (-15 -1957 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#2|)) (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -1705 (|#1| |#1| (-1265 (-578)))) (-15 -1705 (|#1| |#1| (-578))) (-15 -3703 (|#1| (-666 |#1|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2737 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4233 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2737 (|#1| |#2| |#1|)) (-15 -3776 (|#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#1| $ (-578) |#1|) 53 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 60 (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) |#1|) $) 88 T ELT)) (-4233 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3777 (($ $) 86 (|has| |#1| (-1131)) ELT)) (-3776 (($ $) 80 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ (-1 (-112) |#1|) $) 92 T ELT) (($ |#1| $) 87 (|has| |#1| (-1131)) ELT)) (-2737 (($ |#1| $) 79 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 52 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) 70 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1957 (($ (-1 (-112) |#1| |#1|) $ $) 89 T ELT) (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4328 (($ |#1| $ (-578)) 91 T ELT) (($ $ $ (-578)) 90 T ELT)) (-4273 (($ |#1| $ (-578)) 62 T ELT) (($ $ $ (-578)) 61 T ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 43 (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-4291 (($ $ |#1|) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) |#1|) 51 T ELT) ((|#1| $ (-578)) 50 T ELT) (($ $ (-1265 (-578))) 71 T ELT)) (-3022 (($ $ (-578)) 94 T ELT) (($ $ (-1265 (-578))) 93 T ELT)) (-1705 (($ $ (-578)) 64 T ELT) (($ $ (-1265 (-578))) 63 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 81 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 72 T ELT)) (-3342 (($ $ |#1|) 96 T ELT) (($ $ $) 95 T ELT)) (-3703 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-666 $)) 66 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-294 |#1|) (-142) (-1248)) (T -294)) +((-3342 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)))) (-3342 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 (-578))) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) (-2631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) (-4328 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-294 *2)) (-4 *2 (-1248)))) (-4328 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) (-1957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) (-1589 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) (-2631 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)) (-4 *2 (-1131)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)) (-4 *2 (-1131)))) (-1957 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)) (-4 *2 (-871))))) +(-13 (-673 |t#1|) (-10 -8 (-6 -4501) (-15 -3342 ($ $ |t#1|)) (-15 -3342 ($ $ $)) (-15 -3022 ($ $ (-578))) (-15 -3022 ($ $ (-1265 (-578)))) (-15 -2631 ($ (-1 (-112) |t#1|) $)) (-15 -4328 ($ |t#1| $ (-578))) (-15 -4328 ($ $ $ (-578))) (-15 -1957 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1589 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -2631 ($ |t#1| $)) (-15 -3777 ($ $))) |%noBranch|) (IF (|has| |t#1| (-871)) (-15 -1957 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) ((** (($ $ $) 10 T ELT))) -(((-294 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-295)) (T -294)) +(((-295 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-296)) (T -295)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3863 (($ $) 6 T ELT)) (-3585 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) -(((-295) (-141)) (T -295)) -((** (*1 *1 *1 *1) (-4 *1 (-295))) (-3585 (*1 *1 *1) (-4 *1 (-295))) (-3863 (*1 *1 *1) (-4 *1 (-295)))) -(-13 (-10 -8 (-15 -3863 ($ $)) (-15 -3585 ($ $)) (-15 ** ($ $ $)))) -((-4303 (((-665 (-1187 |#1|)) (-1187 |#1|) |#1|) 35 T ELT)) (-4163 ((|#2| |#2| |#1|) 39 T ELT)) (-3815 ((|#2| |#2| |#1|) 41 T ELT)) (-2787 ((|#2| |#2| |#1|) 40 T ELT))) -(((-296 |#1| |#2|) (-10 -7 (-15 -4163 (|#2| |#2| |#1|)) (-15 -2787 (|#2| |#2| |#1|)) (-15 -3815 (|#2| |#2| |#1|)) (-15 -4303 ((-665 (-1187 |#1|)) (-1187 |#1|) |#1|))) (-375) (-1288 |#1|)) (T -296)) -((-4303 (*1 *2 *3 *4) (-12 (-4 *4 (-375)) (-5 *2 (-665 (-1187 *4))) (-5 *1 (-296 *4 *5)) (-5 *3 (-1187 *4)) (-4 *5 (-1288 *4)))) (-3815 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3)))) (-2787 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3)))) (-4163 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) -(-10 -7 (-15 -4163 (|#2| |#2| |#1|)) (-15 -2787 (|#2| |#2| |#1|)) (-15 -3815 (|#2| |#2| |#1|)) (-15 -4303 ((-665 (-1187 |#1|)) (-1187 |#1|) |#1|))) -((-2435 ((|#2| $ |#1|) 6 T ELT))) -(((-297 |#1| |#2|) (-141) (-1247) (-1247)) (T -297)) -((-2435 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247))))) -(-13 (-1247) (-10 -8 (-15 -2435 (|t#2| $ |t#1|)))) -(((-1247) . T)) -((-3448 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3381 ((|#3| $ |#2|) 10 T ELT))) -(((-298 |#1| |#2| |#3|) (-10 -8 (-15 -3448 (|#3| |#1| |#2| |#3|)) (-15 -3381 (|#3| |#1| |#2|))) (-299 |#2| |#3|) (-1130) (-1247)) (T -298)) -NIL -(-10 -8 (-15 -3448 (|#3| |#1| |#2| |#3|)) (-15 -3381 (|#3| |#1| |#2|))) -((-2589 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4500)) ELT)) (-3448 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) 11 T ELT)) (-2435 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-299 |#1| |#2|) (-141) (-1130) (-1247)) (T -299)) -((-2435 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-3381 (*1 *2 *1 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-2589 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-3448 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247))))) -(-13 (-297 |t#1| |t#2|) (-10 -8 (-15 -2435 (|t#2| $ |t#1| |t#2|)) (-15 -3381 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2589 (|t#2| $ |t#1| |t#2|)) (-15 -3448 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-297 |#1| |#2|) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 37 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 44 T ELT)) (-3913 (($ $) 41 T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) 35 T ELT)) (-2511 (($ |#2| |#3|) 18 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2305 ((|#3| $) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 19 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2239 (((-3 $ "failed") $ $) NIL T ELT)) (-2442 (((-792) $) 36 T ELT)) (-2435 ((|#2| $ |#2|) 46 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 23 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) 31 T CONST)) (-2378 (($) 39 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-300 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -2305 (|#3| $)) (-15 -2410 (|#2| $)) (-15 -2511 ($ |#2| |#3|)) (-15 -2239 ((-3 $ "failed") $ $)) (-15 -4281 ((-3 $ "failed") $)) (-15 -3055 ($ $)))) (-174) (-1273 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -300)) -((-4281 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2305 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2410 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2511 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2239 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3055 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -2305 (|#3| $)) (-15 -2410 (|#2| $)) (-15 -2511 ($ |#2| |#3|)) (-15 -2239 ((-3 $ "failed") $ $)) (-15 -4281 ((-3 $ "failed") $)) (-15 -3055 ($ $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-301) (-141)) (T -301)) -NIL -(-13 (-1079) (-111 $ $) (-10 -7 (-6 -4492))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2527 (((-665 (-1115)) $) 10 T ELT)) (-1728 (($ (-519) (-519) (-1134) $) 19 T ELT)) (-1386 (($ (-519) (-665 (-993)) $) 23 T ELT)) (-3582 (($) 25 T ELT)) (-3548 (((-712 (-1134)) (-519) (-519) $) 18 T ELT)) (-3038 (((-665 (-993)) (-519) $) 22 T ELT)) (-3414 (($) 7 T ELT)) (-2253 (($) 24 T ELT)) (-2410 (((-885) $) 29 T ELT)) (-1504 (($) 26 T ELT))) -(((-302) (-13 (-631 (-885)) (-10 -8 (-15 -3414 ($)) (-15 -2527 ((-665 (-1115)) $)) (-15 -3548 ((-712 (-1134)) (-519) (-519) $)) (-15 -1728 ($ (-519) (-519) (-1134) $)) (-15 -3038 ((-665 (-993)) (-519) $)) (-15 -1386 ($ (-519) (-665 (-993)) $)) (-15 -2253 ($)) (-15 -3582 ($)) (-15 -1504 ($))))) (T -302)) -((-3414 (*1 *1) (-5 *1 (-302))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-665 (-1115))) (-5 *1 (-302)))) (-3548 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-1134))) (-5 *1 (-302)))) (-1728 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-302)))) (-3038 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-665 (-993))) (-5 *1 (-302)))) (-1386 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-302)))) (-2253 (*1 *1) (-5 *1 (-302))) (-3582 (*1 *1) (-5 *1 (-302))) (-1504 (*1 *1) (-5 *1 (-302)))) -(-13 (-631 (-885)) (-10 -8 (-15 -3414 ($)) (-15 -2527 ((-665 (-1115)) $)) (-15 -3548 ((-712 (-1134)) (-519) (-519) $)) (-15 -1728 ($ (-519) (-519) (-1134) $)) (-15 -3038 ((-665 (-993)) (-519) $)) (-15 -1386 ($ (-519) (-665 (-993)) $)) (-15 -2253 ($)) (-15 -3582 ($)) (-15 -1504 ($)))) -((-2192 (((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))) 102 T ELT)) (-3750 (((-665 (-710 (-420 (-980 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|)))))) (-710 (-420 (-980 |#1|)))) 97 T ELT) (((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))) (-792) (-792)) 41 T ELT)) (-1893 (((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))) 99 T ELT)) (-1410 (((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|)))) 75 T ELT)) (-4126 (((-665 (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (-710 (-420 (-980 |#1|)))) 74 T ELT)) (-3400 (((-980 |#1|) (-710 (-420 (-980 |#1|)))) 55 T ELT) (((-980 |#1|) (-710 (-420 (-980 |#1|))) (-1206)) 56 T ELT))) -(((-303 |#1|) (-10 -7 (-15 -3400 ((-980 |#1|) (-710 (-420 (-980 |#1|))) (-1206))) (-15 -3400 ((-980 |#1|) (-710 (-420 (-980 |#1|))))) (-15 -4126 ((-665 (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (-710 (-420 (-980 |#1|))))) (-15 -1410 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))))) (-15 -3750 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))) (-792) (-792))) (-15 -3750 ((-665 (-710 (-420 (-980 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|)))))) (-710 (-420 (-980 |#1|))))) (-15 -2192 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|))))) (-15 -1893 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))))) (-465)) (T -303)) -((-1893 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-665 (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4)))))) (-2192 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-665 (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4)))))) (-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 *4)))) (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5)))))) (-3750 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-420 (-980 *6)) (-1195 (-1206) (-980 *6)))) (-5 *5 (-792)) (-4 *6 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *6))))) (-5 *1 (-303 *6)) (-5 *4 (-710 (-420 (-980 *6)))))) (-1410 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5)))))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-4 *4 (-465)) (-5 *2 (-665 (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4))))) (-5 *1 (-303 *4)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-5 *2 (-980 *4)) (-5 *1 (-303 *4)) (-4 *4 (-465)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-980 *5)))) (-5 *4 (-1206)) (-5 *2 (-980 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465))))) -(-10 -7 (-15 -3400 ((-980 |#1|) (-710 (-420 (-980 |#1|))) (-1206))) (-15 -3400 ((-980 |#1|) (-710 (-420 (-980 |#1|))))) (-15 -4126 ((-665 (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (-710 (-420 (-980 |#1|))))) (-15 -1410 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))))) (-15 -3750 ((-665 (-710 (-420 (-980 |#1|)))) (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|))) (-710 (-420 (-980 |#1|))) (-792) (-792))) (-15 -3750 ((-665 (-710 (-420 (-980 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|)))))) (-710 (-420 (-980 |#1|))))) (-15 -2192 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |geneigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|))))) (-15 -1893 ((-665 (-2 (|:| |eigval| (-3 (-420 (-980 |#1|)) (-1195 (-1206) (-980 |#1|)))) (|:| |eigmult| (-792)) (|:| |eigvec| (-665 (-710 (-420 (-980 |#1|))))))) (-710 (-420 (-980 |#1|)))))) -((-3609 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) -(((-304 |#1| |#2|) (-10 -7 (-15 -3609 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1247) (-1247)) (T -304)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6))))) -(-10 -7 (-15 -3609 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-1516 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-2269 (($ $) 12 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3583 (($ $ $) 95 (|has| |#1| (-313)) ELT)) (-2762 (($) NIL (-2229 (|has| |#1| (-21)) (|has| |#1| (-747))) CONST)) (-1667 (($ $) 51 (|has| |#1| (-21)) ELT)) (-3952 (((-3 $ "failed") $) 62 (|has| |#1| (-747)) ELT)) (-3664 ((|#1| $) 11 T ELT)) (-4281 (((-3 $ "failed") $) 60 (|has| |#1| (-747)) ELT)) (-2097 (((-112) $) NIL (|has| |#1| (-747)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3653 ((|#1| $) 10 T ELT)) (-1903 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1451 (((-3 $ "failed") $) 61 (|has| |#1| (-747)) ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3055 (($ $) 64 (-2229 (|has| |#1| (-375)) (|has| |#1| (-486))) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-1392 (((-665 $) $) 85 (|has| |#1| (-569)) ELT)) (-3362 (($ $ $) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 $)) 28 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-1206) |#1|) 17 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 21 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-4017 (($ |#1| |#1|) 9 T ELT)) (-2419 (((-135)) 90 (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) 87 (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-926 (-1206))) ELT)) (-2744 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-4365 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-2410 (($ (-577)) NIL (|has| |#1| (-1079)) ELT) (((-112) $) 37 (|has| |#1| (-1130)) ELT) (((-885) $) 36 (|has| |#1| (-1130)) ELT)) (-3234 (((-792)) 67 (|has| |#1| (-1079)) CONST)) (-2525 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2367 (($) 47 (|has| |#1| (-21)) CONST)) (-2378 (($) 57 (|has| |#1| (-747)) CONST)) (-1675 (($ $ (-1206)) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-926 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-926 (-1206))) ELT)) (-2383 (($ |#1| |#1|) 8 T ELT) (((-112) $ $) 32 (|has| |#1| (-1130)) ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 92 (-2229 (|has| |#1| (-375)) (|has| |#1| (-486))) ELT)) (-2483 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-2471 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-577)) NIL (|has| |#1| (-486)) ELT) (($ $ (-792)) NIL (|has| |#1| (-747)) ELT) (($ $ (-949)) NIL (|has| |#1| (-1142)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1142)) ELT) (($ |#1| $) 54 (|has| |#1| (-1142)) ELT) (($ $ $) 53 (|has| |#1| (-1142)) ELT) (($ (-577) $) 70 (|has| |#1| (-21)) ELT) (($ (-792) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-25)) ELT))) -(((-305 |#1|) (-13 (-1247) (-10 -8 (-15 -2383 ($ |#1| |#1|)) (-15 -4017 ($ |#1| |#1|)) (-15 -2269 ($ $)) (-15 -3653 (|#1| $)) (-15 -3664 (|#1| $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1206) |#1|)) (-6 (-527 (-1206) |#1|)) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-6 (-631 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3362 ($ $ $)) (-15 -3362 ($ $ (-665 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2471 ($ |#1| $)) (-15 -2471 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1903 ($ $)) (-15 -1667 ($ $)) (-15 -2483 ($ |#1| $)) (-15 -2483 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1142)) (PROGN (-6 (-1142)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-747)) (PROGN (-6 (-747)) (-15 -1451 ((-3 $ "failed") $)) (-15 -3952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -1451 ((-3 $ "failed") $)) (-15 -3952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -1392 ((-665 $) $)) |%noBranch|) (IF (|has| |#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1304 |#1|)) (-15 -2494 ($ $ $)) (-15 -3055 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -3583 ($ $ $)) |%noBranch|))) (-1247)) (T -305)) -((-2383 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4017 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3653 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3664 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-3362 (*1 *1 *1 *1) (-12 (-4 *2 (-320 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)) (-5 *1 (-305 *2)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1130)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-2471 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-2471 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-1903 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-1667 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-2483 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-1451 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247)))) (-3952 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-665 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) (-4 *3 (-1247)))) (-3583 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1247)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) (-2494 (*1 *1 *1 *1) (-2229 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247))))) (-3055 (*1 *1 *1) (-2229 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247)))))) -(-13 (-1247) (-10 -8 (-15 -2383 ($ |#1| |#1|)) (-15 -4017 ($ |#1| |#1|)) (-15 -2269 ($ $)) (-15 -3653 (|#1| $)) (-15 -3664 (|#1| $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1206) |#1|)) (-6 (-527 (-1206) |#1|)) |%noBranch|) (IF (|has| |#1| (-1130)) (PROGN (-6 (-1130)) (-6 (-631 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3362 ($ $ $)) (-15 -3362 ($ $ (-665 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2471 ($ |#1| $)) (-15 -2471 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1903 ($ $)) (-15 -1667 ($ $)) (-15 -2483 ($ |#1| $)) (-15 -2483 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1142)) (PROGN (-6 (-1142)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-747)) (PROGN (-6 (-747)) (-15 -1451 ((-3 $ "failed") $)) (-15 -3952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -1451 ((-3 $ "failed") $)) (-15 -3952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -1392 ((-665 $) $)) |%noBranch|) (IF (|has| |#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1304 |#1|)) (-15 -2494 ($ $ $)) (-15 -3055 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -3583 ($ $ $)) |%noBranch|))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-3425 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-3242 (((-665 |#1|) $) NIL T ELT)) (-2404 (((-112) |#1| $) NIL T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3887 (((-665 |#1|) $) NIL T ELT)) (-1593 (((-112) |#1| $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-306 |#1| |#2|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130)) (T -306)) -NIL -(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) -((-3395 (((-323) (-1188) (-665 (-1188))) 17 T ELT) (((-323) (-1188) (-1188)) 16 T ELT) (((-323) (-665 (-1188))) 15 T ELT) (((-323) (-1188)) 14 T ELT))) -(((-307) (-10 -7 (-15 -3395 ((-323) (-1188))) (-15 -3395 ((-323) (-665 (-1188)))) (-15 -3395 ((-323) (-1188) (-1188))) (-15 -3395 ((-323) (-1188) (-665 (-1188)))))) (T -307)) -((-3395 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1188))) (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-323)) (-5 *1 (-307)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307))))) -(-10 -7 (-15 -3395 ((-323) (-1188))) (-15 -3395 ((-323) (-665 (-1188)))) (-15 -3395 ((-323) (-1188) (-1188))) (-15 -3395 ((-323) (-1188) (-665 (-1188))))) -((-3609 ((|#2| (-1 |#2| |#1|) (-1188) (-630 |#1|)) 18 T ELT))) -(((-308 |#1| |#2|) (-10 -7 (-15 -3609 (|#2| (-1 |#2| |#1|) (-1188) (-630 |#1|)))) (-313) (-1247)) (T -308)) -((-3609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1188)) (-5 *5 (-630 *6)) (-4 *6 (-313)) (-4 *2 (-1247)) (-5 *1 (-308 *6 *2))))) -(-10 -7 (-15 -3609 (|#2| (-1 |#2| |#1|) (-1188) (-630 |#1|)))) -((-3609 ((|#2| (-1 |#2| |#1|) (-630 |#1|)) 17 T ELT))) -(((-309 |#1| |#2|) (-10 -7 (-15 -3609 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) (-313) (-313)) (T -309)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-313)) (-4 *2 (-313)) (-5 *1 (-309 *5 *2))))) -(-10 -7 (-15 -3609 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) -((-4465 (((-112) (-228)) 12 T ELT))) -(((-310 |#1| |#2|) (-10 -7 (-15 -4465 ((-112) (-228)))) (-228) (-228)) (T -310)) -((-4465 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -4465 ((-112) (-228)))) -((-2883 (((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228)))) 118 T ELT)) (-1698 (((-1187 (-228)) (-1297 (-327 (-228))) (-665 (-1206)) (-1124 (-864 (-228)))) 135 T ELT) (((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228)))) 72 T ELT)) (-2653 (((-665 (-1188)) (-1187 (-228))) NIL T ELT)) (-2256 (((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228)))) 69 T ELT)) (-4159 (((-665 (-228)) (-980 (-420 (-577))) (-1206) (-1124 (-864 (-228)))) 59 T ELT)) (-3020 (((-665 (-1188)) (-665 (-228))) NIL T ELT)) (-2064 (((-228) (-1124 (-864 (-228)))) 29 T ELT)) (-3404 (((-228) (-1124 (-864 (-228)))) 30 T ELT)) (-1952 (((-112) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 64 T ELT)) (-3140 (((-1188) (-228)) NIL T ELT))) -(((-311) (-10 -7 (-15 -2064 ((-228) (-1124 (-864 (-228))))) (-15 -3404 ((-228) (-1124 (-864 (-228))))) (-15 -1952 ((-112) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2256 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -2883 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -1698 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -1698 ((-1187 (-228)) (-1297 (-327 (-228))) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -4159 ((-665 (-228)) (-980 (-420 (-577))) (-1206) (-1124 (-864 (-228))))) (-15 -3140 ((-1188) (-228))) (-15 -3020 ((-665 (-1188)) (-665 (-228)))) (-15 -2653 ((-665 (-1188)) (-1187 (-228)))))) (T -311)) -((-2653 (*1 *2 *3) (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-311)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *4 (-1206)) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) (-1698 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) (-2883 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) (-2256 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-112)) (-5 *1 (-311)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311))))) -(-10 -7 (-15 -2064 ((-228) (-1124 (-864 (-228))))) (-15 -3404 ((-228) (-1124 (-864 (-228))))) (-15 -1952 ((-112) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2256 ((-665 (-228)) (-327 (-228)) (-1206) (-1124 (-864 (-228))))) (-15 -2883 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -1698 ((-1187 (-228)) (-327 (-228)) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -1698 ((-1187 (-228)) (-1297 (-327 (-228))) (-665 (-1206)) (-1124 (-864 (-228))))) (-15 -4159 ((-665 (-228)) (-980 (-420 (-577))) (-1206) (-1124 (-864 (-228))))) (-15 -3140 ((-1188) (-228))) (-15 -3020 ((-665 (-1188)) (-665 (-228)))) (-15 -2653 ((-665 (-1188)) (-1187 (-228))))) -((-4317 (((-665 (-630 $)) $) 27 T ELT)) (-3583 (($ $ (-305 $)) 78 T ELT) (($ $ (-665 (-305 $))) 139 T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-2817 (((-3 (-630 $) "failed") $) 127 T ELT)) (-3514 (((-630 $) $) 126 T ELT)) (-3555 (($ $) 17 T ELT) (($ (-665 $)) 54 T ELT)) (-2941 (((-665 (-115)) $) 35 T ELT)) (-4396 (((-115) (-115)) 88 T ELT)) (-3356 (((-112) $) 150 T ELT)) (-3609 (($ (-1 $ $) (-630 $)) 86 T ELT)) (-1924 (((-3 (-630 $) "failed") $) 94 T ELT)) (-2593 (($ (-115) $) 59 T ELT) (($ (-115) (-665 $)) 110 T ELT)) (-4450 (((-112) $ (-115)) 132 T ELT) (((-112) $ (-1206)) 131 T ELT)) (-1736 (((-792) $) 44 T ELT)) (-1603 (((-112) $ $) 57 T ELT) (((-112) $ (-1206)) 49 T ELT)) (-2793 (((-112) $) 148 T ELT)) (-3362 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 81 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) 67 T ELT) (($ $ (-1206) (-1 $ $)) 72 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 80 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-665 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-2435 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-665 $)) 123 T ELT)) (-2830 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2208 (($ $) 15 T ELT) (($ (-665 $)) 53 T ELT)) (-3540 (((-112) (-115)) 21 T ELT))) -(((-312 |#1|) (-10 -8 (-15 -3356 ((-112) |#1|)) (-15 -2793 ((-112) |#1|)) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -1603 ((-112) |#1| (-1206))) (-15 -1603 ((-112) |#1| |#1|)) (-15 -3609 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2593 (|#1| (-115) (-665 |#1|))) (-15 -2593 (|#1| (-115) |#1|)) (-15 -4450 ((-112) |#1| (-1206))) (-15 -4450 ((-112) |#1| (-115))) (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -2941 ((-665 (-115)) |#1|)) (-15 -4317 ((-665 (-630 |#1|)) |#1|)) (-15 -1924 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -1736 ((-792) |#1|)) (-15 -2830 (|#1| |#1| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -3555 (|#1| (-665 |#1|))) (-15 -3555 (|#1| |#1|)) (-15 -2208 (|#1| (-665 |#1|))) (-15 -2208 (|#1| |#1|)) (-15 -3583 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3583 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3583 (|#1| |#1| (-305 |#1|))) (-15 -2435 (|#1| (-115) (-665 |#1|))) (-15 -2435 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3362 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -2817 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3514 ((-630 |#1|) |#1|))) (-313)) (T -312)) -((-4396 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313))))) -(-10 -8 (-15 -3356 ((-112) |#1|)) (-15 -2793 ((-112) |#1|)) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -1603 ((-112) |#1| (-1206))) (-15 -1603 ((-112) |#1| |#1|)) (-15 -3609 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2593 (|#1| (-115) (-665 |#1|))) (-15 -2593 (|#1| (-115) |#1|)) (-15 -4450 ((-112) |#1| (-1206))) (-15 -4450 ((-112) |#1| (-115))) (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -2941 ((-665 (-115)) |#1|)) (-15 -4317 ((-665 (-630 |#1|)) |#1|)) (-15 -1924 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -1736 ((-792) |#1|)) (-15 -2830 (|#1| |#1| |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -3555 (|#1| (-665 |#1|))) (-15 -3555 (|#1| |#1|)) (-15 -2208 (|#1| (-665 |#1|))) (-15 -2208 (|#1| |#1|)) (-15 -3583 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3583 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3583 (|#1| |#1| (-305 |#1|))) (-15 -2435 (|#1| (-115) (-665 |#1|))) (-15 -2435 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3362 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -2817 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3514 ((-630 |#1|) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-4317 (((-665 (-630 $)) $) 39 T ELT)) (-3583 (($ $ (-305 $)) 51 T ELT) (($ $ (-665 (-305 $))) 50 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 49 T ELT)) (-2817 (((-3 (-630 $) "failed") $) 64 T ELT)) (-3514 (((-630 $) $) 65 T ELT)) (-3555 (($ $) 46 T ELT) (($ (-665 $)) 45 T ELT)) (-2941 (((-665 (-115)) $) 38 T ELT)) (-4396 (((-115) (-115)) 37 T ELT)) (-3356 (((-112) $) 17 (|has| $ (-1068 (-577))) ELT)) (-4338 (((-1202 $) (-630 $)) 20 (|has| $ (-1079)) ELT)) (-3609 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-1924 (((-3 (-630 $) "failed") $) 41 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4385 (((-665 (-630 $)) $) 40 T ELT)) (-2593 (($ (-115) $) 33 T ELT) (($ (-115) (-665 $)) 32 T ELT)) (-4450 (((-112) $ (-115)) 35 T ELT) (((-112) $ (-1206)) 34 T ELT)) (-1736 (((-792) $) 42 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1603 (((-112) $ $) 30 T ELT) (((-112) $ (-1206)) 29 T ELT)) (-2793 (((-112) $) 18 (|has| $ (-1068 (-577))) ELT)) (-3362 (($ $ (-630 $) $) 62 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 61 T ELT) (($ $ (-665 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-665 $) (-665 $)) 57 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 28 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 27 T ELT) (($ $ (-1206) (-1 $ (-665 $))) 26 T ELT) (($ $ (-1206) (-1 $ $)) 25 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 24 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-665 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT)) (-2435 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-665 $)) 52 T ELT)) (-2830 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-1773 (($ $) 19 (|has| $ (-1079)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-630 $)) 63 T ELT)) (-2208 (($ $) 48 T ELT) (($ (-665 $)) 47 T ELT)) (-3540 (((-112) (-115)) 36 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-313) (-141)) (T -313)) -((-2435 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2435 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2435 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2435 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *1))) (-4 *1 (-313)))) (-3583 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-630 *1))) (-5 *3 (-665 *1)) (-4 *1 (-313)))) (-2208 (*1 *1 *1) (-4 *1 (-313))) (-2208 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) (-3555 (*1 *1 *1) (-4 *1 (-313))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) (-2830 (*1 *1 *1) (-4 *1 (-313))) (-2830 (*1 *1 *1 *1) (-4 *1 (-313))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-792)))) (-1924 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-313)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-665 (-115))))) (-4396 (*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-3540 (*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4450 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4450 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) (-2593 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2593 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) (-3609 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-313)))) (-1603 (*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))) (-1603 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-313)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-313)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1079)) (-4 *1 (-313)) (-5 *2 (-1202 *1)))) (-1773 (*1 *1 *1) (-12 (-4 *1 (-1079)) (-4 *1 (-313)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112))))) -(-13 (-1130) (-1068 (-630 $)) (-527 (-630 $) $) (-320 $) (-10 -8 (-15 -2435 ($ (-115) $)) (-15 -2435 ($ (-115) $ $)) (-15 -2435 ($ (-115) $ $ $)) (-15 -2435 ($ (-115) $ $ $ $)) (-15 -2435 ($ (-115) (-665 $))) (-15 -3583 ($ $ (-305 $))) (-15 -3583 ($ $ (-665 (-305 $)))) (-15 -3583 ($ $ (-665 (-630 $)) (-665 $))) (-15 -2208 ($ $)) (-15 -2208 ($ (-665 $))) (-15 -3555 ($ $)) (-15 -3555 ($ (-665 $))) (-15 -2830 ($ $)) (-15 -2830 ($ $ $)) (-15 -1736 ((-792) $)) (-15 -1924 ((-3 (-630 $) "failed") $)) (-15 -4385 ((-665 (-630 $)) $)) (-15 -4317 ((-665 (-630 $)) $)) (-15 -2941 ((-665 (-115)) $)) (-15 -4396 ((-115) (-115))) (-15 -3540 ((-112) (-115))) (-15 -4450 ((-112) $ (-115))) (-15 -4450 ((-112) $ (-1206))) (-15 -2593 ($ (-115) $)) (-15 -2593 ($ (-115) (-665 $))) (-15 -3609 ($ (-1 $ $) (-630 $))) (-15 -1603 ((-112) $ $)) (-15 -1603 ((-112) $ (-1206))) (-15 -3362 ($ $ (-665 (-1206)) (-665 (-1 $ $)))) (-15 -3362 ($ $ (-665 (-1206)) (-665 (-1 $ (-665 $))))) (-15 -3362 ($ $ (-1206) (-1 $ (-665 $)))) (-15 -3362 ($ $ (-1206) (-1 $ $))) (-15 -3362 ($ $ (-665 (-115)) (-665 (-1 $ $)))) (-15 -3362 ($ $ (-665 (-115)) (-665 (-1 $ (-665 $))))) (-15 -3362 ($ $ (-115) (-1 $ (-665 $)))) (-15 -3362 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1079)) (PROGN (-15 -4338 ((-1202 $) (-630 $))) (-15 -1773 ($ $))) |%noBranch|) (IF (|has| $ (-1068 (-577))) (PROGN (-15 -2793 ((-112) $)) (-15 -3356 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-634 #0=(-630 $)) . T) ((-631 (-885)) . T) ((-320 $) . T) ((-527 (-630 $) $) . T) ((-527 $ $) . T) ((-1068 #0#) . T) ((-1130) . T) ((-1247) . T)) -((-3346 (((-665 |#1|) (-665 |#1|)) 10 T ELT))) -(((-314 |#1|) (-10 -7 (-15 -3346 ((-665 |#1|) (-665 |#1|)))) (-869)) (T -314)) -((-3346 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-869)) (-5 *1 (-314 *3))))) -(-10 -7 (-15 -3346 ((-665 |#1|) (-665 |#1|)))) -((-3609 (((-710 |#2|) (-1 |#2| |#1|) (-710 |#1|)) 17 T ELT))) -(((-315 |#1| |#2|) (-10 -7 (-15 -3609 ((-710 |#2|) (-1 |#2| |#1|) (-710 |#1|)))) (-1079) (-1079)) (T -315)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-710 *6)) (-5 *1 (-315 *5 *6))))) -(-10 -7 (-15 -3609 ((-710 |#2|) (-1 |#2| |#1|) (-710 |#1|)))) -((-2355 (((-1297 (-327 (-391))) (-1297 (-327 (-228)))) 110 T ELT)) (-2983 (((-1124 (-864 (-228))) (-1124 (-864 (-391)))) 43 T ELT)) (-2653 (((-665 (-1188)) (-1187 (-228))) 92 T ELT)) (-3460 (((-327 (-391)) (-980 (-228))) 53 T ELT)) (-2184 (((-228) (-980 (-228))) 49 T ELT)) (-2260 (((-1188) (-391)) 195 T ELT)) (-3763 (((-864 (-228)) (-864 (-391))) 37 T ELT)) (-2578 (((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1297 (-327 (-228)))) 165 T ELT)) (-4125 (((-1065) (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) 207 T ELT) (((-1065) (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) 205 T ELT)) (-1670 (((-710 (-228)) (-665 (-228)) (-792)) 19 T ELT)) (-1479 (((-1297 (-720)) (-665 (-228))) 99 T ELT)) (-3020 (((-665 (-1188)) (-665 (-228))) 79 T ELT)) (-1680 (((-3 (-327 (-228)) "failed") (-327 (-228))) 128 T ELT)) (-4465 (((-112) (-228) (-1124 (-864 (-228)))) 117 T ELT)) (-3683 (((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 224 T ELT)) (-2064 (((-228) (-1124 (-864 (-228)))) 112 T ELT)) (-3404 (((-228) (-1124 (-864 (-228)))) 113 T ELT)) (-2078 (((-228) (-420 (-577))) 31 T ELT)) (-2069 (((-1188) (-391)) 77 T ELT)) (-1863 (((-228) (-391)) 22 T ELT)) (-2439 (((-391) (-1297 (-327 (-228)))) 177 T ELT)) (-4348 (((-327 (-228)) (-327 (-391))) 28 T ELT)) (-1979 (((-420 (-577)) (-327 (-228))) 56 T ELT)) (-4464 (((-327 (-420 (-577))) (-327 (-228))) 73 T ELT)) (-1497 (((-327 (-391)) (-327 (-228))) 103 T ELT)) (-3396 (((-228) (-327 (-228))) 57 T ELT)) (-4375 (((-665 (-228)) (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) 68 T ELT)) (-2921 (((-1124 (-864 (-228))) (-1124 (-864 (-228)))) 65 T ELT)) (-3140 (((-1188) (-228)) 76 T ELT)) (-3105 (((-720) (-228)) 95 T ELT)) (-3403 (((-420 (-577)) (-228)) 58 T ELT)) (-3660 (((-327 (-391)) (-228)) 52 T ELT)) (-3341 (((-665 (-1124 (-864 (-228)))) (-665 (-1124 (-864 (-391))))) 46 T ELT)) (-3702 (((-1065) (-665 (-1065))) 191 T ELT) (((-1065) (-1065) (-1065)) 185 T ELT)) (-4073 (((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221 T ELT))) -(((-316) (-10 -7 (-15 -1863 ((-228) (-391))) (-15 -4348 ((-327 (-228)) (-327 (-391)))) (-15 -3763 ((-864 (-228)) (-864 (-391)))) (-15 -2983 ((-1124 (-864 (-228))) (-1124 (-864 (-391))))) (-15 -3341 ((-665 (-1124 (-864 (-228)))) (-665 (-1124 (-864 (-391)))))) (-15 -3403 ((-420 (-577)) (-228))) (-15 -1979 ((-420 (-577)) (-327 (-228)))) (-15 -3396 ((-228) (-327 (-228)))) (-15 -1680 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -2439 ((-391) (-1297 (-327 (-228))))) (-15 -2578 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1297 (-327 (-228))))) (-15 -4464 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -2921 ((-1124 (-864 (-228))) (-1124 (-864 (-228))))) (-15 -4375 ((-665 (-228)) (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) (-15 -3105 ((-720) (-228))) (-15 -1479 ((-1297 (-720)) (-665 (-228)))) (-15 -1497 ((-327 (-391)) (-327 (-228)))) (-15 -2355 ((-1297 (-327 (-391))) (-1297 (-327 (-228))))) (-15 -4465 ((-112) (-228) (-1124 (-864 (-228))))) (-15 -3140 ((-1188) (-228))) (-15 -2069 ((-1188) (-391))) (-15 -3020 ((-665 (-1188)) (-665 (-228)))) (-15 -2653 ((-665 (-1188)) (-1187 (-228)))) (-15 -2064 ((-228) (-1124 (-864 (-228))))) (-15 -3404 ((-228) (-1124 (-864 (-228))))) (-15 -3702 ((-1065) (-1065) (-1065))) (-15 -3702 ((-1065) (-665 (-1065)))) (-15 -2260 ((-1188) (-391))) (-15 -4125 ((-1065) (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))))) (-15 -4125 ((-1065) (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))))) (-15 -4073 ((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3683 ((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -3460 ((-327 (-391)) (-980 (-228)))) (-15 -2184 ((-228) (-980 (-228)))) (-15 -3660 ((-327 (-391)) (-228))) (-15 -2078 ((-228) (-420 (-577)))) (-15 -1670 ((-710 (-228)) (-665 (-228)) (-792))))) (T -316)) -((-1670 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-228))) (-5 *4 (-792)) (-5 *2 (-710 (-228))) (-5 *1 (-316)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-980 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-980 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-665 (-1065))) (-5 *2 (-1065)) (-5 *1 (-316)))) (-3702 (*1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-316)))) (-3404 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-316)))) (-4465 (*1 *2 *3 *4) (-12 (-5 *4 (-1124 (-864 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-316)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-1297 (-327 (-391)))) (-5 *1 (-316)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1297 (-720))) (-5 *1 (-316)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-720)) (-5 *1 (-316)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-5 *2 (-665 (-228))) (-5 *1 (-316)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-1124 (-864 (-228)))) (-5 *1 (-316)))) (-4464 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) (-5 *1 (-316)))) (-2578 (*1 *2 *3) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) (-5 *1 (-316)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316)))) (-1680 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-665 (-1124 (-864 (-391))))) (-5 *2 (-665 (-1124 (-864 (-228))))) (-5 *1 (-316)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-1124 (-864 (-391)))) (-5 *2 (-1124 (-864 (-228)))) (-5 *1 (-316)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-228))) (-5 *1 (-316)))) (-4348 (*1 *2 *3) (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) -(-10 -7 (-15 -1863 ((-228) (-391))) (-15 -4348 ((-327 (-228)) (-327 (-391)))) (-15 -3763 ((-864 (-228)) (-864 (-391)))) (-15 -2983 ((-1124 (-864 (-228))) (-1124 (-864 (-391))))) (-15 -3341 ((-665 (-1124 (-864 (-228)))) (-665 (-1124 (-864 (-391)))))) (-15 -3403 ((-420 (-577)) (-228))) (-15 -1979 ((-420 (-577)) (-327 (-228)))) (-15 -3396 ((-228) (-327 (-228)))) (-15 -1680 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -2439 ((-391) (-1297 (-327 (-228))))) (-15 -2578 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1297 (-327 (-228))))) (-15 -4464 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -2921 ((-1124 (-864 (-228))) (-1124 (-864 (-228))))) (-15 -4375 ((-665 (-228)) (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) (-15 -3105 ((-720) (-228))) (-15 -1479 ((-1297 (-720)) (-665 (-228)))) (-15 -1497 ((-327 (-391)) (-327 (-228)))) (-15 -2355 ((-1297 (-327 (-391))) (-1297 (-327 (-228))))) (-15 -4465 ((-112) (-228) (-1124 (-864 (-228))))) (-15 -3140 ((-1188) (-228))) (-15 -2069 ((-1188) (-391))) (-15 -3020 ((-665 (-1188)) (-665 (-228)))) (-15 -2653 ((-665 (-1188)) (-1187 (-228)))) (-15 -2064 ((-228) (-1124 (-864 (-228))))) (-15 -3404 ((-228) (-1124 (-864 (-228))))) (-15 -3702 ((-1065) (-1065) (-1065))) (-15 -3702 ((-1065) (-665 (-1065)))) (-15 -2260 ((-1188) (-391))) (-15 -4125 ((-1065) (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))))) (-15 -4125 ((-1065) (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))))) (-15 -4073 ((-1065) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3683 ((-1065) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -3460 ((-327 (-391)) (-980 (-228)))) (-15 -2184 ((-228) (-980 (-228)))) (-15 -3660 ((-327 (-391)) (-228))) (-15 -2078 ((-228) (-420 (-577)))) (-15 -1670 ((-710 (-228)) (-665 (-228)) (-792)))) -((-3397 (((-112) $ $) 14 T ELT)) (-3152 (($ $ $) 18 T ELT)) (-3164 (($ $ $) 17 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 50 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 65 T ELT)) (-2420 (($ $ $) 25 T ELT) (($ (-665 $)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-3200 (((-3 $ "failed") $ $) 21 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 53 T ELT))) -(((-317 |#1|) (-10 -8 (-15 -2749 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -1506 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1506 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2846 |#1|)) |#1| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3397 ((-112) |#1| |#1|)) (-15 -2576 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -1426 ((-2 (|:| -2671 (-665 |#1|)) (|:| -2846 |#1|)) (-665 |#1|))) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2420 (|#1| |#1| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|))) (-318)) (T -317)) -NIL -(-10 -8 (-15 -2749 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -1506 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1506 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2846 |#1|)) |#1| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3397 ((-112) |#1| |#1|)) (-15 -2576 ((-3 (-665 |#1|) "failed") (-665 |#1|) |#1|)) (-15 -1426 ((-2 (|:| -2671 (-665 |#1|)) (|:| -2846 |#1|)) (-665 |#1|))) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2420 (|#1| |#1| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2762 (($) 18 T CONST)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-318) (-141)) (T -318)) -((-3397 (*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-792)))) (-4384 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-318)))) (-3164 (*1 *1 *1 *1) (-4 *1 (-318))) (-3152 (*1 *1 *1 *1) (-4 *1 (-318))) (-1506 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2846 *1))) (-4 *1 (-318)))) (-1506 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-318)))) (-2749 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-318))))) -(-13 (-948) (-10 -8 (-15 -3397 ((-112) $ $)) (-15 -2442 ((-792) $)) (-15 -4384 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -3164 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -1506 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $)) (-15 -1506 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2749 ((-3 (-665 $) "failed") (-665 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3362 (($ $ (-665 |#2|) (-665 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-665 (-305 |#2|))) NIL T ELT))) -(((-319 |#1| |#2|) (-10 -8 (-15 -3362 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3362 (|#1| |#1| (-305 |#2|))) (-15 -3362 (|#1| |#1| |#2| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#2|)))) (-320 |#2|) (-1130)) (T -319)) -NIL -(-10 -8 (-15 -3362 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3362 (|#1| |#1| (-305 |#2|))) (-15 -3362 (|#1| |#1| |#2| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#2|)))) -((-3362 (($ $ (-665 |#1|) (-665 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 11 T ELT) (($ $ (-665 (-305 |#1|))) 10 T ELT))) -(((-320 |#1|) (-141) (-1130)) (T -320)) -((-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1130)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1130))))) -(-13 (-527 |t#1| |t#1|) (-10 -8 (-15 -3362 ($ $ (-305 |t#1|))) (-15 -3362 ($ $ (-665 (-305 |t#1|)))))) -(((-527 |#1| |#1|) . T)) -((-3362 ((|#1| (-1 |#1| (-577)) (-1208 (-420 (-577)))) 26 T ELT))) -(((-321 |#1|) (-10 -7 (-15 -3362 (|#1| (-1 |#1| (-577)) (-1208 (-420 (-577)))))) (-38 (-420 (-577)))) (T -321)) -((-3362 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1208 (-420 (-577)))) (-5 *1 (-321 *2)) (-4 *2 (-38 (-420 (-577))))))) -(-10 -7 (-15 -3362 (|#1| (-1 |#1| (-577)) (-1208 (-420 (-577)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-4112 (((-577) $) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2076 (((-1165) $) 9 T ELT)) (-2410 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-322) (-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -4112 ((-577) $))))) (T -322)) -((-2076 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-322)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322))))) -(-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -4112 ((-577) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 7 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 9 T ELT))) -(((-323) (-1130)) (T -323)) -NIL -(-1130) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 60 T ELT)) (-3277 (((-1283 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-1283 |#1| |#2| |#3| |#4|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-3 (-1282 |#2| |#3| |#4|) "failed") $) 26 T ELT)) (-3514 (((-1283 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1206) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-1282 |#2| |#3| |#4|) $) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-1283 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1283 |#1| |#2| |#3| |#4|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-1283 |#1| |#2| |#3| |#4|)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 (((-1283 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-3609 (($ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-4382 (((-3 (-864 |#2|) "failed") $) 80 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-1283 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1283 |#1| |#2| |#3| |#4|)))) (-1297 $) $) NIL T ELT) (((-710 (-1283 |#1| |#2| |#3| |#4|)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-318)) ELT)) (-2136 (((-1283 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 (-1283 |#1| |#2| |#3| |#4|)) (-665 (-1283 |#1| |#2| |#3| |#4|))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1283 |#1| |#2| |#3| |#4|))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-665 (-305 (-1283 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-320 (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-665 (-1206)) (-665 (-1283 |#1| |#2| |#3| |#4|))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-527 (-1206) (-1283 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1206) (-1283 |#1| |#2| |#3| |#4|)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-527 (-1206) (-1283 |#1| |#2| |#3| |#4|))) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ (-1283 |#1| |#2| |#3| |#4|)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-297 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 (((-1283 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1052)) ELT) (((-228) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1052)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-1283 |#1| |#2| |#3| |#4|) (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-1283 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1206)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-1068 (-1206))) ELT) (($ (-1282 |#2| |#3| |#4|)) 37 T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-1283 |#1| |#2| |#3| |#4|) (-937))) (|has| (-1283 |#1| |#2| |#3| |#4|) (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (((-1283 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-1283 |#1| |#2| |#3| |#4|) (-870)) ELT)) (-2494 (($ $ $) 35 T ELT) (($ (-1283 |#1| |#2| |#3| |#4|) (-1283 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-1283 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1283 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-324 |#1| |#2| |#3| |#4|) (-13 (-1022 (-1283 |#1| |#2| |#3| |#4|)) (-1068 (-1282 |#2| |#3| |#4|)) (-10 -8 (-15 -4382 ((-3 (-864 |#2|) "failed") $)) (-15 -2410 ($ (-1282 |#2| |#3| |#4|))))) (-13 (-1068 (-577)) (-659 (-577)) (-465)) (-13 (-27) (-1232) (-443 |#1|)) (-1206) |#2|) (T -324)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1282 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4) (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *1 (-324 *3 *4 *5 *6)))) (-4382 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *2 (-864 *4)) (-5 *1 (-324 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4)))) -(-13 (-1022 (-1283 |#1| |#2| |#3| |#4|)) (-1068 (-1282 |#2| |#3| |#4|)) (-10 -8 (-15 -4382 ((-3 (-864 |#2|) "failed") $)) (-15 -2410 ($ (-1282 |#2| |#3| |#4|))))) -((-3609 (((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)) 13 T ELT))) -(((-325 |#1| |#2|) (-10 -7 (-15 -3609 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) (-1130) (-1130)) (T -325)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6))))) -(-10 -7 (-15 -3609 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) -((-3002 (((-52) |#2| (-305 |#2|) (-792)) 40 T ELT) (((-52) |#2| (-305 |#2|)) 32 T ELT) (((-52) |#2| (-792)) 35 T ELT) (((-52) |#2|) 33 T ELT) (((-52) (-1206)) 26 T ELT)) (-4447 (((-52) |#2| (-305 |#2|) (-420 (-577))) 59 T ELT) (((-52) |#2| (-305 |#2|)) 56 T ELT) (((-52) |#2| (-420 (-577))) 58 T ELT) (((-52) |#2|) 57 T ELT) (((-52) (-1206)) 55 T ELT)) (-3029 (((-52) |#2| (-305 |#2|) (-420 (-577))) 54 T ELT) (((-52) |#2| (-305 |#2|)) 51 T ELT) (((-52) |#2| (-420 (-577))) 53 T ELT) (((-52) |#2|) 52 T ELT) (((-52) (-1206)) 50 T ELT)) (-3016 (((-52) |#2| (-305 |#2|) (-577)) 47 T ELT) (((-52) |#2| (-305 |#2|)) 44 T ELT) (((-52) |#2| (-577)) 46 T ELT) (((-52) |#2|) 45 T ELT) (((-52) (-1206)) 43 T ELT))) -(((-326 |#1| |#2|) (-10 -7 (-15 -3002 ((-52) (-1206))) (-15 -3002 ((-52) |#2|)) (-15 -3002 ((-52) |#2| (-792))) (-15 -3002 ((-52) |#2| (-305 |#2|))) (-15 -3002 ((-52) |#2| (-305 |#2|) (-792))) (-15 -3016 ((-52) (-1206))) (-15 -3016 ((-52) |#2|)) (-15 -3016 ((-52) |#2| (-577))) (-15 -3016 ((-52) |#2| (-305 |#2|))) (-15 -3016 ((-52) |#2| (-305 |#2|) (-577))) (-15 -3029 ((-52) (-1206))) (-15 -3029 ((-52) |#2|)) (-15 -3029 ((-52) |#2| (-420 (-577)))) (-15 -3029 ((-52) |#2| (-305 |#2|))) (-15 -3029 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -4447 ((-52) (-1206))) (-15 -4447 ((-52) |#2|)) (-15 -4447 ((-52) |#2| (-420 (-577)))) (-15 -4447 ((-52) |#2| (-305 |#2|))) (-15 -4447 ((-52) |#2| (-305 |#2|) (-420 (-577))))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -326)) -((-4447 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-4447 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-4447 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-4447 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-4447 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) (-3029 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) (-3016 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 *5) (-659 *5))) (-5 *5 (-577)) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3016 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3016 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1068 *4) (-659 *4))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3016 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3016 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) (-3002 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-792)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-3002 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4)))))) -(-10 -7 (-15 -3002 ((-52) (-1206))) (-15 -3002 ((-52) |#2|)) (-15 -3002 ((-52) |#2| (-792))) (-15 -3002 ((-52) |#2| (-305 |#2|))) (-15 -3002 ((-52) |#2| (-305 |#2|) (-792))) (-15 -3016 ((-52) (-1206))) (-15 -3016 ((-52) |#2|)) (-15 -3016 ((-52) |#2| (-577))) (-15 -3016 ((-52) |#2| (-305 |#2|))) (-15 -3016 ((-52) |#2| (-305 |#2|) (-577))) (-15 -3029 ((-52) (-1206))) (-15 -3029 ((-52) |#2|)) (-15 -3029 ((-52) |#2| (-420 (-577)))) (-15 -3029 ((-52) |#2| (-305 |#2|))) (-15 -3029 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -4447 ((-52) (-1206))) (-15 -4447 ((-52) |#2|)) (-15 -4447 ((-52) |#2| (-420 (-577)))) (-15 -4447 ((-52) |#2| (-305 |#2|))) (-15 -4447 ((-52) |#2| (-305 |#2|) (-420 (-577))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2883 (((-665 $) $ (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) $) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $) (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-3292 (($ $ (-1206)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1202 $) (-1206)) NIL (|has| |#1| (-569)) ELT) (($ (-1202 $)) NIL (|has| |#1| (-569)) ELT) (($ (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-1516 (((-112) $) 27 (-2229 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-2948 (((-665 (-1206)) $) 368 T ELT)) (-4419 (((-420 (-1202 $)) $ (-630 $)) NIL (|has| |#1| (-569)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4317 (((-665 (-630 $)) $) NIL T ELT)) (-1501 (($ $) 171 (|has| |#1| (-569)) ELT)) (-1371 (($ $) 147 (|has| |#1| (-569)) ELT)) (-4320 (($ $ (-1122 $)) 232 (|has| |#1| (-569)) ELT) (($ $ (-1206)) 228 (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL (-2229 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-3583 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) 386 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 430 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 308 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))) ELT)) (-4456 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-569)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1477 (($ $) 167 (|has| |#1| (-569)) ELT)) (-1348 (($ $) 143 (|has| |#1| (-569)) ELT)) (-4056 (($ $ (-577)) 73 (|has| |#1| (-569)) ELT)) (-1527 (($ $) 175 (|has| |#1| (-569)) ELT)) (-1391 (($ $) 151 (|has| |#1| (-569)) ELT)) (-2762 (($) NIL (-2229 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) (|has| |#1| (-1142))) CONST)) (-1408 (((-665 $) $ (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) $) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $) (-1206)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-1202 $)) NIL (|has| |#1| (-569)) ELT) (((-665 $) (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-2312 (($ $ (-1206)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1202 $) (-1206)) 134 (|has| |#1| (-569)) ELT) (($ (-1202 $)) NIL (|has| |#1| (-569)) ELT) (($ (-980 $)) NIL (|has| |#1| (-569)) ELT)) (-2817 (((-3 (-630 $) "failed") $) 18 T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 441 T ELT) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-980 |#1|)) "failed") $) NIL (|has| |#1| (-569)) ELT) (((-3 (-980 |#1|) "failed") $) NIL (|has| |#1| (-1079)) ELT) (((-3 (-420 (-577)) "failed") $) 46 (-2229 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3514 (((-630 $) $) 12 T ELT) (((-1206) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-980 |#1|)) $) NIL (|has| |#1| (-569)) ELT) (((-980 |#1|) $) NIL (|has| |#1| (-1079)) ELT) (((-420 (-577)) $) 319 (-2229 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1953 (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 125 (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-710 $)) 115 (|has| |#1| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT)) (-2511 (($ $) 96 (|has| |#1| (-569)) ELT)) (-4281 (((-3 $ "failed") $) NIL (|has| |#1| (-1142)) ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3526 (($ $ (-1122 $)) 236 (|has| |#1| (-569)) ELT) (($ $ (-1206)) 234 (|has| |#1| (-569)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-569)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3992 (($ $ $) 202 (|has| |#1| (-569)) ELT)) (-2549 (($) 137 (|has| |#1| (-569)) ELT)) (-2283 (($ $ $) 222 (|has| |#1| (-569)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 392 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 399 (|has| |#1| (-910 (-391))) ELT)) (-3555 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2941 (((-665 (-115)) $) NIL T ELT)) (-4396 (((-115) (-115)) 276 T ELT)) (-2097 (((-112) $) 25 (|has| |#1| (-1142)) ELT)) (-3356 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-2614 (($ $) 72 (|has| |#1| (-1079)) ELT)) (-2518 (((-1155 |#1| (-630 $)) $) 91 (|has| |#1| (-1079)) ELT)) (-4183 (((-112) $) 62 (|has| |#1| (-569)) ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-569)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-569)) ELT)) (-4338 (((-1202 $) (-630 $)) 277 (|has| $ (-1079)) ELT)) (-3609 (($ (-1 $ $) (-630 $)) 426 T ELT)) (-1924 (((-3 (-630 $) "failed") $) NIL T ELT)) (-3863 (($ $) 141 (|has| |#1| (-569)) ELT)) (-3942 (($ $) 247 (|has| |#1| (-569)) ELT)) (-2796 (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#1| (-1079)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4385 (((-665 (-630 $)) $) 49 T ELT)) (-2593 (($ (-115) $) NIL T ELT) (($ (-115) (-665 $)) 431 T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL (|has| |#1| (-1142)) ELT)) (-2200 (((-3 (-2 (|:| |val| $) (|:| -2182 (-577))) "failed") $) NIL (|has| |#1| (-1079)) ELT)) (-3124 (((-3 (-665 $) "failed") $) 436 (|has| |#1| (-25)) ELT)) (-4271 (((-3 (-2 (|:| -2671 (-577)) (|:| |var| (-630 $))) "failed") $) 440 (|has| |#1| (-25)) ELT)) (-2315 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $) NIL (|has| |#1| (-1142)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-115)) NIL (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-1206)) NIL (|has| |#1| (-1079)) ELT)) (-4450 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) 51 T ELT)) (-3055 (($ $) NIL (-2229 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-3293 (($ $ (-1206)) 251 (|has| |#1| (-569)) ELT) (($ $ (-1122 $)) 253 (|has| |#1| (-569)) ELT)) (-1736 (((-792) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) 43 T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 301 (|has| |#1| (-569)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1603 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-1887 (($ $ (-1206)) 226 (|has| |#1| (-569)) ELT) (($ $) 224 (|has| |#1| (-569)) ELT)) (-2606 (($ $) 218 (|has| |#1| (-569)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 306 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-569)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-569)) ELT)) (-3585 (($ $) 139 (|has| |#1| (-569)) ELT)) (-2793 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3362 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) 425 T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 379 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-632 (-549))) ELT) (($ $) NIL (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) $ (-1206)) 366 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 365 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ $)) NIL (|has| |#1| (-1079)) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-569)) ELT)) (-4451 (($ $) 239 (|has| |#1| (-569)) ELT)) (-2435 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2830 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-1335 (($ $) 249 (|has| |#1| (-569)) ELT)) (-4302 (($ $) 200 (|has| |#1| (-569)) ELT)) (-2030 (($ $ (-1206)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-1079)) ELT)) (-2430 (($ $) 74 (|has| |#1| (-569)) ELT)) (-2528 (((-1155 |#1| (-630 $)) $) 93 (|has| |#1| (-569)) ELT)) (-1773 (($ $) 317 (|has| $ (-1079)) ELT)) (-1540 (($ $) 177 (|has| |#1| (-569)) ELT)) (-1402 (($ $) 153 (|has| |#1| (-569)) ELT)) (-1515 (($ $) 173 (|has| |#1| (-569)) ELT)) (-1381 (($ $) 149 (|has| |#1| (-569)) ELT)) (-1489 (($ $) 169 (|has| |#1| (-569)) ELT)) (-1360 (($ $) 145 (|has| |#1| (-569)) ELT)) (-3341 (((-916 (-577)) $) NIL (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-632 (-916 (-391)))) ELT) (($ (-431 $)) NIL (|has| |#1| (-569)) ELT) (((-549) $) 363 (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-4365 (($ $ $) NIL (|has| |#1| (-486)) ELT)) (-2410 (((-885) $) 424 T ELT) (($ (-630 $)) 415 T ELT) (($ (-1206)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577)))) ELT) (($ (-1155 |#1| (-630 $))) 95 (|has| |#1| (-1079)) ELT) (($ (-420 |#1|)) NIL (|has| |#1| (-569)) ELT) (($ (-980 (-420 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-980 (-420 |#1|)))) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-980 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-980 |#1|)) NIL (|has| |#1| (-1079)) ELT) (($ (-577)) 34 (-2229 (|has| |#1| (-1068 (-577))) (|has| |#1| (-1079))) ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-569)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL (|has| |#1| (-1079)) CONST)) (-2208 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3267 (($ $ $) 220 (|has| |#1| (-569)) ELT)) (-3591 (($ $ $) 206 (|has| |#1| (-569)) ELT)) (-2227 (($ $ $) 210 (|has| |#1| (-569)) ELT)) (-3639 (($ $ $) 204 (|has| |#1| (-569)) ELT)) (-3321 (($ $ $) 208 (|has| |#1| (-569)) ELT)) (-3540 (((-112) (-115)) 10 T ELT)) (-2525 (((-112) $ $) 86 T ELT)) (-1575 (($ $) 183 (|has| |#1| (-569)) ELT)) (-1435 (($ $) 159 (|has| |#1| (-569)) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) 179 (|has| |#1| (-569)) ELT)) (-1413 (($ $) 155 (|has| |#1| (-569)) ELT)) (-1597 (($ $) 187 (|has| |#1| (-569)) ELT)) (-1456 (($ $) 163 (|has| |#1| (-569)) ELT)) (-1629 (($ (-1206) $) NIL T ELT) (($ (-1206) $ $) NIL T ELT) (($ (-1206) $ $ $) NIL T ELT) (($ (-1206) $ $ $ $) NIL T ELT) (($ (-1206) (-665 $)) NIL T ELT)) (-2058 (($ $) 214 (|has| |#1| (-569)) ELT)) (-2668 (($ $) 212 (|has| |#1| (-569)) ELT)) (-3501 (($ $) 189 (|has| |#1| (-569)) ELT)) (-1466 (($ $) 165 (|has| |#1| (-569)) ELT)) (-1586 (($ $) 185 (|has| |#1| (-569)) ELT)) (-1446 (($ $) 161 (|has| |#1| (-569)) ELT)) (-1562 (($ $) 181 (|has| |#1| (-569)) ELT)) (-1423 (($ $) 157 (|has| |#1| (-569)) ELT)) (-3385 (($ $) 192 (|has| |#1| (-569)) ELT)) (-2367 (($) 21 (-2229 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) CONST)) (-3228 (($ $) 243 (|has| |#1| (-569)) ELT)) (-2378 (($) 23 (|has| |#1| (-1142)) CONST)) (-2667 (($ $) 194 (|has| |#1| (-569)) ELT) (($ $ $) 196 (|has| |#1| (-569)) ELT)) (-2464 (($ $) 241 (|has| |#1| (-569)) ELT)) (-1675 (($ $ (-1206)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-1079)) ELT)) (-3085 (($ $) 245 (|has| |#1| (-569)) ELT)) (-3587 (($ $ $) 198 (|has| |#1| (-569)) ELT)) (-2383 (((-112) $ $) 88 T ELT)) (-2494 (($ (-1155 |#1| (-630 $)) (-1155 |#1| (-630 $))) 106 (|has| |#1| (-569)) ELT) (($ $ $) 42 (-2229 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-2483 (($ $ $) 40 (-2229 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (($ $) 29 (-2229 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (-2471 (($ $ $) 38 (-2229 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) 314 (|has| |#1| (-569)) ELT) (($ $ (-577)) 80 (-2229 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT) (($ $ (-792)) 75 (|has| |#1| (-1142)) ELT) (($ $ (-949)) 84 (|has| |#1| (-1142)) ELT)) (* (($ (-420 (-577)) $) NIL (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-569)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT) (($ |#1| $) NIL (|has| |#1| (-1079)) ELT) (($ $ $) 36 (|has| |#1| (-1142)) ELT) (($ (-577) $) 32 (-2229 (|has| |#1| (-21)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (($ (-792) $) NIL (-2229 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT) (($ (-949) $) NIL (-2229 (|has| |#1| (-25)) (-12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079)))) ELT))) -(((-327 |#1|) (-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1232)) (-6 (-161)) (-6 (-647)) (-6 (-1169)) (-15 -2511 ($ $)) (-15 -4183 ((-112) $)) (-15 -4056 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -4275 ((-431 (-1202 $)) (-1202 $))) (-15 -3650 ((-431 (-1202 $)) (-1202 $)))) |%noBranch|) (IF (|has| |#1| (-1068 (-577))) (-6 (-1068 (-48))) |%noBranch|)) |%noBranch|))) (-1130)) (T -327)) -((-2511 (*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1130)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130)))) (-4056 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130)))) (-4275 (*1 *2 *3) (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130)))) (-3650 (*1 *2 *3) (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130))))) -(-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1232)) (-6 (-161)) (-6 (-647)) (-6 (-1169)) (-15 -2511 ($ $)) (-15 -4183 ((-112) $)) (-15 -4056 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -4275 ((-431 (-1202 $)) (-1202 $))) (-15 -3650 ((-431 (-1202 $)) (-1202 $)))) |%noBranch|) (IF (|has| |#1| (-1068 (-577))) (-6 (-1068 (-48))) |%noBranch|)) |%noBranch|))) -((-2646 (((-52) |#2| (-115) (-305 |#2|) (-665 |#2|)) 89 T ELT) (((-52) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-52) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|))) 81 T ELT) (((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 |#2|)) 83 T ELT) (((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 |#2|)) 84 T ELT) (((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|))) 82 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|)) 90 T ELT) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -2646 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -2646 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -2646 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2646 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2646 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2646 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2646 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -2646 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -2646 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -2646 ((-52) |#2| (-115) (-305 |#2|) (-665 |#2|)))) (-13 (-569) (-632 (-549))) (-443 |#1|)) (T -328)) -((-2646 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-665 *3)) (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *3)))) (-2646 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-2646 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-2646 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *5)))) (-2646 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-115))) (-5 *6 (-665 (-305 *8))) (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-2646 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-2646 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 (-305 *8))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-665 *8)) (-4 *8 (-443 *7)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-2646 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-2646 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-665 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-2646 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) (-4 *5 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *5 *6))))) -(-10 -7 (-15 -2646 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -2646 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -2646 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2646 ((-52) (-665 (-305 |#2|)) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2646 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 |#2|))) (-15 -2646 ((-52) (-665 |#2|) (-665 (-115)) (-305 |#2|) (-665 (-305 |#2|)))) (-15 -2646 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -2646 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -2646 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -2646 ((-52) |#2| (-115) (-305 |#2|) (-665 |#2|)))) -((-4053 (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577) (-1188)) 67 T ELT) (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577)) 68 T ELT) (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577) (-1188)) 64 T ELT) (((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577)) 65 T ELT)) (-3218 (((-1 (-228) (-228)) (-228)) 66 T ELT))) -(((-329) (-10 -7 (-15 -3218 ((-1 (-228) (-228)) (-228))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577) (-1188))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577) (-1188))))) (T -329)) -((-4053 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1188)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-4053 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-4053 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *7 (-1188)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-4053 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) (-3218 (*1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) -(-10 -7 (-15 -3218 ((-1 (-228) (-228)) (-228))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-1 (-228) (-228)) (-577) (-1188))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577))) (-15 -4053 ((-1242 (-954)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-228) (-577) (-1188)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 26 T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 20 T ELT)) (-1501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1527 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) 36 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) 16 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-420 (-577))) NIL T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3863 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-420 (-577))) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3273 (((-420 (-577)) $) 17 T ELT)) (-3374 (($ (-1282 |#1| |#2| |#3|)) 11 T ELT)) (-2182 (((-1282 |#1| |#2| |#3|) $) 12 T ELT)) (-3585 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2776 (((-420 (-577)) $) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 10 T ELT)) (-2410 (((-885) $) 42 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-420 (-577))) 34 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 28 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 37 T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-330 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-813) (-10 -8 (-15 -3374 ($ (-1282 |#1| |#2| |#3|))) (-15 -2182 ((-1282 |#1| |#2| |#3|) $)) (-15 -3273 ((-420 (-577)) $)))) (-375) (-1206) |#1|) (T -330)) -((-3374 (*1 *1 *2) (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1282 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) (-14 *5 *3))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) (-14 *5 *3)))) -(-13 (-1278 |#1|) (-813) (-10 -8 (-15 -3374 ($ (-1282 |#1| |#2| |#3|))) (-15 -2182 ((-1282 |#1| |#2| |#3|) $)) (-15 -3273 ((-420 (-577)) $)))) -((-4341 (((-2 (|:| -2182 (-792)) (|:| -2671 |#1|) (|:| |radicand| (-665 |#1|))) (-431 |#1|) (-792)) 35 T ELT)) (-3863 (((-665 (-2 (|:| -2671 (-792)) (|:| |logand| |#1|))) (-431 |#1|)) 40 T ELT))) -(((-331 |#1|) (-10 -7 (-15 -4341 ((-2 (|:| -2182 (-792)) (|:| -2671 |#1|) (|:| |radicand| (-665 |#1|))) (-431 |#1|) (-792))) (-15 -3863 ((-665 (-2 (|:| -2671 (-792)) (|:| |logand| |#1|))) (-431 |#1|)))) (-569)) (T -331)) -((-3863 (*1 *2 *3) (-12 (-5 *3 (-431 *4)) (-4 *4 (-569)) (-5 *2 (-665 (-2 (|:| -2671 (-792)) (|:| |logand| *4)))) (-5 *1 (-331 *4)))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *5) (|:| |radicand| (-665 *5)))) (-5 *1 (-331 *5)) (-5 *4 (-792))))) -(-10 -7 (-15 -4341 ((-2 (|:| -2182 (-792)) (|:| -2671 |#1|) (|:| |radicand| (-665 |#1|))) (-431 |#1|) (-792))) (-15 -3863 ((-665 (-2 (|:| -2671 (-792)) (|:| |logand| |#1|))) (-431 |#1|)))) -((-2948 (((-665 |#2|) (-1202 |#4|)) 44 T ELT)) (-4156 ((|#3| (-577)) 47 T ELT)) (-2257 (((-1202 |#4|) (-1202 |#3|)) 30 T ELT)) (-2873 (((-1202 |#4|) (-1202 |#4|) (-577)) 66 T ELT)) (-1989 (((-1202 |#3|) (-1202 |#4|)) 21 T ELT)) (-2776 (((-665 (-792)) (-1202 |#4|) (-665 |#2|)) 41 T ELT)) (-2406 (((-1202 |#3|) (-1202 |#4|) (-665 |#2|) (-665 |#3|)) 35 T ELT))) -(((-332 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2406 ((-1202 |#3|) (-1202 |#4|) (-665 |#2|) (-665 |#3|))) (-15 -2776 ((-665 (-792)) (-1202 |#4|) (-665 |#2|))) (-15 -2948 ((-665 |#2|) (-1202 |#4|))) (-15 -1989 ((-1202 |#3|) (-1202 |#4|))) (-15 -2257 ((-1202 |#4|) (-1202 |#3|))) (-15 -2873 ((-1202 |#4|) (-1202 |#4|) (-577))) (-15 -4156 (|#3| (-577)))) (-814) (-870) (-1079) (-977 |#3| |#1| |#2|)) (T -332)) -((-4156 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1079)) (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-977 *2 *4 *5)))) (-2873 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 *7)) (-5 *3 (-577)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-1202 *6)) (-4 *6 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-1202 *7)) (-5 *1 (-332 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-1202 *6)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-665 *5)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *8)) (-5 *4 (-665 *6)) (-4 *6 (-870)) (-4 *8 (-977 *7 *5 *6)) (-4 *5 (-814)) (-4 *7 (-1079)) (-5 *2 (-665 (-792))) (-5 *1 (-332 *5 *6 *7 *8)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 *8)) (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 (-1202 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) -(-10 -7 (-15 -2406 ((-1202 |#3|) (-1202 |#4|) (-665 |#2|) (-665 |#3|))) (-15 -2776 ((-665 (-792)) (-1202 |#4|) (-665 |#2|))) (-15 -2948 ((-665 |#2|) (-1202 |#4|))) (-15 -1989 ((-1202 |#3|) (-1202 |#4|))) (-15 -2257 ((-1202 |#4|) (-1202 |#3|))) (-15 -2873 ((-1202 |#4|) (-1202 |#4|) (-577))) (-15 -4156 (|#3| (-577)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 19 T ELT)) (-2480 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-577)))) $) 21 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2221 (((-792) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-3017 ((|#1| $ (-577)) NIL T ELT)) (-4247 (((-577) $ (-577)) NIL T ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3513 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1617 (($ (-1 (-577) (-577)) $) 11 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| (-577) (-813)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2778 (((-577) |#1| $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 29 (|has| |#1| (-870)) ELT)) (-2483 (($ $) 12 T ELT) (($ $ $) 28 T ELT)) (-2471 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ (-577) |#1|) 27 T ELT))) -(((-333 |#1|) (-13 (-21) (-738 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|))) (-1130)) (T -333)) -NIL -(-13 (-21) (-738 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2480 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|))) $) 28 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2221 (((-792) $) 29 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 33 T ELT)) (-3514 ((|#1| $) 34 T ELT)) (-3017 ((|#1| $ (-577)) 26 T ELT)) (-4247 ((|#2| $ (-577)) 27 T ELT)) (-3513 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-1617 (($ (-1 |#2| |#2|) $) 24 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2961 (($ $ $) 22 (|has| |#2| (-813)) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ |#1|) 32 T ELT)) (-2778 ((|#2| |#1| $) 25 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2471 (($ $ $) 15 T ELT) (($ |#1| $) 31 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ |#2| |#1|) 30 T ELT))) -(((-334 |#1| |#2|) (-141) (-1130) (-132)) (T -334)) -((-2471 (*1 *1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) (-5 *2 (-792)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 *4)))))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1130)) (-4 *2 (-132)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1130)))) (-2778 (*1 *2 *3 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) (-1617 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)))) (-2961 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)) (-4 *3 (-813))))) -(-13 (-132) (-1068 |t#1|) (-10 -8 (-15 -2471 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2221 ((-792) $)) (-15 -2480 ((-665 (-2 (|:| |gen| |t#1|) (|:| -3585 |t#2|))) $)) (-15 -4247 (|t#2| $ (-577))) (-15 -3017 (|t#1| $ (-577))) (-15 -2778 (|t#2| |t#1| $)) (-15 -1617 ($ (-1 |t#2| |t#2|) $)) (-15 -3513 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-813)) (-15 -2961 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-1068 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2480 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-792)))) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2221 (((-792) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-3017 ((|#1| $ (-577)) NIL T ELT)) (-4247 (((-792) $ (-577)) NIL T ELT)) (-3513 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1617 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| (-792) (-813)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2778 (((-792) |#1| $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-792) |#1|) NIL T ELT))) -(((-335 |#1|) (-334 |#1| (-792)) (-1130)) (T -335)) -NIL -(-334 |#1| (-792)) -((-3008 (($ $) 72 T ELT)) (-4313 (($ $ |#2| |#3| $) 14 T ELT)) (-4309 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-3069 (((-112) $) 42 T ELT)) (-3081 ((|#2| $) 44 T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-2091 ((|#2| $) 68 T ELT)) (-2929 (((-665 |#2|) $) 56 T ELT)) (-3668 (($ $ $ (-792)) 37 T ELT)) (-2494 (($ $ |#2|) 60 T ELT))) -(((-336 |#1| |#2| |#3|) (-10 -8 (-15 -3008 (|#1| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3668 (|#1| |#1| |#1| (-792))) (-15 -4313 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4309 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2929 ((-665 |#2|) |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3069 ((-112) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2494 (|#1| |#1| |#2|))) (-337 |#2| |#3|) (-1079) (-813)) (T -336)) -NIL -(-10 -8 (-15 -3008 (|#1| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3668 (|#1| |#1| |#1| (-792))) (-15 -4313 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4309 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2929 ((-665 |#2|) |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3069 ((-112) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2494 (|#1| |#1| |#2|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 100 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3514 (((-577) $) 99 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 97 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 96 T ELT)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3008 (($ $) 84 (|has| |#1| (-465)) ELT)) (-4313 (($ $ |#1| |#2| $) 88 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3641 (((-792) $) 91 T ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT)) (-3569 ((|#2| $) 90 T ELT)) (-4309 (($ (-1 |#2| |#2|) $) 89 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3069 (((-112) $) 94 T ELT)) (-3081 ((|#1| $) 93 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-569)) ELT)) (-2776 ((|#2| $) 76 T ELT)) (-2091 ((|#1| $) 85 (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 T ELT) (($ (-420 (-577))) 69 (-2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-2929 (((-665 |#1|) $) 92 T ELT)) (-2778 ((|#1| $ |#2|) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-3668 (($ $ $ (-792)) 87 (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-337 |#1| |#2|) (-141) (-1079) (-813)) (T -337)) -((-3069 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-112)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-665 *3)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-792)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-4309 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)))) (-4313 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) (-3668 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-4 *3 (-174)))) (-3200 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-569)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)) (-4 *2 (-465)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *2 (-465))))) -(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -3069 ((-112) $)) (-15 -3081 (|t#1| $)) (-15 -2929 ((-665 |t#1|) $)) (-15 -3641 ((-792) $)) (-15 -3569 (|t#2| $)) (-15 -4309 ($ (-1 |t#2| |t#2|) $)) (-15 -4313 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3668 ($ $ $ (-792))) |%noBranch|) (IF (|has| |t#1| (-569)) (-15 -3200 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -2091 (|t#1| $)) (-15 -3008 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-424 |#1|) . T) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-1712 (((-112) (-112)) NIL T ELT)) (-2589 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3237 (($ $) NIL (|has| |#1| (-1130)) ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-1450 (($ $ (-577)) NIL T ELT)) (-2140 (((-792) $) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2044 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3795 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-1430 (($ (-665 |#1|)) NIL T ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-2209 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) NIL T ELT)) (-2872 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-338 |#1|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -1430 ($ (-665 |#1|))) (-15 -2140 ((-792) $)) (-15 -1450 ($ $ (-577))) (-15 -1712 ((-112) (-112))))) (-1247)) (T -338)) -((-1430 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-338 *3)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1247))))) -(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -1430 ($ (-665 |#1|))) (-15 -2140 ((-792) $)) (-15 -1450 ($ $ (-577))) (-15 -1712 ((-112) (-112))))) -((-1518 (((-112) $) 47 T ELT)) (-2632 (((-792)) 23 T ELT)) (-1880 ((|#2| $) 51 T ELT) (($ $ (-949)) 121 T ELT)) (-2221 (((-792)) 122 T ELT)) (-1912 (($ (-1297 |#2|)) 20 T ELT)) (-3679 (((-112) $) 134 T ELT)) (-2755 ((|#2| $) 53 T ELT) (($ $ (-949)) 118 T ELT)) (-4067 (((-1202 |#2|) $) NIL T ELT) (((-1202 $) $ (-949)) 109 T ELT)) (-3574 (((-1202 |#2|) $) 95 T ELT)) (-3539 (((-1202 |#2|) $) 91 T ELT) (((-3 (-1202 |#2|) "failed") $ $) 88 T ELT)) (-4254 (($ $ (-1202 |#2|)) 58 T ELT)) (-3204 (((-854 (-949))) 30 T ELT) (((-949)) 48 T ELT)) (-2419 (((-135)) 27 T ELT)) (-2776 (((-854 (-949)) $) 32 T ELT) (((-949) $) 137 T ELT)) (-2513 (($) 128 T ELT)) (-2119 (((-1297 |#2|) $) NIL T ELT) (((-710 |#2|) (-1297 $)) 42 T ELT)) (-2580 (($ $) NIL T ELT) (((-3 $ "failed") $) 98 T ELT)) (-2306 (((-112) $) 45 T ELT))) -(((-339 |#1| |#2|) (-10 -8 (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -2221 ((-792))) (-15 -2580 (|#1| |#1|)) (-15 -3539 ((-3 (-1202 |#2|) "failed") |#1| |#1|)) (-15 -3539 ((-1202 |#2|) |#1|)) (-15 -3574 ((-1202 |#2|) |#1|)) (-15 -4254 (|#1| |#1| (-1202 |#2|))) (-15 -3679 ((-112) |#1|)) (-15 -2513 (|#1|)) (-15 -1880 (|#1| |#1| (-949))) (-15 -2755 (|#1| |#1| (-949))) (-15 -4067 ((-1202 |#1|) |#1| (-949))) (-15 -1880 (|#2| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -2776 ((-949) |#1|)) (-15 -3204 ((-949))) (-15 -4067 ((-1202 |#2|) |#1|)) (-15 -1912 (|#1| (-1297 |#2|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -2632 ((-792))) (-15 -3204 ((-854 (-949)))) (-15 -2776 ((-854 (-949)) |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -2306 ((-112) |#1|)) (-15 -2419 ((-135)))) (-340 |#2|) (-375)) (T -339)) -((-2419 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3204 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-854 (-949))) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2632 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3204 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-949)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2221 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4))))) -(-10 -8 (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -2221 ((-792))) (-15 -2580 (|#1| |#1|)) (-15 -3539 ((-3 (-1202 |#2|) "failed") |#1| |#1|)) (-15 -3539 ((-1202 |#2|) |#1|)) (-15 -3574 ((-1202 |#2|) |#1|)) (-15 -4254 (|#1| |#1| (-1202 |#2|))) (-15 -3679 ((-112) |#1|)) (-15 -2513 (|#1|)) (-15 -1880 (|#1| |#1| (-949))) (-15 -2755 (|#1| |#1| (-949))) (-15 -4067 ((-1202 |#1|) |#1| (-949))) (-15 -1880 (|#2| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -2776 ((-949) |#1|)) (-15 -3204 ((-949))) (-15 -4067 ((-1202 |#2|) |#1|)) (-15 -1912 (|#1| (-1297 |#2|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -2632 ((-792))) (-15 -3204 ((-854 (-949)))) (-15 -2776 ((-854 (-949)) |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -2306 ((-112) |#1|)) (-15 -2419 ((-135)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-1518 (((-112) $) 104 T ELT)) (-2632 (((-792)) 100 T ELT)) (-1880 ((|#1| $) 151 T ELT) (($ $ (-949)) 148 (|has| |#1| (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 133 (|has| |#1| (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2221 (((-792)) 123 (|has| |#1| (-380)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 111 T ELT)) (-3514 ((|#1| $) 112 T ELT)) (-1912 (($ (-1297 |#1|)) 157 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-380)) ELT)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2060 (($) 120 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-3619 (($) 135 (|has| |#1| (-380)) ELT)) (-3390 (((-112) $) 136 (|has| |#1| (-380)) ELT)) (-2202 (($ $ (-792)) 97 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) 96 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) 79 T ELT)) (-3890 (((-949) $) 138 (|has| |#1| (-380)) ELT) (((-854 (-949)) $) 94 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) 35 T ELT)) (-2841 (($) 146 (|has| |#1| (-380)) ELT)) (-3679 (((-112) $) 145 (|has| |#1| (-380)) ELT)) (-2755 ((|#1| $) 152 T ELT) (($ $ (-949)) 149 (|has| |#1| (-380)) ELT)) (-3651 (((-3 $ "failed") $) 124 (|has| |#1| (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-4067 (((-1202 |#1|) $) 156 T ELT) (((-1202 $) $ (-949)) 150 (|has| |#1| (-380)) ELT)) (-2553 (((-949) $) 121 (|has| |#1| (-380)) ELT)) (-3574 (((-1202 |#1|) $) 142 (|has| |#1| (-380)) ELT)) (-3539 (((-1202 |#1|) $) 141 (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) 140 (|has| |#1| (-380)) ELT)) (-4254 (($ $ (-1202 |#1|)) 143 (|has| |#1| (-380)) ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-2199 (($) 125 (|has| |#1| (-380)) CONST)) (-2085 (($ (-949)) 122 (|has| |#1| (-380)) ELT)) (-2267 (((-112) $) 103 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2846 (($) 144 (|has| |#1| (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 132 (|has| |#1| (-380)) ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-3204 (((-854 (-949))) 101 T ELT) (((-949)) 154 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2723 (((-792) $) 137 (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) 95 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) 109 T ELT)) (-2030 (($ $ (-792)) 128 (|has| |#1| (-380)) ELT) (($ $) 126 (|has| |#1| (-380)) ELT)) (-2776 (((-854 (-949)) $) 102 T ELT) (((-949) $) 153 T ELT)) (-1773 (((-1202 |#1|)) 155 T ELT)) (-1494 (($) 134 (|has| |#1| (-380)) ELT)) (-2513 (($) 147 (|has| |#1| (-380)) ELT)) (-2119 (((-1297 |#1|) $) 159 T ELT) (((-710 |#1|) (-1297 $)) 158 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 131 (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 110 T ELT)) (-2580 (($ $) 130 (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) 93 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2225 (((-1297 $)) 161 T ELT) (((-1297 $) (-949)) 160 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2306 (((-112) $) 105 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-3077 (($ $) 99 (|has| |#1| (-380)) ELT) (($ $ (-792)) 98 (|has| |#1| (-380)) ELT)) (-1675 (($ $ (-792)) 129 (|has| |#1| (-380)) ELT) (($ $) 127 (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) -(((-340 |#1|) (-141) (-375)) (T -340)) -((-2225 (*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1297 *1)) (-4 *1 (-340 *3)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-375)) (-5 *2 (-1297 *1)) (-4 *1 (-340 *4)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1297 *3)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) (-5 *2 (-710 *4)))) (-1912 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) (-1773 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) (-3204 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1202 *1)) (-4 *1 (-340 *4)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-1880 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-2513 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-2841 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) (-2846 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-4254 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) (-4 *3 (-375)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1202 *3)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1202 *3)))) (-3539 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1202 *3))))) -(-13 (-1316 |t#1|) (-1068 |t#1|) (-10 -8 (-15 -2225 ((-1297 $))) (-15 -2225 ((-1297 $) (-949))) (-15 -2119 ((-1297 |t#1|) $)) (-15 -2119 ((-710 |t#1|) (-1297 $))) (-15 -1912 ($ (-1297 |t#1|))) (-15 -4067 ((-1202 |t#1|) $)) (-15 -1773 ((-1202 |t#1|))) (-15 -3204 ((-949))) (-15 -2776 ((-949) $)) (-15 -2755 (|t#1| $)) (-15 -1880 (|t#1| $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-361)) (-15 -4067 ((-1202 $) $ (-949))) (-15 -2755 ($ $ (-949))) (-15 -1880 ($ $ (-949))) (-15 -2513 ($)) (-15 -2841 ($)) (-15 -3679 ((-112) $)) (-15 -2846 ($)) (-15 -4254 ($ $ (-1202 |t#1|))) (-15 -3574 ((-1202 |t#1|) $)) (-15 -3539 ((-1202 |t#1|) $)) (-15 -3539 ((-3 (-1202 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2229 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-235 $) |has| |#1| (-380)) ((-239) |has| |#1| (-380)) ((-238) |has| |#1| (-380)) ((-249) . T) ((-301) . T) ((-318) . T) ((-1316 |#1|) . T) ((-375) . T) ((-415) -2229 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-380) |has| |#1| (-380)) ((-361) |has| |#1| (-380)) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 |#1|) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-380)) ((-1247) . T) ((-1251) . T) ((-1304 |#1|) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1837 (($ (-1205) $) 100 T ELT)) (-3736 (($) 89 T ELT)) (-2532 (((-1150) (-1150)) 9 T ELT)) (-1438 (($) 90 T ELT)) (-2120 (($) 104 T ELT) (($ (-327 (-720))) 112 T ELT) (($ (-327 (-722))) 108 T ELT) (($ (-327 (-715))) 116 T ELT) (($ (-327 (-391))) 123 T ELT) (($ (-327 (-577))) 119 T ELT) (($ (-327 (-171 (-391)))) 127 T ELT)) (-1498 (($ (-1205) $) 101 T ELT)) (-1536 (($ (-665 (-885))) 91 T ELT)) (-3079 (((-1302) $) 87 T ELT)) (-1776 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2783 (($ (-1150)) 58 T ELT)) (-3567 (((-1134) $) 30 T ELT)) (-3489 (($ (-1122 (-980 (-577))) $) 97 T ELT) (($ (-1122 (-980 (-577))) (-980 (-577)) $) 98 T ELT)) (-2864 (($ (-1150)) 99 T ELT)) (-3512 (($ (-1205) $) 129 T ELT) (($ (-1205) $ $) 130 T ELT)) (-1510 (($ (-1206) (-665 (-1206))) 88 T ELT)) (-2506 (($ (-1188)) 94 T ELT) (($ (-665 (-1188))) 92 T ELT)) (-2410 (((-885) $) 132 T ELT)) (-3995 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2392 (-112)) (|:| -4119 (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |blockBranch| (-665 $)) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -1641 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -4115 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -4115 $))) (|:| |commonBranch| (-2 (|:| -4105 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885)))) $) 50 T ELT)) (-3005 (($ (-1188)) 202 T ELT)) (-1605 (($ (-665 $)) 128 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3170 (($ (-1206) (-1188)) 135 T ELT) (($ (-1206) (-327 (-722))) 175 T ELT) (($ (-1206) (-327 (-720))) 176 T ELT) (($ (-1206) (-327 (-715))) 177 T ELT) (($ (-1206) (-710 (-722))) 138 T ELT) (($ (-1206) (-710 (-720))) 141 T ELT) (($ (-1206) (-710 (-715))) 144 T ELT) (($ (-1206) (-1297 (-722))) 147 T ELT) (($ (-1206) (-1297 (-720))) 150 T ELT) (($ (-1206) (-1297 (-715))) 153 T ELT) (($ (-1206) (-710 (-327 (-722)))) 156 T ELT) (($ (-1206) (-710 (-327 (-720)))) 159 T ELT) (($ (-1206) (-710 (-327 (-715)))) 162 T ELT) (($ (-1206) (-1297 (-327 (-722)))) 165 T ELT) (($ (-1206) (-1297 (-327 (-720)))) 168 T ELT) (($ (-1206) (-1297 (-327 (-715)))) 171 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-722))) 172 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-720))) 173 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-715))) 174 T ELT) (($ (-1206) (-327 (-577))) 199 T ELT) (($ (-1206) (-327 (-391))) 200 T ELT) (($ (-1206) (-327 (-171 (-391)))) 201 T ELT) (($ (-1206) (-710 (-327 (-577)))) 180 T ELT) (($ (-1206) (-710 (-327 (-391)))) 183 T ELT) (($ (-1206) (-710 (-327 (-171 (-391))))) 186 T ELT) (($ (-1206) (-1297 (-327 (-577)))) 189 T ELT) (($ (-1206) (-1297 (-327 (-391)))) 192 T ELT) (($ (-1206) (-1297 (-327 (-171 (-391))))) 195 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-577))) 196 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-391))) 197 T ELT) (($ (-1206) (-665 (-980 (-577))) (-327 (-171 (-391)))) 198 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-341) (-13 (-1130) (-10 -8 (-15 -3489 ($ (-1122 (-980 (-577))) $)) (-15 -3489 ($ (-1122 (-980 (-577))) (-980 (-577)) $)) (-15 -1837 ($ (-1205) $)) (-15 -1498 ($ (-1205) $)) (-15 -2783 ($ (-1150))) (-15 -2864 ($ (-1150))) (-15 -2506 ($ (-1188))) (-15 -2506 ($ (-665 (-1188)))) (-15 -3005 ($ (-1188))) (-15 -2120 ($)) (-15 -2120 ($ (-327 (-720)))) (-15 -2120 ($ (-327 (-722)))) (-15 -2120 ($ (-327 (-715)))) (-15 -2120 ($ (-327 (-391)))) (-15 -2120 ($ (-327 (-577)))) (-15 -2120 ($ (-327 (-171 (-391))))) (-15 -3512 ($ (-1205) $)) (-15 -3512 ($ (-1205) $ $)) (-15 -3170 ($ (-1206) (-1188))) (-15 -3170 ($ (-1206) (-327 (-722)))) (-15 -3170 ($ (-1206) (-327 (-720)))) (-15 -3170 ($ (-1206) (-327 (-715)))) (-15 -3170 ($ (-1206) (-710 (-722)))) (-15 -3170 ($ (-1206) (-710 (-720)))) (-15 -3170 ($ (-1206) (-710 (-715)))) (-15 -3170 ($ (-1206) (-1297 (-722)))) (-15 -3170 ($ (-1206) (-1297 (-720)))) (-15 -3170 ($ (-1206) (-1297 (-715)))) (-15 -3170 ($ (-1206) (-710 (-327 (-722))))) (-15 -3170 ($ (-1206) (-710 (-327 (-720))))) (-15 -3170 ($ (-1206) (-710 (-327 (-715))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-722))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-720))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-715))))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-722)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-720)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-715)))) (-15 -3170 ($ (-1206) (-327 (-577)))) (-15 -3170 ($ (-1206) (-327 (-391)))) (-15 -3170 ($ (-1206) (-327 (-171 (-391))))) (-15 -3170 ($ (-1206) (-710 (-327 (-577))))) (-15 -3170 ($ (-1206) (-710 (-327 (-391))))) (-15 -3170 ($ (-1206) (-710 (-327 (-171 (-391)))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-577))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-391))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-171 (-391)))))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-577)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-391)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-171 (-391))))) (-15 -1605 ($ (-665 $))) (-15 -3736 ($)) (-15 -1438 ($)) (-15 -1536 ($ (-665 (-885)))) (-15 -1510 ($ (-1206) (-665 (-1206)))) (-15 -1776 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3995 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2392 (-112)) (|:| -4119 (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |blockBranch| (-665 $)) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -1641 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -4115 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -4115 $))) (|:| |commonBranch| (-2 (|:| -4105 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885)))) $)) (-15 -3079 ((-1302) $)) (-15 -3567 ((-1134) $)) (-15 -2532 ((-1150) (-1150)))))) (T -341)) -((-3489 (*1 *1 *2 *1) (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *1 (-341)))) (-3489 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *3 (-980 (-577))) (-5 *1 (-341)))) (-1837 (*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341)))) (-2864 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341)))) (-2506 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341)))) (-2506 (*1 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-341)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341)))) (-2120 (*1 *1) (-5 *1 (-341))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-327 (-720))) (-5 *1 (-341)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-327 (-722))) (-5 *1 (-341)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-3512 (*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-3512 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-722))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-720))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-722))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-720))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-715))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-722))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-720))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-715))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-722)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-720)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-715)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-722)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-720)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-715)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-722))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-720))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-715))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-577)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-391)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-577)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-391)))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-577))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-391))) (-5 *1 (-341)))) (-3170 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-1605 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-5 *1 (-341)))) (-3736 (*1 *1) (-5 *1 (-341))) (-1438 (*1 *1) (-5 *1 (-341))) (-1536 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-341)))) (-1510 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-341)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-341)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| (-341)) (|:| |elseClause| (-341)))) (|:| |returnBranch| (-2 (|:| -2392 (-112)) (|:| -4119 (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |blockBranch| (-665 (-341))) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -1641 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -4115 (-341)))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -4115 (-341)))) (|:| |commonBranch| (-2 (|:| -4105 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885))))) (-5 *1 (-341)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-341)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-341)))) (-2532 (*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) -(-13 (-1130) (-10 -8 (-15 -3489 ($ (-1122 (-980 (-577))) $)) (-15 -3489 ($ (-1122 (-980 (-577))) (-980 (-577)) $)) (-15 -1837 ($ (-1205) $)) (-15 -1498 ($ (-1205) $)) (-15 -2783 ($ (-1150))) (-15 -2864 ($ (-1150))) (-15 -2506 ($ (-1188))) (-15 -2506 ($ (-665 (-1188)))) (-15 -3005 ($ (-1188))) (-15 -2120 ($)) (-15 -2120 ($ (-327 (-720)))) (-15 -2120 ($ (-327 (-722)))) (-15 -2120 ($ (-327 (-715)))) (-15 -2120 ($ (-327 (-391)))) (-15 -2120 ($ (-327 (-577)))) (-15 -2120 ($ (-327 (-171 (-391))))) (-15 -3512 ($ (-1205) $)) (-15 -3512 ($ (-1205) $ $)) (-15 -3170 ($ (-1206) (-1188))) (-15 -3170 ($ (-1206) (-327 (-722)))) (-15 -3170 ($ (-1206) (-327 (-720)))) (-15 -3170 ($ (-1206) (-327 (-715)))) (-15 -3170 ($ (-1206) (-710 (-722)))) (-15 -3170 ($ (-1206) (-710 (-720)))) (-15 -3170 ($ (-1206) (-710 (-715)))) (-15 -3170 ($ (-1206) (-1297 (-722)))) (-15 -3170 ($ (-1206) (-1297 (-720)))) (-15 -3170 ($ (-1206) (-1297 (-715)))) (-15 -3170 ($ (-1206) (-710 (-327 (-722))))) (-15 -3170 ($ (-1206) (-710 (-327 (-720))))) (-15 -3170 ($ (-1206) (-710 (-327 (-715))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-722))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-720))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-715))))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-722)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-720)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-715)))) (-15 -3170 ($ (-1206) (-327 (-577)))) (-15 -3170 ($ (-1206) (-327 (-391)))) (-15 -3170 ($ (-1206) (-327 (-171 (-391))))) (-15 -3170 ($ (-1206) (-710 (-327 (-577))))) (-15 -3170 ($ (-1206) (-710 (-327 (-391))))) (-15 -3170 ($ (-1206) (-710 (-327 (-171 (-391)))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-577))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-391))))) (-15 -3170 ($ (-1206) (-1297 (-327 (-171 (-391)))))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-577)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-391)))) (-15 -3170 ($ (-1206) (-665 (-980 (-577))) (-327 (-171 (-391))))) (-15 -1605 ($ (-665 $))) (-15 -3736 ($)) (-15 -1438 ($)) (-15 -1536 ($ (-665 (-885)))) (-15 -1510 ($ (-1206) (-665 (-1206)))) (-15 -1776 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3995 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1206)) (|:| |arrayIndex| (-665 (-980 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1205)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2392 (-112)) (|:| -4119 (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) (|:| |blockBranch| (-665 $)) (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) (|:| |forBranch| (-2 (|:| -1641 (-1122 (-980 (-577)))) (|:| |span| (-980 (-577))) (|:| -4115 $))) (|:| |labelBranch| (-1150)) (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -4115 $))) (|:| |commonBranch| (-2 (|:| -4105 (-1206)) (|:| |contents| (-665 (-1206))))) (|:| |printBranch| (-665 (-885)))) $)) (-15 -3079 ((-1302) $)) (-15 -3567 ((-1134) $)) (-15 -2532 ((-1150) (-1150))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1673 (((-112) $) 13 T ELT)) (-1348 (($ |#1|) 10 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1360 (($ |#1|) 12 T ELT)) (-2410 (((-885) $) 19 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4278 ((|#1| $) 14 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 21 T ELT))) -(((-342 |#1|) (-13 (-870) (-10 -8 (-15 -1348 ($ |#1|)) (-15 -1360 ($ |#1|)) (-15 -1673 ((-112) $)) (-15 -4278 (|#1| $)))) (-870)) (T -342)) -((-1348 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) (-1360 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-870)))) (-4278 (*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870))))) -(-13 (-870) (-10 -8 (-15 -1348 ($ |#1|)) (-15 -1360 ($ |#1|)) (-15 -1673 ((-112) $)) (-15 -4278 (|#1| $)))) -((-2157 (((-341) (-1206) (-980 (-577))) 23 T ELT)) (-3967 (((-341) (-1206) (-980 (-577))) 27 T ELT)) (-1585 (((-341) (-1206) (-1122 (-980 (-577))) (-1122 (-980 (-577)))) 26 T ELT) (((-341) (-1206) (-980 (-577)) (-980 (-577))) 24 T ELT)) (-2939 (((-341) (-1206) (-980 (-577))) 31 T ELT))) -(((-343) (-10 -7 (-15 -2157 ((-341) (-1206) (-980 (-577)))) (-15 -1585 ((-341) (-1206) (-980 (-577)) (-980 (-577)))) (-15 -1585 ((-341) (-1206) (-1122 (-980 (-577))) (-1122 (-980 (-577))))) (-15 -3967 ((-341) (-1206) (-980 (-577)))) (-15 -2939 ((-341) (-1206) (-980 (-577)))))) (T -343)) -((-2939 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-1585 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-1122 (-980 (-577)))) (-5 *2 (-341)) (-5 *1 (-343)))) (-1585 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) (-5 *1 (-343))))) -(-10 -7 (-15 -2157 ((-341) (-1206) (-980 (-577)))) (-15 -1585 ((-341) (-1206) (-980 (-577)) (-980 (-577)))) (-15 -1585 ((-341) (-1206) (-1122 (-980 (-577))) (-1122 (-980 (-577))))) (-15 -3967 ((-341) (-1206) (-980 (-577)))) (-15 -2939 ((-341) (-1206) (-980 (-577))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2562 (((-519) $) 20 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2672 (((-986 (-792)) $) 18 T ELT)) (-1650 (((-257) $) 7 T ELT)) (-2410 (((-885) $) 26 T ELT)) (-1618 (((-986 (-185 (-140))) $) 16 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2356 (((-665 (-896 (-1211) (-792))) $) 12 T ELT)) (-2383 (((-112) $ $) 22 T ELT))) -(((-344) (-13 (-1130) (-10 -8 (-15 -1650 ((-257) $)) (-15 -2356 ((-665 (-896 (-1211) (-792))) $)) (-15 -2672 ((-986 (-792)) $)) (-15 -1618 ((-986 (-185 (-140))) $)) (-15 -2562 ((-519) $))))) (T -344)) -((-1650 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-1211) (-792)))) (-5 *1 (-344)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-986 (-792))) (-5 *1 (-344)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-986 (-185 (-140)))) (-5 *1 (-344)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) -(-13 (-1130) (-10 -8 (-15 -1650 ((-257) $)) (-15 -2356 ((-665 (-896 (-1211) (-792))) $)) (-15 -2672 ((-986 (-792)) $)) (-15 -1618 ((-986 (-185 (-140))) $)) (-15 -2562 ((-519) $)))) -((-3609 (((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3609 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-375) (-1273 |#5|) (-1273 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -345)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *9 (-375)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-420 *10))) (-5 *2 (-348 *9 *10 *11 *12)) (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-354 *9 *10 *11))))) -(-10 -7 (-15 -3609 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) -((-3821 (((-112) $) 14 T ELT))) -(((-346 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3821 ((-112) |#1|))) (-347 |#2| |#3| |#4| |#5|) (-375) (-1273 |#2|) (-1273 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -346)) -NIL -(-10 -8 (-15 -3821 ((-112) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-2511 (($ $) 29 T ELT)) (-3821 (((-112) $) 28 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2655 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 35 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2846 (((-3 |#4| "failed") $) 27 T ELT)) (-3875 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 34 T ELT) (($ |#4|) 33 T ELT) (($ |#1| |#1|) 32 T ELT) (($ |#1| |#1| (-577)) 31 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 26 T ELT)) (-2622 (((-2 (|:| -3307 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT))) -(((-347 |#1| |#2| |#3| |#4|) (-141) (-375) (-1273 |t#1|) (-1273 (-420 |t#2|)) (-354 |t#1| |t#2| |t#3|)) (T -347)) -((-2655 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-426 *4 (-420 *4) *5 *6)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) (-4 *1 (-347 *3 *4 *5 *6)))) (-3875 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) (-3875 (*1 *1 *2 *2) (-12 (-4 *2 (-375)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))) (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) (-3875 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1273 *2)) (-4 *5 (-1273 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) (-4 *6 (-354 *2 *4 *5)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-2 (|:| -3307 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) (-2511 (*1 *1 *1) (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112)))) (-2846 (*1 *2 *1) (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *2 (-354 *3 *4 *5)))) (-3875 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-375)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2655 ((-426 |t#2| (-420 |t#2|) |t#3| |t#4|) $)) (-15 -3875 ($ (-426 |t#2| (-420 |t#2|) |t#3| |t#4|))) (-15 -3875 ($ |t#4|)) (-15 -3875 ($ |t#1| |t#1|)) (-15 -3875 ($ |t#1| |t#1| (-577))) (-15 -2622 ((-2 (|:| -3307 (-426 |t#2| (-420 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2511 ($ $)) (-15 -3821 ((-112) $)) (-15 -2846 ((-3 |t#4| "failed") $)) (-15 -3875 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2511 (($ $) 33 T ELT)) (-3821 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2077 (((-1297 |#4|) $) 134 T ELT)) (-2655 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 31 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (((-3 |#4| "failed") $) 36 T ELT)) (-2636 (((-1297 |#4|) $) 126 T ELT)) (-3875 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-577)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-2622 (((-2 (|:| -3307 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-2410 (((-885) $) 17 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 14 T CONST)) (-2383 (((-112) $ $) 20 T ELT)) (-2483 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 25 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 23 T ELT))) -(((-348 |#1| |#2| |#3| |#4|) (-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2636 ((-1297 |#4|) $)) (-15 -2077 ((-1297 |#4|) $)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -348)) -((-2636 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5)))) (-2077 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5))))) -(-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2636 ((-1297 |#4|) $)) (-15 -2077 ((-1297 |#4|) $)))) -((-3362 (($ $ (-1206) |#2|) NIL T ELT) (($ $ (-665 (-1206)) (-665 |#2|)) 20 T ELT) (($ $ (-665 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL T ELT)) (-2435 (($ $ |#2|) 11 T ELT))) -(((-349 |#1| |#2|) (-10 -8 (-15 -2435 (|#1| |#1| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#2| |#2|)) (-15 -3362 (|#1| |#1| (-305 |#2|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 |#2|))) (-15 -3362 (|#1| |#1| (-1206) |#2|))) (-350 |#2|) (-1130)) (T -349)) -NIL -(-10 -8 (-15 -2435 (|#1| |#1| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#2| |#2|)) (-15 -3362 (|#1| |#1| (-305 |#2|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 |#2|))) (-15 -3362 (|#1| |#1| (-1206) |#2|))) -((-3609 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3362 (($ $ (-1206) |#1|) 17 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 16 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 15 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 12 (|has| |#1| (-320 |#1|)) ELT)) (-2435 (($ $ |#1|) 11 (|has| |#1| (-297 |#1| |#1|)) ELT))) -(((-350 |#1|) (-141) (-1130)) (T -350)) -((-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1130))))) -(-13 (-10 -8 (-15 -3609 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-297 |t#1| |t#1|)) (-6 (-297 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-527 (-1206) |t#1|)) (-6 (-527 (-1206) |t#1|)) |%noBranch|))) -(((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-1247) |has| |#1| (-297 |#1| |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1206)) $) NIL T ELT)) (-2984 (((-112)) 96 T ELT) (((-112) (-112)) 97 T ELT)) (-4317 (((-665 (-630 $)) $) NIL T ELT)) (-1501 (($ $) NIL T ELT)) (-1371 (($ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3583 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-2809 (($ $) NIL T ELT)) (-1477 (($ $) NIL T ELT)) (-1348 (($ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 $ "failed") (-327 |#3|)) 76 T ELT) (((-3 $ "failed") (-1206)) 103 T ELT) (((-3 $ "failed") (-327 (-577))) 64 (|has| |#3| (-1068 (-577))) ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 70 (|has| |#3| (-1068 (-577))) ELT) (((-3 $ "failed") (-980 (-577))) 65 (|has| |#3| (-1068 (-577))) ELT) (((-3 $ "failed") (-327 (-391))) 94 (|has| |#3| (-1068 (-391))) ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 88 (|has| |#3| (-1068 (-391))) ELT) (((-3 $ "failed") (-980 (-391))) 83 (|has| |#3| (-1068 (-391))) ELT)) (-3514 (((-630 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-327 |#3|)) 77 T ELT) (($ (-1206)) 104 T ELT) (($ (-327 (-577))) 66 (|has| |#3| (-1068 (-577))) ELT) (($ (-420 (-980 (-577)))) 71 (|has| |#3| (-1068 (-577))) ELT) (($ (-980 (-577))) 67 (|has| |#3| (-1068 (-577))) ELT) (($ (-327 (-391))) 95 (|has| |#3| (-1068 (-391))) ELT) (($ (-420 (-980 (-391)))) 89 (|has| |#3| (-1068 (-391))) ELT) (($ (-980 (-391))) 85 (|has| |#3| (-1068 (-391))) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2549 (($) 101 T ELT)) (-3555 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2941 (((-665 (-115)) $) NIL T ELT)) (-4396 (((-115) (-115)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3356 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-4338 (((-1202 $) (-630 $)) NIL (|has| $ (-1079)) ELT)) (-3609 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-1924 (((-3 (-630 $) "failed") $) NIL T ELT)) (-1842 (($ $) 99 T ELT)) (-3863 (($ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4385 (((-665 (-630 $)) $) NIL T ELT)) (-2593 (($ (-115) $) 98 T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4450 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-1736 (((-792) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1603 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-3585 (($ $) NIL T ELT)) (-2793 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3362 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-2435 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-2830 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2030 (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-1773 (($ $) NIL (|has| $ (-1079)) ELT)) (-1489 (($ $) NIL T ELT)) (-1360 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-577)) NIL T ELT) (((-327 |#3|) $) 102 T ELT)) (-3234 (((-792)) NIL T CONST)) (-2208 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3540 (((-112) (-115)) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1435 (($ $) NIL T ELT)) (-1413 (($ $) NIL T ELT)) (-1423 (($ $) NIL T ELT)) (-3385 (($ $) NIL T ELT)) (-2367 (($) 100 T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-351 |#1| |#2| |#3|) (-13 (-313) (-38 |#3|) (-1068 |#3|) (-926 (-1206)) (-10 -8 (-15 -3514 ($ (-327 |#3|))) (-15 -2817 ((-3 $ "failed") (-327 |#3|))) (-15 -3514 ($ (-1206))) (-15 -2817 ((-3 $ "failed") (-1206))) (-15 -2410 ((-327 |#3|) $)) (IF (|has| |#3| (-1068 (-577))) (PROGN (-15 -3514 ($ (-327 (-577)))) (-15 -2817 ((-3 $ "failed") (-327 (-577)))) (-15 -3514 ($ (-420 (-980 (-577))))) (-15 -2817 ((-3 $ "failed") (-420 (-980 (-577))))) (-15 -3514 ($ (-980 (-577)))) (-15 -2817 ((-3 $ "failed") (-980 (-577))))) |%noBranch|) (IF (|has| |#3| (-1068 (-391))) (PROGN (-15 -3514 ($ (-327 (-391)))) (-15 -2817 ((-3 $ "failed") (-327 (-391)))) (-15 -3514 ($ (-420 (-980 (-391))))) (-15 -2817 ((-3 $ "failed") (-420 (-980 (-391))))) (-15 -3514 ($ (-980 (-391)))) (-15 -2817 ((-3 $ "failed") (-980 (-391))))) |%noBranch|) (-15 -3385 ($ $)) (-15 -2809 ($ $)) (-15 -3585 ($ $)) (-15 -3863 ($ $)) (-15 -1842 ($ $)) (-15 -1348 ($ $)) (-15 -1360 ($ $)) (-15 -1371 ($ $)) (-15 -1413 ($ $)) (-15 -1423 ($ $)) (-15 -1435 ($ $)) (-15 -1477 ($ $)) (-15 -1489 ($ $)) (-15 -1501 ($ $)) (-15 -2549 ($)) (-15 -2948 ((-665 (-1206)) $)) (-15 -2984 ((-112))) (-15 -2984 ((-112) (-112))))) (-665 (-1206)) (-665 (-1206)) (-400)) (T -351)) -((-3514 (*1 *1 *2) (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 *2)) (-14 *4 (-665 *2)) (-4 *5 (-400)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 *2)) (-14 *4 (-665 *2)) (-4 *5 (-400)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-327 *5)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-3385 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2809 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-3585 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-3863 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1842 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1348 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1360 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1371 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1413 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1423 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1435 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1477 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1489 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-1501 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2549 (*1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-400)))) (-2984 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400))))) -(-13 (-313) (-38 |#3|) (-1068 |#3|) (-926 (-1206)) (-10 -8 (-15 -3514 ($ (-327 |#3|))) (-15 -2817 ((-3 $ "failed") (-327 |#3|))) (-15 -3514 ($ (-1206))) (-15 -2817 ((-3 $ "failed") (-1206))) (-15 -2410 ((-327 |#3|) $)) (IF (|has| |#3| (-1068 (-577))) (PROGN (-15 -3514 ($ (-327 (-577)))) (-15 -2817 ((-3 $ "failed") (-327 (-577)))) (-15 -3514 ($ (-420 (-980 (-577))))) (-15 -2817 ((-3 $ "failed") (-420 (-980 (-577))))) (-15 -3514 ($ (-980 (-577)))) (-15 -2817 ((-3 $ "failed") (-980 (-577))))) |%noBranch|) (IF (|has| |#3| (-1068 (-391))) (PROGN (-15 -3514 ($ (-327 (-391)))) (-15 -2817 ((-3 $ "failed") (-327 (-391)))) (-15 -3514 ($ (-420 (-980 (-391))))) (-15 -2817 ((-3 $ "failed") (-420 (-980 (-391))))) (-15 -3514 ($ (-980 (-391)))) (-15 -2817 ((-3 $ "failed") (-980 (-391))))) |%noBranch|) (-15 -3385 ($ $)) (-15 -2809 ($ $)) (-15 -3585 ($ $)) (-15 -3863 ($ $)) (-15 -1842 ($ $)) (-15 -1348 ($ $)) (-15 -1360 ($ $)) (-15 -1371 ($ $)) (-15 -1413 ($ $)) (-15 -1423 ($ $)) (-15 -1435 ($ $)) (-15 -1477 ($ $)) (-15 -1489 ($ $)) (-15 -1501 ($ $)) (-15 -2549 ($)) (-15 -2948 ((-665 (-1206)) $)) (-15 -2984 ((-112))) (-15 -2984 ((-112) (-112))))) -((-3609 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-352 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3609 (|#8| (-1 |#5| |#1|) |#4|))) (-1251) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-1251) (-1273 |#5|) (-1273 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -352)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1251)) (-4 *8 (-1251)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *9 (-1273 *8)) (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1273 (-420 *9)))))) -(-10 -7 (-15 -3609 (|#8| (-1 |#5| |#1|) |#4|))) -((-3675 (((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1912 (($ (-1297 (-420 |#3|)) (-1297 $)) NIL T ELT) (($ (-1297 (-420 |#3|))) NIL T ELT) (($ (-1297 |#3|) |#3|) 173 T ELT)) (-3495 (((-1297 $) (-1297 $)) 156 T ELT)) (-2720 (((-665 (-665 |#2|))) 126 T ELT)) (-2280 (((-112) |#2| |#2|) 76 T ELT)) (-3008 (($ $) 148 T ELT)) (-1763 (((-792)) 172 T ELT)) (-1644 (((-1297 $) (-1297 $)) 218 T ELT)) (-2351 (((-665 (-980 |#2|)) (-1206)) 115 T ELT)) (-2645 (((-112) $) 169 T ELT)) (-1932 (((-112) $) 27 T ELT) (((-112) $ |#2|) 31 T ELT) (((-112) $ |#3|) 222 T ELT)) (-2133 (((-3 |#3| "failed")) 52 T ELT)) (-3541 (((-792)) 184 T ELT)) (-2435 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1943 (((-3 |#3| "failed")) 71 T ELT)) (-2030 (($ $ (-1 (-420 |#3|) (-420 |#3|))) NIL T ELT) (($ $ (-1 (-420 |#3|) (-420 |#3|)) (-792)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 226 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-4160 (((-1297 $) (-1297 $)) 162 T ELT)) (-3072 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-2373 (((-112)) 34 T ELT))) -(((-353 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2720 ((-665 (-665 |#2|)))) (-15 -2351 ((-665 (-980 |#2|)) (-1206))) (-15 -3072 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2133 ((-3 |#3| "failed"))) (-15 -1943 ((-3 |#3| "failed"))) (-15 -2435 (|#2| |#1| |#2| |#2|)) (-15 -3008 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1932 ((-112) |#1| |#3|)) (-15 -1932 ((-112) |#1| |#2|)) (-15 -1912 (|#1| (-1297 |#3|) |#3|)) (-15 -3675 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3495 ((-1297 |#1|) (-1297 |#1|))) (-15 -1644 ((-1297 |#1|) (-1297 |#1|))) (-15 -4160 ((-1297 |#1|) (-1297 |#1|))) (-15 -1932 ((-112) |#1|)) (-15 -2645 ((-112) |#1|)) (-15 -2280 ((-112) |#2| |#2|)) (-15 -2373 ((-112))) (-15 -3541 ((-792))) (-15 -1763 ((-792))) (-15 -2030 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-792))) (-15 -2030 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -1912 (|#1| (-1297 (-420 |#3|)))) (-15 -1912 (|#1| (-1297 (-420 |#3|)) (-1297 |#1|)))) (-354 |#2| |#3| |#4|) (-1251) (-1273 |#2|) (-1273 (-420 |#3|))) (T -353)) -((-1763 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-3541 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-2373 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-2280 (*1 *2 *3 *3) (-12 (-4 *3 (-1251)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) (-1943 (*1 *2) (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-2133 (*1 *2) (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-5 *2 (-665 (-980 *5))) (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) (-2720 (*1 *2) (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-665 (-665 *4))) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6))))) -(-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2720 ((-665 (-665 |#2|)))) (-15 -2351 ((-665 (-980 |#2|)) (-1206))) (-15 -3072 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2133 ((-3 |#3| "failed"))) (-15 -1943 ((-3 |#3| "failed"))) (-15 -2435 (|#2| |#1| |#2| |#2|)) (-15 -3008 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1932 ((-112) |#1| |#3|)) (-15 -1932 ((-112) |#1| |#2|)) (-15 -1912 (|#1| (-1297 |#3|) |#3|)) (-15 -3675 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3495 ((-1297 |#1|) (-1297 |#1|))) (-15 -1644 ((-1297 |#1|) (-1297 |#1|))) (-15 -4160 ((-1297 |#1|) (-1297 |#1|))) (-15 -1932 ((-112) |#1|)) (-15 -2645 ((-112) |#1|)) (-15 -2280 ((-112) |#2| |#2|)) (-15 -2373 ((-112))) (-15 -3541 ((-792))) (-15 -1763 ((-792))) (-15 -2030 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-792))) (-15 -2030 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -1912 (|#1| (-1297 (-420 |#3|)))) (-15 -1912 (|#1| (-1297 (-420 |#3|)) (-1297 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3675 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 211 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 105 (|has| (-420 |#2|) (-375)) ELT)) (-3913 (($ $) 106 (|has| (-420 |#2|) (-375)) ELT)) (-4244 (((-112) $) 108 (|has| (-420 |#2|) (-375)) ELT)) (-2716 (((-710 (-420 |#2|)) (-1297 $)) 53 T ELT) (((-710 (-420 |#2|))) 68 T ELT)) (-1880 (((-420 |#2|) $) 59 T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 158 (|has| (-420 |#2|) (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 125 (|has| (-420 |#2|) (-375)) ELT)) (-4240 (((-431 $) $) 126 (|has| (-420 |#2|) (-375)) ELT)) (-3397 (((-112) $ $) 116 (|has| (-420 |#2|) (-375)) ELT)) (-2221 (((-792)) 99 (|has| (-420 |#2|) (-380)) ELT)) (-2266 (((-112)) 228 T ELT)) (-1948 (((-112) |#1|) 227 T ELT) (((-112) |#2|) 226 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 185 (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) 180 T ELT)) (-3514 (((-577) $) 184 (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-420 (-577)) $) 182 (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-420 |#2|) $) 181 T ELT)) (-1912 (($ (-1297 (-420 |#2|)) (-1297 $)) 55 T ELT) (($ (-1297 (-420 |#2|))) 71 T ELT) (($ (-1297 |#2|) |#2|) 210 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-420 |#2|) (-361)) ELT)) (-3152 (($ $ $) 120 (|has| (-420 |#2|) (-375)) ELT)) (-3449 (((-710 (-420 |#2|)) $ (-1297 $)) 60 T ELT) (((-710 (-420 |#2|)) $) 66 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 177 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 176 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-710 $) (-1297 $)) 175 T ELT) (((-710 (-420 |#2|)) (-710 $)) 174 T ELT)) (-3495 (((-1297 $) (-1297 $)) 216 T ELT)) (-2511 (($ |#3|) 169 T ELT) (((-3 $ "failed") (-420 |#3|)) 166 (|has| (-420 |#2|) (-375)) ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2720 (((-665 (-665 |#1|))) 197 (|has| |#1| (-380)) ELT)) (-2280 (((-112) |#1| |#1|) 232 T ELT)) (-1875 (((-949)) 61 T ELT)) (-2060 (($) 102 (|has| (-420 |#2|) (-380)) ELT)) (-1694 (((-112)) 225 T ELT)) (-4409 (((-112) |#1|) 224 T ELT) (((-112) |#2|) 223 T ELT)) (-3164 (($ $ $) 119 (|has| (-420 |#2|) (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 114 (|has| (-420 |#2|) (-375)) ELT)) (-3008 (($ $) 203 T ELT)) (-3619 (($) 160 (|has| (-420 |#2|) (-361)) ELT)) (-3390 (((-112) $) 161 (|has| (-420 |#2|) (-361)) ELT)) (-2202 (($ $ (-792)) 152 (|has| (-420 |#2|) (-361)) ELT) (($ $) 151 (|has| (-420 |#2|) (-361)) ELT)) (-1632 (((-112) $) 127 (|has| (-420 |#2|) (-375)) ELT)) (-3890 (((-949) $) 163 (|has| (-420 |#2|) (-361)) ELT) (((-854 (-949)) $) 149 (|has| (-420 |#2|) (-361)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-1763 (((-792)) 235 T ELT)) (-1644 (((-1297 $) (-1297 $)) 217 T ELT)) (-2755 (((-420 |#2|) $) 58 T ELT)) (-2351 (((-665 (-980 |#1|)) (-1206)) 198 (|has| |#1| (-375)) ELT)) (-3651 (((-3 $ "failed") $) 153 (|has| (-420 |#2|) (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 123 (|has| (-420 |#2|) (-375)) ELT)) (-4067 ((|#3| $) 51 (|has| (-420 |#2|) (-375)) ELT)) (-2553 (((-949) $) 101 (|has| (-420 |#2|) (-380)) ELT)) (-2500 ((|#3| $) 167 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 179 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 178 (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-1297 $) $) 173 T ELT) (((-710 (-420 |#2|)) (-1297 $)) 172 T ELT)) (-2388 (($ (-665 $)) 112 (|has| (-420 |#2|) (-375)) ELT) (($ $ $) 111 (|has| (-420 |#2|) (-375)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4330 (((-710 (-420 |#2|))) 212 T ELT)) (-2633 (((-710 (-420 |#2|))) 214 T ELT)) (-3055 (($ $) 128 (|has| (-420 |#2|) (-375)) ELT)) (-4352 (($ (-1297 |#2|) |#2|) 208 T ELT)) (-3099 (((-710 (-420 |#2|))) 213 T ELT)) (-2169 (((-710 (-420 |#2|))) 215 T ELT)) (-3205 (((-2 (|:| |num| (-710 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207 T ELT)) (-3256 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 209 T ELT)) (-4377 (((-1297 $)) 221 T ELT)) (-2544 (((-1297 $)) 222 T ELT)) (-2645 (((-112) $) 220 T ELT)) (-1932 (((-112) $) 219 T ELT) (((-112) $ |#1|) 206 T ELT) (((-112) $ |#2|) 205 T ELT)) (-2199 (($) 154 (|has| (-420 |#2|) (-361)) CONST)) (-2085 (($ (-949)) 100 (|has| (-420 |#2|) (-380)) ELT)) (-2133 (((-3 |#2| "failed")) 200 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3541 (((-792)) 234 T ELT)) (-2846 (($) 171 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 113 (|has| (-420 |#2|) (-375)) ELT)) (-2420 (($ (-665 $)) 110 (|has| (-420 |#2|) (-375)) ELT) (($ $ $) 109 (|has| (-420 |#2|) (-375)) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 157 (|has| (-420 |#2|) (-361)) ELT)) (-2799 (((-431 $) $) 124 (|has| (-420 |#2|) (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 121 (|has| (-420 |#2|) (-375)) ELT)) (-3200 (((-3 $ "failed") $ $) 104 (|has| (-420 |#2|) (-375)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 115 (|has| (-420 |#2|) (-375)) ELT)) (-2442 (((-792) $) 117 (|has| (-420 |#2|) (-375)) ELT)) (-2435 ((|#1| $ |#1| |#1|) 202 T ELT)) (-1943 (((-3 |#2| "failed")) 201 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 118 (|has| (-420 |#2|) (-375)) ELT)) (-1611 (((-420 |#2|) (-1297 $)) 54 T ELT) (((-420 |#2|)) 67 T ELT)) (-2723 (((-792) $) 162 (|has| (-420 |#2|) (-361)) ELT) (((-3 (-792) "failed") $ $) 150 (|has| (-420 |#2|) (-361)) ELT)) (-2030 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 136 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) 135 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) 204 T ELT) (($ $ (-665 (-1206)) (-665 (-792))) 141 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206) (-792)) 140 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-665 (-1206))) 139 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206)) 137 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-792)) 147 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2319 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) 145 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2319 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-1935 (((-710 (-420 |#2|)) (-1297 $) (-1 (-420 |#2|) (-420 |#2|))) 165 (|has| (-420 |#2|) (-375)) ELT)) (-1773 ((|#3|) 170 T ELT)) (-1494 (($) 159 (|has| (-420 |#2|) (-361)) ELT)) (-2119 (((-1297 (-420 |#2|)) $ (-1297 $)) 57 T ELT) (((-710 (-420 |#2|)) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 (-420 |#2|)) $) 73 T ELT) (((-710 (-420 |#2|)) (-1297 $)) 72 T ELT)) (-3341 (((-1297 (-420 |#2|)) $) 70 T ELT) (($ (-1297 (-420 |#2|))) 69 T ELT) ((|#3| $) 186 T ELT) (($ |#3|) 168 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 156 (|has| (-420 |#2|) (-361)) ELT)) (-4160 (((-1297 $) (-1297 $)) 218 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 |#2|)) 44 T ELT) (($ (-420 (-577))) 98 (-2229 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-1068 (-420 (-577))))) ELT) (($ $) 103 (|has| (-420 |#2|) (-375)) ELT)) (-2580 (($ $) 155 (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) 50 (|has| (-420 |#2|) (-146)) ELT)) (-3400 ((|#3| $) 52 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2588 (((-112)) 231 T ELT)) (-2237 (((-112) |#1|) 230 T ELT) (((-112) |#2|) 229 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2225 (((-1297 $)) 74 T ELT)) (-1370 (((-112) $ $) 107 (|has| (-420 |#2|) (-375)) ELT)) (-3072 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199 T ELT)) (-2373 (((-112)) 233 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 134 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) 133 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 144 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206) (-792)) 143 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-665 (-1206))) 142 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-1206)) 138 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-2319 (|has| (-420 |#2|) (-928 (-1206))) (|has| (-420 |#2|) (-375)))) ELT) (($ $ (-792)) 148 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2319 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) 146 (-2229 (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2319 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2319 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 132 (|has| (-420 |#2|) (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 129 (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 |#2|)) 46 T ELT) (($ (-420 |#2|) $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| (-420 |#2|) (-375)) ELT))) -(((-354 |#1| |#2| |#3|) (-141) (-1251) (-1273 |t#1|) (-1273 (-420 |t#2|))) (T -354)) -((-1763 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792)))) (-3541 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792)))) (-2373 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2280 (*1 *2 *3 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2588 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2237 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-2237 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-2266 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-1948 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-1948 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-1694 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-4409 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-4409 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-2544 (*1 *2) (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)))) (-4377 (*1 *2) (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-1932 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-2169 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-2633 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-3099 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-4330 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4))))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-1912 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3))))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-4352 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3))))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-2 (|:| |num| (-710 *5)) (|:| |den| *5))))) (-1932 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) (-1932 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))))) (-2435 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))))) (-1943 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3)))) (-2133 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1251)) (-4 *6 (-1273 (-420 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-354 *4 *5 *6)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *4 (-375)) (-5 *2 (-665 (-980 *4))))) (-2720 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-665 (-665 *3)))))) -(-13 (-745 (-420 |t#2|) |t#3|) (-10 -8 (-15 -1763 ((-792))) (-15 -3541 ((-792))) (-15 -2373 ((-112))) (-15 -2280 ((-112) |t#1| |t#1|)) (-15 -2588 ((-112))) (-15 -2237 ((-112) |t#1|)) (-15 -2237 ((-112) |t#2|)) (-15 -2266 ((-112))) (-15 -1948 ((-112) |t#1|)) (-15 -1948 ((-112) |t#2|)) (-15 -1694 ((-112))) (-15 -4409 ((-112) |t#1|)) (-15 -4409 ((-112) |t#2|)) (-15 -2544 ((-1297 $))) (-15 -4377 ((-1297 $))) (-15 -2645 ((-112) $)) (-15 -1932 ((-112) $)) (-15 -4160 ((-1297 $) (-1297 $))) (-15 -1644 ((-1297 $) (-1297 $))) (-15 -3495 ((-1297 $) (-1297 $))) (-15 -2169 ((-710 (-420 |t#2|)))) (-15 -2633 ((-710 (-420 |t#2|)))) (-15 -3099 ((-710 (-420 |t#2|)))) (-15 -4330 ((-710 (-420 |t#2|)))) (-15 -3675 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1912 ($ (-1297 |t#2|) |t#2|)) (-15 -3256 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4352 ($ (-1297 |t#2|) |t#2|)) (-15 -3205 ((-2 (|:| |num| (-710 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1932 ((-112) $ |t#1|)) (-15 -1932 ((-112) $ |t#2|)) (-15 -2030 ($ $ (-1 |t#2| |t#2|))) (-15 -3008 ($ $)) (-15 -2435 (|t#1| $ |t#1| |t#1|)) (-15 -1943 ((-3 |t#2| "failed"))) (-15 -2133 ((-3 |t#2| "failed"))) (-15 -3072 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-375)) (-15 -2351 ((-665 (-980 |t#1|)) (-1206))) |%noBranch|) (IF (|has| |t#1| (-380)) (-15 -2720 ((-665 (-665 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-38 #1=(-420 |#2|)) . T) ((-38 $) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-102) . T) ((-111 #0# #0#) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-146))) ((-148) |has| (-420 |#2|) (-148)) ((-634 #0#) -2229 (|has| (-420 |#2|) (-1068 (-420 (-577)))) (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-634 #1#) . T) ((-634 (-577)) . T) ((-634 $) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-631 (-885)) . T) ((-174) . T) ((-632 |#3|) . T) ((-235 $) -2229 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-233 #1#) |has| (-420 |#2|) (-375)) ((-239) -2229 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-238) -2229 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-273 #1#) |has| (-420 |#2|) (-375)) ((-249) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-301) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-318) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-375) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-415) |has| (-420 |#2|) (-361)) ((-380) -2229 (|has| (-420 |#2|) (-380)) (|has| (-420 |#2|) (-361))) ((-361) |has| (-420 |#2|) (-361)) ((-382 #1# |#3|) . T) ((-422 #1# |#3|) . T) ((-389 #1#) . T) ((-424 #1#) . T) ((-465) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-569) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-667 #0#) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-667 #1#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-669 #1#) . T) ((-669 #2=(-577)) |has| (-420 |#2|) (-659 (-577))) ((-669 $) . T) ((-661 #0#) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-661 #1#) . T) ((-661 $) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-659 #1#) . T) ((-659 #2#) |has| (-420 |#2|) (-659 (-577))) ((-738 #0#) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-738 #1#) . T) ((-738 $) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-745 #1# |#3|) . T) ((-747) . T) ((-920 $ #3=(-1206)) -2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206))))) ((-926 (-1206)) -12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) ((-928 #3#) -2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206))))) ((-948) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1068 (-420 (-577))) |has| (-420 |#2|) (-1068 (-420 (-577)))) ((-1068 #1#) . T) ((-1068 (-577)) |has| (-420 |#2|) (-1068 (-577))) ((-1081 #0#) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #0#) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| (-420 |#2|) (-361)) ((-1247) . T) ((-1251) -2229 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-938 |#1|) "failed") $) NIL T ELT)) (-3514 (((-938 |#1|) $) NIL T ELT)) (-1912 (($ (-1297 (-938 |#1|))) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3390 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT) (($ $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3679 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2755 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 (-938 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2553 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3574 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3539 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-1202 (-938 |#1|)) "failed") $ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-4254 (($ $ (-1202 (-938 |#1|))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-938 |#1|) (-380)) CONST)) (-2085 (($ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4445 (((-986 (-1150))) NIL T ELT)) (-2846 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 (-938 |#1|))) NIL T ELT)) (-1494 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2513 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2119 (((-1297 (-938 |#1|)) $) NIL T ELT) (((-710 (-938 |#1|)) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-938 |#1|)) NIL T ELT)) (-2580 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT) (($ (-938 |#1|) $) NIL T ELT))) -(((-355 |#1| |#2|) (-13 (-340 (-938 |#1|)) (-10 -7 (-15 -4445 ((-986 (-1150)))))) (-949) (-949)) (T -355)) -((-4445 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-355 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949))))) -(-13 (-340 (-938 |#1|)) (-10 -7 (-15 -4445 ((-986 (-1150)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 58 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 56 (|has| |#1| (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 142 T ELT)) (-3514 ((|#1| $) 113 T ELT)) (-1912 (($ (-1297 |#1|)) 130 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) 124 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) 160 (|has| |#1| (-380)) ELT)) (-3390 (((-112) $) 66 (|has| |#1| (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) 60 (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) 62 T ELT)) (-2841 (($) 162 (|has| |#1| (-380)) ELT)) (-3679 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2755 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 |#1|) $) 117 T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2553 (((-949) $) 171 (|has| |#1| (-380)) ELT)) (-3574 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3539 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-4254 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 178 T ELT)) (-2199 (($) NIL (|has| |#1| (-380)) CONST)) (-2085 (($ (-949)) 96 (|has| |#1| (-380)) ELT)) (-2267 (((-112) $) 147 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4445 (((-986 (-1150))) 57 T ELT)) (-2846 (($) 158 (|has| |#1| (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 119 (|has| |#1| (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) 90 T ELT) (((-949)) 91 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) 161 (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) 154 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 |#1|)) 122 T ELT)) (-1494 (($) 159 (|has| |#1| (-380)) ELT)) (-2513 (($) 167 (|has| |#1| (-380)) ELT)) (-2119 (((-1297 |#1|) $) 77 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) 174 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 100 T ELT)) (-2580 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) 155 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) 144 T ELT) (((-1297 $) (-949)) 98 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) 67 T CONST)) (-2378 (($) 103 T CONST)) (-3077 (($ $) 107 (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) 65 T ELT)) (-2494 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-2483 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 86 T ELT)) (** (($ $ (-949)) 180 T ELT) (($ $ (-792)) 181 T ELT) (($ $ (-577)) 179 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT))) -(((-356 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -4445 ((-986 (-1150)))))) (-361) (-1202 |#1|)) (T -356)) -((-4445 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) (-14 *4 (-1202 *3))))) -(-13 (-340 |#1|) (-10 -7 (-15 -4445 ((-986 (-1150)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-1912 (($ (-1297 |#1|)) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL (|has| |#1| (-380)) ELT)) (-3390 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| |#1| (-380)) ELT)) (-3679 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2755 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 |#1|) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2553 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3574 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3539 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-4254 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-380)) CONST)) (-2085 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4445 (((-986 (-1150))) NIL T ELT)) (-2846 (($) NIL (|has| |#1| (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 |#1|)) NIL T ELT)) (-1494 (($) NIL (|has| |#1| (-380)) ELT)) (-2513 (($) NIL (|has| |#1| (-380)) ELT)) (-2119 (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2580 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-357 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -4445 ((-986 (-1150)))))) (-361) (-949)) (T -357)) -((-4445 (*1 *2) (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949))))) -(-13 (-340 |#1|) (-10 -7 (-15 -4445 ((-986 (-1150)))))) -((-3696 (((-792) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150)))))) 61 T ELT)) (-3830 (((-986 (-1150)) (-1202 |#1|)) 112 T ELT)) (-3314 (((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) (-1202 |#1|)) 103 T ELT)) (-1365 (((-710 |#1|) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150)))))) 113 T ELT)) (-4200 (((-3 (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) "failed") (-949)) 13 T ELT)) (-2339 (((-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150)))))) (-949)) 18 T ELT))) -(((-358 |#1|) (-10 -7 (-15 -3830 ((-986 (-1150)) (-1202 |#1|))) (-15 -3314 ((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) (-1202 |#1|))) (-15 -1365 ((-710 |#1|) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -3696 ((-792) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -4200 ((-3 (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) "failed") (-949))) (-15 -2339 ((-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150)))))) (-949)))) (-361)) (T -358)) -((-2339 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-3 (-1202 *4) (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150))))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-4200 (*1 *2 *3) (|partial| -12 (-5 *3 (-949)) (-5 *2 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) (-4 *4 (-361)) (-5 *2 (-792)) (-5 *1 (-358 *4)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) (-4 *4 (-361)) (-5 *2 (-710 *4)) (-5 *1 (-358 *4)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) (-5 *1 (-358 *4)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-986 (-1150))) (-5 *1 (-358 *4))))) -(-10 -7 (-15 -3830 ((-986 (-1150)) (-1202 |#1|))) (-15 -3314 ((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) (-1202 |#1|))) (-15 -1365 ((-710 |#1|) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -3696 ((-792) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -4200 ((-3 (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) "failed") (-949))) (-15 -2339 ((-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150)))))) (-949)))) -((-2410 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -2410 (|#3| |#1|)) (-15 -2410 (|#1| |#3|))) (-340 |#2|) (-361) (-340 |#2|)) (T -359)) -((-2410 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *2 *4 *3)) (-4 *3 (-340 *4)))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *3 *4 *2)) (-4 *3 (-340 *4))))) -(-10 -7 (-15 -2410 (|#3| |#1|)) (-15 -2410 (|#1| |#3|))) -((-3390 (((-112) $) 60 T ELT)) (-3890 (((-854 (-949)) $) 23 T ELT) (((-949) $) 64 T ELT)) (-3651 (((-3 $ "failed") $) 18 T ELT)) (-2199 (($) 9 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 114 T ELT)) (-2723 (((-3 (-792) "failed") $ $) 92 T ELT) (((-792) $) 79 T ELT)) (-2030 (($ $) 8 T ELT) (($ $ (-792)) NIL T ELT)) (-1494 (($) 53 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 38 T ELT)) (-2580 (((-3 $ "failed") $) 45 T ELT) (($ $) 44 T ELT))) -(((-360 |#1|) (-10 -8 (-15 -3890 ((-949) |#1|)) (-15 -2723 ((-792) |#1|)) (-15 -3390 ((-112) |#1|)) (-15 -1494 (|#1|)) (-15 -3601 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -2580 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -2723 ((-3 (-792) "failed") |#1| |#1|)) (-15 -3890 ((-854 (-949)) |#1|)) (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) (-361)) (T -360)) -NIL -(-10 -8 (-15 -3890 ((-949) |#1|)) (-15 -2723 ((-792) |#1|)) (-15 -3390 ((-112) |#1|)) (-15 -1494 (|#1|)) (-15 -3601 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -2580 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -2723 ((-3 (-792) "failed") |#1| |#1|)) (-15 -3890 ((-854 (-949)) |#1|)) (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 102 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2221 (((-792)) 112 T ELT)) (-2762 (($) 18 T CONST)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 96 T ELT)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2060 (($) 115 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-3619 (($) 100 T ELT)) (-3390 (((-112) $) 99 T ELT)) (-2202 (($ $) 87 T ELT) (($ $ (-792)) 86 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-3890 (((-854 (-949)) $) 89 T ELT) (((-949) $) 97 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3651 (((-3 $ "failed") $) 111 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2553 (((-949) $) 114 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-2199 (($) 110 T CONST)) (-2085 (($ (-949)) 113 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 103 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2723 (((-3 (-792) "failed") $ $) 88 T ELT) (((-792) $) 98 T ELT)) (-2030 (($ $) 109 T ELT) (($ $ (-792)) 107 T ELT)) (-1494 (($) 101 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 104 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-2580 (((-3 $ "failed") $) 90 T ELT) (($ $) 105 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $) 108 T ELT) (($ $ (-792)) 106 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 73 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) -(((-361) (-141)) (T -361)) -((-2580 (*1 *1 *1) (-4 *1 (-361))) (-3601 (*1 *2 *3) (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-361)) (-5 *2 (-1297 *1)))) (-4086 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))))) (-1645 (*1 *2 *3) (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1219 (-949) (-792))))) (-1494 (*1 *1) (-4 *1 (-361))) (-3619 (*1 *1) (-4 *1 (-361))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-792)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-949)))) (-2437 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-415) (-380) (-1182) (-239) (-10 -8 (-15 -2580 ($ $)) (-15 -3601 ((-3 (-1297 $) "failed") (-710 $))) (-15 -4086 ((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577)))))) (-15 -1645 ((-1219 (-949) (-792)) (-577))) (-15 -1494 ($)) (-15 -3619 ($)) (-15 -3390 ((-112) $)) (-15 -2723 ((-792) $)) (-15 -3890 ((-949) $)) (-15 -2437 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) . T) ((-380) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) . T) ((-1247) . T) ((-1251) . T)) -((-4175 (((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) |#1|) 55 T ELT)) (-2544 (((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))) 53 T ELT))) -(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -2544 ((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))))) (-15 -4175 ((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) |#1|))) (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $)))) (-1273 |#1|) (-422 |#1| |#2|)) (T -362)) -((-4175 (*1 *2 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2544 (*1 *2) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(-10 -7 (-15 -2544 ((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))))) (-15 -4175 ((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3696 (((-792)) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-938 |#1|) "failed") $) NIL T ELT)) (-3514 (((-938 |#1|) $) NIL T ELT)) (-1912 (($ (-1297 (-938 |#1|))) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3390 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT) (($ $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3679 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2755 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 (-938 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2553 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3574 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3539 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-1202 (-938 |#1|)) "failed") $ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-4254 (($ $ (-1202 (-938 |#1|))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-938 |#1|) (-380)) CONST)) (-2085 (($ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4134 (((-1297 (-665 (-2 (|:| -4119 (-938 |#1|)) (|:| -2085 (-1150)))))) NIL T ELT)) (-2345 (((-710 (-938 |#1|))) NIL T ELT)) (-2846 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 (-938 |#1|))) NIL T ELT)) (-1494 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2513 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2119 (((-1297 (-938 |#1|)) $) NIL T ELT) (((-710 (-938 |#1|)) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-938 |#1|)) NIL T ELT)) (-2580 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT) (($ (-938 |#1|) $) NIL T ELT))) -(((-363 |#1| |#2|) (-13 (-340 (-938 |#1|)) (-10 -7 (-15 -4134 ((-1297 (-665 (-2 (|:| -4119 (-938 |#1|)) (|:| -2085 (-1150))))))) (-15 -2345 ((-710 (-938 |#1|)))) (-15 -3696 ((-792))))) (-949) (-949)) (T -363)) -((-4134 (*1 *2) (-12 (-5 *2 (-1297 (-665 (-2 (|:| -4119 (-938 *3)) (|:| -2085 (-1150)))))) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-2345 (*1 *2) (-12 (-5 *2 (-710 (-938 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-3696 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949))))) -(-13 (-340 (-938 |#1|)) (-10 -7 (-15 -4134 ((-1297 (-665 (-2 (|:| -4119 (-938 |#1|)) (|:| -2085 (-1150))))))) (-15 -2345 ((-710 (-938 |#1|)))) (-15 -3696 ((-792))))) -((-3211 (((-112) $ $) 73 T ELT)) (-1516 (((-112) $) 88 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 ((|#1| $) 106 T ELT) (($ $ (-949)) 104 (|has| |#1| (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 170 (|has| |#1| (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3696 (((-792)) 103 T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) 187 (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 127 T ELT)) (-3514 ((|#1| $) 105 T ELT)) (-1912 (($ (-1297 |#1|)) 71 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) 182 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) 171 (|has| |#1| (-380)) ELT)) (-3390 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) 113 (|has| |#1| (-380)) ELT)) (-3679 (((-112) $) 200 (|has| |#1| (-380)) ELT)) (-2755 ((|#1| $) 108 T ELT) (($ $ (-949)) 107 (|has| |#1| (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 |#1|) $) 214 T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2553 (((-949) $) 148 (|has| |#1| (-380)) ELT)) (-3574 (((-1202 |#1|) $) 87 (|has| |#1| (-380)) ELT)) (-3539 (((-1202 |#1|) $) 84 (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) 96 (|has| |#1| (-380)) ELT)) (-4254 (($ $ (-1202 |#1|)) 83 (|has| |#1| (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 218 T ELT)) (-2199 (($) NIL (|has| |#1| (-380)) CONST)) (-2085 (($ (-949)) 150 (|has| |#1| (-380)) ELT)) (-2267 (((-112) $) 123 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4134 (((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150)))))) 97 T ELT)) (-2345 (((-710 |#1|)) 101 T ELT)) (-2846 (($) 110 (|has| |#1| (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 173 (|has| |#1| (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) 174 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) 75 T ELT)) (-1773 (((-1202 |#1|)) 175 T ELT)) (-1494 (($) 147 (|has| |#1| (-380)) ELT)) (-2513 (($) NIL (|has| |#1| (-380)) ELT)) (-2119 (((-1297 |#1|) $) 121 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) 140 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 70 T ELT)) (-2580 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) 180 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) 197 T ELT) (((-1297 $) (-949)) 116 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) 186 T CONST)) (-2378 (($) 161 T CONST)) (-3077 (($ $) 122 (|has| |#1| (-380)) ELT) (($ $ (-792)) 114 (|has| |#1| (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) 208 T ELT)) (-2494 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-2483 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-2471 (($ $ $) 204 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 153 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) -(((-364 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -4134 ((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -2345 ((-710 |#1|))) (-15 -3696 ((-792))))) (-361) (-3 (-1202 |#1|) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (T -364)) -((-4134 (*1 *2) (-12 (-5 *2 (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) *2)))) (-2345 (*1 *2) (-12 (-5 *2 (-710 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150))))))))) (-3696 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150)))))))))) -(-13 (-340 |#1|) (-10 -7 (-15 -4134 ((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -2345 ((-710 |#1|))) (-15 -3696 ((-792))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3696 (((-792)) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-1912 (($ (-1297 |#1|)) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL (|has| |#1| (-380)) ELT)) (-3390 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| |#1| (-380)) ELT)) (-3679 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2755 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 |#1|) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2553 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3574 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3539 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-4254 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-380)) CONST)) (-2085 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4134 (((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150)))))) NIL T ELT)) (-2345 (((-710 |#1|)) NIL T ELT)) (-2846 (($) NIL (|has| |#1| (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 |#1|)) NIL T ELT)) (-1494 (($) NIL (|has| |#1| (-380)) ELT)) (-2513 (($) NIL (|has| |#1| (-380)) ELT)) (-2119 (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2580 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-365 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -4134 ((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -2345 ((-710 |#1|))) (-15 -3696 ((-792))))) (-361) (-949)) (T -365)) -((-4134 (*1 *2) (-12 (-5 *2 (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150)))))) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949)))) (-2345 (*1 *2) (-12 (-5 *2 (-710 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949)))) (-3696 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949))))) -(-13 (-340 |#1|) (-10 -7 (-15 -4134 ((-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))))) (-15 -2345 ((-710 |#1|))) (-15 -3696 ((-792))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-938 |#1|) "failed") $) NIL T ELT)) (-3514 (((-938 |#1|) $) NIL T ELT)) (-1912 (($ (-1297 (-938 |#1|))) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3390 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT) (($ $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3679 (((-112) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2755 (((-938 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 (-938 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2553 (((-949) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3574 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-3539 (((-1202 (-938 |#1|)) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-1202 (-938 |#1|)) "failed") $ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-4254 (($ $ (-1202 (-938 |#1|))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-938 |#1|) (-380)) CONST)) (-2085 (($ (-949)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 (-938 |#1|))) NIL T ELT)) (-1494 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2513 (($) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2119 (((-1297 (-938 |#1|)) $) NIL T ELT) (((-710 (-938 |#1|)) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-938 |#1|)) NIL T ELT)) (-2580 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| (-938 |#1|) (-146)) (|has| (-938 |#1|) (-380))) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| (-938 |#1|) (-380)) ELT) (($ $) NIL (|has| (-938 |#1|) (-380)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-938 |#1|)) NIL T ELT) (($ (-938 |#1|) $) NIL T ELT))) -(((-366 |#1| |#2|) (-340 (-938 |#1|)) (-949) (-949)) (T -366)) -NIL -(-340 (-938 |#1|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 129 (|has| |#1| (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) 155 (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 103 T ELT)) (-3514 ((|#1| $) 100 T ELT)) (-1912 (($ (-1297 |#1|)) 95 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) 92 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) 51 (|has| |#1| (-380)) ELT)) (-3390 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) 130 (|has| |#1| (-380)) ELT)) (-3679 (((-112) $) 84 (|has| |#1| (-380)) ELT)) (-2755 ((|#1| $) 47 T ELT) (($ $ (-949)) 52 (|has| |#1| (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 |#1|) $) 75 T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2553 (((-949) $) 107 (|has| |#1| (-380)) ELT)) (-3574 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3539 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-4254 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-380)) CONST)) (-2085 (($ (-949)) 105 (|has| |#1| (-380)) ELT)) (-2267 (((-112) $) 157 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) 44 (|has| |#1| (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 124 (|has| |#1| (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) 154 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) 67 T ELT)) (-1773 (((-1202 |#1|)) 98 T ELT)) (-1494 (($) 135 (|has| |#1| (-380)) ELT)) (-2513 (($) NIL (|has| |#1| (-380)) ELT)) (-2119 (((-1297 |#1|) $) 63 T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) 153 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 97 T ELT)) (-2580 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) 159 T CONST)) (-2525 (((-112) $ $) 161 T ELT)) (-2225 (((-1297 $)) 119 T ELT) (((-1297 $) (-949)) 58 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) 121 T CONST)) (-2378 (($) 40 T CONST)) (-3077 (($ $) 78 (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) 117 T ELT)) (-2494 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-2483 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-2471 (($ $ $) 113 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 53 T ELT) (($ $ (-577)) 138 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) -(((-367 |#1| |#2|) (-340 |#1|) (-361) (-1202 |#1|)) (T -367)) -NIL -(-340 |#1|) -((-1791 ((|#1| (-1202 |#2|)) 59 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -1791 (|#1| (-1202 |#2|)))) (-13 (-415) (-10 -7 (-15 -2410 (|#1| |#2|)) (-15 -2553 ((-949) |#1|)) (-15 -2225 ((-1297 |#1|) (-949))) (-15 -3077 (|#1| |#1|)))) (-361)) (T -368)) -((-1791 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-4 *2 (-13 (-415) (-10 -7 (-15 -2410 (*2 *4)) (-15 -2553 ((-949) *2)) (-15 -2225 ((-1297 *2) (-949))) (-15 -3077 (*2 *2))))) (-5 *1 (-368 *2 *4))))) -(-10 -7 (-15 -1791 (|#1| (-1202 |#2|)))) -((-3189 (((-986 (-1202 |#1|)) (-1202 |#1|)) 49 T ELT)) (-2060 (((-1202 |#1|) (-949) (-949)) 154 T ELT) (((-1202 |#1|) (-949)) 150 T ELT)) (-3390 (((-112) (-1202 |#1|)) 107 T ELT)) (-3604 (((-949) (-949)) 85 T ELT)) (-1817 (((-949) (-949)) 92 T ELT)) (-4139 (((-949) (-949)) 83 T ELT)) (-3679 (((-112) (-1202 |#1|)) 111 T ELT)) (-4103 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 135 T ELT)) (-3353 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 140 T ELT)) (-3775 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 139 T ELT)) (-2204 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 138 T ELT)) (-3535 (((-3 (-1202 |#1|) "failed") (-1202 |#1|)) 131 T ELT)) (-4393 (((-1202 |#1|) (-1202 |#1|)) 71 T ELT)) (-4220 (((-1202 |#1|) (-949)) 145 T ELT)) (-1972 (((-1202 |#1|) (-949)) 148 T ELT)) (-2801 (((-1202 |#1|) (-949)) 147 T ELT)) (-4262 (((-1202 |#1|) (-949)) 146 T ELT)) (-1840 (((-1202 |#1|) (-949)) 143 T ELT))) -(((-369 |#1|) (-10 -7 (-15 -3390 ((-112) (-1202 |#1|))) (-15 -3679 ((-112) (-1202 |#1|))) (-15 -4139 ((-949) (-949))) (-15 -3604 ((-949) (-949))) (-15 -1817 ((-949) (-949))) (-15 -1840 ((-1202 |#1|) (-949))) (-15 -4220 ((-1202 |#1|) (-949))) (-15 -4262 ((-1202 |#1|) (-949))) (-15 -2801 ((-1202 |#1|) (-949))) (-15 -1972 ((-1202 |#1|) (-949))) (-15 -3535 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -4103 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -2204 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3775 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3353 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -2060 ((-1202 |#1|) (-949))) (-15 -2060 ((-1202 |#1|) (-949) (-949))) (-15 -4393 ((-1202 |#1|) (-1202 |#1|))) (-15 -3189 ((-986 (-1202 |#1|)) (-1202 |#1|)))) (-361)) (T -369)) -((-3189 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-986 (-1202 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1202 *4)))) (-4393 (*1 *2 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-2060 (*1 *2 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3353 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3775 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-2204 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-4103 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3535 (*1 *2 *2) (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-4220 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-4139 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4))))) -(-10 -7 (-15 -3390 ((-112) (-1202 |#1|))) (-15 -3679 ((-112) (-1202 |#1|))) (-15 -4139 ((-949) (-949))) (-15 -3604 ((-949) (-949))) (-15 -1817 ((-949) (-949))) (-15 -1840 ((-1202 |#1|) (-949))) (-15 -4220 ((-1202 |#1|) (-949))) (-15 -4262 ((-1202 |#1|) (-949))) (-15 -2801 ((-1202 |#1|) (-949))) (-15 -1972 ((-1202 |#1|) (-949))) (-15 -3535 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -4103 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -2204 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3775 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -3353 ((-3 (-1202 |#1|) "failed") (-1202 |#1|))) (-15 -2060 ((-1202 |#1|) (-949))) (-15 -2060 ((-1202 |#1|) (-949) (-949))) (-15 -4393 ((-1202 |#1|) (-1202 |#1|))) (-15 -3189 ((-986 (-1202 |#1|)) (-1202 |#1|)))) -((-1440 (((-3 (-665 |#3|) "failed") (-665 |#3|) |#3|) 38 T ELT))) -(((-370 |#1| |#2| |#3|) (-10 -7 (-15 -1440 ((-3 (-665 |#3|) "failed") (-665 |#3|) |#3|))) (-361) (-1273 |#1|) (-1273 |#2|)) (T -370)) -((-1440 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3))))) -(-10 -7 (-15 -1440 ((-3 (-665 |#3|) "failed") (-665 |#3|) |#3|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-1912 (($ (-1297 |#1|)) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL (|has| |#1| (-380)) ELT)) (-3390 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| |#1| (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| |#1| (-380)) ELT)) (-3679 (((-112) $) NIL (|has| |#1| (-380)) ELT)) (-2755 ((|#1| $) NIL T ELT) (($ $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 |#1|) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2553 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3574 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT)) (-3539 (((-1202 |#1|) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-1202 |#1|) "failed") $ $) NIL (|has| |#1| (-380)) ELT)) (-4254 (($ $ (-1202 |#1|)) NIL (|has| |#1| (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-380)) CONST)) (-2085 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) NIL (|has| |#1| (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| |#1| (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| |#1| (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 |#1|)) NIL T ELT)) (-1494 (($) NIL (|has| |#1| (-380)) ELT)) (-2513 (($) NIL (|has| |#1| (-380)) ELT)) (-2119 (((-1297 |#1|) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2580 (($ $) NIL (|has| |#1| (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $) NIL (|has| |#1| (-380)) ELT) (($ $ (-792)) NIL (|has| |#1| (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| |#1| (-380)) ELT) (($ $) NIL (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-371 |#1| |#2|) (-340 |#1|) (-361) (-949)) (T -371)) -NIL -(-340 |#1|) -((-4140 (((-112) (-665 (-980 |#1|))) 41 T ELT)) (-3849 (((-665 (-980 |#1|)) (-665 (-980 |#1|))) 53 T ELT)) (-2813 (((-3 (-665 (-980 |#1|)) "failed") (-665 (-980 |#1|))) 48 T ELT))) -(((-372 |#1| |#2|) (-10 -7 (-15 -4140 ((-112) (-665 (-980 |#1|)))) (-15 -2813 ((-3 (-665 (-980 |#1|)) "failed") (-665 (-980 |#1|)))) (-15 -3849 ((-665 (-980 |#1|)) (-665 (-980 |#1|))))) (-465) (-665 (-1206))) (T -372)) -((-3849 (*1 *2 *2) (-12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-665 (-1206))))) (-2813 (*1 *2 *2) (|partial| -12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-665 (-1206))))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-112)) (-5 *1 (-372 *4 *5)) (-14 *5 (-665 (-1206)))))) -(-10 -7 (-15 -4140 ((-112) (-665 (-980 |#1|)))) (-15 -2813 ((-3 (-665 (-980 |#1|)) "failed") (-665 (-980 |#1|)))) (-15 -3849 ((-665 (-980 |#1|)) (-665 (-980 |#1|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) 17 T ELT)) (-3017 ((|#1| $ (-577)) NIL T ELT)) (-3757 (((-577) $ (-577)) NIL T ELT)) (-3513 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4180 (($ (-1 (-577) (-577)) $) 26 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 28 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1679 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-577)))) $) 30 T ELT)) (-2744 (($ $ $) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2410 (((-885) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 11 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ |#1| (-577)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-373 |#1|) (-13 (-486) (-1068 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -2221 ((-792) $)) (-15 -3757 ((-577) $ (-577))) (-15 -3017 (|#1| $ (-577))) (-15 -4180 ($ (-1 (-577) (-577)) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)) (-15 -1679 ((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-577)))) $)))) (-1130)) (T -373)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) (-3757 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-373 *3)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 (-577))))) (-5 *1 (-373 *3)) (-4 *3 (-1130))))) -(-13 (-486) (-1068 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -2221 ((-792) $)) (-15 -3757 ((-577) $ (-577))) (-15 -3017 (|#1| $ (-577))) (-15 -4180 ($ (-1 (-577) (-577)) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)) (-15 -1679 ((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-577)))) $)))) -((-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 13 T ELT)) (-3913 (($ $) 14 T ELT)) (-4240 (((-431 $) $) 34 T ELT)) (-1632 (((-112) $) 30 T ELT)) (-3055 (($ $) 19 T ELT)) (-2420 (($ $ $) 25 T ELT) (($ (-665 $)) NIL T ELT)) (-2799 (((-431 $) $) 35 T ELT)) (-3200 (((-3 $ "failed") $ $) 24 T ELT)) (-2442 (((-792) $) 28 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 39 T ELT)) (-1370 (((-112) $ $) 16 T ELT)) (-2494 (($ $ $) 37 T ELT))) -(((-374 |#1|) (-10 -8 (-15 -2494 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4384 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -2442 ((-792) |#1|)) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2420 (|#1| |#1| |#1|)) (-15 -1370 ((-112) |#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1936 ((-2 (|:| -2117 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|))) (-375)) (T -374)) -NIL -(-10 -8 (-15 -2494 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4384 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -2442 ((-792) |#1|)) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2420 (|#1| |#1| |#1|)) (-15 -1370 ((-112) |#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1936 ((-2 (|:| -2117 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2762 (($) 18 T CONST)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 73 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) -(((-375) (-141)) (T -375)) -((-2494 (*1 *1 *1 *1) (-4 *1 (-375)))) -(-13 (-318) (-1251) (-249) (-10 -8 (-15 -2494 ($ $ $)) (-6 -4497) (-6 -4491))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-3456 ((|#2| $ |#2|) 14 T ELT)) (-4216 (($ $ (-1188)) 19 T ELT)) (-2607 ((|#2| $) 15 T ELT)) (-2258 (($ |#1|) 21 T ELT) (($ |#1| (-1188)) 20 T ELT)) (-4105 ((|#1| $) 17 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-1368 (((-1188) $) 16 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2996 (($ $) 18 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-376 |#1| |#2|) (-141) (-1130) (-1130)) (T -376)) -((-2258 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-2258 (*1 *1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1130)) (-4 *4 (-1130)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-1188)))) (-2607 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-3456 (*1 *2 *1 *2) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -2258 ($ |t#1|)) (-15 -2258 ($ |t#1| (-1188))) (-15 -4216 ($ $ (-1188))) (-15 -2996 ($ $)) (-15 -4105 (|t#1| $)) (-15 -1368 ((-1188) $)) (-15 -2607 (|t#2| $)) (-15 -3456 (|t#2| $ |t#2|)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3456 ((|#1| $ |#1|) 31 T ELT)) (-4216 (($ $ (-1188)) 23 T ELT)) (-2130 (((-3 |#1| "failed") $) 30 T ELT)) (-2607 ((|#1| $) 28 T ELT)) (-2258 (($ (-401)) 22 T ELT) (($ (-401) (-1188)) 21 T ELT)) (-4105 (((-401) $) 25 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1368 (((-1188) $) 26 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 20 T ELT)) (-2996 (($ $) 24 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 19 T ELT))) -(((-377 |#1|) (-13 (-376 (-401) |#1|) (-10 -8 (-15 -2130 ((-3 |#1| "failed") $)))) (-1130)) (T -377)) -((-2130 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1130))))) -(-13 (-376 (-401) |#1|) (-10 -8 (-15 -2130 ((-3 |#1| "failed") $)))) -((-1985 (((-1297 (-710 |#2|)) (-1297 $)) 67 T ELT)) (-2470 (((-710 |#2|) (-1297 $)) 139 T ELT)) (-1677 ((|#2| $) 36 T ELT)) (-1826 (((-710 |#2|) $ (-1297 $)) 142 T ELT)) (-1488 (((-3 $ "failed") $) 89 T ELT)) (-2932 ((|#2| $) 39 T ELT)) (-2993 (((-1202 |#2|) $) 98 T ELT)) (-2829 ((|#2| (-1297 $)) 122 T ELT)) (-3661 (((-1202 |#2|) $) 32 T ELT)) (-1550 (((-112)) 116 T ELT)) (-1912 (($ (-1297 |#2|) (-1297 $)) 132 T ELT)) (-4281 (((-3 $ "failed") $) 93 T ELT)) (-3842 (((-112)) 111 T ELT)) (-3195 (((-112)) 106 T ELT)) (-3950 (((-112)) 58 T ELT)) (-2164 (((-710 |#2|) (-1297 $)) 137 T ELT)) (-4470 ((|#2| $) 35 T ELT)) (-3065 (((-710 |#2|) $ (-1297 $)) 141 T ELT)) (-3258 (((-3 $ "failed") $) 87 T ELT)) (-1591 ((|#2| $) 38 T ELT)) (-2369 (((-1202 |#2|) $) 97 T ELT)) (-3570 ((|#2| (-1297 $)) 120 T ELT)) (-3163 (((-1202 |#2|) $) 30 T ELT)) (-3677 (((-112)) 115 T ELT)) (-4404 (((-112)) 108 T ELT)) (-2027 (((-112)) 56 T ELT)) (-1796 (((-112)) 103 T ELT)) (-1342 (((-112)) 117 T ELT)) (-2119 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) 128 T ELT)) (-2137 (((-112)) 113 T ELT)) (-3898 (((-665 (-1297 |#2|))) 102 T ELT)) (-1984 (((-112)) 114 T ELT)) (-2989 (((-112)) 112 T ELT)) (-4176 (((-112)) 51 T ELT)) (-2102 (((-112)) 118 T ELT))) -(((-378 |#1| |#2|) (-10 -8 (-15 -2993 ((-1202 |#2|) |#1|)) (-15 -2369 ((-1202 |#2|) |#1|)) (-15 -3898 ((-665 (-1297 |#2|)))) (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -3258 ((-3 |#1| "failed") |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 -3195 ((-112))) (-15 -4404 ((-112))) (-15 -3842 ((-112))) (-15 -2027 ((-112))) (-15 -3950 ((-112))) (-15 -1796 ((-112))) (-15 -2102 ((-112))) (-15 -1342 ((-112))) (-15 -1550 ((-112))) (-15 -3677 ((-112))) (-15 -4176 ((-112))) (-15 -1984 ((-112))) (-15 -2989 ((-112))) (-15 -2137 ((-112))) (-15 -3661 ((-1202 |#2|) |#1|)) (-15 -3163 ((-1202 |#2|) |#1|)) (-15 -2470 ((-710 |#2|) (-1297 |#1|))) (-15 -2164 ((-710 |#2|) (-1297 |#1|))) (-15 -2829 (|#2| (-1297 |#1|))) (-15 -3570 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2932 (|#2| |#1|)) (-15 -1591 (|#2| |#1|)) (-15 -1677 (|#2| |#1|)) (-15 -4470 (|#2| |#1|)) (-15 -1826 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -3065 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -1985 ((-1297 (-710 |#2|)) (-1297 |#1|)))) (-379 |#2|) (-174)) (T -378)) -((-2137 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2989 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1984 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-4176 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3677 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1550 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1342 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2102 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-1796 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3950 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-2027 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3842 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-4404 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3195 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3898 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-665 (-1297 *4))) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4))))) -(-10 -8 (-15 -2993 ((-1202 |#2|) |#1|)) (-15 -2369 ((-1202 |#2|) |#1|)) (-15 -3898 ((-665 (-1297 |#2|)))) (-15 -1488 ((-3 |#1| "failed") |#1|)) (-15 -3258 ((-3 |#1| "failed") |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 -3195 ((-112))) (-15 -4404 ((-112))) (-15 -3842 ((-112))) (-15 -2027 ((-112))) (-15 -3950 ((-112))) (-15 -1796 ((-112))) (-15 -2102 ((-112))) (-15 -1342 ((-112))) (-15 -1550 ((-112))) (-15 -3677 ((-112))) (-15 -4176 ((-112))) (-15 -1984 ((-112))) (-15 -2989 ((-112))) (-15 -2137 ((-112))) (-15 -3661 ((-1202 |#2|) |#1|)) (-15 -3163 ((-1202 |#2|) |#1|)) (-15 -2470 ((-710 |#2|) (-1297 |#1|))) (-15 -2164 ((-710 |#2|) (-1297 |#1|))) (-15 -2829 (|#2| (-1297 |#1|))) (-15 -3570 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2932 (|#2| |#1|)) (-15 -1591 (|#2| |#1|)) (-15 -1677 (|#2| |#1|)) (-15 -4470 (|#2| |#1|)) (-15 -1826 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -3065 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -1985 ((-1297 (-710 |#2|)) (-1297 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2117 (((-3 $ "failed")) 42 (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-1985 (((-1297 (-710 |#1|)) (-1297 $)) 83 T ELT)) (-3955 (((-1297 $)) 86 T ELT)) (-2762 (($) 18 T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) 45 (|has| |#1| (-569)) ELT)) (-3666 (((-3 $ "failed")) 43 (|has| |#1| (-569)) ELT)) (-2470 (((-710 |#1|) (-1297 $)) 70 T ELT)) (-1677 ((|#1| $) 79 T ELT)) (-1826 (((-710 |#1|) $ (-1297 $)) 81 T ELT)) (-1488 (((-3 $ "failed") $) 50 (|has| |#1| (-569)) ELT)) (-1380 (($ $ (-949)) 31 T ELT)) (-2932 ((|#1| $) 77 T ELT)) (-2993 (((-1202 |#1|) $) 47 (|has| |#1| (-569)) ELT)) (-2829 ((|#1| (-1297 $)) 72 T ELT)) (-3661 (((-1202 |#1|) $) 68 T ELT)) (-1550 (((-112)) 62 T ELT)) (-1912 (($ (-1297 |#1|) (-1297 $)) 74 T ELT)) (-4281 (((-3 $ "failed") $) 52 (|has| |#1| (-569)) ELT)) (-1875 (((-949)) 85 T ELT)) (-3506 (((-112)) 59 T ELT)) (-3328 (($ $ (-949)) 38 T ELT)) (-3842 (((-112)) 55 T ELT)) (-3195 (((-112)) 53 T ELT)) (-3950 (((-112)) 57 T ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) 46 (|has| |#1| (-569)) ELT)) (-2249 (((-3 $ "failed")) 44 (|has| |#1| (-569)) ELT)) (-2164 (((-710 |#1|) (-1297 $)) 71 T ELT)) (-4470 ((|#1| $) 80 T ELT)) (-3065 (((-710 |#1|) $ (-1297 $)) 82 T ELT)) (-3258 (((-3 $ "failed") $) 51 (|has| |#1| (-569)) ELT)) (-1748 (($ $ (-949)) 32 T ELT)) (-1591 ((|#1| $) 78 T ELT)) (-2369 (((-1202 |#1|) $) 48 (|has| |#1| (-569)) ELT)) (-3570 ((|#1| (-1297 $)) 73 T ELT)) (-3163 (((-1202 |#1|) $) 69 T ELT)) (-3677 (((-112)) 63 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4404 (((-112)) 54 T ELT)) (-2027 (((-112)) 56 T ELT)) (-1796 (((-112)) 58 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1342 (((-112)) 61 T ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 75 T ELT)) (-3463 (((-665 (-980 |#1|)) (-1297 $)) 84 T ELT)) (-4365 (($ $ $) 28 T ELT)) (-2137 (((-112)) 67 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3898 (((-665 (-1297 |#1|))) 49 (|has| |#1| (-569)) ELT)) (-3899 (($ $ $ $) 29 T ELT)) (-1984 (((-112)) 65 T ELT)) (-1416 (($ $ $) 27 T ELT)) (-2989 (((-112)) 66 T ELT)) (-4176 (((-112)) 64 T ELT)) (-2102 (((-112)) 60 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) -(((-379 |#1|) (-141) (-174)) (T -379)) -((-3955 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-379 *3)))) (-1875 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-949)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-665 (-980 *4))))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1297 (-710 *4))))) (-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-4470 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2119 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1297 *4)))) (-2119 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-1912 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3)))) (-2137 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2989 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1984 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4176 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3677 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1550 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1342 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2102 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3506 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1796 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3950 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2027 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3842 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4404 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3195 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4281 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3258 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-1488 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3898 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-665 (-1297 *3))))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1202 *3)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1202 *3)))) (-1990 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2225 (-665 *1)))) (-4 *1 (-379 *3)))) (-1756 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2225 (-665 *1)))) (-4 *1 (-379 *3)))) (-2249 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-3666 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-2117 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) -(-13 (-765 |t#1|) (-10 -8 (-15 -3955 ((-1297 $))) (-15 -1875 ((-949))) (-15 -3463 ((-665 (-980 |t#1|)) (-1297 $))) (-15 -1985 ((-1297 (-710 |t#1|)) (-1297 $))) (-15 -3065 ((-710 |t#1|) $ (-1297 $))) (-15 -1826 ((-710 |t#1|) $ (-1297 $))) (-15 -4470 (|t#1| $)) (-15 -1677 (|t#1| $)) (-15 -1591 (|t#1| $)) (-15 -2932 (|t#1| $)) (-15 -2119 ((-1297 |t#1|) $ (-1297 $))) (-15 -2119 ((-710 |t#1|) (-1297 $) (-1297 $))) (-15 -1912 ($ (-1297 |t#1|) (-1297 $))) (-15 -3570 (|t#1| (-1297 $))) (-15 -2829 (|t#1| (-1297 $))) (-15 -2164 ((-710 |t#1|) (-1297 $))) (-15 -2470 ((-710 |t#1|) (-1297 $))) (-15 -3163 ((-1202 |t#1|) $)) (-15 -3661 ((-1202 |t#1|) $)) (-15 -2137 ((-112))) (-15 -2989 ((-112))) (-15 -1984 ((-112))) (-15 -4176 ((-112))) (-15 -3677 ((-112))) (-15 -1550 ((-112))) (-15 -1342 ((-112))) (-15 -2102 ((-112))) (-15 -3506 ((-112))) (-15 -1796 ((-112))) (-15 -3950 ((-112))) (-15 -2027 ((-112))) (-15 -3842 ((-112))) (-15 -4404 ((-112))) (-15 -3195 ((-112))) (IF (|has| |t#1| (-569)) (PROGN (-15 -4281 ((-3 $ "failed") $)) (-15 -3258 ((-3 $ "failed") $)) (-15 -1488 ((-3 $ "failed") $)) (-15 -3898 ((-665 (-1297 |t#1|)))) (-15 -2369 ((-1202 |t#1|) $)) (-15 -2993 ((-1202 |t#1|) $)) (-15 -1990 ((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed"))) (-15 -2249 ((-3 $ "failed"))) (-15 -3666 ((-3 $ "failed"))) (-15 -2117 ((-3 $ "failed"))) (-6 -4496)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-741) . T) ((-765 |#1|) . T) ((-782) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-2221 (((-792)) 17 T ELT)) (-2060 (($) 14 T ELT)) (-2553 (((-949) $) 15 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2085 (($ (-949)) 16 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-380) (-141)) (T -380)) -((-2221 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-792)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-380)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-949)))) (-2060 (*1 *1) (-4 *1 (-380)))) -(-13 (-1130) (-10 -8 (-15 -2221 ((-792))) (-15 -2085 ($ (-949))) (-15 -2553 ((-949) $)) (-15 -2060 ($)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-2716 (((-710 |#2|) (-1297 $)) 45 T ELT)) (-1912 (($ (-1297 |#2|) (-1297 $)) 39 T ELT)) (-3449 (((-710 |#2|) $ (-1297 $)) 47 T ELT)) (-1611 ((|#2| (-1297 $)) 13 T ELT)) (-2119 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) 27 T ELT))) -(((-381 |#1| |#2| |#3|) (-10 -8 (-15 -2716 ((-710 |#2|) (-1297 |#1|))) (-15 -1611 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3449 ((-710 |#2|) |#1| (-1297 |#1|)))) (-382 |#2| |#3|) (-174) (-1273 |#2|)) (T -381)) -NIL -(-10 -8 (-15 -2716 ((-710 |#2|) (-1297 |#1|))) (-15 -1611 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3449 ((-710 |#2|) |#1| (-1297 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2716 (((-710 |#1|) (-1297 $)) 53 T ELT)) (-1880 ((|#1| $) 59 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-1912 (($ (-1297 |#1|) (-1297 $)) 55 T ELT)) (-3449 (((-710 |#1|) $ (-1297 $)) 60 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-949)) 61 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2755 ((|#1| $) 58 T ELT)) (-4067 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1611 ((|#1| (-1297 $)) 54 T ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-2580 (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-3400 ((|#2| $) 52 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-382 |#1| |#2|) (-141) (-174) (-1273 |t#1|)) (T -382)) -((-1875 (*1 *2) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-949)))) (-3449 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) (-2119 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) (-2119 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-1912 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) (-4 *1 (-382 *4 *5)) (-4 *5 (-1273 *4)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1273 *2)) (-4 *2 (-174)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) (-4 *2 (-1273 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -1875 ((-949))) (-15 -3449 ((-710 |t#1|) $ (-1297 $))) (-15 -1880 (|t#1| $)) (-15 -2755 (|t#1| $)) (-15 -2119 ((-1297 |t#1|) $ (-1297 $))) (-15 -2119 ((-710 |t#1|) (-1297 $) (-1297 $))) (-15 -1912 ($ (-1297 |t#1|) (-1297 $))) (-15 -1611 (|t#1| (-1297 $))) (-15 -2716 ((-710 |t#1|) (-1297 $))) (-15 -3400 (|t#2| $)) (IF (|has| |t#1| (-375)) (-15 -4067 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2090 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-2511 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3609 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2511 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2090 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1247) (-385 |#1|) (-1247) (-385 |#3|)) (T -383)) -((-2090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) -(-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2511 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2090 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3047 (((-112) (-1 (-112) |#2| |#2|) $) NIL T ELT) (((-112) $) 18 T ELT)) (-1461 (($ (-1 (-112) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2040 (($ (-1 (-112) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-1538 (($ $) 25 T ELT)) (-3886 (((-577) (-1 (-112) |#2|) $) NIL T ELT) (((-577) |#2| $) 11 T ELT) (((-577) |#2| $ (-577)) NIL T ELT)) (-2223 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-384 |#1| |#2|) (-10 -8 (-15 -1461 (|#1| |#1|)) (-15 -1461 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2223 (|#1| |#1| |#1|)) (-15 -3886 ((-577) |#2| |#1| (-577))) (-15 -3886 ((-577) |#2| |#1|)) (-15 -3886 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3047 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2040 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -2223 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1247)) (T -384)) -NIL -(-10 -8 (-15 -1461 (|#1| |#1|)) (-15 -1461 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -2223 (|#1| |#1| |#1|)) (-15 -3886 ((-577) |#2| |#1| (-577))) (-15 -3886 ((-577) |#2| |#1|)) (-15 -3886 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3047 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2040 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -2223 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3823 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 103 T ELT)) (-3860 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 52 T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) 70 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-3482 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-1704 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1530 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 72 T ELT)) (-3702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-385 |#1|) (-141) (-1247)) (T -385)) -((-2223 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-1538 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-2040 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-3047 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-3886 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-577)))) (-3886 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-577)))) (-3886 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)))) (-2223 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) (-2040 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) (-3047 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-870)) (-5 *2 (-112)))) (-1530 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-3823 (*1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-1461 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4500)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-1461 (*1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870))))) -(-13 (-672 |t#1|) (-10 -8 (-6 -4499) (-15 -2223 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1538 ($ $)) (-15 -2040 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3047 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3886 ((-577) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -3886 ((-577) |t#1| $)) (-15 -3886 ((-577) |t#1| $ (-577)))) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-6 (-870)) (-15 -2223 ($ $ $)) (-15 -2040 ($ $)) (-15 -3047 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4500)) (PROGN (-15 -1530 ($ $ $ (-577))) (-15 -3823 ($ $)) (-15 -1461 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-870)) (-15 -1461 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-4417 (((-665 |#1|) $) 37 T ELT)) (-4370 (($ $ (-792)) 38 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3216 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 41 T ELT)) (-2955 (($ $) 39 T ELT)) (-3855 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 42 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3362 (($ $ |#1| $) 36 T ELT) (($ $ (-665 |#1|) (-665 $)) 35 T ELT)) (-2776 (((-792) $) 43 T ELT)) (-2422 (($ $ $) 34 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ |#1|) 46 T ELT) (((-1312 |#1| |#2|) $) 45 T ELT) (((-1321 |#1| |#2|) $) 44 T ELT)) (-2671 ((|#2| (-1321 |#1| |#2|) $) 47 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-1825 (($ (-693 |#1|)) 40 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#2|) 33 (|has| |#2| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) -(((-386 |#1| |#2|) (-141) (-870) (-174)) (T -386)) -((-2671 (*1 *2 *3 *1) (-12 (-5 *3 (-1321 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-870)) (-4 *2 (-174)))) (-2410 (*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-1312 *3 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-1321 *3 *4)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-792)))) (-3855 (*1 *2 *2 *1) (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-3216 (*1 *2 *2 *1) (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-4 *1 (-386 *3 *4)) (-4 *4 (-174)))) (-2955 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) (-4370 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-4417 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *2 (-665 *3)))) (-3362 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *1)) (-4 *1 (-386 *4 *5)) (-4 *4 (-870)) (-4 *5 (-174))))) -(-13 (-652 |t#2|) (-10 -8 (-15 -2671 (|t#2| (-1321 |t#1| |t#2|) $)) (-15 -2410 ($ |t#1|)) (-15 -2410 ((-1312 |t#1| |t#2|) $)) (-15 -2410 ((-1321 |t#1| |t#2|) $)) (-15 -2776 ((-792) $)) (-15 -3855 ((-1321 |t#1| |t#2|) (-1321 |t#1| |t#2|) $)) (-15 -3216 ((-1321 |t#1| |t#2|) (-1321 |t#1| |t#2|) $)) (-15 -1825 ($ (-693 |t#1|))) (-15 -2955 ($ $)) (-15 -4370 ($ $ (-792))) (-15 -4417 ((-665 |t#1|) $)) (-15 -3362 ($ $ |t#1| $)) (-15 -3362 ($ $ (-665 |t#1|) (-665 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-669 |#2|) . T) ((-652 |#2|) . T) ((-661 |#2|) . T) ((-738 |#2|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1130) . T) ((-1247) . T)) -((-4386 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40 T ELT)) (-4475 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13 T ELT)) (-2898 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33 T ELT))) -(((-387 |#1| |#2|) (-10 -7 (-15 -4475 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2898 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4386 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1247) (-13 (-385 |#1|) (-10 -7 (-6 -4500)))) (T -387)) -((-4386 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))))) (-2898 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))))) (-4475 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) -(-10 -7 (-15 -4475 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2898 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4386 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-1953 (((-710 |#2|) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 22 T ELT) (((-710 (-577)) (-710 $)) 14 T ELT))) -(((-388 |#1| |#2|) (-10 -8 (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 |#2|) (-710 |#1|)))) (-389 |#2|) (-1079)) (T -388)) -NIL -(-10 -8 (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 |#2|) (-710 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-1953 (((-710 |#1|) (-710 $)) 30 T ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 29 T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 41 (|has| |#1| (-659 (-577))) ELT) (((-710 (-577)) (-710 $)) 40 (|has| |#1| (-659 (-577))) ELT)) (-2796 (((-710 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 39 (|has| |#1| (-659 (-577))) ELT) (((-710 (-577)) (-1297 $)) 38 (|has| |#1| (-659 (-577))) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) -(((-389 |#1|) (-141) (-1079)) (T -389)) -NIL -(-13 (-659 |t#1|) (-10 -7 (IF (|has| |t#1| (-659 (-577))) (-6 (-659 (-577))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 #0=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-659 #0#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-2557 (((-665 (-305 (-980 (-171 |#1|)))) (-305 (-420 (-980 (-171 (-577))))) |#1|) 51 T ELT) (((-665 (-305 (-980 (-171 |#1|)))) (-420 (-980 (-171 (-577)))) |#1|) 50 T ELT) (((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-305 (-420 (-980 (-171 (-577)))))) |#1|) 47 T ELT) (((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-420 (-980 (-171 (-577))))) |#1|) 41 T ELT)) (-4193 (((-665 (-665 (-171 |#1|))) (-665 (-420 (-980 (-171 (-577))))) (-665 (-1206)) |#1|) 30 T ELT) (((-665 (-171 |#1|)) (-420 (-980 (-171 (-577)))) |#1|) 18 T ELT))) -(((-390 |#1|) (-10 -7 (-15 -2557 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -2557 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-305 (-420 (-980 (-171 (-577)))))) |#1|)) (-15 -2557 ((-665 (-305 (-980 (-171 |#1|)))) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -2557 ((-665 (-305 (-980 (-171 |#1|)))) (-305 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -4193 ((-665 (-171 |#1|)) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -4193 ((-665 (-665 (-171 |#1|))) (-665 (-420 (-980 (-171 (-577))))) (-665 (-1206)) |#1|))) (-13 (-375) (-869))) (T -390)) -((-4193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 (-171 *5)))) (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-869))))) (-4193 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-171 (-577))))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 (-171 (-577)))))) (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-171 (-577))))) (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-305 (-420 (-980 (-171 (-577))))))) (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869)))))) -(-10 -7 (-15 -2557 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -2557 ((-665 (-665 (-305 (-980 (-171 |#1|))))) (-665 (-305 (-420 (-980 (-171 (-577)))))) |#1|)) (-15 -2557 ((-665 (-305 (-980 (-171 |#1|)))) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -2557 ((-665 (-305 (-980 (-171 |#1|)))) (-305 (-420 (-980 (-171 (-577))))) |#1|)) (-15 -4193 ((-665 (-171 |#1|)) (-420 (-980 (-171 (-577)))) |#1|)) (-15 -4193 ((-665 (-665 (-171 |#1|))) (-665 (-420 (-980 (-171 (-577))))) (-665 (-1206)) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 35 T ELT)) (-3277 (((-577) $) 62 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-4083 (($ $) 136 T ELT)) (-1501 (($ $) 98 T ELT)) (-1371 (($ $) 90 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-2809 (($ $) 47 T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-1477 (($ $) 96 T ELT)) (-1348 (($ $) 85 T ELT)) (-4459 (((-577) $) 78 T ELT)) (-1886 (($ $ (-577)) 73 T ELT)) (-1527 (($ $) NIL T ELT)) (-1391 (($ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4019 (($ $) 138 T ELT)) (-2817 (((-3 (-577) "failed") $) 230 T ELT) (((-3 (-420 (-577)) "failed") $) 226 T ELT)) (-3514 (((-577) $) 228 T ELT) (((-420 (-577)) $) 224 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1537 (((-577) $ $) 125 T ELT)) (-4281 (((-3 $ "failed") $) 141 T ELT)) (-1511 (((-420 (-577)) $ (-792)) 231 T ELT) (((-420 (-577)) $ (-792) (-792)) 223 T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3130 (((-949)) 121 T ELT) (((-949) (-949)) 122 (|has| $ (-6 -4490)) ELT)) (-2785 (((-112) $) 130 T ELT)) (-2549 (($) 41 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL T ELT)) (-4130 (((-1302) (-792)) 190 T ELT)) (-3422 (((-1302)) 195 T ELT) (((-1302) (-792)) 196 T ELT)) (-4455 (((-1302)) 197 T ELT) (((-1302) (-792)) 198 T ELT)) (-2384 (((-1302)) 193 T ELT) (((-1302) (-792)) 194 T ELT)) (-3890 (((-577) $) 68 T ELT)) (-2097 (((-112) $) 40 T ELT)) (-4341 (($ $ (-577)) NIL T ELT)) (-3310 (($ $) 51 T ELT)) (-2755 (($ $) NIL T ELT)) (-1434 (((-112) $) 37 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL (-12 (-2308 (|has| $ (-6 -4482))) (-2308 (|has| $ (-6 -4490)))) ELT)) (-4167 (($ $ $) NIL T ELT) (($) NIL (-12 (-2308 (|has| $ (-6 -4482))) (-2308 (|has| $ (-6 -4490)))) ELT)) (-3031 (((-577) $) 17 T ELT)) (-3708 (($) 106 T ELT) (($ $) 113 T ELT)) (-1842 (($) 112 T ELT) (($ $) 114 T ELT)) (-3863 (($ $) 101 T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 143 T ELT)) (-3101 (((-949) (-577)) 46 (|has| $ (-6 -4490)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) 60 T ELT)) (-2136 (($ $) 135 T ELT)) (-3241 (($ (-577) (-577)) 131 T ELT) (($ (-577) (-577) (-949)) 132 T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2182 (((-577) $) 19 T ELT)) (-1819 (($) 115 T ELT)) (-3585 (($ $) 95 T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-4279 (((-949)) 123 T ELT) (((-949) (-949)) 124 (|has| $ (-6 -4490)) ELT)) (-2030 (($ $) 142 T ELT) (($ $ (-792)) NIL T ELT)) (-2688 (((-949) (-577)) 50 (|has| $ (-6 -4490)) ELT)) (-1540 (($ $) NIL T ELT)) (-1402 (($ $) NIL T ELT)) (-1515 (($ $) NIL T ELT)) (-1381 (($ $) NIL T ELT)) (-1489 (($ $) 97 T ELT)) (-1360 (($ $) 89 T ELT)) (-3341 (((-391) $) 215 T ELT) (((-228) $) 217 T ELT) (((-916 (-391)) $) NIL T ELT) (((-1188) $) 201 T ELT) (((-549) $) 213 T ELT) (($ (-228)) 222 T ELT)) (-2410 (((-885) $) 205 T ELT) (($ (-577)) 227 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) 227 T ELT) (($ (-420 (-577))) NIL T ELT) (((-228) $) 218 T ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (($ $) 137 T ELT)) (-1750 (((-949)) 61 T ELT) (((-949) (-949)) 80 (|has| $ (-6 -4490)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (((-949)) 126 T ELT)) (-1575 (($ $) 104 T ELT)) (-1435 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-1551 (($ $) 102 T ELT)) (-1413 (($ $) 39 T ELT)) (-1597 (($ $) NIL T ELT)) (-1456 (($ $) NIL T ELT)) (-3501 (($ $) NIL T ELT)) (-1466 (($ $) NIL T ELT)) (-1586 (($ $) NIL T ELT)) (-1446 (($ $) NIL T ELT)) (-1562 (($ $) 103 T ELT)) (-1423 (($ $) 52 T ELT)) (-3385 (($ $) 58 T ELT)) (-2367 (($) 36 T CONST)) (-2378 (($) 43 T CONST)) (-2792 (((-1188) $) 27 T ELT) (((-1188) $ (-112)) 29 T ELT) (((-1302) (-843) $) 30 T ELT) (((-1302) (-843) $ (-112)) 31 T ELT)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2440 (((-112) $ $) 202 T ELT)) (-2415 (((-112) $ $) 45 T ELT)) (-2383 (((-112) $ $) 56 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 57 T ELT)) (-2494 (($ $ $) 48 T ELT) (($ $ (-577)) 42 T ELT)) (-2483 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-2471 (($ $ $) 72 T ELT)) (** (($ $ (-949)) 83 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 107 T ELT) (($ $ (-420 (-577))) 153 T ELT) (($ $ $) 145 T ELT)) (* (($ (-949) $) 79 T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 84 T ELT) (($ $ $) 71 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-391) (-13 (-417) (-239) (-632 (-1188)) (-849) (-631 (-228)) (-1232) (-632 (-549)) (-636 (-228)) (-10 -8 (-15 -2494 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -3310 ($ $)) (-15 -1537 ((-577) $ $)) (-15 -1886 ($ $ (-577))) (-15 -1511 ((-420 (-577)) $ (-792))) (-15 -1511 ((-420 (-577)) $ (-792) (-792))) (-15 -3708 ($)) (-15 -1842 ($)) (-15 -1819 ($)) (-15 -1435 ($ $ $)) (-15 -3708 ($ $)) (-15 -1842 ($ $)) (-15 -4455 ((-1302))) (-15 -4455 ((-1302) (-792))) (-15 -2384 ((-1302))) (-15 -2384 ((-1302) (-792))) (-15 -3422 ((-1302))) (-15 -3422 ((-1302) (-792))) (-15 -4130 ((-1302) (-792))) (-6 -4490) (-6 -4482)))) (T -391)) -((** (*1 *1 *1 *1) (-5 *1 (-391))) (-2494 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-3310 (*1 *1 *1) (-5 *1 (-391))) (-1537 (*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-1886 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-1511 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-1511 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-3708 (*1 *1) (-5 *1 (-391))) (-1842 (*1 *1) (-5 *1 (-391))) (-1819 (*1 *1) (-5 *1 (-391))) (-1435 (*1 *1 *1 *1) (-5 *1 (-391))) (-3708 (*1 *1 *1) (-5 *1 (-391))) (-1842 (*1 *1 *1) (-5 *1 (-391))) (-4455 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391)))) (-4455 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) (-2384 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) (-3422 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391))))) -(-13 (-417) (-239) (-632 (-1188)) (-849) (-631 (-228)) (-1232) (-632 (-549)) (-636 (-228)) (-10 -8 (-15 -2494 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -3310 ($ $)) (-15 -1537 ((-577) $ $)) (-15 -1886 ($ $ (-577))) (-15 -1511 ((-420 (-577)) $ (-792))) (-15 -1511 ((-420 (-577)) $ (-792) (-792))) (-15 -3708 ($)) (-15 -1842 ($)) (-15 -1819 ($)) (-15 -1435 ($ $ $)) (-15 -3708 ($ $)) (-15 -1842 ($ $)) (-15 -4455 ((-1302))) (-15 -4455 ((-1302) (-792))) (-15 -2384 ((-1302))) (-15 -2384 ((-1302) (-792))) (-15 -3422 ((-1302))) (-15 -3422 ((-1302) (-792))) (-15 -4130 ((-1302) (-792))) (-6 -4490) (-6 -4482))) -((-3766 (((-665 (-305 (-980 |#1|))) (-305 (-420 (-980 (-577)))) |#1|) 46 T ELT) (((-665 (-305 (-980 |#1|))) (-420 (-980 (-577))) |#1|) 45 T ELT) (((-665 (-665 (-305 (-980 |#1|)))) (-665 (-305 (-420 (-980 (-577))))) |#1|) 42 T ELT) (((-665 (-665 (-305 (-980 |#1|)))) (-665 (-420 (-980 (-577)))) |#1|) 36 T ELT)) (-3375 (((-665 |#1|) (-420 (-980 (-577))) |#1|) 20 T ELT) (((-665 (-665 |#1|)) (-665 (-420 (-980 (-577)))) (-665 (-1206)) |#1|) 30 T ELT))) -(((-392 |#1|) (-10 -7 (-15 -3766 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-420 (-980 (-577)))) |#1|)) (-15 -3766 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-305 (-420 (-980 (-577))))) |#1|)) (-15 -3766 ((-665 (-305 (-980 |#1|))) (-420 (-980 (-577))) |#1|)) (-15 -3766 ((-665 (-305 (-980 |#1|))) (-305 (-420 (-980 (-577)))) |#1|)) (-15 -3375 ((-665 (-665 |#1|)) (-665 (-420 (-980 (-577)))) (-665 (-1206)) |#1|)) (-15 -3375 ((-665 |#1|) (-420 (-980 (-577))) |#1|))) (-13 (-869) (-375))) (T -392)) -((-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-3375 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-420 (-980 (-577))))) (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 *5))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-869) (-375))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 (-577))))) (-5 *2 (-665 (-305 (-980 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 (-305 (-980 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-305 (-420 (-980 (-577)))))) (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 (-577))))) (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375)))))) -(-10 -7 (-15 -3766 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-420 (-980 (-577)))) |#1|)) (-15 -3766 ((-665 (-665 (-305 (-980 |#1|)))) (-665 (-305 (-420 (-980 (-577))))) |#1|)) (-15 -3766 ((-665 (-305 (-980 |#1|))) (-420 (-980 (-577))) |#1|)) (-15 -3766 ((-665 (-305 (-980 |#1|))) (-305 (-420 (-980 (-577)))) |#1|)) (-15 -3375 ((-665 (-665 |#1|)) (-665 (-420 (-980 (-577)))) (-665 (-1206)) |#1|)) (-15 -3375 ((-665 |#1|) (-420 (-980 (-577))) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) 30 T ELT)) (-3514 ((|#2| $) 32 T ELT)) (-3134 (($ $) NIL T ELT)) (-3641 (((-792) $) 11 T ELT)) (-1387 (((-665 $) $) 23 T ELT)) (-2338 (((-112) $) NIL T ELT)) (-1475 (($ |#2| |#1|) 21 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3095 ((|#2| $) 18 T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 51 T ELT) (($ |#2|) 31 T ELT)) (-2929 (((-665 |#1|) $) 20 T ELT)) (-2778 ((|#1| $ |#2|) 55 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 33 T CONST)) (-2662 (((-665 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) 36 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 39 T ELT) (($ |#2| |#1|) 40 T ELT))) -(((-393 |#1| |#2|) (-13 (-394 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1079) (-870)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870))))) -(-13 (-394 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#2| "failed") $) 49 T ELT)) (-3514 ((|#2| $) 50 T ELT)) (-3134 (($ $) 35 T ELT)) (-3641 (((-792) $) 39 T ELT)) (-1387 (((-665 $) $) 40 T ELT)) (-2338 (((-112) $) 43 T ELT)) (-1475 (($ |#2| |#1|) 44 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 45 T ELT)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36 T ELT)) (-3095 ((|#2| $) 38 T ELT)) (-3109 ((|#1| $) 37 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ |#2|) 48 T ELT)) (-2929 (((-665 |#1|) $) 41 T ELT)) (-2778 ((|#1| $ |#2|) 46 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2662 (((-665 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT) (($ |#1| |#2|) 47 T ELT))) -(((-394 |#1| |#2|) (-141) (-1079) (-1130)) (T -394)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130)))) (-2778 (*1 *2 *1 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)))) (-1475 (*1 *1 *2 *3) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-112)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 *3)))) (-1387 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-394 *3 *4)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-792)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130))))) -(-13 (-111 |t#1| |t#1|) (-1068 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2778 (|t#1| $ |t#2|)) (-15 -3609 ($ (-1 |t#1| |t#1|) $)) (-15 -1475 ($ |t#2| |t#1|)) (-15 -2338 ((-112) $)) (-15 -2662 ((-665 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2929 ((-665 |t#1|) $)) (-15 -1387 ((-665 $) $)) (-15 -3641 ((-792) $)) (-15 -3095 (|t#2| $)) (-15 -3109 (|t#1| $)) (-15 -3388 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3134 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-738 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-1068 |#2|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-1902 (((-1302) $) 7 T ELT)) (-2410 (((-885) $) 8 T ELT) (($ (-710 (-720))) 14 T ELT) (($ (-665 (-341))) 13 T ELT) (($ (-341)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 11 T ELT))) -(((-395) (-141)) (T -395)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-710 (-720))) (-4 *1 (-395)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-395)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-395)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) (-4 *1 (-395))))) -(-13 (-408) (-10 -8 (-15 -2410 ($ (-710 (-720)))) (-15 -2410 ($ (-665 (-341)))) (-15 -2410 ($ (-341))) (-15 -2410 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341)))))))) -(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) -((-2817 (((-3 $ "failed") (-710 (-327 (-391)))) 21 T ELT) (((-3 $ "failed") (-710 (-327 (-577)))) 19 T ELT) (((-3 $ "failed") (-710 (-980 (-391)))) 17 T ELT) (((-3 $ "failed") (-710 (-980 (-577)))) 15 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-391))))) 13 T ELT) (((-3 $ "failed") (-710 (-420 (-980 (-577))))) 11 T ELT)) (-3514 (($ (-710 (-327 (-391)))) 22 T ELT) (($ (-710 (-327 (-577)))) 20 T ELT) (($ (-710 (-980 (-391)))) 18 T ELT) (($ (-710 (-980 (-577)))) 16 T ELT) (($ (-710 (-420 (-980 (-391))))) 14 T ELT) (($ (-710 (-420 (-980 (-577))))) 12 T ELT)) (-1902 (((-1302) $) 7 T ELT)) (-2410 (((-885) $) 8 T ELT) (($ (-665 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 23 T ELT))) -(((-396) (-141)) (T -396)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-396)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-396)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) (-4 *1 (-396)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396))))) -(-13 (-408) (-10 -8 (-15 -2410 ($ (-665 (-341)))) (-15 -2410 ($ (-341))) (-15 -2410 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341)))))) (-15 -3514 ($ (-710 (-327 (-391))))) (-15 -2817 ((-3 $ "failed") (-710 (-327 (-391))))) (-15 -3514 ($ (-710 (-327 (-577))))) (-15 -2817 ((-3 $ "failed") (-710 (-327 (-577))))) (-15 -3514 ($ (-710 (-980 (-391))))) (-15 -2817 ((-3 $ "failed") (-710 (-980 (-391))))) (-15 -3514 ($ (-710 (-980 (-577))))) (-15 -2817 ((-3 $ "failed") (-710 (-980 (-577))))) (-15 -3514 ($ (-710 (-420 (-980 (-391)))))) (-15 -2817 ((-3 $ "failed") (-710 (-420 (-980 (-391)))))) (-15 -3514 ($ (-710 (-420 (-980 (-577)))))) (-15 -2817 ((-3 $ "failed") (-710 (-420 (-980 (-577)))))))) -(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2480 (((-665 (-896 |#2| |#1|)) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3161 ((|#2| $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 33 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 12 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-397 |#1| |#2|) (-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|))) (-1079) (-873)) (T -397)) -NIL -(-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-738 |#1|)) |%noBranch|))) -((-3211 (((-112) $ $) 7 T ELT)) (-2221 (((-792) $) 35 T ELT)) (-2762 (($) 19 T CONST)) (-3216 (((-3 $ "failed") $ $) 38 T ELT)) (-2817 (((-3 |#1| "failed") $) 46 T ELT)) (-3514 ((|#1| $) 47 T ELT)) (-4281 (((-3 $ "failed") $) 16 T ELT)) (-3412 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36 T ELT)) (-2097 (((-112) $) 18 T ELT)) (-3017 ((|#1| $ (-577)) 32 T ELT)) (-3757 (((-792) $ (-577)) 33 T ELT)) (-1344 (($ $ $) 24 (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) 25 (|has| |#1| (-870)) ELT)) (-3513 (($ (-1 |#1| |#1|) $) 30 T ELT)) (-4180 (($ (-1 (-792) (-792)) $) 31 T ELT)) (-3855 (((-3 $ "failed") $ $) 39 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-1800 (($ $ $) 40 T ELT)) (-2226 (($ $ $) 41 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1679 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-792)))) $) 34 T ELT)) (-4384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ |#1|) 45 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2378 (($) 20 T CONST)) (-2440 (((-112) $ $) 26 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 28 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 27 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 29 (|has| |#1| (-870)) ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT) (($ |#1| (-792)) 42 T ELT)) (* (($ $ $) 15 T ELT) (($ |#1| $) 44 T ELT) (($ $ |#1|) 43 T ELT))) -(((-398 |#1|) (-141) (-1130)) (T -398)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-2226 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-1800 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-3855 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-3216 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-4384 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1130)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-3412 (*1 *2 *1 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) (-5 *2 (-792)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 (-792))))))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1130)) (-5 *2 (-792)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-792) (-792))) (-4 *1 (-398 *3)) (-4 *3 (-1130)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1130))))) -(-13 (-747) (-1068 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-792))) (-15 -2226 ($ $ $)) (-15 -1800 ($ $ $)) (-15 -3855 ((-3 $ "failed") $ $)) (-15 -3216 ((-3 $ "failed") $ $)) (-15 -4384 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3412 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2221 ((-792) $)) (-15 -1679 ((-665 (-2 (|:| |gen| |t#1|) (|:| -3585 (-792)))) $)) (-15 -3757 ((-792) $ (-577))) (-15 -3017 (|t#1| $ (-577))) (-15 -4180 ($ (-1 (-792) (-792)) $)) (-15 -3513 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|))) -(((-102) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-747) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1068 |#1|) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792) $) 74 T ELT)) (-2762 (($) NIL T CONST)) (-3216 (((-3 $ "failed") $ $) 77 T ELT)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3412 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2097 (((-112) $) 17 T ELT)) (-3017 ((|#1| $ (-577)) NIL T ELT)) (-3757 (((-792) $ (-577)) NIL T ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3513 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-4180 (($ (-1 (-792) (-792)) $) 37 T ELT)) (-3855 (((-3 $ "failed") $ $) 60 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1800 (($ $ $) 28 T ELT)) (-2226 (($ $ $) 26 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1679 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-792)))) $) 34 T ELT)) (-4384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70 T ELT)) (-2410 (((-885) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 11 T CONST)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 84 (|has| |#1| (-870)) ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ |#1| (-792)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-399 |#1|) (-398 |#1|) (-1130)) (T -399)) -NIL -(-398 |#1|) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 54 T ELT)) (-3514 (((-577) $) 55 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-1344 (($ $ $) 56 T ELT)) (-4167 (($ $ $) 57 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 53 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2440 (((-112) $ $) 58 T ELT)) (-2415 (((-112) $ $) 60 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 59 T ELT)) (-2403 (((-112) $ $) 61 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-400) (-141)) (T -400)) -NIL -(-13 (-569) (-870) (-1068 (-577))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-870) . T) ((-873) . T) ((-1068 (-577)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-4462 (((-112) $) 25 T ELT)) (-2609 (((-112) $) 22 T ELT)) (-3748 (($ (-1188) (-1188) (-1188)) 26 T ELT)) (-4105 (((-1188) $) 16 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3194 (($ (-1188) (-1188) (-1188)) 14 T ELT)) (-2038 (((-1188) $) 17 T ELT)) (-1598 (((-112) $) 18 T ELT)) (-1459 (((-1188) $) 15 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-1188)) 13 T ELT) (((-1188) $) 9 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 7 T ELT))) -(((-401) (-402)) (T -401)) -NIL -(-402) -((-3211 (((-112) $ $) 7 T ELT)) (-4462 (((-112) $) 17 T ELT)) (-2609 (((-112) $) 18 T ELT)) (-3748 (($ (-1188) (-1188) (-1188)) 16 T ELT)) (-4105 (((-1188) $) 21 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3194 (($ (-1188) (-1188) (-1188)) 23 T ELT)) (-2038 (((-1188) $) 20 T ELT)) (-1598 (((-112) $) 19 T ELT)) (-1459 (((-1188) $) 22 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-1188)) 25 T ELT) (((-1188) $) 24 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-402) (-141)) (T -402)) -((-3194 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402)))) (-1459 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-4462 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-3748 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402))))) -(-13 (-1130) (-503 (-1188)) (-10 -8 (-15 -3194 ($ (-1188) (-1188) (-1188))) (-15 -1459 ((-1188) $)) (-15 -4105 ((-1188) $)) (-15 -2038 ((-1188) $)) (-15 -1598 ((-112) $)) (-15 -2609 ((-112) $)) (-15 -4462 ((-112) $)) (-15 -3748 ($ (-1188) (-1188) (-1188))))) -(((-102) . T) ((-634 #0=(-1188)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3559 (((-885) $) 63 T ELT)) (-2762 (($) NIL T CONST)) (-1380 (($ $ (-949)) NIL T ELT)) (-3328 (($ $ (-949)) NIL T ELT)) (-1748 (($ $ (-949)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($ (-792)) 38 T ELT)) (-2419 (((-792)) 18 T ELT)) (-2144 (((-885) $) 65 T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3899 (($ $ $ $) NIL T ELT)) (-1416 (($ $ $) NIL T ELT)) (-2367 (($) 24 T CONST)) (-2383 (((-112) $ $) 41 T ELT)) (-2483 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-2471 (($ $ $) 51 T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-403 |#1| |#2| |#3|) (-13 (-765 |#3|) (-10 -8 (-15 -2419 ((-792))) (-15 -2144 ((-885) $)) (-15 -3559 ((-885) $)) (-15 -2846 ($ (-792))))) (-792) (-792) (-174)) (T -403)) -((-2419 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) (-14 *4 (-792)) (-4 *5 (-174)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) (-14 *4 (-792)) (-4 *5 (-174)))) (-2846 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-765 |#3|) (-10 -8 (-15 -2419 ((-792))) (-15 -2144 ((-885) $)) (-15 -3559 ((-885) $)) (-15 -2846 ($ (-792))))) -((-4287 (((-1188)) 12 T ELT)) (-2978 (((-1177 (-1188))) 30 T ELT)) (-1879 (((-1302) (-1188)) 27 T ELT) (((-1302) (-401)) 26 T ELT)) (-1891 (((-1302)) 28 T ELT)) (-3122 (((-1177 (-1188))) 29 T ELT))) -(((-404) (-10 -7 (-15 -3122 ((-1177 (-1188)))) (-15 -2978 ((-1177 (-1188)))) (-15 -1891 ((-1302))) (-15 -1879 ((-1302) (-401))) (-15 -1879 ((-1302) (-1188))) (-15 -4287 ((-1188))))) (T -404)) -((-4287 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-404)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-404)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-404)))) (-1891 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-404)))) (-2978 (*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404)))) (-3122 (*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404))))) -(-10 -7 (-15 -3122 ((-1177 (-1188)))) (-15 -2978 ((-1177 (-1188)))) (-15 -1891 ((-1302))) (-15 -1879 ((-1302) (-401))) (-15 -1879 ((-1302) (-1188))) (-15 -4287 ((-1188)))) -((-3890 (((-792) (-348 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-405 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3890 ((-792) (-348 |#1| |#2| |#3| |#4|)))) (-13 (-380) (-375)) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -405)) -((-3890 (*1 *2 *3) (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) (-5 *2 (-792)) (-5 *1 (-405 *4 *5 *6 *7))))) -(-10 -7 (-15 -3890 ((-792) (-348 |#1| |#2| |#3| |#4|)))) -((-2410 (((-407) |#1|) 11 T ELT))) -(((-406 |#1|) (-10 -7 (-15 -2410 ((-407) |#1|))) (-1130)) (T -406)) -((-2410 (*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1130))))) -(-10 -7 (-15 -2410 ((-407) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3003 (((-665 (-1188)) $ (-665 (-1188))) 42 T ELT)) (-1499 (((-665 (-1188)) $ (-665 (-1188))) 43 T ELT)) (-1966 (((-665 (-1188)) $ (-665 (-1188))) 44 T ELT)) (-3151 (((-665 (-1188)) $) 39 T ELT)) (-3748 (($) 30 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3012 (((-665 (-1188)) $) 40 T ELT)) (-2282 (((-665 (-1188)) $) 41 T ELT)) (-1646 (((-1302) $ (-577)) 37 T ELT) (((-1302) $) 38 T ELT)) (-3341 (($ (-885) (-577)) 35 T ELT)) (-2410 (((-885) $) 49 T ELT) (($ (-885)) 32 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-407) (-13 (-1130) (-634 (-885)) (-10 -8 (-15 -3341 ($ (-885) (-577))) (-15 -1646 ((-1302) $ (-577))) (-15 -1646 ((-1302) $)) (-15 -2282 ((-665 (-1188)) $)) (-15 -3012 ((-665 (-1188)) $)) (-15 -3748 ($)) (-15 -3151 ((-665 (-1188)) $)) (-15 -1966 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1499 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -3003 ((-665 (-1188)) $ (-665 (-1188))))))) (T -407)) -((-3341 (*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-407)))) (-1646 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-407)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-407)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-3748 (*1 *1) (-5 *1 (-407))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-1966 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-1499 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) (-3003 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407))))) -(-13 (-1130) (-634 (-885)) (-10 -8 (-15 -3341 ($ (-885) (-577))) (-15 -1646 ((-1302) $ (-577))) (-15 -1646 ((-1302) $)) (-15 -2282 ((-665 (-1188)) $)) (-15 -3012 ((-665 (-1188)) $)) (-15 -3748 ($)) (-15 -3151 ((-665 (-1188)) $)) (-15 -1966 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1499 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -3003 ((-665 (-1188)) $ (-665 (-1188)))))) -((-1902 (((-1302) $) 7 T ELT)) (-2410 (((-885) $) 8 T ELT))) -(((-408) (-141)) (T -408)) -((-1902 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1302))))) -(-13 (-1247) (-631 (-885)) (-10 -8 (-15 -1902 ((-1302) $)))) -(((-631 (-885)) . T) ((-1247) . T)) -((-2817 (((-3 $ "failed") (-327 (-391))) 21 T ELT) (((-3 $ "failed") (-327 (-577))) 19 T ELT) (((-3 $ "failed") (-980 (-391))) 17 T ELT) (((-3 $ "failed") (-980 (-577))) 15 T ELT) (((-3 $ "failed") (-420 (-980 (-391)))) 13 T ELT) (((-3 $ "failed") (-420 (-980 (-577)))) 11 T ELT)) (-3514 (($ (-327 (-391))) 22 T ELT) (($ (-327 (-577))) 20 T ELT) (($ (-980 (-391))) 18 T ELT) (($ (-980 (-577))) 16 T ELT) (($ (-420 (-980 (-391)))) 14 T ELT) (($ (-420 (-980 (-577)))) 12 T ELT)) (-1902 (((-1302) $) 7 T ELT)) (-2410 (((-885) $) 8 T ELT) (($ (-665 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 23 T ELT))) -(((-409) (-141)) (T -409)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-409)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-409)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) (-4 *1 (-409)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409))))) -(-13 (-408) (-10 -8 (-15 -2410 ($ (-665 (-341)))) (-15 -2410 ($ (-341))) (-15 -2410 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341)))))) (-15 -3514 ($ (-327 (-391)))) (-15 -2817 ((-3 $ "failed") (-327 (-391)))) (-15 -3514 ($ (-327 (-577)))) (-15 -2817 ((-3 $ "failed") (-327 (-577)))) (-15 -3514 ($ (-980 (-391)))) (-15 -2817 ((-3 $ "failed") (-980 (-391)))) (-15 -3514 ($ (-980 (-577)))) (-15 -2817 ((-3 $ "failed") (-980 (-577)))) (-15 -3514 ($ (-420 (-980 (-391))))) (-15 -2817 ((-3 $ "failed") (-420 (-980 (-391))))) (-15 -3514 ($ (-420 (-980 (-577))))) (-15 -2817 ((-3 $ "failed") (-420 (-980 (-577))))))) -(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) -((-2431 (((-665 (-1188)) (-665 (-1188))) 9 T ELT)) (-1902 (((-1302) (-401)) 26 T ELT)) (-3868 (((-1134) (-1206) (-665 (-1206)) (-1209) (-665 (-1206))) 59 T ELT) (((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)) (-1206)) 34 T ELT) (((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206))) 33 T ELT))) -(((-410) (-10 -7 (-15 -3868 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)))) (-15 -3868 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)) (-1206))) (-15 -3868 ((-1134) (-1206) (-665 (-1206)) (-1209) (-665 (-1206)))) (-15 -1902 ((-1302) (-401))) (-15 -2431 ((-665 (-1188)) (-665 (-1188)))))) (T -410)) -((-2431 (*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-410)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-410)))) (-3868 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-665 (-1206))) (-5 *5 (-1209)) (-5 *3 (-1206)) (-5 *2 (-1134)) (-5 *1 (-410)))) (-3868 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) (-5 *1 (-410)))) (-3868 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) (-5 *1 (-410))))) -(-10 -7 (-15 -3868 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)))) (-15 -3868 ((-1134) (-1206) (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206)))) (-665 (-665 (-3 (|:| |array| (-665 (-1206))) (|:| |scalar| (-1206))))) (-665 (-1206)) (-1206))) (-15 -3868 ((-1134) (-1206) (-665 (-1206)) (-1209) (-665 (-1206)))) (-15 -1902 ((-1302) (-401))) (-15 -2431 ((-665 (-1188)) (-665 (-1188))))) -((-1902 (((-1302) $) 35 T ELT)) (-2410 (((-885) $) 97 T ELT) (($ (-341)) 99 T ELT) (($ (-665 (-341))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 96 T ELT) (($ (-327 (-722))) 52 T ELT) (($ (-327 (-720))) 72 T ELT) (($ (-327 (-715))) 85 T ELT) (($ (-305 (-327 (-722)))) 67 T ELT) (($ (-305 (-327 (-720)))) 80 T ELT) (($ (-305 (-327 (-715)))) 93 T ELT) (($ (-327 (-577))) 104 T ELT) (($ (-327 (-391))) 117 T ELT) (($ (-327 (-171 (-391)))) 130 T ELT) (($ (-305 (-327 (-577)))) 112 T ELT) (($ (-305 (-327 (-391)))) 125 T ELT) (($ (-305 (-327 (-171 (-391))))) 138 T ELT))) -(((-411 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -2410 ($ (-341))) (-15 -2410 ($ (-665 (-341)))) (-15 -2410 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341)))))) (-15 -2410 ($ (-327 (-722)))) (-15 -2410 ($ (-327 (-720)))) (-15 -2410 ($ (-327 (-715)))) (-15 -2410 ($ (-305 (-327 (-722))))) (-15 -2410 ($ (-305 (-327 (-720))))) (-15 -2410 ($ (-305 (-327 (-715))))) (-15 -2410 ($ (-327 (-577)))) (-15 -2410 ($ (-327 (-391)))) (-15 -2410 ($ (-327 (-171 (-391))))) (-15 -2410 ($ (-305 (-327 (-577))))) (-15 -2410 ($ (-305 (-327 (-391))))) (-15 -2410 ($ (-305 (-327 (-171 (-391)))))))) (-1206) (-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-665 (-1206)) (-1210)) (T -411)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-327 (-722))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-327 (-720))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-722)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-720)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-715)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-577)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-171 (-391))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-14 *5 (-665 (-1206))) (-14 *6 (-1210))))) -(-13 (-408) (-10 -8 (-15 -2410 ($ (-341))) (-15 -2410 ($ (-665 (-341)))) (-15 -2410 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341)))))) (-15 -2410 ($ (-327 (-722)))) (-15 -2410 ($ (-327 (-720)))) (-15 -2410 ($ (-327 (-715)))) (-15 -2410 ($ (-305 (-327 (-722))))) (-15 -2410 ($ (-305 (-327 (-720))))) (-15 -2410 ($ (-305 (-327 (-715))))) (-15 -2410 ($ (-327 (-577)))) (-15 -2410 ($ (-327 (-391)))) (-15 -2410 ($ (-327 (-171 (-391))))) (-15 -2410 ($ (-305 (-327 (-577))))) (-15 -2410 ($ (-305 (-327 (-391))))) (-15 -2410 ($ (-305 (-327 (-171 (-391)))))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2129 ((|#2| $) 38 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3941 (($ (-420 |#2|)) 93 T ELT)) (-2075 (((-665 (-2 (|:| -2182 (-792)) (|:| -4368 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-2030 (($ $ (-792)) 36 T ELT) (($ $) 34 T ELT)) (-3341 (((-420 |#2|) $) 49 T ELT)) (-2422 (($ (-665 (-2 (|:| -2182 (-792)) (|:| -4368 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-2410 (((-885) $) 131 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1675 (($ $ (-792)) 37 T ELT) (($ $) 35 T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2471 (($ |#2| $) 41 T ELT))) -(((-412 |#1| |#2|) (-13 (-1130) (-238) (-632 (-420 |#2|)) (-10 -8 (-15 -2471 ($ |#2| $)) (-15 -3941 ($ (-420 |#2|))) (-15 -2129 (|#2| $)) (-15 -2075 ((-665 (-2 (|:| -2182 (-792)) (|:| -4368 |#2|) (|:| |num| |#2|))) $)) (-15 -2422 ($ (-665 (-2 (|:| -2182 (-792)) (|:| -4368 |#2|) (|:| |num| |#2|))))))) (-13 (-375) (-148)) (-1273 |#1|)) (T -412)) -((-2471 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *2)) (-4 *2 (-1273 *3)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) (-2129 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-412 *3 *2)) (-4 *3 (-13 (-375) (-148))))) (-2075 (*1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *2 (-665 (-2 (|:| -2182 (-792)) (|:| -4368 *4) (|:| |num| *4)))) (-5 *1 (-412 *3 *4)) (-4 *4 (-1273 *3)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -2182 (-792)) (|:| -4368 *4) (|:| |num| *4)))) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4))))) -(-13 (-1130) (-238) (-632 (-420 |#2|)) (-10 -8 (-15 -2471 ($ |#2| $)) (-15 -3941 ($ (-420 |#2|))) (-15 -2129 (|#2| $)) (-15 -2075 ((-665 (-2 (|:| -2182 (-792)) (|:| -4368 |#2|) (|:| |num| |#2|))) $)) (-15 -2422 ($ (-665 (-2 (|:| -2182 (-792)) (|:| -4368 |#2|) (|:| |num| |#2|))))))) -((-3211 (((-112) $ $) 10 (-2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 16 (|has| |#1| (-910 (-391))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 15 (|has| |#1| (-910 (-577))) ELT)) (-3384 (((-1188) $) 14 (-2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-4312 (((-1150) $) 13 (-2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-2410 (((-885) $) 12 (-2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-2525 (((-112) $ $) 11 (-2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT)) (-2383 (((-112) $ $) 9 (-2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ELT))) -(((-413 |#1|) (-141) (-1247)) (T -413)) -NIL -(-13 (-1247) (-10 -7 (IF (|has| |t#1| (-910 (-577))) (-6 (-910 (-577))) |%noBranch|) (IF (|has| |t#1| (-910 (-391))) (-6 (-910 (-391))) |%noBranch|))) -(((-102) -2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ((-631 (-885)) -2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-1130) -2229 (|has| |#1| (-910 (-577))) (|has| |#1| (-910 (-391)))) ((-1247) . T)) -((-2202 (($ $) 10 T ELT) (($ $ (-792)) 12 T ELT))) -(((-414 |#1|) (-10 -8 (-15 -2202 (|#1| |#1| (-792))) (-15 -2202 (|#1| |#1|))) (-415)) (T -414)) -NIL -(-10 -8 (-15 -2202 (|#1| |#1| (-792))) (-15 -2202 (|#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2762 (($) 18 T CONST)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-2202 (($ $) 87 T ELT) (($ $ (-792)) 86 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-3890 (((-854 (-949)) $) 89 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2723 (((-3 (-792) "failed") $ $) 88 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT)) (-2580 (((-3 $ "failed") $) 90 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 73 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) -(((-415) (-141)) (T -415)) -((-3890 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-854 (-949))))) (-2723 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-792)))) (-2202 (*1 *1 *1) (-4 *1 (-415))) (-2202 (*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-792))))) -(-13 (-375) (-146) (-10 -8 (-15 -3890 ((-854 (-949)) $)) (-15 -2723 ((-3 (-792) "failed") $ $)) (-15 -2202 ($ $)) (-15 -2202 ($ $ (-792))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-3241 (($ (-577) (-577)) 11 T ELT) (($ (-577) (-577) (-949)) NIL T ELT)) (-4279 (((-949)) 19 T ELT) (((-949) (-949)) NIL T ELT))) -(((-416 |#1|) (-10 -8 (-15 -4279 ((-949) (-949))) (-15 -4279 ((-949))) (-15 -3241 (|#1| (-577) (-577) (-949))) (-15 -3241 (|#1| (-577) (-577)))) (-417)) (T -416)) -((-4279 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) (-4279 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417))))) -(-10 -8 (-15 -4279 ((-949) (-949))) (-15 -4279 ((-949))) (-15 -3241 (|#1| (-577) (-577) (-949))) (-15 -3241 (|#1| (-577) (-577)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3277 (((-577) $) 98 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-4083 (($ $) 96 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-2809 (($ $) 106 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-4459 (((-577) $) 123 T ELT)) (-2762 (($) 18 T CONST)) (-4019 (($ $) 95 T ELT)) (-2817 (((-3 (-577) "failed") $) 111 T ELT) (((-3 (-420 (-577)) "failed") $) 108 T ELT)) (-3514 (((-577) $) 112 T ELT) (((-420 (-577)) $) 109 T ELT)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-3130 (((-949)) 139 T ELT) (((-949) (-949)) 136 (|has| $ (-6 -4490)) ELT)) (-2785 (((-112) $) 121 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 102 T ELT)) (-3890 (((-577) $) 145 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 105 T ELT)) (-2755 (($ $) 101 T ELT)) (-1434 (((-112) $) 122 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-1344 (($ $ $) 115 T ELT) (($) 133 (-12 (-2308 (|has| $ (-6 -4490))) (-2308 (|has| $ (-6 -4482)))) ELT)) (-4167 (($ $ $) 116 T ELT) (($) 132 (-12 (-2308 (|has| $ (-6 -4490))) (-2308 (|has| $ (-6 -4482)))) ELT)) (-3031 (((-577) $) 142 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-3101 (((-949) (-577)) 135 (|has| $ (-6 -4490)) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2687 (($ $) 97 T ELT)) (-2136 (($ $) 99 T ELT)) (-3241 (($ (-577) (-577)) 147 T ELT) (($ (-577) (-577) (-949)) 146 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2182 (((-577) $) 143 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-4279 (((-949)) 140 T ELT) (((-949) (-949)) 137 (|has| $ (-6 -4490)) ELT)) (-2688 (((-949) (-577)) 134 (|has| $ (-6 -4490)) ELT)) (-3341 (((-391) $) 114 T ELT) (((-228) $) 113 T ELT) (((-916 (-391)) $) 103 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-577)) 110 T ELT) (($ (-420 (-577))) 107 T ELT)) (-3234 (((-792)) 32 T CONST)) (-1465 (($ $) 100 T ELT)) (-1750 (((-949)) 141 T ELT) (((-949) (-949)) 138 (|has| $ (-6 -4490)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3646 (((-949)) 144 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-3385 (($ $) 124 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2440 (((-112) $ $) 117 T ELT)) (-2415 (((-112) $ $) 119 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 118 T ELT)) (-2403 (((-112) $ $) 120 T ELT)) (-2494 (($ $ $) 73 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 104 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) -(((-417) (-141)) (T -417)) -((-3241 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) (-3241 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-4 *1 (-417)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-3646 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-1750 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-4279 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-3130 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) (-1750 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) (-4279 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) (-5 *2 (-949)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) (-5 *2 (-949)))) (-1344 (*1 *1) (-12 (-4 *1 (-417)) (-2308 (|has| *1 (-6 -4490))) (-2308 (|has| *1 (-6 -4482))))) (-4167 (*1 *1) (-12 (-4 *1 (-417)) (-2308 (|has| *1 (-6 -4490))) (-2308 (|has| *1 (-6 -4482)))))) -(-13 (-1090) (-10 -8 (-6 -3908) (-15 -3241 ($ (-577) (-577))) (-15 -3241 ($ (-577) (-577) (-949))) (-15 -3890 ((-577) $)) (-15 -3646 ((-949))) (-15 -2182 ((-577) $)) (-15 -3031 ((-577) $)) (-15 -1750 ((-949))) (-15 -4279 ((-949))) (-15 -3130 ((-949))) (IF (|has| $ (-6 -4490)) (PROGN (-15 -1750 ((-949) (-949))) (-15 -4279 ((-949) (-949))) (-15 -3130 ((-949) (-949))) (-15 -3101 ((-949) (-577))) (-15 -2688 ((-949) (-577)))) |%noBranch|) (IF (|has| $ (-6 -4482)) |%noBranch| (IF (|has| $ (-6 -4490)) |%noBranch| (PROGN (-15 -1344 ($)) (-15 -4167 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-228)) . T) ((-632 (-391)) . T) ((-632 (-916 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-391)) . T) ((-948) . T) ((-1032) . T) ((-1052) . T) ((-1090) . T) ((-1068 (-420 (-577))) . T) ((-1068 (-577)) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-3609 (((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)) 20 T ELT))) -(((-418 |#1| |#2|) (-10 -7 (-15 -3609 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) (-569) (-569)) (T -418)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -3609 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) -((-3609 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 13 T ELT))) -(((-419 |#1| |#2|) (-10 -7 (-15 -3609 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-569) (-569)) (T -419)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6))))) -(-10 -7 (-15 -3609 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 13 T ELT)) (-3277 ((|#1| $) 21 (|has| |#1| (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| |#1| (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 17 T ELT) (((-3 (-1206) "failed") $) NIL (|has| |#1| (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT)) (-3514 ((|#1| $) 15 T ELT) (((-1206) $) NIL (|has| |#1| (-1068 (-1206))) ELT) (((-420 (-577)) $) 69 (|has| |#1| (-1068 (-577))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) 51 T ELT)) (-2060 (($) NIL (|has| |#1| (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| |#1| (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-910 (-391))) ELT)) (-2097 (((-112) $) 57 T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 ((|#1| $) 73 T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| |#1| (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 100 T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| |#1| (-318)) ELT)) (-2136 ((|#1| $) 28 (|has| |#1| (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 145 (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 138 (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 ((|#1| $) 75 T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#1| (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT) (((-391) $) NIL (|has| |#1| (-1052)) ELT) (((-228) $) NIL (|has| |#1| (-1052)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1206)) NIL (|has| |#1| (-1068 (-1206))) ELT)) (-2580 (((-3 $ "failed") $) 102 (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 103 T CONST)) (-1465 ((|#1| $) 26 (|has| |#1| (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#1| (-841)) ELT)) (-2367 (($) 22 T CONST)) (-2378 (($) 8 T CONST)) (-2792 (((-1188) $) 44 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT) (((-1188) $ (-112)) 45 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT) (((-1302) (-843) $) 46 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT) (((-1302) (-843) $ (-112)) 47 (-12 (|has| |#1| (-558)) (|has| |#1| (-849))) ELT)) (-1675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 66 T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 24 (|has| |#1| (-870)) ELT)) (-2494 (($ $ $) 133 T ELT) (($ |#1| |#1|) 53 T ELT)) (-2483 (($ $) 25 T ELT) (($ $ $) 56 T ELT)) (-2471 (($ $ $) 54 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 132 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 61 T ELT) (($ $ $) 58 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) 88 T ELT))) -(((-420 |#1|) (-13 (-1022 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4486)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4497)) (-6 -4486) |%noBranch|) |%noBranch|) |%noBranch|))) (-569)) (T -420)) -NIL -(-13 (-1022 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4486)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4497)) (-6 -4486) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2716 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-710 |#2|)) 18 T ELT)) (-1912 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 24 T ELT)) (-3449 (((-710 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) $) 40 T ELT)) (-4067 ((|#3| $) 69 T ELT)) (-1611 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-2119 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 22 T ELT) (((-710 |#2|) (-1297 $)) 38 T ELT)) (-3341 (((-1297 |#2|) $) 11 T ELT) (($ (-1297 |#2|)) 13 T ELT)) (-3400 ((|#3| $) 55 T ELT))) -(((-421 |#1| |#2| |#3|) (-10 -8 (-15 -3449 ((-710 |#2|) |#1|)) (-15 -1611 (|#2|)) (-15 -2716 ((-710 |#2|))) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -1912 (|#1| (-1297 |#2|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -4067 (|#3| |#1|)) (-15 -3400 (|#3| |#1|)) (-15 -2716 ((-710 |#2|) (-1297 |#1|))) (-15 -1611 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3449 ((-710 |#2|) |#1| (-1297 |#1|)))) (-422 |#2| |#3|) (-174) (-1273 |#2|)) (T -421)) -((-2716 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-1611 (*1 *2) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) -(-10 -8 (-15 -3449 ((-710 |#2|) |#1|)) (-15 -1611 (|#2|)) (-15 -2716 ((-710 |#2|))) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -1912 (|#1| (-1297 |#2|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -4067 (|#3| |#1|)) (-15 -3400 (|#3| |#1|)) (-15 -2716 ((-710 |#2|) (-1297 |#1|))) (-15 -1611 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3449 ((-710 |#2|) |#1| (-1297 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2716 (((-710 |#1|) (-1297 $)) 53 T ELT) (((-710 |#1|)) 68 T ELT)) (-1880 ((|#1| $) 59 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-1912 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-3449 (((-710 |#1|) $ (-1297 $)) 60 T ELT) (((-710 |#1|) $) 66 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-949)) 61 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2755 ((|#1| $) 58 T ELT)) (-4067 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1611 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-710 |#1|) (-1297 $)) 72 T ELT)) (-3341 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT)) (-2580 (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-3400 ((|#2| $) 52 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2225 (((-1297 $)) 74 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-422 |#1| |#2|) (-141) (-174) (-1273 |t#1|)) (T -422)) -((-2225 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) (-4 *1 (-422 *3 *4)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) (-1912 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1273 *3)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1273 *3)))) (-2716 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-710 *3)))) (-1611 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-710 *3))))) -(-13 (-382 |t#1| |t#2|) (-10 -8 (-15 -2225 ((-1297 $))) (-15 -2119 ((-1297 |t#1|) $)) (-15 -2119 ((-710 |t#1|) (-1297 $))) (-15 -1912 ($ (-1297 |t#1|))) (-15 -3341 ((-1297 |t#1|) $)) (-15 -3341 ($ (-1297 |t#1|))) (-15 -2716 ((-710 |t#1|))) (-15 -1611 (|t#1|)) (-15 -3449 ((-710 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-382 |#1| |#2|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) 27 T ELT) (((-3 (-577) "failed") $) 19 T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-420 (-577)) $) 24 T ELT) (((-577) $) 14 T ELT)) (-2410 (($ |#2|) NIL T ELT) (($ (-420 (-577))) 22 T ELT) (($ (-577)) 11 T ELT))) -(((-423 |#1| |#2|) (-10 -8 (-15 -2410 (|#1| (-577))) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|))) (-424 |#2|) (-1247)) (T -423)) -NIL -(-10 -8 (-15 -2410 (|#1| (-577))) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|))) -((-2817 (((-3 |#1| "failed") $) 9 T ELT) (((-3 (-420 (-577)) "failed") $) 16 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 13 (|has| |#1| (-1068 (-577))) ELT)) (-3514 ((|#1| $) 8 T ELT) (((-420 (-577)) $) 17 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 14 (|has| |#1| (-1068 (-577))) ELT)) (-2410 (($ |#1|) 6 T ELT) (($ (-420 (-577))) 15 (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ (-577)) 12 (|has| |#1| (-1068 (-577))) ELT))) -(((-424 |#1|) (-141) (-1247)) (T -424)) -NIL -(-13 (-1068 |t#1|) (-10 -7 (IF (|has| |t#1| (-1068 (-577))) (-6 (-1068 (-577))) |%noBranch|) (IF (|has| |t#1| (-1068 (-420 (-577)))) (-6 (-1068 (-420 (-577)))) |%noBranch|))) -(((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 #1=(-577)) |has| |#1| (-1068 (-577))) ((-634 |#1|) . T) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 #1#) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T)) -((-3609 (((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-425 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3609 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) (-318) (-1022 |#1|) (-1273 |#2|) (-13 (-422 |#2| |#3|) (-1068 |#2|)) (-318) (-1022 |#5|) (-1273 |#6|) (-13 (-422 |#6| |#7|) (-1068 |#6|))) (T -425)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6)) (-4 *8 (-13 (-422 *6 *7) (-1068 *6))) (-4 *9 (-318)) (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10)) (-5 *2 (-426 *9 *10 *11 *12)) (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1068 *10)))))) -(-10 -7 (-15 -3609 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3837 ((|#4| (-792) (-1297 |#4|)) 55 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2518 (((-1297 |#4|) $) 15 T ELT)) (-2755 ((|#2| $) 53 T ELT)) (-2436 (($ $) 157 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 103 T ELT)) (-2655 (($ (-1297 |#4|)) 102 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2528 ((|#1| $) 16 T ELT)) (-2744 (($ $ $) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2410 (((-885) $) 148 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 |#4|) $) 141 T ELT)) (-2378 (($) 11 T CONST)) (-2383 (((-112) $ $) 39 T ELT)) (-2494 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 134 T ELT)) (* (($ $ $) 130 T ELT))) -(((-426 |#1| |#2| |#3| |#4|) (-13 (-486) (-10 -8 (-15 -2655 ($ (-1297 |#4|))) (-15 -2225 ((-1297 |#4|) $)) (-15 -2755 (|#2| $)) (-15 -2518 ((-1297 |#4|) $)) (-15 -2528 (|#1| $)) (-15 -2436 ($ $)) (-15 -3837 (|#4| (-792) (-1297 |#4|))))) (-318) (-1022 |#1|) (-1273 |#2|) (-13 (-422 |#2| |#3|) (-1068 |#2|))) (T -426)) -((-2655 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-318)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2225 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) (-2755 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1068 *2))))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) (-2528 (*1 *2 *1) (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-318)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) (-2436 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-1297 *2)) (-4 *5 (-318)) (-4 *6 (-1022 *5)) (-4 *2 (-13 (-422 *6 *7) (-1068 *6))) (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1273 *6))))) -(-13 (-486) (-10 -8 (-15 -2655 ($ (-1297 |#4|))) (-15 -2225 ((-1297 |#4|) $)) (-15 -2755 (|#2| $)) (-15 -2518 ((-1297 |#4|) $)) (-15 -2528 (|#1| $)) (-15 -2436 ($ $)) (-15 -3837 (|#4| (-792) (-1297 |#4|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2755 ((|#2| $) 71 T ELT)) (-1393 (($ (-1297 |#4|)) 27 T ELT) (($ (-426 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1068 |#2|)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 37 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 |#4|) $) 28 T ELT)) (-2378 (($) 25 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ $ $) 82 T ELT))) -(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-747) (-10 -8 (-15 -2225 ((-1297 |#4|) $)) (-15 -2755 (|#2| $)) (-15 -1393 ($ (-1297 |#4|))) (IF (|has| |#4| (-1068 |#2|)) (-15 -1393 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-318) (-1022 |#1|) (-1273 |#2|) (-422 |#2| |#3|) (-1297 |#4|)) (T -427)) -((-2225 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-2755 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1297 *5)))) (-1393 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1393 (*1 *1 *2) (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1068 *4)) (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) -(-13 (-747) (-10 -8 (-15 -2225 ((-1297 |#4|) $)) (-15 -2755 (|#2| $)) (-15 -1393 ($ (-1297 |#4|))) (IF (|has| |#4| (-1068 |#2|)) (-15 -1393 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-3609 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-174) (-430 |#4|) (-174)) (T -428)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) -(-10 -7 (-15 -3609 (|#3| (-1 |#4| |#2|) |#1|))) -((-2117 (((-3 $ "failed")) 98 T ELT)) (-1985 (((-1297 (-710 |#2|)) (-1297 $)) NIL T ELT) (((-1297 (-710 |#2|))) 103 T ELT)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) 96 T ELT)) (-3666 (((-3 $ "failed")) 95 T ELT)) (-2470 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-710 |#2|)) 114 T ELT)) (-1826 (((-710 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) $) 122 T ELT)) (-3185 (((-1202 (-980 |#2|))) 63 T ELT)) (-2829 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 118 T ELT)) (-1912 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 124 T ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) 94 T ELT)) (-2249 (((-3 $ "failed")) 86 T ELT)) (-2164 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-710 |#2|)) 112 T ELT)) (-3065 (((-710 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) $) 120 T ELT)) (-4235 (((-1202 (-980 |#2|))) 62 T ELT)) (-3570 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 116 T ELT)) (-2119 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 123 T ELT) (((-710 |#2|) (-1297 $)) 132 T ELT)) (-3341 (((-1297 |#2|) $) 108 T ELT) (($ (-1297 |#2|)) 110 T ELT)) (-3463 (((-665 (-980 |#2|)) (-1297 $)) NIL T ELT) (((-665 (-980 |#2|))) 106 T ELT)) (-4177 (($ (-710 |#2|) $) 102 T ELT))) -(((-429 |#1| |#2|) (-10 -8 (-15 -4177 (|#1| (-710 |#2|) |#1|)) (-15 -3185 ((-1202 (-980 |#2|)))) (-15 -4235 ((-1202 (-980 |#2|)))) (-15 -1826 ((-710 |#2|) |#1|)) (-15 -3065 ((-710 |#2|) |#1|)) (-15 -2470 ((-710 |#2|))) (-15 -2164 ((-710 |#2|))) (-15 -2829 (|#2|)) (-15 -3570 (|#2|)) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -1912 (|#1| (-1297 |#2|))) (-15 -3463 ((-665 (-980 |#2|)))) (-15 -1985 ((-1297 (-710 |#2|)))) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -2117 ((-3 |#1| "failed"))) (-15 -3666 ((-3 |#1| "failed"))) (-15 -2249 ((-3 |#1| "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| |#1|) (|:| -2225 (-665 |#1|))) "failed"))) (-15 -1990 ((-3 (-2 (|:| |particular| |#1|) (|:| -2225 (-665 |#1|))) "failed"))) (-15 -2470 ((-710 |#2|) (-1297 |#1|))) (-15 -2164 ((-710 |#2|) (-1297 |#1|))) (-15 -2829 (|#2| (-1297 |#1|))) (-15 -3570 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1826 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -3065 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -1985 ((-1297 (-710 |#2|)) (-1297 |#1|))) (-15 -3463 ((-665 (-980 |#2|)) (-1297 |#1|)))) (-430 |#2|) (-174)) (T -429)) -((-1985 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3463 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-665 (-980 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3570 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-2829 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-2164 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2470 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-4235 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3185 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -(-10 -8 (-15 -4177 (|#1| (-710 |#2|) |#1|)) (-15 -3185 ((-1202 (-980 |#2|)))) (-15 -4235 ((-1202 (-980 |#2|)))) (-15 -1826 ((-710 |#2|) |#1|)) (-15 -3065 ((-710 |#2|) |#1|)) (-15 -2470 ((-710 |#2|))) (-15 -2164 ((-710 |#2|))) (-15 -2829 (|#2|)) (-15 -3570 (|#2|)) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -1912 (|#1| (-1297 |#2|))) (-15 -3463 ((-665 (-980 |#2|)))) (-15 -1985 ((-1297 (-710 |#2|)))) (-15 -2119 ((-710 |#2|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1|)) (-15 -2117 ((-3 |#1| "failed"))) (-15 -3666 ((-3 |#1| "failed"))) (-15 -2249 ((-3 |#1| "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| |#1|) (|:| -2225 (-665 |#1|))) "failed"))) (-15 -1990 ((-3 (-2 (|:| |particular| |#1|) (|:| -2225 (-665 |#1|))) "failed"))) (-15 -2470 ((-710 |#2|) (-1297 |#1|))) (-15 -2164 ((-710 |#2|) (-1297 |#1|))) (-15 -2829 (|#2| (-1297 |#1|))) (-15 -3570 (|#2| (-1297 |#1|))) (-15 -1912 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2119 ((-710 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2119 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -1826 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -3065 ((-710 |#2|) |#1| (-1297 |#1|))) (-15 -1985 ((-1297 (-710 |#2|)) (-1297 |#1|))) (-15 -3463 ((-665 (-980 |#2|)) (-1297 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2117 (((-3 $ "failed")) 42 (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-1985 (((-1297 (-710 |#1|)) (-1297 $)) 83 T ELT) (((-1297 (-710 |#1|))) 106 T ELT)) (-3955 (((-1297 $)) 86 T ELT)) (-2762 (($) 18 T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) 45 (|has| |#1| (-569)) ELT)) (-3666 (((-3 $ "failed")) 43 (|has| |#1| (-569)) ELT)) (-2470 (((-710 |#1|) (-1297 $)) 70 T ELT) (((-710 |#1|)) 98 T ELT)) (-1677 ((|#1| $) 79 T ELT)) (-1826 (((-710 |#1|) $ (-1297 $)) 81 T ELT) (((-710 |#1|) $) 96 T ELT)) (-1488 (((-3 $ "failed") $) 50 (|has| |#1| (-569)) ELT)) (-3185 (((-1202 (-980 |#1|))) 94 (|has| |#1| (-375)) ELT)) (-1380 (($ $ (-949)) 31 T ELT)) (-2932 ((|#1| $) 77 T ELT)) (-2993 (((-1202 |#1|) $) 47 (|has| |#1| (-569)) ELT)) (-2829 ((|#1| (-1297 $)) 72 T ELT) ((|#1|) 100 T ELT)) (-3661 (((-1202 |#1|) $) 68 T ELT)) (-1550 (((-112)) 62 T ELT)) (-1912 (($ (-1297 |#1|) (-1297 $)) 74 T ELT) (($ (-1297 |#1|)) 104 T ELT)) (-4281 (((-3 $ "failed") $) 52 (|has| |#1| (-569)) ELT)) (-1875 (((-949)) 85 T ELT)) (-3506 (((-112)) 59 T ELT)) (-3328 (($ $ (-949)) 38 T ELT)) (-3842 (((-112)) 55 T ELT)) (-3195 (((-112)) 53 T ELT)) (-3950 (((-112)) 57 T ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) 46 (|has| |#1| (-569)) ELT)) (-2249 (((-3 $ "failed")) 44 (|has| |#1| (-569)) ELT)) (-2164 (((-710 |#1|) (-1297 $)) 71 T ELT) (((-710 |#1|)) 99 T ELT)) (-4470 ((|#1| $) 80 T ELT)) (-3065 (((-710 |#1|) $ (-1297 $)) 82 T ELT) (((-710 |#1|) $) 97 T ELT)) (-3258 (((-3 $ "failed") $) 51 (|has| |#1| (-569)) ELT)) (-4235 (((-1202 (-980 |#1|))) 95 (|has| |#1| (-375)) ELT)) (-1748 (($ $ (-949)) 32 T ELT)) (-1591 ((|#1| $) 78 T ELT)) (-2369 (((-1202 |#1|) $) 48 (|has| |#1| (-569)) ELT)) (-3570 ((|#1| (-1297 $)) 73 T ELT) ((|#1|) 101 T ELT)) (-3163 (((-1202 |#1|) $) 69 T ELT)) (-3677 (((-112)) 63 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4404 (((-112)) 54 T ELT)) (-2027 (((-112)) 56 T ELT)) (-1796 (((-112)) 58 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1342 (((-112)) 61 T ELT)) (-2435 ((|#1| $ (-577)) 110 T ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 75 T ELT) (((-1297 |#1|) $) 108 T ELT) (((-710 |#1|) (-1297 $)) 107 T ELT)) (-3341 (((-1297 |#1|) $) 103 T ELT) (($ (-1297 |#1|)) 102 T ELT)) (-3463 (((-665 (-980 |#1|)) (-1297 $)) 84 T ELT) (((-665 (-980 |#1|))) 105 T ELT)) (-4365 (($ $ $) 28 T ELT)) (-2137 (((-112)) 67 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2225 (((-1297 $)) 109 T ELT)) (-3898 (((-665 (-1297 |#1|))) 49 (|has| |#1| (-569)) ELT)) (-3899 (($ $ $ $) 29 T ELT)) (-1984 (((-112)) 65 T ELT)) (-4177 (($ (-710 |#1|) $) 93 T ELT)) (-1416 (($ $ $) 27 T ELT)) (-2989 (((-112)) 66 T ELT)) (-4176 (((-112)) 64 T ELT)) (-2102 (((-112)) 60 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) -(((-430 |#1|) (-141) (-174)) (T -430)) -((-2225 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-430 *3)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) (-5 *2 (-710 *4)))) (-1985 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 (-710 *3))))) (-3463 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-665 (-980 *3))))) (-1912 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-3570 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-2829 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-2164 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-2470 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-1826 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3)))) (-4235 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1202 (-980 *3))))) (-3185 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1202 (-980 *3))))) (-4177 (*1 *1 *2 *1) (-12 (-5 *2 (-710 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174))))) -(-13 (-379 |t#1|) (-297 (-577) |t#1|) (-10 -8 (-15 -2225 ((-1297 $))) (-15 -2119 ((-1297 |t#1|) $)) (-15 -2119 ((-710 |t#1|) (-1297 $))) (-15 -1985 ((-1297 (-710 |t#1|)))) (-15 -3463 ((-665 (-980 |t#1|)))) (-15 -1912 ($ (-1297 |t#1|))) (-15 -3341 ((-1297 |t#1|) $)) (-15 -3341 ($ (-1297 |t#1|))) (-15 -3570 (|t#1|)) (-15 -2829 (|t#1|)) (-15 -2164 ((-710 |t#1|))) (-15 -2470 ((-710 |t#1|))) (-15 -3065 ((-710 |t#1|) $)) (-15 -1826 ((-710 |t#1|) $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -4235 ((-1202 (-980 |t#1|)))) (-15 -3185 ((-1202 (-980 |t#1|))))) |%noBranch|) (-15 -4177 ($ (-710 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-297 (-577) |#1|) . T) ((-379 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-741) . T) ((-765 |#1|) . T) ((-782) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 60 T ELT)) (-2772 (($ $) 78 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 192 T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) 48 T ELT)) (-2117 ((|#1| $) 16 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#1| (-1251)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-1251)) ELT)) (-3316 (($ |#1| (-577)) 42 T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 149 T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 74 T ELT)) (-4281 (((-3 $ "failed") $) 165 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 85 (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) 81 (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) 92 (|has| |#1| (-558)) ELT)) (-2980 (($ |#1| (-577)) 44 T ELT)) (-1632 (((-112) $) 212 (|has| |#1| (-1251)) ELT)) (-2097 (((-112) $) 62 T ELT)) (-2763 (((-792) $) 51 T ELT)) (-4440 (((-3 "nil" "sqfr" "irred" "prime") $ (-577)) 176 T ELT)) (-3017 ((|#1| $ (-577)) 175 T ELT)) (-1909 (((-577) $ (-577)) 174 T ELT)) (-2272 (($ |#1| (-577)) 41 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 184 T ELT)) (-3146 (($ |#1| (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577))))) 79 T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1622 (($ |#1| (-577)) 43 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) 193 (|has| |#1| (-465)) ELT)) (-2523 (($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime")) 40 T ELT)) (-1679 (((-665 (-2 (|:| -2799 |#1|) (|:| -2182 (-577)))) $) 73 T ELT)) (-1996 (((-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $) 12 T ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-1251)) ELT)) (-3200 (((-3 $ "failed") $ $) 177 T ELT)) (-2182 (((-577) $) 168 T ELT)) (-4198 ((|#1| $) 75 T ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 101 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 107 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) $) NIL (|has| |#1| (-527 (-1206) $)) ELT) (($ $ (-665 (-1206)) (-665 $)) 108 (|has| |#1| (-527 (-1206) $)) ELT) (($ $ (-665 (-305 $))) 104 (|has| |#1| (-320 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-320 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-320 $)) ELT) (($ $ (-665 $) (-665 $)) NIL (|has| |#1| (-320 $)) ELT)) (-2435 (($ $ |#1|) 93 (|has| |#1| (-297 |#1| |#1|)) ELT) (($ $ $) 94 (|has| |#1| (-297 $ $)) ELT)) (-2030 (($ $ (-1 |#1| |#1|)) 183 T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-3341 (((-549) $) 39 (|has| |#1| (-632 (-549))) ELT) (((-391) $) 114 (|has| |#1| (-1052)) ELT) (((-228) $) 120 (|has| |#1| (-1052)) ELT)) (-2410 (((-885) $) 147 T ELT) (($ (-577)) 65 T ELT) (($ $) NIL T ELT) (($ |#1|) 64 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT)) (-3234 (((-792)) 67 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) 53 T CONST)) (-2378 (($) 52 T CONST)) (-1675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) 160 T ELT)) (-2483 (($ $) 162 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 181 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 126 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 69 T ELT) (($ $ $) 68 T ELT) (($ |#1| $) 70 T ELT) (($ $ |#1|) NIL T ELT))) -(((-431 |#1|) (-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -4198 (|#1| $)) (-15 -2182 ((-577) $)) (-15 -3146 ($ |#1| (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -1996 ((-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -2272 ($ |#1| (-577))) (-15 -1679 ((-665 (-2 (|:| -2799 |#1|) (|:| -2182 (-577)))) $)) (-15 -1622 ($ |#1| (-577))) (-15 -1909 ((-577) $ (-577))) (-15 -3017 (|#1| $ (-577))) (-15 -4440 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -2763 ((-792) $)) (-15 -2980 ($ |#1| (-577))) (-15 -3316 ($ |#1| (-577))) (-15 -2523 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2117 (|#1| $)) (-15 -2772 ($ $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-1251)) (-6 (-1251)) |%noBranch|) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1206) $)) (-6 (-527 (-1206) $)) |%noBranch|))) (-569)) (T -431)) -((-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) (-4198 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3146 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-577))))) (-4 *2 (-569)) (-5 *1 (-431 *2)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-2272 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -2799 *3) (|:| -2182 (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-1622 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-1909 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-4440 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *4)) (-4 *4 (-569)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-2980 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3316 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2523 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2117 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2772 (*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-2751 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569))))) -(-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -4198 (|#1| $)) (-15 -2182 ((-577) $)) (-15 -3146 ($ |#1| (-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -1996 ((-665 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -2272 ($ |#1| (-577))) (-15 -1679 ((-665 (-2 (|:| -2799 |#1|) (|:| -2182 (-577)))) $)) (-15 -1622 ($ |#1| (-577))) (-15 -1909 ((-577) $ (-577))) (-15 -3017 (|#1| $ (-577))) (-15 -4440 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -2763 ((-792) $)) (-15 -2980 ($ |#1| (-577))) (-15 -3316 ($ |#1| (-577))) (-15 -2523 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2117 (|#1| $)) (-15 -2772 ($ $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |#1| (-1251)) (-6 (-1251)) |%noBranch|) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1206) $)) (-6 (-527 (-1206) $)) |%noBranch|))) -((-3647 (((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|)) 28 T ELT)) (-1564 (((-431 |#1|) (-431 |#1|) (-431 |#1|)) 17 T ELT))) -(((-432 |#1|) (-10 -7 (-15 -3647 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -1564 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) (-569)) (T -432)) -((-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3)))) (-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) (-5 *1 (-432 *4))))) -(-10 -7 (-15 -3647 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -1564 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) -((-2795 ((|#2| |#2|) 183 T ELT)) (-4039 (((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112)) 60 T ELT))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4039 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112))) (-15 -2795 (|#2| |#2|))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|)) (-1206) |#2|) (T -433)) -((-2795 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1232) (-443 *3))) (-14 *4 (-1206)) (-14 *5 *2))) (-4039 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-14 *6 (-1206)) (-14 *7 *3)))) -(-10 -7 (-15 -4039 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112))) (-15 -2795 (|#2| |#2|))) -((-3609 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|))) (-1079) (-443 |#1|) (-1079) (-443 |#3|)) (T -434)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5))))) -(-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|))) -((-2795 ((|#2| |#2|) 106 T ELT)) (-1462 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188)) 52 T ELT)) (-1557 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188)) 170 T ELT))) -(((-435 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1462 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -1557 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -2795 (|#2| |#2|))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|) (-10 -8 (-15 -2410 ($ |#3|)))) (-869) (-13 (-1275 |#2| |#3|) (-375) (-1232) (-10 -8 (-15 -2030 ($ $)) (-15 -3491 ($ $)))) (-1013 |#4|) (-1206)) (T -435)) -((-2795 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *2 (-13 (-27) (-1232) (-443 *3) (-10 -8 (-15 -2410 ($ *4))))) (-4 *4 (-869)) (-4 *5 (-13 (-1275 *2 *4) (-375) (-1232) (-10 -8 (-15 -2030 ($ $)) (-15 -3491 ($ $))))) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1013 *5)) (-14 *7 (-1206)))) (-1557 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -2410 ($ *7))))) (-4 *7 (-869)) (-4 *8 (-13 (-1275 *3 *7) (-375) (-1232) (-10 -8 (-15 -2030 ($ $)) (-15 -3491 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) (-14 *10 (-1206)))) (-1462 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -2410 ($ *7))))) (-4 *7 (-869)) (-4 *8 (-13 (-1275 *3 *7) (-375) (-1232) (-10 -8 (-15 -2030 ($ $)) (-15 -3491 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) (-14 *10 (-1206))))) -(-10 -7 (-15 -1462 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -1557 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188))))) |#2| (-112) (-1188))) (-15 -2795 (|#2| |#2|))) -((-2090 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-2511 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3609 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2511 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2090 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1130) (-438 |#1|) (-1130) (-438 |#3|)) (T -436)) -((-2090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) -(-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2511 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2090 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-4194 (($) 51 T ELT)) (-1339 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-2729 (($ $ $) 46 T ELT)) (-2171 (((-112) $ $) 35 T ELT)) (-2221 (((-792)) 55 T ELT)) (-1753 (($ (-665 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2060 (($) 66 T ELT)) (-3283 (((-112) $ $) 15 T ELT)) (-1344 ((|#2| $) 77 T ELT)) (-4167 ((|#2| $) 75 T ELT)) (-2553 (((-949) $) 70 T ELT)) (-3959 (($ $ $) 42 T ELT)) (-2085 (($ (-949)) 60 T ELT)) (-2964 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) NIL T ELT) (((-792) |#2| $) 31 T ELT)) (-2422 (($ (-665 |#2|)) 27 T ELT)) (-2698 (($ $) 53 T ELT)) (-2410 (((-885) $) 40 T ELT)) (-2986 (((-792) $) 24 T ELT)) (-2868 (($ (-665 |#2|)) 22 T ELT) (($) NIL T ELT)) (-2383 (((-112) $ $) 19 T ELT))) -(((-437 |#1| |#2|) (-10 -8 (-15 -2221 ((-792))) (-15 -2085 (|#1| (-949))) (-15 -2553 ((-949) |#1|)) (-15 -2060 (|#1|)) (-15 -1344 (|#2| |#1|)) (-15 -4167 (|#2| |#1|)) (-15 -4194 (|#1|)) (-15 -2698 (|#1| |#1|)) (-15 -2986 ((-792) |#1|)) (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3283 ((-112) |#1| |#1|)) (-15 -2868 (|#1|)) (-15 -2868 (|#1| (-665 |#2|))) (-15 -1753 (|#1|)) (-15 -1753 (|#1| (-665 |#2|))) (-15 -3959 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#2|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2171 ((-112) |#1| |#1|)) (-15 -1339 (|#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| |#2|)) (-15 -1339 (|#1| |#2| |#1|)) (-15 -2422 (|#1| (-665 |#2|))) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|))) (-438 |#2|) (-1130)) (T -437)) -((-2221 (*1 *2) (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) -(-10 -8 (-15 -2221 ((-792))) (-15 -2085 (|#1| (-949))) (-15 -2553 ((-949) |#1|)) (-15 -2060 (|#1|)) (-15 -1344 (|#2| |#1|)) (-15 -4167 (|#2| |#1|)) (-15 -4194 (|#1|)) (-15 -2698 (|#1| |#1|)) (-15 -2986 ((-792) |#1|)) (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3283 ((-112) |#1| |#1|)) (-15 -2868 (|#1|)) (-15 -2868 (|#1| (-665 |#2|))) (-15 -1753 (|#1|)) (-15 -1753 (|#1| (-665 |#2|))) (-15 -3959 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#2|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2171 ((-112) |#1| |#1|)) (-15 -1339 (|#1| |#1| |#1|)) (-15 -1339 (|#1| |#1| |#2|)) (-15 -1339 (|#1| |#2| |#1|)) (-15 -2422 (|#1| (-665 |#2|))) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|))) -((-3211 (((-112) $ $) 20 T ELT)) (-4194 (($) 68 (|has| |#1| (-380)) ELT)) (-1339 (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-2729 (($ $ $) 79 T ELT)) (-2171 (((-112) $ $) 80 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2221 (((-792)) 62 (|has| |#1| (-380)) ELT)) (-1753 (($ (-665 |#1|)) 75 T ELT) (($) 74 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3860 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2060 (($) 65 (|has| |#1| (-380)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3283 (((-112) $ $) 71 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-1344 ((|#1| $) 66 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4167 ((|#1| $) 67 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-2553 (((-949) $) 64 (|has| |#1| (-380)) ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 T ELT)) (-3959 (($ $ $) 76 T ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-2085 (($ (-949)) 63 (|has| |#1| (-380)) ELT)) (-4312 (((-1150) $) 22 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2964 (($ $ |#1|) 78 T ELT) (($ $ $) 77 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 51 T ELT)) (-2698 (($ $) 69 (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) 18 T ELT)) (-2986 (((-792) $) 70 T ELT)) (-2868 (($ (-665 |#1|)) 73 T ELT) (($) 72 T ELT)) (-2525 (((-112) $ $) 21 T ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 T ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-438 |#1|) (-141) (-1130)) (T -438)) -((-2986 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1130)) (-5 *2 (-792)))) (-2698 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-380)))) (-4194 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1130)))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870)))) (-1344 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870))))) -(-13 (-232 |t#1|) (-1128 |t#1|) (-10 -8 (-6 -4499) (-15 -2986 ((-792) $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-380)) (-15 -2698 ($ $)) (-15 -4194 ($))) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-15 -4167 (|t#1| $)) (-15 -1344 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-232 |#1|) . T) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-380) |has| |#1| (-380)) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1128 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-4331 (((-599 |#2|) |#2| (-1206)) 36 T ELT)) (-1341 (((-599 |#2|) |#2| (-1206)) 21 T ELT)) (-3054 ((|#2| |#2| (-1206)) 26 T ELT))) -(((-439 |#1| |#2|) (-10 -7 (-15 -1341 ((-599 |#2|) |#2| (-1206))) (-15 -4331 ((-599 |#2|) |#2| (-1206))) (-15 -3054 (|#2| |#2| (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-29 |#1|))) (T -439)) -((-3054 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1232) (-29 *4))))) (-4331 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1232) (-29 *5))))) (-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1232) (-29 *5)))))) -(-10 -7 (-15 -1341 ((-599 |#2|) |#2| (-1206))) (-15 -4331 ((-599 |#2|) |#2| (-1206))) (-15 -3054 (|#2| |#2| (-1206)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4399 (($ |#2| |#1|) 37 T ELT)) (-2205 (($ |#2| |#1|) 35 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-342 |#2|)) 25 T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 10 T CONST)) (-2378 (($) 16 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 36 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-440 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4486)) (IF (|has| |#1| (-6 -4486)) (-6 -4486) |%noBranch|) |%noBranch|) (-15 -2410 ($ |#1|)) (-15 -2410 ($ (-342 |#2|))) (-15 -4399 ($ |#2| |#1|)) (-15 -2205 ($ |#2| |#1|)))) (-13 (-174) (-38 (-420 (-577)))) (-13 (-870) (-21))) (T -440)) -((-2410 (*1 *1 *2) (-12 (-5 *1 (-440 *2 *3)) (-4 *2 (-13 (-174) (-38 (-420 (-577))))) (-4 *3 (-13 (-870) (-21))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-870) (-21))) (-5 *1 (-440 *3 *4)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))))) (-4399 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-870) (-21))))) (-2205 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-870) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4486)) (IF (|has| |#1| (-6 -4486)) (-6 -4486) |%noBranch|) |%noBranch|) (-15 -2410 ($ |#1|)) (-15 -2410 ($ (-342 |#2|))) (-15 -4399 ($ |#2| |#1|)) (-15 -2205 ($ |#2| |#1|)))) -((-3491 (((-3 |#2| (-665 |#2|)) |#2| (-1206)) 115 T ELT))) -(((-441 |#1| |#2|) (-10 -7 (-15 -3491 ((-3 |#2| (-665 |#2|)) |#2| (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-29 |#1|))) (T -441)) -((-3491 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 *3 (-665 *3))) (-5 *1 (-441 *5 *3)) (-4 *3 (-13 (-1232) (-987) (-29 *5)))))) -(-10 -7 (-15 -3491 ((-3 |#2| (-665 |#2|)) |#2| (-1206)))) -((-2948 (((-665 (-1206)) $) 81 T ELT)) (-4419 (((-420 (-1202 $)) $ (-630 $)) 313 T ELT)) (-3583 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) 277 T ELT)) (-2817 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) 84 T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 273 T ELT) (((-3 (-420 (-980 |#2|)) "failed") $) 363 T ELT) (((-3 (-980 |#2|) "failed") $) 275 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3514 (((-630 $) $) NIL T ELT) (((-1206) $) 28 T ELT) (((-577) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-420 (-980 |#2|)) $) 345 T ELT) (((-980 |#2|) $) 272 T ELT) (((-420 (-577)) $) NIL T ELT)) (-4396 (((-115) (-115)) 47 T ELT)) (-2614 (($ $) 99 T ELT)) (-1924 (((-3 (-630 $) "failed") $) 268 T ELT)) (-4385 (((-665 (-630 $)) $) 269 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 287 T ELT)) (-2200 (((-3 (-2 (|:| |val| $) (|:| -2182 (-577))) "failed") $) 294 T ELT)) (-3124 (((-3 (-665 $) "failed") $) 285 T ELT)) (-4271 (((-3 (-2 (|:| -2671 (-577)) (|:| |var| (-630 $))) "failed") $) 304 T ELT)) (-2315 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-1206)) 257 T ELT)) (-3069 (((-112) $) 17 T ELT)) (-3081 ((|#2| $) 19 T ELT)) (-3362 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) 276 T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 109 T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1206)) 62 T ELT) (($ $ (-665 (-1206))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1206)) 65 T ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 72 T ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) 120 T ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) 282 T ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) 105 T ELT) (($ $ (-1206) (-792) (-1 $ $)) 104 T ELT)) (-2435 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) 119 T ELT)) (-2030 (($ $ (-1206)) 278 T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-2430 (($ $) 324 T ELT)) (-3341 (((-916 (-577)) $) 297 T ELT) (((-916 (-391)) $) 301 T ELT) (($ (-431 $)) 359 T ELT) (((-549) $) NIL T ELT)) (-2410 (((-885) $) 279 T ELT) (($ (-630 $)) 93 T ELT) (($ (-1206)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1155 |#2| (-630 $))) NIL T ELT) (($ (-420 |#2|)) 329 T ELT) (($ (-980 (-420 |#2|))) 368 T ELT) (($ (-420 (-980 (-420 |#2|)))) 341 T ELT) (($ (-420 (-980 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-980 |#2|)) 216 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) 373 T ELT)) (-3234 (((-792)) 88 T ELT)) (-3540 (((-112) (-115)) 42 T ELT)) (-1629 (($ (-1206) $) 31 T ELT) (($ (-1206) $ $) 32 T ELT) (($ (-1206) $ $ $) 33 T ELT) (($ (-1206) $ $ $ $) 34 T ELT) (($ (-1206) (-665 $)) 39 T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-442 |#1| |#2|) (-10 -8 (-15 * (|#1| (-949) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2410 (|#1| (-577))) (-15 -3234 ((-792))) (-15 * (|#1| |#2| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2410 (|#1| (-980 |#2|))) (-15 -2817 ((-3 (-980 |#2|) "failed") |#1|)) (-15 -3514 ((-980 |#2|) |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 * (|#1| |#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2410 (|#1| (-420 (-980 |#2|)))) (-15 -2817 ((-3 (-420 (-980 |#2|)) "failed") |#1|)) (-15 -3514 ((-420 (-980 |#2|)) |#1|)) (-15 -4419 ((-420 (-1202 |#1|)) |#1| (-630 |#1|))) (-15 -2410 (|#1| (-420 (-980 (-420 |#2|))))) (-15 -2410 (|#1| (-980 (-420 |#2|)))) (-15 -2410 (|#1| (-420 |#2|))) (-15 -2430 (|#1| |#1|)) (-15 -3341 (|#1| (-431 |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-792) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-792) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| |#1|)))) (-15 -2200 ((-3 (-2 (|:| |val| |#1|) (|:| -2182 (-577))) "failed") |#1|)) (-15 -2315 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2182 (-577))) "failed") |#1| (-1206))) (-15 -2315 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2182 (-577))) "failed") |#1| (-115))) (-15 -2614 (|#1| |#1|)) (-15 -2410 (|#1| (-1155 |#2| (-630 |#1|)))) (-15 -4271 ((-3 (-2 (|:| -2671 (-577)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -3124 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -2315 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2182 (-577))) "failed") |#1|)) (-15 -1620 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 |#1|) (-1206))) (-15 -3362 (|#1| |#1| (-115) |#1| (-1206))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-665 (-1206)))) (-15 -3362 (|#1| |#1| (-1206))) (-15 -1629 (|#1| (-1206) (-665 |#1|))) (-15 -1629 (|#1| (-1206) |#1| |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1206) |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1206) |#1| |#1|)) (-15 -1629 (|#1| (-1206) |#1|)) (-15 -2948 ((-665 (-1206)) |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3069 ((-112) |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -2410 (|#1| (-1206))) (-15 -2817 ((-3 (-1206) "failed") |#1|)) (-15 -3514 ((-1206) |#1|)) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -4385 ((-665 (-630 |#1|)) |#1|)) (-15 -1924 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3583 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3583 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3583 (|#1| |#1| (-305 |#1|))) (-15 -2435 (|#1| (-115) (-665 |#1|))) (-15 -2435 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3362 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -2410 (|#1| (-630 |#1|))) (-15 -2817 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3514 ((-630 |#1|) |#1|)) (-15 -2410 ((-885) |#1|))) (-443 |#2|) (-1130)) (T -442)) -((-4396 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1130)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) (-3234 (*1 *2) (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4))))) -(-10 -8 (-15 * (|#1| (-949) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2410 (|#1| (-577))) (-15 -3234 ((-792))) (-15 * (|#1| |#2| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2410 (|#1| (-980 |#2|))) (-15 -2817 ((-3 (-980 |#2|) "failed") |#1|)) (-15 -3514 ((-980 |#2|) |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 * (|#1| |#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2410 (|#1| (-420 (-980 |#2|)))) (-15 -2817 ((-3 (-420 (-980 |#2|)) "failed") |#1|)) (-15 -3514 ((-420 (-980 |#2|)) |#1|)) (-15 -4419 ((-420 (-1202 |#1|)) |#1| (-630 |#1|))) (-15 -2410 (|#1| (-420 (-980 (-420 |#2|))))) (-15 -2410 (|#1| (-980 (-420 |#2|)))) (-15 -2410 (|#1| (-420 |#2|))) (-15 -2430 (|#1| |#1|)) (-15 -3341 (|#1| (-431 |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-792) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-792) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-792)) (-665 (-1 |#1| |#1|)))) (-15 -2200 ((-3 (-2 (|:| |val| |#1|) (|:| -2182 (-577))) "failed") |#1|)) (-15 -2315 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2182 (-577))) "failed") |#1| (-1206))) (-15 -2315 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2182 (-577))) "failed") |#1| (-115))) (-15 -2614 (|#1| |#1|)) (-15 -2410 (|#1| (-1155 |#2| (-630 |#1|)))) (-15 -4271 ((-3 (-2 (|:| -2671 (-577)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -3124 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -2315 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2182 (-577))) "failed") |#1|)) (-15 -1620 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 |#1|) (-1206))) (-15 -3362 (|#1| |#1| (-115) |#1| (-1206))) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| |#1| (-665 (-1206)))) (-15 -3362 (|#1| |#1| (-1206))) (-15 -1629 (|#1| (-1206) (-665 |#1|))) (-15 -1629 (|#1| (-1206) |#1| |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1206) |#1| |#1| |#1|)) (-15 -1629 (|#1| (-1206) |#1| |#1|)) (-15 -1629 (|#1| (-1206) |#1|)) (-15 -2948 ((-665 (-1206)) |#1|)) (-15 -3081 (|#2| |#1|)) (-15 -3069 ((-112) |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -2410 (|#1| (-1206))) (-15 -2817 ((-3 (-1206) "failed") |#1|)) (-15 -3514 ((-1206) |#1|)) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-115) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-115)) (-665 (-1 |#1| |#1|)))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| |#1|))) (-15 -3362 (|#1| |#1| (-1206) (-1 |#1| (-665 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| (-665 |#1|))))) (-15 -3362 (|#1| |#1| (-665 (-1206)) (-665 (-1 |#1| |#1|)))) (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -4385 ((-665 (-630 |#1|)) |#1|)) (-15 -1924 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3583 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3583 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3583 (|#1| |#1| (-305 |#1|))) (-15 -2435 (|#1| (-115) (-665 |#1|))) (-15 -2435 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1| |#1|)) (-15 -2435 (|#1| (-115) |#1|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -3362 (|#1| |#1| (-665 (-630 |#1|)) (-665 |#1|))) (-15 -3362 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -2410 (|#1| (-630 |#1|))) (-15 -2817 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3514 ((-630 |#1|) |#1|)) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 117 (|has| |#1| (-25)) ELT)) (-2948 (((-665 (-1206)) $) 208 T ELT)) (-4419 (((-420 (-1202 $)) $ (-630 $)) 176 (|has| |#1| (-569)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 148 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 149 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 151 (|has| |#1| (-569)) ELT)) (-4317 (((-665 (-630 $)) $) 39 T ELT)) (-3262 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)) ELT)) (-3583 (($ $ (-305 $)) 51 T ELT) (($ $ (-665 (-305 $))) 50 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 49 T ELT)) (-4456 (($ $) 168 (|has| |#1| (-569)) ELT)) (-4240 (((-431 $) $) 169 (|has| |#1| (-569)) ELT)) (-3397 (((-112) $ $) 159 (|has| |#1| (-569)) ELT)) (-2762 (($) 105 (-2229 (|has| |#1| (-1142)) (|has| |#1| (-25))) CONST)) (-2817 (((-3 (-630 $) "failed") $) 64 T ELT) (((-3 (-1206) "failed") $) 221 T ELT) (((-3 (-577) "failed") $) 215 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#1| "failed") $) 212 T ELT) (((-3 (-420 (-980 |#1|)) "failed") $) 174 (|has| |#1| (-569)) ELT) (((-3 (-980 |#1|) "failed") $) 124 (|has| |#1| (-1079)) ELT) (((-3 (-420 (-577)) "failed") $) 99 (-2229 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3514 (((-630 $) $) 65 T ELT) (((-1206) $) 222 T ELT) (((-577) $) 214 (|has| |#1| (-1068 (-577))) ELT) ((|#1| $) 213 T ELT) (((-420 (-980 |#1|)) $) 175 (|has| |#1| (-569)) ELT) (((-980 |#1|) $) 125 (|has| |#1| (-1079)) ELT) (((-420 (-577)) $) 100 (-2229 (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3152 (($ $ $) 163 (|has| |#1| (-569)) ELT)) (-1953 (((-710 (-577)) (-710 $)) 141 (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 140 (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 139 (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-710 $)) 138 (|has| |#1| (-1079)) ELT)) (-4281 (((-3 $ "failed") $) 107 (|has| |#1| (-1142)) ELT)) (-3164 (($ $ $) 162 (|has| |#1| (-569)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 157 (|has| |#1| (-569)) ELT)) (-1632 (((-112) $) 170 (|has| |#1| (-569)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 217 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 216 (|has| |#1| (-910 (-391))) ELT)) (-3555 (($ $) 46 T ELT) (($ (-665 $)) 45 T ELT)) (-2941 (((-665 (-115)) $) 38 T ELT)) (-4396 (((-115) (-115)) 37 T ELT)) (-2097 (((-112) $) 106 (|has| |#1| (-1142)) ELT)) (-3356 (((-112) $) 17 (|has| $ (-1068 (-577))) ELT)) (-2614 (($ $) 191 (|has| |#1| (-1079)) ELT)) (-2518 (((-1155 |#1| (-630 $)) $) 192 (|has| |#1| (-1079)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 166 (|has| |#1| (-569)) ELT)) (-4338 (((-1202 $) (-630 $)) 20 (|has| $ (-1079)) ELT)) (-3609 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-1924 (((-3 (-630 $) "failed") $) 41 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 143 (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 142 (-2319 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 137 (|has| |#1| (-1079)) ELT) (((-710 |#1|) (-1297 $)) 136 (|has| |#1| (-1079)) ELT)) (-2388 (($ (-665 $)) 155 (|has| |#1| (-569)) ELT) (($ $ $) 154 (|has| |#1| (-569)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4385 (((-665 (-630 $)) $) 40 T ELT)) (-2593 (($ (-115) $) 33 T ELT) (($ (-115) (-665 $)) 32 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 197 (|has| |#1| (-1142)) ELT)) (-2200 (((-3 (-2 (|:| |val| $) (|:| -2182 (-577))) "failed") $) 188 (|has| |#1| (-1079)) ELT)) (-3124 (((-3 (-665 $) "failed") $) 195 (|has| |#1| (-25)) ELT)) (-4271 (((-3 (-2 (|:| -2671 (-577)) (|:| |var| (-630 $))) "failed") $) 194 (|has| |#1| (-25)) ELT)) (-2315 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $) 196 (|has| |#1| (-1142)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-115)) 190 (|has| |#1| (-1079)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-1206)) 189 (|has| |#1| (-1079)) ELT)) (-4450 (((-112) $ (-115)) 35 T ELT) (((-112) $ (-1206)) 34 T ELT)) (-3055 (($ $) 109 (-2229 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-1736 (((-792) $) 42 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3069 (((-112) $) 210 T ELT)) (-3081 ((|#1| $) 209 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 156 (|has| |#1| (-569)) ELT)) (-2420 (($ (-665 $)) 153 (|has| |#1| (-569)) ELT) (($ $ $) 152 (|has| |#1| (-569)) ELT)) (-1603 (((-112) $ $) 30 T ELT) (((-112) $ (-1206)) 29 T ELT)) (-2799 (((-431 $) $) 167 (|has| |#1| (-569)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 164 (|has| |#1| (-569)) ELT)) (-3200 (((-3 $ "failed") $ $) 147 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 158 (|has| |#1| (-569)) ELT)) (-2793 (((-112) $) 18 (|has| $ (-1068 (-577))) ELT)) (-3362 (($ $ (-630 $) $) 62 T ELT) (($ $ (-665 (-630 $)) (-665 $)) 61 T ELT) (($ $ (-665 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-665 $) (-665 $)) 57 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) 28 T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) 27 T ELT) (($ $ (-1206) (-1 $ (-665 $))) 26 T ELT) (($ $ (-1206) (-1 $ $)) 25 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) 24 T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-665 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT) (($ $ (-1206)) 202 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206))) 201 (|has| |#1| (-632 (-549))) ELT) (($ $) 200 (|has| |#1| (-632 (-549))) ELT) (($ $ (-115) $ (-1206)) 199 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-115)) (-665 $) (-1206)) 198 (|has| |#1| (-632 (-549))) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $))) 187 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $)))) 186 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ (-665 $))) 185 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792) (-1 $ $)) 184 (|has| |#1| (-1079)) ELT)) (-2442 (((-792) $) 160 (|has| |#1| (-569)) ELT)) (-2435 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-665 $)) 52 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 161 (|has| |#1| (-569)) ELT)) (-2830 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-2030 (($ $ (-1206)) 134 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 132 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 131 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 130 (|has| |#1| (-1079)) ELT)) (-2430 (($ $) 181 (|has| |#1| (-569)) ELT)) (-2528 (((-1155 |#1| (-630 $)) $) 182 (|has| |#1| (-569)) ELT)) (-1773 (($ $) 19 (|has| $ (-1079)) ELT)) (-3341 (((-916 (-577)) $) 219 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 218 (|has| |#1| (-632 (-916 (-391)))) ELT) (($ (-431 $)) 183 (|has| |#1| (-569)) ELT) (((-549) $) 101 (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $ $) 112 (|has| |#1| (-486)) ELT)) (-4365 (($ $ $) 113 (|has| |#1| (-486)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-630 $)) 63 T ELT) (($ (-1206)) 220 T ELT) (($ |#1|) 211 T ELT) (($ (-1155 |#1| (-630 $))) 193 (|has| |#1| (-1079)) ELT) (($ (-420 |#1|)) 179 (|has| |#1| (-569)) ELT) (($ (-980 (-420 |#1|))) 178 (|has| |#1| (-569)) ELT) (($ (-420 (-980 (-420 |#1|)))) 177 (|has| |#1| (-569)) ELT) (($ (-420 (-980 |#1|))) 173 (|has| |#1| (-569)) ELT) (($ $) 146 (|has| |#1| (-569)) ELT) (($ (-980 |#1|)) 123 (|has| |#1| (-1079)) ELT) (($ (-420 (-577))) 98 (-2229 (|has| |#1| (-569)) (-12 (|has| |#1| (-1068 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ (-577)) 97 (-2229 (|has| |#1| (-1079)) (|has| |#1| (-1068 (-577)))) ELT)) (-2580 (((-3 $ "failed") $) 144 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 126 (|has| |#1| (-1079)) CONST)) (-2208 (($ $) 48 T ELT) (($ (-665 $)) 47 T ELT)) (-3540 (((-112) (-115)) 36 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 150 (|has| |#1| (-569)) ELT)) (-1629 (($ (-1206) $) 207 T ELT) (($ (-1206) $ $) 206 T ELT) (($ (-1206) $ $ $) 205 T ELT) (($ (-1206) $ $ $ $) 204 T ELT) (($ (-1206) (-665 $)) 203 T ELT)) (-2367 (($) 116 (|has| |#1| (-25)) CONST)) (-2378 (($) 104 (|has| |#1| (-1142)) CONST)) (-1675 (($ $ (-1206)) 133 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206))) 129 (|has| |#1| (-1079)) ELT) (($ $ (-1206) (-792)) 128 (|has| |#1| (-1079)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 127 (|has| |#1| (-1079)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ (-1155 |#1| (-630 $)) (-1155 |#1| (-630 $))) 180 (|has| |#1| (-569)) ELT) (($ $ $) 110 (-2229 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT)) (-2483 (($ $ $) 122 (|has| |#1| (-21)) ELT) (($ $) 121 (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) 114 (|has| |#1| (-25)) ELT)) (** (($ $ (-577)) 111 (-2229 (|has| |#1| (-486)) (|has| |#1| (-569))) ELT) (($ $ (-792)) 108 (|has| |#1| (-1142)) ELT) (($ $ (-949)) 103 (|has| |#1| (-1142)) ELT)) (* (($ (-420 (-577)) $) 172 (|has| |#1| (-569)) ELT) (($ $ (-420 (-577))) 171 (|has| |#1| (-569)) ELT) (($ $ |#1|) 145 (|has| |#1| (-174)) ELT) (($ |#1| $) 135 (|has| |#1| (-1079)) ELT) (($ (-577) $) 120 (|has| |#1| (-21)) ELT) (($ (-792) $) 118 (|has| |#1| (-25)) ELT) (($ (-949) $) 115 (|has| |#1| (-25)) ELT) (($ $ $) 102 (|has| |#1| (-1142)) ELT))) -(((-443 |#1|) (-141) (-1130)) (T -443)) -((-3069 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-1206))))) (-1629 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1629 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1629 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1629 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) (-1629 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-665 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1130)))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-4 *3 (-632 (-549))))) (-3362 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1206))) (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-4 *3 (-632 (-549))))) (-3362 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-632 (-549))))) (-3362 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1206)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) (-4 *4 (-632 (-549))))) (-3362 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 *1)) (-5 *4 (-1206)) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-632 (-549))))) (-1620 (*1 *2 *1) (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-443 *3)))) (-2315 (*1 *2 *1) (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2182 (-577)))) (-4 *1 (-443 *3)))) (-3124 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-443 *3)))) (-4271 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) (-5 *2 (-2 (|:| -2671 (-577)) (|:| |var| (-630 *1)))) (-4 *1 (-443 *3)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-1079)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) (-4 *1 (-443 *3)))) (-2614 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-1079)))) (-2315 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1079)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2182 (-577)))) (-4 *1 (-443 *4)))) (-2315 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-1079)) (-4 *4 (-1130)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2182 (-577)))) (-4 *1 (-443 *4)))) (-2200 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-1130)) (-5 *2 (-2 (|:| |val| *1) (|:| -2182 (-577)))) (-4 *1 (-443 *3)))) (-3362 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) (-5 *4 (-665 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-3362 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) (-5 *4 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-3362 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 (-665 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-3362 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 *1)) (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) (-4 *3 (-1130)))) (-2528 (*1 *2 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) (-4 *1 (-443 *3)))) (-2430 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-569)))) (-2494 (*1 *1 *2 *2) (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-980 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1130)) (-4 *1 (-443 *3)))) (-4419 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) (-4 *4 (-569)) (-5 *2 (-420 (-1202 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-4 *3 (-1142))))) -(-13 (-313) (-1068 (-1206)) (-908 |t#1|) (-413 |t#1|) (-424 |t#1|) (-10 -8 (-15 -3069 ((-112) $)) (-15 -3081 (|t#1| $)) (-15 -2948 ((-665 (-1206)) $)) (-15 -1629 ($ (-1206) $)) (-15 -1629 ($ (-1206) $ $)) (-15 -1629 ($ (-1206) $ $ $)) (-15 -1629 ($ (-1206) $ $ $ $)) (-15 -1629 ($ (-1206) (-665 $))) (IF (|has| |t#1| (-632 (-549))) (PROGN (-6 (-632 (-549))) (-15 -3362 ($ $ (-1206))) (-15 -3362 ($ $ (-665 (-1206)))) (-15 -3362 ($ $)) (-15 -3362 ($ $ (-115) $ (-1206))) (-15 -3362 ($ $ (-665 (-115)) (-665 $) (-1206)))) |%noBranch|) (IF (|has| |t#1| (-1142)) (PROGN (-6 (-747)) (-15 ** ($ $ (-792))) (-15 -1620 ((-3 (-665 $) "failed") $)) (-15 -2315 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-486)) (-6 (-486)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3124 ((-3 (-665 $) "failed") $)) (-15 -4271 ((-3 (-2 (|:| -2671 (-577)) (|:| |var| (-630 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1079)) (PROGN (-6 (-1079)) (-6 (-1068 (-980 |t#1|))) (-6 (-926 (-1206))) (-6 (-389 |t#1|)) (-15 -2410 ($ (-1155 |t#1| (-630 $)))) (-15 -2518 ((-1155 |t#1| (-630 $)) $)) (-15 -2614 ($ $)) (-15 -2315 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-115))) (-15 -2315 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2182 (-577))) "failed") $ (-1206))) (-15 -2200 ((-3 (-2 (|:| |val| $) (|:| -2182 (-577))) "failed") $)) (-15 -3362 ($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ $)))) (-15 -3362 ($ $ (-665 (-1206)) (-665 (-792)) (-665 (-1 $ (-665 $))))) (-15 -3362 ($ $ (-1206) (-792) (-1 $ (-665 $)))) (-15 -3362 ($ $ (-1206) (-792) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-375)) (-6 (-1068 (-420 (-980 |t#1|)))) (-15 -3341 ($ (-431 $))) (-15 -2528 ((-1155 |t#1| (-630 $)) $)) (-15 -2430 ($ $)) (-15 -2494 ($ (-1155 |t#1| (-630 $)) (-1155 |t#1| (-630 $)))) (-15 -2410 ($ (-420 |t#1|))) (-15 -2410 ($ (-980 (-420 |t#1|)))) (-15 -2410 ($ (-420 (-980 (-420 |t#1|))))) (-15 -4419 ((-420 (-1202 $)) $ (-630 $))) (IF (|has| |t#1| (-1068 (-577))) (-6 (-1068 (-420 (-577)))) |%noBranch|)) |%noBranch|))) -(((-21) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-420 (-577))) |has| |#1| (-569)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-569)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-569)) ((-132) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-569))) ((-634 #1=(-420 (-980 |#1|))) |has| |#1| (-569)) ((-634 (-577)) -2229 (|has| |#1| (-1079)) (|has| |#1| (-1068 (-577))) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-634 #2=(-630 $)) . T) ((-634 #3=(-980 |#1|)) |has| |#1| (-1079)) ((-634 #4=(-1206)) . T) ((-634 |#1|) . T) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) |has| |#1| (-569)) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-249) |has| |#1| (-569)) ((-301) |has| |#1| (-569)) ((-318) |has| |#1| (-569)) ((-320 $) . T) ((-313) . T) ((-375) |has| |#1| (-569)) ((-389 |#1|) |has| |#1| (-1079)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) |has| |#1| (-569)) ((-486) |has| |#1| (-486)) ((-527 (-630 $) $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-569)) ((-667 (-577)) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-667 |#1|) -2229 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-667 $) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-669 #0#) |has| |#1| (-569)) ((-669 #5=(-577)) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-669 |#1|) -2229 (|has| |#1| (-1079)) (|has| |#1| (-174))) ((-669 $) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-661 #0#) |has| |#1| (-569)) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-659 #5#) -12 (|has| |#1| (-659 (-577))) (|has| |#1| (-1079))) ((-659 |#1|) |has| |#1| (-1079)) ((-738 #0#) |has| |#1| (-569)) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) -2229 (|has| |#1| (-1142)) (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-920 $ #6=(-1206)) |has| |#1| (-1079)) ((-926 #6#) |has| |#1| (-1079)) ((-928 #6#) |has| |#1| (-1079)) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-948) |has| |#1| (-569)) ((-1068 (-420 (-577))) -2229 (|has| |#1| (-1068 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1068 (-577))))) ((-1068 #1#) |has| |#1| (-569)) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #2#) . T) ((-1068 #3#) |has| |#1| (-1079)) ((-1068 #4#) . T) ((-1068 |#1|) . T) ((-1081 #0#) |has| |#1| (-569)) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) |has| |#1| (-569)) ((-1086 #0#) |has| |#1| (-569)) ((-1086 |#1|) |has| |#1| (-174)) ((-1086 $) |has| |#1| (-569)) ((-1079) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1088) -2229 (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1142) -2229 (|has| |#1| (-1142)) (|has| |#1| (-1079)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-569))) -((-3992 ((|#2| |#2| |#2|) 31 T ELT)) (-4396 (((-115) (-115)) 43 T ELT)) (-4378 ((|#2| |#2|) 63 T ELT)) (-4297 ((|#2| |#2|) 66 T ELT)) (-4302 ((|#2| |#2|) 30 T ELT)) (-3591 ((|#2| |#2| |#2|) 33 T ELT)) (-2227 ((|#2| |#2| |#2|) 35 T ELT)) (-3639 ((|#2| |#2| |#2|) 32 T ELT)) (-3321 ((|#2| |#2| |#2|) 34 T ELT)) (-3540 (((-112) (-115)) 41 T ELT)) (-2058 ((|#2| |#2|) 37 T ELT)) (-2668 ((|#2| |#2|) 36 T ELT)) (-3385 ((|#2| |#2|) 25 T ELT)) (-2667 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3587 ((|#2| |#2| |#2|) 29 T ELT))) -(((-444 |#1| |#2|) (-10 -7 (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -3385 (|#2| |#2|)) (-15 -2667 (|#2| |#2|)) (-15 -2667 (|#2| |#2| |#2|)) (-15 -3587 (|#2| |#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -3992 (|#2| |#2| |#2|)) (-15 -3639 (|#2| |#2| |#2|)) (-15 -3591 (|#2| |#2| |#2|)) (-15 -3321 (|#2| |#2| |#2|)) (-15 -2227 (|#2| |#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -4378 (|#2| |#2|))) (-569) (-443 |#1|)) (T -444)) -((-4378 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2058 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2227 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3321 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3591 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3639 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3992 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3587 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2667 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2667 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) (-4 *4 (-443 *3)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4))))) -(-10 -7 (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -3385 (|#2| |#2|)) (-15 -2667 (|#2| |#2|)) (-15 -2667 (|#2| |#2| |#2|)) (-15 -3587 (|#2| |#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -3992 (|#2| |#2| |#2|)) (-15 -3639 (|#2| |#2| |#2|)) (-15 -3591 (|#2| |#2| |#2|)) (-15 -3321 (|#2| |#2| |#2|)) (-15 -2227 (|#2| |#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -2058 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -4378 (|#2| |#2|))) -((-3619 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1202 |#2|)) (|:| |pol2| (-1202 |#2|)) (|:| |prim| (-1202 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-665 (-1202 |#2|))) (|:| |prim| (-1202 |#2|))) (-665 |#2|)) 65 T ELT))) -(((-445 |#1| |#2|) (-10 -7 (-15 -3619 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-665 (-1202 |#2|))) (|:| |prim| (-1202 |#2|))) (-665 |#2|))) (IF (|has| |#2| (-27)) (-15 -3619 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1202 |#2|)) (|:| |pol2| (-1202 |#2|)) (|:| |prim| (-1202 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-569) (-148)) (-443 |#1|)) (T -445)) -((-3619 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1202 *3)) (|:| |pol2| (-1202 *3)) (|:| |prim| (-1202 *3)))) (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-665 (-1202 *5))) (|:| |prim| (-1202 *5)))) (-5 *1 (-445 *4 *5))))) -(-10 -7 (-15 -3619 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-665 (-1202 |#2|))) (|:| |prim| (-1202 |#2|))) (-665 |#2|))) (IF (|has| |#2| (-27)) (-15 -3619 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1202 |#2|)) (|:| |pol2| (-1202 |#2|)) (|:| |prim| (-1202 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3209 (((-1302)) 18 T ELT)) (-1823 (((-1202 (-420 (-577))) |#2| (-630 |#2|)) 40 T ELT) (((-420 (-577)) |#2|) 24 T ELT))) -(((-446 |#1| |#2|) (-10 -7 (-15 -1823 ((-420 (-577)) |#2|)) (-15 -1823 ((-1202 (-420 (-577))) |#2| (-630 |#2|))) (-15 -3209 ((-1302)))) (-13 (-569) (-1068 (-577))) (-443 |#1|)) (T -446)) -((-3209 (*1 *2) (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1302)) (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-443 *5)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-446 *5 *3)))) (-1823 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4))))) -(-10 -7 (-15 -1823 ((-420 (-577)) |#2|)) (-15 -1823 ((-1202 (-420 (-577))) |#2| (-630 |#2|))) (-15 -3209 ((-1302)))) -((-1428 (((-112) $) 33 T ELT)) (-4285 (((-112) $) 35 T ELT)) (-3269 (((-112) $) 36 T ELT)) (-1444 (((-112) $) 39 T ELT)) (-2700 (((-112) $) 34 T ELT)) (-2637 (((-112) $) 38 T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-1188)) 32 T ELT) (($ (-1206)) 30 T ELT) (((-1206) $) 24 T ELT) (((-1134) $) 23 T ELT)) (-1721 (((-112) $) 37 T ELT)) (-2383 (((-112) $ $) 17 T ELT))) -(((-447) (-13 (-631 (-885)) (-10 -8 (-15 -2410 ($ (-1188))) (-15 -2410 ($ (-1206))) (-15 -2410 ((-1206) $)) (-15 -2410 ((-1134) $)) (-15 -1428 ((-112) $)) (-15 -2700 ((-112) $)) (-15 -3269 ((-112) $)) (-15 -2637 ((-112) $)) (-15 -1444 ((-112) $)) (-15 -1721 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -2383 ((-112) $ $))))) (T -447)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-447)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-447)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2383 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(-13 (-631 (-885)) (-10 -8 (-15 -2410 ($ (-1188))) (-15 -2410 ($ (-1206))) (-15 -2410 ((-1206) $)) (-15 -2410 ((-1134) $)) (-15 -1428 ((-112) $)) (-15 -2700 ((-112) $)) (-15 -3269 ((-112) $)) (-15 -2637 ((-112) $)) (-15 -1444 ((-112) $)) (-15 -1721 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -2383 ((-112) $ $)))) -((-2073 (((-3 (-431 (-1202 (-420 (-577)))) "failed") |#3|) 72 T ELT)) (-2013 (((-431 |#3|) |#3|) 34 T ELT)) (-3605 (((-3 (-431 (-1202 (-48))) "failed") |#3|) 46 (|has| |#2| (-1068 (-48))) ELT)) (-3468 (((-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -3848 (-112))) |#3|) 37 T ELT))) -(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2013 ((-431 |#3|) |#3|)) (-15 -2073 ((-3 (-431 (-1202 (-420 (-577)))) "failed") |#3|)) (-15 -3468 ((-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -3848 (-112))) |#3|)) (IF (|has| |#2| (-1068 (-48))) (-15 -3605 ((-3 (-431 (-1202 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-569) (-1068 (-577))) (-443 |#1|) (-1273 |#2|)) (T -448)) -((-3605 (*1 *2 *3) (|partial| -12 (-4 *5 (-1068 (-48))) (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1202 (-48)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -3848 (-112)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2073 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1202 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2013 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5))))) -(-10 -7 (-15 -2013 ((-431 |#3|) |#3|)) (-15 -2073 ((-3 (-431 (-1202 (-420 (-577)))) "failed") |#3|)) (-15 -3468 ((-3 (|:| |overq| (-1202 (-420 (-577)))) (|:| |overan| (-1202 (-48))) (|:| -3848 (-112))) |#3|)) (IF (|has| |#2| (-1068 (-48))) (-15 -3605 ((-3 (-431 (-1202 (-48))) "failed") |#3|)) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-3456 (((-1188) $ (-1188)) NIL T ELT)) (-4216 (($ $ (-1188)) NIL T ELT)) (-2607 (((-1188) $) NIL T ELT)) (-3709 (((-401) (-401) (-401)) 17 T ELT) (((-401) (-401)) 15 T ELT)) (-2258 (($ (-401)) NIL T ELT) (($ (-401) (-1188)) NIL T ELT)) (-4105 (((-401) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1368 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3088 (((-1302) (-1188)) 9 T ELT)) (-4010 (((-1302) (-1188)) 10 T ELT)) (-3534 (((-1302)) 11 T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2996 (($ $) 39 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-449) (-13 (-376 (-401) (-1188)) (-10 -7 (-15 -3709 ((-401) (-401) (-401))) (-15 -3709 ((-401) (-401))) (-15 -3088 ((-1302) (-1188))) (-15 -4010 ((-1302) (-1188))) (-15 -3534 ((-1302)))))) (T -449)) -((-3709 (*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449)))) (-3534 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-449))))) -(-13 (-376 (-401) (-1188)) (-10 -7 (-15 -3709 ((-401) (-401) (-401))) (-15 -3709 ((-401) (-401))) (-15 -3088 ((-1302) (-1188))) (-15 -4010 ((-1302) (-1188))) (-15 -3534 ((-1302))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2771 (((-3 (|:| |fst| (-447)) (|:| -2892 "void")) $) 11 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2547 (($) 35 T ELT)) (-1717 (($) 41 T ELT)) (-2254 (($) 37 T ELT)) (-3684 (($) 39 T ELT)) (-1922 (($) 36 T ELT)) (-3141 (($) 38 T ELT)) (-3806 (($) 40 T ELT)) (-3544 (((-112) $) 8 T ELT)) (-1539 (((-665 (-980 (-577))) $) 19 T ELT)) (-2422 (($ (-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-665 (-1206)) (-112)) 29 T ELT) (($ (-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-665 (-980 (-577))) (-112)) 30 T ELT)) (-2410 (((-885) $) 24 T ELT) (($ (-447)) 32 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-450) (-13 (-1130) (-10 -8 (-15 -2410 ($ (-447))) (-15 -2771 ((-3 (|:| |fst| (-447)) (|:| -2892 "void")) $)) (-15 -1539 ((-665 (-980 (-577))) $)) (-15 -3544 ((-112) $)) (-15 -2422 ($ (-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-665 (-1206)) (-112))) (-15 -2422 ($ (-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-665 (-980 (-577))) (-112))) (-15 -2547 ($)) (-15 -1922 ($)) (-15 -2254 ($)) (-15 -1717 ($)) (-15 -3141 ($)) (-15 -3684 ($)) (-15 -3806 ($))))) (T -450)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-450)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *1 (-450)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-665 (-980 (-577)))) (-5 *1 (-450)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450)))) (-2422 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *3 (-665 (-1206))) (-5 *4 (-112)) (-5 *1 (-450)))) (-2422 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) (-2547 (*1 *1) (-5 *1 (-450))) (-1922 (*1 *1) (-5 *1 (-450))) (-2254 (*1 *1) (-5 *1 (-450))) (-1717 (*1 *1) (-5 *1 (-450))) (-3141 (*1 *1) (-5 *1 (-450))) (-3684 (*1 *1) (-5 *1 (-450))) (-3806 (*1 *1) (-5 *1 (-450)))) -(-13 (-1130) (-10 -8 (-15 -2410 ($ (-447))) (-15 -2771 ((-3 (|:| |fst| (-447)) (|:| -2892 "void")) $)) (-15 -1539 ((-665 (-980 (-577))) $)) (-15 -3544 ((-112) $)) (-15 -2422 ($ (-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-665 (-1206)) (-112))) (-15 -2422 ($ (-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-665 (-980 (-577))) (-112))) (-15 -2547 ($)) (-15 -1922 ($)) (-15 -2254 ($)) (-15 -1717 ($)) (-15 -3141 ($)) (-15 -3684 ($)) (-15 -3806 ($)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4105 (((-1206) $) 8 T ELT)) (-3384 (((-1188) $) 17 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 14 T ELT))) -(((-451 |#1|) (-13 (-1130) (-10 -8 (-15 -4105 ((-1206) $)))) (-1206)) (T -451)) -((-4105 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-451 *3)) (-14 *3 *2)))) -(-13 (-1130) (-10 -8 (-15 -4105 ((-1206) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3383 (((-1148) $) 7 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 9 T ELT))) -(((-452) (-13 (-1130) (-10 -8 (-15 -3383 ((-1148) $))))) (T -452)) -((-3383 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-452))))) -(-13 (-1130) (-10 -8 (-15 -3383 ((-1148) $)))) -((-1902 (((-1302) $) 7 T ELT)) (-2410 (((-885) $) 8 T ELT) (($ (-1297 (-720))) 14 T ELT) (($ (-665 (-341))) 13 T ELT) (($ (-341)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 11 T ELT))) -(((-453) (-141)) (T -453)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-720))) (-4 *1 (-453)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-453)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-453)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) (-4 *1 (-453))))) -(-13 (-408) (-10 -8 (-15 -2410 ($ (-1297 (-720)))) (-15 -2410 ($ (-665 (-341)))) (-15 -2410 ($ (-341))) (-15 -2410 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341)))))))) -(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) -((-2817 (((-3 $ "failed") (-1297 (-327 (-391)))) 21 T ELT) (((-3 $ "failed") (-1297 (-327 (-577)))) 19 T ELT) (((-3 $ "failed") (-1297 (-980 (-391)))) 17 T ELT) (((-3 $ "failed") (-1297 (-980 (-577)))) 15 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-391))))) 13 T ELT) (((-3 $ "failed") (-1297 (-420 (-980 (-577))))) 11 T ELT)) (-3514 (($ (-1297 (-327 (-391)))) 22 T ELT) (($ (-1297 (-327 (-577)))) 20 T ELT) (($ (-1297 (-980 (-391)))) 18 T ELT) (($ (-1297 (-980 (-577)))) 16 T ELT) (($ (-1297 (-420 (-980 (-391))))) 14 T ELT) (($ (-1297 (-420 (-980 (-577))))) 12 T ELT)) (-1902 (((-1302) $) 7 T ELT)) (-2410 (((-885) $) 8 T ELT) (($ (-665 (-341))) 25 T ELT) (($ (-341)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) 23 T ELT))) -(((-454) (-141)) (T -454)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-454)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-454)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) (-4 *1 (-454)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454))))) -(-13 (-408) (-10 -8 (-15 -2410 ($ (-665 (-341)))) (-15 -2410 ($ (-341))) (-15 -2410 ($ (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341)))))) (-15 -3514 ($ (-1297 (-327 (-391))))) (-15 -2817 ((-3 $ "failed") (-1297 (-327 (-391))))) (-15 -3514 ($ (-1297 (-327 (-577))))) (-15 -2817 ((-3 $ "failed") (-1297 (-327 (-577))))) (-15 -3514 ($ (-1297 (-980 (-391))))) (-15 -2817 ((-3 $ "failed") (-1297 (-980 (-391))))) (-15 -3514 ($ (-1297 (-980 (-577))))) (-15 -2817 ((-3 $ "failed") (-1297 (-980 (-577))))) (-15 -3514 ($ (-1297 (-420 (-980 (-391)))))) (-15 -2817 ((-3 $ "failed") (-1297 (-420 (-980 (-391)))))) (-15 -3514 ($ (-1297 (-420 (-980 (-577)))))) (-15 -2817 ((-3 $ "failed") (-1297 (-420 (-980 (-577)))))))) -(((-631 (-885)) . T) ((-408) . T) ((-1247) . T)) -((-3690 (((-112)) 18 T ELT)) (-2784 (((-112) (-112)) 19 T ELT)) (-2126 (((-112)) 14 T ELT)) (-2025 (((-112) (-112)) 15 T ELT)) (-3286 (((-112)) 16 T ELT)) (-3575 (((-112) (-112)) 17 T ELT)) (-4408 (((-949) (-949)) 22 T ELT) (((-949)) 21 T ELT)) (-2763 (((-792) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577))))) 52 T ELT)) (-1908 (((-949) (-949)) 24 T ELT) (((-949)) 23 T ELT)) (-1476 (((-2 (|:| -1855 (-577)) (|:| -1679 (-665 |#1|))) |#1|) 94 T ELT)) (-3146 (((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577))))))) 174 T ELT)) (-4186 (((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112)) 207 T ELT)) (-4255 (((-431 |#1|) |#1| (-792) (-792)) 222 T ELT) (((-431 |#1|) |#1| (-665 (-792)) (-792)) 219 T ELT) (((-431 |#1|) |#1| (-665 (-792))) 221 T ELT) (((-431 |#1|) |#1| (-792)) 220 T ELT) (((-431 |#1|) |#1|) 218 T ELT)) (-3993 (((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792) (-112)) 224 T ELT) (((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792)) 225 T ELT) (((-3 |#1| "failed") (-949) |#1| (-665 (-792))) 227 T ELT) (((-3 |#1| "failed") (-949) |#1| (-792)) 226 T ELT) (((-3 |#1| "failed") (-949) |#1|) 228 T ELT)) (-2799 (((-431 |#1|) |#1| (-792) (-792)) 217 T ELT) (((-431 |#1|) |#1| (-665 (-792)) (-792)) 213 T ELT) (((-431 |#1|) |#1| (-665 (-792))) 215 T ELT) (((-431 |#1|) |#1| (-792)) 214 T ELT) (((-431 |#1|) |#1|) 212 T ELT)) (-3053 (((-112) |#1|) 44 T ELT)) (-3476 (((-758 (-792)) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577))))) 99 T ELT)) (-2210 (((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112) (-1132 (-792)) (-792)) 211 T ELT))) -(((-455 |#1|) (-10 -7 (-15 -3146 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))))) (-15 -3476 ((-758 (-792)) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))))) (-15 -1908 ((-949))) (-15 -1908 ((-949) (-949))) (-15 -4408 ((-949))) (-15 -4408 ((-949) (-949))) (-15 -2763 ((-792) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))))) (-15 -1476 ((-2 (|:| -1855 (-577)) (|:| -1679 (-665 |#1|))) |#1|)) (-15 -3690 ((-112))) (-15 -2784 ((-112) (-112))) (-15 -2126 ((-112))) (-15 -2025 ((-112) (-112))) (-15 -3053 ((-112) |#1|)) (-15 -3286 ((-112))) (-15 -3575 ((-112) (-112))) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -2799 ((-431 |#1|) |#1| (-792))) (-15 -2799 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -2799 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -2799 ((-431 |#1|) |#1| (-792) (-792))) (-15 -4255 ((-431 |#1|) |#1|)) (-15 -4255 ((-431 |#1|) |#1| (-792))) (-15 -4255 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -4255 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -4255 ((-431 |#1|) |#1| (-792) (-792))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1|)) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-792))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792) (-112))) (-15 -4186 ((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112))) (-15 -2210 ((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112) (-1132 (-792)) (-792)))) (-1273 (-577))) (T -455)) -((-2210 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1132 (-792))) (-5 *6 (-792)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4186 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3993 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-3993 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-3993 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-3993 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-949)) (-5 *4 (-792)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-3993 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-949)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) (-4255 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4255 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4255 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4255 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4255 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2799 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3286 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3053 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2025 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2126 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3690 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1855 (-577)) (|:| -1679 (-665 *3)))) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-2763 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -2799 *4) (|:| -2776 (-577))))) (-4 *4 (-1273 (-577))) (-5 *2 (-792)) (-5 *1 (-455 *4)))) (-4408 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-4408 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-1908 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -2799 *4) (|:| -2776 (-577))))) (-4 *4 (-1273 (-577))) (-5 *2 (-758 (-792))) (-5 *1 (-455 *4)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| *4) (|:| -2938 (-577))))))) (-4 *4 (-1273 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) -(-10 -7 (-15 -3146 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))))) (-15 -3476 ((-758 (-792)) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))))) (-15 -1908 ((-949))) (-15 -1908 ((-949) (-949))) (-15 -4408 ((-949))) (-15 -4408 ((-949) (-949))) (-15 -2763 ((-792) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))))) (-15 -1476 ((-2 (|:| -1855 (-577)) (|:| -1679 (-665 |#1|))) |#1|)) (-15 -3690 ((-112))) (-15 -2784 ((-112) (-112))) (-15 -2126 ((-112))) (-15 -2025 ((-112) (-112))) (-15 -3053 ((-112) |#1|)) (-15 -3286 ((-112))) (-15 -3575 ((-112) (-112))) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -2799 ((-431 |#1|) |#1| (-792))) (-15 -2799 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -2799 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -2799 ((-431 |#1|) |#1| (-792) (-792))) (-15 -4255 ((-431 |#1|) |#1|)) (-15 -4255 ((-431 |#1|) |#1| (-792))) (-15 -4255 ((-431 |#1|) |#1| (-665 (-792)))) (-15 -4255 ((-431 |#1|) |#1| (-665 (-792)) (-792))) (-15 -4255 ((-431 |#1|) |#1| (-792) (-792))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1|)) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-792))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792))) (-15 -3993 ((-3 |#1| "failed") (-949) |#1| (-665 (-792)) (-792) (-112))) (-15 -4186 ((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112))) (-15 -2210 ((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112) (-1132 (-792)) (-792)))) -((-3866 (((-577) |#2|) 52 T ELT) (((-577) |#2| (-792)) 51 T ELT)) (-2585 (((-577) |#2|) 64 T ELT)) (-3103 ((|#3| |#2|) 26 T ELT)) (-2755 ((|#3| |#2| (-949)) 15 T ELT)) (-3490 ((|#3| |#2|) 16 T ELT)) (-1463 ((|#3| |#2|) 9 T ELT)) (-1736 ((|#3| |#2|) 10 T ELT)) (-3552 ((|#3| |#2| (-949)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-4289 (((-577) |#2|) 66 T ELT))) -(((-456 |#1| |#2| |#3|) (-10 -7 (-15 -4289 ((-577) |#2|)) (-15 -3552 (|#3| |#2|)) (-15 -3552 (|#3| |#2| (-949))) (-15 -2585 ((-577) |#2|)) (-15 -3866 ((-577) |#2| (-792))) (-15 -3866 ((-577) |#2|)) (-15 -2755 (|#3| |#2| (-949))) (-15 -3103 (|#3| |#2|)) (-15 -1463 (|#3| |#2|)) (-15 -1736 (|#3| |#2|)) (-15 -3490 (|#3| |#2|))) (-1079) (-1273 |#1|) (-13 (-417) (-1068 |#1|) (-375) (-1232) (-295))) (T -456)) -((-3490 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-1736 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-1463 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-3866 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))))) (-3866 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1273 *5)) (-4 *6 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))))) (-2585 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))))) (-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-4289 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) -(-10 -7 (-15 -4289 ((-577) |#2|)) (-15 -3552 (|#3| |#2|)) (-15 -3552 (|#3| |#2| (-949))) (-15 -2585 ((-577) |#2|)) (-15 -3866 ((-577) |#2| (-792))) (-15 -3866 ((-577) |#2|)) (-15 -2755 (|#3| |#2| (-949))) (-15 -3103 (|#3| |#2|)) (-15 -1463 (|#3| |#2|)) (-15 -1736 (|#3| |#2|)) (-15 -3490 (|#3| |#2|))) -((-3168 ((|#2| (-1297 |#1|)) 42 T ELT)) (-3042 ((|#2| |#2| |#1|) 58 T ELT)) (-4147 ((|#2| |#2| |#1|) 49 T ELT)) (-1538 ((|#2| |#2|) 44 T ELT)) (-3784 (((-112) |#2|) 32 T ELT)) (-3208 (((-665 |#2|) (-949) (-431 |#2|)) 21 T ELT)) (-3993 ((|#2| (-949) (-431 |#2|)) 25 T ELT)) (-3476 (((-758 (-792)) (-431 |#2|)) 29 T ELT))) -(((-457 |#1| |#2|) (-10 -7 (-15 -3784 ((-112) |#2|)) (-15 -3168 (|#2| (-1297 |#1|))) (-15 -1538 (|#2| |#2|)) (-15 -4147 (|#2| |#2| |#1|)) (-15 -3042 (|#2| |#2| |#1|)) (-15 -3476 ((-758 (-792)) (-431 |#2|))) (-15 -3993 (|#2| (-949) (-431 |#2|))) (-15 -3208 ((-665 |#2|) (-949) (-431 |#2|)))) (-1079) (-1273 |#1|)) (T -457)) -((-3208 (*1 *2 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-431 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-1079)) (-5 *2 (-665 *6)) (-5 *1 (-457 *5 *6)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-431 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-457 *5 *2)) (-4 *5 (-1079)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-431 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1079)) (-5 *2 (-758 (-792))) (-5 *1 (-457 *4 *5)))) (-3042 (*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) (-4147 (*1 *2 *2 *3) (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1079)) (-4 *2 (-1273 *4)) (-5 *1 (-457 *4 *2)))) (-3784 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -3784 ((-112) |#2|)) (-15 -3168 (|#2| (-1297 |#1|))) (-15 -1538 (|#2| |#2|)) (-15 -4147 (|#2| |#2| |#1|)) (-15 -3042 (|#2| |#2| |#1|)) (-15 -3476 ((-758 (-792)) (-431 |#2|))) (-15 -3993 (|#2| (-949) (-431 |#2|))) (-15 -3208 ((-665 |#2|) (-949) (-431 |#2|)))) -((-3844 (((-792)) 59 T ELT)) (-3927 (((-792)) 29 (|has| |#1| (-417)) ELT) (((-792) (-792)) 28 (|has| |#1| (-417)) ELT)) (-2456 (((-577) |#1|) 25 (|has| |#1| (-417)) ELT)) (-3880 (((-577) |#1|) 27 (|has| |#1| (-417)) ELT)) (-2161 (((-792)) 58 T ELT) (((-792) (-792)) 57 T ELT)) (-3251 ((|#1| (-792) (-577)) 37 T ELT)) (-4248 (((-1302)) 61 T ELT))) -(((-458 |#1|) (-10 -7 (-15 -3251 (|#1| (-792) (-577))) (-15 -2161 ((-792) (-792))) (-15 -2161 ((-792))) (-15 -3844 ((-792))) (-15 -4248 ((-1302))) (IF (|has| |#1| (-417)) (PROGN (-15 -3880 ((-577) |#1|)) (-15 -2456 ((-577) |#1|)) (-15 -3927 ((-792) (-792))) (-15 -3927 ((-792)))) |%noBranch|)) (-1079)) (T -458)) -((-3927 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-3927 (*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-2456 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-3880 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) (-4248 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-3844 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-2161 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1079))))) -(-10 -7 (-15 -3251 (|#1| (-792) (-577))) (-15 -2161 ((-792) (-792))) (-15 -2161 ((-792))) (-15 -3844 ((-792))) (-15 -4248 ((-1302))) (IF (|has| |#1| (-417)) (PROGN (-15 -3880 ((-577) |#1|)) (-15 -2456 ((-577) |#1|)) (-15 -3927 ((-792) (-792))) (-15 -3927 ((-792)))) |%noBranch|)) -((-2379 (((-665 (-577)) (-577)) 76 T ELT)) (-1632 (((-112) (-171 (-577))) 82 T ELT)) (-2799 (((-431 (-171 (-577))) (-171 (-577))) 75 T ELT))) -(((-459) (-10 -7 (-15 -2799 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -2379 ((-665 (-577)) (-577))) (-15 -1632 ((-112) (-171 (-577)))))) (T -459)) -((-1632 (*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) (-2379 (*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-459)) (-5 *3 (-577)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) (-5 *3 (-171 (-577)))))) -(-10 -7 (-15 -2799 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -2379 ((-665 (-577)) (-577))) (-15 -1632 ((-112) (-171 (-577))))) -((-4438 ((|#4| |#4| (-665 |#4|)) 82 T ELT)) (-3751 (((-665 |#4|) (-665 |#4|) (-1188) (-1188)) 22 T ELT) (((-665 |#4|) (-665 |#4|) (-1188)) 21 T ELT) (((-665 |#4|) (-665 |#4|)) 13 T ELT))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4438 (|#4| |#4| (-665 |#4|))) (-15 -3751 ((-665 |#4|) (-665 |#4|))) (-15 -3751 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -3751 ((-665 |#4|) (-665 |#4|) (-1188) (-1188)))) (-318) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -460)) -((-3751 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *7)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-460 *3 *4 *5 *6)))) (-4438 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *2))))) -(-10 -7 (-15 -4438 (|#4| |#4| (-665 |#4|))) (-15 -3751 ((-665 |#4|) (-665 |#4|))) (-15 -3751 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -3751 ((-665 |#4|) (-665 |#4|) (-1188) (-1188)))) -((-1944 (((-665 (-665 |#4|)) (-665 |#4|) (-112)) 89 T ELT) (((-665 (-665 |#4|)) (-665 |#4|)) 88 T ELT) (((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|) (-112)) 82 T ELT) (((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|)) 83 T ELT)) (-2036 (((-665 (-665 |#4|)) (-665 |#4|) (-112)) 55 T ELT) (((-665 (-665 |#4|)) (-665 |#4|)) 77 T ELT))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2036 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -2036 ((-665 (-665 |#4|)) (-665 |#4|) (-112))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|) (-112))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|) (-112)))) (-13 (-318) (-148)) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -461)) -((-1944 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) (-1944 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-1944 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) (-1944 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) (-2036 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) -(-10 -7 (-15 -2036 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -2036 ((-665 (-665 |#4|)) (-665 |#4|) (-112))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|) (-665 |#4|) (-112))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|))) (-15 -1944 ((-665 (-665 |#4|)) (-665 |#4|) (-112)))) -((-1464 (((-792) |#4|) 12 T ELT)) (-2777 (((-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|))) |#4| (-792) (-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|)))) 39 T ELT)) (-1429 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-2916 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-3332 ((|#4| |#4| (-665 |#4|)) 54 T ELT)) (-3026 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-665 |#4|)) 96 T ELT)) (-3642 (((-1302) |#4|) 59 T ELT)) (-1484 (((-1302) (-665 |#4|)) 69 T ELT)) (-3658 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577)) 66 T ELT)) (-2407 (((-1302) (-577)) 110 T ELT)) (-2390 (((-665 |#4|) (-665 |#4|)) 104 T ELT)) (-2195 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|)) |#4| (-792)) 31 T ELT)) (-3731 (((-577) |#4|) 109 T ELT)) (-1552 ((|#4| |#4|) 37 T ELT)) (-2179 (((-665 |#4|) (-665 |#4|) (-577) (-577)) 74 T ELT)) (-3092 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577)) 123 T ELT)) (-3265 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-4068 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1404 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-2382 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-2279 (((-112) |#2| |#2|) 75 T ELT)) (-3777 (((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1659 (((-112) |#2| |#2| |#2| |#2|) 80 T ELT)) (-4217 ((|#4| |#4| (-665 |#4|)) 97 T ELT))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4217 (|#4| |#4| (-665 |#4|))) (-15 -3332 (|#4| |#4| (-665 |#4|))) (-15 -2179 ((-665 |#4|) (-665 |#4|) (-577) (-577))) (-15 -4068 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2279 ((-112) |#2| |#2|)) (-15 -1659 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3777 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2382 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1404 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3026 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-665 |#4|))) (-15 -1552 (|#4| |#4|)) (-15 -2777 ((-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|))) |#4| (-792) (-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|))))) (-15 -2916 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1429 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2390 ((-665 |#4|) (-665 |#4|))) (-15 -3731 ((-577) |#4|)) (-15 -3642 ((-1302) |#4|)) (-15 -3658 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -3092 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -1484 ((-1302) (-665 |#4|))) (-15 -2407 ((-1302) (-577))) (-15 -3265 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2195 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|)) |#4| (-792))) (-15 -1464 ((-792) |#4|))) (-465) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -462)) -((-1464 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-792)) (|:| -1524 *4))) (-5 *5 (-792)) (-4 *4 (-977 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-3265 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3092 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *4)))) (-3658 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *4)))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-577)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-1429 (*1 *2 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-814)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-465)) (-4 *6 (-870)))) (-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 *3)))) (-5 *4 (-792)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *3)))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-1404 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-792)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-814)) (-4 *6 (-977 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-870)) (-5 *1 (-462 *4 *3 *5 *6)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6)))) (-3777 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-814)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *3)))) (-1659 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5)))) (-2279 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5)))) (-4068 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2179 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3332 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2)))) (-4217 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) -(-10 -7 (-15 -4217 (|#4| |#4| (-665 |#4|))) (-15 -3332 (|#4| |#4| (-665 |#4|))) (-15 -2179 ((-665 |#4|) (-665 |#4|) (-577) (-577))) (-15 -4068 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2279 ((-112) |#2| |#2|)) (-15 -1659 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3777 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2382 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1404 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3026 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-665 |#4|))) (-15 -1552 (|#4| |#4|)) (-15 -2777 ((-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|))) |#4| (-792) (-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|))))) (-15 -2916 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1429 ((-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-665 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2390 ((-665 |#4|) (-665 |#4|))) (-15 -3731 ((-577) |#4|)) (-15 -3642 ((-1302) |#4|)) (-15 -3658 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -3092 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -1484 ((-1302) (-665 |#4|))) (-15 -2407 ((-1302) (-577))) (-15 -3265 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2195 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-792)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-792)) (|:| -1524 |#4|)) |#4| (-792))) (-15 -1464 ((-792) |#4|))) -((-1615 ((|#4| |#4| (-665 |#4|)) 20 (|has| |#1| (-375)) ELT)) (-3849 (((-665 |#4|) (-665 |#4|) (-1188) (-1188)) 46 T ELT) (((-665 |#4|) (-665 |#4|) (-1188)) 45 T ELT) (((-665 |#4|) (-665 |#4|)) 34 T ELT))) -(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3849 ((-665 |#4|) (-665 |#4|))) (-15 -3849 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -3849 ((-665 |#4|) (-665 |#4|) (-1188) (-1188))) (IF (|has| |#1| (-375)) (-15 -1615 (|#4| |#4| (-665 |#4|))) |%noBranch|)) (-465) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -463)) -((-1615 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-375)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-463 *4 *5 *6 *2)))) (-3849 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-463 *4 *5 *6 *7)))) (-3849 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-463 *4 *5 *6 *7)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-463 *3 *4 *5 *6))))) -(-10 -7 (-15 -3849 ((-665 |#4|) (-665 |#4|))) (-15 -3849 ((-665 |#4|) (-665 |#4|) (-1188))) (-15 -3849 ((-665 |#4|) (-665 |#4|) (-1188) (-1188))) (IF (|has| |#1| (-375)) (-15 -1615 (|#4| |#4| (-665 |#4|))) |%noBranch|)) -((-2388 (($ $ $) 14 T ELT) (($ (-665 $)) 21 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 46 T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) 22 T ELT))) -(((-464 |#1|) (-10 -8 (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -2388 (|#1| (-665 |#1|))) (-15 -2388 (|#1| |#1| |#1|)) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2420 (|#1| |#1| |#1|))) (-465)) (T -464)) -NIL -(-10 -8 (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -2388 (|#1| (-665 |#1|))) (-15 -2388 (|#1| |#1| |#1|)) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2420 (|#1| |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-465) (-141)) (T -465)) -((-2420 (*1 *1 *1 *1) (-4 *1 (-465))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) (-2388 (*1 *1 *1 *1) (-4 *1 (-465))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) (-4373 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-465))))) -(-13 (-569) (-10 -8 (-15 -2420 ($ $ $)) (-15 -2420 ($ (-665 $))) (-15 -2388 ($ $ $)) (-15 -2388 ($ (-665 $))) (-15 -4373 ((-1202 $) (-1202 $) (-1202 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2117 (((-3 $ "failed")) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1985 (((-1297 (-710 (-420 (-980 |#1|)))) (-1297 $)) NIL T ELT) (((-1297 (-710 (-420 (-980 |#1|))))) NIL T ELT)) (-3955 (((-1297 $)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL T ELT)) (-3666 (((-3 $ "failed")) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-2470 (((-710 (-420 (-980 |#1|))) (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|)))) NIL T ELT)) (-1677 (((-420 (-980 |#1|)) $) NIL T ELT)) (-1826 (((-710 (-420 (-980 |#1|))) $ (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|))) $) NIL T ELT)) (-1488 (((-3 $ "failed") $) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3185 (((-1202 (-980 (-420 (-980 |#1|))))) NIL (|has| (-420 (-980 |#1|)) (-375)) ELT) (((-1202 (-420 (-980 |#1|)))) 90 (|has| |#1| (-569)) ELT)) (-1380 (($ $ (-949)) NIL T ELT)) (-2932 (((-420 (-980 |#1|)) $) NIL T ELT)) (-2993 (((-1202 (-420 (-980 |#1|))) $) 88 (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-2829 (((-420 (-980 |#1|)) (-1297 $)) NIL T ELT) (((-420 (-980 |#1|))) NIL T ELT)) (-3661 (((-1202 (-420 (-980 |#1|))) $) NIL T ELT)) (-1550 (((-112)) NIL T ELT)) (-1912 (($ (-1297 (-420 (-980 |#1|))) (-1297 $)) 114 T ELT) (($ (-1297 (-420 (-980 |#1|)))) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-1875 (((-949)) NIL T ELT)) (-3506 (((-112)) NIL T ELT)) (-3328 (($ $ (-949)) NIL T ELT)) (-3842 (((-112)) NIL T ELT)) (-3195 (((-112)) NIL T ELT)) (-3950 (((-112)) NIL T ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL T ELT)) (-2249 (((-3 $ "failed")) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-2164 (((-710 (-420 (-980 |#1|))) (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|)))) NIL T ELT)) (-4470 (((-420 (-980 |#1|)) $) NIL T ELT)) (-3065 (((-710 (-420 (-980 |#1|))) $ (-1297 $)) NIL T ELT) (((-710 (-420 (-980 |#1|))) $) NIL T ELT)) (-3258 (((-3 $ "failed") $) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-4235 (((-1202 (-980 (-420 (-980 |#1|))))) NIL (|has| (-420 (-980 |#1|)) (-375)) ELT) (((-1202 (-420 (-980 |#1|)))) 89 (|has| |#1| (-569)) ELT)) (-1748 (($ $ (-949)) NIL T ELT)) (-1591 (((-420 (-980 |#1|)) $) NIL T ELT)) (-2369 (((-1202 (-420 (-980 |#1|))) $) 85 (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3570 (((-420 (-980 |#1|)) (-1297 $)) NIL T ELT) (((-420 (-980 |#1|))) NIL T ELT)) (-3163 (((-1202 (-420 (-980 |#1|))) $) NIL T ELT)) (-3677 (((-112)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4404 (((-112)) NIL T ELT)) (-2027 (((-112)) NIL T ELT)) (-1796 (((-112)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2241 (((-420 (-980 |#1|)) $ $) 76 (|has| |#1| (-569)) ELT)) (-2680 (((-420 (-980 |#1|)) $) 100 (|has| |#1| (-569)) ELT)) (-2915 (((-420 (-980 |#1|)) $) 104 (|has| |#1| (-569)) ELT)) (-2626 (((-1202 (-420 (-980 |#1|))) $) 94 (|has| |#1| (-569)) ELT)) (-1648 (((-420 (-980 |#1|))) 77 (|has| |#1| (-569)) ELT)) (-2222 (((-420 (-980 |#1|)) $ $) 69 (|has| |#1| (-569)) ELT)) (-3581 (((-420 (-980 |#1|)) $) 99 (|has| |#1| (-569)) ELT)) (-4426 (((-420 (-980 |#1|)) $) 103 (|has| |#1| (-569)) ELT)) (-3832 (((-1202 (-420 (-980 |#1|))) $) 93 (|has| |#1| (-569)) ELT)) (-3125 (((-420 (-980 |#1|))) 73 (|has| |#1| (-569)) ELT)) (-1389 (($) 110 T ELT) (($ (-1206)) 118 T ELT) (($ (-1297 (-1206))) 117 T ELT) (($ (-1297 $)) 105 T ELT) (($ (-1206) (-1297 $)) 116 T ELT) (($ (-1297 (-1206)) (-1297 $)) 115 T ELT)) (-1342 (((-112)) NIL T ELT)) (-2435 (((-420 (-980 |#1|)) $ (-577)) NIL T ELT)) (-2119 (((-1297 (-420 (-980 |#1|))) $ (-1297 $)) 107 T ELT) (((-710 (-420 (-980 |#1|))) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-420 (-980 |#1|))) $) 43 T ELT) (((-710 (-420 (-980 |#1|))) (-1297 $)) NIL T ELT)) (-3341 (((-1297 (-420 (-980 |#1|))) $) NIL T ELT) (($ (-1297 (-420 (-980 |#1|)))) 40 T ELT)) (-3463 (((-665 (-980 (-420 (-980 |#1|)))) (-1297 $)) NIL T ELT) (((-665 (-980 (-420 (-980 |#1|))))) NIL T ELT) (((-665 (-980 |#1|)) (-1297 $)) 108 (|has| |#1| (-569)) ELT) (((-665 (-980 |#1|))) 109 (|has| |#1| (-569)) ELT)) (-4365 (($ $ $) NIL T ELT)) (-2137 (((-112)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-1297 (-420 (-980 |#1|)))) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) 65 T ELT)) (-3898 (((-665 (-1297 (-420 (-980 |#1|))))) NIL (|has| (-420 (-980 |#1|)) (-569)) ELT)) (-3899 (($ $ $ $) NIL T ELT)) (-1984 (((-112)) NIL T ELT)) (-4177 (($ (-710 (-420 (-980 |#1|))) $) NIL T ELT)) (-1416 (($ $ $) NIL T ELT)) (-2989 (((-112)) NIL T ELT)) (-4176 (((-112)) NIL T ELT)) (-2102 (((-112)) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) 106 T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 61 T ELT) (($ $ (-420 (-980 |#1|))) NIL T ELT) (($ (-420 (-980 |#1|)) $) NIL T ELT) (($ (-1172 |#2| (-420 (-980 |#1|))) $) NIL T ELT))) -(((-466 |#1| |#2| |#3| |#4|) (-13 (-430 (-420 (-980 |#1|))) (-669 (-1172 |#2| (-420 (-980 |#1|)))) (-10 -8 (-15 -2410 ($ (-1297 (-420 (-980 |#1|))))) (-15 -1990 ((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed"))) (-15 -1389 ($)) (-15 -1389 ($ (-1206))) (-15 -1389 ($ (-1297 (-1206)))) (-15 -1389 ($ (-1297 $))) (-15 -1389 ($ (-1206) (-1297 $))) (-15 -1389 ($ (-1297 (-1206)) (-1297 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -4235 ((-1202 (-420 (-980 |#1|))))) (-15 -3832 ((-1202 (-420 (-980 |#1|))) $)) (-15 -3581 ((-420 (-980 |#1|)) $)) (-15 -4426 ((-420 (-980 |#1|)) $)) (-15 -3185 ((-1202 (-420 (-980 |#1|))))) (-15 -2626 ((-1202 (-420 (-980 |#1|))) $)) (-15 -2680 ((-420 (-980 |#1|)) $)) (-15 -2915 ((-420 (-980 |#1|)) $)) (-15 -2222 ((-420 (-980 |#1|)) $ $)) (-15 -3125 ((-420 (-980 |#1|)))) (-15 -2241 ((-420 (-980 |#1|)) $ $)) (-15 -1648 ((-420 (-980 |#1|)))) (-15 -3463 ((-665 (-980 |#1|)) (-1297 $))) (-15 -3463 ((-665 (-980 |#1|))))) |%noBranch|))) (-174) (-949) (-665 (-1206)) (-1297 (-710 |#1|))) (T -466)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 *3)))) (-4 *3 (-174)) (-14 *6 (-1297 (-710 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))))) (-1990 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -2225 (-665 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1756 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -2225 (-665 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1389 (*1 *1) (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-949)) (-14 *4 (-665 (-1206))) (-14 *5 (-1297 (-710 *2))))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 *2)) (-14 *6 (-1297 (-710 *3))))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-1297 (-1206))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-1297 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1389 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) (-14 *6 (-665 *2)) (-14 *7 (-1297 (-710 *4))))) (-1389 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 (-1206))) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4))))) (-4235 (*1 *2) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-4426 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3185 (*1 *2) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2222 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3125 (*1 *2) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-2241 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-1648 (*1 *2) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *2 (-665 (-980 *4))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) (-14 *5 (-949)) (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4))))) (-3463 (*1 *2) (-12 (-5 *2 (-665 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(-13 (-430 (-420 (-980 |#1|))) (-669 (-1172 |#2| (-420 (-980 |#1|)))) (-10 -8 (-15 -2410 ($ (-1297 (-420 (-980 |#1|))))) (-15 -1990 ((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed"))) (-15 -1389 ($)) (-15 -1389 ($ (-1206))) (-15 -1389 ($ (-1297 (-1206)))) (-15 -1389 ($ (-1297 $))) (-15 -1389 ($ (-1206) (-1297 $))) (-15 -1389 ($ (-1297 (-1206)) (-1297 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -4235 ((-1202 (-420 (-980 |#1|))))) (-15 -3832 ((-1202 (-420 (-980 |#1|))) $)) (-15 -3581 ((-420 (-980 |#1|)) $)) (-15 -4426 ((-420 (-980 |#1|)) $)) (-15 -3185 ((-1202 (-420 (-980 |#1|))))) (-15 -2626 ((-1202 (-420 (-980 |#1|))) $)) (-15 -2680 ((-420 (-980 |#1|)) $)) (-15 -2915 ((-420 (-980 |#1|)) $)) (-15 -2222 ((-420 (-980 |#1|)) $ $)) (-15 -3125 ((-420 (-980 |#1|)))) (-15 -2241 ((-420 (-980 |#1|)) $ $)) (-15 -1648 ((-420 (-980 |#1|)))) (-15 -3463 ((-665 (-980 |#1|)) (-1297 $))) (-15 -3463 ((-665 (-980 |#1|))))) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 18 T ELT)) (-2948 (((-665 (-887 |#1|)) $) 87 T ELT)) (-4419 (((-1202 $) $ (-887 |#1|)) 52 T ELT) (((-1202 |#2|) $) 138 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#2| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3703 (((-792) $) 27 T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#2| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) 50 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3514 ((|#2| $) 48 T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3760 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-1471 (($ $ (-665 (-577))) 93 T ELT)) (-3134 (($ $) 80 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4313 (($ $ |#2| |#3| $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) 65 T ELT)) (-2935 (($ (-1202 |#2|) (-887 |#1|)) 143 T ELT) (($ (-1202 $) (-887 |#1|)) 58 T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) 68 T ELT)) (-2925 (($ |#2| |#3|) 35 T ELT) (($ $ (-887 |#1|) (-792)) 37 T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3569 ((|#3| $) NIL T ELT) (((-792) $ (-887 |#1|)) 56 T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) 63 T ELT)) (-4309 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2505 (((-3 (-887 |#1|) "failed") $) 45 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#2| $) 47 T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) 46 T ELT)) (-3081 ((|#2| $) 136 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) 149 (|has| |#2| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) 100 T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) 106 T ELT) (($ $ (-887 |#1|) $) 98 T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) 124 T ELT)) (-1611 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-2030 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) 59 T ELT)) (-2776 ((|#3| $) 79 T ELT) (((-792) $ (-887 |#1|)) 42 T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) 62 T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2091 ((|#2| $) 145 (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-2410 (((-885) $) 173 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 99 T ELT) (($ (-887 |#1|)) 39 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ |#3|) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2367 (($) 22 T CONST)) (-2378 (($) 31 T CONST)) (-1675 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#2|) 76 (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 131 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 129 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) -(((-467 |#1| |#2| |#3|) (-13 (-977 |#2| |#3| (-887 |#1|)) (-10 -8 (-15 -1471 ($ $ (-665 (-577)))))) (-665 (-1206)) (-1079) (-244 (-3224 |#1|) (-792))) (T -467)) -((-1471 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-14 *3 (-665 (-1206))) (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-244 (-3224 *3) (-792)))))) -(-13 (-977 |#2| |#3| (-887 |#1|)) (-10 -8 (-15 -1471 ($ $ (-665 (-577)))))) -((-3982 (((-112) |#1| (-665 |#2|)) 91 T ELT)) (-2540 (((-3 (-1297 (-665 |#2|)) "failed") (-792) |#1| (-665 |#2|)) 100 T ELT)) (-3196 (((-3 (-665 |#2|) "failed") |#2| |#1| (-1297 (-665 |#2|))) 102 T ELT)) (-4442 ((|#2| |#2| |#1|) 35 T ELT)) (-4050 (((-792) |#2| (-665 |#2|)) 26 T ELT))) -(((-468 |#1| |#2|) (-10 -7 (-15 -4442 (|#2| |#2| |#1|)) (-15 -4050 ((-792) |#2| (-665 |#2|))) (-15 -2540 ((-3 (-1297 (-665 |#2|)) "failed") (-792) |#1| (-665 |#2|))) (-15 -3196 ((-3 (-665 |#2|) "failed") |#2| |#1| (-1297 (-665 |#2|)))) (-15 -3982 ((-112) |#1| (-665 |#2|)))) (-318) (-1273 |#1|)) (T -468)) -((-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-318)) (-5 *2 (-112)) (-5 *1 (-468 *3 *5)))) (-3196 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1297 (-665 *3))) (-4 *4 (-318)) (-5 *2 (-665 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1273 *4)))) (-2540 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-792)) (-4 *4 (-318)) (-4 *6 (-1273 *4)) (-5 *2 (-1297 (-665 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-665 *6)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-318)) (-5 *2 (-792)) (-5 *1 (-468 *5 *3)))) (-4442 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1273 *3))))) -(-10 -7 (-15 -4442 (|#2| |#2| |#1|)) (-15 -4050 ((-792) |#2| (-665 |#2|))) (-15 -2540 ((-3 (-1297 (-665 |#2|)) "failed") (-792) |#1| (-665 |#2|))) (-15 -3196 ((-3 (-665 |#2|) "failed") |#2| |#1| (-1297 (-665 |#2|)))) (-15 -3982 ((-112) |#1| (-665 |#2|)))) -((-2799 (((-431 |#5|) |#5|) 24 T ELT))) -(((-469 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2799 ((-431 |#5|) |#5|))) (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206))))) (-814) (-569) (-569) (-977 |#4| |#2| |#1|)) (T -469)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206)))))) (-4 *5 (-814)) (-4 *7 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-977 *7 *5 *4))))) -(-10 -7 (-15 -2799 ((-431 |#5|) |#5|))) -((-4300 ((|#3|) 38 T ELT)) (-4373 (((-1202 |#4|) (-1202 |#4|) (-1202 |#4|)) 34 T ELT))) -(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4373 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -4300 (|#3|))) (-814) (-870) (-937) (-977 |#3| |#1| |#2|)) (T -470)) -((-4300 (*1 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-977 *2 *3 *4)))) (-4373 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-937)) (-5 *1 (-470 *3 *4 *5 *6))))) -(-10 -7 (-15 -4373 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -4300 (|#3|))) -((-2799 (((-431 (-1202 |#1|)) (-1202 |#1|)) 43 T ELT))) -(((-471 |#1|) (-10 -7 (-15 -2799 ((-431 (-1202 |#1|)) (-1202 |#1|)))) (-318)) (T -471)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1202 *4))) (-5 *1 (-471 *4)) (-5 *3 (-1202 *4))))) -(-10 -7 (-15 -2799 ((-431 (-1202 |#1|)) (-1202 |#1|)))) -((-3002 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-792))) 44 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-792))) 43 T ELT) (((-52) |#2| (-1206) (-305 |#2|)) 36 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 29 T ELT)) (-4447 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 88 T ELT) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 87 T ELT) (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577))) 86 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577))) 85 T ELT) (((-52) |#2| (-1206) (-305 |#2|)) 80 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 79 T ELT)) (-3029 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 74 T ELT) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))) 72 T ELT)) (-3016 (((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577))) 51 T ELT) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577))) 50 T ELT))) -(((-472 |#1| |#2|) (-10 -7 (-15 -3002 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3002 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -3002 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-792)))) (-15 -3002 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-792)))) (-15 -3016 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -3016 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -3029 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3029 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -4447 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -4447 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -4447 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -4447 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -4447 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -4447 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))))) (-13 (-569) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -472)) -((-4447 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-4447 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-4447 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-4447 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) (-4 *7 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-4447 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-4447 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6)))) (-3029 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-3029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-3016 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) (-4 *7 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3002 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-792))) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3002 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-792))) (-4 *7 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3002 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6))))) -(-10 -7 (-15 -3002 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3002 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -3002 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-792)))) (-15 -3002 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-792)))) (-15 -3016 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -3016 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -3029 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -3029 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -4447 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -4447 ((-52) |#2| (-1206) (-305 |#2|))) (-15 -4447 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1264 (-577)))) (-15 -4447 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-577)))) (-15 -4447 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577)))) (-15 -4447 ((-52) |#2| (-1206) (-305 |#2|) (-1264 (-420 (-577))) (-420 (-577))))) -((-4442 ((|#2| |#2| |#1|) 15 T ELT)) (-2539 (((-665 |#2|) |#2| (-665 |#2|) |#1| (-949)) 82 T ELT)) (-2458 (((-2 (|:| |plist| (-665 |#2|)) (|:| |modulo| |#1|)) |#2| (-665 |#2|) |#1| (-949)) 72 T ELT))) -(((-473 |#1| |#2|) (-10 -7 (-15 -2458 ((-2 (|:| |plist| (-665 |#2|)) (|:| |modulo| |#1|)) |#2| (-665 |#2|) |#1| (-949))) (-15 -2539 ((-665 |#2|) |#2| (-665 |#2|) |#1| (-949))) (-15 -4442 (|#2| |#2| |#1|))) (-318) (-1273 |#1|)) (T -473)) -((-4442 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1273 *3)))) (-2539 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-665 *3)) (-5 *5 (-949)) (-4 *3 (-1273 *4)) (-4 *4 (-318)) (-5 *1 (-473 *4 *3)))) (-2458 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-949)) (-4 *5 (-318)) (-4 *3 (-1273 *5)) (-5 *2 (-2 (|:| |plist| (-665 *3)) (|:| |modulo| *5))) (-5 *1 (-473 *5 *3)) (-5 *4 (-665 *3))))) -(-10 -7 (-15 -2458 ((-2 (|:| |plist| (-665 |#2|)) (|:| |modulo| |#1|)) |#2| (-665 |#2|) |#1| (-949))) (-15 -2539 ((-665 |#2|) |#2| (-665 |#2|) |#1| (-949))) (-15 -4442 (|#2| |#2| |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 28 T ELT)) (-1997 (($ |#3|) 25 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) 32 T ELT)) (-4012 (($ |#2| |#4| $) 33 T ELT)) (-2925 (($ |#2| (-734 |#3| |#4| |#5|)) 24 T ELT)) (-3095 (((-734 |#3| |#4| |#5|) $) 15 T ELT)) (-2463 ((|#3| $) 19 T ELT)) (-2072 ((|#4| $) 17 T ELT)) (-3109 ((|#2| $) 29 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-3672 (($ |#2| |#3| |#4|) 26 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 36 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 34 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-474 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-738 |#6|) (-738 |#2|) (-10 -8 (-15 -3109 (|#2| $)) (-15 -3095 ((-734 |#3| |#4| |#5|) $)) (-15 -2072 (|#4| $)) (-15 -2463 (|#3| $)) (-15 -3134 ($ $)) (-15 -2925 ($ |#2| (-734 |#3| |#4| |#5|))) (-15 -1997 ($ |#3|)) (-15 -3672 ($ |#2| |#3| |#4|)) (-15 -4012 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-665 (-1206)) (-174) (-870) (-244 (-3224 |#1|) (-792)) (-1 (-112) (-2 (|:| -2085 |#3|) (|:| -2182 |#4|)) (-2 (|:| -2085 |#3|) (|:| -2182 |#4|))) (-977 |#2| |#4| (-887 |#1|))) (T -474)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *6 (-244 (-3224 *3) (-792))) (-14 *7 (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *6)) (-2 (|:| -2085 *5) (|:| -2182 *6)))) (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-870)) (-4 *2 (-977 *4 *6 (-887 *3))))) (-3109 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *5 (-244 (-3224 *3) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -2085 *4) (|:| -2182 *5)) (-2 (|:| -2085 *4) (|:| -2182 *5)))) (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-870)) (-4 *7 (-977 *2 *5 (-887 *3))))) (-3095 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *6 (-244 (-3224 *3) (-792))) (-14 *7 (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *6)) (-2 (|:| -2085 *5) (|:| -2182 *6)))) (-5 *2 (-734 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870)) (-4 *8 (-977 *4 *6 (-887 *3))))) (-2072 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *2)) (-2 (|:| -2085 *5) (|:| -2182 *2)))) (-4 *2 (-244 (-3224 *3) (-792))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) (-4 *5 (-870)) (-4 *7 (-977 *4 *2 (-887 *3))))) (-2463 (*1 *2 *1) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *5 (-244 (-3224 *3) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *5)) (-2 (|:| -2085 *2) (|:| -2182 *5)))) (-4 *2 (-870)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *7 (-977 *4 *5 (-887 *3))))) (-3134 (*1 *1 *1) (-12 (-14 *2 (-665 (-1206))) (-4 *3 (-174)) (-4 *5 (-244 (-3224 *2) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -2085 *4) (|:| -2182 *5)) (-2 (|:| -2085 *4) (|:| -2182 *5)))) (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-870)) (-4 *7 (-977 *3 *5 (-887 *2))))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-734 *5 *6 *7)) (-4 *5 (-870)) (-4 *6 (-244 (-3224 *4) (-792))) (-14 *7 (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *6)) (-2 (|:| -2085 *5) (|:| -2182 *6)))) (-14 *4 (-665 (-1206))) (-4 *2 (-174)) (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-977 *2 *6 (-887 *4))))) (-1997 (*1 *1 *2) (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) (-4 *5 (-244 (-3224 *3) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *5)) (-2 (|:| -2085 *2) (|:| -2182 *5)))) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-870)) (-4 *7 (-977 *4 *5 (-887 *3))))) (-3672 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-665 (-1206))) (-4 *2 (-174)) (-4 *4 (-244 (-3224 *5) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -2085 *3) (|:| -2182 *4)) (-2 (|:| -2085 *3) (|:| -2182 *4)))) (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-870)) (-4 *7 (-977 *2 *4 (-887 *5))))) (-4012 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-665 (-1206))) (-4 *2 (-174)) (-4 *3 (-244 (-3224 *4) (-792))) (-14 *6 (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *3)) (-2 (|:| -2085 *5) (|:| -2182 *3)))) (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-870)) (-4 *7 (-977 *2 *3 (-887 *4)))))) -(-13 (-738 |#6|) (-738 |#2|) (-10 -8 (-15 -3109 (|#2| $)) (-15 -3095 ((-734 |#3| |#4| |#5|) $)) (-15 -2072 (|#4| $)) (-15 -2463 (|#3| $)) (-15 -3134 ($ $)) (-15 -2925 ($ |#2| (-734 |#3| |#4| |#5|))) (-15 -1997 ($ |#3|)) (-15 -3672 ($ |#2| |#3| |#4|)) (-15 -4012 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2479 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-475 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2479 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-814) (-870) (-569) (-977 |#3| |#1| |#2|) (-13 (-1068 (-420 (-577))) (-375) (-10 -8 (-15 -2410 ($ |#4|)) (-15 -2518 (|#4| $)) (-15 -2528 (|#4| $))))) (T -475)) -((-2479 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-870)) (-4 *5 (-814)) (-4 *6 (-569)) (-4 *7 (-977 *6 *5 *3)) (-5 *1 (-475 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1068 (-420 (-577))) (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $)))))))) -(-10 -7 (-15 -2479 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2948 (((-665 |#3|) $) 41 T ELT)) (-3294 (((-112) $) NIL T ELT)) (-1567 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4232 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-1760 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) 49 T ELT)) (-3514 (($ (-665 |#4|)) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-2736 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-1669 ((|#3| $) 47 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#4|) $) 14 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2850 (((-665 |#3|) $) NIL T ELT)) (-2746 (((-112) |#3| $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 39 T ELT)) (-3414 (($) 17 T ELT)) (-4323 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 16 T ELT)) (-3341 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT) (($ (-665 |#4|)) 51 T ELT)) (-2422 (($ (-665 |#4|)) 13 T ELT)) (-1799 (($ $ |#3|) NIL T ELT)) (-3139 (($ $ |#3|) NIL T ELT)) (-1600 (($ $ |#3|) NIL T ELT)) (-2410 (((-885) $) 38 T ELT) (((-665 |#4|) $) 50 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 30 T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-476 |#1| |#2| |#3| |#4|) (-13 (-1006 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3341 ($ (-665 |#4|))) (-6 -4499) (-6 -4500))) (-1079) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -476)) -((-3341 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-476 *3 *4 *5 *6))))) -(-13 (-1006 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3341 ($ (-665 |#4|))) (-6 -4499) (-6 -4500))) -((-2367 (($) 11 T ELT)) (-2378 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2378 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2367 (|#1|))) (-478 |#2| |#3|) (-174) (-23)) (T -477)) -NIL -(-10 -8 (-15 -2378 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2367 (|#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-2817 (((-3 |#1| "failed") $) 27 T ELT)) (-3514 ((|#1| $) 28 T ELT)) (-3526 (($ $ $) 24 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2776 ((|#2| $) 20 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ |#1|) 26 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 25 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) -(((-478 |#1| |#2|) (-141) (-174) (-23)) (T -478)) -((-2378 (*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3526 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-483 |t#1| |t#2|) (-1068 |t#1|) (-10 -8 (-15 (-2378) ($) -1528) (-15 -3526 ($ $ $)))) -(((-102) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-483 |#1| |#2|) . T) ((-1068 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-2104 (((-1297 (-1297 (-577))) (-1297 (-1297 (-577))) (-949)) 26 T ELT)) (-4328 (((-1297 (-1297 (-577))) (-949)) 21 T ELT))) -(((-479) (-10 -7 (-15 -2104 ((-1297 (-1297 (-577))) (-1297 (-1297 (-577))) (-949))) (-15 -4328 ((-1297 (-1297 (-577))) (-949))))) (T -479)) -((-4328 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 (-577)))) (-5 *1 (-479)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 (-1297 (-577)))) (-5 *3 (-949)) (-5 *1 (-479))))) -(-10 -7 (-15 -2104 ((-1297 (-1297 (-577))) (-1297 (-1297 (-577))) (-949))) (-15 -4328 ((-1297 (-1297 (-577))) (-949)))) -((-2083 (((-577) (-577)) 32 T ELT) (((-577)) 24 T ELT)) (-3475 (((-577) (-577)) 28 T ELT) (((-577)) 20 T ELT)) (-1655 (((-577) (-577)) 30 T ELT) (((-577)) 22 T ELT)) (-4357 (((-112) (-112)) 14 T ELT) (((-112)) 12 T ELT)) (-1934 (((-112) (-112)) 13 T ELT) (((-112)) 11 T ELT)) (-2459 (((-112) (-112)) 26 T ELT) (((-112)) 17 T ELT))) -(((-480) (-10 -7 (-15 -1934 ((-112))) (-15 -4357 ((-112))) (-15 -1934 ((-112) (-112))) (-15 -4357 ((-112) (-112))) (-15 -2459 ((-112))) (-15 -1655 ((-577))) (-15 -3475 ((-577))) (-15 -2083 ((-577))) (-15 -2459 ((-112) (-112))) (-15 -1655 ((-577) (-577))) (-15 -3475 ((-577) (-577))) (-15 -2083 ((-577) (-577))))) (T -480)) -((-2083 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-2083 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3475 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-1655 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-2459 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4357 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-1934 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4357 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-1934 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) -(-10 -7 (-15 -1934 ((-112))) (-15 -4357 ((-112))) (-15 -1934 ((-112) (-112))) (-15 -4357 ((-112) (-112))) (-15 -2459 ((-112))) (-15 -1655 ((-577))) (-15 -3475 ((-577))) (-15 -2083 ((-577))) (-15 -2459 ((-112) (-112))) (-15 -1655 ((-577) (-577))) (-15 -3475 ((-577) (-577))) (-15 -2083 ((-577) (-577)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3939 (((-665 (-391)) $) 34 T ELT) (((-665 (-391)) $ (-665 (-391))) 146 T ELT)) (-1898 (((-665 (-1124 (-391))) $) 16 T ELT) (((-665 (-1124 (-391))) $ (-665 (-1124 (-391)))) 142 T ELT)) (-4212 (((-665 (-665 (-971 (-228)))) (-665 (-665 (-971 (-228)))) (-665 (-897))) 58 T ELT)) (-1711 (((-665 (-665 (-971 (-228)))) $) 137 T ELT)) (-4414 (((-1302) $ (-971 (-228)) (-897)) 163 T ELT)) (-2451 (($ $) 136 T ELT) (($ (-665 (-665 (-971 (-228))))) 149 T ELT) (($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949))) 148 T ELT) (($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)) (-665 (-271))) 150 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3171 (((-577) $) 110 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2231 (($) 147 T ELT)) (-3326 (((-665 (-228)) (-665 (-665 (-971 (-228))))) 89 T ELT)) (-2536 (((-1302) $ (-665 (-971 (-228))) (-897) (-897) (-949)) 155 T ELT) (((-1302) $ (-971 (-228))) 157 T ELT) (((-1302) $ (-971 (-228)) (-897) (-897) (-949)) 156 T ELT)) (-2410 (((-885) $) 169 T ELT) (($ (-665 (-665 (-971 (-228))))) 164 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2328 (((-1302) $ (-971 (-228))) 162 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-481) (-13 (-1130) (-10 -8 (-15 -2231 ($)) (-15 -2451 ($ $)) (-15 -2451 ($ (-665 (-665 (-971 (-228)))))) (-15 -2451 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)))) (-15 -2451 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)) (-665 (-271)))) (-15 -1711 ((-665 (-665 (-971 (-228)))) $)) (-15 -3171 ((-577) $)) (-15 -1898 ((-665 (-1124 (-391))) $)) (-15 -1898 ((-665 (-1124 (-391))) $ (-665 (-1124 (-391))))) (-15 -3939 ((-665 (-391)) $)) (-15 -3939 ((-665 (-391)) $ (-665 (-391)))) (-15 -2536 ((-1302) $ (-665 (-971 (-228))) (-897) (-897) (-949))) (-15 -2536 ((-1302) $ (-971 (-228)))) (-15 -2536 ((-1302) $ (-971 (-228)) (-897) (-897) (-949))) (-15 -2328 ((-1302) $ (-971 (-228)))) (-15 -4414 ((-1302) $ (-971 (-228)) (-897))) (-15 -2410 ($ (-665 (-665 (-971 (-228)))))) (-15 -2410 ((-885) $)) (-15 -4212 ((-665 (-665 (-971 (-228)))) (-665 (-665 (-971 (-228)))) (-665 (-897)))) (-15 -3326 ((-665 (-228)) (-665 (-665 (-971 (-228))))))))) (T -481)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-481)))) (-2231 (*1 *1) (-5 *1 (-481))) (-2451 (*1 *1 *1) (-5 *1 (-481))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) (-2451 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) (-5 *4 (-665 (-949))) (-5 *1 (-481)))) (-2451 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) (-5 *4 (-665 (-949))) (-5 *5 (-665 (-271))) (-5 *1 (-481)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481)))) (-1898 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) (-3939 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) (-2536 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *2 (-1302)) (-5 *1 (-481)))) (-2536 (*1 *2 *1 *3) (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481)))) (-2536 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *2 (-1302)) (-5 *1 (-481)))) (-2328 (*1 *2 *1 *3) (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481)))) (-4414 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-481)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) (-4212 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) (-5 *1 (-481)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-665 (-228))) (-5 *1 (-481))))) -(-13 (-1130) (-10 -8 (-15 -2231 ($)) (-15 -2451 ($ $)) (-15 -2451 ($ (-665 (-665 (-971 (-228)))))) (-15 -2451 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)))) (-15 -2451 ($ (-665 (-665 (-971 (-228)))) (-665 (-897)) (-665 (-897)) (-665 (-949)) (-665 (-271)))) (-15 -1711 ((-665 (-665 (-971 (-228)))) $)) (-15 -3171 ((-577) $)) (-15 -1898 ((-665 (-1124 (-391))) $)) (-15 -1898 ((-665 (-1124 (-391))) $ (-665 (-1124 (-391))))) (-15 -3939 ((-665 (-391)) $)) (-15 -3939 ((-665 (-391)) $ (-665 (-391)))) (-15 -2536 ((-1302) $ (-665 (-971 (-228))) (-897) (-897) (-949))) (-15 -2536 ((-1302) $ (-971 (-228)))) (-15 -2536 ((-1302) $ (-971 (-228)) (-897) (-897) (-949))) (-15 -2328 ((-1302) $ (-971 (-228)))) (-15 -4414 ((-1302) $ (-971 (-228)) (-897))) (-15 -2410 ($ (-665 (-665 (-971 (-228)))))) (-15 -2410 ((-885) $)) (-15 -4212 ((-665 (-665 (-971 (-228)))) (-665 (-665 (-971 (-228)))) (-665 (-897)))) (-15 -3326 ((-665 (-228)) (-665 (-665 (-971 (-228)))))))) -((-2483 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-482 |#1| |#2| |#3|) (-10 -8 (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|))) (-483 |#2| |#3|) (-174) (-23)) (T -482)) -NIL -(-10 -8 (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2776 ((|#2| $) 20 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) -(((-483 |#1| |#2|) (-141) (-174) (-23)) (T -483)) -((-2776 (*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2367 (*1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2471 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2483 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1130) (-10 -8 (-15 -2776 (|t#2| $)) (-15 (-2367) ($) -1528) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2483 ($ $)) (-15 -2471 ($ $ $)) (-15 -2483 ($ $ $)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3117 (((-3 (-665 (-494 |#1| |#2|)) "failed") (-665 (-494 |#1| |#2|)) (-665 (-887 |#1|))) 134 T ELT)) (-2007 (((-665 (-665 (-254 |#1| |#2|))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))) 131 T ELT)) (-1628 (((-2 (|:| |dpolys| (-665 (-254 |#1| |#2|))) (|:| |coords| (-665 (-577)))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))) 86 T ELT))) -(((-484 |#1| |#2| |#3|) (-10 -7 (-15 -2007 ((-665 (-665 (-254 |#1| |#2|))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -3117 ((-3 (-665 (-494 |#1| |#2|)) "failed") (-665 (-494 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -1628 ((-2 (|:| |dpolys| (-665 (-254 |#1| |#2|))) (|:| |coords| (-665 (-577)))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))))) (-665 (-1206)) (-465) (-465)) (T -484)) -((-1628 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-2 (|:| |dpolys| (-665 (-254 *5 *6))) (|:| |coords| (-665 (-577))))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465)))) (-3117 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-665 (-887 *4))) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) (-4 *6 (-465)))) (-2007 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-665 (-665 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465))))) -(-10 -7 (-15 -2007 ((-665 (-665 (-254 |#1| |#2|))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -3117 ((-3 (-665 (-494 |#1| |#2|)) "failed") (-665 (-494 |#1| |#2|)) (-665 (-887 |#1|)))) (-15 -1628 ((-2 (|:| |dpolys| (-665 (-254 |#1| |#2|))) (|:| |coords| (-665 (-577)))) (-665 (-254 |#1| |#2|)) (-665 (-887 |#1|))))) -((-4281 (((-3 $ "failed") $) 11 T ELT)) (-2744 (($ $ $) 23 T ELT)) (-4365 (($ $ $) 24 T ELT)) (-2494 (($ $ $) 9 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 22 T ELT))) -(((-485 |#1|) (-10 -8 (-15 -4365 (|#1| |#1| |#1|)) (-15 -2744 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -2494 (|#1| |#1| |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) (-486)) (T -485)) -NIL -(-10 -8 (-15 -4365 (|#1| |#1| |#1|)) (-15 -2744 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -2494 (|#1| |#1| |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) -((-3211 (((-112) $ $) 7 T ELT)) (-2762 (($) 19 T CONST)) (-4281 (((-3 $ "failed") $) 16 T ELT)) (-2097 (((-112) $) 18 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 25 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2744 (($ $ $) 22 T ELT)) (-4365 (($ $ $) 21 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2378 (($) 20 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 24 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT) (($ $ (-577)) 23 T ELT)) (* (($ $ $) 15 T ELT))) -(((-486) (-141)) (T -486)) -((-3055 (*1 *1 *1) (-4 *1 (-486))) (-2494 (*1 *1 *1 *1) (-4 *1 (-486))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-486)) (-5 *2 (-577)))) (-2744 (*1 *1 *1 *1) (-4 *1 (-486))) (-4365 (*1 *1 *1 *1) (-4 *1 (-486)))) -(-13 (-747) (-10 -8 (-15 -3055 ($ $)) (-15 -2494 ($ $ $)) (-15 ** ($ $ (-577))) (-6 -4496) (-15 -2744 ($ $ $)) (-15 -4365 ($ $ $)))) -(((-102) . T) ((-631 (-885)) . T) ((-747) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 18 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-1501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1527 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-420 (-577))) NIL T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3863 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3491 (($ $) 29 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 35 (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 30 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-420 (-577))) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3585 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) 28 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) 16 T ELT)) (-2776 (((-420 (-577)) $) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1293 |#2|)) NIL T ELT) (($ (-1282 |#1| |#2| |#3|)) 9 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-420 (-577))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) 21 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-487 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1293 |#2|))) (-15 -2410 ($ (-1282 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -487)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-487 *3 *4 *5)))) (-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(-13 (-1278 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1293 |#2|))) (-15 -2410 ($ (-1282 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-3425 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#2| $ |#1| |#2|) 18 T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) 19 T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 16 T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-3242 (((-665 |#1|) $) NIL T ELT)) (-2404 (((-112) |#1| $) NIL T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3887 (((-665 |#1|) $) NIL T ELT)) (-1593 (((-112) |#1| $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-488 |#1| |#2| |#3| |#4|) (-1223 |#1| |#2|) (-1130) (-1130) (-1223 |#1| |#2|) |#2|) (T -488)) -NIL -(-1223 |#1| |#2|) -((-3211 (((-112) $ $) NIL T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-4202 (((-665 $) (-665 |#4|)) NIL T ELT)) (-2948 (((-665 |#3|) $) NIL T ELT)) (-3294 (((-112) $) NIL T ELT)) (-1567 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1988 ((|#4| |#4| $) NIL T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4232 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1760 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3514 (($ (-665 |#4|)) NIL T ELT)) (-4197 (((-3 $ "failed") $) 45 T ELT)) (-3415 ((|#4| |#4| $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-2736 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2981 ((|#4| |#4| $) NIL T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) NIL T ELT)) (-2728 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1669 ((|#3| $) 38 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#4|) $) 19 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2850 (((-665 |#3|) $) NIL T ELT)) (-2746 (((-112) |#3| $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2756 (((-3 |#4| "failed") $) 42 T ELT)) (-2327 (((-665 |#4|) $) NIL T ELT)) (-2982 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1502 ((|#4| |#4| $) NIL T ELT)) (-2220 (((-112) $ $) NIL T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4058 ((|#4| |#4| $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-3 |#4| "failed") $) 40 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 58 T ELT)) (-4013 (($ $ |#4|) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 17 T ELT)) (-3414 (($) 14 T ELT)) (-2776 (((-792) $) NIL T ELT)) (-4323 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 22 T ELT)) (-1799 (($ $ |#3|) 52 T ELT)) (-3139 (($ $ |#3|) 54 T ELT)) (-3680 (($ $) NIL T ELT)) (-1600 (($ $ |#3|) NIL T ELT)) (-2410 (((-885) $) 35 T ELT) (((-665 |#4|) $) 46 T ELT)) (-3050 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) NIL T ELT)) (-2306 (((-112) |#3| $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-489 |#1| |#2| |#3| |#4|) (-1240 |#1| |#2| |#3| |#4|) (-569) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -489)) -NIL -(-1240 |#1| |#2| |#3| |#4|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2549 (($) 17 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-3341 (((-391) $) 21 T ELT) (((-228) $) 24 T ELT) (((-420 (-1202 (-577))) $) 18 T ELT) (((-549) $) 53 T ELT)) (-2410 (((-885) $) 51 T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (((-228) $) 23 T ELT) (((-391) $) 20 T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) 37 T CONST)) (-2378 (($) 8 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-490) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))) (-1052) (-631 (-228)) (-631 (-391)) (-632 (-420 (-1202 (-577)))) (-632 (-549)) (-10 -8 (-15 -2549 ($))))) (T -490)) -((-2549 (*1 *1) (-5 *1 (-490)))) -(-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))) (-1052) (-631 (-228)) (-631 (-391)) (-632 (-420 (-1202 (-577)))) (-632 (-549)) (-10 -8 (-15 -2549 ($)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3664 (((-1165) $) 11 T ELT)) (-3653 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-491) (-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $))))) (T -491)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491))))) -(-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $)))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-3425 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#2| $ |#1| |#2|) 16 T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) 20 T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 18 T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-3242 (((-665 |#1|) $) 13 T ELT)) (-2404 (((-112) |#1| $) NIL T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3887 (((-665 |#1|) $) NIL T ELT)) (-1593 (((-112) |#1| $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 19 T ELT)) (-2435 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 11 (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3224 (((-792) $) 15 (|has| $ (-6 -4499)) ELT))) -(((-492 |#1| |#2| |#3|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130) (-1188)) (T -492)) -NIL -(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) -((-4290 (((-577) (-577) (-577)) 19 T ELT)) (-1574 (((-112) (-577) (-577) (-577) (-577)) 28 T ELT)) (-4168 (((-1297 (-665 (-577))) (-792) (-792)) 41 T ELT))) -(((-493) (-10 -7 (-15 -4290 ((-577) (-577) (-577))) (-15 -1574 ((-112) (-577) (-577) (-577) (-577))) (-15 -4168 ((-1297 (-665 (-577))) (-792) (-792))))) (T -493)) -((-4168 (*1 *2 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1297 (-665 (-577)))) (-5 *1 (-493)))) (-1574 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493)))) (-4290 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) -(-10 -7 (-15 -4290 ((-577) (-577) (-577))) (-15 -1574 ((-112) (-577) (-577) (-577) (-577))) (-15 -4168 ((-1297 (-665 (-577))) (-792) (-792)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-887 |#1|)) $) NIL T ELT)) (-4419 (((-1202 $) $ (-887 |#1|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#2| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#2| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3760 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-1471 (($ $ (-665 (-577))) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4313 (($ $ |#2| (-495 (-3224 |#1|) (-792)) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2935 (($ (-1202 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1202 $) (-887 |#1|)) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-495 (-3224 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3569 (((-495 (-3224 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4309 (($ (-1 (-495 (-3224 |#1|) (-792)) (-495 (-3224 |#1|) (-792))) $) NIL T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2505 (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#2| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#2| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) NIL T ELT)) (-1611 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-2030 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-2776 (((-495 (-3224 |#1|) (-792)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2091 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-495 (-3224 |#1|) (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-494 |#1| |#2|) (-13 (-977 |#2| (-495 (-3224 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -1471 ($ $ (-665 (-577)))))) (-665 (-1206)) (-1079)) (T -494)) -((-1471 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-494 *3 *4)) (-14 *3 (-665 (-1206))) (-4 *4 (-1079))))) -(-13 (-977 |#2| (-495 (-3224 |#1|) (-792)) (-887 |#1|)) (-10 -8 (-15 -1471 ($ $ (-665 (-577)))))) -((-3211 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1516 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-1997 (($ (-949)) NIL (|has| |#2| (-1079)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1658 (($ $ $) NIL (|has| |#2| (-814)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#2| (-380)) ELT)) (-2589 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1130)) ELT)) (-3514 (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) NIL (|has| |#2| (-1130)) ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) NIL (|has| |#2| (-1079)) ELT)) (-4281 (((-3 $ "failed") $) NIL (|has| |#2| (-1079)) ELT)) (-2060 (($) NIL (|has| |#2| (-380)) ELT)) (-3448 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ (-577)) 11 T ELT)) (-2728 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL (|has| |#2| (-1079)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4138 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3437 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#2| (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3384 (((-1188) $) NIL (|has| |#2| (-1130)) ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-2085 (($ (-949)) NIL (|has| |#2| (-380)) ELT)) (-4312 (((-1150) $) NIL (|has| |#2| (-1130)) ELT)) (-4188 ((|#2| $) NIL (|has| (-577) (-870)) ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT)) (-3511 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-2840 (($ (-1297 |#2|)) NIL T ELT)) (-2419 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-2030 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-1297 |#2|) $) NIL T ELT) (($ (-577)) NIL (-2229 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) NIL (|has| |#2| (-1130)) ELT) (((-885) $) NIL (|has| |#2| (-631 (-885))) ELT)) (-3234 (((-792)) NIL (|has| |#2| (-1079)) CONST)) (-2525 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2367 (($) NIL (|has| |#2| (-23)) CONST)) (-2378 (($) NIL (|has| |#2| (-1079)) CONST)) (-1675 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2403 (((-112) $ $) 17 (|has| |#2| (-870)) ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2471 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1079)) ELT) (($ $ |#2|) NIL (|has| |#2| (-747)) ELT) (($ |#2| $) NIL (|has| |#2| (-747)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-792) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-495 |#1| |#2|) (-244 |#1| |#2|) (-792) (-814)) (T -495)) -NIL -(-244 |#1| |#2|) -((-3211 (((-112) $ $) NIL T ELT)) (-2274 (((-665 (-899)) $) 15 T ELT)) (-4105 (((-519) $) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3857 (($ (-519) (-665 (-899))) 11 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 22 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-496) (-13 (-1113) (-10 -8 (-15 -3857 ($ (-519) (-665 (-899)))) (-15 -4105 ((-519) $)) (-15 -2274 ((-665 (-899)) $))))) (T -496)) -((-3857 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-899))) (-5 *1 (-496)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-496)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-665 (-899))) (-5 *1 (-496))))) -(-13 (-1113) (-10 -8 (-15 -3857 ($ (-519) (-665 (-899)))) (-15 -4105 ((-519) $)) (-15 -2274 ((-665 (-899)) $)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-2044 (($ $ $) 48 T ELT)) (-2223 (($ $ $) 47 T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4167 ((|#1| $) 40 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 41 T ELT)) (-3795 (($ |#1| $) 18 T ELT)) (-2314 (($ (-665 |#1|)) 19 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3127 ((|#1| $) 34 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 11 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 45 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 29 (|has| $ (-6 -4499)) ELT))) -(((-497 |#1|) (-13 (-998 |#1|) (-10 -8 (-15 -2314 ($ (-665 |#1|))))) (-870)) (T -497)) -((-2314 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-497 *3))))) -(-13 (-998 |#1|) (-10 -8 (-15 -2314 ($ (-665 |#1|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2511 (($ $) 71 T ELT)) (-3821 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2655 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 45 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (((-3 |#4| "failed") $) 117 T ELT)) (-3875 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 81 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-577)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-2622 (((-2 (|:| -3307 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-2410 (((-885) $) 110 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 32 T CONST)) (-2383 (((-112) $ $) 121 T ELT)) (-2483 (($ $) 77 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 72 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 78 T ELT))) -(((-498 |#1| |#2| |#3| |#4|) (-347 |#1| |#2| |#3| |#4|) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -498)) -NIL -(-347 |#1| |#2| |#3| |#4|) -((-3369 (((-577) (-665 (-577))) 53 T ELT)) (-3394 ((|#1| (-665 |#1|)) 94 T ELT)) (-4218 (((-665 |#1|) (-665 |#1|)) 95 T ELT)) (-3813 (((-665 |#1|) (-665 |#1|)) 97 T ELT)) (-2420 ((|#1| (-665 |#1|)) 96 T ELT)) (-2091 (((-665 (-577)) (-665 |#1|)) 56 T ELT))) -(((-499 |#1|) (-10 -7 (-15 -2420 (|#1| (-665 |#1|))) (-15 -3394 (|#1| (-665 |#1|))) (-15 -3813 ((-665 |#1|) (-665 |#1|))) (-15 -4218 ((-665 |#1|) (-665 |#1|))) (-15 -2091 ((-665 (-577)) (-665 |#1|))) (-15 -3369 ((-577) (-665 (-577))))) (-1273 (-577))) (T -499)) -((-3369 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) (-4 *4 (-1273 *2)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1273 (-577))) (-5 *2 (-665 (-577))) (-5 *1 (-499 *4)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577)))))) -(-10 -7 (-15 -2420 (|#1| (-665 |#1|))) (-15 -3394 (|#1| (-665 |#1|))) (-15 -3813 ((-665 |#1|) (-665 |#1|))) (-15 -4218 ((-665 |#1|) (-665 |#1|))) (-15 -2091 ((-665 (-577)) (-665 |#1|))) (-15 -3369 ((-577) (-665 (-577))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 (((-577) $) NIL (|has| (-577) (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3514 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-577) (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 (((-577) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-3609 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-577) (-1182)) CONST)) (-4228 (($ (-420 (-577))) 9 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) NIL T ELT)) (-2136 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 (((-577) $) NIL T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 8 T ELT) (($ (-577)) NIL T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL T ELT) (((-1034 16) $) 10 T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (((-577) $) NIL (|has| (-577) (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2494 (($ $ $) NIL T ELT) (($ (-577) (-577)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ (-577)) NIL T ELT))) -(((-500) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 16)) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -4228 ($ (-420 (-577))))))) (T -500)) -((-2687 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) (-4228 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) -(-13 (-1022 (-577)) (-631 (-420 (-577))) (-631 (-1034 16)) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -4228 ($ (-420 (-577)))))) -((-4138 (((-665 |#2|) $) 31 T ELT)) (-2318 (((-112) |#2| $) 39 T ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 26 T ELT)) (-3362 (($ $ (-665 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) 30 T ELT) (((-792) |#2| $) 37 T ELT)) (-2410 (((-885) $) 45 T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-2383 (((-112) $ $) 35 T ELT)) (-3224 (((-792) $) 18 T ELT))) -(((-501 |#1| |#2|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#2| |#2|)) (-15 -3362 (|#1| |#1| (-305 |#2|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -2318 ((-112) |#2| |#1|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4138 ((-665 |#2|) |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3224 ((-792) |#1|))) (-502 |#2|) (-1247)) (T -501)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#2| |#2|)) (-15 -3362 (|#1| |#1| (-305 |#2|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#2|)))) (-15 -2318 ((-112) |#2| |#1|)) (-15 -4323 ((-792) |#2| |#1|)) (-15 -4138 ((-665 |#2|) |#1|)) (-15 -4323 ((-792) (-1 (-112) |#2|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3224 ((-792) |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2762 (($) 7 T CONST)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-502 |#1|) (-141) (-1247)) (T -502)) -((-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1247)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4500)) (-4 *1 (-502 *3)) (-4 *3 (-1247)))) (-1835 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-2519 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-4323 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) (-4 *4 (-1247)) (-5 *2 (-792)))) (-2728 (*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3)))) (-4138 (*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3)))) (-4323 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-792)))) (-2318 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |t#1| (-1130)) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3609 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4500)) (-15 -3437 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4499)) (PROGN (-15 -1835 ((-112) (-1 (-112) |t#1|) $)) (-15 -2519 ((-112) (-1 (-112) |t#1|) $)) (-15 -4323 ((-792) (-1 (-112) |t#1|) $)) (-15 -2728 ((-665 |t#1|) $)) (-15 -4138 ((-665 |t#1|) $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -4323 ((-792) |t#1| $)) (-15 -2318 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-2410 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-503 |#1|) (-141) (-1247)) (T -503)) -NIL -(-13 (-631 |t#1|) (-634 |t#1|)) -(((-634 |#1|) . T) ((-631 |#1|) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2582 (($ (-1188)) 8 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 15 T ELT) (((-1188) $) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 11 T ELT))) -(((-504) (-13 (-1130) (-631 (-1188)) (-10 -8 (-15 -2582 ($ (-1188)))))) (T -504)) -((-2582 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-504))))) -(-13 (-1130) (-631 (-1188)) (-10 -8 (-15 -2582 ($ (-1188))))) -((-1501 (($ $) 15 T ELT)) (-1477 (($ $) 24 T ELT)) (-1527 (($ $) 12 T ELT)) (-1540 (($ $) 10 T ELT)) (-1515 (($ $) 17 T ELT)) (-1489 (($ $) 22 T ELT))) -(((-505 |#1|) (-10 -8 (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1527 (|#1| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 -1501 (|#1| |#1|))) (-506)) (T -505)) -NIL -(-10 -8 (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1527 (|#1| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 -1501 (|#1| |#1|))) -((-1501 (($ $) 11 T ELT)) (-1477 (($ $) 10 T ELT)) (-1527 (($ $) 9 T ELT)) (-1540 (($ $) 8 T ELT)) (-1515 (($ $) 7 T ELT)) (-1489 (($ $) 6 T ELT))) -(((-506) (-141)) (T -506)) -((-1501 (*1 *1 *1) (-4 *1 (-506))) (-1477 (*1 *1 *1) (-4 *1 (-506))) (-1527 (*1 *1 *1) (-4 *1 (-506))) (-1540 (*1 *1 *1) (-4 *1 (-506))) (-1515 (*1 *1 *1) (-4 *1 (-506))) (-1489 (*1 *1 *1) (-4 *1 (-506)))) -(-13 (-10 -8 (-15 -1489 ($ $)) (-15 -1515 ($ $)) (-15 -1540 ($ $)) (-15 -1527 ($ $)) (-15 -1477 ($ $)) (-15 -1501 ($ $)))) -((-2799 (((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)) 54 T ELT))) -(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) (-375) (-1273 |#1|) (-13 (-375) (-148) (-745 |#1| |#2|)) (-1273 |#3|)) (T -507)) -((-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-4 *7 (-13 (-375) (-148) (-745 *5 *6))) (-5 *2 (-431 *3)) (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1273 *7))))) -(-10 -7 (-15 -2799 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2883 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-3292 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-1516 (((-112) $) 39 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3991 (((-112) $ $) 73 T ELT)) (-4317 (((-665 (-630 $)) $) 50 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3583 (($ $ (-305 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-2809 (($ $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1408 (((-665 $) (-1202 $) (-1206)) NIL T ELT) (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT)) (-2312 (($ (-1202 $) (-1206)) NIL T ELT) (($ (-1202 $)) NIL T ELT) (($ (-980 $)) NIL T ELT)) (-2817 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-3514 (((-630 $) $) NIL T ELT) (((-577) $) NIL T ELT) (((-420 (-577)) $) 55 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 (-577))) (-710 $)) NIL T ELT)) (-2511 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3555 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2941 (((-665 (-115)) $) NIL T ELT)) (-4396 (((-115) (-115)) NIL T ELT)) (-2097 (((-112) $) 42 T ELT)) (-3356 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-2518 (((-1155 (-577) (-630 $)) $) 37 T ELT)) (-4341 (($ $ (-577)) NIL T ELT)) (-2755 (((-1202 $) (-1202 $) (-630 $)) 87 T ELT) (((-1202 $) (-1202 $) (-665 (-630 $))) 62 T ELT) (($ $ (-630 $)) 76 T ELT) (($ $ (-665 (-630 $))) 77 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4338 (((-1202 $) (-630 $)) 74 (|has| $ (-1079)) ELT)) (-3609 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-1924 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2796 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-420 (-577)))) (|:| |vec| (-1297 (-420 (-577))))) (-1297 $) $) NIL T ELT) (((-710 (-420 (-577))) (-1297 $)) NIL T ELT)) (-2388 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4385 (((-665 (-630 $)) $) NIL T ELT)) (-2593 (($ (-115) $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4450 (((-112) $ (-115)) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-1736 (((-792) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1603 (((-112) $ $) NIL T ELT) (((-112) $ (-1206)) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2793 (((-112) $) NIL (|has| $ (-1068 (-577))) ELT)) (-3362 (($ $ (-630 $) $) NIL T ELT) (($ $ (-665 (-630 $)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-1206) (-1 $ (-665 $))) NIL T ELT) (($ $ (-1206) (-1 $ $)) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ $))) NIL T ELT) (($ $ (-665 (-115)) (-665 (-1 $ (-665 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-665 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-665 $)) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2830 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2030 (($ $) 36 T ELT) (($ $ (-792)) NIL T ELT)) (-2528 (((-1155 (-577) (-630 $)) $) 20 T ELT)) (-1773 (($ $) NIL (|has| $ (-1079)) ELT)) (-3341 (((-391) $) 101 T ELT) (((-228) $) 109 T ELT) (((-171 (-391)) $) 117 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1155 (-577) (-630 $))) 21 T ELT)) (-3234 (((-792)) NIL T CONST)) (-2208 (($ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3540 (((-112) (-115)) 93 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) 10 T CONST)) (-2378 (($) 22 T CONST)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2383 (((-112) $ $) 24 T ELT)) (-2494 (($ $ $) 44 T ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-420 (-577))) NIL T ELT) (($ $ (-577)) 48 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-577) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-949) $) NIL T ELT))) -(((-508) (-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -2410 ($ (-1155 (-577) (-630 $)))) (-15 -2518 ((-1155 (-577) (-630 $)) $)) (-15 -2528 ((-1155 (-577) (-630 $)) $)) (-15 -2511 ($ $)) (-15 -3991 ((-112) $ $)) (-15 -2755 ((-1202 $) (-1202 $) (-630 $))) (-15 -2755 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2755 ($ $ (-630 $))) (-15 -2755 ($ $ (-665 (-630 $))))))) (T -508)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) (-2518 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) (-2511 (*1 *1 *1) (-5 *1 (-508))) (-3991 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-630 (-508))) (-5 *1 (-508)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-665 (-630 (-508)))) (-5 *1 (-508)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-508))) (-5 *1 (-508)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-508)))) (-5 *1 (-508))))) -(-13 (-313) (-27) (-1068 (-577)) (-1068 (-420 (-577))) (-659 (-577)) (-1052) (-659 (-420 (-577))) (-148) (-632 (-171 (-391))) (-239) (-10 -8 (-15 -2410 ($ (-1155 (-577) (-630 $)))) (-15 -2518 ((-1155 (-577) (-630 $)) $)) (-15 -2528 ((-1155 (-577) (-630 $)) $)) (-15 -2511 ($ $)) (-15 -3991 ((-112) $ $)) (-15 -2755 ((-1202 $) (-1202 $) (-630 $))) (-15 -2755 ((-1202 $) (-1202 $) (-665 (-630 $)))) (-15 -2755 ($ $ (-630 $))) (-15 -2755 ($ $ (-665 (-630 $)))))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) |#1|) 44 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 39 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 38 T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) 21 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 17 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) 41 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) 15 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 19 T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 43 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 24 T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 11 (|has| $ (-6 -4499)) ELT))) -(((-509 |#1| |#2|) (-19 |#1|) (-1247) (-577)) (T -509)) +((-3864 (($ $) 6 T ELT)) (-3587 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +(((-296) (-142)) (T -296)) +((** (*1 *1 *1 *1) (-4 *1 (-296))) (-3587 (*1 *1 *1) (-4 *1 (-296))) (-3864 (*1 *1 *1) (-4 *1 (-296)))) +(-13 (-10 -8 (-15 -3864 ($ $)) (-15 -3587 ($ $)) (-15 ** ($ $ $)))) +((-2432 (((-666 (-1188 |#1|)) (-1188 |#1|) |#1|) 35 T ELT)) (-4164 ((|#2| |#2| |#1|) 39 T ELT)) (-1389 ((|#2| |#2| |#1|) 41 T ELT)) (-2788 ((|#2| |#2| |#1|) 40 T ELT))) +(((-297 |#1| |#2|) (-10 -7 (-15 -4164 (|#2| |#2| |#1|)) (-15 -2788 (|#2| |#2| |#1|)) (-15 -1389 (|#2| |#2| |#1|)) (-15 -2432 ((-666 (-1188 |#1|)) (-1188 |#1|) |#1|))) (-376) (-1289 |#1|)) (T -297)) +((-2432 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-666 (-1188 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1188 *4)) (-4 *5 (-1289 *4)))) (-1389 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1289 *3)))) (-2788 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1289 *3)))) (-4164 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1289 *3))))) +(-10 -7 (-15 -4164 (|#2| |#2| |#1|)) (-15 -2788 (|#2| |#2| |#1|)) (-15 -1389 (|#2| |#2| |#1|)) (-15 -2432 ((-666 (-1188 |#1|)) (-1188 |#1|) |#1|))) +((-2436 ((|#2| $ |#1|) 6 T ELT))) +(((-298 |#1| |#2|) (-142) (-1248) (-1248)) (T -298)) +((-2436 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1248)) (-4 *2 (-1248))))) +(-13 (-1248) (-10 -8 (-15 -2436 (|t#2| $ |t#1|)))) +(((-1248) . T)) +((-3450 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3382 ((|#3| $ |#2|) 10 T ELT))) +(((-299 |#1| |#2| |#3|) (-10 -8 (-15 -3450 (|#3| |#1| |#2| |#3|)) (-15 -3382 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1131) (-1248)) (T -299)) +NIL +(-10 -8 (-15 -3450 (|#3| |#1| |#2| |#3|)) (-15 -3382 (|#3| |#1| |#2|))) +((-2590 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4501)) ELT)) (-3450 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) 11 T ELT)) (-2436 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-300 |#1| |#2|) (-142) (-1131) (-1248)) (T -300)) +((-2436 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1248)))) (-3382 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1248)))) (-2590 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1248)))) (-3450 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1248))))) +(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -2436 (|t#2| $ |t#1| |t#2|)) (-15 -3382 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4501)) (PROGN (-15 -2590 (|t#2| $ |t#1| |t#2|)) (-15 -3450 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-298 |#1| |#2|) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 37 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 44 T ELT)) (-2987 (($ $) 41 T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) 35 T ELT)) (-2512 (($ |#2| |#3|) 18 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2703 ((|#3| $) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 19 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3338 (((-3 $ "failed") $ $) NIL T ELT)) (-1449 (((-793) $) 36 T ELT)) (-2436 ((|#2| $ |#2|) 46 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 23 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) 31 T CONST)) (-2379 (($) 39 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -2703 (|#3| $)) (-15 -2411 (|#2| $)) (-15 -2512 ($ |#2| |#3|)) (-15 -3338 ((-3 $ "failed") $ $)) (-15 -3493 ((-3 $ "failed") $)) (-15 -3057 ($ $)))) (-175) (-1274 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -301)) +((-3493 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1274 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2703 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1274 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2411 (*1 *2 *1) (-12 (-4 *2 (-1274 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2512 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1274 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3338 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1274 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3057 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1274 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -2703 (|#3| $)) (-15 -2411 (|#2| $)) (-15 -2512 ($ |#2| |#3|)) (-15 -3338 ((-3 $ "failed") $ $)) (-15 -3493 ((-3 $ "failed") $)) (-15 -3057 ($ $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-302) (-142)) (T -302)) +NIL +(-13 (-1080) (-111 $ $) (-10 -7 (-6 -4493))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-2902 (((-666 (-1116)) $) 10 T ELT)) (-1899 (($ (-520) (-520) (-1135) $) 19 T ELT)) (-2830 (($ (-520) (-666 (-994)) $) 23 T ELT)) (-4069 (($) 25 T ELT)) (-3700 (((-713 (-1135)) (-520) (-520) $) 18 T ELT)) (-2362 (((-666 (-994)) (-520) $) 22 T ELT)) (-1696 (($) 7 T ELT)) (-2254 (($) 24 T ELT)) (-2411 (((-886) $) 29 T ELT)) (-3504 (($) 26 T ELT))) +(((-303) (-13 (-632 (-886)) (-10 -8 (-15 -1696 ($)) (-15 -2902 ((-666 (-1116)) $)) (-15 -3700 ((-713 (-1135)) (-520) (-520) $)) (-15 -1899 ($ (-520) (-520) (-1135) $)) (-15 -2362 ((-666 (-994)) (-520) $)) (-15 -2830 ($ (-520) (-666 (-994)) $)) (-15 -2254 ($)) (-15 -4069 ($)) (-15 -3504 ($))))) (T -303)) +((-1696 (*1 *1) (-5 *1 (-303))) (-2902 (*1 *2 *1) (-12 (-5 *2 (-666 (-1116))) (-5 *1 (-303)))) (-3700 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1135))) (-5 *1 (-303)))) (-1899 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-303)))) (-2362 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-666 (-994))) (-5 *1 (-303)))) (-2830 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-666 (-994))) (-5 *1 (-303)))) (-2254 (*1 *1) (-5 *1 (-303))) (-4069 (*1 *1) (-5 *1 (-303))) (-3504 (*1 *1) (-5 *1 (-303)))) +(-13 (-632 (-886)) (-10 -8 (-15 -1696 ($)) (-15 -2902 ((-666 (-1116)) $)) (-15 -3700 ((-713 (-1135)) (-520) (-520) $)) (-15 -1899 ($ (-520) (-520) (-1135) $)) (-15 -2362 ((-666 (-994)) (-520) $)) (-15 -2830 ($ (-520) (-666 (-994)) $)) (-15 -2254 ($)) (-15 -4069 ($)) (-15 -3504 ($)))) +((-2849 (((-666 (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |geneigvec| (-666 (-711 (-421 (-981 |#1|))))))) (-711 (-421 (-981 |#1|)))) 102 T ELT)) (-1970 (((-666 (-711 (-421 (-981 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 (-711 (-421 (-981 |#1|)))))) (-711 (-421 (-981 |#1|)))) 97 T ELT) (((-666 (-711 (-421 (-981 |#1|)))) (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|))) (-711 (-421 (-981 |#1|))) (-793) (-793)) 41 T ELT)) (-2878 (((-666 (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 (-711 (-421 (-981 |#1|))))))) (-711 (-421 (-981 |#1|)))) 99 T ELT)) (-2329 (((-666 (-711 (-421 (-981 |#1|)))) (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|))) (-711 (-421 (-981 |#1|)))) 75 T ELT)) (-4468 (((-666 (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (-711 (-421 (-981 |#1|)))) 74 T ELT)) (-1566 (((-981 |#1|) (-711 (-421 (-981 |#1|)))) 55 T ELT) (((-981 |#1|) (-711 (-421 (-981 |#1|))) (-1207)) 56 T ELT))) +(((-304 |#1|) (-10 -7 (-15 -1566 ((-981 |#1|) (-711 (-421 (-981 |#1|))) (-1207))) (-15 -1566 ((-981 |#1|) (-711 (-421 (-981 |#1|))))) (-15 -4468 ((-666 (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (-711 (-421 (-981 |#1|))))) (-15 -2329 ((-666 (-711 (-421 (-981 |#1|)))) (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|))) (-711 (-421 (-981 |#1|))))) (-15 -1970 ((-666 (-711 (-421 (-981 |#1|)))) (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|))) (-711 (-421 (-981 |#1|))) (-793) (-793))) (-15 -1970 ((-666 (-711 (-421 (-981 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 (-711 (-421 (-981 |#1|)))))) (-711 (-421 (-981 |#1|))))) (-15 -2849 ((-666 (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |geneigvec| (-666 (-711 (-421 (-981 |#1|))))))) (-711 (-421 (-981 |#1|))))) (-15 -2878 ((-666 (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 (-711 (-421 (-981 |#1|))))))) (-711 (-421 (-981 |#1|)))))) (-466)) (T -304)) +((-2878 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-666 (-2 (|:| |eigval| (-3 (-421 (-981 *4)) (-1196 (-1207) (-981 *4)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 (-711 (-421 (-981 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-981 *4)))))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-666 (-2 (|:| |eigval| (-3 (-421 (-981 *4)) (-1196 (-1207) (-981 *4)))) (|:| |geneigvec| (-666 (-711 (-421 (-981 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-981 *4)))))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-421 (-981 *5)) (-1196 (-1207) (-981 *5)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 *4)))) (-4 *5 (-466)) (-5 *2 (-666 (-711 (-421 (-981 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-981 *5)))))) (-1970 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-421 (-981 *6)) (-1196 (-1207) (-981 *6)))) (-5 *5 (-793)) (-4 *6 (-466)) (-5 *2 (-666 (-711 (-421 (-981 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-711 (-421 (-981 *6)))))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-421 (-981 *5)) (-1196 (-1207) (-981 *5)))) (-4 *5 (-466)) (-5 *2 (-666 (-711 (-421 (-981 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-981 *5)))))) (-4468 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-981 *4)))) (-4 *4 (-466)) (-5 *2 (-666 (-3 (-421 (-981 *4)) (-1196 (-1207) (-981 *4))))) (-5 *1 (-304 *4)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-981 *4)))) (-5 *2 (-981 *4)) (-5 *1 (-304 *4)) (-4 *4 (-466)))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-981 *5)))) (-5 *4 (-1207)) (-5 *2 (-981 *5)) (-5 *1 (-304 *5)) (-4 *5 (-466))))) +(-10 -7 (-15 -1566 ((-981 |#1|) (-711 (-421 (-981 |#1|))) (-1207))) (-15 -1566 ((-981 |#1|) (-711 (-421 (-981 |#1|))))) (-15 -4468 ((-666 (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (-711 (-421 (-981 |#1|))))) (-15 -2329 ((-666 (-711 (-421 (-981 |#1|)))) (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|))) (-711 (-421 (-981 |#1|))))) (-15 -1970 ((-666 (-711 (-421 (-981 |#1|)))) (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|))) (-711 (-421 (-981 |#1|))) (-793) (-793))) (-15 -1970 ((-666 (-711 (-421 (-981 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 (-711 (-421 (-981 |#1|)))))) (-711 (-421 (-981 |#1|))))) (-15 -2849 ((-666 (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |geneigvec| (-666 (-711 (-421 (-981 |#1|))))))) (-711 (-421 (-981 |#1|))))) (-15 -2878 ((-666 (-2 (|:| |eigval| (-3 (-421 (-981 |#1|)) (-1196 (-1207) (-981 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-666 (-711 (-421 (-981 |#1|))))))) (-711 (-421 (-981 |#1|)))))) +((-3611 (((-306 |#2|) (-1 |#2| |#1|) (-306 |#1|)) 14 T ELT))) +(((-305 |#1| |#2|) (-10 -7 (-15 -3611 ((-306 |#2|) (-1 |#2| |#1|) (-306 |#1|)))) (-1248) (-1248)) (T -305)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-306 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-306 *6)) (-5 *1 (-305 *5 *6))))) +(-10 -7 (-15 -3611 ((-306 |#2|) (-1 |#2| |#1|) (-306 |#1|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3623 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-2346 (($ $) 12 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3584 (($ $ $) 95 (|has| |#1| (-314)) ELT)) (-3534 (($) NIL (-2230 (|has| |#1| (-21)) (|has| |#1| (-748))) CONST)) (-2515 (($ $) 51 (|has| |#1| (-21)) ELT)) (-3377 (((-3 $ "failed") $) 62 (|has| |#1| (-748)) ELT)) (-3666 ((|#1| $) 11 T ELT)) (-3493 (((-3 $ "failed") $) 60 (|has| |#1| (-748)) ELT)) (-4382 (((-112) $) NIL (|has| |#1| (-748)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3655 ((|#1| $) 10 T ELT)) (-2978 (($ $) 50 (|has| |#1| (-21)) ELT)) (-3529 (((-3 $ "failed") $) 61 (|has| |#1| (-748)) ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3057 (($ $) 64 (-2230 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-3165 (((-666 $) $) 85 (|has| |#1| (-570)) ELT)) (-3364 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-1207) |#1|) 17 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) 21 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-4018 (($ |#1| |#1|) 9 T ELT)) (-4425 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) 87 (|has| |#1| (-927 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-927 (-1207))) ELT)) (-1433 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-1863 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-2411 (($ (-578)) NIL (|has| |#1| (-1080)) ELT) (((-112) $) 37 (|has| |#1| (-1131)) ELT) (((-886) $) 36 (|has| |#1| (-1131)) ELT)) (-3753 (((-793)) 67 (|has| |#1| (-1080)) CONST)) (-2876 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2368 (($) 47 (|has| |#1| (-21)) CONST)) (-2379 (($) 57 (|has| |#1| (-748)) CONST)) (-1676 (($ $ (-1207)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-927 (-1207))) ELT)) (-2384 (($ |#1| |#1|) 8 T ELT) (((-112) $ $) 32 (|has| |#1| (-1131)) ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-2230 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-2484 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-2472 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-578)) NIL (|has| |#1| (-487)) ELT) (($ $ (-793)) NIL (|has| |#1| (-748)) ELT) (($ $ (-950)) NIL (|has| |#1| (-1143)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1143)) ELT) (($ |#1| $) 54 (|has| |#1| (-1143)) ELT) (($ $ $) 53 (|has| |#1| (-1143)) ELT) (($ (-578) $) 70 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-950) $) NIL (|has| |#1| (-25)) ELT))) +(((-306 |#1|) (-13 (-1248) (-10 -8 (-15 -2384 ($ |#1| |#1|)) (-15 -4018 ($ |#1| |#1|)) (-15 -2346 ($ $)) (-15 -3655 (|#1| $)) (-15 -3666 (|#1| $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1207) |#1|)) (-6 (-528 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-6 (-632 (-112))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -3364 ($ $ $)) (-15 -3364 ($ $ (-666 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2472 ($ |#1| $)) (-15 -2472 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2978 ($ $)) (-15 -2515 ($ $)) (-15 -2484 ($ |#1| $)) (-15 -2484 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1143)) (PROGN (-6 (-1143)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -3529 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -3529 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-570)) (-15 -3165 ((-666 $) $)) |%noBranch|) (IF (|has| |#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -2495 ($ $ $)) (-15 -3057 ($ $))) |%noBranch|) (IF (|has| |#1| (-314)) (-15 -3584 ($ $ $)) |%noBranch|))) (-1248)) (T -306)) +((-2384 (*1 *1 *2 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) (-4018 (*1 *1 *2 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) (-2346 (*1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) (-3655 (*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) (-3666 (*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-306 *3)))) (-3364 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1131)) (-4 *2 (-1248)) (-5 *1 (-306 *2)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-306 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1131)) (-4 *3 (-1248)) (-5 *1 (-306 *3)))) (-2472 (*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-25)) (-4 *2 (-1248)))) (-2472 (*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-25)) (-4 *2 (-1248)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248)))) (-2515 (*1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248)))) (-2484 (*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248)))) (-2484 (*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248)))) (-3529 (*1 *1 *1) (|partial| -12 (-5 *1 (-306 *2)) (-4 *2 (-748)) (-4 *2 (-1248)))) (-3377 (*1 *1 *1) (|partial| -12 (-5 *1 (-306 *2)) (-4 *2 (-748)) (-4 *2 (-1248)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-666 (-306 *3))) (-5 *1 (-306 *3)) (-4 *3 (-570)) (-4 *3 (-1248)))) (-3584 (*1 *1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-314)) (-4 *2 (-1248)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1143)) (-4 *2 (-1248)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1143)) (-4 *2 (-1248)))) (-2495 (*1 *1 *1 *1) (-2230 (-12 (-5 *1 (-306 *2)) (-4 *2 (-376)) (-4 *2 (-1248))) (-12 (-5 *1 (-306 *2)) (-4 *2 (-487)) (-4 *2 (-1248))))) (-3057 (*1 *1 *1) (-2230 (-12 (-5 *1 (-306 *2)) (-4 *2 (-376)) (-4 *2 (-1248))) (-12 (-5 *1 (-306 *2)) (-4 *2 (-487)) (-4 *2 (-1248)))))) +(-13 (-1248) (-10 -8 (-15 -2384 ($ |#1| |#1|)) (-15 -4018 ($ |#1| |#1|)) (-15 -2346 ($ $)) (-15 -3655 (|#1| $)) (-15 -3666 (|#1| $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1207) |#1|)) (-6 (-528 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-6 (-632 (-112))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -3364 ($ $ $)) (-15 -3364 ($ $ (-666 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2472 ($ |#1| $)) (-15 -2472 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2978 ($ $)) (-15 -2515 ($ $)) (-15 -2484 ($ |#1| $)) (-15 -2484 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1143)) (PROGN (-6 (-1143)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -3529 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -3529 ((-3 $ "failed") $)) (-15 -3377 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-570)) (-15 -3165 ((-666 $) $)) |%noBranch|) (IF (|has| |#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -2495 ($ $ $)) (-15 -3057 ($ $))) |%noBranch|) (IF (|has| |#1| (-314)) (-15 -3584 ($ $ $)) |%noBranch|))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-1794 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-3244 (((-666 |#1|) $) NIL T ELT)) (-4300 (((-112) |#1| $) NIL T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4030 (((-666 |#1|) $) NIL T ELT)) (-3023 (((-112) |#1| $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-307 |#1| |#2|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) (-1131) (-1131)) (T -307)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) +((-3397 (((-324) (-1189) (-666 (-1189))) 17 T ELT) (((-324) (-1189) (-1189)) 16 T ELT) (((-324) (-666 (-1189))) 15 T ELT) (((-324) (-1189)) 14 T ELT))) +(((-308) (-10 -7 (-15 -3397 ((-324) (-1189))) (-15 -3397 ((-324) (-666 (-1189)))) (-15 -3397 ((-324) (-1189) (-1189))) (-15 -3397 ((-324) (-1189) (-666 (-1189)))))) (T -308)) +((-3397 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-1189))) (-5 *3 (-1189)) (-5 *2 (-324)) (-5 *1 (-308)))) (-3397 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-324)) (-5 *1 (-308)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-324)) (-5 *1 (-308)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-324)) (-5 *1 (-308))))) +(-10 -7 (-15 -3397 ((-324) (-1189))) (-15 -3397 ((-324) (-666 (-1189)))) (-15 -3397 ((-324) (-1189) (-1189))) (-15 -3397 ((-324) (-1189) (-666 (-1189))))) +((-3611 ((|#2| (-1 |#2| |#1|) (-1189) (-631 |#1|)) 18 T ELT))) +(((-309 |#1| |#2|) (-10 -7 (-15 -3611 (|#2| (-1 |#2| |#1|) (-1189) (-631 |#1|)))) (-314) (-1248)) (T -309)) +((-3611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-631 *6)) (-4 *6 (-314)) (-4 *2 (-1248)) (-5 *1 (-309 *6 *2))))) +(-10 -7 (-15 -3611 (|#2| (-1 |#2| |#1|) (-1189) (-631 |#1|)))) +((-3611 ((|#2| (-1 |#2| |#1|) (-631 |#1|)) 17 T ELT))) +(((-310 |#1| |#2|) (-10 -7 (-15 -3611 (|#2| (-1 |#2| |#1|) (-631 |#1|)))) (-314) (-314)) (T -310)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-631 *5)) (-4 *5 (-314)) (-4 *2 (-314)) (-5 *1 (-310 *5 *2))))) +(-10 -7 (-15 -3611 (|#2| (-1 |#2| |#1|) (-631 |#1|)))) +((-1551 (((-112) (-229)) 12 T ELT))) +(((-311 |#1| |#2|) (-10 -7 (-15 -1551 ((-112) (-229)))) (-229) (-229)) (T -311)) +((-1551 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-112)) (-5 *1 (-311 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1551 ((-112) (-229)))) +((-3456 (((-1188 (-229)) (-328 (-229)) (-666 (-1207)) (-1125 (-865 (-229)))) 118 T ELT)) (-1609 (((-1188 (-229)) (-1298 (-328 (-229))) (-666 (-1207)) (-1125 (-865 (-229)))) 135 T ELT) (((-1188 (-229)) (-328 (-229)) (-666 (-1207)) (-1125 (-865 (-229)))) 72 T ELT)) (-1757 (((-666 (-1189)) (-1188 (-229))) NIL T ELT)) (-2227 (((-666 (-229)) (-328 (-229)) (-1207) (-1125 (-865 (-229)))) 69 T ELT)) (-3583 (((-666 (-229)) (-981 (-421 (-578))) (-1207) (-1125 (-865 (-229)))) 59 T ELT)) (-2210 (((-666 (-1189)) (-666 (-229))) NIL T ELT)) (-4100 (((-229) (-1125 (-865 (-229)))) 29 T ELT)) (-1610 (((-229) (-1125 (-865 (-229)))) 30 T ELT)) (-2232 (((-112) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 64 T ELT)) (-4072 (((-1189) (-229)) NIL T ELT))) +(((-312) (-10 -7 (-15 -4100 ((-229) (-1125 (-865 (-229))))) (-15 -1610 ((-229) (-1125 (-865 (-229))))) (-15 -2232 ((-112) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2227 ((-666 (-229)) (-328 (-229)) (-1207) (-1125 (-865 (-229))))) (-15 -3456 ((-1188 (-229)) (-328 (-229)) (-666 (-1207)) (-1125 (-865 (-229))))) (-15 -1609 ((-1188 (-229)) (-328 (-229)) (-666 (-1207)) (-1125 (-865 (-229))))) (-15 -1609 ((-1188 (-229)) (-1298 (-328 (-229))) (-666 (-1207)) (-1125 (-865 (-229))))) (-15 -3583 ((-666 (-229)) (-981 (-421 (-578))) (-1207) (-1125 (-865 (-229))))) (-15 -4072 ((-1189) (-229))) (-15 -2210 ((-666 (-1189)) (-666 (-229)))) (-15 -1757 ((-666 (-1189)) (-1188 (-229)))))) (T -312)) +((-1757 (*1 *2 *3) (-12 (-5 *3 (-1188 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-312)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-666 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-312)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-312)))) (-3583 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-981 (-421 (-578)))) (-5 *4 (-1207)) (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-666 (-229))) (-5 *1 (-312)))) (-1609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *4 (-666 (-1207))) (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-1188 (-229))) (-5 *1 (-312)))) (-1609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 (-229))) (-5 *4 (-666 (-1207))) (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-1188 (-229))) (-5 *1 (-312)))) (-3456 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 (-229))) (-5 *4 (-666 (-1207))) (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-1188 (-229))) (-5 *1 (-312)))) (-2227 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 (-229))) (-5 *4 (-1207)) (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-666 (-229))) (-5 *1 (-312)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-112)) (-5 *1 (-312)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-312)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-312))))) +(-10 -7 (-15 -4100 ((-229) (-1125 (-865 (-229))))) (-15 -1610 ((-229) (-1125 (-865 (-229))))) (-15 -2232 ((-112) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2227 ((-666 (-229)) (-328 (-229)) (-1207) (-1125 (-865 (-229))))) (-15 -3456 ((-1188 (-229)) (-328 (-229)) (-666 (-1207)) (-1125 (-865 (-229))))) (-15 -1609 ((-1188 (-229)) (-328 (-229)) (-666 (-1207)) (-1125 (-865 (-229))))) (-15 -1609 ((-1188 (-229)) (-1298 (-328 (-229))) (-666 (-1207)) (-1125 (-865 (-229))))) (-15 -3583 ((-666 (-229)) (-981 (-421 (-578))) (-1207) (-1125 (-865 (-229))))) (-15 -4072 ((-1189) (-229))) (-15 -2210 ((-666 (-1189)) (-666 (-229)))) (-15 -1757 ((-666 (-1189)) (-1188 (-229))))) +((-4318 (((-666 (-631 $)) $) 27 T ELT)) (-3584 (($ $ (-306 $)) 78 T ELT) (($ $ (-666 (-306 $))) 139 T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT)) (-2818 (((-3 (-631 $) "failed") $) 127 T ELT)) (-3516 (((-631 $) $) 126 T ELT)) (-3783 (($ $) 17 T ELT) (($ (-666 $)) 54 T ELT)) (-3968 (((-666 (-116)) $) 35 T ELT)) (-4397 (((-116) (-116)) 88 T ELT)) (-2382 (((-112) $) 150 T ELT)) (-3611 (($ (-1 $ $) (-631 $)) 86 T ELT)) (-3238 (((-3 (-631 $) "failed") $) 94 T ELT)) (-2594 (($ (-116) $) 59 T ELT) (($ (-116) (-666 $)) 110 T ELT)) (-1413 (((-112) $ (-116)) 132 T ELT) (((-112) $ (-1207)) 131 T ELT)) (-1737 (((-793) $) 44 T ELT)) (-3139 (((-112) $ $) 57 T ELT) (((-112) $ (-1207)) 49 T ELT)) (-3873 (((-112) $) 148 T ELT)) (-3364 (($ $ (-631 $) $) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT) (($ $ (-666 (-306 $))) 137 T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) 81 T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-666 $))) 67 T ELT) (($ $ (-1207) (-1 $ $)) 72 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) 80 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) 82 T ELT) (($ $ (-116) (-1 $ (-666 $))) 68 T ELT) (($ $ (-116) (-1 $ $)) 74 T ELT)) (-2436 (($ (-116) $) 60 T ELT) (($ (-116) $ $) 61 T ELT) (($ (-116) $ $ $) 62 T ELT) (($ (-116) $ $ $ $) 63 T ELT) (($ (-116) (-666 $)) 123 T ELT)) (-2909 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2209 (($ $) 15 T ELT) (($ (-666 $)) 53 T ELT)) (-3619 (((-112) (-116)) 21 T ELT))) +(((-313 |#1|) (-10 -8 (-15 -2382 ((-112) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| |#1|)))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| |#1|)))) (-15 -3139 ((-112) |#1| (-1207))) (-15 -3139 ((-112) |#1| |#1|)) (-15 -3611 (|#1| (-1 |#1| |#1|) (-631 |#1|))) (-15 -2594 (|#1| (-116) (-666 |#1|))) (-15 -2594 (|#1| (-116) |#1|)) (-15 -1413 ((-112) |#1| (-1207))) (-15 -1413 ((-112) |#1| (-116))) (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -3968 ((-666 (-116)) |#1|)) (-15 -4318 ((-666 (-631 |#1|)) |#1|)) (-15 -3238 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -1737 ((-793) |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2909 (|#1| |#1|)) (-15 -3783 (|#1| (-666 |#1|))) (-15 -3783 (|#1| |#1|)) (-15 -2209 (|#1| (-666 |#1|))) (-15 -2209 (|#1| |#1|)) (-15 -3584 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3584 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3584 (|#1| |#1| (-306 |#1|))) (-15 -2436 (|#1| (-116) (-666 |#1|))) (-15 -2436 (|#1| (-116) |#1| |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3364 (|#1| |#1| (-631 |#1|) |#1|)) (-15 -2818 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3516 ((-631 |#1|) |#1|))) (-314)) (T -313)) +((-4397 (*1 *2 *2) (-12 (-5 *2 (-116)) (-5 *1 (-313 *3)) (-4 *3 (-314)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-116)) (-5 *2 (-112)) (-5 *1 (-313 *4)) (-4 *4 (-314))))) +(-10 -8 (-15 -2382 ((-112) |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| |#1|)))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| |#1|)))) (-15 -3139 ((-112) |#1| (-1207))) (-15 -3139 ((-112) |#1| |#1|)) (-15 -3611 (|#1| (-1 |#1| |#1|) (-631 |#1|))) (-15 -2594 (|#1| (-116) (-666 |#1|))) (-15 -2594 (|#1| (-116) |#1|)) (-15 -1413 ((-112) |#1| (-1207))) (-15 -1413 ((-112) |#1| (-116))) (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -3968 ((-666 (-116)) |#1|)) (-15 -4318 ((-666 (-631 |#1|)) |#1|)) (-15 -3238 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -1737 ((-793) |#1|)) (-15 -2909 (|#1| |#1| |#1|)) (-15 -2909 (|#1| |#1|)) (-15 -3783 (|#1| (-666 |#1|))) (-15 -3783 (|#1| |#1|)) (-15 -2209 (|#1| (-666 |#1|))) (-15 -2209 (|#1| |#1|)) (-15 -3584 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3584 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3584 (|#1| |#1| (-306 |#1|))) (-15 -2436 (|#1| (-116) (-666 |#1|))) (-15 -2436 (|#1| (-116) |#1| |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3364 (|#1| |#1| (-631 |#1|) |#1|)) (-15 -2818 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3516 ((-631 |#1|) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-4318 (((-666 (-631 $)) $) 39 T ELT)) (-3584 (($ $ (-306 $)) 51 T ELT) (($ $ (-666 (-306 $))) 50 T ELT) (($ $ (-666 (-631 $)) (-666 $)) 49 T ELT)) (-2818 (((-3 (-631 $) "failed") $) 64 T ELT)) (-3516 (((-631 $) $) 65 T ELT)) (-3783 (($ $) 46 T ELT) (($ (-666 $)) 45 T ELT)) (-3968 (((-666 (-116)) $) 38 T ELT)) (-4397 (((-116) (-116)) 37 T ELT)) (-2382 (((-112) $) 17 (|has| $ (-1069 (-578))) ELT)) (-2782 (((-1203 $) (-631 $)) 20 (|has| $ (-1080)) ELT)) (-3611 (($ (-1 $ $) (-631 $)) 31 T ELT)) (-3238 (((-3 (-631 $) "failed") $) 41 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4386 (((-666 (-631 $)) $) 40 T ELT)) (-2594 (($ (-116) $) 33 T ELT) (($ (-116) (-666 $)) 32 T ELT)) (-1413 (((-112) $ (-116)) 35 T ELT) (((-112) $ (-1207)) 34 T ELT)) (-1737 (((-793) $) 42 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3139 (((-112) $ $) 30 T ELT) (((-112) $ (-1207)) 29 T ELT)) (-3873 (((-112) $) 18 (|has| $ (-1069 (-578))) ELT)) (-3364 (($ $ (-631 $) $) 62 T ELT) (($ $ (-666 (-631 $)) (-666 $)) 61 T ELT) (($ $ (-666 (-306 $))) 60 T ELT) (($ $ (-306 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-666 $) (-666 $)) 57 T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) 28 T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) 27 T ELT) (($ $ (-1207) (-1 $ (-666 $))) 26 T ELT) (($ $ (-1207) (-1 $ $)) 25 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) 24 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) 23 T ELT) (($ $ (-116) (-1 $ (-666 $))) 22 T ELT) (($ $ (-116) (-1 $ $)) 21 T ELT)) (-2436 (($ (-116) $) 56 T ELT) (($ (-116) $ $) 55 T ELT) (($ (-116) $ $ $) 54 T ELT) (($ (-116) $ $ $ $) 53 T ELT) (($ (-116) (-666 $)) 52 T ELT)) (-2909 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-4269 (($ $) 19 (|has| $ (-1080)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-631 $)) 63 T ELT)) (-2209 (($ $) 48 T ELT) (($ (-666 $)) 47 T ELT)) (-3619 (((-112) (-116)) 36 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-314) (-142)) (T -314)) +((-2436 (*1 *1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) (-2436 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) (-2436 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) (-2436 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) (-2436 (*1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-666 *1)) (-4 *1 (-314)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-306 *1)) (-4 *1 (-314)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-306 *1))) (-4 *1 (-314)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-631 *1))) (-5 *3 (-666 *1)) (-4 *1 (-314)))) (-2209 (*1 *1 *1) (-4 *1 (-314))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-314)))) (-3783 (*1 *1 *1) (-4 *1 (-314))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-314)))) (-2909 (*1 *1 *1) (-4 *1 (-314))) (-2909 (*1 *1 *1 *1) (-4 *1 (-314))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-793)))) (-3238 (*1 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-314)))) (-4386 (*1 *2 *1) (-12 (-5 *2 (-666 (-631 *1))) (-4 *1 (-314)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-666 (-631 *1))) (-4 *1 (-314)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-666 (-116))))) (-4397 (*1 *2 *2) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) (-3619 (*1 *2 *3) (-12 (-4 *1 (-314)) (-5 *3 (-116)) (-5 *2 (-112)))) (-1413 (*1 *2 *1 *3) (-12 (-4 *1 (-314)) (-5 *3 (-116)) (-5 *2 (-112)))) (-1413 (*1 *2 *1 *3) (-12 (-4 *1 (-314)) (-5 *3 (-1207)) (-5 *2 (-112)))) (-2594 (*1 *1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) (-2594 (*1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-666 *1)) (-4 *1 (-314)))) (-3611 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-631 *1)) (-4 *1 (-314)))) (-3139 (*1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-112)))) (-3139 (*1 *2 *1 *3) (-12 (-4 *1 (-314)) (-5 *3 (-1207)) (-5 *2 (-112)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-1 *1 *1))) (-4 *1 (-314)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-1 *1 (-666 *1)))) (-4 *1 (-314)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-666 *1))) (-4 *1 (-314)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-314)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-116))) (-5 *3 (-666 (-1 *1 *1))) (-4 *1 (-314)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-116))) (-5 *3 (-666 (-1 *1 (-666 *1)))) (-4 *1 (-314)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-1 *1 (-666 *1))) (-4 *1 (-314)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-1 *1 *1)) (-4 *1 (-314)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-1080)) (-4 *1 (-314)) (-5 *2 (-1203 *1)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-1080)) (-4 *1 (-314)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1069 (-578))) (-4 *1 (-314)) (-5 *2 (-112)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-1069 (-578))) (-4 *1 (-314)) (-5 *2 (-112))))) +(-13 (-1131) (-1069 (-631 $)) (-528 (-631 $) $) (-321 $) (-10 -8 (-15 -2436 ($ (-116) $)) (-15 -2436 ($ (-116) $ $)) (-15 -2436 ($ (-116) $ $ $)) (-15 -2436 ($ (-116) $ $ $ $)) (-15 -2436 ($ (-116) (-666 $))) (-15 -3584 ($ $ (-306 $))) (-15 -3584 ($ $ (-666 (-306 $)))) (-15 -3584 ($ $ (-666 (-631 $)) (-666 $))) (-15 -2209 ($ $)) (-15 -2209 ($ (-666 $))) (-15 -3783 ($ $)) (-15 -3783 ($ (-666 $))) (-15 -2909 ($ $)) (-15 -2909 ($ $ $)) (-15 -1737 ((-793) $)) (-15 -3238 ((-3 (-631 $) "failed") $)) (-15 -4386 ((-666 (-631 $)) $)) (-15 -4318 ((-666 (-631 $)) $)) (-15 -3968 ((-666 (-116)) $)) (-15 -4397 ((-116) (-116))) (-15 -3619 ((-112) (-116))) (-15 -1413 ((-112) $ (-116))) (-15 -1413 ((-112) $ (-1207))) (-15 -2594 ($ (-116) $)) (-15 -2594 ($ (-116) (-666 $))) (-15 -3611 ($ (-1 $ $) (-631 $))) (-15 -3139 ((-112) $ $)) (-15 -3139 ((-112) $ (-1207))) (-15 -3364 ($ $ (-666 (-1207)) (-666 (-1 $ $)))) (-15 -3364 ($ $ (-666 (-1207)) (-666 (-1 $ (-666 $))))) (-15 -3364 ($ $ (-1207) (-1 $ (-666 $)))) (-15 -3364 ($ $ (-1207) (-1 $ $))) (-15 -3364 ($ $ (-666 (-116)) (-666 (-1 $ $)))) (-15 -3364 ($ $ (-666 (-116)) (-666 (-1 $ (-666 $))))) (-15 -3364 ($ $ (-116) (-1 $ (-666 $)))) (-15 -3364 ($ $ (-116) (-1 $ $))) (IF (|has| $ (-1080)) (PROGN (-15 -2782 ((-1203 $) (-631 $))) (-15 -4269 ($ $))) |%noBranch|) (IF (|has| $ (-1069 (-578))) (PROGN (-15 -3873 ((-112) $)) (-15 -2382 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-635 #0=(-631 $)) . T) ((-632 (-886)) . T) ((-321 $) . T) ((-528 (-631 $) $) . T) ((-528 $ $) . T) ((-1069 #0#) . T) ((-1131) . T) ((-1248) . T)) +((-2279 (((-666 |#1|) (-666 |#1|)) 10 T ELT))) +(((-315 |#1|) (-10 -7 (-15 -2279 ((-666 |#1|) (-666 |#1|)))) (-870)) (T -315)) +((-2279 (*1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-870)) (-5 *1 (-315 *3))))) +(-10 -7 (-15 -2279 ((-666 |#1|) (-666 |#1|)))) +((-3611 (((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)) 17 T ELT))) +(((-316 |#1| |#2|) (-10 -7 (-15 -3611 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) (-1080) (-1080)) (T -316)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-711 *6)) (-5 *1 (-316 *5 *6))))) +(-10 -7 (-15 -3611 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) +((-1942 (((-1298 (-328 (-392))) (-1298 (-328 (-229)))) 110 T ELT)) (-3094 (((-1125 (-865 (-229))) (-1125 (-865 (-392)))) 43 T ELT)) (-1757 (((-666 (-1189)) (-1188 (-229))) 92 T ELT)) (-2107 (((-328 (-392)) (-981 (-229))) 53 T ELT)) (-2775 (((-229) (-981 (-229))) 49 T ELT)) (-2257 (((-1189) (-392)) 195 T ELT)) (-2065 (((-865 (-229)) (-865 (-392))) 37 T ELT)) (-2193 (((-2 (|:| |additions| (-578)) (|:| |multiplications| (-578)) (|:| |exponentiations| (-578)) (|:| |functionCalls| (-578))) (-1298 (-328 (-229)))) 165 T ELT)) (-4458 (((-1066) (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066)))) 207 T ELT) (((-1066) (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) 205 T ELT)) (-2547 (((-711 (-229)) (-666 (-229)) (-793)) 19 T ELT)) (-3035 (((-1298 (-721)) (-666 (-229))) 99 T ELT)) (-2210 (((-666 (-1189)) (-666 (-229))) 79 T ELT)) (-1681 (((-3 (-328 (-229)) "failed") (-328 (-229))) 128 T ELT)) (-1551 (((-112) (-229) (-1125 (-865 (-229)))) 117 T ELT)) (-2522 (((-1066) (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392)))) 224 T ELT)) (-4100 (((-229) (-1125 (-865 (-229)))) 112 T ELT)) (-1610 (((-229) (-1125 (-865 (-229)))) 113 T ELT)) (-4213 (((-229) (-421 (-578))) 31 T ELT)) (-4135 (((-1189) (-392)) 77 T ELT)) (-3947 (((-229) (-392)) 22 T ELT)) (-1426 (((-392) (-1298 (-328 (-229)))) 177 T ELT)) (-1682 (((-328 (-229)) (-328 (-392))) 28 T ELT)) (-2496 (((-421 (-578)) (-328 (-229))) 56 T ELT)) (-1537 (((-328 (-421 (-578))) (-328 (-229))) 73 T ELT)) (-3453 (((-328 (-392)) (-328 (-229))) 103 T ELT)) (-2721 (((-229) (-328 (-229))) 57 T ELT)) (-1949 (((-666 (-229)) (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) 68 T ELT)) (-3758 (((-1125 (-865 (-229))) (-1125 (-865 (-229)))) 65 T ELT)) (-4072 (((-1189) (-229)) 76 T ELT)) (-1788 (((-721) (-229)) 95 T ELT)) (-1600 (((-421 (-578)) (-229)) 58 T ELT)) (-2284 (((-328 (-392)) (-229)) 52 T ELT)) (-3343 (((-666 (-1125 (-865 (-229)))) (-666 (-1125 (-865 (-392))))) 46 T ELT)) (-3703 (((-1066) (-666 (-1066))) 191 T ELT) (((-1066) (-1066) (-1066)) 185 T ELT)) (-2052 (((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221 T ELT))) +(((-317) (-10 -7 (-15 -3947 ((-229) (-392))) (-15 -1682 ((-328 (-229)) (-328 (-392)))) (-15 -2065 ((-865 (-229)) (-865 (-392)))) (-15 -3094 ((-1125 (-865 (-229))) (-1125 (-865 (-392))))) (-15 -3343 ((-666 (-1125 (-865 (-229)))) (-666 (-1125 (-865 (-392)))))) (-15 -1600 ((-421 (-578)) (-229))) (-15 -2496 ((-421 (-578)) (-328 (-229)))) (-15 -2721 ((-229) (-328 (-229)))) (-15 -1681 ((-3 (-328 (-229)) "failed") (-328 (-229)))) (-15 -1426 ((-392) (-1298 (-328 (-229))))) (-15 -2193 ((-2 (|:| |additions| (-578)) (|:| |multiplications| (-578)) (|:| |exponentiations| (-578)) (|:| |functionCalls| (-578))) (-1298 (-328 (-229))))) (-15 -1537 ((-328 (-421 (-578))) (-328 (-229)))) (-15 -3758 ((-1125 (-865 (-229))) (-1125 (-865 (-229))))) (-15 -1949 ((-666 (-229)) (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) (-15 -1788 ((-721) (-229))) (-15 -3035 ((-1298 (-721)) (-666 (-229)))) (-15 -3453 ((-328 (-392)) (-328 (-229)))) (-15 -1942 ((-1298 (-328 (-392))) (-1298 (-328 (-229))))) (-15 -1551 ((-112) (-229) (-1125 (-865 (-229))))) (-15 -4072 ((-1189) (-229))) (-15 -4135 ((-1189) (-392))) (-15 -2210 ((-666 (-1189)) (-666 (-229)))) (-15 -1757 ((-666 (-1189)) (-1188 (-229)))) (-15 -4100 ((-229) (-1125 (-865 (-229))))) (-15 -1610 ((-229) (-1125 (-865 (-229))))) (-15 -3703 ((-1066) (-1066) (-1066))) (-15 -3703 ((-1066) (-666 (-1066)))) (-15 -2257 ((-1189) (-392))) (-15 -4458 ((-1066) (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))))) (-15 -4458 ((-1066) (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))))) (-15 -2052 ((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2522 ((-1066) (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))))) (-15 -2107 ((-328 (-392)) (-981 (-229)))) (-15 -2775 ((-229) (-981 (-229)))) (-15 -2284 ((-328 (-392)) (-229))) (-15 -4213 ((-229) (-421 (-578)))) (-15 -2547 ((-711 (-229)) (-666 (-229)) (-793))))) (T -317)) +((-2547 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-317)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-421 (-578))) (-5 *2 (-229)) (-5 *1 (-317)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-328 (-392))) (-5 *1 (-317)))) (-2775 (*1 *2 *3) (-12 (-5 *3 (-981 (-229))) (-5 *2 (-229)) (-5 *1 (-317)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-981 (-229))) (-5 *2 (-328 (-392))) (-5 *1 (-317)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392)))) (-5 *2 (-1066)) (-5 *1 (-317)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1066)) (-5 *1 (-317)))) (-4458 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066)))) (-5 *2 (-1066)) (-5 *1 (-317)))) (-4458 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) (-5 *2 (-1066)) (-5 *1 (-317)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1189)) (-5 *1 (-317)))) (-3703 (*1 *2 *3) (-12 (-5 *3 (-666 (-1066))) (-5 *2 (-1066)) (-5 *1 (-317)))) (-3703 (*1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-317)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-317)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-317)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1188 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-317)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-666 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-317)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1189)) (-5 *1 (-317)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-317)))) (-1551 (*1 *2 *3 *4) (-12 (-5 *4 (-1125 (-865 (-229)))) (-5 *3 (-229)) (-5 *2 (-112)) (-5 *1 (-317)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *2 (-1298 (-328 (-392)))) (-5 *1 (-317)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-328 (-392))) (-5 *1 (-317)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-666 (-229))) (-5 *2 (-1298 (-721))) (-5 *1 (-317)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-317)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-5 *2 (-666 (-229))) (-5 *1 (-317)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-1125 (-865 (-229)))) (-5 *1 (-317)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-328 (-421 (-578)))) (-5 *1 (-317)))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *2 (-2 (|:| |additions| (-578)) (|:| |multiplications| (-578)) (|:| |exponentiations| (-578)) (|:| |functionCalls| (-578)))) (-5 *1 (-317)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *2 (-392)) (-5 *1 (-317)))) (-1681 (*1 *2 *2) (|partial| -12 (-5 *2 (-328 (-229))) (-5 *1 (-317)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-229)) (-5 *1 (-317)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-421 (-578))) (-5 *1 (-317)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-578))) (-5 *1 (-317)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-666 (-1125 (-865 (-392))))) (-5 *2 (-666 (-1125 (-865 (-229))))) (-5 *1 (-317)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-1125 (-865 (-392)))) (-5 *2 (-1125 (-865 (-229)))) (-5 *1 (-317)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-865 (-392))) (-5 *2 (-865 (-229))) (-5 *1 (-317)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-328 (-392))) (-5 *2 (-328 (-229))) (-5 *1 (-317)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-229)) (-5 *1 (-317))))) +(-10 -7 (-15 -3947 ((-229) (-392))) (-15 -1682 ((-328 (-229)) (-328 (-392)))) (-15 -2065 ((-865 (-229)) (-865 (-392)))) (-15 -3094 ((-1125 (-865 (-229))) (-1125 (-865 (-392))))) (-15 -3343 ((-666 (-1125 (-865 (-229)))) (-666 (-1125 (-865 (-392)))))) (-15 -1600 ((-421 (-578)) (-229))) (-15 -2496 ((-421 (-578)) (-328 (-229)))) (-15 -2721 ((-229) (-328 (-229)))) (-15 -1681 ((-3 (-328 (-229)) "failed") (-328 (-229)))) (-15 -1426 ((-392) (-1298 (-328 (-229))))) (-15 -2193 ((-2 (|:| |additions| (-578)) (|:| |multiplications| (-578)) (|:| |exponentiations| (-578)) (|:| |functionCalls| (-578))) (-1298 (-328 (-229))))) (-15 -1537 ((-328 (-421 (-578))) (-328 (-229)))) (-15 -3758 ((-1125 (-865 (-229))) (-1125 (-865 (-229))))) (-15 -1949 ((-666 (-229)) (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) (-15 -1788 ((-721) (-229))) (-15 -3035 ((-1298 (-721)) (-666 (-229)))) (-15 -3453 ((-328 (-392)) (-328 (-229)))) (-15 -1942 ((-1298 (-328 (-392))) (-1298 (-328 (-229))))) (-15 -1551 ((-112) (-229) (-1125 (-865 (-229))))) (-15 -4072 ((-1189) (-229))) (-15 -4135 ((-1189) (-392))) (-15 -2210 ((-666 (-1189)) (-666 (-229)))) (-15 -1757 ((-666 (-1189)) (-1188 (-229)))) (-15 -4100 ((-229) (-1125 (-865 (-229))))) (-15 -1610 ((-229) (-1125 (-865 (-229))))) (-15 -3703 ((-1066) (-1066) (-1066))) (-15 -3703 ((-1066) (-666 (-1066)))) (-15 -2257 ((-1189) (-392))) (-15 -4458 ((-1066) (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))))) (-15 -4458 ((-1066) (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))))) (-15 -2052 ((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2522 ((-1066) (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))))) (-15 -2107 ((-328 (-392)) (-981 (-229)))) (-15 -2775 ((-229) (-981 (-229)))) (-15 -2284 ((-328 (-392)) (-229))) (-15 -4213 ((-229) (-421 (-578)))) (-15 -2547 ((-711 (-229)) (-666 (-229)) (-793)))) +((-2732 (((-112) $ $) 14 T ELT)) (-3154 (($ $ $) 18 T ELT)) (-3166 (($ $ $) 17 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 50 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 65 T ELT)) (-2421 (($ $ $) 25 T ELT) (($ (-666 $)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-3202 (((-3 $ "failed") $ $) 21 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 53 T ELT))) +(((-318 |#1|) (-10 -8 (-15 -1488 ((-3 (-666 |#1|) "failed") (-666 |#1|) |#1|)) (-15 -3530 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3530 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2847 |#1|)) |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -2732 ((-112) |#1| |#1|)) (-15 -3448 ((-3 (-666 |#1|) "failed") (-666 |#1|) |#1|)) (-15 -2136 ((-2 (|:| -2672 (-666 |#1|)) (|:| -2847 |#1|)) (-666 |#1|))) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2421 (|#1| |#1| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|))) (-319)) (T -318)) +NIL +(-10 -8 (-15 -1488 ((-3 (-666 |#1|) "failed") (-666 |#1|) |#1|)) (-15 -3530 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3530 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2847 |#1|)) |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -2732 ((-112) |#1| |#1|)) (-15 -3448 ((-3 (-666 |#1|) "failed") (-666 |#1|) |#1|)) (-15 -2136 ((-2 (|:| -2672 (-666 |#1|)) (|:| -2847 |#1|)) (-666 |#1|))) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2421 (|#1| |#1| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-3534 (($) 18 T CONST)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-319) (-142)) (T -319)) +((-2732 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-112)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793)))) (-2036 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-319)))) (-3166 (*1 *1 *1 *1) (-4 *1 (-319))) (-3154 (*1 *1 *1 *1) (-4 *1 (-319))) (-3530 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2847 *1))) (-4 *1 (-319)))) (-3530 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-1488 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-666 *1)) (-4 *1 (-319))))) +(-13 (-949) (-10 -8 (-15 -2732 ((-112) $ $)) (-15 -1449 ((-793) $)) (-15 -2036 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -3166 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -3530 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $)) (-15 -3530 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1488 ((-3 (-666 $) "failed") (-666 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3364 (($ $ (-666 |#2|) (-666 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-306 |#2|)) 11 T ELT) (($ $ (-666 (-306 |#2|))) NIL T ELT))) +(((-320 |#1| |#2|) (-10 -8 (-15 -3364 (|#1| |#1| (-666 (-306 |#2|)))) (-15 -3364 (|#1| |#1| (-306 |#2|))) (-15 -3364 (|#1| |#1| |#2| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#2|)))) (-321 |#2|) (-1131)) (T -320)) +NIL +(-10 -8 (-15 -3364 (|#1| |#1| (-666 (-306 |#2|)))) (-15 -3364 (|#1| |#1| (-306 |#2|))) (-15 -3364 (|#1| |#1| |#2| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#2|)))) +((-3364 (($ $ (-666 |#1|) (-666 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-306 |#1|)) 11 T ELT) (($ $ (-666 (-306 |#1|))) 10 T ELT))) +(((-321 |#1|) (-142) (-1131)) (T -321)) +((-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-306 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1131)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-306 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1131))))) +(-13 (-528 |t#1| |t#1|) (-10 -8 (-15 -3364 ($ $ (-306 |t#1|))) (-15 -3364 ($ $ (-666 (-306 |t#1|)))))) +(((-528 |#1| |#1|) . T)) +((-3364 ((|#1| (-1 |#1| (-578)) (-1209 (-421 (-578)))) 26 T ELT))) +(((-322 |#1|) (-10 -7 (-15 -3364 (|#1| (-1 |#1| (-578)) (-1209 (-421 (-578)))))) (-38 (-421 (-578)))) (T -322)) +((-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-578))) (-5 *4 (-1209 (-421 (-578)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-421 (-578))))))) +(-10 -7 (-15 -3364 (|#1| (-1 |#1| (-578)) (-1209 (-421 (-578)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-4113 (((-578) $) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2077 (((-1166) $) 9 T ELT)) (-2411 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-323) (-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -4113 ((-578) $))))) (T -323)) +((-2077 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-323)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-323))))) +(-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -4113 ((-578) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 7 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 9 T ELT))) +(((-324) (-1131)) (T -324)) +NIL +(-1131) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 60 T ELT)) (-2873 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-1284 |#1| |#2| |#3| |#4|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-578))) ELT) (((-3 (-1283 |#2| |#3| |#4|) "failed") $) 26 T ELT)) (-3516 (((-1284 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1207) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-578))) ELT) (((-578) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-578))) ELT) (((-1283 |#2| |#3| |#4|) $) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1298 (-1284 |#1| |#2| |#3| |#4|)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-1284 |#1| |#2| |#3| |#4|)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 (((-1284 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-3611 (($ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-2016 (((-3 (-865 |#2|) "failed") $) 80 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1298 (-1284 |#1| |#2| |#3| |#4|)))) (-1298 $) $) NIL T ELT) (((-711 (-1284 |#1| |#2| |#3| |#4|)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3575 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 (-1284 |#1| |#2| |#3| |#4|)) (-666 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-306 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-666 (-306 (-1284 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-666 (-1207)) (-666 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-528 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1207) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-528 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-298 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 (((-1284 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-550))) ELT) (((-392) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1053)) ELT) (((-229) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1053)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (($ (-1283 |#2| |#3| |#4|)) 37 T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-938))) (|has| (-1284 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2495 (($ $ $) 35 T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-325 |#1| |#2| |#3| |#4|) (-13 (-1023 (-1284 |#1| |#2| |#3| |#4|)) (-1069 (-1283 |#2| |#3| |#4|)) (-10 -8 (-15 -2016 ((-3 (-865 |#2|) "failed") $)) (-15 -2411 ($ (-1283 |#2| |#3| |#4|))))) (-13 (-1069 (-578)) (-660 (-578)) (-466)) (-13 (-27) (-1233) (-444 |#1|)) (-1207) |#2|) (T -325)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1283 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-444 *3))) (-14 *5 (-1207)) (-14 *6 *4) (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) (-5 *1 (-325 *3 *4 *5 *6)))) (-2016 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) (-5 *2 (-865 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-444 *3))) (-14 *5 (-1207)) (-14 *6 *4)))) +(-13 (-1023 (-1284 |#1| |#2| |#3| |#4|)) (-1069 (-1283 |#2| |#3| |#4|)) (-10 -8 (-15 -2016 ((-3 (-865 |#2|) "failed") $)) (-15 -2411 ($ (-1283 |#2| |#3| |#4|))))) +((-3611 (((-328 |#2|) (-1 |#2| |#1|) (-328 |#1|)) 13 T ELT))) +(((-326 |#1| |#2|) (-10 -7 (-15 -3611 ((-328 |#2|) (-1 |#2| |#1|) (-328 |#1|)))) (-1131) (-1131)) (T -326)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-328 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-328 *6)) (-5 *1 (-326 *5 *6))))) +(-10 -7 (-15 -3611 ((-328 |#2|) (-1 |#2| |#1|) (-328 |#1|)))) +((-3004 (((-52) |#2| (-306 |#2|) (-793)) 40 T ELT) (((-52) |#2| (-306 |#2|)) 32 T ELT) (((-52) |#2| (-793)) 35 T ELT) (((-52) |#2|) 33 T ELT) (((-52) (-1207)) 26 T ELT)) (-4449 (((-52) |#2| (-306 |#2|) (-421 (-578))) 59 T ELT) (((-52) |#2| (-306 |#2|)) 56 T ELT) (((-52) |#2| (-421 (-578))) 58 T ELT) (((-52) |#2|) 57 T ELT) (((-52) (-1207)) 55 T ELT)) (-3031 (((-52) |#2| (-306 |#2|) (-421 (-578))) 54 T ELT) (((-52) |#2| (-306 |#2|)) 51 T ELT) (((-52) |#2| (-421 (-578))) 53 T ELT) (((-52) |#2|) 52 T ELT) (((-52) (-1207)) 50 T ELT)) (-3018 (((-52) |#2| (-306 |#2|) (-578)) 47 T ELT) (((-52) |#2| (-306 |#2|)) 44 T ELT) (((-52) |#2| (-578)) 46 T ELT) (((-52) |#2|) 45 T ELT) (((-52) (-1207)) 43 T ELT))) +(((-327 |#1| |#2|) (-10 -7 (-15 -3004 ((-52) (-1207))) (-15 -3004 ((-52) |#2|)) (-15 -3004 ((-52) |#2| (-793))) (-15 -3004 ((-52) |#2| (-306 |#2|))) (-15 -3004 ((-52) |#2| (-306 |#2|) (-793))) (-15 -3018 ((-52) (-1207))) (-15 -3018 ((-52) |#2|)) (-15 -3018 ((-52) |#2| (-578))) (-15 -3018 ((-52) |#2| (-306 |#2|))) (-15 -3018 ((-52) |#2| (-306 |#2|) (-578))) (-15 -3031 ((-52) (-1207))) (-15 -3031 ((-52) |#2|)) (-15 -3031 ((-52) |#2| (-421 (-578)))) (-15 -3031 ((-52) |#2| (-306 |#2|))) (-15 -3031 ((-52) |#2| (-306 |#2|) (-421 (-578)))) (-15 -4449 ((-52) (-1207))) (-15 -4449 ((-52) |#2|)) (-15 -4449 ((-52) |#2| (-421 (-578)))) (-15 -4449 ((-52) |#2| (-306 |#2|))) (-15 -4449 ((-52) |#2| (-306 |#2|) (-421 (-578))))) (-13 (-466) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|))) (T -327)) +((-4449 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-306 *3)) (-5 *5 (-421 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-4449 (*1 *2 *3 *4) (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)))) (-4449 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-578))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-4449 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) (-4449 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4))))) (-3031 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-306 *3)) (-5 *5 (-421 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3031 (*1 *2 *3 *4) (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)))) (-3031 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-578))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4))))) (-3018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-466) (-1069 *5) (-660 *5))) (-5 *5 (-578)) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)))) (-3018 (*1 *2 *3 *4) (-12 (-5 *4 (-578)) (-4 *5 (-13 (-466) (-1069 *4) (-660 *4))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4))))) (-3004 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-306 *3)) (-5 *5 (-793)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3004 (*1 *2 *3 *4) (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)))) (-3004 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4)))))) +(-10 -7 (-15 -3004 ((-52) (-1207))) (-15 -3004 ((-52) |#2|)) (-15 -3004 ((-52) |#2| (-793))) (-15 -3004 ((-52) |#2| (-306 |#2|))) (-15 -3004 ((-52) |#2| (-306 |#2|) (-793))) (-15 -3018 ((-52) (-1207))) (-15 -3018 ((-52) |#2|)) (-15 -3018 ((-52) |#2| (-578))) (-15 -3018 ((-52) |#2| (-306 |#2|))) (-15 -3018 ((-52) |#2| (-306 |#2|) (-578))) (-15 -3031 ((-52) (-1207))) (-15 -3031 ((-52) |#2|)) (-15 -3031 ((-52) |#2| (-421 (-578)))) (-15 -3031 ((-52) |#2| (-306 |#2|))) (-15 -3031 ((-52) |#2| (-306 |#2|) (-421 (-578)))) (-15 -4449 ((-52) (-1207))) (-15 -4449 ((-52) |#2|)) (-15 -4449 ((-52) |#2| (-421 (-578)))) (-15 -4449 ((-52) |#2| (-306 |#2|))) (-15 -4449 ((-52) |#2| (-306 |#2|) (-421 (-578))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3456 (((-666 $) $ (-1207)) NIL (|has| |#1| (-570)) ELT) (((-666 $) $) NIL (|has| |#1| (-570)) ELT) (((-666 $) (-1203 $) (-1207)) NIL (|has| |#1| (-570)) ELT) (((-666 $) (-1203 $)) NIL (|has| |#1| (-570)) ELT) (((-666 $) (-981 $)) NIL (|has| |#1| (-570)) ELT)) (-3007 (($ $ (-1207)) NIL (|has| |#1| (-570)) ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ (-1203 $) (-1207)) NIL (|has| |#1| (-570)) ELT) (($ (-1203 $)) NIL (|has| |#1| (-570)) ELT) (($ (-981 $)) NIL (|has| |#1| (-570)) ELT)) (-3623 (((-112) $) 27 (-2230 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT)) (-2949 (((-666 (-1207)) $) 368 T ELT)) (-4420 (((-421 (-1203 $)) $ (-631 $)) NIL (|has| |#1| (-570)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4318 (((-666 (-631 $)) $) NIL T ELT)) (-1502 (($ $) 171 (|has| |#1| (-570)) ELT)) (-1372 (($ $) 147 (|has| |#1| (-570)) ELT)) (-2600 (($ $ (-1123 $)) 232 (|has| |#1| (-570)) ELT) (($ $ (-1207)) 228 (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL (-2230 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT)) (-3584 (($ $ (-306 $)) NIL T ELT) (($ $ (-666 (-306 $))) 386 T ELT) (($ $ (-666 (-631 $)) (-666 $)) 430 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 308 (-12 (|has| |#1| (-466)) (|has| |#1| (-570))) ELT)) (-1457 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-570)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-570)) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1478 (($ $) 167 (|has| |#1| (-570)) ELT)) (-1349 (($ $) 143 (|has| |#1| (-570)) ELT)) (-1902 (($ $ (-578)) 73 (|has| |#1| (-570)) ELT)) (-1528 (($ $) 175 (|has| |#1| (-570)) ELT)) (-1392 (($ $) 151 (|has| |#1| (-570)) ELT)) (-3534 (($) NIL (-2230 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) (|has| |#1| (-1143))) CONST)) (-4268 (((-666 $) $ (-1207)) NIL (|has| |#1| (-570)) ELT) (((-666 $) $) NIL (|has| |#1| (-570)) ELT) (((-666 $) (-1203 $) (-1207)) NIL (|has| |#1| (-570)) ELT) (((-666 $) (-1203 $)) NIL (|has| |#1| (-570)) ELT) (((-666 $) (-981 $)) NIL (|has| |#1| (-570)) ELT)) (-1567 (($ $ (-1207)) NIL (|has| |#1| (-570)) ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ (-1203 $) (-1207)) 134 (|has| |#1| (-570)) ELT) (($ (-1203 $)) NIL (|has| |#1| (-570)) ELT) (($ (-981 $)) NIL (|has| |#1| (-570)) ELT)) (-2818 (((-3 (-631 $) "failed") $) 18 T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 441 T ELT) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-981 |#1|)) "failed") $) NIL (|has| |#1| (-570)) ELT) (((-3 (-981 |#1|) "failed") $) NIL (|has| |#1| (-1080)) ELT) (((-3 (-421 (-578)) "failed") $) 46 (-2230 (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3516 (((-631 $) $) 12 T ELT) (((-1207) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-981 |#1|)) $) NIL (|has| |#1| (-570)) ELT) (((-981 |#1|) $) NIL (|has| |#1| (-1080)) ELT) (((-421 (-578)) $) 319 (-2230 (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-2242 (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 125 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-711 $)) 115 (|has| |#1| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT) (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT)) (-2512 (($ $) 96 (|has| |#1| (-570)) ELT)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)) ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-3471 (($ $ (-1123 $)) 236 (|has| |#1| (-570)) ELT) (($ $ (-1207)) 234 (|has| |#1| (-570)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-570)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2482 (($ $ $) 202 (|has| |#1| (-570)) ELT)) (-2551 (($) 137 (|has| |#1| (-570)) ELT)) (-2492 (($ $ $) 222 (|has| |#1| (-570)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 392 (|has| |#1| (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 399 (|has| |#1| (-911 (-392))) ELT)) (-3783 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3968 (((-666 (-116)) $) NIL T ELT)) (-4397 (((-116) (-116)) 276 T ELT)) (-4382 (((-112) $) 25 (|has| |#1| (-1143)) ELT)) (-2382 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-2544 (($ $) 72 (|has| |#1| (-1080)) ELT)) (-2519 (((-1156 |#1| (-631 $)) $) 91 (|has| |#1| (-1080)) ELT)) (-3829 (((-112) $) 62 (|has| |#1| (-570)) ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-570)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-570)) ELT)) (-2782 (((-1203 $) (-631 $)) 277 (|has| $ (-1080)) ELT)) (-3611 (($ (-1 $ $) (-631 $)) 426 T ELT)) (-3238 (((-3 (-631 $) "failed") $) NIL T ELT)) (-3864 (($ $) 141 (|has| |#1| (-570)) ELT)) (-3943 (($ $) 247 (|has| |#1| (-570)) ELT)) (-3908 (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-1298 $)) NIL (|has| |#1| (-1080)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT) (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-570)) ELT) (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4386 (((-666 (-631 $)) $) 49 T ELT)) (-2594 (($ (-116) $) NIL T ELT) (($ (-116) (-666 $)) 431 T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL (|has| |#1| (-1143)) ELT)) (-2929 (((-3 (-2 (|:| |val| $) (|:| -2764 (-578))) "failed") $) NIL (|has| |#1| (-1080)) ELT)) (-1968 (((-3 (-666 $) "failed") $) 436 (|has| |#1| (-25)) ELT)) (-3395 (((-3 (-2 (|:| -2672 (-578)) (|:| |var| (-631 $))) "failed") $) 440 (|has| |#1| (-25)) ELT)) (-1590 (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $) NIL (|has| |#1| (-1143)) ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-116)) NIL (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-1207)) NIL (|has| |#1| (-1080)) ELT)) (-1413 (((-112) $ (-116)) NIL T ELT) (((-112) $ (-1207)) 51 T ELT)) (-3057 (($ $) NIL (-2230 (|has| |#1| (-487)) (|has| |#1| (-570))) ELT)) (-3025 (($ $ (-1207)) 251 (|has| |#1| (-570)) ELT) (($ $ (-1123 $)) 253 (|has| |#1| (-570)) ELT)) (-1737 (((-793) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) 43 T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 301 (|has| |#1| (-570)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-570)) ELT) (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-3139 (((-112) $ $) NIL T ELT) (((-112) $ (-1207)) NIL T ELT)) (-2829 (($ $ (-1207)) 226 (|has| |#1| (-570)) ELT) (($ $) 224 (|has| |#1| (-570)) ELT)) (-2454 (($ $) 218 (|has| |#1| (-570)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 306 (-12 (|has| |#1| (-466)) (|has| |#1| (-570))) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-570)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-570)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-570)) ELT)) (-3587 (($ $) 139 (|has| |#1| (-570)) ELT)) (-3873 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-3364 (($ $ (-631 $) $) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) 425 T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-666 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) 379 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-116) (-1 $ (-666 $))) NIL T ELT) (($ $ (-116) (-1 $ $)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-633 (-550))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-633 (-550))) ELT) (($ $) NIL (|has| |#1| (-633 (-550))) ELT) (($ $ (-116) $ (-1207)) 366 (|has| |#1| (-633 (-550))) ELT) (($ $ (-666 (-116)) (-666 $) (-1207)) 365 (|has| |#1| (-633 (-550))) ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ $))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ (-666 $)))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-666 $))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ $)) NIL (|has| |#1| (-1080)) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-570)) ELT)) (-4452 (($ $) 239 (|has| |#1| (-570)) ELT)) (-2436 (($ (-116) $) NIL T ELT) (($ (-116) $ $) NIL T ELT) (($ (-116) $ $ $) NIL T ELT) (($ (-116) $ $ $ $) NIL T ELT) (($ (-116) (-666 $)) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-2909 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-1337 (($ $) 249 (|has| |#1| (-570)) ELT)) (-2422 (($ $) 200 (|has| |#1| (-570)) ELT)) (-2031 (($ $ (-1207)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-1080)) ELT)) (-1363 (($ $) 74 (|has| |#1| (-570)) ELT)) (-2530 (((-1156 |#1| (-631 $)) $) 93 (|has| |#1| (-570)) ELT)) (-4269 (($ $) 317 (|has| $ (-1080)) ELT)) (-1541 (($ $) 177 (|has| |#1| (-570)) ELT)) (-1403 (($ $) 153 (|has| |#1| (-570)) ELT)) (-1515 (($ $) 173 (|has| |#1| (-570)) ELT)) (-1382 (($ $) 149 (|has| |#1| (-570)) ELT)) (-1489 (($ $) 169 (|has| |#1| (-570)) ELT)) (-1361 (($ $) 145 (|has| |#1| (-570)) ELT)) (-3343 (((-917 (-578)) $) NIL (|has| |#1| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| |#1| (-633 (-917 (-392)))) ELT) (($ (-432 $)) NIL (|has| |#1| (-570)) ELT) (((-550) $) 363 (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-1863 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-2411 (((-886) $) 424 T ELT) (($ (-631 $)) 415 T ELT) (($ (-1207)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578)))) ELT) (($ (-1156 |#1| (-631 $))) 95 (|has| |#1| (-1080)) ELT) (($ (-421 |#1|)) NIL (|has| |#1| (-570)) ELT) (($ (-981 (-421 |#1|))) NIL (|has| |#1| (-570)) ELT) (($ (-421 (-981 (-421 |#1|)))) NIL (|has| |#1| (-570)) ELT) (($ (-421 (-981 |#1|))) NIL (|has| |#1| (-570)) ELT) (($ (-981 |#1|)) NIL (|has| |#1| (-1080)) ELT) (($ (-578)) 34 (-2230 (|has| |#1| (-1069 (-578))) (|has| |#1| (-1080))) ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-570)) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL (|has| |#1| (-1080)) CONST)) (-2209 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2776 (($ $ $) 220 (|has| |#1| (-570)) ELT)) (-2833 (($ $ $) 206 (|has| |#1| (-570)) ELT)) (-3223 (($ $ $) 210 (|has| |#1| (-570)) ELT)) (-3358 (($ $ $) 204 (|has| |#1| (-570)) ELT)) (-3317 (($ $ $) 208 (|has| |#1| (-570)) ELT)) (-3619 (((-112) (-116)) 10 T ELT)) (-2876 (((-112) $ $) 86 T ELT)) (-1576 (($ $) 183 (|has| |#1| (-570)) ELT)) (-1436 (($ $) 159 (|has| |#1| (-570)) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) 179 (|has| |#1| (-570)) ELT)) (-1414 (($ $) 155 (|has| |#1| (-570)) ELT)) (-1598 (($ $) 187 (|has| |#1| (-570)) ELT)) (-1456 (($ $) 163 (|has| |#1| (-570)) ELT)) (-1630 (($ (-1207) $) NIL T ELT) (($ (-1207) $ $) NIL T ELT) (($ (-1207) $ $ $) NIL T ELT) (($ (-1207) $ $ $ $) NIL T ELT) (($ (-1207) (-666 $)) NIL T ELT)) (-2084 (($ $) 214 (|has| |#1| (-570)) ELT)) (-1897 (($ $) 212 (|has| |#1| (-570)) ELT)) (-3502 (($ $) 189 (|has| |#1| (-570)) ELT)) (-1467 (($ $) 165 (|has| |#1| (-570)) ELT)) (-1587 (($ $) 185 (|has| |#1| (-570)) ELT)) (-1447 (($ $) 161 (|has| |#1| (-570)) ELT)) (-1564 (($ $) 181 (|has| |#1| (-570)) ELT)) (-1424 (($ $) 157 (|has| |#1| (-570)) ELT)) (-2628 (($ $) 192 (|has| |#1| (-570)) ELT)) (-2368 (($) 21 (-2230 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) CONST)) (-3678 (($ $) 243 (|has| |#1| (-570)) ELT)) (-2379 (($) 23 (|has| |#1| (-1143)) CONST)) (-1885 (($ $) 194 (|has| |#1| (-570)) ELT) (($ $ $) 196 (|has| |#1| (-570)) ELT)) (-3607 (($ $) 241 (|has| |#1| (-570)) ELT)) (-1676 (($ $ (-1207)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-1080)) ELT)) (-1593 (($ $) 245 (|has| |#1| (-570)) ELT)) (-2799 (($ $ $) 198 (|has| |#1| (-570)) ELT)) (-2384 (((-112) $ $) 88 T ELT)) (-2495 (($ (-1156 |#1| (-631 $)) (-1156 |#1| (-631 $))) 106 (|has| |#1| (-570)) ELT) (($ $ $) 42 (-2230 (|has| |#1| (-487)) (|has| |#1| (-570))) ELT)) (-2484 (($ $ $) 40 (-2230 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT) (($ $) 29 (-2230 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT)) (-2472 (($ $ $) 38 (-2230 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-570)) ELT) (($ $ (-421 (-578))) 314 (|has| |#1| (-570)) ELT) (($ $ (-578)) 80 (-2230 (|has| |#1| (-487)) (|has| |#1| (-570))) ELT) (($ $ (-793)) 75 (|has| |#1| (-1143)) ELT) (($ $ (-950)) 84 (|has| |#1| (-1143)) ELT)) (* (($ (-421 (-578)) $) NIL (|has| |#1| (-570)) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-570)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1080)) ELT) (($ $ $) 36 (|has| |#1| (-1143)) ELT) (($ (-578) $) 32 (-2230 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT) (($ (-793) $) NIL (-2230 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT) (($ (-950) $) NIL (-2230 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080)))) ELT))) +(((-328 |#1|) (-13 (-444 |#1|) (-10 -8 (IF (|has| |#1| (-570)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-648)) (-6 (-1170)) (-15 -2512 ($ $)) (-15 -3829 ((-112) $)) (-15 -1902 ($ $ (-578))) (IF (|has| |#1| (-466)) (PROGN (-15 -3428 ((-432 (-1203 $)) (-1203 $))) (-15 -2194 ((-432 (-1203 $)) (-1203 $)))) |%noBranch|) (IF (|has| |#1| (-1069 (-578))) (-6 (-1069 (-48))) |%noBranch|)) |%noBranch|))) (-1131)) (T -328)) +((-2512 (*1 *1 *1) (-12 (-5 *1 (-328 *2)) (-4 *2 (-570)) (-4 *2 (-1131)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-570)) (-4 *3 (-1131)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-328 *3)) (-4 *3 (-570)) (-4 *3 (-1131)))) (-3428 (*1 *2 *3) (-12 (-5 *2 (-432 (-1203 *1))) (-5 *1 (-328 *4)) (-5 *3 (-1203 *1)) (-4 *4 (-466)) (-4 *4 (-570)) (-4 *4 (-1131)))) (-2194 (*1 *2 *3) (-12 (-5 *2 (-432 (-1203 *1))) (-5 *1 (-328 *4)) (-5 *3 (-1203 *1)) (-4 *4 (-466)) (-4 *4 (-570)) (-4 *4 (-1131))))) +(-13 (-444 |#1|) (-10 -8 (IF (|has| |#1| (-570)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-648)) (-6 (-1170)) (-15 -2512 ($ $)) (-15 -3829 ((-112) $)) (-15 -1902 ($ $ (-578))) (IF (|has| |#1| (-466)) (PROGN (-15 -3428 ((-432 (-1203 $)) (-1203 $))) (-15 -2194 ((-432 (-1203 $)) (-1203 $)))) |%noBranch|) (IF (|has| |#1| (-1069 (-578))) (-6 (-1069 (-48))) |%noBranch|)) |%noBranch|))) +((-1677 (((-52) |#2| (-116) (-306 |#2|) (-666 |#2|)) 89 T ELT) (((-52) |#2| (-116) (-306 |#2|) (-306 |#2|)) 85 T ELT) (((-52) |#2| (-116) (-306 |#2|) |#2|) 87 T ELT) (((-52) (-306 |#2|) (-116) (-306 |#2|) |#2|) 88 T ELT) (((-52) (-666 |#2|) (-666 (-116)) (-306 |#2|) (-666 (-306 |#2|))) 81 T ELT) (((-52) (-666 |#2|) (-666 (-116)) (-306 |#2|) (-666 |#2|)) 83 T ELT) (((-52) (-666 (-306 |#2|)) (-666 (-116)) (-306 |#2|) (-666 |#2|)) 84 T ELT) (((-52) (-666 (-306 |#2|)) (-666 (-116)) (-306 |#2|) (-666 (-306 |#2|))) 82 T ELT) (((-52) (-306 |#2|) (-116) (-306 |#2|) (-666 |#2|)) 90 T ELT) (((-52) (-306 |#2|) (-116) (-306 |#2|) (-306 |#2|)) 86 T ELT))) +(((-329 |#1| |#2|) (-10 -7 (-15 -1677 ((-52) (-306 |#2|) (-116) (-306 |#2|) (-306 |#2|))) (-15 -1677 ((-52) (-306 |#2|) (-116) (-306 |#2|) (-666 |#2|))) (-15 -1677 ((-52) (-666 (-306 |#2|)) (-666 (-116)) (-306 |#2|) (-666 (-306 |#2|)))) (-15 -1677 ((-52) (-666 (-306 |#2|)) (-666 (-116)) (-306 |#2|) (-666 |#2|))) (-15 -1677 ((-52) (-666 |#2|) (-666 (-116)) (-306 |#2|) (-666 |#2|))) (-15 -1677 ((-52) (-666 |#2|) (-666 (-116)) (-306 |#2|) (-666 (-306 |#2|)))) (-15 -1677 ((-52) (-306 |#2|) (-116) (-306 |#2|) |#2|)) (-15 -1677 ((-52) |#2| (-116) (-306 |#2|) |#2|)) (-15 -1677 ((-52) |#2| (-116) (-306 |#2|) (-306 |#2|))) (-15 -1677 ((-52) |#2| (-116) (-306 |#2|) (-666 |#2|)))) (-13 (-570) (-633 (-550))) (-444 |#1|)) (T -329)) +((-1677 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-116)) (-5 *5 (-306 *3)) (-5 *6 (-666 *3)) (-4 *3 (-444 *7)) (-4 *7 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *7 *3)))) (-1677 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-116)) (-5 *5 (-306 *3)) (-4 *3 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *6 *3)))) (-1677 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-116)) (-5 *5 (-306 *3)) (-4 *3 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *6 *3)))) (-1677 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-306 *5)) (-5 *4 (-116)) (-4 *5 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *6 *5)))) (-1677 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 (-116))) (-5 *6 (-666 (-306 *8))) (-4 *8 (-444 *7)) (-5 *5 (-306 *8)) (-4 *7 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *7 *8)))) (-1677 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-666 *7)) (-5 *4 (-666 (-116))) (-5 *5 (-306 *7)) (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *6 *7)))) (-1677 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-666 (-306 *8))) (-5 *4 (-666 (-116))) (-5 *5 (-306 *8)) (-5 *6 (-666 *8)) (-4 *8 (-444 *7)) (-4 *7 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *7 *8)))) (-1677 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-666 (-306 *7))) (-5 *4 (-666 (-116))) (-5 *5 (-306 *7)) (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *6 *7)))) (-1677 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-306 *7)) (-5 *4 (-116)) (-5 *5 (-666 *7)) (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *6 *7)))) (-1677 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-306 *6)) (-5 *4 (-116)) (-4 *6 (-444 *5)) (-4 *5 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) (-5 *1 (-329 *5 *6))))) +(-10 -7 (-15 -1677 ((-52) (-306 |#2|) (-116) (-306 |#2|) (-306 |#2|))) (-15 -1677 ((-52) (-306 |#2|) (-116) (-306 |#2|) (-666 |#2|))) (-15 -1677 ((-52) (-666 (-306 |#2|)) (-666 (-116)) (-306 |#2|) (-666 (-306 |#2|)))) (-15 -1677 ((-52) (-666 (-306 |#2|)) (-666 (-116)) (-306 |#2|) (-666 |#2|))) (-15 -1677 ((-52) (-666 |#2|) (-666 (-116)) (-306 |#2|) (-666 |#2|))) (-15 -1677 ((-52) (-666 |#2|) (-666 (-116)) (-306 |#2|) (-666 (-306 |#2|)))) (-15 -1677 ((-52) (-306 |#2|) (-116) (-306 |#2|) |#2|)) (-15 -1677 ((-52) |#2| (-116) (-306 |#2|) |#2|)) (-15 -1677 ((-52) |#2| (-116) (-306 |#2|) (-306 |#2|))) (-15 -1677 ((-52) |#2| (-116) (-306 |#2|) (-666 |#2|)))) +((-1879 (((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-229) (-578) (-1189)) 67 T ELT) (((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-229) (-578)) 68 T ELT) (((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-1 (-229) (-229)) (-578) (-1189)) 64 T ELT) (((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-1 (-229) (-229)) (-578)) 65 T ELT)) (-3574 (((-1 (-229) (-229)) (-229)) 66 T ELT))) +(((-330) (-10 -7 (-15 -3574 ((-1 (-229) (-229)) (-229))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-1 (-229) (-229)) (-578))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-1 (-229) (-229)) (-578) (-1189))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-229) (-578))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-229) (-578) (-1189))))) (T -330)) +((-1879 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1125 (-229))) (-5 *6 (-229)) (-5 *7 (-578)) (-5 *8 (-1189)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-1879 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1125 (-229))) (-5 *6 (-229)) (-5 *7 (-578)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-1879 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1125 (-229))) (-5 *6 (-578)) (-5 *7 (-1189)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-1879 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1125 (-229))) (-5 *6 (-578)) (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) (-3574 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) +(-10 -7 (-15 -3574 ((-1 (-229) (-229)) (-229))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-1 (-229) (-229)) (-578))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-1 (-229) (-229)) (-578) (-1189))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-229) (-578))) (-15 -1879 ((-1243 (-955)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-229) (-578) (-1189)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 26 T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-421 (-578))) NIL T ELT) (($ $ (-421 (-578)) (-421 (-578))) NIL T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|))) $) 20 T ELT)) (-1502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|)))) NIL T ELT)) (-1528 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) 36 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-421 (-578)) $) NIL T ELT) (((-421 (-578)) $ (-421 (-578))) 16 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-421 (-578))) NIL T ELT) (($ $ (-1113) (-421 (-578))) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-421 (-578)))) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3864 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-421 (-578))) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-2828 (((-421 (-578)) $) 17 T ELT)) (-2549 (($ (-1283 |#1| |#2| |#3|)) 11 T ELT)) (-2764 (((-1283 |#1| |#2| |#3|) $) 12 T ELT)) (-3587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-421 (-578))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-578)) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-3683 (((-421 (-578)) $) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 10 T ELT)) (-2411 (((-886) $) 42 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-421 (-578))) 34 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-421 (-578))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 28 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 37 T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-331 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-814) (-10 -8 (-15 -2549 ($ (-1283 |#1| |#2| |#3|))) (-15 -2764 ((-1283 |#1| |#2| |#3|) $)) (-15 -2828 ((-421 (-578)) $)))) (-376) (-1207) |#1|) (T -331)) +((-2549 (*1 *1 *2) (-12 (-5 *2 (-1283 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3)))) +(-13 (-1279 |#1|) (-814) (-10 -8 (-15 -2549 ($ (-1283 |#1| |#2| |#3|))) (-15 -2764 ((-1283 |#1| |#2| |#3|) $)) (-15 -2828 ((-421 (-578)) $)))) +((-2812 (((-2 (|:| -2764 (-793)) (|:| -2672 |#1|) (|:| |radicand| (-666 |#1|))) (-432 |#1|) (-793)) 35 T ELT)) (-3864 (((-666 (-2 (|:| -2672 (-793)) (|:| |logand| |#1|))) (-432 |#1|)) 40 T ELT))) +(((-332 |#1|) (-10 -7 (-15 -2812 ((-2 (|:| -2764 (-793)) (|:| -2672 |#1|) (|:| |radicand| (-666 |#1|))) (-432 |#1|) (-793))) (-15 -3864 ((-666 (-2 (|:| -2672 (-793)) (|:| |logand| |#1|))) (-432 |#1|)))) (-570)) (T -332)) +((-3864 (*1 *2 *3) (-12 (-5 *3 (-432 *4)) (-4 *4 (-570)) (-5 *2 (-666 (-2 (|:| -2672 (-793)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *3 (-432 *5)) (-4 *5 (-570)) (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *5) (|:| |radicand| (-666 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-793))))) +(-10 -7 (-15 -2812 ((-2 (|:| -2764 (-793)) (|:| -2672 |#1|) (|:| |radicand| (-666 |#1|))) (-432 |#1|) (-793))) (-15 -3864 ((-666 (-2 (|:| -2672 (-793)) (|:| |logand| |#1|))) (-432 |#1|)))) +((-2949 (((-666 |#2|) (-1203 |#4|)) 44 T ELT)) (-3550 ((|#3| (-578)) 47 T ELT)) (-2239 (((-1203 |#4|) (-1203 |#3|)) 30 T ELT)) (-3353 (((-1203 |#4|) (-1203 |#4|) (-578)) 66 T ELT)) (-2608 (((-1203 |#3|) (-1203 |#4|)) 21 T ELT)) (-3683 (((-666 (-793)) (-1203 |#4|) (-666 |#2|)) 41 T ELT)) (-4321 (((-1203 |#3|) (-1203 |#4|) (-666 |#2|) (-666 |#3|)) 35 T ELT))) +(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4321 ((-1203 |#3|) (-1203 |#4|) (-666 |#2|) (-666 |#3|))) (-15 -3683 ((-666 (-793)) (-1203 |#4|) (-666 |#2|))) (-15 -2949 ((-666 |#2|) (-1203 |#4|))) (-15 -2608 ((-1203 |#3|) (-1203 |#4|))) (-15 -2239 ((-1203 |#4|) (-1203 |#3|))) (-15 -3353 ((-1203 |#4|) (-1203 |#4|) (-578))) (-15 -3550 (|#3| (-578)))) (-815) (-871) (-1080) (-978 |#3| |#1| |#2|)) (T -333)) +((-3550 (*1 *2 *3) (-12 (-5 *3 (-578)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1080)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-978 *2 *4 *5)))) (-3353 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 *7)) (-5 *3 (-578)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *1 (-333 *4 *5 *6 *7)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-1203 *6)) (-4 *6 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-1203 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-1203 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-1203 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-1203 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-666 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *8)) (-5 *4 (-666 *6)) (-4 *6 (-871)) (-4 *8 (-978 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1080)) (-5 *2 (-666 (-793))) (-5 *1 (-333 *5 *6 *7 *8)))) (-4321 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1203 *9)) (-5 *4 (-666 *7)) (-5 *5 (-666 *8)) (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-1203 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) +(-10 -7 (-15 -4321 ((-1203 |#3|) (-1203 |#4|) (-666 |#2|) (-666 |#3|))) (-15 -3683 ((-666 (-793)) (-1203 |#4|) (-666 |#2|))) (-15 -2949 ((-666 |#2|) (-1203 |#4|))) (-15 -2608 ((-1203 |#3|) (-1203 |#4|))) (-15 -2239 ((-1203 |#4|) (-1203 |#3|))) (-15 -3353 ((-1203 |#4|) (-1203 |#4|) (-578))) (-15 -3550 (|#3| (-578)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 19 T ELT)) (-3761 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-578)))) $) 21 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2222 (((-793) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-2181 ((|#1| $ (-578)) NIL T ELT)) (-3124 (((-578) $ (-578)) NIL T ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1416 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3304 (($ (-1 (-578) (-578)) $) 11 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2832 (($ $ $) NIL (|has| (-578) (-814)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3708 (((-578) |#1| $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 29 (|has| |#1| (-871)) ELT)) (-2484 (($ $) 12 T ELT) (($ $ $) 28 T ELT)) (-2472 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ (-578)) NIL T ELT) (($ (-578) |#1|) 27 T ELT))) +(((-334 |#1|) (-13 (-21) (-739 (-578)) (-335 |#1| (-578)) (-10 -7 (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|))) (-1131)) (T -334)) +NIL +(-13 (-21) (-739 (-578)) (-335 |#1| (-578)) (-10 -7 (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3761 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|))) $) 28 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2222 (((-793) $) 29 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 33 T ELT)) (-3516 ((|#1| $) 34 T ELT)) (-2181 ((|#1| $ (-578)) 26 T ELT)) (-3124 ((|#2| $ (-578)) 27 T ELT)) (-1416 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3304 (($ (-1 |#2| |#2|) $) 24 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2832 (($ $ $) 22 (|has| |#2| (-814)) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ |#1|) 32 T ELT)) (-3708 ((|#2| |#1| $) 25 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2472 (($ $ $) 15 T ELT) (($ |#1| $) 31 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ |#2| |#1|) 30 T ELT))) +(((-335 |#1| |#2|) (-142) (-1131) (-133)) (T -335)) +((-2472 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) (-5 *2 (-793)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 *4)))))) (-3124 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1131)) (-4 *2 (-133)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1131)))) (-3708 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) (-3304 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)))) (-2832 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)) (-4 *3 (-814))))) +(-13 (-133) (-1069 |t#1|) (-10 -8 (-15 -2472 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2222 ((-793) $)) (-15 -3761 ((-666 (-2 (|:| |gen| |t#1|) (|:| -3587 |t#2|))) $)) (-15 -3124 (|t#2| $ (-578))) (-15 -2181 (|t#1| $ (-578))) (-15 -3708 (|t#2| |t#1| $)) (-15 -3304 ($ (-1 |t#2| |t#2|) $)) (-15 -1416 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-814)) (-15 -2832 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-1069 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3761 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-793)))) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2222 (((-793) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-2181 ((|#1| $ (-578)) NIL T ELT)) (-3124 (((-793) $ (-578)) NIL T ELT)) (-1416 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3304 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2832 (($ $ $) NIL (|has| (-793) (-814)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3708 (((-793) |#1| $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-793) |#1|) NIL T ELT))) +(((-336 |#1|) (-335 |#1| (-793)) (-1131)) (T -336)) +NIL +(-335 |#1| (-793)) +((-2111 (($ $) 72 T ELT)) (-2535 (($ $ |#2| |#3| $) 14 T ELT)) (-2500 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-3067 (((-112) $) 42 T ELT)) (-3080 ((|#2| $) 44 T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-4325 ((|#2| $) 68 T ELT)) (-3839 (((-666 |#2|) $) 56 T ELT)) (-2364 (($ $ $ (-793)) 37 T ELT)) (-2495 (($ $ |#2|) 60 T ELT))) +(((-337 |#1| |#2| |#3|) (-10 -8 (-15 -2111 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2364 (|#1| |#1| |#1| (-793))) (-15 -2535 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2500 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3839 ((-666 |#2|) |#1|)) (-15 -3080 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2495 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1080) (-814)) (T -337)) +NIL +(-10 -8 (-15 -2111 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2364 (|#1| |#1| |#1| (-793))) (-15 -2535 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2500 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3839 ((-666 |#2|) |#1|)) (-15 -3080 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2495 (|#1| |#1| |#2|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 100 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 98 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3516 (((-578) $) 99 (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) 97 (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 96 T ELT)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2111 (($ $) 84 (|has| |#1| (-466)) ELT)) (-2535 (($ $ |#1| |#2| $) 88 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-3380 (((-793) $) 91 T ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT)) (-3937 ((|#2| $) 90 T ELT)) (-2500 (($ (-1 |#2| |#2|) $) 89 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3067 (((-112) $) 94 T ELT)) (-3080 ((|#1| $) 93 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-570)) ELT)) (-3683 ((|#2| $) 76 T ELT)) (-4325 ((|#1| $) 85 (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 61 (|has| |#1| (-570)) ELT) (($ |#1|) 59 T ELT) (($ (-421 (-578))) 69 (-2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ELT)) (-3839 (((-666 |#1|) $) 92 T ELT)) (-3708 ((|#1| $ |#2|) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2364 (($ $ $ (-793)) 87 (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-338 |#1| |#2|) (-142) (-1080) (-814)) (T -338)) +((-3067 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-112)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-666 *3)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-793)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-2500 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-2535 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-2364 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *3 (-175)))) (-3202 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-570)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-466))))) +(-13 (-47 |t#1| |t#2|) (-425 |t#1|) (-10 -8 (-15 -3067 ((-112) $)) (-15 -3080 (|t#1| $)) (-15 -3839 ((-666 |t#1|) $)) (-15 -3380 ((-793) $)) (-15 -3937 (|t#2| $)) (-15 -2500 ($ (-1 |t#2| |t#2|) $)) (-15 -2535 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -2364 ($ $ $ (-793))) |%noBranch|) (IF (|has| |t#1| (-570)) (-15 -3202 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -4325 (|t#1| $)) (-15 -2111 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-570)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-570)) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-302) |has| |#1| (-570)) ((-425 |#1|) . T) ((-570) |has| |#1| (-570)) ((-668 #0#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-578)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-570)) ((-739 #0#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-570)) ((-748) . T) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-1740 (((-112) (-112)) NIL T ELT)) (-2590 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-1131)) ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-3515 (($ $ (-578)) NIL T ELT)) (-3622 (((-793) $) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1957 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4328 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-1495 (($ (-666 |#1|)) NIL T ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-3022 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) NIL T ELT)) (-3342 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -1495 ($ (-666 |#1|))) (-15 -3622 ((-793) $)) (-15 -3515 ($ $ (-578))) (-15 -1740 ((-112) (-112))))) (-1248)) (T -339)) +((-1495 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-339 *3)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1248)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-339 *3)) (-4 *3 (-1248)))) (-1740 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-1248))))) +(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -1495 ($ (-666 |#1|))) (-15 -3622 ((-793) $)) (-15 -3515 ($ $ (-578))) (-15 -1740 ((-112) (-112))))) +((-3646 (((-112) $) 47 T ELT)) (-2727 (((-793)) 23 T ELT)) (-1881 ((|#2| $) 51 T ELT) (($ $ (-950)) 121 T ELT)) (-2222 (((-793)) 122 T ELT)) (-3095 (($ (-1298 |#2|)) 20 T ELT)) (-2488 (((-112) $) 134 T ELT)) (-1550 ((|#2| $) 53 T ELT) (($ $ (-950)) 118 T ELT)) (-1993 (((-1203 |#2|) $) NIL T ELT) (((-1203 $) $ (-950)) 109 T ELT)) (-3994 (((-1203 |#2|) $) 95 T ELT)) (-3606 (((-1203 |#2|) $) 91 T ELT) (((-3 (-1203 |#2|) "failed") $ $) 88 T ELT)) (-3207 (($ $ (-1203 |#2|)) 58 T ELT)) (-3443 (((-855 (-950))) 30 T ELT) (((-950)) 48 T ELT)) (-4425 (((-136)) 27 T ELT)) (-3683 (((-855 (-950)) $) 32 T ELT) (((-950) $) 137 T ELT)) (-4062 (($) 128 T ELT)) (-1453 (((-1298 |#2|) $) NIL T ELT) (((-711 |#2|) (-1298 $)) 42 T ELT)) (-2213 (($ $) NIL T ELT) (((-3 $ "failed") $) 98 T ELT)) (-2714 (((-112) $) 45 T ELT))) +(((-340 |#1| |#2|) (-10 -8 (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -2222 ((-793))) (-15 -2213 (|#1| |#1|)) (-15 -3606 ((-3 (-1203 |#2|) "failed") |#1| |#1|)) (-15 -3606 ((-1203 |#2|) |#1|)) (-15 -3994 ((-1203 |#2|) |#1|)) (-15 -3207 (|#1| |#1| (-1203 |#2|))) (-15 -2488 ((-112) |#1|)) (-15 -4062 (|#1|)) (-15 -1881 (|#1| |#1| (-950))) (-15 -1550 (|#1| |#1| (-950))) (-15 -1993 ((-1203 |#1|) |#1| (-950))) (-15 -1881 (|#2| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -3683 ((-950) |#1|)) (-15 -3443 ((-950))) (-15 -1993 ((-1203 |#2|) |#1|)) (-15 -3095 (|#1| (-1298 |#2|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -2727 ((-793))) (-15 -3443 ((-855 (-950)))) (-15 -3683 ((-855 (-950)) |#1|)) (-15 -3646 ((-112) |#1|)) (-15 -2714 ((-112) |#1|)) (-15 -4425 ((-136)))) (-341 |#2|) (-376)) (T -340)) +((-4425 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3443 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-855 (-950))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2727 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3443 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-950)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2222 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4))))) +(-10 -8 (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -2222 ((-793))) (-15 -2213 (|#1| |#1|)) (-15 -3606 ((-3 (-1203 |#2|) "failed") |#1| |#1|)) (-15 -3606 ((-1203 |#2|) |#1|)) (-15 -3994 ((-1203 |#2|) |#1|)) (-15 -3207 (|#1| |#1| (-1203 |#2|))) (-15 -2488 ((-112) |#1|)) (-15 -4062 (|#1|)) (-15 -1881 (|#1| |#1| (-950))) (-15 -1550 (|#1| |#1| (-950))) (-15 -1993 ((-1203 |#1|) |#1| (-950))) (-15 -1881 (|#2| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -3683 ((-950) |#1|)) (-15 -3443 ((-950))) (-15 -1993 ((-1203 |#2|) |#1|)) (-15 -3095 (|#1| (-1298 |#2|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -2727 ((-793))) (-15 -3443 ((-855 (-950)))) (-15 -3683 ((-855 (-950)) |#1|)) (-15 -3646 ((-112) |#1|)) (-15 -2714 ((-112) |#1|)) (-15 -4425 ((-136)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-3646 (((-112) $) 104 T ELT)) (-2727 (((-793)) 100 T ELT)) (-1881 ((|#1| $) 151 T ELT) (($ $ (-950)) 148 (|has| |#1| (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 133 (|has| |#1| (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-2222 (((-793)) 123 (|has| |#1| (-381)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 111 T ELT)) (-3516 ((|#1| $) 112 T ELT)) (-3095 (($ (-1298 |#1|)) 157 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-381)) ELT)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2062 (($) 120 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-3146 (($) 135 (|has| |#1| (-381)) ELT)) (-2681 (((-112) $) 136 (|has| |#1| (-381)) ELT)) (-2953 (($ $ (-793)) 97 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 96 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) 79 T ELT)) (-4059 (((-950) $) 138 (|has| |#1| (-381)) ELT) (((-855 (-950)) $) 94 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) 35 T ELT)) (-3011 (($) 146 (|has| |#1| (-381)) ELT)) (-2488 (((-112) $) 145 (|has| |#1| (-381)) ELT)) (-1550 ((|#1| $) 152 T ELT) (($ $ (-950)) 149 (|has| |#1| (-381)) ELT)) (-2204 (((-3 $ "failed") $) 124 (|has| |#1| (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-1993 (((-1203 |#1|) $) 156 T ELT) (((-1203 $) $ (-950)) 150 (|has| |#1| (-381)) ELT)) (-3193 (((-950) $) 121 (|has| |#1| (-381)) ELT)) (-3994 (((-1203 |#1|) $) 142 (|has| |#1| (-381)) ELT)) (-3606 (((-1203 |#1|) $) 141 (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) 140 (|has| |#1| (-381)) ELT)) (-3207 (($ $ (-1203 |#1|)) 143 (|has| |#1| (-381)) ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-2199 (($) 125 (|has| |#1| (-381)) CONST)) (-2087 (($ (-950)) 122 (|has| |#1| (-381)) ELT)) (-2323 (((-112) $) 103 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2847 (($) 144 (|has| |#1| (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 132 (|has| |#1| (-381)) ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3443 (((-855 (-950))) 101 T ELT) (((-950)) 154 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-4375 (((-793) $) 137 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 95 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) 109 T ELT)) (-2031 (($ $ (-793)) 128 (|has| |#1| (-381)) ELT) (($ $) 126 (|has| |#1| (-381)) ELT)) (-3683 (((-855 (-950)) $) 102 T ELT) (((-950) $) 153 T ELT)) (-4269 (((-1203 |#1|)) 155 T ELT)) (-3430 (($) 134 (|has| |#1| (-381)) ELT)) (-4062 (($) 147 (|has| |#1| (-381)) ELT)) (-1453 (((-1298 |#1|) $) 159 T ELT) (((-711 |#1|) (-1298 $)) 158 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 131 (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT) (($ |#1|) 110 T ELT)) (-2213 (($ $) 130 (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) 93 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3198 (((-1298 $)) 161 T ELT) (((-1298 $) (-950)) 160 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2714 (((-112) $) 105 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1536 (($ $) 99 (|has| |#1| (-381)) ELT) (($ $ (-793)) 98 (|has| |#1| (-381)) ELT)) (-1676 (($ $ (-793)) 129 (|has| |#1| (-381)) ELT) (($ $) 127 (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) +(((-341 |#1|) (-142) (-376)) (T -341)) +((-3198 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1298 *1)) (-4 *1 (-341 *3)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-950)) (-4 *4 (-376)) (-5 *2 (-1298 *1)) (-4 *1 (-341 *4)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1298 *3)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)))) (-3095 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) (-4269 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) (-3443 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-950)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-950)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-1993 (*1 *2 *1 *3) (-12 (-5 *3 (-950)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1203 *1)) (-4 *1 (-341 *4)))) (-1550 (*1 *1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-4062 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-3011 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-112)))) (-2847 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-3207 (*1 *1 *1 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3)))) (-3606 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1203 *3))))) +(-13 (-1317 |t#1|) (-1069 |t#1|) (-10 -8 (-15 -3198 ((-1298 $))) (-15 -3198 ((-1298 $) (-950))) (-15 -1453 ((-1298 |t#1|) $)) (-15 -1453 ((-711 |t#1|) (-1298 $))) (-15 -3095 ($ (-1298 |t#1|))) (-15 -1993 ((-1203 |t#1|) $)) (-15 -4269 ((-1203 |t#1|))) (-15 -3443 ((-950))) (-15 -3683 ((-950) $)) (-15 -1550 (|t#1| $)) (-15 -1881 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-362)) (-15 -1993 ((-1203 $) $ (-950))) (-15 -1550 ($ $ (-950))) (-15 -1881 ($ $ (-950))) (-15 -4062 ($)) (-15 -3011 ($)) (-15 -2488 ((-112) $)) (-15 -2847 ($)) (-15 -3207 ($ $ (-1203 |t#1|))) (-15 -3994 ((-1203 |t#1|) $)) (-15 -3606 ((-1203 |t#1|) $)) (-15 -3606 ((-3 (-1203 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2230 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1317 |#1|) . T) ((-376) . T) ((-416) -2230 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-362) |has| |#1| (-381)) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) |has| |#1| (-381)) ((-1248) . T) ((-1252) . T) ((-1305 |#1|) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3698 (($ (-1206) $) 100 T ELT)) (-3737 (($) 89 T ELT)) (-2946 (((-1151) (-1151)) 9 T ELT)) (-1439 (($) 90 T ELT)) (-1462 (($) 104 T ELT) (($ (-328 (-721))) 112 T ELT) (($ (-328 (-723))) 108 T ELT) (($ (-328 (-716))) 116 T ELT) (($ (-328 (-392))) 123 T ELT) (($ (-328 (-578))) 119 T ELT) (($ (-328 (-172 (-392)))) 127 T ELT)) (-3462 (($ (-1206) $) 101 T ELT)) (-3807 (($ (-666 (-886))) 91 T ELT)) (-1558 (((-1303) $) 87 T ELT)) (-1777 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3766 (($ (-1151)) 58 T ELT)) (-3912 (((-1135) $) 30 T ELT)) (-4359 (($ (-1123 (-981 (-578))) $) 97 T ELT) (($ (-1123 (-981 (-578))) (-981 (-578)) $) 98 T ELT)) (-2865 (($ (-1151)) 99 T ELT)) (-3514 (($ (-1206) $) 129 T ELT) (($ (-1206) $ $) 130 T ELT)) (-1511 (($ (-1207) (-666 (-1207))) 88 T ELT)) (-2507 (($ (-1189)) 94 T ELT) (($ (-666 (-1189))) 92 T ELT)) (-2411 (((-886) $) 132 T ELT)) (-3996 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-666 (-981 (-578)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4186 (-112)) (|:| -4120 (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |blockBranch| (-666 $)) (|:| |commentBranch| (-666 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -2246 (-1123 (-981 (-578)))) (|:| |span| (-981 (-578))) (|:| -4117 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4117 $))) (|:| |commonBranch| (-2 (|:| -4107 (-1207)) (|:| |contents| (-666 (-1207))))) (|:| |printBranch| (-666 (-886)))) $) 50 T ELT)) (-3344 (($ (-1189)) 202 T ELT)) (-3160 (($ (-666 $)) 128 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4335 (($ (-1207) (-1189)) 135 T ELT) (($ (-1207) (-328 (-723))) 175 T ELT) (($ (-1207) (-328 (-721))) 176 T ELT) (($ (-1207) (-328 (-716))) 177 T ELT) (($ (-1207) (-711 (-723))) 138 T ELT) (($ (-1207) (-711 (-721))) 141 T ELT) (($ (-1207) (-711 (-716))) 144 T ELT) (($ (-1207) (-1298 (-723))) 147 T ELT) (($ (-1207) (-1298 (-721))) 150 T ELT) (($ (-1207) (-1298 (-716))) 153 T ELT) (($ (-1207) (-711 (-328 (-723)))) 156 T ELT) (($ (-1207) (-711 (-328 (-721)))) 159 T ELT) (($ (-1207) (-711 (-328 (-716)))) 162 T ELT) (($ (-1207) (-1298 (-328 (-723)))) 165 T ELT) (($ (-1207) (-1298 (-328 (-721)))) 168 T ELT) (($ (-1207) (-1298 (-328 (-716)))) 171 T ELT) (($ (-1207) (-666 (-981 (-578))) (-328 (-723))) 172 T ELT) (($ (-1207) (-666 (-981 (-578))) (-328 (-721))) 173 T ELT) (($ (-1207) (-666 (-981 (-578))) (-328 (-716))) 174 T ELT) (($ (-1207) (-328 (-578))) 199 T ELT) (($ (-1207) (-328 (-392))) 200 T ELT) (($ (-1207) (-328 (-172 (-392)))) 201 T ELT) (($ (-1207) (-711 (-328 (-578)))) 180 T ELT) (($ (-1207) (-711 (-328 (-392)))) 183 T ELT) (($ (-1207) (-711 (-328 (-172 (-392))))) 186 T ELT) (($ (-1207) (-1298 (-328 (-578)))) 189 T ELT) (($ (-1207) (-1298 (-328 (-392)))) 192 T ELT) (($ (-1207) (-1298 (-328 (-172 (-392))))) 195 T ELT) (($ (-1207) (-666 (-981 (-578))) (-328 (-578))) 196 T ELT) (($ (-1207) (-666 (-981 (-578))) (-328 (-392))) 197 T ELT) (($ (-1207) (-666 (-981 (-578))) (-328 (-172 (-392)))) 198 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-342) (-13 (-1131) (-10 -8 (-15 -4359 ($ (-1123 (-981 (-578))) $)) (-15 -4359 ($ (-1123 (-981 (-578))) (-981 (-578)) $)) (-15 -3698 ($ (-1206) $)) (-15 -3462 ($ (-1206) $)) (-15 -3766 ($ (-1151))) (-15 -2865 ($ (-1151))) (-15 -2507 ($ (-1189))) (-15 -2507 ($ (-666 (-1189)))) (-15 -3344 ($ (-1189))) (-15 -1462 ($)) (-15 -1462 ($ (-328 (-721)))) (-15 -1462 ($ (-328 (-723)))) (-15 -1462 ($ (-328 (-716)))) (-15 -1462 ($ (-328 (-392)))) (-15 -1462 ($ (-328 (-578)))) (-15 -1462 ($ (-328 (-172 (-392))))) (-15 -3514 ($ (-1206) $)) (-15 -3514 ($ (-1206) $ $)) (-15 -4335 ($ (-1207) (-1189))) (-15 -4335 ($ (-1207) (-328 (-723)))) (-15 -4335 ($ (-1207) (-328 (-721)))) (-15 -4335 ($ (-1207) (-328 (-716)))) (-15 -4335 ($ (-1207) (-711 (-723)))) (-15 -4335 ($ (-1207) (-711 (-721)))) (-15 -4335 ($ (-1207) (-711 (-716)))) (-15 -4335 ($ (-1207) (-1298 (-723)))) (-15 -4335 ($ (-1207) (-1298 (-721)))) (-15 -4335 ($ (-1207) (-1298 (-716)))) (-15 -4335 ($ (-1207) (-711 (-328 (-723))))) (-15 -4335 ($ (-1207) (-711 (-328 (-721))))) (-15 -4335 ($ (-1207) (-711 (-328 (-716))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-723))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-721))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-716))))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-723)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-721)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-716)))) (-15 -4335 ($ (-1207) (-328 (-578)))) (-15 -4335 ($ (-1207) (-328 (-392)))) (-15 -4335 ($ (-1207) (-328 (-172 (-392))))) (-15 -4335 ($ (-1207) (-711 (-328 (-578))))) (-15 -4335 ($ (-1207) (-711 (-328 (-392))))) (-15 -4335 ($ (-1207) (-711 (-328 (-172 (-392)))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-578))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-392))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-172 (-392)))))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-578)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-392)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-172 (-392))))) (-15 -3160 ($ (-666 $))) (-15 -3737 ($)) (-15 -1439 ($)) (-15 -3807 ($ (-666 (-886)))) (-15 -1511 ($ (-1207) (-666 (-1207)))) (-15 -1777 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3996 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-666 (-981 (-578)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4186 (-112)) (|:| -4120 (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |blockBranch| (-666 $)) (|:| |commentBranch| (-666 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -2246 (-1123 (-981 (-578)))) (|:| |span| (-981 (-578))) (|:| -4117 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4117 $))) (|:| |commonBranch| (-2 (|:| -4107 (-1207)) (|:| |contents| (-666 (-1207))))) (|:| |printBranch| (-666 (-886)))) $)) (-15 -1558 ((-1303) $)) (-15 -3912 ((-1135) $)) (-15 -2946 ((-1151) (-1151)))))) (T -342)) +((-4359 (*1 *1 *2 *1) (-12 (-5 *2 (-1123 (-981 (-578)))) (-5 *1 (-342)))) (-4359 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1123 (-981 (-578)))) (-5 *3 (-981 (-578))) (-5 *1 (-342)))) (-3698 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))) (-2865 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))) (-2507 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-2507 (*1 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-342)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-1462 (*1 *1) (-5 *1 (-342))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-328 (-721))) (-5 *1 (-342)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-328 (-723))) (-5 *1 (-342)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-328 (-716))) (-5 *1 (-342)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-328 (-392))) (-5 *1 (-342)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-328 (-578))) (-5 *1 (-342)))) (-1462 (*1 *1 *2) (-12 (-5 *2 (-328 (-172 (-392)))) (-5 *1 (-342)))) (-3514 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-3514 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-723))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-721))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-716))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-723))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-721))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-716))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-723))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-721))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-716))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-723)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-721)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-716)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-723)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-721)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-716)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-328 (-723))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-328 (-721))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-328 (-716))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-578))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-392))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-172 (-392)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-578)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-392)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-172 (-392))))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-578)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-392)))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-172 (-392))))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-328 (-578))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-328 (-392))) (-5 *1 (-342)))) (-4335 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-328 (-172 (-392)))) (-5 *1 (-342)))) (-3160 (*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-5 *1 (-342)))) (-3737 (*1 *1) (-5 *1 (-342))) (-1439 (*1 *1) (-5 *1 (-342))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-342)))) (-1511 (*1 *1 *2 *3) (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-666 (-981 (-578)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -4186 (-112)) (|:| -4120 (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |blockBranch| (-666 (-342))) (|:| |commentBranch| (-666 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -2246 (-1123 (-981 (-578)))) (|:| |span| (-981 (-578))) (|:| -4117 (-342)))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4117 (-342)))) (|:| |commonBranch| (-2 (|:| -4107 (-1207)) (|:| |contents| (-666 (-1207))))) (|:| |printBranch| (-666 (-886))))) (-5 *1 (-342)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-342)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342))))) +(-13 (-1131) (-10 -8 (-15 -4359 ($ (-1123 (-981 (-578))) $)) (-15 -4359 ($ (-1123 (-981 (-578))) (-981 (-578)) $)) (-15 -3698 ($ (-1206) $)) (-15 -3462 ($ (-1206) $)) (-15 -3766 ($ (-1151))) (-15 -2865 ($ (-1151))) (-15 -2507 ($ (-1189))) (-15 -2507 ($ (-666 (-1189)))) (-15 -3344 ($ (-1189))) (-15 -1462 ($)) (-15 -1462 ($ (-328 (-721)))) (-15 -1462 ($ (-328 (-723)))) (-15 -1462 ($ (-328 (-716)))) (-15 -1462 ($ (-328 (-392)))) (-15 -1462 ($ (-328 (-578)))) (-15 -1462 ($ (-328 (-172 (-392))))) (-15 -3514 ($ (-1206) $)) (-15 -3514 ($ (-1206) $ $)) (-15 -4335 ($ (-1207) (-1189))) (-15 -4335 ($ (-1207) (-328 (-723)))) (-15 -4335 ($ (-1207) (-328 (-721)))) (-15 -4335 ($ (-1207) (-328 (-716)))) (-15 -4335 ($ (-1207) (-711 (-723)))) (-15 -4335 ($ (-1207) (-711 (-721)))) (-15 -4335 ($ (-1207) (-711 (-716)))) (-15 -4335 ($ (-1207) (-1298 (-723)))) (-15 -4335 ($ (-1207) (-1298 (-721)))) (-15 -4335 ($ (-1207) (-1298 (-716)))) (-15 -4335 ($ (-1207) (-711 (-328 (-723))))) (-15 -4335 ($ (-1207) (-711 (-328 (-721))))) (-15 -4335 ($ (-1207) (-711 (-328 (-716))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-723))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-721))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-716))))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-723)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-721)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-716)))) (-15 -4335 ($ (-1207) (-328 (-578)))) (-15 -4335 ($ (-1207) (-328 (-392)))) (-15 -4335 ($ (-1207) (-328 (-172 (-392))))) (-15 -4335 ($ (-1207) (-711 (-328 (-578))))) (-15 -4335 ($ (-1207) (-711 (-328 (-392))))) (-15 -4335 ($ (-1207) (-711 (-328 (-172 (-392)))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-578))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-392))))) (-15 -4335 ($ (-1207) (-1298 (-328 (-172 (-392)))))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-578)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-392)))) (-15 -4335 ($ (-1207) (-666 (-981 (-578))) (-328 (-172 (-392))))) (-15 -3160 ($ (-666 $))) (-15 -3737 ($)) (-15 -1439 ($)) (-15 -3807 ($ (-666 (-886)))) (-15 -1511 ($ (-1207) (-666 (-1207)))) (-15 -1777 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3996 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-666 (-981 (-578)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4186 (-112)) (|:| -4120 (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |blockBranch| (-666 $)) (|:| |commentBranch| (-666 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -2246 (-1123 (-981 (-578)))) (|:| |span| (-981 (-578))) (|:| -4117 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4117 $))) (|:| |commonBranch| (-2 (|:| -4107 (-1207)) (|:| |contents| (-666 (-1207))))) (|:| |printBranch| (-666 (-886)))) $)) (-15 -1558 ((-1303) $)) (-15 -3912 ((-1135) $)) (-15 -2946 ((-1151) (-1151))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2579 (((-112) $) 13 T ELT)) (-1349 (($ |#1|) 10 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1361 (($ |#1|) 12 T ELT)) (-2411 (((-886) $) 19 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3461 ((|#1| $) 14 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 21 T ELT))) +(((-343 |#1|) (-13 (-871) (-10 -8 (-15 -1349 ($ |#1|)) (-15 -1361 ($ |#1|)) (-15 -2579 ((-112) $)) (-15 -3461 (|#1| $)))) (-871)) (T -343)) +((-1349 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) (-1361 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3)) (-4 *3 (-871)))) (-3461 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871))))) +(-13 (-871) (-10 -8 (-15 -1349 ($ |#1|)) (-15 -1361 ($ |#1|)) (-15 -2579 ((-112) $)) (-15 -3461 (|#1| $)))) +((-3797 (((-342) (-1207) (-981 (-578))) 23 T ELT)) (-2249 (((-342) (-1207) (-981 (-578))) 27 T ELT)) (-2939 (((-342) (-1207) (-1123 (-981 (-578))) (-1123 (-981 (-578)))) 26 T ELT) (((-342) (-1207) (-981 (-578)) (-981 (-578))) 24 T ELT)) (-3948 (((-342) (-1207) (-981 (-578))) 31 T ELT))) +(((-344) (-10 -7 (-15 -3797 ((-342) (-1207) (-981 (-578)))) (-15 -2939 ((-342) (-1207) (-981 (-578)) (-981 (-578)))) (-15 -2939 ((-342) (-1207) (-1123 (-981 (-578))) (-1123 (-981 (-578))))) (-15 -2249 ((-342) (-1207) (-981 (-578)))) (-15 -3948 ((-342) (-1207) (-981 (-578)))))) (T -344)) +((-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2939 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1123 (-981 (-578)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2939 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) (-5 *1 (-344)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) (-5 *1 (-344))))) +(-10 -7 (-15 -3797 ((-342) (-1207) (-981 (-578)))) (-15 -2939 ((-342) (-1207) (-981 (-578)) (-981 (-578)))) (-15 -2939 ((-342) (-1207) (-1123 (-981 (-578))) (-1123 (-981 (-578))))) (-15 -2249 ((-342) (-1207) (-981 (-578)))) (-15 -3948 ((-342) (-1207) (-981 (-578))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3291 (((-520) $) 20 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1926 (((-987 (-793)) $) 18 T ELT)) (-2333 (((-258) $) 7 T ELT)) (-2411 (((-886) $) 26 T ELT)) (-1621 (((-987 (-186 (-141))) $) 16 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1952 (((-666 (-897 (-1212) (-793))) $) 12 T ELT)) (-2384 (((-112) $ $) 22 T ELT))) +(((-345) (-13 (-1131) (-10 -8 (-15 -2333 ((-258) $)) (-15 -1952 ((-666 (-897 (-1212) (-793))) $)) (-15 -1926 ((-987 (-793)) $)) (-15 -1621 ((-987 (-186 (-141))) $)) (-15 -3291 ((-520) $))))) (T -345)) +((-2333 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-666 (-897 (-1212) (-793)))) (-5 *1 (-345)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-987 (-793))) (-5 *1 (-345)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-987 (-186 (-141)))) (-5 *1 (-345)))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345))))) +(-13 (-1131) (-10 -8 (-15 -2333 ((-258) $)) (-15 -1952 ((-666 (-897 (-1212) (-793))) $)) (-15 -1926 ((-987 (-793)) $)) (-15 -1621 ((-987 (-186 (-141))) $)) (-15 -3291 ((-520) $)))) +((-3611 (((-349 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-349 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-346 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3611 ((-349 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-349 |#1| |#2| |#3| |#4|)))) (-376) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1274 |#5|) (-1274 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -346)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-349 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1274 *9)) (-4 *11 (-1274 (-421 *10))) (-5 *2 (-349 *9 *10 *11 *12)) (-5 *1 (-346 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11))))) +(-10 -7 (-15 -3611 ((-349 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-349 |#1| |#2| |#3| |#4|)))) +((-1445 (((-112) $) 14 T ELT))) +(((-347 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1445 ((-112) |#1|))) (-348 |#2| |#3| |#4| |#5|) (-376) (-1274 |#2|) (-1274 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -347)) +NIL +(-10 -8 (-15 -1445 ((-112) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2512 (($ $) 29 T ELT)) (-1445 (((-112) $) 28 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1780 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 35 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2847 (((-3 |#4| "failed") $) 27 T ELT)) (-3907 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 34 T ELT) (($ |#4|) 33 T ELT) (($ |#1| |#1|) 32 T ELT) (($ |#1| |#1| (-578)) 31 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 26 T ELT)) (-2623 (((-2 (|:| -3310 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT))) +(((-348 |#1| |#2| |#3| |#4|) (-142) (-376) (-1274 |t#1|) (-1274 (-421 |t#2|)) (-355 |t#1| |t#2| |t#3|)) (T -348)) +((-1780 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-427 *4 (-421 *4) *5 *6)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-348 *3 *4 *5 *6)))) (-3907 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-4 *1 (-348 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-3907 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1274 *2)) (-4 *4 (-1274 (-421 *3))) (-4 *1 (-348 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-3907 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-578)) (-4 *2 (-376)) (-4 *4 (-1274 *2)) (-4 *5 (-1274 (-421 *4))) (-4 *1 (-348 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -3310 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6))))) (-2512 (*1 *1 *1) (-12 (-4 *1 (-348 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1274 *2)) (-4 *4 (-1274 (-421 *3))) (-4 *5 (-355 *2 *3 *4)))) (-1445 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-112)))) (-2847 (*1 *2 *1) (|partial| -12 (-4 *1 (-348 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-4 *2 (-355 *3 *4 *5)))) (-3907 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 (-421 *3))) (-4 *1 (-348 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1780 ((-427 |t#2| (-421 |t#2|) |t#3| |t#4|) $)) (-15 -3907 ($ (-427 |t#2| (-421 |t#2|) |t#3| |t#4|))) (-15 -3907 ($ |t#4|)) (-15 -3907 ($ |t#1| |t#1|)) (-15 -3907 ($ |t#1| |t#1| (-578))) (-15 -2623 ((-2 (|:| -3310 (-427 |t#2| (-421 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2512 ($ $)) (-15 -1445 ((-112) $)) (-15 -2847 ((-3 |t#4| "failed") $)) (-15 -3907 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2512 (($ $) 33 T ELT)) (-1445 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4200 (((-1298 |#4|) $) 134 T ELT)) (-1780 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 31 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (((-3 |#4| "failed") $) 36 T ELT)) (-2770 (((-1298 |#4|) $) 126 T ELT)) (-3907 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-578)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-2623 (((-2 (|:| -3310 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-2411 (((-886) $) 17 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 14 T CONST)) (-2384 (((-112) $ $) 20 T ELT)) (-2484 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 25 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 23 T ELT))) +(((-349 |#1| |#2| |#3| |#4|) (-13 (-348 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2770 ((-1298 |#4|) $)) (-15 -4200 ((-1298 |#4|) $)))) (-376) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -349)) +((-2770 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-1298 *6)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-4200 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-1298 *6)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) +(-13 (-348 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2770 ((-1298 |#4|) $)) (-15 -4200 ((-1298 |#4|) $)))) +((-3364 (($ $ (-1207) |#2|) NIL T ELT) (($ $ (-666 (-1207)) (-666 |#2|)) 20 T ELT) (($ $ (-666 (-306 |#2|))) 15 T ELT) (($ $ (-306 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL T ELT)) (-2436 (($ $ |#2|) 11 T ELT))) +(((-350 |#1| |#2|) (-10 -8 (-15 -2436 (|#1| |#1| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#2| |#2|)) (-15 -3364 (|#1| |#1| (-306 |#2|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#2|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 |#2|))) (-15 -3364 (|#1| |#1| (-1207) |#2|))) (-351 |#2|) (-1131)) (T -350)) +NIL +(-10 -8 (-15 -2436 (|#1| |#1| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#2| |#2|)) (-15 -3364 (|#1| |#1| (-306 |#2|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#2|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 |#2|))) (-15 -3364 (|#1| |#1| (-1207) |#2|))) +((-3611 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3364 (($ $ (-1207) |#1|) 17 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) 16 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-666 (-306 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-2436 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT))) +(((-351 |#1|) (-142) (-1131)) (T -351)) +((-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1131))))) +(-13 (-10 -8 (-15 -3611 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-528 (-1207) |t#1|)) (-6 (-528 (-1207) |t#1|)) |%noBranch|))) +(((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-1248) |has| |#1| (-298 |#1| |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1207)) $) NIL T ELT)) (-3108 (((-112)) 96 T ELT) (((-112) (-112)) 97 T ELT)) (-4318 (((-666 (-631 $)) $) NIL T ELT)) (-1502 (($ $) NIL T ELT)) (-1372 (($ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3584 (($ $ (-306 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT)) (-2811 (($ $) NIL T ELT)) (-1478 (($ $) NIL T ELT)) (-1349 (($ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-631 $) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 $ "failed") (-328 |#3|)) 76 T ELT) (((-3 $ "failed") (-1207)) 103 T ELT) (((-3 $ "failed") (-328 (-578))) 64 (|has| |#3| (-1069 (-578))) ELT) (((-3 $ "failed") (-421 (-981 (-578)))) 70 (|has| |#3| (-1069 (-578))) ELT) (((-3 $ "failed") (-981 (-578))) 65 (|has| |#3| (-1069 (-578))) ELT) (((-3 $ "failed") (-328 (-392))) 94 (|has| |#3| (-1069 (-392))) ELT) (((-3 $ "failed") (-421 (-981 (-392)))) 88 (|has| |#3| (-1069 (-392))) ELT) (((-3 $ "failed") (-981 (-392))) 83 (|has| |#3| (-1069 (-392))) ELT)) (-3516 (((-631 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-328 |#3|)) 77 T ELT) (($ (-1207)) 104 T ELT) (($ (-328 (-578))) 66 (|has| |#3| (-1069 (-578))) ELT) (($ (-421 (-981 (-578)))) 71 (|has| |#3| (-1069 (-578))) ELT) (($ (-981 (-578))) 67 (|has| |#3| (-1069 (-578))) ELT) (($ (-328 (-392))) 95 (|has| |#3| (-1069 (-392))) ELT) (($ (-421 (-981 (-392)))) 89 (|has| |#3| (-1069 (-392))) ELT) (($ (-981 (-392))) 85 (|has| |#3| (-1069 (-392))) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2551 (($) 101 T ELT)) (-3783 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3968 (((-666 (-116)) $) NIL T ELT)) (-4397 (((-116) (-116)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2382 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-2782 (((-1203 $) (-631 $)) NIL (|has| $ (-1080)) ELT)) (-3611 (($ (-1 $ $) (-631 $)) NIL T ELT)) (-3238 (((-3 (-631 $) "failed") $) NIL T ELT)) (-1841 (($ $) 99 T ELT)) (-3864 (($ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4386 (((-666 (-631 $)) $) NIL T ELT)) (-2594 (($ (-116) $) 98 T ELT) (($ (-116) (-666 $)) NIL T ELT)) (-1413 (((-112) $ (-116)) NIL T ELT) (((-112) $ (-1207)) NIL T ELT)) (-1737 (((-793) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3139 (((-112) $ $) NIL T ELT) (((-112) $ (-1207)) NIL T ELT)) (-3587 (($ $) NIL T ELT)) (-3873 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-3364 (($ $ (-631 $) $) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-666 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-116) (-1 $ (-666 $))) NIL T ELT) (($ $ (-116) (-1 $ $)) NIL T ELT)) (-2436 (($ (-116) $) NIL T ELT) (($ (-116) $ $) NIL T ELT) (($ (-116) $ $ $) NIL T ELT) (($ (-116) $ $ $ $) NIL T ELT) (($ (-116) (-666 $)) NIL T ELT)) (-2909 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2031 (($ $ (-1207)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-4269 (($ $) NIL (|has| $ (-1080)) ELT)) (-1489 (($ $) NIL T ELT)) (-1361 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-631 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-578)) NIL T ELT) (((-328 |#3|) $) 102 T ELT)) (-3753 (((-793)) NIL T CONST)) (-2209 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3619 (((-112) (-116)) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1436 (($ $) NIL T ELT)) (-1414 (($ $) NIL T ELT)) (-1424 (($ $) NIL T ELT)) (-2628 (($ $) NIL T ELT)) (-2368 (($) 100 T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1207)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-950) $) NIL T ELT))) +(((-352 |#1| |#2| |#3|) (-13 (-314) (-38 |#3|) (-1069 |#3|) (-927 (-1207)) (-10 -8 (-15 -3516 ($ (-328 |#3|))) (-15 -2818 ((-3 $ "failed") (-328 |#3|))) (-15 -3516 ($ (-1207))) (-15 -2818 ((-3 $ "failed") (-1207))) (-15 -2411 ((-328 |#3|) $)) (IF (|has| |#3| (-1069 (-578))) (PROGN (-15 -3516 ($ (-328 (-578)))) (-15 -2818 ((-3 $ "failed") (-328 (-578)))) (-15 -3516 ($ (-421 (-981 (-578))))) (-15 -2818 ((-3 $ "failed") (-421 (-981 (-578))))) (-15 -3516 ($ (-981 (-578)))) (-15 -2818 ((-3 $ "failed") (-981 (-578))))) |%noBranch|) (IF (|has| |#3| (-1069 (-392))) (PROGN (-15 -3516 ($ (-328 (-392)))) (-15 -2818 ((-3 $ "failed") (-328 (-392)))) (-15 -3516 ($ (-421 (-981 (-392))))) (-15 -2818 ((-3 $ "failed") (-421 (-981 (-392))))) (-15 -3516 ($ (-981 (-392)))) (-15 -2818 ((-3 $ "failed") (-981 (-392))))) |%noBranch|) (-15 -2628 ($ $)) (-15 -2811 ($ $)) (-15 -3587 ($ $)) (-15 -3864 ($ $)) (-15 -1841 ($ $)) (-15 -1349 ($ $)) (-15 -1361 ($ $)) (-15 -1372 ($ $)) (-15 -1414 ($ $)) (-15 -1424 ($ $)) (-15 -1436 ($ $)) (-15 -1478 ($ $)) (-15 -1489 ($ $)) (-15 -1502 ($ $)) (-15 -2551 ($)) (-15 -2949 ((-666 (-1207)) $)) (-15 -3108 ((-112))) (-15 -3108 ((-112) (-112))))) (-666 (-1207)) (-666 (-1207)) (-401)) (T -352)) +((-3516 (*1 *1 *2) (-12 (-5 *2 (-328 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-328 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 *2)) (-14 *4 (-666 *2)) (-4 *5 (-401)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 *2)) (-14 *4 (-666 *2)) (-4 *5 (-401)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-328 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-328 (-578))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-328 (-578))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-421 (-981 (-578)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-981 (-578)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-981 (-578))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-981 (-578))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-328 (-392))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-328 (-392))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-421 (-981 (-392)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-981 (-392)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-981 (-392))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-981 (-392))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-2628 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-2811 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-3587 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-3864 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1841 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1349 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1361 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1372 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1414 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1424 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1436 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1478 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1489 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-1502 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-2551 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-3108 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401))))) +(-13 (-314) (-38 |#3|) (-1069 |#3|) (-927 (-1207)) (-10 -8 (-15 -3516 ($ (-328 |#3|))) (-15 -2818 ((-3 $ "failed") (-328 |#3|))) (-15 -3516 ($ (-1207))) (-15 -2818 ((-3 $ "failed") (-1207))) (-15 -2411 ((-328 |#3|) $)) (IF (|has| |#3| (-1069 (-578))) (PROGN (-15 -3516 ($ (-328 (-578)))) (-15 -2818 ((-3 $ "failed") (-328 (-578)))) (-15 -3516 ($ (-421 (-981 (-578))))) (-15 -2818 ((-3 $ "failed") (-421 (-981 (-578))))) (-15 -3516 ($ (-981 (-578)))) (-15 -2818 ((-3 $ "failed") (-981 (-578))))) |%noBranch|) (IF (|has| |#3| (-1069 (-392))) (PROGN (-15 -3516 ($ (-328 (-392)))) (-15 -2818 ((-3 $ "failed") (-328 (-392)))) (-15 -3516 ($ (-421 (-981 (-392))))) (-15 -2818 ((-3 $ "failed") (-421 (-981 (-392))))) (-15 -3516 ($ (-981 (-392)))) (-15 -2818 ((-3 $ "failed") (-981 (-392))))) |%noBranch|) (-15 -2628 ($ $)) (-15 -2811 ($ $)) (-15 -3587 ($ $)) (-15 -3864 ($ $)) (-15 -1841 ($ $)) (-15 -1349 ($ $)) (-15 -1361 ($ $)) (-15 -1372 ($ $)) (-15 -1414 ($ $)) (-15 -1424 ($ $)) (-15 -1436 ($ $)) (-15 -1478 ($ $)) (-15 -1489 ($ $)) (-15 -1502 ($ $)) (-15 -2551 ($)) (-15 -2949 ((-666 (-1207)) $)) (-15 -3108 ((-112))) (-15 -3108 ((-112) (-112))))) +((-3611 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-353 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3611 (|#8| (-1 |#5| |#1|) |#4|))) (-1252) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-1252) (-1274 |#5|) (-1274 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -353)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252)) (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-4 *9 (-1274 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-353 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1274 (-421 *9)))))) +(-10 -7 (-15 -3611 (|#8| (-1 |#5| |#1|) |#4|))) +((-2444 (((-2 (|:| |num| (-1298 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-3095 (($ (-1298 (-421 |#3|)) (-1298 $)) NIL T ELT) (($ (-1298 (-421 |#3|))) NIL T ELT) (($ (-1298 |#3|) |#3|) 173 T ELT)) (-4411 (((-1298 $) (-1298 $)) 156 T ELT)) (-4345 (((-666 (-666 |#2|))) 126 T ELT)) (-2459 (((-112) |#2| |#2|) 76 T ELT)) (-2111 (($ $) 148 T ELT)) (-4174 (((-793)) 172 T ELT)) (-2277 (((-1298 $) (-1298 $)) 218 T ELT)) (-1910 (((-666 (-981 |#2|)) (-1207)) 115 T ELT)) (-1669 (((-112) $) 169 T ELT)) (-3321 (((-112) $) 27 T ELT) (((-112) $ |#2|) 31 T ELT) (((-112) $ |#3|) 222 T ELT)) (-3542 (((-3 |#3| "failed")) 52 T ELT)) (-3631 (((-793)) 184 T ELT)) (-2436 ((|#2| $ |#2| |#2|) 140 T ELT)) (-2153 (((-3 |#3| "failed")) 71 T ELT)) (-2031 (($ $ (-1 (-421 |#3|) (-421 |#3|))) NIL T ELT) (($ $ (-1 (-421 |#3|) (-421 |#3|)) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 226 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3597 (((-1298 $) (-1298 $)) 162 T ELT)) (-2684 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-2069 (((-112)) 34 T ELT))) +(((-354 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -4345 ((-666 (-666 |#2|)))) (-15 -1910 ((-666 (-981 |#2|)) (-1207))) (-15 -2684 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3542 ((-3 |#3| "failed"))) (-15 -2153 ((-3 |#3| "failed"))) (-15 -2436 (|#2| |#1| |#2| |#2|)) (-15 -2111 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3321 ((-112) |#1| |#3|)) (-15 -3321 ((-112) |#1| |#2|)) (-15 -3095 (|#1| (-1298 |#3|) |#3|)) (-15 -2444 ((-2 (|:| |num| (-1298 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4411 ((-1298 |#1|) (-1298 |#1|))) (-15 -2277 ((-1298 |#1|) (-1298 |#1|))) (-15 -3597 ((-1298 |#1|) (-1298 |#1|))) (-15 -3321 ((-112) |#1|)) (-15 -1669 ((-112) |#1|)) (-15 -2459 ((-112) |#2| |#2|)) (-15 -2069 ((-112))) (-15 -3631 ((-793))) (-15 -4174 ((-793))) (-15 -2031 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -2031 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -3095 (|#1| (-1298 (-421 |#3|)))) (-15 -3095 (|#1| (-1298 (-421 |#3|)) (-1298 |#1|)))) (-355 |#2| |#3| |#4|) (-1252) (-1274 |#2|) (-1274 (-421 |#3|))) (T -354)) +((-4174 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-3631 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-2069 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-5 *2 (-112)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-2459 (*1 *2 *3 *3) (-12 (-4 *3 (-1252)) (-4 *5 (-1274 *3)) (-4 *6 (-1274 (-421 *5))) (-5 *2 (-112)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-2153 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1274 (-421 *2))) (-4 *2 (-1274 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-3542 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1274 (-421 *2))) (-4 *2 (-1274 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-5 *2 (-666 (-981 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-4345 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-5 *2 (-666 (-666 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))) +(-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -4345 ((-666 (-666 |#2|)))) (-15 -1910 ((-666 (-981 |#2|)) (-1207))) (-15 -2684 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3542 ((-3 |#3| "failed"))) (-15 -2153 ((-3 |#3| "failed"))) (-15 -2436 (|#2| |#1| |#2| |#2|)) (-15 -2111 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3321 ((-112) |#1| |#3|)) (-15 -3321 ((-112) |#1| |#2|)) (-15 -3095 (|#1| (-1298 |#3|) |#3|)) (-15 -2444 ((-2 (|:| |num| (-1298 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4411 ((-1298 |#1|) (-1298 |#1|))) (-15 -2277 ((-1298 |#1|) (-1298 |#1|))) (-15 -3597 ((-1298 |#1|) (-1298 |#1|))) (-15 -3321 ((-112) |#1|)) (-15 -1669 ((-112) |#1|)) (-15 -2459 ((-112) |#2| |#2|)) (-15 -2069 ((-112))) (-15 -3631 ((-793))) (-15 -4174 ((-793))) (-15 -2031 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -2031 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -3095 (|#1| (-1298 (-421 |#3|)))) (-15 -3095 (|#1| (-1298 (-421 |#3|)) (-1298 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2444 (((-2 (|:| |num| (-1298 |#2|)) (|:| |den| |#2|)) $) 211 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 105 (|has| (-421 |#2|) (-376)) ELT)) (-2987 (($ $) 106 (|has| (-421 |#2|) (-376)) ELT)) (-3087 (((-112) $) 108 (|has| (-421 |#2|) (-376)) ELT)) (-4306 (((-711 (-421 |#2|)) (-1298 $)) 53 T ELT) (((-711 (-421 |#2|))) 68 T ELT)) (-1881 (((-421 |#2|) $) 59 T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 158 (|has| (-421 |#2|) (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 125 (|has| (-421 |#2|) (-376)) ELT)) (-3034 (((-432 $) $) 126 (|has| (-421 |#2|) (-376)) ELT)) (-2732 (((-112) $ $) 116 (|has| (-421 |#2|) (-376)) ELT)) (-2222 (((-793)) 99 (|has| (-421 |#2|) (-381)) ELT)) (-2311 (((-112)) 228 T ELT)) (-2201 (((-112) |#1|) 227 T ELT) (((-112) |#2|) 226 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 185 (|has| (-421 |#2|) (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 183 (|has| (-421 |#2|) (-1069 (-421 (-578)))) ELT) (((-3 (-421 |#2|) "failed") $) 180 T ELT)) (-3516 (((-578) $) 184 (|has| (-421 |#2|) (-1069 (-578))) ELT) (((-421 (-578)) $) 182 (|has| (-421 |#2|) (-1069 (-421 (-578)))) ELT) (((-421 |#2|) $) 181 T ELT)) (-3095 (($ (-1298 (-421 |#2|)) (-1298 $)) 55 T ELT) (($ (-1298 (-421 |#2|))) 71 T ELT) (($ (-1298 |#2|) |#2|) 210 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-421 |#2|) (-362)) ELT)) (-3154 (($ $ $) 120 (|has| (-421 |#2|) (-376)) ELT)) (-2009 (((-711 (-421 |#2|)) $ (-1298 $)) 60 T ELT) (((-711 (-421 |#2|)) $) 66 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 177 (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 176 (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-421 |#2|))) (|:| |vec| (-1298 (-421 |#2|)))) (-711 $) (-1298 $)) 175 T ELT) (((-711 (-421 |#2|)) (-711 $)) 174 T ELT)) (-4411 (((-1298 $) (-1298 $)) 216 T ELT)) (-2512 (($ |#3|) 169 T ELT) (((-3 $ "failed") (-421 |#3|)) 166 (|has| (-421 |#2|) (-376)) ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4345 (((-666 (-666 |#1|))) 197 (|has| |#1| (-381)) ELT)) (-2459 (((-112) |#1| |#1|) 232 T ELT)) (-1875 (((-950)) 61 T ELT)) (-2062 (($) 102 (|has| (-421 |#2|) (-381)) ELT)) (-1577 (((-112)) 225 T ELT)) (-4204 (((-112) |#1|) 224 T ELT) (((-112) |#2|) 223 T ELT)) (-3166 (($ $ $) 119 (|has| (-421 |#2|) (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 114 (|has| (-421 |#2|) (-376)) ELT)) (-2111 (($ $) 203 T ELT)) (-3146 (($) 160 (|has| (-421 |#2|) (-362)) ELT)) (-2681 (((-112) $) 161 (|has| (-421 |#2|) (-362)) ELT)) (-2953 (($ $ (-793)) 152 (|has| (-421 |#2|) (-362)) ELT) (($ $) 151 (|has| (-421 |#2|) (-362)) ELT)) (-2159 (((-112) $) 127 (|has| (-421 |#2|) (-376)) ELT)) (-4059 (((-950) $) 163 (|has| (-421 |#2|) (-362)) ELT) (((-855 (-950)) $) 149 (|has| (-421 |#2|) (-362)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-4174 (((-793)) 235 T ELT)) (-2277 (((-1298 $) (-1298 $)) 217 T ELT)) (-1550 (((-421 |#2|) $) 58 T ELT)) (-1910 (((-666 (-981 |#1|)) (-1207)) 198 (|has| |#1| (-376)) ELT)) (-2204 (((-3 $ "failed") $) 153 (|has| (-421 |#2|) (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 123 (|has| (-421 |#2|) (-376)) ELT)) (-1993 ((|#3| $) 51 (|has| (-421 |#2|) (-376)) ELT)) (-3193 (((-950) $) 101 (|has| (-421 |#2|) (-381)) ELT)) (-2501 ((|#3| $) 167 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 179 (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 178 (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-421 |#2|))) (|:| |vec| (-1298 (-421 |#2|)))) (-1298 $) $) 173 T ELT) (((-711 (-421 |#2|)) (-1298 $)) 172 T ELT)) (-2389 (($ (-666 $)) 112 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 111 (|has| (-421 |#2|) (-376)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2698 (((-711 (-421 |#2|))) 212 T ELT)) (-2738 (((-711 (-421 |#2|))) 214 T ELT)) (-3057 (($ $) 128 (|has| (-421 |#2|) (-376)) ELT)) (-1727 (($ (-1298 |#2|) |#2|) 208 T ELT)) (-1722 (((-711 (-421 |#2|))) 213 T ELT)) (-3928 (((-711 (-421 |#2|))) 215 T ELT)) (-3454 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207 T ELT)) (-3963 (((-2 (|:| |num| (-1298 |#2|)) (|:| |den| |#2|)) $) 209 T ELT)) (-1971 (((-1298 $)) 221 T ELT)) (-3098 (((-1298 $)) 222 T ELT)) (-1669 (((-112) $) 220 T ELT)) (-3321 (((-112) $) 219 T ELT) (((-112) $ |#1|) 206 T ELT) (((-112) $ |#2|) 205 T ELT)) (-2199 (($) 154 (|has| (-421 |#2|) (-362)) CONST)) (-2087 (($ (-950)) 100 (|has| (-421 |#2|) (-381)) ELT)) (-3542 (((-3 |#2| "failed")) 200 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3631 (((-793)) 234 T ELT)) (-2847 (($) 171 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 113 (|has| (-421 |#2|) (-376)) ELT)) (-2421 (($ (-666 $)) 110 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 109 (|has| (-421 |#2|) (-376)) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 157 (|has| (-421 |#2|) (-362)) ELT)) (-2800 (((-432 $) $) 124 (|has| (-421 |#2|) (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 121 (|has| (-421 |#2|) (-376)) ELT)) (-3202 (((-3 $ "failed") $ $) 104 (|has| (-421 |#2|) (-376)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 115 (|has| (-421 |#2|) (-376)) ELT)) (-1449 (((-793) $) 117 (|has| (-421 |#2|) (-376)) ELT)) (-2436 ((|#1| $ |#1| |#1|) 202 T ELT)) (-2153 (((-3 |#2| "failed")) 201 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 118 (|has| (-421 |#2|) (-376)) ELT)) (-3232 (((-421 |#2|) (-1298 $)) 54 T ELT) (((-421 |#2|)) 67 T ELT)) (-4375 (((-793) $) 162 (|has| (-421 |#2|) (-362)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| (-421 |#2|) (-362)) ELT)) (-2031 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 136 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 135 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 204 T ELT) (($ $ (-666 (-1207)) (-666 (-793))) 141 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207) (-793)) 140 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-666 (-1207))) 139 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207)) 137 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 147 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-2320 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT) (($ $) 145 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-2320 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT)) (-3345 (((-711 (-421 |#2|)) (-1298 $) (-1 (-421 |#2|) (-421 |#2|))) 165 (|has| (-421 |#2|) (-376)) ELT)) (-4269 ((|#3|) 170 T ELT)) (-3430 (($) 159 (|has| (-421 |#2|) (-362)) ELT)) (-1453 (((-1298 (-421 |#2|)) $ (-1298 $)) 57 T ELT) (((-711 (-421 |#2|)) (-1298 $) (-1298 $)) 56 T ELT) (((-1298 (-421 |#2|)) $) 73 T ELT) (((-711 (-421 |#2|)) (-1298 $)) 72 T ELT)) (-3343 (((-1298 (-421 |#2|)) $) 70 T ELT) (($ (-1298 (-421 |#2|))) 69 T ELT) ((|#3| $) 186 T ELT) (($ |#3|) 168 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 156 (|has| (-421 |#2|) (-362)) ELT)) (-3597 (((-1298 $) (-1298 $)) 218 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 |#2|)) 44 T ELT) (($ (-421 (-578))) 98 (-2230 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-1069 (-421 (-578))))) ELT) (($ $) 103 (|has| (-421 |#2|) (-376)) ELT)) (-2213 (($ $) 155 (|has| (-421 |#2|) (-362)) ELT) (((-3 $ "failed") $) 50 (|has| (-421 |#2|) (-147)) ELT)) (-1566 ((|#3| $) 52 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2285 (((-112)) 231 T ELT)) (-3316 (((-112) |#1|) 230 T ELT) (((-112) |#2|) 229 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3198 (((-1298 $)) 74 T ELT)) (-3138 (((-112) $ $) 107 (|has| (-421 |#2|) (-376)) ELT)) (-2684 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199 T ELT)) (-2069 (((-112)) 233 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 134 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 133 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 144 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207) (-793)) 143 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-666 (-1207))) 142 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207)) 138 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-2320 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 148 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-2320 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT) (($ $) 146 (-2230 (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-2320 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-2320 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 132 (|has| (-421 |#2|) (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 129 (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 |#2|)) 46 T ELT) (($ (-421 |#2|) $) 45 T ELT) (($ (-421 (-578)) $) 131 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-578))) 130 (|has| (-421 |#2|) (-376)) ELT))) +(((-355 |#1| |#2| |#3|) (-142) (-1252) (-1274 |t#1|) (-1274 (-421 |t#2|))) (T -355)) +((-4174 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-793)))) (-3631 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-793)))) (-2069 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-2459 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-2285 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-3316 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-3316 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) (-2311 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-2201 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-2201 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) (-1577 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-4204 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-4204 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) (-3098 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1971 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))))) (-2277 (*1 *2 *2) (-12 (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))))) (-4411 (*1 *2 *2) (-12 (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))))) (-3928 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-2738 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1722 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-2698 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1298 *4)) (|:| |den| *4))))) (-3095 (*1 *1 *2 *3) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1274 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1274 (-421 *3))))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1298 *4)) (|:| |den| *4))))) (-1727 (*1 *1 *2 *3) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1274 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1274 (-421 *3))))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5))))) (-3321 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) (-3321 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1274 *2)) (-4 *4 (-1274 (-421 *3))))) (-2436 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1274 *2)) (-4 *4 (-1274 (-421 *3))))) (-2153 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1274 (-421 *2))) (-4 *2 (-1274 *3)))) (-3542 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1274 (-421 *2))) (-4 *2 (-1274 *3)))) (-2684 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-1252)) (-4 *6 (-1274 (-421 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-4 *4 (-376)) (-5 *2 (-666 (-981 *4))))) (-4345 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-666 (-666 *3)))))) +(-13 (-746 (-421 |t#2|) |t#3|) (-10 -8 (-15 -4174 ((-793))) (-15 -3631 ((-793))) (-15 -2069 ((-112))) (-15 -2459 ((-112) |t#1| |t#1|)) (-15 -2285 ((-112))) (-15 -3316 ((-112) |t#1|)) (-15 -3316 ((-112) |t#2|)) (-15 -2311 ((-112))) (-15 -2201 ((-112) |t#1|)) (-15 -2201 ((-112) |t#2|)) (-15 -1577 ((-112))) (-15 -4204 ((-112) |t#1|)) (-15 -4204 ((-112) |t#2|)) (-15 -3098 ((-1298 $))) (-15 -1971 ((-1298 $))) (-15 -1669 ((-112) $)) (-15 -3321 ((-112) $)) (-15 -3597 ((-1298 $) (-1298 $))) (-15 -2277 ((-1298 $) (-1298 $))) (-15 -4411 ((-1298 $) (-1298 $))) (-15 -3928 ((-711 (-421 |t#2|)))) (-15 -2738 ((-711 (-421 |t#2|)))) (-15 -1722 ((-711 (-421 |t#2|)))) (-15 -2698 ((-711 (-421 |t#2|)))) (-15 -2444 ((-2 (|:| |num| (-1298 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3095 ($ (-1298 |t#2|) |t#2|)) (-15 -3963 ((-2 (|:| |num| (-1298 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1727 ($ (-1298 |t#2|) |t#2|)) (-15 -3454 ((-2 (|:| |num| (-711 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3321 ((-112) $ |t#1|)) (-15 -3321 ((-112) $ |t#2|)) (-15 -2031 ($ $ (-1 |t#2| |t#2|))) (-15 -2111 ($ $)) (-15 -2436 (|t#1| $ |t#1| |t#1|)) (-15 -2153 ((-3 |t#2| "failed"))) (-15 -3542 ((-3 |t#2| "failed"))) (-15 -2684 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -1910 ((-666 (-981 |t#1|)) (-1207))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -4345 ((-666 (-666 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-38 #1=(-421 |#2|)) . T) ((-38 $) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-102) . T) ((-111 #0# #0#) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-147))) ((-149) |has| (-421 |#2|) (-149)) ((-635 #0#) -2230 (|has| (-421 |#2|) (-1069 (-421 (-578)))) (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-635 #1#) . T) ((-635 (-578)) . T) ((-635 $) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-632 (-886)) . T) ((-175) . T) ((-633 |#3|) . T) ((-236 $) -2230 (|has| (-421 |#2|) (-362)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-234 #1#) |has| (-421 |#2|) (-376)) ((-240) -2230 (|has| (-421 |#2|) (-362)) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-239) -2230 (|has| (-421 |#2|) (-362)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-274 #1#) |has| (-421 |#2|) (-376)) ((-250) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-302) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-319) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-376) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-416) |has| (-421 |#2|) (-362)) ((-381) -2230 (|has| (-421 |#2|) (-381)) (|has| (-421 |#2|) (-362))) ((-362) |has| (-421 |#2|) (-362)) ((-383 #1# |#3|) . T) ((-423 #1# |#3|) . T) ((-390 #1#) . T) ((-425 #1#) . T) ((-466) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-570) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-668 #0#) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-668 #1#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-670 #1#) . T) ((-670 #2=(-578)) |has| (-421 |#2|) (-660 (-578))) ((-670 $) . T) ((-662 #0#) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-662 #1#) . T) ((-662 $) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-660 #1#) . T) ((-660 #2#) |has| (-421 |#2|) (-660 (-578))) ((-739 #0#) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-739 #1#) . T) ((-739 $) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-746 #1# |#3|) . T) ((-748) . T) ((-921 $ #3=(-1207)) -2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207))))) ((-927 (-1207)) -12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) ((-929 #3#) -2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207))))) ((-949) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-1069 (-421 (-578))) |has| (-421 |#2|) (-1069 (-421 (-578)))) ((-1069 #1#) . T) ((-1069 (-578)) |has| (-421 |#2|) (-1069 (-578))) ((-1082 #0#) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-1082 #1#) . T) ((-1082 $) . T) ((-1087 #0#) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376))) ((-1087 #1#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) |has| (-421 |#2|) (-362)) ((-1248) . T) ((-1252) -2230 (|has| (-421 |#2|) (-362)) (|has| (-421 |#2|) (-376)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 (((-939 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-939 |#1|) "failed") $) NIL T ELT)) (-3516 (((-939 |#1|) $) NIL T ELT)) (-3095 (($ (-1298 (-939 |#1|))) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2681 (((-112) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT) (($ $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2488 (((-112) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1550 (((-939 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 (-939 |#1|)) $) NIL T ELT) (((-1203 $) $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3193 (((-950) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3994 (((-1203 (-939 |#1|)) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3606 (((-1203 (-939 |#1|)) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 (-1203 (-939 |#1|)) "failed") $ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3207 (($ $ (-1203 (-939 |#1|))) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-939 |#1|) (-381)) CONST)) (-2087 (($ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1371 (((-987 (-1151))) NIL T ELT)) (-2847 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 (-939 |#1|))) NIL T ELT)) (-3430 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-4062 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1453 (((-1298 (-939 |#1|)) $) NIL T ELT) (((-711 (-939 |#1|)) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-939 |#1|)) NIL T ELT)) (-2213 (($ $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT) (((-1298 $) (-950)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT) (($ $ (-939 |#1|)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-939 |#1|)) NIL T ELT) (($ (-939 |#1|) $) NIL T ELT))) +(((-356 |#1| |#2|) (-13 (-341 (-939 |#1|)) (-10 -7 (-15 -1371 ((-987 (-1151)))))) (-950) (-950)) (T -356)) +((-1371 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-356 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950))))) +(-13 (-341 (-939 |#1|)) (-10 -7 (-15 -1371 ((-987 (-1151)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 58 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 56 (|has| |#1| (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 142 T ELT)) (-3516 ((|#1| $) 113 T ELT)) (-3095 (($ (-1298 |#1|)) 130 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) 124 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) 160 (|has| |#1| (-381)) ELT)) (-2681 (((-112) $) 66 (|has| |#1| (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) 60 (|has| |#1| (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) 62 T ELT)) (-3011 (($) 162 (|has| |#1| (-381)) ELT)) (-2488 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-1550 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 |#1|) $) 117 T ELT) (((-1203 $) $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-3193 (((-950) $) 171 (|has| |#1| (-381)) ELT)) (-3994 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-3606 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3207 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 178 T ELT)) (-2199 (($) NIL (|has| |#1| (-381)) CONST)) (-2087 (($ (-950)) 96 (|has| |#1| (-381)) ELT)) (-2323 (((-112) $) 147 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1371 (((-987 (-1151))) 57 T ELT)) (-2847 (($) 158 (|has| |#1| (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 119 (|has| |#1| (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) 90 T ELT) (((-950)) 91 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) 161 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 154 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 |#1|)) 122 T ELT)) (-3430 (($) 159 (|has| |#1| (-381)) ELT)) (-4062 (($) 167 (|has| |#1| (-381)) ELT)) (-1453 (((-1298 |#1|) $) 77 T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) 174 T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) 100 T ELT)) (-2213 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) 155 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) 144 T ELT) (((-1298 $) (-950)) 98 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) 67 T CONST)) (-2379 (($) 103 T CONST)) (-1536 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) 65 T ELT)) (-2495 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-2484 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 86 T ELT)) (** (($ $ (-950)) 180 T ELT) (($ $ (-793)) 181 T ELT) (($ $ (-578)) 179 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT))) +(((-357 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1371 ((-987 (-1151)))))) (-362) (-1203 |#1|)) (T -357)) +((-1371 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-357 *3 *4)) (-4 *3 (-362)) (-14 *4 (-1203 *3))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1371 ((-987 (-1151)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| |#1| (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-3095 (($ (-1298 |#1|)) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL (|has| |#1| (-381)) ELT)) (-2681 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| |#1| (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| |#1| (-381)) ELT)) (-2488 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-1550 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 |#1|) $) NIL T ELT) (((-1203 $) $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-3193 (((-950) $) NIL (|has| |#1| (-381)) ELT)) (-3994 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-3606 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3207 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-381)) CONST)) (-2087 (($ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1371 (((-987 (-1151))) NIL T ELT)) (-2847 (($) NIL (|has| |#1| (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| |#1| (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 |#1|)) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-381)) ELT)) (-4062 (($) NIL (|has| |#1| (-381)) ELT)) (-1453 (((-1298 |#1|) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2213 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT) (((-1298 $) (-950)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1371 ((-987 (-1151)))))) (-362) (-950)) (T -358)) +((-1371 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-358 *3 *4)) (-4 *3 (-362)) (-14 *4 (-950))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1371 ((-987 (-1151)))))) +((-2642 (((-793) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151)))))) 61 T ELT)) (-1538 (((-987 (-1151)) (-1203 |#1|)) 112 T ELT)) (-3258 (((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) (-1203 |#1|)) 103 T ELT)) (-2773 (((-711 |#1|) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151)))))) 113 T ELT)) (-3972 (((-3 (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) "failed") (-950)) 13 T ELT)) (-1805 (((-3 (-1203 |#1|) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151)))))) (-950)) 18 T ELT))) +(((-359 |#1|) (-10 -7 (-15 -1538 ((-987 (-1151)) (-1203 |#1|))) (-15 -3258 ((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) (-1203 |#1|))) (-15 -2773 ((-711 |#1|) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -2642 ((-793) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -3972 ((-3 (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) "failed") (-950))) (-15 -1805 ((-3 (-1203 |#1|) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151)))))) (-950)))) (-362)) (T -359)) +((-1805 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-3 (-1203 *4) (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151))))))) (-5 *1 (-359 *4)) (-4 *4 (-362)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-950)) (-5 *2 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) (-5 *1 (-359 *4)) (-4 *4 (-362)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) (-4 *4 (-362)) (-5 *2 (-793)) (-5 *1 (-359 *4)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) (-4 *4 (-362)) (-5 *2 (-711 *4)) (-5 *1 (-359 *4)))) (-3258 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-5 *2 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) (-5 *1 (-359 *4)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-5 *2 (-987 (-1151))) (-5 *1 (-359 *4))))) +(-10 -7 (-15 -1538 ((-987 (-1151)) (-1203 |#1|))) (-15 -3258 ((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) (-1203 |#1|))) (-15 -2773 ((-711 |#1|) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -2642 ((-793) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -3972 ((-3 (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) "failed") (-950))) (-15 -1805 ((-3 (-1203 |#1|) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151)))))) (-950)))) +((-2411 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -2411 (|#3| |#1|)) (-15 -2411 (|#1| |#3|))) (-341 |#2|) (-362) (-341 |#2|)) (T -360)) +((-2411 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *2 (-341 *4)) (-5 *1 (-360 *2 *4 *3)) (-4 *3 (-341 *4)))) (-2411 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *2 (-341 *4)) (-5 *1 (-360 *3 *4 *2)) (-4 *3 (-341 *4))))) +(-10 -7 (-15 -2411 (|#3| |#1|)) (-15 -2411 (|#1| |#3|))) +((-2681 (((-112) $) 60 T ELT)) (-4059 (((-855 (-950)) $) 23 T ELT) (((-950) $) 64 T ELT)) (-2204 (((-3 $ "failed") $) 18 T ELT)) (-2199 (($) 9 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 114 T ELT)) (-4375 (((-3 (-793) "failed") $ $) 92 T ELT) (((-793) $) 79 T ELT)) (-2031 (($ $) 8 T ELT) (($ $ (-793)) NIL T ELT)) (-3430 (($) 53 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 38 T ELT)) (-2213 (((-3 $ "failed") $) 45 T ELT) (($ $) 44 T ELT))) +(((-361 |#1|) (-10 -8 (-15 -4059 ((-950) |#1|)) (-15 -4375 ((-793) |#1|)) (-15 -2681 ((-112) |#1|)) (-15 -3430 (|#1|)) (-15 -2948 ((-3 (-1298 |#1|) "failed") (-711 |#1|))) (-15 -2213 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -4375 ((-3 (-793) "failed") |#1| |#1|)) (-15 -4059 ((-855 (-950)) |#1|)) (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) (-362)) (T -361)) +NIL +(-10 -8 (-15 -4059 ((-950) |#1|)) (-15 -4375 ((-793) |#1|)) (-15 -2681 ((-112) |#1|)) (-15 -3430 (|#1|)) (-15 -2948 ((-3 (-1298 |#1|) "failed") (-711 |#1|))) (-15 -2213 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -4375 ((-3 (-793) "failed") |#1| |#1|)) (-15 -4059 ((-855 (-950)) |#1|)) (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 102 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-2222 (((-793)) 112 T ELT)) (-3534 (($) 18 T CONST)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 96 T ELT)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2062 (($) 115 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-3146 (($) 100 T ELT)) (-2681 (((-112) $) 99 T ELT)) (-2953 (($ $) 87 T ELT) (($ $ (-793)) 86 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-4059 (((-855 (-950)) $) 89 T ELT) (((-950) $) 97 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2204 (((-3 $ "failed") $) 111 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-3193 (((-950) $) 114 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-2199 (($) 110 T CONST)) (-2087 (($ (-950)) 113 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 103 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-4375 (((-3 (-793) "failed") $ $) 88 T ELT) (((-793) $) 98 T ELT)) (-2031 (($ $) 109 T ELT) (($ $ (-793)) 107 T ELT)) (-3430 (($) 101 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 104 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT)) (-2213 (((-3 $ "failed") $) 90 T ELT) (($ $) 105 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $) 108 T ELT) (($ $ (-793)) 106 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 73 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT))) +(((-362) (-142)) (T -362)) +((-2213 (*1 *1 *1) (-4 *1 (-362))) (-2948 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-362)) (-5 *2 (-1298 *1)))) (-2162 (*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))))) (-2287 (*1 *2 *3) (-12 (-4 *1 (-362)) (-5 *3 (-578)) (-5 *2 (-1220 (-950) (-793))))) (-3430 (*1 *1) (-4 *1 (-362))) (-3146 (*1 *1) (-4 *1 (-362))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-112)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-793)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-950)))) (-1405 (*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-416) (-381) (-1183) (-240) (-10 -8 (-15 -2213 ($ $)) (-15 -2948 ((-3 (-1298 $) "failed") (-711 $))) (-15 -2162 ((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578)))))) (-15 -2287 ((-1220 (-950) (-793)) (-578))) (-15 -3430 ($)) (-15 -3146 ($)) (-15 -2681 ((-112) $)) (-15 -4375 ((-793) $)) (-15 -4059 ((-950) $)) (-15 -1405 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-416) . T) ((-381) . T) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) . T) ((-1248) . T) ((-1252) . T)) +((-3748 (((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|) 55 T ELT)) (-3098 (((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 53 T ELT))) +(((-363 |#1| |#2| |#3|) (-10 -7 (-15 -3098 ((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -3748 ((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $)))) (-1274 |#1|) (-423 |#1| |#2|)) (T -363)) +((-3748 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *4 (-1274 *3)) (-5 *2 (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-363 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) (-3098 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *4 (-1274 *3)) (-5 *2 (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-363 *3 *4 *5)) (-4 *5 (-423 *3 *4))))) +(-10 -7 (-15 -3098 ((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -3748 ((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 (((-939 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2642 (((-793)) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-939 |#1|) "failed") $) NIL T ELT)) (-3516 (((-939 |#1|) $) NIL T ELT)) (-3095 (($ (-1298 (-939 |#1|))) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2681 (((-112) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT) (($ $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2488 (((-112) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1550 (((-939 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 (-939 |#1|)) $) NIL T ELT) (((-1203 $) $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3193 (((-950) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3994 (((-1203 (-939 |#1|)) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3606 (((-1203 (-939 |#1|)) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 (-1203 (-939 |#1|)) "failed") $ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3207 (($ $ (-1203 (-939 |#1|))) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-939 |#1|) (-381)) CONST)) (-2087 (($ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1396 (((-1298 (-666 (-2 (|:| -4120 (-939 |#1|)) (|:| -2087 (-1151)))))) NIL T ELT)) (-1852 (((-711 (-939 |#1|))) NIL T ELT)) (-2847 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 (-939 |#1|))) NIL T ELT)) (-3430 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-4062 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1453 (((-1298 (-939 |#1|)) $) NIL T ELT) (((-711 (-939 |#1|)) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-939 |#1|)) NIL T ELT)) (-2213 (($ $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT) (((-1298 $) (-950)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT) (($ $ (-939 |#1|)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-939 |#1|)) NIL T ELT) (($ (-939 |#1|) $) NIL T ELT))) +(((-364 |#1| |#2|) (-13 (-341 (-939 |#1|)) (-10 -7 (-15 -1396 ((-1298 (-666 (-2 (|:| -4120 (-939 |#1|)) (|:| -2087 (-1151))))))) (-15 -1852 ((-711 (-939 |#1|)))) (-15 -2642 ((-793))))) (-950) (-950)) (T -364)) +((-1396 (*1 *2) (-12 (-5 *2 (-1298 (-666 (-2 (|:| -4120 (-939 *3)) (|:| -2087 (-1151)))))) (-5 *1 (-364 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950)))) (-1852 (*1 *2) (-12 (-5 *2 (-711 (-939 *3))) (-5 *1 (-364 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950)))) (-2642 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-364 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950))))) +(-13 (-341 (-939 |#1|)) (-10 -7 (-15 -1396 ((-1298 (-666 (-2 (|:| -4120 (-939 |#1|)) (|:| -2087 (-1151))))))) (-15 -1852 ((-711 (-939 |#1|)))) (-15 -2642 ((-793))))) +((-3213 (((-112) $ $) 73 T ELT)) (-3623 (((-112) $) 88 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 ((|#1| $) 106 T ELT) (($ $ (-950)) 104 (|has| |#1| (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 170 (|has| |#1| (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2642 (((-793)) 103 T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) 187 (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 127 T ELT)) (-3516 ((|#1| $) 105 T ELT)) (-3095 (($ (-1298 |#1|)) 71 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) 182 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) 171 (|has| |#1| (-381)) ELT)) (-2681 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| |#1| (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) 113 (|has| |#1| (-381)) ELT)) (-2488 (((-112) $) 200 (|has| |#1| (-381)) ELT)) (-1550 ((|#1| $) 108 T ELT) (($ $ (-950)) 107 (|has| |#1| (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 |#1|) $) 214 T ELT) (((-1203 $) $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-3193 (((-950) $) 148 (|has| |#1| (-381)) ELT)) (-3994 (((-1203 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-3606 (((-1203 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) 96 (|has| |#1| (-381)) ELT)) (-3207 (($ $ (-1203 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 218 T ELT)) (-2199 (($) NIL (|has| |#1| (-381)) CONST)) (-2087 (($ (-950)) 150 (|has| |#1| (-381)) ELT)) (-2323 (((-112) $) 123 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1396 (((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151)))))) 97 T ELT)) (-1852 (((-711 |#1|)) 101 T ELT)) (-2847 (($) 110 (|has| |#1| (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 173 (|has| |#1| (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) 174 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) 75 T ELT)) (-4269 (((-1203 |#1|)) 175 T ELT)) (-3430 (($) 147 (|has| |#1| (-381)) ELT)) (-4062 (($) NIL (|has| |#1| (-381)) ELT)) (-1453 (((-1298 |#1|) $) 121 T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) 140 T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) 70 T ELT)) (-2213 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) 180 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) 197 T ELT) (((-1298 $) (-950)) 116 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) 186 T CONST)) (-2379 (($) 161 T CONST)) (-1536 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-793)) 114 (|has| |#1| (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) 208 T ELT)) (-2495 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-2484 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-2472 (($ $ $) 204 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 153 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) +(((-365 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1396 ((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -1852 ((-711 |#1|))) (-15 -2642 ((-793))))) (-362) (-3 (-1203 |#1|) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (T -365)) +((-1396 (*1 *2) (-12 (-5 *2 (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151)))))) (-5 *1 (-365 *3 *4)) (-4 *3 (-362)) (-14 *4 (-3 (-1203 *3) *2)))) (-1852 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-362)) (-14 *4 (-3 (-1203 *3) (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151))))))))) (-2642 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-4 *3 (-362)) (-14 *4 (-3 (-1203 *3) (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151)))))))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1396 ((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -1852 ((-711 |#1|))) (-15 -2642 ((-793))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| |#1| (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2642 (((-793)) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-3095 (($ (-1298 |#1|)) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL (|has| |#1| (-381)) ELT)) (-2681 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| |#1| (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| |#1| (-381)) ELT)) (-2488 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-1550 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 |#1|) $) NIL T ELT) (((-1203 $) $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-3193 (((-950) $) NIL (|has| |#1| (-381)) ELT)) (-3994 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-3606 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3207 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-381)) CONST)) (-2087 (($ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1396 (((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151)))))) NIL T ELT)) (-1852 (((-711 |#1|)) NIL T ELT)) (-2847 (($) NIL (|has| |#1| (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| |#1| (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 |#1|)) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-381)) ELT)) (-4062 (($) NIL (|has| |#1| (-381)) ELT)) (-1453 (((-1298 |#1|) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2213 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT) (((-1298 $) (-950)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1396 ((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -1852 ((-711 |#1|))) (-15 -2642 ((-793))))) (-362) (-950)) (T -366)) +((-1396 (*1 *2) (-12 (-5 *2 (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-362)) (-14 *4 (-950)))) (-1852 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-362)) (-14 *4 (-950)))) (-2642 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-362)) (-14 *4 (-950))))) +(-13 (-341 |#1|) (-10 -7 (-15 -1396 ((-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))))) (-15 -1852 ((-711 |#1|))) (-15 -2642 ((-793))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 (((-939 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-939 |#1|) "failed") $) NIL T ELT)) (-3516 (((-939 |#1|) $) NIL T ELT)) (-3095 (($ (-1298 (-939 |#1|))) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2681 (((-112) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT) (($ $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2488 (((-112) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1550 (((-939 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 (-939 |#1|)) $) NIL T ELT) (((-1203 $) $ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3193 (((-950) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3994 (((-1203 (-939 |#1|)) $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3606 (((-1203 (-939 |#1|)) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 (-1203 (-939 |#1|)) "failed") $ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3207 (($ $ (-1203 (-939 |#1|))) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-939 |#1|) (-381)) CONST)) (-2087 (($ (-950)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 (-939 |#1|))) NIL T ELT)) (-3430 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-4062 (($) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1453 (((-1298 (-939 |#1|)) $) NIL T ELT) (((-711 (-939 |#1|)) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-939 |#1|)) NIL T ELT)) (-2213 (($ $) NIL (|has| (-939 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| (-939 |#1|) (-147)) (|has| (-939 |#1|) (-381))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT) (((-1298 $) (-950)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| (-939 |#1|) (-381)) ELT) (($ $) NIL (|has| (-939 |#1|) (-381)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT) (($ $ (-939 |#1|)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-939 |#1|)) NIL T ELT) (($ (-939 |#1|) $) NIL T ELT))) +(((-367 |#1| |#2|) (-341 (-939 |#1|)) (-950) (-950)) (T -367)) +NIL +(-341 (-939 |#1|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 129 (|has| |#1| (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) 155 (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 103 T ELT)) (-3516 ((|#1| $) 100 T ELT)) (-3095 (($ (-1298 |#1|)) 95 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) 92 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) 51 (|has| |#1| (-381)) ELT)) (-2681 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| |#1| (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) 130 (|has| |#1| (-381)) ELT)) (-2488 (((-112) $) 84 (|has| |#1| (-381)) ELT)) (-1550 ((|#1| $) 47 T ELT) (($ $ (-950)) 52 (|has| |#1| (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 |#1|) $) 75 T ELT) (((-1203 $) $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-3193 (((-950) $) 107 (|has| |#1| (-381)) ELT)) (-3994 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-3606 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3207 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-381)) CONST)) (-2087 (($ (-950)) 105 (|has| |#1| (-381)) ELT)) (-2323 (((-112) $) 157 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) 44 (|has| |#1| (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 124 (|has| |#1| (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) 154 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) 67 T ELT)) (-4269 (((-1203 |#1|)) 98 T ELT)) (-3430 (($) 135 (|has| |#1| (-381)) ELT)) (-4062 (($) NIL (|has| |#1| (-381)) ELT)) (-1453 (((-1298 |#1|) $) 63 T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) 153 T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) 97 T ELT)) (-2213 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) 159 T CONST)) (-2876 (((-112) $ $) 161 T ELT)) (-3198 (((-1298 $)) 119 T ELT) (((-1298 $) (-950)) 58 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) 121 T CONST)) (-2379 (($) 40 T CONST)) (-1536 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) 117 T ELT)) (-2495 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-2484 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-2472 (($ $ $) 113 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 53 T ELT) (($ $ (-578)) 138 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) +(((-368 |#1| |#2|) (-341 |#1|) (-362) (-1203 |#1|)) (T -368)) +NIL +(-341 |#1|) +((-4422 ((|#1| (-1203 |#2|)) 59 T ELT))) +(((-369 |#1| |#2|) (-10 -7 (-15 -4422 (|#1| (-1203 |#2|)))) (-13 (-416) (-10 -7 (-15 -2411 (|#1| |#2|)) (-15 -3193 ((-950) |#1|)) (-15 -3198 ((-1298 |#1|) (-950))) (-15 -1536 (|#1| |#1|)))) (-362)) (T -369)) +((-4422 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-4 *2 (-13 (-416) (-10 -7 (-15 -2411 (*2 *4)) (-15 -3193 ((-950) *2)) (-15 -3198 ((-1298 *2) (-950))) (-15 -1536 (*2 *2))))) (-5 *1 (-369 *2 *4))))) +(-10 -7 (-15 -4422 (|#1| (-1203 |#2|)))) +((-1367 (((-987 (-1203 |#1|)) (-1203 |#1|)) 49 T ELT)) (-2062 (((-1203 |#1|) (-950) (-950)) 154 T ELT) (((-1203 |#1|) (-950)) 150 T ELT)) (-2681 (((-112) (-1203 |#1|)) 107 T ELT)) (-2980 (((-950) (-950)) 85 T ELT)) (-3468 (((-950) (-950)) 92 T ELT)) (-1451 (((-950) (-950)) 83 T ELT)) (-2488 (((-112) (-1203 |#1|)) 111 T ELT)) (-4272 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 135 T ELT)) (-2347 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 140 T ELT)) (-2165 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 139 T ELT)) (-2975 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 138 T ELT)) (-3569 (((-3 (-1203 |#1|) "failed") (-1203 |#1|)) 131 T ELT)) (-2105 (((-1203 |#1|) (-1203 |#1|)) 71 T ELT)) (-4127 (((-1203 |#1|) (-950)) 145 T ELT)) (-2417 (((-1203 |#1|) (-950)) 148 T ELT)) (-3956 (((-1203 |#1|) (-950)) 147 T ELT)) (-3292 (((-1203 |#1|) (-950)) 146 T ELT)) (-3731 (((-1203 |#1|) (-950)) 143 T ELT))) +(((-370 |#1|) (-10 -7 (-15 -2681 ((-112) (-1203 |#1|))) (-15 -2488 ((-112) (-1203 |#1|))) (-15 -1451 ((-950) (-950))) (-15 -2980 ((-950) (-950))) (-15 -3468 ((-950) (-950))) (-15 -3731 ((-1203 |#1|) (-950))) (-15 -4127 ((-1203 |#1|) (-950))) (-15 -3292 ((-1203 |#1|) (-950))) (-15 -3956 ((-1203 |#1|) (-950))) (-15 -2417 ((-1203 |#1|) (-950))) (-15 -3569 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -4272 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2975 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2165 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2347 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2062 ((-1203 |#1|) (-950))) (-15 -2062 ((-1203 |#1|) (-950) (-950))) (-15 -2105 ((-1203 |#1|) (-1203 |#1|))) (-15 -1367 ((-987 (-1203 |#1|)) (-1203 |#1|)))) (-362)) (T -370)) +((-1367 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-987 (-1203 *4))) (-5 *1 (-370 *4)) (-5 *3 (-1203 *4)))) (-2105 (*1 *2 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3)))) (-2062 (*1 *2 *3 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) (-4 *4 (-362)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) (-4 *4 (-362)))) (-2347 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3)))) (-2165 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3)))) (-2975 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3)))) (-4272 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3)))) (-3569 (*1 *2 *2) (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) (-4 *4 (-362)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) (-4 *4 (-362)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) (-4 *4 (-362)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) (-4 *4 (-362)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) (-4 *4 (-362)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-370 *3)) (-4 *3 (-362)))) (-2980 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-370 *3)) (-4 *3 (-362)))) (-1451 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-370 *3)) (-4 *3 (-362)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-5 *2 (-112)) (-5 *1 (-370 *4)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-5 *2 (-112)) (-5 *1 (-370 *4))))) +(-10 -7 (-15 -2681 ((-112) (-1203 |#1|))) (-15 -2488 ((-112) (-1203 |#1|))) (-15 -1451 ((-950) (-950))) (-15 -2980 ((-950) (-950))) (-15 -3468 ((-950) (-950))) (-15 -3731 ((-1203 |#1|) (-950))) (-15 -4127 ((-1203 |#1|) (-950))) (-15 -3292 ((-1203 |#1|) (-950))) (-15 -3956 ((-1203 |#1|) (-950))) (-15 -2417 ((-1203 |#1|) (-950))) (-15 -3569 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -4272 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2975 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2165 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2347 ((-3 (-1203 |#1|) "failed") (-1203 |#1|))) (-15 -2062 ((-1203 |#1|) (-950))) (-15 -2062 ((-1203 |#1|) (-950) (-950))) (-15 -2105 ((-1203 |#1|) (-1203 |#1|))) (-15 -1367 ((-987 (-1203 |#1|)) (-1203 |#1|)))) +((-3273 (((-3 (-666 |#3|) "failed") (-666 |#3|) |#3|) 38 T ELT))) +(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -3273 ((-3 (-666 |#3|) "failed") (-666 |#3|) |#3|))) (-362) (-1274 |#1|) (-1274 |#2|)) (T -371)) +((-3273 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-362)) (-5 *1 (-371 *4 *5 *3))))) +(-10 -7 (-15 -3273 ((-3 (-666 |#3|) "failed") (-666 |#3|) |#3|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| |#1| (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-3095 (($ (-1298 |#1|)) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL (|has| |#1| (-381)) ELT)) (-2681 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| |#1| (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| |#1| (-381)) ELT)) (-2488 (((-112) $) NIL (|has| |#1| (-381)) ELT)) (-1550 ((|#1| $) NIL T ELT) (($ $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 |#1|) $) NIL T ELT) (((-1203 $) $ (-950)) NIL (|has| |#1| (-381)) ELT)) (-3193 (((-950) $) NIL (|has| |#1| (-381)) ELT)) (-3994 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-3606 (((-1203 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1203 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3207 (($ $ (-1203 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-381)) CONST)) (-2087 (($ (-950)) NIL (|has| |#1| (-381)) ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) NIL (|has| |#1| (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| |#1| (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 |#1|)) NIL T ELT)) (-3430 (($) NIL (|has| |#1| (-381)) ELT)) (-4062 (($) NIL (|has| |#1| (-381)) ELT)) (-1453 (((-1298 |#1|) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2213 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT) (((-1298 $) (-950)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-372 |#1| |#2|) (-341 |#1|) (-362) (-950)) (T -372)) +NIL +(-341 |#1|) +((-1461 (((-112) (-666 (-981 |#1|))) 41 T ELT)) (-3660 (((-666 (-981 |#1|)) (-666 (-981 |#1|))) 53 T ELT)) (-4058 (((-3 (-666 (-981 |#1|)) "failed") (-666 (-981 |#1|))) 48 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -1461 ((-112) (-666 (-981 |#1|)))) (-15 -4058 ((-3 (-666 (-981 |#1|)) "failed") (-666 (-981 |#1|)))) (-15 -3660 ((-666 (-981 |#1|)) (-666 (-981 |#1|))))) (-466) (-666 (-1207))) (T -373)) +((-3660 (*1 *2 *2) (-12 (-5 *2 (-666 (-981 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-666 (-1207))))) (-4058 (*1 *2 *2) (|partial| -12 (-5 *2 (-666 (-981 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-666 (-1207))))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-466)) (-5 *2 (-112)) (-5 *1 (-373 *4 *5)) (-14 *5 (-666 (-1207)))))) +(-10 -7 (-15 -1461 ((-112) (-666 (-981 |#1|)))) (-15 -4058 ((-3 (-666 (-981 |#1|)) "failed") (-666 (-981 |#1|)))) (-15 -3660 ((-666 (-981 |#1|)) (-666 (-981 |#1|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) 17 T ELT)) (-2181 ((|#1| $ (-578)) NIL T ELT)) (-2006 (((-578) $ (-578)) NIL T ELT)) (-1416 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3795 (($ (-1 (-578) (-578)) $) 26 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 28 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2636 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-578)))) $) 30 T ELT)) (-1433 (($ $ $) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-2411 (((-886) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 11 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT) (($ |#1| (-578)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-374 |#1|) (-13 (-487) (-1069 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-578))) (-15 -2222 ((-793) $)) (-15 -2006 ((-578) $ (-578))) (-15 -2181 (|#1| $ (-578))) (-15 -3795 ($ (-1 (-578) (-578)) $)) (-15 -1416 ($ (-1 |#1| |#1|) $)) (-15 -2636 ((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-578)))) $)))) (-1131)) (T -374)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) (-2006 (*1 *2 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) (-3795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-578) (-578))) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-374 *3)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 (-578))))) (-5 *1 (-374 *3)) (-4 *3 (-1131))))) +(-13 (-487) (-1069 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-578))) (-15 -2222 ((-793) $)) (-15 -2006 ((-578) $ (-578))) (-15 -2181 (|#1| $ (-578))) (-15 -3795 ($ (-1 (-578) (-578)) $)) (-15 -1416 ($ (-1 |#1| |#1|) $)) (-15 -2636 ((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-578)))) $)))) +((-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 13 T ELT)) (-2987 (($ $) 14 T ELT)) (-3034 (((-432 $) $) 34 T ELT)) (-2159 (((-112) $) 30 T ELT)) (-3057 (($ $) 19 T ELT)) (-2421 (($ $ $) 25 T ELT) (($ (-666 $)) NIL T ELT)) (-2800 (((-432 $) $) 35 T ELT)) (-3202 (((-3 $ "failed") $ $) 24 T ELT)) (-1449 (((-793) $) 28 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 39 T ELT)) (-3138 (((-112) $ $) 16 T ELT)) (-2495 (($ $ $) 37 T ELT))) +(((-375 |#1|) (-10 -8 (-15 -2495 (|#1| |#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -2159 ((-112) |#1|)) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -2036 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -1449 ((-793) |#1|)) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2421 (|#1| |#1| |#1|)) (-15 -3138 ((-112) |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3355 ((-2 (|:| -1430 |#1|) (|:| -4487 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375)) +NIL +(-10 -8 (-15 -2495 (|#1| |#1| |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -2159 ((-112) |#1|)) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -2036 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -1449 ((-793) |#1|)) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2421 (|#1| |#1| |#1|)) (-15 -3138 ((-112) |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3355 ((-2 (|:| -1430 |#1|) (|:| -4487 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-3534 (($) 18 T CONST)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 73 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT))) +(((-376) (-142)) (T -376)) +((-2495 (*1 *1 *1 *1) (-4 *1 (-376)))) +(-13 (-319) (-1252) (-250) (-10 -8 (-15 -2495 ($ $ $)) (-6 -4498) (-6 -4492))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-2070 ((|#2| $ |#2|) 14 T ELT)) (-4089 (($ $ (-1189)) 19 T ELT)) (-2464 ((|#2| $) 15 T ELT)) (-2259 (($ |#1|) 21 T ELT) (($ |#1| (-1189)) 20 T ELT)) (-4107 ((|#1| $) 17 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2882 (((-1189) $) 16 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-3250 (($ $) 18 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-377 |#1| |#2|) (-142) (-1131) (-1131)) (T -377)) +((-2259 (*1 *1 *2) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-2259 (*1 *1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *1 (-377 *2 *4)) (-4 *2 (-1131)) (-4 *4 (-1131)))) (-4089 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-3250 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-1189)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-2070 (*1 *2 *1 *2) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -2259 ($ |t#1|)) (-15 -2259 ($ |t#1| (-1189))) (-15 -4089 ($ $ (-1189))) (-15 -3250 ($ $)) (-15 -4107 (|t#1| $)) (-15 -2882 ((-1189) $)) (-15 -2464 (|t#2| $)) (-15 -2070 (|t#2| $ |t#2|)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2070 ((|#1| $ |#1|) 31 T ELT)) (-4089 (($ $ (-1189)) 23 T ELT)) (-3507 (((-3 |#1| "failed") $) 30 T ELT)) (-2464 ((|#1| $) 28 T ELT)) (-2259 (($ (-402)) 22 T ELT) (($ (-402) (-1189)) 21 T ELT)) (-4107 (((-402) $) 25 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2882 (((-1189) $) 26 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 20 T ELT)) (-3250 (($ $) 24 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 19 T ELT))) +(((-378 |#1|) (-13 (-377 (-402) |#1|) (-10 -8 (-15 -3507 ((-3 |#1| "failed") $)))) (-1131)) (T -378)) +((-3507 (*1 *2 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1131))))) +(-13 (-377 (-402) |#1|) (-10 -8 (-15 -3507 ((-3 |#1| "failed") $)))) +((-2564 (((-1298 (-711 |#2|)) (-1298 $)) 67 T ELT)) (-3676 (((-711 |#2|) (-1298 $)) 139 T ELT)) (-2615 ((|#2| $) 36 T ELT)) (-3567 (((-711 |#2|) $ (-1298 $)) 142 T ELT)) (-3373 (((-3 $ "failed") $) 89 T ELT)) (-3875 ((|#2| $) 39 T ELT)) (-3214 (((-1203 |#2|) $) 98 T ELT)) (-2898 ((|#2| (-1298 $)) 122 T ELT)) (-2294 (((-1203 |#2|) $) 32 T ELT)) (-3929 (((-112)) 116 T ELT)) (-3095 (($ (-1298 |#2|) (-1298 $)) 132 T ELT)) (-3493 (((-3 $ "failed") $) 93 T ELT)) (-3585 (((-112)) 111 T ELT)) (-1419 (((-112)) 106 T ELT)) (-3354 (((-112)) 58 T ELT)) (-3881 (((-711 |#2|) (-1298 $)) 137 T ELT)) (-1597 ((|#2| $) 35 T ELT)) (-2630 (((-711 |#2|) $ (-1298 $)) 141 T ELT)) (-3988 (((-3 $ "failed") $) 87 T ELT)) (-2994 ((|#2| $) 38 T ELT)) (-2040 (((-1203 |#2|) $) 97 T ELT)) (-3949 ((|#2| (-1298 $)) 120 T ELT)) (-4284 (((-1203 |#2|) $) 30 T ELT)) (-2465 (((-112)) 115 T ELT)) (-2205 (((-112)) 108 T ELT)) (-1808 (((-112)) 56 T ELT)) (-4465 (((-112)) 103 T ELT)) (-2589 (((-112)) 117 T ELT)) (-1453 (((-1298 |#2|) $ (-1298 $)) NIL T ELT) (((-711 |#2|) (-1298 $) (-1298 $)) 128 T ELT)) (-3588 (((-112)) 113 T ELT)) (-2839 (((-666 (-1298 |#2|))) 102 T ELT)) (-2553 (((-112)) 114 T ELT)) (-3167 (((-112)) 112 T ELT)) (-3762 (((-112)) 51 T ELT)) (-4427 (((-112)) 118 T ELT))) +(((-379 |#1| |#2|) (-10 -8 (-15 -3214 ((-1203 |#2|) |#1|)) (-15 -2040 ((-1203 |#2|) |#1|)) (-15 -2839 ((-666 (-1298 |#2|)))) (-15 -3373 ((-3 |#1| "failed") |#1|)) (-15 -3988 ((-3 |#1| "failed") |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1419 ((-112))) (-15 -2205 ((-112))) (-15 -3585 ((-112))) (-15 -1808 ((-112))) (-15 -3354 ((-112))) (-15 -4465 ((-112))) (-15 -4427 ((-112))) (-15 -2589 ((-112))) (-15 -3929 ((-112))) (-15 -2465 ((-112))) (-15 -3762 ((-112))) (-15 -2553 ((-112))) (-15 -3167 ((-112))) (-15 -3588 ((-112))) (-15 -2294 ((-1203 |#2|) |#1|)) (-15 -4284 ((-1203 |#2|) |#1|)) (-15 -3676 ((-711 |#2|) (-1298 |#1|))) (-15 -3881 ((-711 |#2|) (-1298 |#1|))) (-15 -2898 (|#2| (-1298 |#1|))) (-15 -3949 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -3875 (|#2| |#1|)) (-15 -2994 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -1597 (|#2| |#1|)) (-15 -3567 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2630 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2564 ((-1298 (-711 |#2|)) (-1298 |#1|)))) (-380 |#2|) (-175)) (T -379)) +((-3588 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3167 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2553 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3762 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2465 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3929 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2589 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-4427 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-4465 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3354 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1808 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3585 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2205 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1419 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2839 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-666 (-1298 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) +(-10 -8 (-15 -3214 ((-1203 |#2|) |#1|)) (-15 -2040 ((-1203 |#2|) |#1|)) (-15 -2839 ((-666 (-1298 |#2|)))) (-15 -3373 ((-3 |#1| "failed") |#1|)) (-15 -3988 ((-3 |#1| "failed") |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1419 ((-112))) (-15 -2205 ((-112))) (-15 -3585 ((-112))) (-15 -1808 ((-112))) (-15 -3354 ((-112))) (-15 -4465 ((-112))) (-15 -4427 ((-112))) (-15 -2589 ((-112))) (-15 -3929 ((-112))) (-15 -2465 ((-112))) (-15 -3762 ((-112))) (-15 -2553 ((-112))) (-15 -3167 ((-112))) (-15 -3588 ((-112))) (-15 -2294 ((-1203 |#2|) |#1|)) (-15 -4284 ((-1203 |#2|) |#1|)) (-15 -3676 ((-711 |#2|) (-1298 |#1|))) (-15 -3881 ((-711 |#2|) (-1298 |#1|))) (-15 -2898 (|#2| (-1298 |#1|))) (-15 -3949 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -3875 (|#2| |#1|)) (-15 -2994 (|#2| |#1|)) (-15 -2615 (|#2| |#1|)) (-15 -1597 (|#2| |#1|)) (-15 -3567 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2630 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2564 ((-1298 (-711 |#2|)) (-1298 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-1430 (((-3 $ "failed")) 42 (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2564 (((-1298 (-711 |#1|)) (-1298 $)) 83 T ELT)) (-3411 (((-1298 $)) 86 T ELT)) (-3534 (($) 18 T CONST)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) 45 (|has| |#1| (-570)) ELT)) (-2341 (((-3 $ "failed")) 43 (|has| |#1| (-570)) ELT)) (-3676 (((-711 |#1|) (-1298 $)) 70 T ELT)) (-2615 ((|#1| $) 79 T ELT)) (-3567 (((-711 |#1|) $ (-1298 $)) 81 T ELT)) (-3373 (((-3 $ "failed") $) 50 (|has| |#1| (-570)) ELT)) (-1640 (($ $ (-950)) 31 T ELT)) (-3875 ((|#1| $) 77 T ELT)) (-3214 (((-1203 |#1|) $) 47 (|has| |#1| (-570)) ELT)) (-2898 ((|#1| (-1298 $)) 72 T ELT)) (-2294 (((-1203 |#1|) $) 68 T ELT)) (-3929 (((-112)) 62 T ELT)) (-3095 (($ (-1298 |#1|) (-1298 $)) 74 T ELT)) (-3493 (((-3 $ "failed") $) 52 (|has| |#1| (-570)) ELT)) (-1875 (((-950)) 85 T ELT)) (-1351 (((-112)) 59 T ELT)) (-3398 (($ $ (-950)) 38 T ELT)) (-3585 (((-112)) 55 T ELT)) (-1419 (((-112)) 53 T ELT)) (-3354 (((-112)) 57 T ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) 46 (|has| |#1| (-570)) ELT)) (-2170 (((-3 $ "failed")) 44 (|has| |#1| (-570)) ELT)) (-3881 (((-711 |#1|) (-1298 $)) 71 T ELT)) (-1597 ((|#1| $) 80 T ELT)) (-2630 (((-711 |#1|) $ (-1298 $)) 82 T ELT)) (-3988 (((-3 $ "failed") $) 51 (|has| |#1| (-570)) ELT)) (-4051 (($ $ (-950)) 32 T ELT)) (-2994 ((|#1| $) 78 T ELT)) (-2040 (((-1203 |#1|) $) 48 (|has| |#1| (-570)) ELT)) (-3949 ((|#1| (-1298 $)) 73 T ELT)) (-4284 (((-1203 |#1|) $) 69 T ELT)) (-2465 (((-112)) 63 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2205 (((-112)) 54 T ELT)) (-1808 (((-112)) 56 T ELT)) (-4465 (((-112)) 58 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2589 (((-112)) 61 T ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 76 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) 75 T ELT)) (-4104 (((-666 (-981 |#1|)) (-1298 $)) 84 T ELT)) (-1863 (($ $ $) 28 T ELT)) (-3588 (((-112)) 67 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2839 (((-666 (-1298 |#1|))) 49 (|has| |#1| (-570)) ELT)) (-2851 (($ $ $ $) 29 T ELT)) (-2553 (((-112)) 65 T ELT)) (-3021 (($ $ $) 27 T ELT)) (-3167 (((-112)) 66 T ELT)) (-3762 (((-112)) 64 T ELT)) (-4427 (((-112)) 60 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 33 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) +(((-380 |#1|) (-142) (-175)) (T -380)) +((-3411 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1298 *1)) (-4 *1 (-380 *3)))) (-1875 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-950)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-666 (-981 *4))))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1298 (-711 *4))))) (-2630 (*1 *2 *1 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1298 *4)))) (-1453 (*1 *2 *3 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3095 (*1 *1 *2 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-1298 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3)))) (-3588 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-3167 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-2553 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-3762 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-2465 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-3929 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-2589 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-4427 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-1351 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-4465 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-3354 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-1808 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-3585 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-2205 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-1419 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112)))) (-3493 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) (-3988 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) (-3373 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) (-2839 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-570)) (-5 *2 (-666 (-1298 *3))))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-570)) (-5 *2 (-1203 *3)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-570)) (-5 *2 (-1203 *3)))) (-2620 (*1 *2) (|partial| -12 (-4 *3 (-570)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3198 (-666 *1)))) (-4 *1 (-380 *3)))) (-4115 (*1 *2) (|partial| -12 (-4 *3 (-570)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3198 (-666 *1)))) (-4 *1 (-380 *3)))) (-2170 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-570)) (-4 *2 (-175)))) (-2341 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-570)) (-4 *2 (-175)))) (-1430 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-570)) (-4 *2 (-175))))) +(-13 (-766 |t#1|) (-10 -8 (-15 -3411 ((-1298 $))) (-15 -1875 ((-950))) (-15 -4104 ((-666 (-981 |t#1|)) (-1298 $))) (-15 -2564 ((-1298 (-711 |t#1|)) (-1298 $))) (-15 -2630 ((-711 |t#1|) $ (-1298 $))) (-15 -3567 ((-711 |t#1|) $ (-1298 $))) (-15 -1597 (|t#1| $)) (-15 -2615 (|t#1| $)) (-15 -2994 (|t#1| $)) (-15 -3875 (|t#1| $)) (-15 -1453 ((-1298 |t#1|) $ (-1298 $))) (-15 -1453 ((-711 |t#1|) (-1298 $) (-1298 $))) (-15 -3095 ($ (-1298 |t#1|) (-1298 $))) (-15 -3949 (|t#1| (-1298 $))) (-15 -2898 (|t#1| (-1298 $))) (-15 -3881 ((-711 |t#1|) (-1298 $))) (-15 -3676 ((-711 |t#1|) (-1298 $))) (-15 -4284 ((-1203 |t#1|) $)) (-15 -2294 ((-1203 |t#1|) $)) (-15 -3588 ((-112))) (-15 -3167 ((-112))) (-15 -2553 ((-112))) (-15 -3762 ((-112))) (-15 -2465 ((-112))) (-15 -3929 ((-112))) (-15 -2589 ((-112))) (-15 -4427 ((-112))) (-15 -1351 ((-112))) (-15 -4465 ((-112))) (-15 -3354 ((-112))) (-15 -1808 ((-112))) (-15 -3585 ((-112))) (-15 -2205 ((-112))) (-15 -1419 ((-112))) (IF (|has| |t#1| (-570)) (PROGN (-15 -3493 ((-3 $ "failed") $)) (-15 -3988 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $)) (-15 -2839 ((-666 (-1298 |t#1|)))) (-15 -2040 ((-1203 |t#1|) $)) (-15 -3214 ((-1203 |t#1|) $)) (-15 -2620 ((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed"))) (-15 -4115 ((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed"))) (-15 -2170 ((-3 $ "failed"))) (-15 -2341 ((-3 $ "failed"))) (-15 -1430 ((-3 $ "failed"))) (-6 -4497)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-766 |#1|) . T) ((-783) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-2222 (((-793)) 17 T ELT)) (-2062 (($) 14 T ELT)) (-3193 (((-950) $) 15 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2087 (($ (-950)) 16 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-381) (-142)) (T -381)) +((-2222 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793)))) (-2087 (*1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-381)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-950)))) (-2062 (*1 *1) (-4 *1 (-381)))) +(-13 (-1131) (-10 -8 (-15 -2222 ((-793))) (-15 -2087 ($ (-950))) (-15 -3193 ((-950) $)) (-15 -2062 ($)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-4306 (((-711 |#2|) (-1298 $)) 45 T ELT)) (-3095 (($ (-1298 |#2|) (-1298 $)) 39 T ELT)) (-2009 (((-711 |#2|) $ (-1298 $)) 47 T ELT)) (-3232 ((|#2| (-1298 $)) 13 T ELT)) (-1453 (((-1298 |#2|) $ (-1298 $)) NIL T ELT) (((-711 |#2|) (-1298 $) (-1298 $)) 27 T ELT))) +(((-382 |#1| |#2| |#3|) (-10 -8 (-15 -4306 ((-711 |#2|) (-1298 |#1|))) (-15 -3232 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1298 |#1|)))) (-383 |#2| |#3|) (-175) (-1274 |#2|)) (T -382)) +NIL +(-10 -8 (-15 -4306 ((-711 |#2|) (-1298 |#1|))) (-15 -3232 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1298 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4306 (((-711 |#1|) (-1298 $)) 53 T ELT)) (-1881 ((|#1| $) 59 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3095 (($ (-1298 |#1|) (-1298 $)) 55 T ELT)) (-2009 (((-711 |#1|) $ (-1298 $)) 60 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-950)) 61 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1550 ((|#1| $) 58 T ELT)) (-1993 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3232 ((|#1| (-1298 $)) 54 T ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 57 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) 56 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 44 T ELT)) (-2213 (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-1566 ((|#2| $) 52 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-383 |#1| |#2|) (-142) (-175) (-1274 |t#1|)) (T -383)) +((-1875 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) (-5 *2 (-950)))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1274 *2)) (-4 *2 (-175)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1274 *2)) (-4 *2 (-175)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-1298 *4)))) (-1453 (*1 *2 *3 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) (-3095 (*1 *1 *2 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-1298 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1274 *4)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1274 *2)) (-4 *2 (-175)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1274 *3)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1274 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -1875 ((-950))) (-15 -2009 ((-711 |t#1|) $ (-1298 $))) (-15 -1881 (|t#1| $)) (-15 -1550 (|t#1| $)) (-15 -1453 ((-1298 |t#1|) $ (-1298 $))) (-15 -1453 ((-711 |t#1|) (-1298 $) (-1298 $))) (-15 -3095 ($ (-1298 |t#1|) (-1298 $))) (-15 -3232 (|t#1| (-1298 $))) (-15 -4306 ((-711 |t#1|) (-1298 $))) (-15 -1566 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -1993 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-4315 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-2512 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3611 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2512 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4315 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1248) (-386 |#1|) (-1248) (-386 |#3|)) (T -384)) +((-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1248)) (-4 *5 (-1248)) (-4 *2 (-386 *5)) (-5 *1 (-384 *6 *4 *5 *2)) (-4 *4 (-386 *6)))) (-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1248)) (-4 *2 (-1248)) (-5 *1 (-384 *5 *4 *2 *6)) (-4 *4 (-386 *5)) (-4 *6 (-386 *2)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-4 *2 (-386 *6)) (-5 *1 (-384 *5 *4 *6 *2)) (-4 *4 (-386 *5))))) +(-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2512 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4315 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2442 (((-112) (-1 (-112) |#2| |#2|) $) NIL T ELT) (((-112) $) 18 T ELT)) (-4101 (($ (-1 (-112) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2042 (($ (-1 (-112) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-1540 (($ $) 25 T ELT)) (-3887 (((-578) (-1 (-112) |#2|) $) NIL T ELT) (((-578) |#2| $) 11 T ELT) (((-578) |#2| $ (-578)) NIL T ELT)) (-3176 (($ (-1 (-112) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-385 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2442 ((-112) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -3887 ((-578) |#2| |#1| (-578))) (-15 -3887 ((-578) |#2| |#1|)) (-15 -3887 ((-578) (-1 (-112) |#2|) |#1|)) (-15 -2442 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2042 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3176 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-386 |#2|) (-1248)) (T -385)) +NIL +(-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2442 ((-112) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -3887 ((-578) |#2| |#1| (-578))) (-15 -3887 ((-578) |#2| |#1|)) (-15 -3887 ((-578) (-1 (-112) |#2|) |#1|)) (-15 -2442 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2042 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -3176 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4501)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4501))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#1| $ (-578) |#1|) 53 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 60 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-1464 (($ $) 93 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 103 T ELT)) (-3776 (($ $) 80 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#1| $) 79 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 52 T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) 100 T ELT) (((-578) |#1| $) 99 (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) 98 (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) 70 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) 62 T ELT) (($ $ $ (-578)) 61 T ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 43 (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-4291 (($ $ |#1|) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) |#1|) 51 T ELT) ((|#1| $ (-578)) 50 T ELT) (($ $ (-1265 (-578))) 71 T ELT)) (-1705 (($ $ (-578)) 64 T ELT) (($ $ (-1265 (-578))) 63 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3751 (($ $ $ (-578)) 94 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 81 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 72 T ELT)) (-3703 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-666 $)) 66 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) 87 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 89 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) 88 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 90 (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-386 |#1|) (-142) (-1248)) (T -386)) +((-3176 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-386 *3)) (-4 *3 (-1248)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-386 *2)) (-4 *2 (-1248)))) (-2042 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-386 *3)) (-4 *3 (-1248)))) (-2442 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-386 *4)) (-4 *4 (-1248)) (-5 *2 (-112)))) (-3887 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-386 *4)) (-4 *4 (-1248)) (-5 *2 (-578)))) (-3887 (*1 *2 *3 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) (-5 *2 (-578)))) (-3887 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-386 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)))) (-3176 (*1 *1 *1 *1) (-12 (-4 *1 (-386 *2)) (-4 *2 (-1248)) (-4 *2 (-871)))) (-2042 (*1 *1 *1) (-12 (-4 *1 (-386 *2)) (-4 *2 (-1248)) (-4 *2 (-871)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-1248)) (-4 *3 (-871)) (-5 *2 (-112)))) (-3751 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-578)) (|has| *1 (-6 -4501)) (-4 *1 (-386 *3)) (-4 *3 (-1248)))) (-1464 (*1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-386 *2)) (-4 *2 (-1248)))) (-4101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4501)) (-4 *1 (-386 *3)) (-4 *3 (-1248)))) (-4101 (*1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-386 *2)) (-4 *2 (-1248)) (-4 *2 (-871))))) +(-13 (-673 |t#1|) (-10 -8 (-6 -4500) (-15 -3176 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1540 ($ $)) (-15 -2042 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2442 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3887 ((-578) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -3887 ((-578) |t#1| $)) (-15 -3887 ((-578) |t#1| $ (-578)))) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-6 (-871)) (-15 -3176 ($ $ $)) (-15 -2042 ($ $)) (-15 -2442 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4501)) (PROGN (-15 -3751 ($ $ $ (-578))) (-15 -1464 ($ $)) (-15 -4101 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-871)) (-15 -4101 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1131) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871))) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4418 (((-666 |#1|) $) 37 T ELT)) (-1898 (($ $ (-793)) 38 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3564 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 41 T ELT)) (-2779 (($ $) 39 T ELT)) (-3718 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 42 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3364 (($ $ |#1| $) 36 T ELT) (($ $ (-666 |#1|) (-666 $)) 35 T ELT)) (-3683 (((-793) $) 43 T ELT)) (-2423 (($ $ $) 34 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ |#1|) 46 T ELT) (((-1313 |#1| |#2|) $) 45 T ELT) (((-1322 |#1| |#2|) $) 44 T ELT)) (-2672 ((|#2| (-1322 |#1| |#2|) $) 47 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-3556 (($ (-694 |#1|)) 40 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#2|) 33 (|has| |#2| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 31 T ELT))) +(((-387 |#1| |#2|) (-142) (-871) (-175)) (T -387)) +((-2672 (*1 *2 *3 *1) (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-871)) (-4 *2 (-175)))) (-2411 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-1313 *3 *4)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-1322 *3 *4)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-793)))) (-3718 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-3564 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-1898 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-4418 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-666 *3)))) (-3364 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-871)) (-4 *5 (-175))))) +(-13 (-653 |t#2|) (-10 -8 (-15 -2672 (|t#2| (-1322 |t#1| |t#2|) $)) (-15 -2411 ($ |t#1|)) (-15 -2411 ((-1313 |t#1| |t#2|) $)) (-15 -2411 ((-1322 |t#1| |t#2|) $)) (-15 -3683 ((-793) $)) (-15 -3718 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -3564 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -3556 ($ (-694 |t#1|))) (-15 -2779 ($ $)) (-15 -1898 ($ $ (-793))) (-15 -4418 ((-666 |t#1|) $)) (-15 -3364 ($ $ |t#1| $)) (-15 -3364 ($ $ (-666 |t#1|) (-666 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#2|) . T) ((-670 |#2|) . T) ((-653 |#2|) . T) ((-662 |#2|) . T) ((-739 |#2|) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1131) . T) ((-1248) . T)) +((-2048 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40 T ELT)) (-1653 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13 T ELT)) (-3497 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33 T ELT))) +(((-388 |#1| |#2|) (-10 -7 (-15 -1653 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3497 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2048 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1248) (-13 (-386 |#1|) (-10 -7 (-6 -4501)))) (T -388)) +((-2048 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501)))))) (-3497 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501)))))) (-1653 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501))))))) +(-10 -7 (-15 -1653 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3497 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2048 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2242 (((-711 |#2|) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 22 T ELT) (((-711 (-578)) (-711 $)) 14 T ELT))) +(((-389 |#1| |#2|) (-10 -8 (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 |#2|) (-711 |#1|)))) (-390 |#2|) (-1080)) (T -389)) +NIL +(-10 -8 (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 |#2|) (-711 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2242 (((-711 |#1|) (-711 $)) 30 T ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 29 T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 41 (|has| |#1| (-660 (-578))) ELT) (((-711 (-578)) (-711 $)) 40 (|has| |#1| (-660 (-578))) ELT)) (-3908 (((-711 |#1|) (-1298 $)) 32 T ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 31 T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 39 (|has| |#1| (-660 (-578))) ELT) (((-711 (-578)) (-1298 $)) 38 (|has| |#1| (-660 (-578))) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT))) +(((-390 |#1|) (-142) (-1080)) (T -390)) +NIL +(-13 (-660 |t#1|) (-10 -7 (IF (|has| |t#1| (-660 (-578))) (-6 (-660 (-578))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 #0=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-660 #0#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3240 (((-666 (-306 (-981 (-172 |#1|)))) (-306 (-421 (-981 (-172 (-578))))) |#1|) 51 T ELT) (((-666 (-306 (-981 (-172 |#1|)))) (-421 (-981 (-172 (-578)))) |#1|) 50 T ELT) (((-666 (-666 (-306 (-981 (-172 |#1|))))) (-666 (-306 (-421 (-981 (-172 (-578)))))) |#1|) 47 T ELT) (((-666 (-666 (-306 (-981 (-172 |#1|))))) (-666 (-421 (-981 (-172 (-578))))) |#1|) 41 T ELT)) (-3914 (((-666 (-666 (-172 |#1|))) (-666 (-421 (-981 (-172 (-578))))) (-666 (-1207)) |#1|) 30 T ELT) (((-666 (-172 |#1|)) (-421 (-981 (-172 (-578)))) |#1|) 18 T ELT))) +(((-391 |#1|) (-10 -7 (-15 -3240 ((-666 (-666 (-306 (-981 (-172 |#1|))))) (-666 (-421 (-981 (-172 (-578))))) |#1|)) (-15 -3240 ((-666 (-666 (-306 (-981 (-172 |#1|))))) (-666 (-306 (-421 (-981 (-172 (-578)))))) |#1|)) (-15 -3240 ((-666 (-306 (-981 (-172 |#1|)))) (-421 (-981 (-172 (-578)))) |#1|)) (-15 -3240 ((-666 (-306 (-981 (-172 |#1|)))) (-306 (-421 (-981 (-172 (-578))))) |#1|)) (-15 -3914 ((-666 (-172 |#1|)) (-421 (-981 (-172 (-578)))) |#1|)) (-15 -3914 ((-666 (-666 (-172 |#1|))) (-666 (-421 (-981 (-172 (-578))))) (-666 (-1207)) |#1|))) (-13 (-376) (-870))) (T -391)) +((-3914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-421 (-981 (-172 (-578)))))) (-5 *4 (-666 (-1207))) (-5 *2 (-666 (-666 (-172 *5)))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-376) (-870))))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 (-172 (-578))))) (-5 *2 (-666 (-172 *4))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-376) (-870))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-306 (-421 (-981 (-172 (-578)))))) (-5 *2 (-666 (-306 (-981 (-172 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-376) (-870))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 (-172 (-578))))) (-5 *2 (-666 (-306 (-981 (-172 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-376) (-870))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-306 (-421 (-981 (-172 (-578))))))) (-5 *2 (-666 (-666 (-306 (-981 (-172 *4)))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-376) (-870))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-421 (-981 (-172 (-578)))))) (-5 *2 (-666 (-666 (-306 (-981 (-172 *4)))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-376) (-870)))))) +(-10 -7 (-15 -3240 ((-666 (-666 (-306 (-981 (-172 |#1|))))) (-666 (-421 (-981 (-172 (-578))))) |#1|)) (-15 -3240 ((-666 (-666 (-306 (-981 (-172 |#1|))))) (-666 (-306 (-421 (-981 (-172 (-578)))))) |#1|)) (-15 -3240 ((-666 (-306 (-981 (-172 |#1|)))) (-421 (-981 (-172 (-578)))) |#1|)) (-15 -3240 ((-666 (-306 (-981 (-172 |#1|)))) (-306 (-421 (-981 (-172 (-578))))) |#1|)) (-15 -3914 ((-666 (-172 |#1|)) (-421 (-981 (-172 (-578)))) |#1|)) (-15 -3914 ((-666 (-666 (-172 |#1|))) (-666 (-421 (-981 (-172 (-578))))) (-666 (-1207)) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 35 T ELT)) (-2873 (((-578) $) 62 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-2140 (($ $) 136 T ELT)) (-1502 (($ $) 98 T ELT)) (-1372 (($ $) 90 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2811 (($ $) 47 T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1478 (($ $) 96 T ELT)) (-1349 (($ $) 85 T ELT)) (-1490 (((-578) $) 78 T ELT)) (-1887 (($ $ (-578)) 73 T ELT)) (-1528 (($ $) NIL T ELT)) (-1392 (($ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2753 (($ $) 138 T ELT)) (-2818 (((-3 (-578) "failed") $) 230 T ELT) (((-3 (-421 (-578)) "failed") $) 226 T ELT)) (-3516 (((-578) $) 228 T ELT) (((-421 (-578)) $) 224 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3819 (((-578) $ $) 125 T ELT)) (-3493 (((-3 $ "failed") $) 141 T ELT)) (-3572 (((-421 (-578)) $ (-793)) 231 T ELT) (((-421 (-578)) $ (-793) (-793)) 223 T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3133 (((-950)) 121 T ELT) (((-950) (-950)) 122 (|has| $ (-6 -4491)) ELT)) (-3789 (((-112) $) 130 T ELT)) (-2551 (($) 41 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL T ELT)) (-1366 (((-1303) (-793)) 190 T ELT)) (-1762 (((-1303)) 195 T ELT) (((-1303) (-793)) 196 T ELT)) (-1446 (((-1303)) 197 T ELT) (((-1303) (-793)) 198 T ELT)) (-4125 (((-1303)) 193 T ELT) (((-1303) (-793)) 194 T ELT)) (-4059 (((-578) $) 68 T ELT)) (-4382 (((-112) $) 40 T ELT)) (-2812 (($ $ (-578)) NIL T ELT)) (-3210 (($ $) 51 T ELT)) (-1550 (($ $) NIL T ELT)) (-1721 (((-112) $) 37 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL (-12 (-2309 (|has| $ (-6 -4483))) (-2309 (|has| $ (-6 -4491)))) ELT)) (-3667 (($ $ $) NIL T ELT) (($) NIL (-12 (-2309 (|has| $ (-6 -4483))) (-2309 (|has| $ (-6 -4491)))) ELT)) (-3033 (((-578) $) 17 T ELT)) (-2759 (($) 106 T ELT) (($ $) 113 T ELT)) (-1841 (($) 112 T ELT) (($ $) 114 T ELT)) (-3864 (($ $) 101 T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 143 T ELT)) (-1744 (((-950) (-578)) 46 (|has| $ (-6 -4491)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) 60 T ELT)) (-3575 (($ $) 135 T ELT)) (-3243 (($ (-578) (-578)) 131 T ELT) (($ (-578) (-578) (-950)) 132 T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2764 (((-578) $) 19 T ELT)) (-3489 (($) 115 T ELT)) (-3587 (($ $) 95 T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3472 (((-950)) 123 T ELT) (((-950) (-950)) 124 (|has| $ (-6 -4491)) ELT)) (-2031 (($ $) 142 T ELT) (($ $ (-793)) NIL T ELT)) (-2066 (((-950) (-578)) 50 (|has| $ (-6 -4491)) ELT)) (-1541 (($ $) NIL T ELT)) (-1403 (($ $) NIL T ELT)) (-1515 (($ $) NIL T ELT)) (-1382 (($ $) NIL T ELT)) (-1489 (($ $) 97 T ELT)) (-1361 (($ $) 89 T ELT)) (-3343 (((-392) $) 215 T ELT) (((-229) $) 217 T ELT) (((-917 (-392)) $) NIL T ELT) (((-1189) $) 201 T ELT) (((-550) $) 213 T ELT) (($ (-229)) 222 T ELT)) (-2411 (((-886) $) 205 T ELT) (($ (-578)) 227 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-578)) 227 T ELT) (($ (-421 (-578))) NIL T ELT) (((-229) $) 218 T ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (($ $) 137 T ELT)) (-4068 (((-950)) 61 T ELT) (((-950) (-950)) 80 (|has| $ (-6 -4491)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (((-950)) 126 T ELT)) (-1576 (($ $) 104 T ELT)) (-1436 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-1552 (($ $) 102 T ELT)) (-1414 (($ $) 39 T ELT)) (-1598 (($ $) NIL T ELT)) (-1456 (($ $) NIL T ELT)) (-3502 (($ $) NIL T ELT)) (-1467 (($ $) NIL T ELT)) (-1587 (($ $) NIL T ELT)) (-1447 (($ $) NIL T ELT)) (-1564 (($ $) 103 T ELT)) (-1424 (($ $) 52 T ELT)) (-2628 (($ $) 58 T ELT)) (-2368 (($) 36 T CONST)) (-2379 (($) 43 T CONST)) (-3859 (((-1189) $) 27 T ELT) (((-1189) $ (-112)) 29 T ELT) (((-1303) (-844) $) 30 T ELT) (((-1303) (-844) $ (-112)) 31 T ELT)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2441 (((-112) $ $) 202 T ELT)) (-2416 (((-112) $ $) 45 T ELT)) (-2384 (((-112) $ $) 56 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 57 T ELT)) (-2495 (($ $ $) 48 T ELT) (($ $ (-578)) 42 T ELT)) (-2484 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-2472 (($ $ $) 72 T ELT)) (** (($ $ (-950)) 83 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 107 T ELT) (($ $ (-421 (-578))) 153 T ELT) (($ $ $) 145 T ELT)) (* (($ (-950) $) 79 T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 84 T ELT) (($ $ $) 71 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-392) (-13 (-418) (-240) (-633 (-1189)) (-850) (-632 (-229)) (-1233) (-633 (-550)) (-637 (-229)) (-10 -8 (-15 -2495 ($ $ (-578))) (-15 ** ($ $ $)) (-15 -3210 ($ $)) (-15 -3819 ((-578) $ $)) (-15 -1887 ($ $ (-578))) (-15 -3572 ((-421 (-578)) $ (-793))) (-15 -3572 ((-421 (-578)) $ (-793) (-793))) (-15 -2759 ($)) (-15 -1841 ($)) (-15 -3489 ($)) (-15 -1436 ($ $ $)) (-15 -2759 ($ $)) (-15 -1841 ($ $)) (-15 -1446 ((-1303))) (-15 -1446 ((-1303) (-793))) (-15 -4125 ((-1303))) (-15 -4125 ((-1303) (-793))) (-15 -1762 ((-1303))) (-15 -1762 ((-1303) (-793))) (-15 -1366 ((-1303) (-793))) (-6 -4491) (-6 -4483)))) (T -392)) +((** (*1 *1 *1 *1) (-5 *1 (-392))) (-2495 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-392)))) (-3210 (*1 *1 *1) (-5 *1 (-392))) (-3819 (*1 *2 *1 *1) (-12 (-5 *2 (-578)) (-5 *1 (-392)))) (-1887 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-392)))) (-3572 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-392)))) (-3572 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-392)))) (-2759 (*1 *1) (-5 *1 (-392))) (-1841 (*1 *1) (-5 *1 (-392))) (-3489 (*1 *1) (-5 *1 (-392))) (-1436 (*1 *1 *1 *1) (-5 *1 (-392))) (-2759 (*1 *1 *1) (-5 *1 (-392))) (-1841 (*1 *1 *1) (-5 *1 (-392))) (-1446 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-392)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392)))) (-4125 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-392)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392)))) (-1762 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-392)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392))))) +(-13 (-418) (-240) (-633 (-1189)) (-850) (-632 (-229)) (-1233) (-633 (-550)) (-637 (-229)) (-10 -8 (-15 -2495 ($ $ (-578))) (-15 ** ($ $ $)) (-15 -3210 ($ $)) (-15 -3819 ((-578) $ $)) (-15 -1887 ($ $ (-578))) (-15 -3572 ((-421 (-578)) $ (-793))) (-15 -3572 ((-421 (-578)) $ (-793) (-793))) (-15 -2759 ($)) (-15 -1841 ($)) (-15 -3489 ($)) (-15 -1436 ($ $ $)) (-15 -2759 ($ $)) (-15 -1841 ($ $)) (-15 -1446 ((-1303))) (-15 -1446 ((-1303) (-793))) (-15 -4125 ((-1303))) (-15 -4125 ((-1303) (-793))) (-15 -1762 ((-1303))) (-15 -1762 ((-1303) (-793))) (-15 -1366 ((-1303) (-793))) (-6 -4491) (-6 -4483))) +((-2096 (((-666 (-306 (-981 |#1|))) (-306 (-421 (-981 (-578)))) |#1|) 46 T ELT) (((-666 (-306 (-981 |#1|))) (-421 (-981 (-578))) |#1|) 45 T ELT) (((-666 (-666 (-306 (-981 |#1|)))) (-666 (-306 (-421 (-981 (-578))))) |#1|) 42 T ELT) (((-666 (-666 (-306 (-981 |#1|)))) (-666 (-421 (-981 (-578)))) |#1|) 36 T ELT)) (-2559 (((-666 |#1|) (-421 (-981 (-578))) |#1|) 20 T ELT) (((-666 (-666 |#1|)) (-666 (-421 (-981 (-578)))) (-666 (-1207)) |#1|) 30 T ELT))) +(((-393 |#1|) (-10 -7 (-15 -2096 ((-666 (-666 (-306 (-981 |#1|)))) (-666 (-421 (-981 (-578)))) |#1|)) (-15 -2096 ((-666 (-666 (-306 (-981 |#1|)))) (-666 (-306 (-421 (-981 (-578))))) |#1|)) (-15 -2096 ((-666 (-306 (-981 |#1|))) (-421 (-981 (-578))) |#1|)) (-15 -2096 ((-666 (-306 (-981 |#1|))) (-306 (-421 (-981 (-578)))) |#1|)) (-15 -2559 ((-666 (-666 |#1|)) (-666 (-421 (-981 (-578)))) (-666 (-1207)) |#1|)) (-15 -2559 ((-666 |#1|) (-421 (-981 (-578))) |#1|))) (-13 (-870) (-376))) (T -393)) +((-2559 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 (-578)))) (-5 *2 (-666 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-2559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-421 (-981 (-578))))) (-5 *4 (-666 (-1207))) (-5 *2 (-666 (-666 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-870) (-376))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-306 (-421 (-981 (-578))))) (-5 *2 (-666 (-306 (-981 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 (-578)))) (-5 *2 (-666 (-306 (-981 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-306 (-421 (-981 (-578)))))) (-5 *2 (-666 (-666 (-306 (-981 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-421 (-981 (-578))))) (-5 *2 (-666 (-666 (-306 (-981 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376)))))) +(-10 -7 (-15 -2096 ((-666 (-666 (-306 (-981 |#1|)))) (-666 (-421 (-981 (-578)))) |#1|)) (-15 -2096 ((-666 (-666 (-306 (-981 |#1|)))) (-666 (-306 (-421 (-981 (-578))))) |#1|)) (-15 -2096 ((-666 (-306 (-981 |#1|))) (-421 (-981 (-578))) |#1|)) (-15 -2096 ((-666 (-306 (-981 |#1|))) (-306 (-421 (-981 (-578)))) |#1|)) (-15 -2559 ((-666 (-666 |#1|)) (-666 (-421 (-981 (-578)))) (-666 (-1207)) |#1|)) (-15 -2559 ((-666 |#1|) (-421 (-981 (-578))) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) 30 T ELT)) (-3516 ((|#2| $) 32 T ELT)) (-3136 (($ $) NIL T ELT)) (-3380 (((-793) $) 11 T ELT)) (-2613 (((-666 $) $) 23 T ELT)) (-1796 (((-112) $) NIL T ELT)) (-1476 (($ |#2| |#1|) 21 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2658 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3097 ((|#2| $) 18 T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 51 T ELT) (($ |#2|) 31 T ELT)) (-3839 (((-666 |#1|) $) 20 T ELT)) (-3708 ((|#1| $ |#2|) 55 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 33 T CONST)) (-1829 (((-666 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#1| $) 36 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 39 T ELT) (($ |#2| |#1|) 40 T ELT))) +(((-394 |#1| |#2|) (-13 (-395 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1080) (-871)) (T -394)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-394 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871))))) +(-13 (-395 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#2| "failed") $) 49 T ELT)) (-3516 ((|#2| $) 50 T ELT)) (-3136 (($ $) 35 T ELT)) (-3380 (((-793) $) 39 T ELT)) (-2613 (((-666 $) $) 40 T ELT)) (-1796 (((-112) $) 43 T ELT)) (-1476 (($ |#2| |#1|) 44 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 45 T ELT)) (-2658 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36 T ELT)) (-3097 ((|#2| $) 38 T ELT)) (-3110 ((|#1| $) 37 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ |#2|) 48 T ELT)) (-3839 (((-666 |#1|) $) 41 T ELT)) (-3708 ((|#1| $ |#2|) 46 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-1829 (((-666 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT) (($ |#1| |#2|) 47 T ELT))) +(((-395 |#1| |#2|) (-142) (-1080) (-1131)) (T -395)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-395 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1131)))) (-3708 (*1 *2 *1 *3) (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1080)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)))) (-1476 (*1 *1 *2 *3) (-12 (-4 *1 (-395 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1131)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) (-5 *2 (-112)))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) (-5 *2 (-666 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) (-5 *2 (-666 *3)))) (-2613 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-1131)) (-5 *2 (-666 *1)) (-4 *1 (-395 *3 *4)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) (-5 *2 (-793)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1131)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1080)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-395 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1131))))) +(-13 (-111 |t#1| |t#1|) (-1069 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3708 (|t#1| $ |t#2|)) (-15 -3611 ($ (-1 |t#1| |t#1|) $)) (-15 -1476 ($ |t#2| |t#1|)) (-15 -1796 ((-112) $)) (-15 -1829 ((-666 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3839 ((-666 |t#1|) $)) (-15 -2613 ((-666 $) $)) (-15 -3380 ((-793) $)) (-15 -3097 (|t#2| $)) (-15 -3110 (|t#1| $)) (-15 -2658 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3136 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 |#2|) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-1069 |#2|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-1903 (((-1303) $) 7 T ELT)) (-2411 (((-886) $) 8 T ELT) (($ (-711 (-721))) 14 T ELT) (($ (-666 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 11 T ELT))) +(((-396) (-142)) (T -396)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-396)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) (-4 *1 (-396))))) +(-13 (-409) (-10 -8 (-15 -2411 ($ (-711 (-721)))) (-15 -2411 ($ (-666 (-342)))) (-15 -2411 ($ (-342))) (-15 -2411 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342)))))))) +(((-632 (-886)) . T) ((-409) . T) ((-1248) . T)) +((-2818 (((-3 $ "failed") (-711 (-328 (-392)))) 21 T ELT) (((-3 $ "failed") (-711 (-328 (-578)))) 19 T ELT) (((-3 $ "failed") (-711 (-981 (-392)))) 17 T ELT) (((-3 $ "failed") (-711 (-981 (-578)))) 15 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-392))))) 13 T ELT) (((-3 $ "failed") (-711 (-421 (-981 (-578))))) 11 T ELT)) (-3516 (($ (-711 (-328 (-392)))) 22 T ELT) (($ (-711 (-328 (-578)))) 20 T ELT) (($ (-711 (-981 (-392)))) 18 T ELT) (($ (-711 (-981 (-578)))) 16 T ELT) (($ (-711 (-421 (-981 (-392))))) 14 T ELT) (($ (-711 (-421 (-981 (-578))))) 12 T ELT)) (-1903 (((-1303) $) 7 T ELT)) (-2411 (((-886) $) 8 T ELT) (($ (-666 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 23 T ELT))) +(((-397) (-142)) (T -397)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-397)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-397)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) (-4 *1 (-397)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-711 (-328 (-392)))) (-4 *1 (-397)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-328 (-392)))) (-4 *1 (-397)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-711 (-328 (-578)))) (-4 *1 (-397)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-328 (-578)))) (-4 *1 (-397)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-711 (-981 (-392)))) (-4 *1 (-397)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-981 (-392)))) (-4 *1 (-397)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-711 (-981 (-578)))) (-4 *1 (-397)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-981 (-578)))) (-4 *1 (-397)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-981 (-392))))) (-4 *1 (-397)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-981 (-392))))) (-4 *1 (-397)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-981 (-578))))) (-4 *1 (-397)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-981 (-578))))) (-4 *1 (-397))))) +(-13 (-409) (-10 -8 (-15 -2411 ($ (-666 (-342)))) (-15 -2411 ($ (-342))) (-15 -2411 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342)))))) (-15 -3516 ($ (-711 (-328 (-392))))) (-15 -2818 ((-3 $ "failed") (-711 (-328 (-392))))) (-15 -3516 ($ (-711 (-328 (-578))))) (-15 -2818 ((-3 $ "failed") (-711 (-328 (-578))))) (-15 -3516 ($ (-711 (-981 (-392))))) (-15 -2818 ((-3 $ "failed") (-711 (-981 (-392))))) (-15 -3516 ($ (-711 (-981 (-578))))) (-15 -2818 ((-3 $ "failed") (-711 (-981 (-578))))) (-15 -3516 ($ (-711 (-421 (-981 (-392)))))) (-15 -2818 ((-3 $ "failed") (-711 (-421 (-981 (-392)))))) (-15 -3516 ($ (-711 (-421 (-981 (-578)))))) (-15 -2818 ((-3 $ "failed") (-711 (-421 (-981 (-578)))))))) +(((-632 (-886)) . T) ((-409) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3761 (((-666 (-897 |#2| |#1|)) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4263 ((|#2| $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 33 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 12 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-398 |#1| |#2|) (-13 (-111 |#1| |#1|) (-523 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|))) (-1080) (-874)) (T -398)) +NIL +(-13 (-111 |#1| |#1|) (-523 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2222 (((-793) $) 35 T ELT)) (-3534 (($) 19 T CONST)) (-3564 (((-3 $ "failed") $ $) 38 T ELT)) (-2818 (((-3 |#1| "failed") $) 46 T ELT)) (-3516 ((|#1| $) 47 T ELT)) (-3493 (((-3 $ "failed") $) 16 T ELT)) (-1673 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36 T ELT)) (-4382 (((-112) $) 18 T ELT)) (-2181 ((|#1| $ (-578)) 32 T ELT)) (-2006 (((-793) $ (-578)) 33 T ELT)) (-1345 (($ $ $) 24 (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) 25 (|has| |#1| (-871)) ELT)) (-1416 (($ (-1 |#1| |#1|) $) 30 T ELT)) (-3795 (($ (-1 (-793) (-793)) $) 31 T ELT)) (-3718 (((-3 $ "failed") $ $) 39 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1350 (($ $ $) 40 T ELT)) (-3209 (($ $ $) 41 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2636 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-793)))) $) 34 T ELT)) (-2036 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ |#1|) 45 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2379 (($) 20 T CONST)) (-2441 (((-112) $ $) 26 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 28 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 27 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 29 (|has| |#1| (-871)) ELT)) (** (($ $ (-950)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ |#1| (-793)) 42 T ELT)) (* (($ $ $) 15 T ELT) (($ |#1| $) 44 T ELT) (($ $ |#1|) 43 T ELT))) +(((-399 |#1|) (-142) (-1131)) (T -399)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-3209 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-1350 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-3718 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-3564 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-2036 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1131)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-1673 (*1 *2 *1 *1) (-12 (-4 *3 (-1131)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-2222 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) (-5 *2 (-793)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 (-793))))))) (-2006 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-399 *4)) (-4 *4 (-1131)) (-5 *2 (-793)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) (-3795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-793) (-793))) (-4 *1 (-399 *3)) (-4 *3 (-1131)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1131))))) +(-13 (-748) (-1069 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-793))) (-15 -3209 ($ $ $)) (-15 -1350 ($ $ $)) (-15 -3718 ((-3 $ "failed") $ $)) (-15 -3564 ((-3 $ "failed") $ $)) (-15 -2036 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1673 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2222 ((-793) $)) (-15 -2636 ((-666 (-2 (|:| |gen| |t#1|) (|:| -3587 (-793)))) $)) (-15 -2006 ((-793) $ (-578))) (-15 -2181 (|t#1| $ (-578))) (-15 -3795 ($ (-1 (-793) (-793)) $)) (-15 -1416 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|))) +(((-102) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-748) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1069 |#1|) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793) $) 74 T ELT)) (-3534 (($) NIL T CONST)) (-3564 (((-3 $ "failed") $ $) 77 T ELT)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1673 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-4382 (((-112) $) 17 T ELT)) (-2181 ((|#1| $ (-578)) NIL T ELT)) (-2006 (((-793) $ (-578)) NIL T ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1416 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-3795 (($ (-1 (-793) (-793)) $) 37 T ELT)) (-3718 (((-3 $ "failed") $ $) 60 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1350 (($ $ $) 28 T ELT)) (-3209 (($ $ $) 26 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2636 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-793)))) $) 34 T ELT)) (-2036 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70 T ELT)) (-2411 (((-886) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 11 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 84 (|has| |#1| (-871)) ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-400 |#1|) (-399 |#1|) (-1131)) (T -400)) +NIL +(-399 |#1|) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 54 T ELT)) (-3516 (((-578) $) 55 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1345 (($ $ $) 56 T ELT)) (-3667 (($ $ $) 57 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-578)) 53 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2441 (((-112) $ $) 58 T ELT)) (-2416 (((-112) $ $) 60 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 59 T ELT)) (-2404 (((-112) $ $) 61 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-401) (-142)) (T -401)) +NIL +(-13 (-570) (-871) (-1069 (-578))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-871) . T) ((-874) . T) ((-1069 (-578)) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-1524 (((-112) $) 25 T ELT)) (-2487 (((-112) $) 22 T ELT)) (-3749 (($ (-1189) (-1189) (-1189)) 26 T ELT)) (-4107 (((-1189) $) 16 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3196 (($ (-1189) (-1189) (-1189)) 14 T ELT)) (-1904 (((-1189) $) 17 T ELT)) (-3075 (((-112) $) 18 T ELT)) (-1460 (((-1189) $) 15 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-1189)) 13 T ELT) (((-1189) $) 9 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 7 T ELT))) +(((-402) (-403)) (T -402)) +NIL +(-403) +((-3213 (((-112) $ $) 7 T ELT)) (-1524 (((-112) $) 17 T ELT)) (-2487 (((-112) $) 18 T ELT)) (-3749 (($ (-1189) (-1189) (-1189)) 16 T ELT)) (-4107 (((-1189) $) 21 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3196 (($ (-1189) (-1189) (-1189)) 23 T ELT)) (-1904 (((-1189) $) 20 T ELT)) (-3075 (((-112) $) 19 T ELT)) (-1460 (((-1189) $) 22 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-1189)) 25 T ELT) (((-1189) $) 24 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-403) (-142)) (T -403)) +((-3196 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-1904 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-112)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-112)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-112)))) (-3749 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403))))) +(-13 (-1131) (-504 (-1189)) (-10 -8 (-15 -3196 ($ (-1189) (-1189) (-1189))) (-15 -1460 ((-1189) $)) (-15 -4107 ((-1189) $)) (-15 -1904 ((-1189) $)) (-15 -3075 ((-112) $)) (-15 -2487 ((-112) $)) (-15 -1524 ((-112) $)) (-15 -3749 ($ (-1189) (-1189) (-1189))))) +(((-102) . T) ((-635 #0=(-1189)) . T) ((-632 (-886)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3827 (((-886) $) 63 T ELT)) (-3534 (($) NIL T CONST)) (-1640 (($ $ (-950)) NIL T ELT)) (-3398 (($ $ (-950)) NIL T ELT)) (-4051 (($ $ (-950)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($ (-793)) 38 T ELT)) (-4425 (((-793)) 18 T ELT)) (-3658 (((-886) $) 65 T ELT)) (-1863 (($ $ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2851 (($ $ $ $) NIL T ELT)) (-3021 (($ $ $) NIL T ELT)) (-2368 (($) 24 T CONST)) (-2384 (((-112) $ $) 41 T ELT)) (-2484 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-2472 (($ $ $) 51 T ELT)) (** (($ $ (-950)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-404 |#1| |#2| |#3|) (-13 (-766 |#3|) (-10 -8 (-15 -4425 ((-793))) (-15 -3658 ((-886) $)) (-15 -3827 ((-886) $)) (-15 -2847 ($ (-793))))) (-793) (-793) (-175)) (T -404)) +((-4425 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175))))) +(-13 (-766 |#3|) (-10 -8 (-15 -4425 ((-793))) (-15 -3658 ((-886) $)) (-15 -3827 ((-886) $)) (-15 -2847 ($ (-793))))) +((-2275 (((-1189)) 12 T ELT)) (-3028 (((-1178 (-1189))) 30 T ELT)) (-1880 (((-1303) (-1189)) 27 T ELT) (((-1303) (-402)) 26 T ELT)) (-1892 (((-1303)) 28 T ELT)) (-1945 (((-1178 (-1189))) 29 T ELT))) +(((-405) (-10 -7 (-15 -1945 ((-1178 (-1189)))) (-15 -3028 ((-1178 (-1189)))) (-15 -1892 ((-1303))) (-15 -1880 ((-1303) (-402))) (-15 -1880 ((-1303) (-1189))) (-15 -2275 ((-1189))))) (T -405)) +((-2275 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-1892 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405)))) (-3028 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))) (-1945 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405))))) +(-10 -7 (-15 -1945 ((-1178 (-1189)))) (-15 -3028 ((-1178 (-1189)))) (-15 -1892 ((-1303))) (-15 -1880 ((-1303) (-402))) (-15 -1880 ((-1303) (-1189))) (-15 -2275 ((-1189)))) +((-4059 (((-793) (-349 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4059 ((-793) (-349 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -406)) +((-4059 (*1 *2 *3) (-12 (-5 *3 (-349 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7))))) +(-10 -7 (-15 -4059 ((-793) (-349 |#1| |#2| |#3| |#4|)))) +((-2411 (((-408) |#1|) 11 T ELT))) +(((-407 |#1|) (-10 -7 (-15 -2411 ((-408) |#1|))) (-1131)) (T -407)) +((-2411 (*1 *2 *3) (-12 (-5 *2 (-408)) (-5 *1 (-407 *3)) (-4 *3 (-1131))))) +(-10 -7 (-15 -2411 ((-408) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3323 (((-666 (-1189)) $ (-666 (-1189))) 42 T ELT)) (-3473 (((-666 (-1189)) $ (-666 (-1189))) 43 T ELT)) (-2351 (((-666 (-1189)) $ (-666 (-1189))) 44 T ELT)) (-4171 (((-666 (-1189)) $) 39 T ELT)) (-3749 (($) 30 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3014 (((-666 (-1189)) $) 40 T ELT)) (-2481 (((-666 (-1189)) $) 41 T ELT)) (-1647 (((-1303) $ (-578)) 37 T ELT) (((-1303) $) 38 T ELT)) (-3343 (($ (-886) (-578)) 35 T ELT)) (-2411 (((-886) $) 49 T ELT) (($ (-886)) 32 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-408) (-13 (-1131) (-635 (-886)) (-10 -8 (-15 -3343 ($ (-886) (-578))) (-15 -1647 ((-1303) $ (-578))) (-15 -1647 ((-1303) $)) (-15 -2481 ((-666 (-1189)) $)) (-15 -3014 ((-666 (-1189)) $)) (-15 -3749 ($)) (-15 -4171 ((-666 (-1189)) $)) (-15 -2351 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3473 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3323 ((-666 (-1189)) $ (-666 (-1189))))))) (T -408)) +((-3343 (*1 *1 *2 *3) (-12 (-5 *2 (-886)) (-5 *3 (-578)) (-5 *1 (-408)))) (-1647 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-408)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-408)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) (-3749 (*1 *1) (-5 *1 (-408))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) (-2351 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) (-3473 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) (-3323 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408))))) +(-13 (-1131) (-635 (-886)) (-10 -8 (-15 -3343 ($ (-886) (-578))) (-15 -1647 ((-1303) $ (-578))) (-15 -1647 ((-1303) $)) (-15 -2481 ((-666 (-1189)) $)) (-15 -3014 ((-666 (-1189)) $)) (-15 -3749 ($)) (-15 -4171 ((-666 (-1189)) $)) (-15 -2351 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3473 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3323 ((-666 (-1189)) $ (-666 (-1189)))))) +((-1903 (((-1303) $) 7 T ELT)) (-2411 (((-886) $) 8 T ELT))) +(((-409) (-142)) (T -409)) +((-1903 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-1303))))) +(-13 (-1248) (-632 (-886)) (-10 -8 (-15 -1903 ((-1303) $)))) +(((-632 (-886)) . T) ((-1248) . T)) +((-2818 (((-3 $ "failed") (-328 (-392))) 21 T ELT) (((-3 $ "failed") (-328 (-578))) 19 T ELT) (((-3 $ "failed") (-981 (-392))) 17 T ELT) (((-3 $ "failed") (-981 (-578))) 15 T ELT) (((-3 $ "failed") (-421 (-981 (-392)))) 13 T ELT) (((-3 $ "failed") (-421 (-981 (-578)))) 11 T ELT)) (-3516 (($ (-328 (-392))) 22 T ELT) (($ (-328 (-578))) 20 T ELT) (($ (-981 (-392))) 18 T ELT) (($ (-981 (-578))) 16 T ELT) (($ (-421 (-981 (-392)))) 14 T ELT) (($ (-421 (-981 (-578)))) 12 T ELT)) (-1903 (((-1303) $) 7 T ELT)) (-2411 (((-886) $) 8 T ELT) (($ (-666 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 23 T ELT))) +(((-410) (-142)) (T -410)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-410)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-410)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) (-4 *1 (-410)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-328 (-392))) (-4 *1 (-410)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-328 (-392))) (-4 *1 (-410)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-328 (-578))) (-4 *1 (-410)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-328 (-578))) (-4 *1 (-410)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-981 (-392))) (-4 *1 (-410)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-981 (-392))) (-4 *1 (-410)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-981 (-578))) (-4 *1 (-410)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-981 (-578))) (-4 *1 (-410)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-421 (-981 (-392)))) (-4 *1 (-410)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-981 (-392)))) (-4 *1 (-410)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-421 (-981 (-578)))) (-4 *1 (-410)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-981 (-578)))) (-4 *1 (-410))))) +(-13 (-409) (-10 -8 (-15 -2411 ($ (-666 (-342)))) (-15 -2411 ($ (-342))) (-15 -2411 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342)))))) (-15 -3516 ($ (-328 (-392)))) (-15 -2818 ((-3 $ "failed") (-328 (-392)))) (-15 -3516 ($ (-328 (-578)))) (-15 -2818 ((-3 $ "failed") (-328 (-578)))) (-15 -3516 ($ (-981 (-392)))) (-15 -2818 ((-3 $ "failed") (-981 (-392)))) (-15 -3516 ($ (-981 (-578)))) (-15 -2818 ((-3 $ "failed") (-981 (-578)))) (-15 -3516 ($ (-421 (-981 (-392))))) (-15 -2818 ((-3 $ "failed") (-421 (-981 (-392))))) (-15 -3516 ($ (-421 (-981 (-578))))) (-15 -2818 ((-3 $ "failed") (-421 (-981 (-578))))))) +(((-632 (-886)) . T) ((-409) . T) ((-1248) . T)) +((-1374 (((-666 (-1189)) (-666 (-1189))) 9 T ELT)) (-1903 (((-1303) (-402)) 26 T ELT)) (-3831 (((-1135) (-1207) (-666 (-1207)) (-1210) (-666 (-1207))) 59 T ELT) (((-1135) (-1207) (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207)))) (-666 (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207))))) (-666 (-1207)) (-1207)) 34 T ELT) (((-1135) (-1207) (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207)))) (-666 (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207))))) (-666 (-1207))) 33 T ELT))) +(((-411) (-10 -7 (-15 -3831 ((-1135) (-1207) (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207)))) (-666 (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207))))) (-666 (-1207)))) (-15 -3831 ((-1135) (-1207) (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207)))) (-666 (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207))))) (-666 (-1207)) (-1207))) (-15 -3831 ((-1135) (-1207) (-666 (-1207)) (-1210) (-666 (-1207)))) (-15 -1903 ((-1303) (-402))) (-15 -1374 ((-666 (-1189)) (-666 (-1189)))))) (T -411)) +((-1374 (*1 *2 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-411)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-411)))) (-3831 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-666 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207)) (-5 *2 (-1135)) (-5 *1 (-411)))) (-3831 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-666 (-666 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-666 (-3 (|:| |array| (-666 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1135)) (-5 *1 (-411)))) (-3831 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-666 (-666 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-666 (-3 (|:| |array| (-666 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1135)) (-5 *1 (-411))))) +(-10 -7 (-15 -3831 ((-1135) (-1207) (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207)))) (-666 (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207))))) (-666 (-1207)))) (-15 -3831 ((-1135) (-1207) (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207)))) (-666 (-666 (-3 (|:| |array| (-666 (-1207))) (|:| |scalar| (-1207))))) (-666 (-1207)) (-1207))) (-15 -3831 ((-1135) (-1207) (-666 (-1207)) (-1210) (-666 (-1207)))) (-15 -1903 ((-1303) (-402))) (-15 -1374 ((-666 (-1189)) (-666 (-1189))))) +((-1903 (((-1303) $) 35 T ELT)) (-2411 (((-886) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-666 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 96 T ELT) (($ (-328 (-723))) 52 T ELT) (($ (-328 (-721))) 72 T ELT) (($ (-328 (-716))) 85 T ELT) (($ (-306 (-328 (-723)))) 67 T ELT) (($ (-306 (-328 (-721)))) 80 T ELT) (($ (-306 (-328 (-716)))) 93 T ELT) (($ (-328 (-578))) 104 T ELT) (($ (-328 (-392))) 117 T ELT) (($ (-328 (-172 (-392)))) 130 T ELT) (($ (-306 (-328 (-578)))) 112 T ELT) (($ (-306 (-328 (-392)))) 125 T ELT) (($ (-306 (-328 (-172 (-392))))) 138 T ELT))) +(((-412 |#1| |#2| |#3| |#4|) (-13 (-409) (-10 -8 (-15 -2411 ($ (-342))) (-15 -2411 ($ (-666 (-342)))) (-15 -2411 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342)))))) (-15 -2411 ($ (-328 (-723)))) (-15 -2411 ($ (-328 (-721)))) (-15 -2411 ($ (-328 (-716)))) (-15 -2411 ($ (-306 (-328 (-723))))) (-15 -2411 ($ (-306 (-328 (-721))))) (-15 -2411 ($ (-306 (-328 (-716))))) (-15 -2411 ($ (-328 (-578)))) (-15 -2411 ($ (-328 (-392)))) (-15 -2411 ($ (-328 (-172 (-392))))) (-15 -2411 ($ (-306 (-328 (-578))))) (-15 -2411 ($ (-306 (-328 (-392))))) (-15 -2411 ($ (-306 (-328 (-172 (-392)))))))) (-1207) (-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-666 (-1207)) (-1211)) (T -412)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-328 (-723))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-328 (-721))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-328 (-716))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-306 (-328 (-723)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-306 (-328 (-721)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-306 (-328 (-716)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-328 (-578))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-328 (-392))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-328 (-172 (-392)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-306 (-328 (-578)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-306 (-328 (-392)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-306 (-328 (-172 (-392))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-14 *5 (-666 (-1207))) (-14 *6 (-1211))))) +(-13 (-409) (-10 -8 (-15 -2411 ($ (-342))) (-15 -2411 ($ (-666 (-342)))) (-15 -2411 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342)))))) (-15 -2411 ($ (-328 (-723)))) (-15 -2411 ($ (-328 (-721)))) (-15 -2411 ($ (-328 (-716)))) (-15 -2411 ($ (-306 (-328 (-723))))) (-15 -2411 ($ (-306 (-328 (-721))))) (-15 -2411 ($ (-306 (-328 (-716))))) (-15 -2411 ($ (-328 (-578)))) (-15 -2411 ($ (-328 (-392)))) (-15 -2411 ($ (-328 (-172 (-392))))) (-15 -2411 ($ (-306 (-328 (-578))))) (-15 -2411 ($ (-306 (-328 (-392))))) (-15 -2411 ($ (-306 (-328 (-172 (-392)))))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3495 ((|#2| $) 38 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3260 (($ (-421 |#2|)) 93 T ELT)) (-4190 (((-666 (-2 (|:| -2764 (-793)) (|:| -4369 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-2031 (($ $ (-793)) 36 T ELT) (($ $) 34 T ELT)) (-3343 (((-421 |#2|) $) 49 T ELT)) (-2423 (($ (-666 (-2 (|:| -2764 (-793)) (|:| -4369 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-2411 (((-886) $) 131 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1676 (($ $ (-793)) 37 T ELT) (($ $) 35 T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2472 (($ |#2| $) 41 T ELT))) +(((-413 |#1| |#2|) (-13 (-1131) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -2472 ($ |#2| $)) (-15 -3260 ($ (-421 |#2|))) (-15 -3495 (|#2| $)) (-15 -4190 ((-666 (-2 (|:| -2764 (-793)) (|:| -4369 |#2|) (|:| |num| |#2|))) $)) (-15 -2423 ($ (-666 (-2 (|:| -2764 (-793)) (|:| -4369 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1274 |#1|)) (T -413)) +((-2472 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *2)) (-4 *2 (-1274 *3)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-421 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))) (-3495 (*1 *2 *1) (-12 (-4 *2 (-1274 *3)) (-5 *1 (-413 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-4190 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-666 (-2 (|:| -2764 (-793)) (|:| -4369 *4) (|:| |num| *4)))) (-5 *1 (-413 *3 *4)) (-4 *4 (-1274 *3)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| -2764 (-793)) (|:| -4369 *4) (|:| |num| *4)))) (-4 *4 (-1274 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4))))) +(-13 (-1131) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -2472 ($ |#2| $)) (-15 -3260 ($ (-421 |#2|))) (-15 -3495 (|#2| $)) (-15 -4190 ((-666 (-2 (|:| -2764 (-793)) (|:| -4369 |#2|) (|:| |num| |#2|))) $)) (-15 -2423 ($ (-666 (-2 (|:| -2764 (-793)) (|:| -4369 |#2|) (|:| |num| |#2|))))))) +((-3213 (((-112) $ $) 10 (-2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 16 (|has| |#1| (-911 (-392))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 15 (|has| |#1| (-911 (-578))) ELT)) (-2617 (((-1189) $) 14 (-2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ELT)) (-4313 (((-1151) $) 13 (-2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ELT)) (-2411 (((-886) $) 12 (-2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ELT)) (-2876 (((-112) $ $) 11 (-2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ELT)) (-2384 (((-112) $ $) 9 (-2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ELT))) +(((-414 |#1|) (-142) (-1248)) (T -414)) +NIL +(-13 (-1248) (-10 -7 (IF (|has| |t#1| (-911 (-578))) (-6 (-911 (-578))) |%noBranch|) (IF (|has| |t#1| (-911 (-392))) (-6 (-911 (-392))) |%noBranch|))) +(((-102) -2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ((-632 (-886)) -2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ((-911 (-392)) |has| |#1| (-911 (-392))) ((-911 (-578)) |has| |#1| (-911 (-578))) ((-1131) -2230 (|has| |#1| (-911 (-578))) (|has| |#1| (-911 (-392)))) ((-1248) . T)) +((-2953 (($ $) 10 T ELT) (($ $ (-793)) 12 T ELT))) +(((-415 |#1|) (-10 -8 (-15 -2953 (|#1| |#1| (-793))) (-15 -2953 (|#1| |#1|))) (-416)) (T -415)) +NIL +(-10 -8 (-15 -2953 (|#1| |#1| (-793))) (-15 -2953 (|#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-3534 (($) 18 T CONST)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2953 (($ $) 87 T ELT) (($ $ (-793)) 86 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-4059 (((-855 (-950)) $) 89 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-4375 (((-3 (-793) "failed") $ $) 88 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT)) (-2213 (((-3 $ "failed") $) 90 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 73 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT))) +(((-416) (-142)) (T -416)) +((-4059 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-855 (-950))))) (-4375 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-416)) (-5 *2 (-793)))) (-2953 (*1 *1 *1) (-4 *1 (-416))) (-2953 (*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793))))) +(-13 (-376) (-147) (-10 -8 (-15 -4059 ((-855 (-950)) $)) (-15 -4375 ((-3 (-793) "failed") $ $)) (-15 -2953 ($ $)) (-15 -2953 ($ $ (-793))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-3243 (($ (-578) (-578)) 11 T ELT) (($ (-578) (-578) (-950)) NIL T ELT)) (-3472 (((-950)) 19 T ELT) (((-950) (-950)) NIL T ELT))) +(((-417 |#1|) (-10 -8 (-15 -3472 ((-950) (-950))) (-15 -3472 ((-950))) (-15 -3243 (|#1| (-578) (-578) (-950))) (-15 -3243 (|#1| (-578) (-578)))) (-418)) (T -417)) +((-3472 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-417 *3)) (-4 *3 (-418))))) +(-10 -8 (-15 -3472 ((-950) (-950))) (-15 -3472 ((-950))) (-15 -3243 (|#1| (-578) (-578) (-950))) (-15 -3243 (|#1| (-578) (-578)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2873 (((-578) $) 98 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-2140 (($ $) 96 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2811 (($ $) 106 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-1490 (((-578) $) 123 T ELT)) (-3534 (($) 18 T CONST)) (-2753 (($ $) 95 T ELT)) (-2818 (((-3 (-578) "failed") $) 111 T ELT) (((-3 (-421 (-578)) "failed") $) 108 T ELT)) (-3516 (((-578) $) 112 T ELT) (((-421 (-578)) $) 109 T ELT)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-3133 (((-950)) 139 T ELT) (((-950) (-950)) 136 (|has| $ (-6 -4491)) ELT)) (-3789 (((-112) $) 121 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 102 T ELT)) (-4059 (((-578) $) 145 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 105 T ELT)) (-1550 (($ $) 101 T ELT)) (-1721 (((-112) $) 122 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-1345 (($ $ $) 115 T ELT) (($) 133 (-12 (-2309 (|has| $ (-6 -4491))) (-2309 (|has| $ (-6 -4483)))) ELT)) (-3667 (($ $ $) 116 T ELT) (($) 132 (-12 (-2309 (|has| $ (-6 -4491))) (-2309 (|has| $ (-6 -4483)))) ELT)) (-3033 (((-578) $) 142 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-1744 (((-950) (-578)) 135 (|has| $ (-6 -4491)) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2055 (($ $) 97 T ELT)) (-3575 (($ $) 99 T ELT)) (-3243 (($ (-578) (-578)) 147 T ELT) (($ (-578) (-578) (-950)) 146 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-2764 (((-578) $) 143 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-3472 (((-950)) 140 T ELT) (((-950) (-950)) 137 (|has| $ (-6 -4491)) ELT)) (-2066 (((-950) (-578)) 134 (|has| $ (-6 -4491)) ELT)) (-3343 (((-392) $) 114 T ELT) (((-229) $) 113 T ELT) (((-917 (-392)) $) 103 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT) (($ (-578)) 110 T ELT) (($ (-421 (-578))) 107 T ELT)) (-3753 (((-793)) 32 T CONST)) (-1585 (($ $) 100 T ELT)) (-4068 (((-950)) 141 T ELT) (((-950) (-950)) 138 (|has| $ (-6 -4491)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3648 (((-950)) 144 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2628 (($ $) 124 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2441 (((-112) $ $) 117 T ELT)) (-2416 (((-112) $ $) 119 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 118 T ELT)) (-2404 (((-112) $ $) 120 T ELT)) (-2495 (($ $ $) 73 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT) (($ $ (-421 (-578))) 104 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT))) +(((-418) (-142)) (T -418)) +((-3243 (*1 *1 *2 *2) (-12 (-5 *2 (-578)) (-4 *1 (-418)))) (-3243 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-578)) (-5 *3 (-950)) (-4 *1 (-418)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-578)))) (-3648 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950)))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-578)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-578)))) (-4068 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950)))) (-3472 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950)))) (-3133 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-950)) (|has| *1 (-6 -4491)) (-4 *1 (-418)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-950)) (|has| *1 (-6 -4491)) (-4 *1 (-418)))) (-3133 (*1 *2 *2) (-12 (-5 *2 (-950)) (|has| *1 (-6 -4491)) (-4 *1 (-418)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-578)) (|has| *1 (-6 -4491)) (-4 *1 (-418)) (-5 *2 (-950)))) (-2066 (*1 *2 *3) (-12 (-5 *3 (-578)) (|has| *1 (-6 -4491)) (-4 *1 (-418)) (-5 *2 (-950)))) (-1345 (*1 *1) (-12 (-4 *1 (-418)) (-2309 (|has| *1 (-6 -4491))) (-2309 (|has| *1 (-6 -4483))))) (-3667 (*1 *1) (-12 (-4 *1 (-418)) (-2309 (|has| *1 (-6 -4491))) (-2309 (|has| *1 (-6 -4483)))))) +(-13 (-1091) (-10 -8 (-6 -3909) (-15 -3243 ($ (-578) (-578))) (-15 -3243 ($ (-578) (-578) (-950))) (-15 -4059 ((-578) $)) (-15 -3648 ((-950))) (-15 -2764 ((-578) $)) (-15 -3033 ((-578) $)) (-15 -4068 ((-950))) (-15 -3472 ((-950))) (-15 -3133 ((-950))) (IF (|has| $ (-6 -4491)) (PROGN (-15 -4068 ((-950) (-950))) (-15 -3472 ((-950) (-950))) (-15 -3133 ((-950) (-950))) (-15 -1744 ((-950) (-578))) (-15 -2066 ((-950) (-578)))) |%noBranch|) (IF (|has| $ (-6 -4483)) |%noBranch| (IF (|has| $ (-6 -4491)) |%noBranch| (PROGN (-15 -1345 ($)) (-15 -3667 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-392)) . T) ((-633 (-917 (-392))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-911 (-392)) . T) ((-949) . T) ((-1033) . T) ((-1053) . T) ((-1091) . T) ((-1069 (-421 (-578))) . T) ((-1069 (-578)) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-3611 (((-432 |#2|) (-1 |#2| |#1|) (-432 |#1|)) 20 T ELT))) +(((-419 |#1| |#2|) (-10 -7 (-15 -3611 ((-432 |#2|) (-1 |#2| |#1|) (-432 |#1|)))) (-570) (-570)) (T -419)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-432 *5)) (-4 *5 (-570)) (-4 *6 (-570)) (-5 *2 (-432 *6)) (-5 *1 (-419 *5 *6))))) +(-10 -7 (-15 -3611 ((-432 |#2|) (-1 |#2| |#1|) (-432 |#1|)))) +((-3611 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 13 T ELT))) +(((-420 |#1| |#2|) (-10 -7 (-15 -3611 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-570) (-570)) (T -420)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-570)) (-4 *6 (-570)) (-5 *2 (-421 *6)) (-5 *1 (-420 *5 *6))))) +(-10 -7 (-15 -3611 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 13 T ELT)) (-2873 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| |#1| (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 17 T ELT) (((-3 (-1207) "failed") $) NIL (|has| |#1| (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) 72 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT)) (-3516 ((|#1| $) 15 T ELT) (((-1207) $) NIL (|has| |#1| (-1069 (-1207))) ELT) (((-421 (-578)) $) 69 (|has| |#1| (-1069 (-578))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) 51 T ELT)) (-2062 (($) NIL (|has| |#1| (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| |#1| (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| |#1| (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| |#1| (-911 (-392))) ELT)) (-4382 (((-112) $) 57 T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 ((|#1| $) 73 T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| |#1| (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| |#1| (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 100 T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3575 ((|#1| $) 28 (|has| |#1| (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 145 (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 138 (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 ((|#1| $) 75 T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| |#1| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| |#1| (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT) (((-392) $) NIL (|has| |#1| (-1053)) ELT) (((-229) $) NIL (|has| |#1| (-1053)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 122 (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1207)) NIL (|has| |#1| (-1069 (-1207))) ELT)) (-2213 (((-3 $ "failed") $) 102 (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 103 T CONST)) (-1585 ((|#1| $) 26 (|has| |#1| (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| |#1| (-842)) ELT)) (-2368 (($) 22 T CONST)) (-2379 (($) 8 T CONST)) (-3859 (((-1189) $) 44 (-12 (|has| |#1| (-559)) (|has| |#1| (-850))) ELT) (((-1189) $ (-112)) 45 (-12 (|has| |#1| (-559)) (|has| |#1| (-850))) ELT) (((-1303) (-844) $) 46 (-12 (|has| |#1| (-559)) (|has| |#1| (-850))) ELT) (((-1303) (-844) $ (-112)) 47 (-12 (|has| |#1| (-559)) (|has| |#1| (-850))) ELT)) (-1676 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 66 T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 24 (|has| |#1| (-871)) ELT)) (-2495 (($ $ $) 133 T ELT) (($ |#1| |#1|) 53 T ELT)) (-2484 (($ $) 25 T ELT) (($ $ $) 56 T ELT)) (-2472 (($ $ $) 54 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 132 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 61 T ELT) (($ $ $) 58 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) 88 T ELT))) +(((-421 |#1|) (-13 (-1023 |#1|) (-10 -7 (IF (|has| |#1| (-559)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4487)) (IF (|has| |#1| (-466)) (IF (|has| |#1| (-6 -4498)) (-6 -4487) |%noBranch|) |%noBranch|) |%noBranch|))) (-570)) (T -421)) +NIL +(-13 (-1023 |#1|) (-10 -7 (IF (|has| |#1| (-559)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4487)) (IF (|has| |#1| (-466)) (IF (|has| |#1| (-6 -4498)) (-6 -4487) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4306 (((-711 |#2|) (-1298 $)) NIL T ELT) (((-711 |#2|)) 18 T ELT)) (-3095 (($ (-1298 |#2|) (-1298 $)) NIL T ELT) (($ (-1298 |#2|)) 24 T ELT)) (-2009 (((-711 |#2|) $ (-1298 $)) NIL T ELT) (((-711 |#2|) $) 40 T ELT)) (-1993 ((|#3| $) 69 T ELT)) (-3232 ((|#2| (-1298 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-1453 (((-1298 |#2|) $ (-1298 $)) NIL T ELT) (((-711 |#2|) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 |#2|) $) 22 T ELT) (((-711 |#2|) (-1298 $)) 38 T ELT)) (-3343 (((-1298 |#2|) $) 11 T ELT) (($ (-1298 |#2|)) 13 T ELT)) (-1566 ((|#3| $) 55 T ELT))) +(((-422 |#1| |#2| |#3|) (-10 -8 (-15 -2009 ((-711 |#2|) |#1|)) (-15 -3232 (|#2|)) (-15 -4306 ((-711 |#2|))) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -3095 (|#1| (-1298 |#2|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -1993 (|#3| |#1|)) (-15 -1566 (|#3| |#1|)) (-15 -4306 ((-711 |#2|) (-1298 |#1|))) (-15 -3232 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1298 |#1|)))) (-423 |#2| |#3|) (-175) (-1274 |#2|)) (T -422)) +((-4306 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)) (-5 *1 (-422 *3 *4 *5)) (-4 *3 (-423 *4 *5)))) (-3232 (*1 *2) (-12 (-4 *4 (-1274 *2)) (-4 *2 (-175)) (-5 *1 (-422 *3 *2 *4)) (-4 *3 (-423 *2 *4))))) +(-10 -8 (-15 -2009 ((-711 |#2|) |#1|)) (-15 -3232 (|#2|)) (-15 -4306 ((-711 |#2|))) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -3095 (|#1| (-1298 |#2|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -1993 (|#3| |#1|)) (-15 -1566 (|#3| |#1|)) (-15 -4306 ((-711 |#2|) (-1298 |#1|))) (-15 -3232 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -2009 ((-711 |#2|) |#1| (-1298 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4306 (((-711 |#1|) (-1298 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-1881 ((|#1| $) 59 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3095 (($ (-1298 |#1|) (-1298 $)) 55 T ELT) (($ (-1298 |#1|)) 71 T ELT)) (-2009 (((-711 |#1|) $ (-1298 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-950)) 61 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1550 ((|#1| $) 58 T ELT)) (-1993 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3232 ((|#1| (-1298 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 57 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) 56 T ELT) (((-1298 |#1|) $) 73 T ELT) (((-711 |#1|) (-1298 $)) 72 T ELT)) (-3343 (((-1298 |#1|) $) 70 T ELT) (($ (-1298 |#1|)) 69 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 44 T ELT)) (-2213 (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-1566 ((|#2| $) 52 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3198 (((-1298 $)) 74 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-423 |#1| |#2|) (-142) (-175) (-1274 |t#1|)) (T -423)) +((-3198 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1274 *3)) (-5 *2 (-1298 *1)) (-4 *1 (-423 *3 *4)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) (-5 *2 (-1298 *3)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-423 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) (-3095 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-423 *3 *4)) (-4 *4 (-1274 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) (-5 *2 (-1298 *3)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-423 *3 *4)) (-4 *4 (-1274 *3)))) (-4306 (*1 *2) (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) (-5 *2 (-711 *3)))) (-3232 (*1 *2) (-12 (-4 *1 (-423 *2 *3)) (-4 *3 (-1274 *2)) (-4 *2 (-175)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) (-5 *2 (-711 *3))))) +(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -3198 ((-1298 $))) (-15 -1453 ((-1298 |t#1|) $)) (-15 -1453 ((-711 |t#1|) (-1298 $))) (-15 -3095 ($ (-1298 |t#1|))) (-15 -3343 ((-1298 |t#1|) $)) (-15 -3343 ($ (-1298 |t#1|))) (-15 -4306 ((-711 |t#1|))) (-15 -3232 (|t#1|)) (-15 -2009 ((-711 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-383 |#1| |#2|) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) 27 T ELT) (((-3 (-578) "failed") $) 19 T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-421 (-578)) $) 24 T ELT) (((-578) $) 14 T ELT)) (-2411 (($ |#2|) NIL T ELT) (($ (-421 (-578))) 22 T ELT) (($ (-578)) 11 T ELT))) +(((-424 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| (-578))) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|))) (-425 |#2|) (-1248)) (T -424)) +NIL +(-10 -8 (-15 -2411 (|#1| (-578))) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|))) +((-2818 (((-3 |#1| "failed") $) 9 T ELT) (((-3 (-421 (-578)) "failed") $) 16 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) 13 (|has| |#1| (-1069 (-578))) ELT)) (-3516 ((|#1| $) 8 T ELT) (((-421 (-578)) $) 17 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) 14 (|has| |#1| (-1069 (-578))) ELT)) (-2411 (($ |#1|) 6 T ELT) (($ (-421 (-578))) 15 (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ (-578)) 12 (|has| |#1| (-1069 (-578))) ELT))) +(((-425 |#1|) (-142) (-1248)) (T -425)) +NIL +(-13 (-1069 |t#1|) (-10 -7 (IF (|has| |t#1| (-1069 (-578))) (-6 (-1069 (-578))) |%noBranch|) (IF (|has| |t#1| (-1069 (-421 (-578)))) (-6 (-1069 (-421 (-578)))) |%noBranch|))) +(((-635 #0=(-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-635 #1=(-578)) |has| |#1| (-1069 (-578))) ((-635 |#1|) . T) ((-1069 #0#) |has| |#1| (-1069 (-421 (-578)))) ((-1069 #1#) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T)) +((-3611 (((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-426 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3611 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)))) (-319) (-1023 |#1|) (-1274 |#2|) (-13 (-423 |#2| |#3|) (-1069 |#2|)) (-319) (-1023 |#5|) (-1274 |#6|) (-13 (-423 |#6| |#7|) (-1069 |#6|))) (T -426)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1023 *5)) (-4 *7 (-1274 *6)) (-4 *8 (-13 (-423 *6 *7) (-1069 *6))) (-4 *9 (-319)) (-4 *10 (-1023 *9)) (-4 *11 (-1274 *10)) (-5 *2 (-427 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-423 *10 *11) (-1069 *10)))))) +(-10 -7 (-15 -3611 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3543 ((|#4| (-793) (-1298 |#4|)) 55 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2519 (((-1298 |#4|) $) 15 T ELT)) (-1550 ((|#2| $) 53 T ELT)) (-1394 (($ $) 157 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 103 T ELT)) (-1780 (($ (-1298 |#4|)) 102 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2530 ((|#1| $) 16 T ELT)) (-1433 (($ $ $) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-2411 (((-886) $) 148 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 |#4|) $) 141 T ELT)) (-2379 (($) 11 T CONST)) (-2384 (((-112) $ $) 39 T ELT)) (-2495 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 134 T ELT)) (* (($ $ $) 130 T ELT))) +(((-427 |#1| |#2| |#3| |#4|) (-13 (-487) (-10 -8 (-15 -1780 ($ (-1298 |#4|))) (-15 -3198 ((-1298 |#4|) $)) (-15 -1550 (|#2| $)) (-15 -2519 ((-1298 |#4|) $)) (-15 -2530 (|#1| $)) (-15 -1394 ($ $)) (-15 -3543 (|#4| (-793) (-1298 |#4|))))) (-319) (-1023 |#1|) (-1274 |#2|) (-13 (-423 |#2| |#3|) (-1069 |#2|))) (T -427)) +((-1780 (*1 *1 *2) (-12 (-5 *2 (-1298 *6)) (-4 *6 (-13 (-423 *4 *5) (-1069 *4))) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6)))) (-3198 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-5 *2 (-1298 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-423 *4 *5) (-1069 *4))))) (-1550 (*1 *2 *1) (-12 (-4 *4 (-1274 *2)) (-4 *2 (-1023 *3)) (-5 *1 (-427 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-423 *2 *4) (-1069 *2))))) (-2519 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-5 *2 (-1298 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-423 *4 *5) (-1069 *4))))) (-2530 (*1 *2 *1) (-12 (-4 *3 (-1023 *2)) (-4 *4 (-1274 *3)) (-4 *2 (-319)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-423 *3 *4) (-1069 *3))))) (-1394 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1023 *2)) (-4 *4 (-1274 *3)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-423 *3 *4) (-1069 *3))))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1298 *2)) (-4 *5 (-319)) (-4 *6 (-1023 *5)) (-4 *2 (-13 (-423 *6 *7) (-1069 *6))) (-5 *1 (-427 *5 *6 *7 *2)) (-4 *7 (-1274 *6))))) +(-13 (-487) (-10 -8 (-15 -1780 ($ (-1298 |#4|))) (-15 -3198 ((-1298 |#4|) $)) (-15 -1550 (|#2| $)) (-15 -2519 ((-1298 |#4|) $)) (-15 -2530 (|#1| $)) (-15 -1394 ($ $)) (-15 -3543 (|#4| (-793) (-1298 |#4|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1550 ((|#2| $) 71 T ELT)) (-3179 (($ (-1298 |#4|)) 27 T ELT) (($ (-427 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1069 |#2|)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 37 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 |#4|) $) 28 T ELT)) (-2379 (($) 25 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ $ $) 82 T ELT))) +(((-428 |#1| |#2| |#3| |#4| |#5|) (-13 (-748) (-10 -8 (-15 -3198 ((-1298 |#4|) $)) (-15 -1550 (|#2| $)) (-15 -3179 ($ (-1298 |#4|))) (IF (|has| |#4| (-1069 |#2|)) (-15 -3179 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1023 |#1|) (-1274 |#2|) (-423 |#2| |#3|) (-1298 |#4|)) (T -428)) +((-3198 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-5 *2 (-1298 *6)) (-5 *1 (-428 *3 *4 *5 *6 *7)) (-4 *6 (-423 *4 *5)) (-14 *7 *2))) (-1550 (*1 *2 *1) (-12 (-4 *4 (-1274 *2)) (-4 *2 (-1023 *3)) (-5 *1 (-428 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-423 *2 *4)) (-14 *6 (-1298 *5)))) (-3179 (*1 *1 *2) (-12 (-5 *2 (-1298 *6)) (-4 *6 (-423 *4 *5)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-4 *3 (-319)) (-5 *1 (-428 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3179 (*1 *1 *2) (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1069 *4)) (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-4 *6 (-423 *4 *5)) (-14 *7 (-1298 *6)) (-5 *1 (-428 *3 *4 *5 *6 *7))))) +(-13 (-748) (-10 -8 (-15 -3198 ((-1298 |#4|) $)) (-15 -1550 (|#2| $)) (-15 -3179 ($ (-1298 |#4|))) (IF (|has| |#4| (-1069 |#2|)) (-15 -3179 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-3611 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#3| (-1 |#4| |#2|) |#1|))) (-431 |#2|) (-175) (-431 |#4|) (-175)) (T -429)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-431 *6)) (-5 *1 (-429 *4 *5 *2 *6)) (-4 *4 (-431 *5))))) +(-10 -7 (-15 -3611 (|#3| (-1 |#4| |#2|) |#1|))) +((-1430 (((-3 $ "failed")) 98 T ELT)) (-2564 (((-1298 (-711 |#2|)) (-1298 $)) NIL T ELT) (((-1298 (-711 |#2|))) 103 T ELT)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) 96 T ELT)) (-2341 (((-3 $ "failed")) 95 T ELT)) (-3676 (((-711 |#2|) (-1298 $)) NIL T ELT) (((-711 |#2|)) 114 T ELT)) (-3567 (((-711 |#2|) $ (-1298 $)) NIL T ELT) (((-711 |#2|) $) 122 T ELT)) (-1332 (((-1203 (-981 |#2|))) 63 T ELT)) (-2898 ((|#2| (-1298 $)) NIL T ELT) ((|#2|) 118 T ELT)) (-3095 (($ (-1298 |#2|) (-1298 $)) NIL T ELT) (($ (-1298 |#2|)) 124 T ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) 94 T ELT)) (-2170 (((-3 $ "failed")) 86 T ELT)) (-3881 (((-711 |#2|) (-1298 $)) NIL T ELT) (((-711 |#2|)) 112 T ELT)) (-2630 (((-711 |#2|) $ (-1298 $)) NIL T ELT) (((-711 |#2|) $) 120 T ELT)) (-2972 (((-1203 (-981 |#2|))) 62 T ELT)) (-3949 ((|#2| (-1298 $)) NIL T ELT) ((|#2|) 116 T ELT)) (-1453 (((-1298 |#2|) $ (-1298 $)) NIL T ELT) (((-711 |#2|) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 |#2|) $) 123 T ELT) (((-711 |#2|) (-1298 $)) 132 T ELT)) (-3343 (((-1298 |#2|) $) 108 T ELT) (($ (-1298 |#2|)) 110 T ELT)) (-4104 (((-666 (-981 |#2|)) (-1298 $)) NIL T ELT) (((-666 (-981 |#2|))) 106 T ELT)) (-4178 (($ (-711 |#2|) $) 102 T ELT))) +(((-430 |#1| |#2|) (-10 -8 (-15 -4178 (|#1| (-711 |#2|) |#1|)) (-15 -1332 ((-1203 (-981 |#2|)))) (-15 -2972 ((-1203 (-981 |#2|)))) (-15 -3567 ((-711 |#2|) |#1|)) (-15 -2630 ((-711 |#2|) |#1|)) (-15 -3676 ((-711 |#2|))) (-15 -3881 ((-711 |#2|))) (-15 -2898 (|#2|)) (-15 -3949 (|#2|)) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -3095 (|#1| (-1298 |#2|))) (-15 -4104 ((-666 (-981 |#2|)))) (-15 -2564 ((-1298 (-711 |#2|)))) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -1430 ((-3 |#1| "failed"))) (-15 -2341 ((-3 |#1| "failed"))) (-15 -2170 ((-3 |#1| "failed"))) (-15 -4115 ((-3 (-2 (|:| |particular| |#1|) (|:| -3198 (-666 |#1|))) "failed"))) (-15 -2620 ((-3 (-2 (|:| |particular| |#1|) (|:| -3198 (-666 |#1|))) "failed"))) (-15 -3676 ((-711 |#2|) (-1298 |#1|))) (-15 -3881 ((-711 |#2|) (-1298 |#1|))) (-15 -2898 (|#2| (-1298 |#1|))) (-15 -3949 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -3567 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2630 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2564 ((-1298 (-711 |#2|)) (-1298 |#1|))) (-15 -4104 ((-666 (-981 |#2|)) (-1298 |#1|)))) (-431 |#2|) (-175)) (T -430)) +((-2564 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1298 (-711 *4))) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4)))) (-4104 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-666 (-981 *4))) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4)))) (-3949 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-430 *3 *2)) (-4 *3 (-431 *2)))) (-2898 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-430 *3 *2)) (-4 *3 (-431 *2)))) (-3881 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4)))) (-3676 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4)))) (-2972 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-981 *4))) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4)))) (-1332 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-981 *4))) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4))))) +(-10 -8 (-15 -4178 (|#1| (-711 |#2|) |#1|)) (-15 -1332 ((-1203 (-981 |#2|)))) (-15 -2972 ((-1203 (-981 |#2|)))) (-15 -3567 ((-711 |#2|) |#1|)) (-15 -2630 ((-711 |#2|) |#1|)) (-15 -3676 ((-711 |#2|))) (-15 -3881 ((-711 |#2|))) (-15 -2898 (|#2|)) (-15 -3949 (|#2|)) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -3095 (|#1| (-1298 |#2|))) (-15 -4104 ((-666 (-981 |#2|)))) (-15 -2564 ((-1298 (-711 |#2|)))) (-15 -1453 ((-711 |#2|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1|)) (-15 -1430 ((-3 |#1| "failed"))) (-15 -2341 ((-3 |#1| "failed"))) (-15 -2170 ((-3 |#1| "failed"))) (-15 -4115 ((-3 (-2 (|:| |particular| |#1|) (|:| -3198 (-666 |#1|))) "failed"))) (-15 -2620 ((-3 (-2 (|:| |particular| |#1|) (|:| -3198 (-666 |#1|))) "failed"))) (-15 -3676 ((-711 |#2|) (-1298 |#1|))) (-15 -3881 ((-711 |#2|) (-1298 |#1|))) (-15 -2898 (|#2| (-1298 |#1|))) (-15 -3949 (|#2| (-1298 |#1|))) (-15 -3095 (|#1| (-1298 |#2|) (-1298 |#1|))) (-15 -1453 ((-711 |#2|) (-1298 |#1|) (-1298 |#1|))) (-15 -1453 ((-1298 |#2|) |#1| (-1298 |#1|))) (-15 -3567 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2630 ((-711 |#2|) |#1| (-1298 |#1|))) (-15 -2564 ((-1298 (-711 |#2|)) (-1298 |#1|))) (-15 -4104 ((-666 (-981 |#2|)) (-1298 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-1430 (((-3 $ "failed")) 42 (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2564 (((-1298 (-711 |#1|)) (-1298 $)) 83 T ELT) (((-1298 (-711 |#1|))) 106 T ELT)) (-3411 (((-1298 $)) 86 T ELT)) (-3534 (($) 18 T CONST)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) 45 (|has| |#1| (-570)) ELT)) (-2341 (((-3 $ "failed")) 43 (|has| |#1| (-570)) ELT)) (-3676 (((-711 |#1|) (-1298 $)) 70 T ELT) (((-711 |#1|)) 98 T ELT)) (-2615 ((|#1| $) 79 T ELT)) (-3567 (((-711 |#1|) $ (-1298 $)) 81 T ELT) (((-711 |#1|) $) 96 T ELT)) (-3373 (((-3 $ "failed") $) 50 (|has| |#1| (-570)) ELT)) (-1332 (((-1203 (-981 |#1|))) 94 (|has| |#1| (-376)) ELT)) (-1640 (($ $ (-950)) 31 T ELT)) (-3875 ((|#1| $) 77 T ELT)) (-3214 (((-1203 |#1|) $) 47 (|has| |#1| (-570)) ELT)) (-2898 ((|#1| (-1298 $)) 72 T ELT) ((|#1|) 100 T ELT)) (-2294 (((-1203 |#1|) $) 68 T ELT)) (-3929 (((-112)) 62 T ELT)) (-3095 (($ (-1298 |#1|) (-1298 $)) 74 T ELT) (($ (-1298 |#1|)) 104 T ELT)) (-3493 (((-3 $ "failed") $) 52 (|has| |#1| (-570)) ELT)) (-1875 (((-950)) 85 T ELT)) (-1351 (((-112)) 59 T ELT)) (-3398 (($ $ (-950)) 38 T ELT)) (-3585 (((-112)) 55 T ELT)) (-1419 (((-112)) 53 T ELT)) (-3354 (((-112)) 57 T ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) 46 (|has| |#1| (-570)) ELT)) (-2170 (((-3 $ "failed")) 44 (|has| |#1| (-570)) ELT)) (-3881 (((-711 |#1|) (-1298 $)) 71 T ELT) (((-711 |#1|)) 99 T ELT)) (-1597 ((|#1| $) 80 T ELT)) (-2630 (((-711 |#1|) $ (-1298 $)) 82 T ELT) (((-711 |#1|) $) 97 T ELT)) (-3988 (((-3 $ "failed") $) 51 (|has| |#1| (-570)) ELT)) (-2972 (((-1203 (-981 |#1|))) 95 (|has| |#1| (-376)) ELT)) (-4051 (($ $ (-950)) 32 T ELT)) (-2994 ((|#1| $) 78 T ELT)) (-2040 (((-1203 |#1|) $) 48 (|has| |#1| (-570)) ELT)) (-3949 ((|#1| (-1298 $)) 73 T ELT) ((|#1|) 101 T ELT)) (-4284 (((-1203 |#1|) $) 69 T ELT)) (-2465 (((-112)) 63 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2205 (((-112)) 54 T ELT)) (-1808 (((-112)) 56 T ELT)) (-4465 (((-112)) 58 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2589 (((-112)) 61 T ELT)) (-2436 ((|#1| $ (-578)) 110 T ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 76 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) 75 T ELT) (((-1298 |#1|) $) 108 T ELT) (((-711 |#1|) (-1298 $)) 107 T ELT)) (-3343 (((-1298 |#1|) $) 103 T ELT) (($ (-1298 |#1|)) 102 T ELT)) (-4104 (((-666 (-981 |#1|)) (-1298 $)) 84 T ELT) (((-666 (-981 |#1|))) 105 T ELT)) (-1863 (($ $ $) 28 T ELT)) (-3588 (((-112)) 67 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3198 (((-1298 $)) 109 T ELT)) (-2839 (((-666 (-1298 |#1|))) 49 (|has| |#1| (-570)) ELT)) (-2851 (($ $ $ $) 29 T ELT)) (-2553 (((-112)) 65 T ELT)) (-4178 (($ (-711 |#1|) $) 93 T ELT)) (-3021 (($ $ $) 27 T ELT)) (-3167 (((-112)) 66 T ELT)) (-3762 (((-112)) 64 T ELT)) (-4427 (((-112)) 60 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 33 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) +(((-431 |#1|) (-142) (-175)) (T -431)) +((-3198 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1298 *1)) (-4 *1 (-431 *3)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-1298 *3)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-431 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-2564 (*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-1298 (-711 *3))))) (-4104 (*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-666 (-981 *3))))) (-3095 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-431 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-1298 *3)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-431 *3)))) (-3949 (*1 *2) (-12 (-4 *1 (-431 *2)) (-4 *2 (-175)))) (-2898 (*1 *2) (-12 (-4 *1 (-431 *2)) (-4 *2 (-175)))) (-3881 (*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-3676 (*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2972 (*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1203 (-981 *3))))) (-1332 (*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1203 (-981 *3))))) (-4178 (*1 *1 *2 *1) (-12 (-5 *2 (-711 *3)) (-4 *1 (-431 *3)) (-4 *3 (-175))))) +(-13 (-380 |t#1|) (-298 (-578) |t#1|) (-10 -8 (-15 -3198 ((-1298 $))) (-15 -1453 ((-1298 |t#1|) $)) (-15 -1453 ((-711 |t#1|) (-1298 $))) (-15 -2564 ((-1298 (-711 |t#1|)))) (-15 -4104 ((-666 (-981 |t#1|)))) (-15 -3095 ($ (-1298 |t#1|))) (-15 -3343 ((-1298 |t#1|) $)) (-15 -3343 ($ (-1298 |t#1|))) (-15 -3949 (|t#1|)) (-15 -2898 (|t#1|)) (-15 -3881 ((-711 |t#1|))) (-15 -3676 ((-711 |t#1|))) (-15 -2630 ((-711 |t#1|) $)) (-15 -3567 ((-711 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2972 ((-1203 (-981 |t#1|)))) (-15 -1332 ((-1203 (-981 |t#1|))))) |%noBranch|) (-15 -4178 ($ (-711 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-298 (-578) |#1|) . T) ((-380 |#1|) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-766 |#1|) . T) ((-783) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 60 T ELT)) (-3635 (($ $) 78 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 192 T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) 48 T ELT)) (-1430 ((|#1| $) 16 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#1| (-1252)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-1252)) ELT)) (-3282 (($ |#1| (-578)) 42 T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 149 T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 74 T ELT)) (-3493 (((-3 $ "failed") $) 165 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 85 (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) 81 (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) 92 (|has| |#1| (-559)) ELT)) (-3055 (($ |#1| (-578)) 44 T ELT)) (-2159 (((-112) $) 212 (|has| |#1| (-1252)) ELT)) (-4382 (((-112) $) 62 T ELT)) (-3544 (((-793) $) 51 T ELT)) (-4463 (((-3 "nil" "sqfr" "irred" "prime") $ (-578)) 176 T ELT)) (-2181 ((|#1| $ (-578)) 175 T ELT)) (-3056 (((-578) $ (-578)) 174 T ELT)) (-2381 (($ |#1| (-578)) 41 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 184 T ELT)) (-4129 (($ |#1| (-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-578))))) 79 T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2078 (($ |#1| (-578)) 43 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 193 (|has| |#1| (-466)) ELT)) (-2857 (($ |#1| (-578) (-3 "nil" "sqfr" "irred" "prime")) 40 T ELT)) (-2636 (((-666 (-2 (|:| -2800 |#1|) (|:| -2764 (-578)))) $) 73 T ELT)) (-2685 (((-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-578)))) $) 12 T ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-1252)) ELT)) (-3202 (((-3 $ "failed") $ $) 177 T ELT)) (-2764 (((-578) $) 168 T ELT)) (-4199 ((|#1| $) 75 T ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) 101 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) 107 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) $) NIL (|has| |#1| (-528 (-1207) $)) ELT) (($ $ (-666 (-1207)) (-666 $)) 108 (|has| |#1| (-528 (-1207) $)) ELT) (($ $ (-666 (-306 $))) 104 (|has| |#1| (-321 $)) ELT) (($ $ (-306 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-666 $) (-666 $)) NIL (|has| |#1| (-321 $)) ELT)) (-2436 (($ $ |#1|) 93 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 94 (|has| |#1| (-298 $ $)) ELT)) (-2031 (($ $ (-1 |#1| |#1|)) 183 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3343 (((-550) $) 39 (|has| |#1| (-633 (-550))) ELT) (((-392) $) 114 (|has| |#1| (-1053)) ELT) (((-229) $) 120 (|has| |#1| (-1053)) ELT)) (-2411 (((-886) $) 147 T ELT) (($ (-578)) 65 T ELT) (($ $) NIL T ELT) (($ |#1|) 64 T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT)) (-3753 (((-793)) 67 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) 53 T CONST)) (-2379 (($) 52 T CONST)) (-1676 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) 160 T ELT)) (-2484 (($ $) 162 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 181 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 126 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 69 T ELT) (($ $ $) 68 T ELT) (($ |#1| $) 70 T ELT) (($ $ |#1|) NIL T ELT))) +(((-432 |#1|) (-13 (-570) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-425 |#1|) (-10 -8 (-15 -4199 (|#1| $)) (-15 -2764 ((-578) $)) (-15 -4129 ($ |#1| (-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-578)))))) (-15 -2685 ((-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-578)))) $)) (-15 -2381 ($ |#1| (-578))) (-15 -2636 ((-666 (-2 (|:| -2800 |#1|) (|:| -2764 (-578)))) $)) (-15 -2078 ($ |#1| (-578))) (-15 -3056 ((-578) $ (-578))) (-15 -2181 (|#1| $ (-578))) (-15 -4463 ((-3 "nil" "sqfr" "irred" "prime") $ (-578))) (-15 -3544 ((-793) $)) (-15 -3055 ($ |#1| (-578))) (-15 -3282 ($ |#1| (-578))) (-15 -2857 ($ |#1| (-578) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1430 (|#1| $)) (-15 -3635 ($ $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1053)) (-6 (-1053)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1207) $)) (-6 (-528 (-1207) $)) |%noBranch|))) (-570)) (T -432)) +((-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-570)) (-5 *1 (-432 *3)))) (-4199 (*1 *2 *1) (-12 (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-432 *3)) (-4 *3 (-570)))) (-4129 (*1 *1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-578))))) (-4 *2 (-570)) (-5 *1 (-432 *2)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-578))))) (-5 *1 (-432 *3)) (-4 *3 (-570)))) (-2381 (*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| -2800 *3) (|:| -2764 (-578))))) (-5 *1 (-432 *3)) (-4 *3 (-570)))) (-2078 (*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-3056 (*1 *2 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-432 *3)) (-4 *3 (-570)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-4463 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-432 *4)) (-4 *4 (-570)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-432 *3)) (-4 *3 (-570)))) (-3055 (*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-3282 (*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-2857 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-1430 (*1 *2 *1) (-12 (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-3635 (*1 *1 *1) (-12 (-5 *1 (-432 *2)) (-4 *2 (-570)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-559)) (-4 *3 (-570)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-432 *3)) (-4 *3 (-559)) (-4 *3 (-570)))) (-1514 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-432 *3)) (-4 *3 (-559)) (-4 *3 (-570))))) +(-13 (-570) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-425 |#1|) (-10 -8 (-15 -4199 (|#1| $)) (-15 -2764 ((-578) $)) (-15 -4129 ($ |#1| (-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-578)))))) (-15 -2685 ((-666 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-578)))) $)) (-15 -2381 ($ |#1| (-578))) (-15 -2636 ((-666 (-2 (|:| -2800 |#1|) (|:| -2764 (-578)))) $)) (-15 -2078 ($ |#1| (-578))) (-15 -3056 ((-578) $ (-578))) (-15 -2181 (|#1| $ (-578))) (-15 -4463 ((-3 "nil" "sqfr" "irred" "prime") $ (-578))) (-15 -3544 ((-793) $)) (-15 -3055 ($ |#1| (-578))) (-15 -3282 ($ |#1| (-578))) (-15 -2857 ($ |#1| (-578) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1430 (|#1| $)) (-15 -3635 ($ $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1053)) (-6 (-1053)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1207) $)) (-6 (-528 (-1207) $)) |%noBranch|))) +((-3437 (((-432 |#1|) (-432 |#1|) (-1 (-432 |#1|) |#1|)) 28 T ELT)) (-2741 (((-432 |#1|) (-432 |#1|) (-432 |#1|)) 17 T ELT))) +(((-433 |#1|) (-10 -7 (-15 -3437 ((-432 |#1|) (-432 |#1|) (-1 (-432 |#1|) |#1|))) (-15 -2741 ((-432 |#1|) (-432 |#1|) (-432 |#1|)))) (-570)) (T -433)) +((-2741 (*1 *2 *2 *2) (-12 (-5 *2 (-432 *3)) (-4 *3 (-570)) (-5 *1 (-433 *3)))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-432 *4) *4)) (-4 *4 (-570)) (-5 *2 (-432 *4)) (-5 *1 (-433 *4))))) +(-10 -7 (-15 -3437 ((-432 |#1|) (-432 |#1|) (-1 (-432 |#1|) |#1|))) (-15 -2741 ((-432 |#1|) (-432 |#1|) (-432 |#1|)))) +((-3896 ((|#2| |#2|) 183 T ELT)) (-1743 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112)) 60 T ELT))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1743 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112))) (-15 -3896 (|#2| |#2|))) (-13 (-466) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|)) (-1207) |#2|) (T -434)) +((-3896 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-434 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-444 *3))) (-14 *4 (-1207)) (-14 *5 *2))) (-1743 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-434 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) (-14 *6 (-1207)) (-14 *7 *3)))) +(-10 -7 (-15 -1743 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112))) (-15 -3896 (|#2| |#2|))) +((-3611 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|))) (-1080) (-444 |#1|) (-1080) (-444 |#3|)) (T -435)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-444 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-444 *5))))) +(-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|))) +((-3896 ((|#2| |#2|) 106 T ELT)) (-1480 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112) (-1189)) 52 T ELT)) (-2689 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112) (-1189)) 170 T ELT))) +(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1480 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112) (-1189))) (-15 -2689 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112) (-1189))) (-15 -3896 (|#2| |#2|))) (-13 (-466) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|) (-10 -8 (-15 -2411 ($ |#3|)))) (-870) (-13 (-1276 |#2| |#3|) (-376) (-1233) (-10 -8 (-15 -2031 ($ $)) (-15 -4371 ($ $)))) (-1014 |#4|) (-1207)) (T -436)) +((-3896 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-4 *2 (-13 (-27) (-1233) (-444 *3) (-10 -8 (-15 -2411 ($ *4))))) (-4 *4 (-870)) (-4 *5 (-13 (-1276 *2 *4) (-376) (-1233) (-10 -8 (-15 -2031 ($ $)) (-15 -4371 ($ $))))) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1014 *5)) (-14 *7 (-1207)))) (-2689 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-4 *3 (-13 (-27) (-1233) (-444 *6) (-10 -8 (-15 -2411 ($ *7))))) (-4 *7 (-870)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -2031 ($ $)) (-15 -4371 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) (-14 *10 (-1207)))) (-1480 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-4 *3 (-13 (-27) (-1233) (-444 *6) (-10 -8 (-15 -2411 ($ *7))))) (-4 *7 (-870)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -2031 ($ $)) (-15 -4371 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) (-14 *10 (-1207))))) +(-10 -7 (-15 -1480 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112) (-1189))) (-15 -2689 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-112) (-1189))) (-15 -3896 (|#2| |#2|))) +((-4315 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-2512 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3611 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2512 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4315 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1131) (-439 |#1|) (-1131) (-439 |#3|)) (T -437)) +((-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) (-4 *2 (-439 *5)) (-5 *1 (-437 *6 *4 *5 *2)) (-4 *4 (-439 *6)))) (-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) (-5 *1 (-437 *5 *4 *2 *6)) (-4 *4 (-439 *5)) (-4 *6 (-439 *2)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-439 *6)) (-5 *1 (-437 *5 *4 *6 *2)) (-4 *4 (-439 *5))))) +(-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2512 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4315 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3927 (($) 51 T ELT)) (-1340 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-4430 (($ $ $) 46 T ELT)) (-3954 (((-112) $ $) 35 T ELT)) (-2222 (((-793)) 55 T ELT)) (-1754 (($ (-666 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2062 (($) 66 T ELT)) (-2930 (((-112) $ $) 15 T ELT)) (-1345 ((|#2| $) 77 T ELT)) (-3667 ((|#2| $) 75 T ELT)) (-3193 (((-950) $) 70 T ELT)) (-3457 (($ $ $) 42 T ELT)) (-2087 (($ (-950)) 60 T ELT)) (-2867 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) NIL T ELT) (((-793) |#2| $) 31 T ELT)) (-2423 (($ (-666 |#2|)) 27 T ELT)) (-2166 (($ $) 53 T ELT)) (-2411 (((-886) $) 40 T ELT)) (-3131 (((-793) $) 24 T ELT)) (-2869 (($ (-666 |#2|)) 22 T ELT) (($) NIL T ELT)) (-2384 (((-112) $ $) 19 T ELT))) +(((-438 |#1| |#2|) (-10 -8 (-15 -2222 ((-793))) (-15 -2087 (|#1| (-950))) (-15 -3193 ((-950) |#1|)) (-15 -2062 (|#1|)) (-15 -1345 (|#2| |#1|)) (-15 -3667 (|#2| |#1|)) (-15 -3927 (|#1|)) (-15 -2166 (|#1| |#1|)) (-15 -3131 ((-793) |#1|)) (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2930 ((-112) |#1| |#1|)) (-15 -2869 (|#1|)) (-15 -2869 (|#1| (-666 |#2|))) (-15 -1754 (|#1|)) (-15 -1754 (|#1| (-666 |#2|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -3954 ((-112) |#1| |#1|)) (-15 -1340 (|#1| |#1| |#1|)) (-15 -1340 (|#1| |#1| |#2|)) (-15 -1340 (|#1| |#2| |#1|)) (-15 -2423 (|#1| (-666 |#2|))) (-15 -4324 ((-793) |#2| |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|))) (-439 |#2|) (-1131)) (T -438)) +((-2222 (*1 *2) (-12 (-4 *4 (-1131)) (-5 *2 (-793)) (-5 *1 (-438 *3 *4)) (-4 *3 (-439 *4))))) +(-10 -8 (-15 -2222 ((-793))) (-15 -2087 (|#1| (-950))) (-15 -3193 ((-950) |#1|)) (-15 -2062 (|#1|)) (-15 -1345 (|#2| |#1|)) (-15 -3667 (|#2| |#1|)) (-15 -3927 (|#1|)) (-15 -2166 (|#1| |#1|)) (-15 -3131 ((-793) |#1|)) (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2930 ((-112) |#1| |#1|)) (-15 -2869 (|#1|)) (-15 -2869 (|#1| (-666 |#2|))) (-15 -1754 (|#1|)) (-15 -1754 (|#1| (-666 |#2|))) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -3954 ((-112) |#1| |#1|)) (-15 -1340 (|#1| |#1| |#1|)) (-15 -1340 (|#1| |#1| |#2|)) (-15 -1340 (|#1| |#2| |#1|)) (-15 -2423 (|#1| (-666 |#2|))) (-15 -4324 ((-793) |#2| |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|))) +((-3213 (((-112) $ $) 20 T ELT)) (-3927 (($) 68 (|has| |#1| (-381)) ELT)) (-1340 (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-4430 (($ $ $) 79 T ELT)) (-3954 (((-112) $ $) 80 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2222 (((-793)) 62 (|has| |#1| (-381)) ELT)) (-1754 (($ (-666 |#1|)) 75 T ELT) (($) 74 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3776 (($ $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ |#1| $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4500)) ELT)) (-2062 (($) 65 (|has| |#1| (-381)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2930 (((-112) $ $) 71 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1345 ((|#1| $) 66 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3667 ((|#1| $) 67 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3193 (((-950) $) 64 (|has| |#1| (-381)) ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 T ELT)) (-3457 (($ $ $) 76 T ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-2087 (($ (-950)) 63 (|has| |#1| (-381)) ELT)) (-4313 (((-1151) $) 22 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2867 (($ $ |#1|) 78 T ELT) (($ $ $) 77 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 |#1|)) 49 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 51 T ELT)) (-2166 (($ $) 69 (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) 18 T ELT)) (-3131 (((-793) $) 70 T ELT)) (-2869 (($ (-666 |#1|)) 73 T ELT) (($) 72 T ELT)) (-2876 (((-112) $ $) 21 T ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 T ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-439 |#1|) (-142) (-1131)) (T -439)) +((-3131 (*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1131)) (-5 *2 (-793)))) (-2166 (*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1131)) (-4 *2 (-381)))) (-3927 (*1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-381)) (-4 *2 (-1131)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1131)) (-4 *2 (-871)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1131)) (-4 *2 (-871))))) +(-13 (-233 |t#1|) (-1129 |t#1|) (-10 -8 (-6 -4500) (-15 -3131 ((-793) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -2166 ($ $)) (-15 -3927 ($))) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-15 -3667 (|t#1| $)) (-15 -1345 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-886)) . T) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-233 |#1|) . T) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-381) |has| |#1| (-381)) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1129 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-2709 (((-600 |#2|) |#2| (-1207)) 36 T ELT)) (-2578 (((-600 |#2|) |#2| (-1207)) 21 T ELT)) (-2520 ((|#2| |#2| (-1207)) 26 T ELT))) +(((-440 |#1| |#2|) (-10 -7 (-15 -2578 ((-600 |#2|) |#2| (-1207))) (-15 -2709 ((-600 |#2|) |#2| (-1207))) (-15 -2520 (|#2| |#2| (-1207)))) (-13 (-319) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-29 |#1|))) (T -440)) +((-2520 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4))))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-600 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5))))) (-2578 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-600 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5)))))) +(-10 -7 (-15 -2578 ((-600 |#2|) |#2| (-1207))) (-15 -2709 ((-600 |#2|) |#2| (-1207))) (-15 -2520 (|#2| |#2| (-1207)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2158 (($ |#2| |#1|) 37 T ELT)) (-2984 (($ |#2| |#1|) 35 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 10 T CONST)) (-2379 (($) 16 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 36 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-441 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4487)) (IF (|has| |#1| (-6 -4487)) (-6 -4487) |%noBranch|) |%noBranch|) (-15 -2411 ($ |#1|)) (-15 -2411 ($ (-343 |#2|))) (-15 -2158 ($ |#2| |#1|)) (-15 -2984 ($ |#2| |#1|)))) (-13 (-175) (-38 (-421 (-578)))) (-13 (-871) (-21))) (T -441)) +((-2411 (*1 *1 *2) (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-578))))) (-4 *3 (-13 (-871) (-21))))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-871) (-21))) (-5 *1 (-441 *3 *4)) (-4 *3 (-13 (-175) (-38 (-421 (-578))))))) (-2158 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-578))))) (-4 *2 (-13 (-871) (-21))))) (-2984 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-578))))) (-4 *2 (-13 (-871) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4487)) (IF (|has| |#1| (-6 -4487)) (-6 -4487) |%noBranch|) |%noBranch|) (-15 -2411 ($ |#1|)) (-15 -2411 ($ (-343 |#2|))) (-15 -2158 ($ |#2| |#1|)) (-15 -2984 ($ |#2| |#1|)))) +((-4371 (((-3 |#2| (-666 |#2|)) |#2| (-1207)) 115 T ELT))) +(((-442 |#1| |#2|) (-10 -7 (-15 -4371 ((-3 |#2| (-666 |#2|)) |#2| (-1207)))) (-13 (-319) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-988) (-29 |#1|))) (T -442)) +((-4371 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 *3 (-666 *3))) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1233) (-988) (-29 *5)))))) +(-10 -7 (-15 -4371 ((-3 |#2| (-666 |#2|)) |#2| (-1207)))) +((-2949 (((-666 (-1207)) $) 81 T ELT)) (-4420 (((-421 (-1203 $)) $ (-631 $)) 313 T ELT)) (-3584 (($ $ (-306 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) 277 T ELT)) (-2818 (((-3 (-631 $) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) 84 T ELT) (((-3 (-578) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 273 T ELT) (((-3 (-421 (-981 |#2|)) "failed") $) 363 T ELT) (((-3 (-981 |#2|) "failed") $) 275 T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-3516 (((-631 $) $) NIL T ELT) (((-1207) $) 28 T ELT) (((-578) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-421 (-981 |#2|)) $) 345 T ELT) (((-981 |#2|) $) 272 T ELT) (((-421 (-578)) $) NIL T ELT)) (-4397 (((-116) (-116)) 47 T ELT)) (-2544 (($ $) 99 T ELT)) (-3238 (((-3 (-631 $) "failed") $) 268 T ELT)) (-4386 (((-666 (-631 $)) $) 269 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 287 T ELT)) (-2929 (((-3 (-2 (|:| |val| $) (|:| -2764 (-578))) "failed") $) 294 T ELT)) (-1968 (((-3 (-666 $) "failed") $) 285 T ELT)) (-3395 (((-3 (-2 (|:| -2672 (-578)) (|:| |var| (-631 $))) "failed") $) 304 T ELT)) (-1590 (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-116)) 255 T ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-1207)) 257 T ELT)) (-3067 (((-112) $) 17 T ELT)) (-3080 ((|#2| $) 19 T ELT)) (-3364 (($ $ (-631 $) $) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) 276 T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) 109 T ELT) (($ $ (-1207) (-1 $ (-666 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-116) (-1 $ (-666 $))) NIL T ELT) (($ $ (-116) (-1 $ $)) NIL T ELT) (($ $ (-1207)) 62 T ELT) (($ $ (-666 (-1207))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-116) $ (-1207)) 65 T ELT) (($ $ (-666 (-116)) (-666 $) (-1207)) 72 T ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ $))) 120 T ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ (-666 $)))) 282 T ELT) (($ $ (-1207) (-793) (-1 $ (-666 $))) 105 T ELT) (($ $ (-1207) (-793) (-1 $ $)) 104 T ELT)) (-2436 (($ (-116) $) NIL T ELT) (($ (-116) $ $) NIL T ELT) (($ (-116) $ $ $) NIL T ELT) (($ (-116) $ $ $ $) NIL T ELT) (($ (-116) (-666 $)) 119 T ELT)) (-2031 (($ $ (-1207)) 278 T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-1363 (($ $) 324 T ELT)) (-3343 (((-917 (-578)) $) 297 T ELT) (((-917 (-392)) $) 301 T ELT) (($ (-432 $)) 359 T ELT) (((-550) $) NIL T ELT)) (-2411 (((-886) $) 279 T ELT) (($ (-631 $)) 93 T ELT) (($ (-1207)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1156 |#2| (-631 $))) NIL T ELT) (($ (-421 |#2|)) 329 T ELT) (($ (-981 (-421 |#2|))) 368 T ELT) (($ (-421 (-981 (-421 |#2|)))) 341 T ELT) (($ (-421 (-981 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-981 |#2|)) 216 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) 373 T ELT)) (-3753 (((-793)) 88 T ELT)) (-3619 (((-112) (-116)) 42 T ELT)) (-1630 (($ (-1207) $) 31 T ELT) (($ (-1207) $ $) 32 T ELT) (($ (-1207) $ $ $) 33 T ELT) (($ (-1207) $ $ $ $) 34 T ELT) (($ (-1207) (-666 $)) 39 T ELT)) (* (($ (-421 (-578)) $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-950) $) NIL T ELT))) +(((-443 |#1| |#2|) (-10 -8 (-15 * (|#1| (-950) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2411 (|#1| (-578))) (-15 -3753 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -2411 (|#1| (-981 |#2|))) (-15 -2818 ((-3 (-981 |#2|) "failed") |#1|)) (-15 -3516 ((-981 |#2|) |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -2411 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -2411 (|#1| (-421 (-981 |#2|)))) (-15 -2818 ((-3 (-421 (-981 |#2|)) "failed") |#1|)) (-15 -3516 ((-421 (-981 |#2|)) |#1|)) (-15 -4420 ((-421 (-1203 |#1|)) |#1| (-631 |#1|))) (-15 -2411 (|#1| (-421 (-981 (-421 |#2|))))) (-15 -2411 (|#1| (-981 (-421 |#2|)))) (-15 -2411 (|#1| (-421 |#2|))) (-15 -1363 (|#1| |#1|)) (-15 -3343 (|#1| (-432 |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-793) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-793) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-793)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-793)) (-666 (-1 |#1| |#1|)))) (-15 -2929 ((-3 (-2 (|:| |val| |#1|) (|:| -2764 (-578))) "failed") |#1|)) (-15 -1590 ((-3 (-2 (|:| |var| (-631 |#1|)) (|:| -2764 (-578))) "failed") |#1| (-1207))) (-15 -1590 ((-3 (-2 (|:| |var| (-631 |#1|)) (|:| -2764 (-578))) "failed") |#1| (-116))) (-15 -2544 (|#1| |#1|)) (-15 -2411 (|#1| (-1156 |#2| (-631 |#1|)))) (-15 -3395 ((-3 (-2 (|:| -2672 (-578)) (|:| |var| (-631 |#1|))) "failed") |#1|)) (-15 -1968 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -1590 ((-3 (-2 (|:| |var| (-631 |#1|)) (|:| -2764 (-578))) "failed") |#1|)) (-15 -3315 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 |#1|) (-1207))) (-15 -3364 (|#1| |#1| (-116) |#1| (-1207))) (-15 -3364 (|#1| |#1|)) (-15 -3364 (|#1| |#1| (-666 (-1207)))) (-15 -3364 (|#1| |#1| (-1207))) (-15 -1630 (|#1| (-1207) (-666 |#1|))) (-15 -1630 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -1630 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -1630 (|#1| (-1207) |#1| |#1|)) (-15 -1630 (|#1| (-1207) |#1|)) (-15 -2949 ((-666 (-1207)) |#1|)) (-15 -3080 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -2411 (|#1| (-1207))) (-15 -2818 ((-3 (-1207) "failed") |#1|)) (-15 -3516 ((-1207) |#1|)) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| |#1|)))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| |#1|)))) (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -4386 ((-666 (-631 |#1|)) |#1|)) (-15 -3238 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3584 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3584 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3584 (|#1| |#1| (-306 |#1|))) (-15 -2436 (|#1| (-116) (-666 |#1|))) (-15 -2436 (|#1| (-116) |#1| |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3364 (|#1| |#1| (-631 |#1|) |#1|)) (-15 -2411 (|#1| (-631 |#1|))) (-15 -2818 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3516 ((-631 |#1|) |#1|)) (-15 -2411 ((-886) |#1|))) (-444 |#2|) (-1131)) (T -443)) +((-4397 (*1 *2 *2) (-12 (-5 *2 (-116)) (-4 *4 (-1131)) (-5 *1 (-443 *3 *4)) (-4 *3 (-444 *4)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-116)) (-4 *5 (-1131)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *4 (-444 *5)))) (-3753 (*1 *2) (-12 (-4 *4 (-1131)) (-5 *2 (-793)) (-5 *1 (-443 *3 *4)) (-4 *3 (-444 *4))))) +(-10 -8 (-15 * (|#1| (-950) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2411 (|#1| (-578))) (-15 -3753 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -2411 (|#1| (-981 |#2|))) (-15 -2818 ((-3 (-981 |#2|) "failed") |#1|)) (-15 -3516 ((-981 |#2|) |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -2411 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -2411 (|#1| (-421 (-981 |#2|)))) (-15 -2818 ((-3 (-421 (-981 |#2|)) "failed") |#1|)) (-15 -3516 ((-421 (-981 |#2|)) |#1|)) (-15 -4420 ((-421 (-1203 |#1|)) |#1| (-631 |#1|))) (-15 -2411 (|#1| (-421 (-981 (-421 |#2|))))) (-15 -2411 (|#1| (-981 (-421 |#2|)))) (-15 -2411 (|#1| (-421 |#2|))) (-15 -1363 (|#1| |#1|)) (-15 -3343 (|#1| (-432 |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-793) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-793) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-793)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-793)) (-666 (-1 |#1| |#1|)))) (-15 -2929 ((-3 (-2 (|:| |val| |#1|) (|:| -2764 (-578))) "failed") |#1|)) (-15 -1590 ((-3 (-2 (|:| |var| (-631 |#1|)) (|:| -2764 (-578))) "failed") |#1| (-1207))) (-15 -1590 ((-3 (-2 (|:| |var| (-631 |#1|)) (|:| -2764 (-578))) "failed") |#1| (-116))) (-15 -2544 (|#1| |#1|)) (-15 -2411 (|#1| (-1156 |#2| (-631 |#1|)))) (-15 -3395 ((-3 (-2 (|:| -2672 (-578)) (|:| |var| (-631 |#1|))) "failed") |#1|)) (-15 -1968 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -1590 ((-3 (-2 (|:| |var| (-631 |#1|)) (|:| -2764 (-578))) "failed") |#1|)) (-15 -3315 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 |#1|) (-1207))) (-15 -3364 (|#1| |#1| (-116) |#1| (-1207))) (-15 -3364 (|#1| |#1|)) (-15 -3364 (|#1| |#1| (-666 (-1207)))) (-15 -3364 (|#1| |#1| (-1207))) (-15 -1630 (|#1| (-1207) (-666 |#1|))) (-15 -1630 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -1630 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -1630 (|#1| (-1207) |#1| |#1|)) (-15 -1630 (|#1| (-1207) |#1|)) (-15 -2949 ((-666 (-1207)) |#1|)) (-15 -3080 (|#2| |#1|)) (-15 -3067 ((-112) |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -2411 (|#1| (-1207))) (-15 -2818 ((-3 (-1207) "failed") |#1|)) (-15 -3516 ((-1207) |#1|)) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-116) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-116)) (-666 (-1 |#1| |#1|)))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -3364 (|#1| |#1| (-1207) (-1 |#1| (-666 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| (-666 |#1|))))) (-15 -3364 (|#1| |#1| (-666 (-1207)) (-666 (-1 |#1| |#1|)))) (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -4386 ((-666 (-631 |#1|)) |#1|)) (-15 -3238 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3584 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3584 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3584 (|#1| |#1| (-306 |#1|))) (-15 -2436 (|#1| (-116) (-666 |#1|))) (-15 -2436 (|#1| (-116) |#1| |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1| |#1|)) (-15 -2436 (|#1| (-116) |#1|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3364 (|#1| |#1| (-666 (-631 |#1|)) (-666 |#1|))) (-15 -3364 (|#1| |#1| (-631 |#1|) |#1|)) (-15 -2411 (|#1| (-631 |#1|))) (-15 -2818 ((-3 (-631 |#1|) "failed") |#1|)) (-15 -3516 ((-631 |#1|) |#1|)) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 117 (|has| |#1| (-25)) ELT)) (-2949 (((-666 (-1207)) $) 208 T ELT)) (-4420 (((-421 (-1203 $)) $ (-631 $)) 176 (|has| |#1| (-570)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 148 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 149 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 151 (|has| |#1| (-570)) ELT)) (-4318 (((-666 (-631 $)) $) 39 T ELT)) (-4028 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)) ELT)) (-3584 (($ $ (-306 $)) 51 T ELT) (($ $ (-666 (-306 $))) 50 T ELT) (($ $ (-666 (-631 $)) (-666 $)) 49 T ELT)) (-1457 (($ $) 168 (|has| |#1| (-570)) ELT)) (-3034 (((-432 $) $) 169 (|has| |#1| (-570)) ELT)) (-2732 (((-112) $ $) 159 (|has| |#1| (-570)) ELT)) (-3534 (($) 105 (-2230 (|has| |#1| (-1143)) (|has| |#1| (-25))) CONST)) (-2818 (((-3 (-631 $) "failed") $) 64 T ELT) (((-3 (-1207) "failed") $) 221 T ELT) (((-3 (-578) "failed") $) 215 (|has| |#1| (-1069 (-578))) ELT) (((-3 |#1| "failed") $) 212 T ELT) (((-3 (-421 (-981 |#1|)) "failed") $) 174 (|has| |#1| (-570)) ELT) (((-3 (-981 |#1|) "failed") $) 124 (|has| |#1| (-1080)) ELT) (((-3 (-421 (-578)) "failed") $) 99 (-2230 (-12 (|has| |#1| (-1069 (-578))) (|has| |#1| (-570))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3516 (((-631 $) $) 65 T ELT) (((-1207) $) 222 T ELT) (((-578) $) 214 (|has| |#1| (-1069 (-578))) ELT) ((|#1| $) 213 T ELT) (((-421 (-981 |#1|)) $) 175 (|has| |#1| (-570)) ELT) (((-981 |#1|) $) 125 (|has| |#1| (-1080)) ELT) (((-421 (-578)) $) 100 (-2230 (-12 (|has| |#1| (-1069 (-578))) (|has| |#1| (-570))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3154 (($ $ $) 163 (|has| |#1| (-570)) ELT)) (-2242 (((-711 (-578)) (-711 $)) 141 (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 140 (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 139 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-711 $)) 138 (|has| |#1| (-1080)) ELT)) (-3493 (((-3 $ "failed") $) 107 (|has| |#1| (-1143)) ELT)) (-3166 (($ $ $) 162 (|has| |#1| (-570)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 157 (|has| |#1| (-570)) ELT)) (-2159 (((-112) $) 170 (|has| |#1| (-570)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 217 (|has| |#1| (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 216 (|has| |#1| (-911 (-392))) ELT)) (-3783 (($ $) 46 T ELT) (($ (-666 $)) 45 T ELT)) (-3968 (((-666 (-116)) $) 38 T ELT)) (-4397 (((-116) (-116)) 37 T ELT)) (-4382 (((-112) $) 106 (|has| |#1| (-1143)) ELT)) (-2382 (((-112) $) 17 (|has| $ (-1069 (-578))) ELT)) (-2544 (($ $) 191 (|has| |#1| (-1080)) ELT)) (-2519 (((-1156 |#1| (-631 $)) $) 192 (|has| |#1| (-1080)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 166 (|has| |#1| (-570)) ELT)) (-2782 (((-1203 $) (-631 $)) 20 (|has| $ (-1080)) ELT)) (-3611 (($ (-1 $ $) (-631 $)) 31 T ELT)) (-3238 (((-3 (-631 $) "failed") $) 41 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 143 (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 142 (-2320 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 137 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-1298 $)) 136 (|has| |#1| (-1080)) ELT)) (-2389 (($ (-666 $)) 155 (|has| |#1| (-570)) ELT) (($ $ $) 154 (|has| |#1| (-570)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4386 (((-666 (-631 $)) $) 40 T ELT)) (-2594 (($ (-116) $) 33 T ELT) (($ (-116) (-666 $)) 32 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 197 (|has| |#1| (-1143)) ELT)) (-2929 (((-3 (-2 (|:| |val| $) (|:| -2764 (-578))) "failed") $) 188 (|has| |#1| (-1080)) ELT)) (-1968 (((-3 (-666 $) "failed") $) 195 (|has| |#1| (-25)) ELT)) (-3395 (((-3 (-2 (|:| -2672 (-578)) (|:| |var| (-631 $))) "failed") $) 194 (|has| |#1| (-25)) ELT)) (-1590 (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $) 196 (|has| |#1| (-1143)) ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-116)) 190 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-1207)) 189 (|has| |#1| (-1080)) ELT)) (-1413 (((-112) $ (-116)) 35 T ELT) (((-112) $ (-1207)) 34 T ELT)) (-3057 (($ $) 109 (-2230 (|has| |#1| (-487)) (|has| |#1| (-570))) ELT)) (-1737 (((-793) $) 42 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3067 (((-112) $) 210 T ELT)) (-3080 ((|#1| $) 209 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 156 (|has| |#1| (-570)) ELT)) (-2421 (($ (-666 $)) 153 (|has| |#1| (-570)) ELT) (($ $ $) 152 (|has| |#1| (-570)) ELT)) (-3139 (((-112) $ $) 30 T ELT) (((-112) $ (-1207)) 29 T ELT)) (-2800 (((-432 $) $) 167 (|has| |#1| (-570)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-570)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 164 (|has| |#1| (-570)) ELT)) (-3202 (((-3 $ "failed") $ $) 147 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 158 (|has| |#1| (-570)) ELT)) (-3873 (((-112) $) 18 (|has| $ (-1069 (-578))) ELT)) (-3364 (($ $ (-631 $) $) 62 T ELT) (($ $ (-666 (-631 $)) (-666 $)) 61 T ELT) (($ $ (-666 (-306 $))) 60 T ELT) (($ $ (-306 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-666 $) (-666 $)) 57 T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) 28 T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) 27 T ELT) (($ $ (-1207) (-1 $ (-666 $))) 26 T ELT) (($ $ (-1207) (-1 $ $)) 25 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) 24 T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) 23 T ELT) (($ $ (-116) (-1 $ (-666 $))) 22 T ELT) (($ $ (-116) (-1 $ $)) 21 T ELT) (($ $ (-1207)) 202 (|has| |#1| (-633 (-550))) ELT) (($ $ (-666 (-1207))) 201 (|has| |#1| (-633 (-550))) ELT) (($ $) 200 (|has| |#1| (-633 (-550))) ELT) (($ $ (-116) $ (-1207)) 199 (|has| |#1| (-633 (-550))) ELT) (($ $ (-666 (-116)) (-666 $) (-1207)) 198 (|has| |#1| (-633 (-550))) ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ $))) 187 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ (-666 $)))) 186 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-666 $))) 185 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ $)) 184 (|has| |#1| (-1080)) ELT)) (-1449 (((-793) $) 160 (|has| |#1| (-570)) ELT)) (-2436 (($ (-116) $) 56 T ELT) (($ (-116) $ $) 55 T ELT) (($ (-116) $ $ $) 54 T ELT) (($ (-116) $ $ $ $) 53 T ELT) (($ (-116) (-666 $)) 52 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 161 (|has| |#1| (-570)) ELT)) (-2909 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-2031 (($ $ (-1207)) 134 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207))) 132 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 131 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 130 (|has| |#1| (-1080)) ELT)) (-1363 (($ $) 181 (|has| |#1| (-570)) ELT)) (-2530 (((-1156 |#1| (-631 $)) $) 182 (|has| |#1| (-570)) ELT)) (-4269 (($ $) 19 (|has| $ (-1080)) ELT)) (-3343 (((-917 (-578)) $) 219 (|has| |#1| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) 218 (|has| |#1| (-633 (-917 (-392)))) ELT) (($ (-432 $)) 183 (|has| |#1| (-570)) ELT) (((-550) $) 101 (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $ $) 112 (|has| |#1| (-487)) ELT)) (-1863 (($ $ $) 113 (|has| |#1| (-487)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-631 $)) 63 T ELT) (($ (-1207)) 220 T ELT) (($ |#1|) 211 T ELT) (($ (-1156 |#1| (-631 $))) 193 (|has| |#1| (-1080)) ELT) (($ (-421 |#1|)) 179 (|has| |#1| (-570)) ELT) (($ (-981 (-421 |#1|))) 178 (|has| |#1| (-570)) ELT) (($ (-421 (-981 (-421 |#1|)))) 177 (|has| |#1| (-570)) ELT) (($ (-421 (-981 |#1|))) 173 (|has| |#1| (-570)) ELT) (($ $) 146 (|has| |#1| (-570)) ELT) (($ (-981 |#1|)) 123 (|has| |#1| (-1080)) ELT) (($ (-421 (-578))) 98 (-2230 (|has| |#1| (-570)) (-12 (|has| |#1| (-1069 (-578))) (|has| |#1| (-570))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ (-578)) 97 (-2230 (|has| |#1| (-1080)) (|has| |#1| (-1069 (-578)))) ELT)) (-2213 (((-3 $ "failed") $) 144 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 126 (|has| |#1| (-1080)) CONST)) (-2209 (($ $) 48 T ELT) (($ (-666 $)) 47 T ELT)) (-3619 (((-112) (-116)) 36 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 150 (|has| |#1| (-570)) ELT)) (-1630 (($ (-1207) $) 207 T ELT) (($ (-1207) $ $) 206 T ELT) (($ (-1207) $ $ $) 205 T ELT) (($ (-1207) $ $ $ $) 204 T ELT) (($ (-1207) (-666 $)) 203 T ELT)) (-2368 (($) 116 (|has| |#1| (-25)) CONST)) (-2379 (($) 104 (|has| |#1| (-1143)) CONST)) (-1676 (($ $ (-1207)) 133 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207))) 129 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 128 (|has| |#1| (-1080)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 127 (|has| |#1| (-1080)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ (-1156 |#1| (-631 $)) (-1156 |#1| (-631 $))) 180 (|has| |#1| (-570)) ELT) (($ $ $) 110 (-2230 (|has| |#1| (-487)) (|has| |#1| (-570))) ELT)) (-2484 (($ $ $) 122 (|has| |#1| (-21)) ELT) (($ $) 121 (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) 114 (|has| |#1| (-25)) ELT)) (** (($ $ (-578)) 111 (-2230 (|has| |#1| (-487)) (|has| |#1| (-570))) ELT) (($ $ (-793)) 108 (|has| |#1| (-1143)) ELT) (($ $ (-950)) 103 (|has| |#1| (-1143)) ELT)) (* (($ (-421 (-578)) $) 172 (|has| |#1| (-570)) ELT) (($ $ (-421 (-578))) 171 (|has| |#1| (-570)) ELT) (($ $ |#1|) 145 (|has| |#1| (-175)) ELT) (($ |#1| $) 135 (|has| |#1| (-1080)) ELT) (($ (-578) $) 120 (|has| |#1| (-21)) ELT) (($ (-793) $) 118 (|has| |#1| (-25)) ELT) (($ (-950) $) 115 (|has| |#1| (-25)) ELT) (($ $ $) 102 (|has| |#1| (-1143)) ELT))) +(((-444 |#1|) (-142) (-1131)) (T -444)) +((-3067 (*1 *2 *1) (-12 (-4 *1 (-444 *3)) (-4 *3 (-1131)) (-5 *2 (-112)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-444 *3)) (-4 *3 (-1131)) (-5 *2 (-666 (-1207))))) (-1630 (*1 *1 *2 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)))) (-1630 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)))) (-1630 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)))) (-1630 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)))) (-1630 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-666 *1)) (-4 *1 (-444 *4)) (-4 *4 (-1131)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)) (-4 *3 (-633 (-550))))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-1207))) (-4 *1 (-444 *3)) (-4 *3 (-1131)) (-4 *3 (-633 (-550))))) (-3364 (*1 *1 *1) (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131)) (-4 *2 (-633 (-550))))) (-3364 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-116)) (-5 *3 (-1207)) (-4 *1 (-444 *4)) (-4 *4 (-1131)) (-4 *4 (-633 (-550))))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-666 (-116))) (-5 *3 (-666 *1)) (-5 *4 (-1207)) (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-633 (-550))))) (-3315 (*1 *2 *1) (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1131)) (-5 *2 (-666 *1)) (-4 *1 (-444 *3)))) (-1590 (*1 *2 *1) (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1131)) (-5 *2 (-2 (|:| |var| (-631 *1)) (|:| -2764 (-578)))) (-4 *1 (-444 *3)))) (-1968 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) (-5 *2 (-666 *1)) (-4 *1 (-444 *3)))) (-3395 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) (-5 *2 (-2 (|:| -2672 (-578)) (|:| |var| (-631 *1)))) (-4 *1 (-444 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1156 *3 (-631 *1))) (-4 *3 (-1080)) (-4 *3 (-1131)) (-4 *1 (-444 *3)))) (-2519 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *3 (-1131)) (-5 *2 (-1156 *3 (-631 *1))) (-4 *1 (-444 *3)))) (-2544 (*1 *1 *1) (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131)) (-4 *2 (-1080)))) (-1590 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-116)) (-4 *4 (-1080)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| |var| (-631 *1)) (|:| -2764 (-578)))) (-4 *1 (-444 *4)))) (-1590 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1080)) (-4 *4 (-1131)) (-5 *2 (-2 (|:| |var| (-631 *1)) (|:| -2764 (-578)))) (-4 *1 (-444 *4)))) (-2929 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-1131)) (-5 *2 (-2 (|:| |val| *1) (|:| -2764 (-578)))) (-4 *1 (-444 *3)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-793))) (-5 *4 (-666 (-1 *1 *1))) (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-1080)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-793))) (-5 *4 (-666 (-1 *1 (-666 *1)))) (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-1080)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-666 *1))) (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-1080)))) (-3364 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1)) (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-1080)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-432 *1)) (-4 *1 (-444 *3)) (-4 *3 (-570)) (-4 *3 (-1131)))) (-2530 (*1 *2 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1131)) (-5 *2 (-1156 *3 (-631 *1))) (-4 *1 (-444 *3)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131)) (-4 *2 (-570)))) (-2495 (*1 *1 *2 *2) (-12 (-5 *2 (-1156 *3 (-631 *1))) (-4 *3 (-570)) (-4 *3 (-1131)) (-4 *1 (-444 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-570)) (-4 *3 (-1131)) (-4 *1 (-444 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-981 (-421 *3))) (-4 *3 (-570)) (-4 *3 (-1131)) (-4 *1 (-444 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-421 (-981 (-421 *3)))) (-4 *3 (-570)) (-4 *3 (-1131)) (-4 *1 (-444 *3)))) (-4420 (*1 *2 *1 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-444 *4)) (-4 *4 (-1131)) (-4 *4 (-570)) (-5 *2 (-421 (-1203 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-444 *3)) (-4 *3 (-1131)) (-4 *3 (-1143))))) +(-13 (-314) (-1069 (-1207)) (-909 |t#1|) (-414 |t#1|) (-425 |t#1|) (-10 -8 (-15 -3067 ((-112) $)) (-15 -3080 (|t#1| $)) (-15 -2949 ((-666 (-1207)) $)) (-15 -1630 ($ (-1207) $)) (-15 -1630 ($ (-1207) $ $)) (-15 -1630 ($ (-1207) $ $ $)) (-15 -1630 ($ (-1207) $ $ $ $)) (-15 -1630 ($ (-1207) (-666 $))) (IF (|has| |t#1| (-633 (-550))) (PROGN (-6 (-633 (-550))) (-15 -3364 ($ $ (-1207))) (-15 -3364 ($ $ (-666 (-1207)))) (-15 -3364 ($ $)) (-15 -3364 ($ $ (-116) $ (-1207))) (-15 -3364 ($ $ (-666 (-116)) (-666 $) (-1207)))) |%noBranch|) (IF (|has| |t#1| (-1143)) (PROGN (-6 (-748)) (-15 ** ($ $ (-793))) (-15 -3315 ((-3 (-666 $) "failed") $)) (-15 -1590 ((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-487)) (-6 (-487)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1968 ((-3 (-666 $) "failed") $)) (-15 -3395 ((-3 (-2 (|:| -2672 (-578)) (|:| |var| (-631 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-1069 (-981 |t#1|))) (-6 (-927 (-1207))) (-6 (-390 |t#1|)) (-15 -2411 ($ (-1156 |t#1| (-631 $)))) (-15 -2519 ((-1156 |t#1| (-631 $)) $)) (-15 -2544 ($ $)) (-15 -1590 ((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-116))) (-15 -1590 ((-3 (-2 (|:| |var| (-631 $)) (|:| -2764 (-578))) "failed") $ (-1207))) (-15 -2929 ((-3 (-2 (|:| |val| $) (|:| -2764 (-578))) "failed") $)) (-15 -3364 ($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ $)))) (-15 -3364 ($ $ (-666 (-1207)) (-666 (-793)) (-666 (-1 $ (-666 $))))) (-15 -3364 ($ $ (-1207) (-793) (-1 $ (-666 $)))) (-15 -3364 ($ $ (-1207) (-793) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-570)) (PROGN (-6 (-376)) (-6 (-1069 (-421 (-981 |t#1|)))) (-15 -3343 ($ (-432 $))) (-15 -2530 ((-1156 |t#1| (-631 $)) $)) (-15 -1363 ($ $)) (-15 -2495 ($ (-1156 |t#1| (-631 $)) (-1156 |t#1| (-631 $)))) (-15 -2411 ($ (-421 |t#1|))) (-15 -2411 ($ (-981 (-421 |t#1|)))) (-15 -2411 ($ (-421 (-981 (-421 |t#1|))))) (-15 -4420 ((-421 (-1203 $)) $ (-631 $))) (IF (|has| |t#1| (-1069 (-578))) (-6 (-1069 (-421 (-578)))) |%noBranch|)) |%noBranch|))) +(((-21) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-421 (-578))) |has| |#1| (-570)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-570)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-570)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-570)) ((-133) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-570))) ((-635 #1=(-421 (-981 |#1|))) |has| |#1| (-570)) ((-635 (-578)) -2230 (|has| |#1| (-1080)) (|has| |#1| (-1069 (-578))) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-635 #2=(-631 $)) . T) ((-635 #3=(-981 |#1|)) |has| |#1| (-1080)) ((-635 #4=(-1207)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-570)) ((-632 (-886)) . T) ((-175) |has| |#1| (-570)) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-633 (-917 (-392))) |has| |#1| (-633 (-917 (-392)))) ((-633 (-917 (-578))) |has| |#1| (-633 (-917 (-578)))) ((-250) |has| |#1| (-570)) ((-302) |has| |#1| (-570)) ((-319) |has| |#1| (-570)) ((-321 $) . T) ((-314) . T) ((-376) |has| |#1| (-570)) ((-390 |#1|) |has| |#1| (-1080)) ((-414 |#1|) . T) ((-425 |#1|) . T) ((-466) |has| |#1| (-570)) ((-487) |has| |#1| (-487)) ((-528 (-631 $) $) . T) ((-528 $ $) . T) ((-570) |has| |#1| (-570)) ((-668 #0#) |has| |#1| (-570)) ((-668 (-578)) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-668 |#1|) -2230 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-668 $) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-670 #0#) |has| |#1| (-570)) ((-670 #5=(-578)) -12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ((-670 |#1|) -2230 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-670 $) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-662 #0#) |has| |#1| (-570)) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-570)) ((-660 #5#) -12 (|has| |#1| (-660 (-578))) (|has| |#1| (-1080))) ((-660 |#1|) |has| |#1| (-1080)) ((-739 #0#) |has| |#1| (-570)) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-570)) ((-748) -2230 (|has| |#1| (-1143)) (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-921 $ #6=(-1207)) |has| |#1| (-1080)) ((-927 #6#) |has| |#1| (-1080)) ((-929 #6#) |has| |#1| (-1080)) ((-911 (-392)) |has| |#1| (-911 (-392))) ((-911 (-578)) |has| |#1| (-911 (-578))) ((-909 |#1|) . T) ((-949) |has| |#1| (-570)) ((-1069 (-421 (-578))) -2230 (|has| |#1| (-1069 (-421 (-578)))) (-12 (|has| |#1| (-570)) (|has| |#1| (-1069 (-578))))) ((-1069 #1#) |has| |#1| (-570)) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 #2#) . T) ((-1069 #3#) |has| |#1| (-1080)) ((-1069 #4#) . T) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-570)) ((-1082 |#1|) |has| |#1| (-175)) ((-1082 $) |has| |#1| (-570)) ((-1087 #0#) |has| |#1| (-570)) ((-1087 |#1|) |has| |#1| (-175)) ((-1087 $) |has| |#1| (-570)) ((-1080) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1089) -2230 (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1143) -2230 (|has| |#1| (-1143)) (|has| |#1| (-1080)) (|has| |#1| (-570)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1131) . T) ((-1248) . T) ((-1252) |has| |#1| (-570))) +((-2482 ((|#2| |#2| |#2|) 31 T ELT)) (-4397 (((-116) (-116)) 43 T ELT)) (-1980 ((|#2| |#2|) 63 T ELT)) (-2378 ((|#2| |#2|) 66 T ELT)) (-2422 ((|#2| |#2|) 30 T ELT)) (-2833 ((|#2| |#2| |#2|) 33 T ELT)) (-3223 ((|#2| |#2| |#2|) 35 T ELT)) (-3358 ((|#2| |#2| |#2|) 32 T ELT)) (-3317 ((|#2| |#2| |#2|) 34 T ELT)) (-3619 (((-112) (-116)) 41 T ELT)) (-2084 ((|#2| |#2|) 37 T ELT)) (-1897 ((|#2| |#2|) 36 T ELT)) (-2628 ((|#2| |#2|) 25 T ELT)) (-1885 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-2799 ((|#2| |#2| |#2|) 29 T ELT))) +(((-445 |#1| |#2|) (-10 -7 (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -2628 (|#2| |#2|)) (-15 -1885 (|#2| |#2|)) (-15 -1885 (|#2| |#2| |#2|)) (-15 -2799 (|#2| |#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -2482 (|#2| |#2| |#2|)) (-15 -3358 (|#2| |#2| |#2|)) (-15 -2833 (|#2| |#2| |#2|)) (-15 -3317 (|#2| |#2| |#2|)) (-15 -3223 (|#2| |#2| |#2|)) (-15 -1897 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -1980 (|#2| |#2|))) (-570) (-444 |#1|)) (T -445)) +((-1980 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-3223 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-3317 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-2833 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-3358 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-2482 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-2799 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-1885 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-1885 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-2628 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) (-4397 (*1 *2 *2) (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-445 *3 *4)) (-4 *4 (-444 *3)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-445 *4 *5)) (-4 *5 (-444 *4))))) +(-10 -7 (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -2628 (|#2| |#2|)) (-15 -1885 (|#2| |#2|)) (-15 -1885 (|#2| |#2| |#2|)) (-15 -2799 (|#2| |#2| |#2|)) (-15 -2422 (|#2| |#2|)) (-15 -2482 (|#2| |#2| |#2|)) (-15 -3358 (|#2| |#2| |#2|)) (-15 -2833 (|#2| |#2| |#2|)) (-15 -3317 (|#2| |#2| |#2|)) (-15 -3223 (|#2| |#2| |#2|)) (-15 -1897 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -2378 (|#2| |#2|)) (-15 -1980 (|#2| |#2|))) +((-3146 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1203 |#2|)) (|:| |pol2| (-1203 |#2|)) (|:| |prim| (-1203 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-666 (-1203 |#2|))) (|:| |prim| (-1203 |#2|))) (-666 |#2|)) 65 T ELT))) +(((-446 |#1| |#2|) (-10 -7 (-15 -3146 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-666 (-1203 |#2|))) (|:| |prim| (-1203 |#2|))) (-666 |#2|))) (IF (|has| |#2| (-27)) (-15 -3146 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1203 |#2|)) (|:| |pol2| (-1203 |#2|)) (|:| |prim| (-1203 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-570) (-149)) (-444 |#1|)) (T -446)) +((-3146 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-570) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1203 *3)) (|:| |pol2| (-1203 *3)) (|:| |prim| (-1203 *3)))) (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-444 *4)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-666 *5)) (-4 *5 (-444 *4)) (-4 *4 (-13 (-570) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-666 (-1203 *5))) (|:| |prim| (-1203 *5)))) (-5 *1 (-446 *4 *5))))) +(-10 -7 (-15 -3146 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-666 (-1203 |#2|))) (|:| |prim| (-1203 |#2|))) (-666 |#2|))) (IF (|has| |#2| (-27)) (-15 -3146 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1203 |#2|)) (|:| |pol2| (-1203 |#2|)) (|:| |prim| (-1203 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3496 (((-1303)) 18 T ELT)) (-3535 (((-1203 (-421 (-578))) |#2| (-631 |#2|)) 40 T ELT) (((-421 (-578)) |#2|) 24 T ELT))) +(((-447 |#1| |#2|) (-10 -7 (-15 -3535 ((-421 (-578)) |#2|)) (-15 -3535 ((-1203 (-421 (-578))) |#2| (-631 |#2|))) (-15 -3496 ((-1303)))) (-13 (-570) (-1069 (-578))) (-444 |#1|)) (T -447)) +((-3496 (*1 *2) (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *2 (-1303)) (-5 *1 (-447 *3 *4)) (-4 *4 (-444 *3)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-444 *5)) (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-1203 (-421 (-578)))) (-5 *1 (-447 *5 *3)))) (-3535 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-421 (-578))) (-5 *1 (-447 *4 *3)) (-4 *3 (-444 *4))))) +(-10 -7 (-15 -3535 ((-421 (-578)) |#2|)) (-15 -3535 ((-1203 (-421 (-578))) |#2| (-631 |#2|))) (-15 -3496 ((-1303)))) +((-2147 (((-112) $) 33 T ELT)) (-2255 (((-112) $) 35 T ELT)) (-2794 (((-112) $) 36 T ELT)) (-1525 (((-112) $) 39 T ELT)) (-4145 (((-112) $) 34 T ELT)) (-2780 (((-112) $) 38 T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-1189)) 32 T ELT) (($ (-1207)) 30 T ELT) (((-1207) $) 24 T ELT) (((-1135) $) 23 T ELT)) (-1832 (((-112) $) 37 T ELT)) (-2384 (((-112) $ $) 17 T ELT))) +(((-448) (-13 (-632 (-886)) (-10 -8 (-15 -2411 ($ (-1189))) (-15 -2411 ($ (-1207))) (-15 -2411 ((-1207) $)) (-15 -2411 ((-1135) $)) (-15 -2147 ((-112) $)) (-15 -4145 ((-112) $)) (-15 -2794 ((-112) $)) (-15 -2780 ((-112) $)) (-15 -1525 ((-112) $)) (-15 -1832 ((-112) $)) (-15 -2255 ((-112) $)) (-15 -2384 ((-112) $ $))))) (T -448)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-448)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-448)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) (-2384 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448))))) +(-13 (-632 (-886)) (-10 -8 (-15 -2411 ($ (-1189))) (-15 -2411 ($ (-1207))) (-15 -2411 ((-1207) $)) (-15 -2411 ((-1135) $)) (-15 -2147 ((-112) $)) (-15 -4145 ((-112) $)) (-15 -2794 ((-112) $)) (-15 -2780 ((-112) $)) (-15 -1525 ((-112) $)) (-15 -1832 ((-112) $)) (-15 -2255 ((-112) $)) (-15 -2384 ((-112) $ $)))) +((-4170 (((-3 (-432 (-1203 (-421 (-578)))) "failed") |#3|) 72 T ELT)) (-1667 (((-432 |#3|) |#3|) 34 T ELT)) (-2990 (((-3 (-432 (-1203 (-48))) "failed") |#3|) 46 (|has| |#2| (-1069 (-48))) ELT)) (-4148 (((-3 (|:| |overq| (-1203 (-421 (-578)))) (|:| |overan| (-1203 (-48))) (|:| -3849 (-112))) |#3|) 37 T ELT))) +(((-449 |#1| |#2| |#3|) (-10 -7 (-15 -1667 ((-432 |#3|) |#3|)) (-15 -4170 ((-3 (-432 (-1203 (-421 (-578)))) "failed") |#3|)) (-15 -4148 ((-3 (|:| |overq| (-1203 (-421 (-578)))) (|:| |overan| (-1203 (-48))) (|:| -3849 (-112))) |#3|)) (IF (|has| |#2| (-1069 (-48))) (-15 -2990 ((-3 (-432 (-1203 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-570) (-1069 (-578))) (-444 |#1|) (-1274 |#2|)) (T -449)) +((-2990 (*1 *2 *3) (|partial| -12 (-4 *5 (-1069 (-48))) (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) (-5 *2 (-432 (-1203 (-48)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1274 *5)))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) (-5 *2 (-3 (|:| |overq| (-1203 (-421 (-578)))) (|:| |overan| (-1203 (-48))) (|:| -3849 (-112)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1274 *5)))) (-4170 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) (-5 *2 (-432 (-1203 (-421 (-578))))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1274 *5)))) (-1667 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) (-5 *2 (-432 *3)) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1274 *5))))) +(-10 -7 (-15 -1667 ((-432 |#3|) |#3|)) (-15 -4170 ((-3 (-432 (-1203 (-421 (-578)))) "failed") |#3|)) (-15 -4148 ((-3 (|:| |overq| (-1203 (-421 (-578)))) (|:| |overan| (-1203 (-48))) (|:| -3849 (-112))) |#3|)) (IF (|has| |#2| (-1069 (-48))) (-15 -2990 ((-3 (-432 (-1203 (-48))) "failed") |#3|)) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-2070 (((-1189) $ (-1189)) NIL T ELT)) (-4089 (($ $ (-1189)) NIL T ELT)) (-2464 (((-1189) $) NIL T ELT)) (-2771 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-2259 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-4107 (((-402) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2882 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1626 (((-1303) (-1189)) 9 T ELT)) (-2671 (((-1303) (-1189)) 10 T ELT)) (-3558 (((-1303)) 11 T ELT)) (-2411 (((-886) $) NIL T ELT)) (-3250 (($ $) 39 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-450) (-13 (-377 (-402) (-1189)) (-10 -7 (-15 -2771 ((-402) (-402) (-402))) (-15 -2771 ((-402) (-402))) (-15 -1626 ((-1303) (-1189))) (-15 -2671 ((-1303) (-1189))) (-15 -3558 ((-1303)))))) (T -450)) +((-2771 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-450)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-450)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-450)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-450)))) (-3558 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-450))))) +(-13 (-377 (-402) (-1189)) (-10 -7 (-15 -2771 ((-402) (-402) (-402))) (-15 -2771 ((-402) (-402))) (-15 -1626 ((-1303) (-1189))) (-15 -2671 ((-1303) (-1189))) (-15 -3558 ((-1303))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3626 (((-3 (|:| |fst| (-448)) (|:| -2893 "void")) $) 11 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3132 (($) 35 T ELT)) (-1793 (($) 41 T ELT)) (-2206 (($) 37 T ELT)) (-2533 (($) 39 T ELT)) (-3215 (($) 36 T ELT)) (-4080 (($) 38 T ELT)) (-4439 (($) 40 T ELT)) (-3651 (((-112) $) 8 T ELT)) (-3832 (((-666 (-981 (-578))) $) 19 T ELT)) (-2423 (($ (-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-666 (-1207)) (-112)) 29 T ELT) (($ (-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-666 (-981 (-578))) (-112)) 30 T ELT)) (-2411 (((-886) $) 24 T ELT) (($ (-448)) 32 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-451) (-13 (-1131) (-10 -8 (-15 -2411 ($ (-448))) (-15 -3626 ((-3 (|:| |fst| (-448)) (|:| -2893 "void")) $)) (-15 -3832 ((-666 (-981 (-578))) $)) (-15 -3651 ((-112) $)) (-15 -2423 ($ (-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-666 (-1207)) (-112))) (-15 -2423 ($ (-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-666 (-981 (-578))) (-112))) (-15 -3132 ($)) (-15 -3215 ($)) (-15 -2206 ($)) (-15 -1793 ($)) (-15 -4080 ($)) (-15 -2533 ($)) (-15 -4439 ($))))) (T -451)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-451)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *1 (-451)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-666 (-981 (-578)))) (-5 *1 (-451)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-451)))) (-2423 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *3 (-666 (-1207))) (-5 *4 (-112)) (-5 *1 (-451)))) (-2423 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-112)) (-5 *1 (-451)))) (-3132 (*1 *1) (-5 *1 (-451))) (-3215 (*1 *1) (-5 *1 (-451))) (-2206 (*1 *1) (-5 *1 (-451))) (-1793 (*1 *1) (-5 *1 (-451))) (-4080 (*1 *1) (-5 *1 (-451))) (-2533 (*1 *1) (-5 *1 (-451))) (-4439 (*1 *1) (-5 *1 (-451)))) +(-13 (-1131) (-10 -8 (-15 -2411 ($ (-448))) (-15 -3626 ((-3 (|:| |fst| (-448)) (|:| -2893 "void")) $)) (-15 -3832 ((-666 (-981 (-578))) $)) (-15 -3651 ((-112) $)) (-15 -2423 ($ (-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-666 (-1207)) (-112))) (-15 -2423 ($ (-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-666 (-981 (-578))) (-112))) (-15 -3132 ($)) (-15 -3215 ($)) (-15 -2206 ($)) (-15 -1793 ($)) (-15 -4080 ($)) (-15 -2533 ($)) (-15 -4439 ($)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4107 (((-1207) $) 8 T ELT)) (-2617 (((-1189) $) 17 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 14 T ELT))) +(((-452 |#1|) (-13 (-1131) (-10 -8 (-15 -4107 ((-1207) $)))) (-1207)) (T -452)) +((-4107 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-452 *3)) (-14 *3 *2)))) +(-13 (-1131) (-10 -8 (-15 -4107 ((-1207) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3385 (((-1149) $) 7 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 9 T ELT))) +(((-453) (-13 (-1131) (-10 -8 (-15 -3385 ((-1149) $))))) (T -453)) +((-3385 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-453))))) +(-13 (-1131) (-10 -8 (-15 -3385 ((-1149) $)))) +((-1903 (((-1303) $) 7 T ELT)) (-2411 (((-886) $) 8 T ELT) (($ (-1298 (-721))) 14 T ELT) (($ (-666 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 11 T ELT))) +(((-454) (-142)) (T -454)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-721))) (-4 *1 (-454)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-454)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) (-4 *1 (-454))))) +(-13 (-409) (-10 -8 (-15 -2411 ($ (-1298 (-721)))) (-15 -2411 ($ (-666 (-342)))) (-15 -2411 ($ (-342))) (-15 -2411 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342)))))))) +(((-632 (-886)) . T) ((-409) . T) ((-1248) . T)) +((-2818 (((-3 $ "failed") (-1298 (-328 (-392)))) 21 T ELT) (((-3 $ "failed") (-1298 (-328 (-578)))) 19 T ELT) (((-3 $ "failed") (-1298 (-981 (-392)))) 17 T ELT) (((-3 $ "failed") (-1298 (-981 (-578)))) 15 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-392))))) 13 T ELT) (((-3 $ "failed") (-1298 (-421 (-981 (-578))))) 11 T ELT)) (-3516 (($ (-1298 (-328 (-392)))) 22 T ELT) (($ (-1298 (-328 (-578)))) 20 T ELT) (($ (-1298 (-981 (-392)))) 18 T ELT) (($ (-1298 (-981 (-578)))) 16 T ELT) (($ (-1298 (-421 (-981 (-392))))) 14 T ELT) (($ (-1298 (-421 (-981 (-578))))) 12 T ELT)) (-1903 (((-1303) $) 7 T ELT)) (-2411 (((-886) $) 8 T ELT) (($ (-666 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) 23 T ELT))) +(((-455) (-142)) (T -455)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-455)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) (-4 *1 (-455)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1298 (-328 (-392)))) (-4 *1 (-455)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 (-328 (-392)))) (-4 *1 (-455)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1298 (-328 (-578)))) (-4 *1 (-455)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 (-328 (-578)))) (-4 *1 (-455)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1298 (-981 (-392)))) (-4 *1 (-455)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 (-981 (-392)))) (-4 *1 (-455)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1298 (-981 (-578)))) (-4 *1 (-455)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 (-981 (-578)))) (-4 *1 (-455)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1298 (-421 (-981 (-392))))) (-4 *1 (-455)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 (-421 (-981 (-392))))) (-4 *1 (-455)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-1298 (-421 (-981 (-578))))) (-4 *1 (-455)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-1298 (-421 (-981 (-578))))) (-4 *1 (-455))))) +(-13 (-409) (-10 -8 (-15 -2411 ($ (-666 (-342)))) (-15 -2411 ($ (-342))) (-15 -2411 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342)))))) (-15 -3516 ($ (-1298 (-328 (-392))))) (-15 -2818 ((-3 $ "failed") (-1298 (-328 (-392))))) (-15 -3516 ($ (-1298 (-328 (-578))))) (-15 -2818 ((-3 $ "failed") (-1298 (-328 (-578))))) (-15 -3516 ($ (-1298 (-981 (-392))))) (-15 -2818 ((-3 $ "failed") (-1298 (-981 (-392))))) (-15 -3516 ($ (-1298 (-981 (-578))))) (-15 -2818 ((-3 $ "failed") (-1298 (-981 (-578))))) (-15 -3516 ($ (-1298 (-421 (-981 (-392)))))) (-15 -2818 ((-3 $ "failed") (-1298 (-421 (-981 (-392)))))) (-15 -3516 ($ (-1298 (-421 (-981 (-578)))))) (-15 -2818 ((-3 $ "failed") (-1298 (-421 (-981 (-578)))))))) +(((-632 (-886)) . T) ((-409) . T) ((-1248) . T)) +((-2586 (((-112)) 18 T ELT)) (-3779 (((-112) (-112)) 19 T ELT)) (-3463 (((-112)) 14 T ELT)) (-1789 (((-112) (-112)) 15 T ELT)) (-2940 (((-112)) 16 T ELT)) (-4005 (((-112) (-112)) 17 T ELT)) (-2236 (((-950) (-950)) 22 T ELT) (((-950)) 21 T ELT)) (-3544 (((-793) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578))))) 52 T ELT)) (-3044 (((-950) (-950)) 24 T ELT) (((-950)) 23 T ELT)) (-3009 (((-2 (|:| -3876 (-578)) (|:| -2636 (-666 |#1|))) |#1|) 94 T ELT)) (-4129 (((-432 |#1|) (-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578))))))) 174 T ELT)) (-3854 (((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112)) 207 T ELT)) (-3218 (((-432 |#1|) |#1| (-793) (-793)) 222 T ELT) (((-432 |#1|) |#1| (-666 (-793)) (-793)) 219 T ELT) (((-432 |#1|) |#1| (-666 (-793))) 221 T ELT) (((-432 |#1|) |#1| (-793)) 220 T ELT) (((-432 |#1|) |#1|) 218 T ELT)) (-2494 (((-3 |#1| "failed") (-950) |#1| (-666 (-793)) (-793) (-112)) 224 T ELT) (((-3 |#1| "failed") (-950) |#1| (-666 (-793)) (-793)) 225 T ELT) (((-3 |#1| "failed") (-950) |#1| (-666 (-793))) 227 T ELT) (((-3 |#1| "failed") (-950) |#1| (-793)) 226 T ELT) (((-3 |#1| "failed") (-950) |#1|) 228 T ELT)) (-2800 (((-432 |#1|) |#1| (-793) (-793)) 217 T ELT) (((-432 |#1|) |#1| (-666 (-793)) (-793)) 213 T ELT) (((-432 |#1|) |#1| (-666 (-793))) 215 T ELT) (((-432 |#1|) |#1| (-793)) 214 T ELT) (((-432 |#1|) |#1|) 212 T ELT)) (-2508 (((-112) |#1|) 44 T ELT)) (-4230 (((-759 (-793)) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578))))) 99 T ELT)) (-3036 (((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112) (-1133 (-793)) (-793)) 211 T ELT))) +(((-456 |#1|) (-10 -7 (-15 -4129 ((-432 |#1|) (-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))))) (-15 -4230 ((-759 (-793)) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))))) (-15 -3044 ((-950))) (-15 -3044 ((-950) (-950))) (-15 -2236 ((-950))) (-15 -2236 ((-950) (-950))) (-15 -3544 ((-793) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))))) (-15 -3009 ((-2 (|:| -3876 (-578)) (|:| -2636 (-666 |#1|))) |#1|)) (-15 -2586 ((-112))) (-15 -3779 ((-112) (-112))) (-15 -3463 ((-112))) (-15 -1789 ((-112) (-112))) (-15 -2508 ((-112) |#1|)) (-15 -2940 ((-112))) (-15 -4005 ((-112) (-112))) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -2800 ((-432 |#1|) |#1| (-793))) (-15 -2800 ((-432 |#1|) |#1| (-666 (-793)))) (-15 -2800 ((-432 |#1|) |#1| (-666 (-793)) (-793))) (-15 -2800 ((-432 |#1|) |#1| (-793) (-793))) (-15 -3218 ((-432 |#1|) |#1|)) (-15 -3218 ((-432 |#1|) |#1| (-793))) (-15 -3218 ((-432 |#1|) |#1| (-666 (-793)))) (-15 -3218 ((-432 |#1|) |#1| (-666 (-793)) (-793))) (-15 -3218 ((-432 |#1|) |#1| (-793) (-793))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1|)) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-793))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-666 (-793)))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-666 (-793)) (-793))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-666 (-793)) (-793) (-112))) (-15 -3854 ((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112))) (-15 -3036 ((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112) (-1133 (-793)) (-793)))) (-1274 (-578))) (T -456)) +((-3036 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1133 (-793))) (-5 *6 (-793)) (-5 *2 (-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3854 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2494 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-950)) (-5 *4 (-666 (-793))) (-5 *5 (-793)) (-5 *6 (-112)) (-5 *1 (-456 *2)) (-4 *2 (-1274 (-578))))) (-2494 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-950)) (-5 *4 (-666 (-793))) (-5 *5 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1274 (-578))))) (-2494 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-950)) (-5 *4 (-666 (-793))) (-5 *1 (-456 *2)) (-4 *2 (-1274 (-578))))) (-2494 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-950)) (-5 *4 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1274 (-578))))) (-2494 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-950)) (-5 *1 (-456 *2)) (-4 *2 (-1274 (-578))))) (-3218 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3218 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-666 (-793))) (-5 *5 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-793))) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3218 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2800 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-666 (-793))) (-5 *5 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-793))) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2940 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2508 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3463 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2586 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3009 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3876 (-578)) (|:| -2636 (-666 *3)))) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -2800 *4) (|:| -3683 (-578))))) (-4 *4 (-1274 (-578))) (-5 *2 (-793)) (-5 *1 (-456 *4)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-2236 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-3044 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -2800 *4) (|:| -3683 (-578))))) (-4 *4 (-1274 (-578))) (-5 *2 (-759 (-793))) (-5 *1 (-456 *4)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| *4) (|:| -3935 (-578))))))) (-4 *4 (-1274 (-578))) (-5 *2 (-432 *4)) (-5 *1 (-456 *4))))) +(-10 -7 (-15 -4129 ((-432 |#1|) (-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))))) (-15 -4230 ((-759 (-793)) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))))) (-15 -3044 ((-950))) (-15 -3044 ((-950) (-950))) (-15 -2236 ((-950))) (-15 -2236 ((-950) (-950))) (-15 -3544 ((-793) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))))) (-15 -3009 ((-2 (|:| -3876 (-578)) (|:| -2636 (-666 |#1|))) |#1|)) (-15 -2586 ((-112))) (-15 -3779 ((-112) (-112))) (-15 -3463 ((-112))) (-15 -1789 ((-112) (-112))) (-15 -2508 ((-112) |#1|)) (-15 -2940 ((-112))) (-15 -4005 ((-112) (-112))) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -2800 ((-432 |#1|) |#1| (-793))) (-15 -2800 ((-432 |#1|) |#1| (-666 (-793)))) (-15 -2800 ((-432 |#1|) |#1| (-666 (-793)) (-793))) (-15 -2800 ((-432 |#1|) |#1| (-793) (-793))) (-15 -3218 ((-432 |#1|) |#1|)) (-15 -3218 ((-432 |#1|) |#1| (-793))) (-15 -3218 ((-432 |#1|) |#1| (-666 (-793)))) (-15 -3218 ((-432 |#1|) |#1| (-666 (-793)) (-793))) (-15 -3218 ((-432 |#1|) |#1| (-793) (-793))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1|)) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-793))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-666 (-793)))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-666 (-793)) (-793))) (-15 -2494 ((-3 |#1| "failed") (-950) |#1| (-666 (-793)) (-793) (-112))) (-15 -3854 ((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112))) (-15 -3036 ((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112) (-1133 (-793)) (-793)))) +((-3822 (((-578) |#2|) 52 T ELT) (((-578) |#2| (-793)) 51 T ELT)) (-2252 (((-578) |#2|) 64 T ELT)) (-1766 ((|#3| |#2|) 26 T ELT)) (-1550 ((|#3| |#2| (-950)) 15 T ELT)) (-3492 ((|#3| |#2|) 16 T ELT)) (-1492 ((|#3| |#2|) 9 T ELT)) (-1737 ((|#3| |#2|) 10 T ELT)) (-3746 ((|#3| |#2| (-950)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-2296 (((-578) |#2|) 66 T ELT))) +(((-457 |#1| |#2| |#3|) (-10 -7 (-15 -2296 ((-578) |#2|)) (-15 -3746 (|#3| |#2|)) (-15 -3746 (|#3| |#2| (-950))) (-15 -2252 ((-578) |#2|)) (-15 -3822 ((-578) |#2| (-793))) (-15 -3822 ((-578) |#2|)) (-15 -1550 (|#3| |#2| (-950))) (-15 -1766 (|#3| |#2|)) (-15 -1492 (|#3| |#2|)) (-15 -1737 (|#3| |#2|)) (-15 -3492 (|#3| |#2|))) (-1080) (-1274 |#1|) (-13 (-418) (-1069 |#1|) (-376) (-1233) (-296))) (T -457)) +((-3492 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) (-1737 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) (-1492 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) (-1766 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *5 (-1080)) (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1274 *5)))) (-3822 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1274 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-5 *2 (-578)) (-5 *1 (-457 *5 *3 *6)) (-4 *3 (-1274 *5)) (-4 *6 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1274 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))) (-3746 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *5 (-1080)) (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1274 *5)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1274 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))))) +(-10 -7 (-15 -2296 ((-578) |#2|)) (-15 -3746 (|#3| |#2|)) (-15 -3746 (|#3| |#2| (-950))) (-15 -2252 ((-578) |#2|)) (-15 -3822 ((-578) |#2| (-793))) (-15 -3822 ((-578) |#2|)) (-15 -1550 (|#3| |#2| (-950))) (-15 -1766 (|#3| |#2|)) (-15 -1492 (|#3| |#2|)) (-15 -1737 (|#3| |#2|)) (-15 -3492 (|#3| |#2|))) +((-4326 ((|#2| (-1298 |#1|)) 42 T ELT)) (-2396 ((|#2| |#2| |#1|) 58 T ELT)) (-1544 ((|#2| |#2| |#1|) 49 T ELT)) (-1540 ((|#2| |#2|) 44 T ELT)) (-4216 (((-112) |#2|) 32 T ELT)) (-3484 (((-666 |#2|) (-950) (-432 |#2|)) 21 T ELT)) (-2494 ((|#2| (-950) (-432 |#2|)) 25 T ELT)) (-4230 (((-759 (-793)) (-432 |#2|)) 29 T ELT))) +(((-458 |#1| |#2|) (-10 -7 (-15 -4216 ((-112) |#2|)) (-15 -4326 (|#2| (-1298 |#1|))) (-15 -1540 (|#2| |#2|)) (-15 -1544 (|#2| |#2| |#1|)) (-15 -2396 (|#2| |#2| |#1|)) (-15 -4230 ((-759 (-793)) (-432 |#2|))) (-15 -2494 (|#2| (-950) (-432 |#2|))) (-15 -3484 ((-666 |#2|) (-950) (-432 |#2|)))) (-1080) (-1274 |#1|)) (T -458)) +((-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-432 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-1080)) (-5 *2 (-666 *6)) (-5 *1 (-458 *5 *6)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-432 *2)) (-4 *2 (-1274 *5)) (-5 *1 (-458 *5 *2)) (-4 *5 (-1080)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-432 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-1080)) (-5 *2 (-759 (-793))) (-5 *1 (-458 *4 *5)))) (-2396 (*1 *2 *2 *3) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1274 *3)))) (-1544 (*1 *2 *2 *3) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1274 *3)))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1274 *3)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1298 *4)) (-4 *4 (-1080)) (-4 *2 (-1274 *4)) (-5 *1 (-458 *4 *2)))) (-4216 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-112)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -4216 ((-112) |#2|)) (-15 -4326 (|#2| (-1298 |#1|))) (-15 -1540 (|#2| |#2|)) (-15 -1544 (|#2| |#2| |#1|)) (-15 -2396 (|#2| |#2| |#1|)) (-15 -4230 ((-759 (-793)) (-432 |#2|))) (-15 -2494 (|#2| (-950) (-432 |#2|))) (-15 -3484 ((-666 |#2|) (-950) (-432 |#2|)))) +((-3609 (((-793)) 59 T ELT)) (-3129 (((-793)) 29 (|has| |#1| (-418)) ELT) (((-793) (-793)) 28 (|has| |#1| (-418)) ELT)) (-3527 (((-578) |#1|) 25 (|has| |#1| (-418)) ELT)) (-3965 (((-578) |#1|) 27 (|has| |#1| (-418)) ELT)) (-3843 (((-793)) 58 T ELT) (((-793) (-793)) 57 T ELT)) (-3915 ((|#1| (-793) (-578)) 37 T ELT)) (-3137 (((-1303)) 61 T ELT))) +(((-459 |#1|) (-10 -7 (-15 -3915 (|#1| (-793) (-578))) (-15 -3843 ((-793) (-793))) (-15 -3843 ((-793))) (-15 -3609 ((-793))) (-15 -3137 ((-1303))) (IF (|has| |#1| (-418)) (PROGN (-15 -3965 ((-578) |#1|)) (-15 -3527 ((-578) |#1|)) (-15 -3129 ((-793) (-793))) (-15 -3129 ((-793)))) |%noBranch|)) (-1080)) (T -459)) +((-3129 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-3129 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-3527 (*1 *2 *3) (-12 (-5 *2 (-578)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-3965 (*1 *2 *3) (-12 (-5 *2 (-578)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-3137 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-3609 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-3843 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-578)) (-5 *1 (-459 *2)) (-4 *2 (-1080))))) +(-10 -7 (-15 -3915 (|#1| (-793) (-578))) (-15 -3843 ((-793) (-793))) (-15 -3843 ((-793))) (-15 -3609 ((-793))) (-15 -3137 ((-1303))) (IF (|has| |#1| (-418)) (PROGN (-15 -3965 ((-578) |#1|)) (-15 -3527 ((-578) |#1|)) (-15 -3129 ((-793) (-793))) (-15 -3129 ((-793)))) |%noBranch|)) +((-2118 (((-666 (-578)) (-578)) 76 T ELT)) (-2159 (((-112) (-172 (-578))) 82 T ELT)) (-2800 (((-432 (-172 (-578))) (-172 (-578))) 75 T ELT))) +(((-460) (-10 -7 (-15 -2800 ((-432 (-172 (-578))) (-172 (-578)))) (-15 -2118 ((-666 (-578)) (-578))) (-15 -2159 ((-112) (-172 (-578)))))) (T -460)) +((-2159 (*1 *2 *3) (-12 (-5 *3 (-172 (-578))) (-5 *2 (-112)) (-5 *1 (-460)))) (-2118 (*1 *2 *3) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-460)) (-5 *3 (-578)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-432 (-172 (-578)))) (-5 *1 (-460)) (-5 *3 (-172 (-578)))))) +(-10 -7 (-15 -2800 ((-432 (-172 (-578))) (-172 (-578)))) (-15 -2118 ((-666 (-578)) (-578))) (-15 -2159 ((-112) (-172 (-578))))) +((-4442 ((|#4| |#4| (-666 |#4|)) 82 T ELT)) (-1978 (((-666 |#4|) (-666 |#4|) (-1189) (-1189)) 22 T ELT) (((-666 |#4|) (-666 |#4|) (-1189)) 21 T ELT) (((-666 |#4|) (-666 |#4|)) 13 T ELT))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4442 (|#4| |#4| (-666 |#4|))) (-15 -1978 ((-666 |#4|) (-666 |#4|))) (-15 -1978 ((-666 |#4|) (-666 |#4|) (-1189))) (-15 -1978 ((-666 |#4|) (-666 |#4|) (-1189) (-1189)))) (-319) (-815) (-871) (-978 |#1| |#2| |#3|)) (T -461)) +((-1978 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1978 (*1 *2 *2 *3) (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-461 *3 *4 *5 *6)))) (-4442 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *2))))) +(-10 -7 (-15 -4442 (|#4| |#4| (-666 |#4|))) (-15 -1978 ((-666 |#4|) (-666 |#4|))) (-15 -1978 ((-666 |#4|) (-666 |#4|) (-1189))) (-15 -1978 ((-666 |#4|) (-666 |#4|) (-1189) (-1189)))) +((-2163 (((-666 (-666 |#4|)) (-666 |#4|) (-112)) 89 T ELT) (((-666 (-666 |#4|)) (-666 |#4|)) 88 T ELT) (((-666 (-666 |#4|)) (-666 |#4|) (-666 |#4|) (-112)) 82 T ELT) (((-666 (-666 |#4|)) (-666 |#4|) (-666 |#4|)) 83 T ELT)) (-1894 (((-666 (-666 |#4|)) (-666 |#4|) (-112)) 55 T ELT) (((-666 (-666 |#4|)) (-666 |#4|)) 77 T ELT))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1894 ((-666 (-666 |#4|)) (-666 |#4|))) (-15 -1894 ((-666 (-666 |#4|)) (-666 |#4|) (-112))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|) (-666 |#4|))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|) (-666 |#4|) (-112))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|) (-112)))) (-13 (-319) (-149)) (-815) (-871) (-978 |#1| |#2| |#3|)) (T -462)) +((-2163 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-666 (-666 *8))) (-5 *1 (-462 *5 *6 *7 *8)) (-5 *3 (-666 *8)))) (-2163 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-666 (-666 *7))) (-5 *1 (-462 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-2163 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-666 (-666 *8))) (-5 *1 (-462 *5 *6 *7 *8)) (-5 *3 (-666 *8)))) (-2163 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-666 (-666 *7))) (-5 *1 (-462 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-1894 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-666 (-666 *8))) (-5 *1 (-462 *5 *6 *7 *8)) (-5 *3 (-666 *8)))) (-1894 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-666 (-666 *7))) (-5 *1 (-462 *4 *5 *6 *7)) (-5 *3 (-666 *7))))) +(-10 -7 (-15 -1894 ((-666 (-666 |#4|)) (-666 |#4|))) (-15 -1894 ((-666 (-666 |#4|)) (-666 |#4|) (-112))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|) (-666 |#4|))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|) (-666 |#4|) (-112))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|))) (-15 -2163 ((-666 (-666 |#4|)) (-666 |#4|) (-112)))) +((-1817 (((-793) |#4|) 12 T ELT)) (-3691 (((-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|))) |#4| (-793) (-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|)))) 39 T ELT)) (-1483 (((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-3699 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-2171 ((|#4| |#4| (-666 |#4|)) 54 T ELT)) (-2261 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-666 |#4|)) 96 T ELT)) (-3392 (((-1303) |#4|) 59 T ELT)) (-3101 (((-1303) (-666 |#4|)) 69 T ELT)) (-2263 (((-578) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-578) (-578) (-578)) 66 T ELT)) (-4332 (((-1303) (-578)) 110 T ELT)) (-4166 (((-666 |#4|) (-666 |#4|)) 104 T ELT)) (-2884 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|)) |#4| (-793)) 31 T ELT)) (-1810 (((-578) |#4|) 109 T ELT)) (-3942 ((|#4| |#4|) 37 T ELT)) (-4038 (((-666 |#4|) (-666 |#4|) (-578) (-578)) 74 T ELT)) (-1668 (((-578) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-578) (-578) (-578) (-578)) 123 T ELT)) (-4056 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2002 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-3790 (((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-4114 (((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-2449 (((-112) |#2| |#2|) 75 T ELT)) (-4146 (((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-2437 (((-112) |#2| |#2| |#2| |#2|) 80 T ELT)) (-4098 ((|#4| |#4| (-666 |#4|)) 97 T ELT))) +(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4098 (|#4| |#4| (-666 |#4|))) (-15 -2171 (|#4| |#4| (-666 |#4|))) (-15 -4038 ((-666 |#4|) (-666 |#4|) (-578) (-578))) (-15 -2002 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2449 ((-112) |#2| |#2|)) (-15 -2437 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4146 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4114 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3790 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2261 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-666 |#4|))) (-15 -3942 (|#4| |#4|)) (-15 -3691 ((-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|))) |#4| (-793) (-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|))))) (-15 -3699 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1483 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4166 ((-666 |#4|) (-666 |#4|))) (-15 -1810 ((-578) |#4|)) (-15 -3392 ((-1303) |#4|)) (-15 -2263 ((-578) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-578) (-578) (-578))) (-15 -1668 ((-578) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-578) (-578) (-578) (-578))) (-15 -3101 ((-1303) (-666 |#4|))) (-15 -4332 ((-1303) (-578))) (-15 -4056 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2884 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|)) |#4| (-793))) (-15 -1817 ((-793) |#4|))) (-466) (-815) (-871) (-978 |#1| |#2| |#3|)) (T -463)) +((-1817 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)) (-5 *1 (-463 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2884 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -3714 *4))) (-5 *5 (-793)) (-4 *4 (-978 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-463 *6 *7 *8 *4)))) (-4056 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-463 *4 *5 *6 *7)))) (-4332 (*1 *2 *3) (-12 (-5 *3 (-578)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-463 *4 *5 *6 *7)))) (-1668 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) (-5 *1 (-463 *5 *6 *7 *4)))) (-2263 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) (-5 *1 (-463 *5 *6 *7 *4)))) (-3392 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-463 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-1810 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-578)) (-5 *1 (-463 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-463 *3 *4 *5 *6)))) (-1483 (*1 *2 *2 *2) (-12 (-5 *2 (-666 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) (-5 *1 (-463 *3 *4 *5 *6)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-815)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-463 *4 *5 *6 *2)) (-4 *4 (-466)) (-4 *6 (-871)))) (-3691 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 *3)))) (-5 *4 (-793)) (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-463 *5 *6 *7 *3)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-463 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *3)) (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-463 *5 *6 *7 *3)))) (-3790 (*1 *2 *3 *2) (-12 (-5 *2 (-666 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-815)) (-4 *6 (-978 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-871)) (-5 *1 (-463 *4 *3 *5 *6)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-666 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) (-5 *1 (-463 *3 *4 *5 *6)))) (-4146 (*1 *2 *3 *2) (-12 (-5 *2 (-666 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-815)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *1 (-463 *4 *5 *6 *3)))) (-2437 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-463 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5)))) (-2449 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-463 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-463 *4 *5 *6 *7)))) (-4038 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-666 *7)) (-5 *3 (-578)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-463 *4 *5 *6 *7)))) (-2171 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-463 *4 *5 *6 *2)))) (-4098 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-463 *4 *5 *6 *2))))) +(-10 -7 (-15 -4098 (|#4| |#4| (-666 |#4|))) (-15 -2171 (|#4| |#4| (-666 |#4|))) (-15 -4038 ((-666 |#4|) (-666 |#4|) (-578) (-578))) (-15 -2002 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2449 ((-112) |#2| |#2|)) (-15 -2437 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4146 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4114 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3790 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2261 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-666 |#4|))) (-15 -3942 (|#4| |#4|)) (-15 -3691 ((-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|))) |#4| (-793) (-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|))))) (-15 -3699 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1483 ((-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-666 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4166 ((-666 |#4|) (-666 |#4|))) (-15 -1810 ((-578) |#4|)) (-15 -3392 ((-1303) |#4|)) (-15 -2263 ((-578) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-578) (-578) (-578))) (-15 -1668 ((-578) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-578) (-578) (-578) (-578))) (-15 -3101 ((-1303) (-666 |#4|))) (-15 -4332 ((-1303) (-578))) (-15 -4056 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2884 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -3714 |#4|)) |#4| (-793))) (-15 -1817 ((-793) |#4|))) +((-3281 ((|#4| |#4| (-666 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-3660 (((-666 |#4|) (-666 |#4|) (-1189) (-1189)) 46 T ELT) (((-666 |#4|) (-666 |#4|) (-1189)) 45 T ELT) (((-666 |#4|) (-666 |#4|)) 34 T ELT))) +(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3660 ((-666 |#4|) (-666 |#4|))) (-15 -3660 ((-666 |#4|) (-666 |#4|) (-1189))) (-15 -3660 ((-666 |#4|) (-666 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -3281 (|#4| |#4| (-666 |#4|))) |%noBranch|)) (-466) (-815) (-871) (-978 |#1| |#2| |#3|)) (T -464)) +((-3281 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))) (-3660 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *7)))) (-3660 (*1 *2 *2 *3) (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *7)))) (-3660 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6))))) +(-10 -7 (-15 -3660 ((-666 |#4|) (-666 |#4|))) (-15 -3660 ((-666 |#4|) (-666 |#4|) (-1189))) (-15 -3660 ((-666 |#4|) (-666 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -3281 (|#4| |#4| (-666 |#4|))) |%noBranch|)) +((-2389 (($ $ $) 14 T ELT) (($ (-666 $)) 21 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 46 T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) 22 T ELT))) +(((-465 |#1|) (-10 -8 (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -2389 (|#1| (-666 |#1|))) (-15 -2389 (|#1| |#1| |#1|)) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2421 (|#1| |#1| |#1|))) (-466)) (T -465)) +NIL +(-10 -8 (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -2389 (|#1| (-666 |#1|))) (-15 -2389 (|#1| |#1| |#1|)) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2421 (|#1| |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-466) (-142)) (T -466)) +((-2421 (*1 *1 *1 *1) (-4 *1 (-466))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-466)))) (-2389 (*1 *1 *1 *1) (-4 *1 (-466))) (-2389 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-466)))) (-1927 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-466))))) +(-13 (-570) (-10 -8 (-15 -2421 ($ $ $)) (-15 -2421 ($ (-666 $))) (-15 -2389 ($ $ $)) (-15 -2389 ($ (-666 $))) (-15 -1927 ((-1203 $) (-1203 $) (-1203 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-1430 (((-3 $ "failed")) NIL (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2564 (((-1298 (-711 (-421 (-981 |#1|)))) (-1298 $)) NIL T ELT) (((-1298 (-711 (-421 (-981 |#1|))))) NIL T ELT)) (-3411 (((-1298 $)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL T ELT)) (-2341 (((-3 $ "failed")) NIL (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-3676 (((-711 (-421 (-981 |#1|))) (-1298 $)) NIL T ELT) (((-711 (-421 (-981 |#1|)))) NIL T ELT)) (-2615 (((-421 (-981 |#1|)) $) NIL T ELT)) (-3567 (((-711 (-421 (-981 |#1|))) $ (-1298 $)) NIL T ELT) (((-711 (-421 (-981 |#1|))) $) NIL T ELT)) (-3373 (((-3 $ "failed") $) NIL (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-1332 (((-1203 (-981 (-421 (-981 |#1|))))) NIL (|has| (-421 (-981 |#1|)) (-376)) ELT) (((-1203 (-421 (-981 |#1|)))) 90 (|has| |#1| (-570)) ELT)) (-1640 (($ $ (-950)) NIL T ELT)) (-3875 (((-421 (-981 |#1|)) $) NIL T ELT)) (-3214 (((-1203 (-421 (-981 |#1|))) $) 88 (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-2898 (((-421 (-981 |#1|)) (-1298 $)) NIL T ELT) (((-421 (-981 |#1|))) NIL T ELT)) (-2294 (((-1203 (-421 (-981 |#1|))) $) NIL T ELT)) (-3929 (((-112)) NIL T ELT)) (-3095 (($ (-1298 (-421 (-981 |#1|))) (-1298 $)) 114 T ELT) (($ (-1298 (-421 (-981 |#1|)))) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-1875 (((-950)) NIL T ELT)) (-1351 (((-112)) NIL T ELT)) (-3398 (($ $ (-950)) NIL T ELT)) (-3585 (((-112)) NIL T ELT)) (-1419 (((-112)) NIL T ELT)) (-3354 (((-112)) NIL T ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL T ELT)) (-2170 (((-3 $ "failed")) NIL (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-3881 (((-711 (-421 (-981 |#1|))) (-1298 $)) NIL T ELT) (((-711 (-421 (-981 |#1|)))) NIL T ELT)) (-1597 (((-421 (-981 |#1|)) $) NIL T ELT)) (-2630 (((-711 (-421 (-981 |#1|))) $ (-1298 $)) NIL T ELT) (((-711 (-421 (-981 |#1|))) $) NIL T ELT)) (-3988 (((-3 $ "failed") $) NIL (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-2972 (((-1203 (-981 (-421 (-981 |#1|))))) NIL (|has| (-421 (-981 |#1|)) (-376)) ELT) (((-1203 (-421 (-981 |#1|)))) 89 (|has| |#1| (-570)) ELT)) (-4051 (($ $ (-950)) NIL T ELT)) (-2994 (((-421 (-981 |#1|)) $) NIL T ELT)) (-2040 (((-1203 (-421 (-981 |#1|))) $) 85 (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-3949 (((-421 (-981 |#1|)) (-1298 $)) NIL T ELT) (((-421 (-981 |#1|))) NIL T ELT)) (-4284 (((-1203 (-421 (-981 |#1|))) $) NIL T ELT)) (-2465 (((-112)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2205 (((-112)) NIL T ELT)) (-1808 (((-112)) NIL T ELT)) (-4465 (((-112)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3351 (((-421 (-981 |#1|)) $ $) 76 (|has| |#1| (-570)) ELT)) (-1987 (((-421 (-981 |#1|)) $) 100 (|has| |#1| (-570)) ELT)) (-3684 (((-421 (-981 |#1|)) $) 104 (|has| |#1| (-570)) ELT)) (-2664 (((-1203 (-421 (-981 |#1|))) $) 94 (|has| |#1| (-570)) ELT)) (-2310 (((-421 (-981 |#1|))) 77 (|has| |#1| (-570)) ELT)) (-3162 (((-421 (-981 |#1|)) $ $) 69 (|has| |#1| (-570)) ELT)) (-4063 (((-421 (-981 |#1|)) $) 99 (|has| |#1| (-570)) ELT)) (-4329 (((-421 (-981 |#1|)) $) 103 (|has| |#1| (-570)) ELT)) (-1560 (((-1203 (-421 (-981 |#1|))) $) 93 (|has| |#1| (-570)) ELT)) (-1976 (((-421 (-981 |#1|))) 73 (|has| |#1| (-570)) ELT)) (-1714 (($) 110 T ELT) (($ (-1207)) 118 T ELT) (($ (-1298 (-1207))) 117 T ELT) (($ (-1298 $)) 105 T ELT) (($ (-1207) (-1298 $)) 116 T ELT) (($ (-1298 (-1207)) (-1298 $)) 115 T ELT)) (-2589 (((-112)) NIL T ELT)) (-2436 (((-421 (-981 |#1|)) $ (-578)) NIL T ELT)) (-1453 (((-1298 (-421 (-981 |#1|))) $ (-1298 $)) 107 T ELT) (((-711 (-421 (-981 |#1|))) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 (-421 (-981 |#1|))) $) 43 T ELT) (((-711 (-421 (-981 |#1|))) (-1298 $)) NIL T ELT)) (-3343 (((-1298 (-421 (-981 |#1|))) $) NIL T ELT) (($ (-1298 (-421 (-981 |#1|)))) 40 T ELT)) (-4104 (((-666 (-981 (-421 (-981 |#1|)))) (-1298 $)) NIL T ELT) (((-666 (-981 (-421 (-981 |#1|))))) NIL T ELT) (((-666 (-981 |#1|)) (-1298 $)) 108 (|has| |#1| (-570)) ELT) (((-666 (-981 |#1|))) 109 (|has| |#1| (-570)) ELT)) (-1863 (($ $ $) NIL T ELT)) (-3588 (((-112)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-1298 (-421 (-981 |#1|)))) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) 65 T ELT)) (-2839 (((-666 (-1298 (-421 (-981 |#1|))))) NIL (|has| (-421 (-981 |#1|)) (-570)) ELT)) (-2851 (($ $ $ $) NIL T ELT)) (-2553 (((-112)) NIL T ELT)) (-4178 (($ (-711 (-421 (-981 |#1|))) $) NIL T ELT)) (-3021 (($ $ $) NIL T ELT)) (-3167 (((-112)) NIL T ELT)) (-3762 (((-112)) NIL T ELT)) (-4427 (((-112)) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) 106 T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 61 T ELT) (($ $ (-421 (-981 |#1|))) NIL T ELT) (($ (-421 (-981 |#1|)) $) NIL T ELT) (($ (-1173 |#2| (-421 (-981 |#1|))) $) NIL T ELT))) +(((-467 |#1| |#2| |#3| |#4|) (-13 (-431 (-421 (-981 |#1|))) (-670 (-1173 |#2| (-421 (-981 |#1|)))) (-10 -8 (-15 -2411 ($ (-1298 (-421 (-981 |#1|))))) (-15 -2620 ((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed"))) (-15 -4115 ((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed"))) (-15 -1714 ($)) (-15 -1714 ($ (-1207))) (-15 -1714 ($ (-1298 (-1207)))) (-15 -1714 ($ (-1298 $))) (-15 -1714 ($ (-1207) (-1298 $))) (-15 -1714 ($ (-1298 (-1207)) (-1298 $))) (IF (|has| |#1| (-570)) (PROGN (-15 -2972 ((-1203 (-421 (-981 |#1|))))) (-15 -1560 ((-1203 (-421 (-981 |#1|))) $)) (-15 -4063 ((-421 (-981 |#1|)) $)) (-15 -4329 ((-421 (-981 |#1|)) $)) (-15 -1332 ((-1203 (-421 (-981 |#1|))))) (-15 -2664 ((-1203 (-421 (-981 |#1|))) $)) (-15 -1987 ((-421 (-981 |#1|)) $)) (-15 -3684 ((-421 (-981 |#1|)) $)) (-15 -3162 ((-421 (-981 |#1|)) $ $)) (-15 -1976 ((-421 (-981 |#1|)))) (-15 -3351 ((-421 (-981 |#1|)) $ $)) (-15 -2310 ((-421 (-981 |#1|)))) (-15 -4104 ((-666 (-981 |#1|)) (-1298 $))) (-15 -4104 ((-666 (-981 |#1|))))) |%noBranch|))) (-175) (-950) (-666 (-1207)) (-1298 (-711 |#1|))) (T -467)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1298 (-421 (-981 *3)))) (-4 *3 (-175)) (-14 *6 (-1298 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))))) (-2620 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -3198 (-666 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-4115 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -3198 (-666 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-1714 (*1 *1) (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-950)) (-14 *4 (-666 (-1207))) (-14 *5 (-1298 (-711 *2))))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 *2)) (-14 *6 (-1298 (-711 *3))))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1298 (-1207))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-1714 (*1 *1 *2) (-12 (-5 *2 (-1298 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-1714 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-950)) (-14 *6 (-666 *2)) (-14 *7 (-1298 (-711 *4))))) (-1714 (*1 *1 *2 *3) (-12 (-5 *2 (-1298 (-1207))) (-5 *3 (-1298 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-950)) (-14 *6 (-666 (-1207))) (-14 *7 (-1298 (-711 *4))))) (-2972 (*1 *2) (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-1332 (*1 *2) (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-3162 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-1976 (*1 *2) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-3351 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-2310 (*1 *2) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-1298 (-467 *4 *5 *6 *7))) (-5 *2 (-666 (-981 *4))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-570)) (-4 *4 (-175)) (-14 *5 (-950)) (-14 *6 (-666 (-1207))) (-14 *7 (-1298 (-711 *4))))) (-4104 (*1 *2) (-12 (-5 *2 (-666 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(-13 (-431 (-421 (-981 |#1|))) (-670 (-1173 |#2| (-421 (-981 |#1|)))) (-10 -8 (-15 -2411 ($ (-1298 (-421 (-981 |#1|))))) (-15 -2620 ((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed"))) (-15 -4115 ((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed"))) (-15 -1714 ($)) (-15 -1714 ($ (-1207))) (-15 -1714 ($ (-1298 (-1207)))) (-15 -1714 ($ (-1298 $))) (-15 -1714 ($ (-1207) (-1298 $))) (-15 -1714 ($ (-1298 (-1207)) (-1298 $))) (IF (|has| |#1| (-570)) (PROGN (-15 -2972 ((-1203 (-421 (-981 |#1|))))) (-15 -1560 ((-1203 (-421 (-981 |#1|))) $)) (-15 -4063 ((-421 (-981 |#1|)) $)) (-15 -4329 ((-421 (-981 |#1|)) $)) (-15 -1332 ((-1203 (-421 (-981 |#1|))))) (-15 -2664 ((-1203 (-421 (-981 |#1|))) $)) (-15 -1987 ((-421 (-981 |#1|)) $)) (-15 -3684 ((-421 (-981 |#1|)) $)) (-15 -3162 ((-421 (-981 |#1|)) $ $)) (-15 -1976 ((-421 (-981 |#1|)))) (-15 -3351 ((-421 (-981 |#1|)) $ $)) (-15 -2310 ((-421 (-981 |#1|)))) (-15 -4104 ((-666 (-981 |#1|)) (-1298 $))) (-15 -4104 ((-666 (-981 |#1|))))) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 18 T ELT)) (-2949 (((-666 (-888 |#1|)) $) 87 T ELT)) (-4420 (((-1203 $) $ (-888 |#1|)) 52 T ELT) (((-1203 |#2|) $) 138 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#2| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#2| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#2| (-570)) ELT)) (-2707 (((-793) $) 27 T ELT) (((-793) $ (-666 (-888 |#1|))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#2| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) 50 T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3516 ((|#2| $) 48 T ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2035 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2127 (($ $ (-666 (-578))) 93 T ELT)) (-3136 (($ $) 80 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#2| (-938)) ELT)) (-2535 (($ $ |#2| |#3| $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-392))) (|has| |#2| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-578))) (|has| |#2| (-911 (-578)))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) 65 T ELT)) (-2936 (($ (-1203 |#2|) (-888 |#1|)) 143 T ELT) (($ (-1203 $) (-888 |#1|)) 58 T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) 68 T ELT)) (-2925 (($ |#2| |#3|) 35 T ELT) (($ $ (-888 |#1|) (-793)) 37 T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3937 ((|#3| $) NIL T ELT) (((-793) $ (-888 |#1|)) 56 T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) 63 T ELT)) (-2500 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4006 (((-3 (-888 |#1|) "failed") $) 45 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#2| $) 47 T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) 46 T ELT)) (-3080 ((|#2| $) 136 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) 149 (|has| |#2| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#2| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) 100 T ELT) (($ $ (-666 (-888 |#1|)) (-666 |#2|)) 106 T ELT) (($ $ (-888 |#1|) $) 98 T ELT) (($ $ (-666 (-888 |#1|)) (-666 $)) 124 T ELT)) (-3232 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2031 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) 59 T ELT)) (-3683 ((|#3| $) 79 T ELT) (((-793) $ (-888 |#1|)) 42 T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) 62 T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-888 |#1|) (-633 (-550))) (|has| |#2| (-633 (-550)))) ELT)) (-4325 ((|#2| $) 145 (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-2411 (((-886) $) 173 T ELT) (($ (-578)) NIL T ELT) (($ |#2|) 99 T ELT) (($ (-888 |#1|)) 39 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#2| (-570)) ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ |#3|) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#2| (-570)) ELT)) (-2368 (($) 22 T CONST)) (-2379 (($) 31 T CONST)) (-1676 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 131 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 129 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-421 (-578))) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) +(((-468 |#1| |#2| |#3|) (-13 (-978 |#2| |#3| (-888 |#1|)) (-10 -8 (-15 -2127 ($ $ (-666 (-578)))))) (-666 (-1207)) (-1080) (-245 (-3226 |#1|) (-793))) (T -468)) +((-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-14 *3 (-666 (-1207))) (-5 *1 (-468 *3 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-245 (-3226 *3) (-793)))))) +(-13 (-978 |#2| |#3| (-888 |#1|)) (-10 -8 (-15 -2127 ($ $ (-666 (-578)))))) +((-2383 (((-112) |#1| (-666 |#2|)) 91 T ELT)) (-3045 (((-3 (-1298 (-666 |#2|)) "failed") (-793) |#1| (-666 |#2|)) 100 T ELT)) (-1431 (((-3 (-666 |#2|) "failed") |#2| |#1| (-1298 (-666 |#2|))) 102 T ELT)) (-1336 ((|#2| |#2| |#1|) 35 T ELT)) (-1845 (((-793) |#2| (-666 |#2|)) 26 T ELT))) +(((-469 |#1| |#2|) (-10 -7 (-15 -1336 (|#2| |#2| |#1|)) (-15 -1845 ((-793) |#2| (-666 |#2|))) (-15 -3045 ((-3 (-1298 (-666 |#2|)) "failed") (-793) |#1| (-666 |#2|))) (-15 -1431 ((-3 (-666 |#2|) "failed") |#2| |#1| (-1298 (-666 |#2|)))) (-15 -2383 ((-112) |#1| (-666 |#2|)))) (-319) (-1274 |#1|)) (T -469)) +((-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *5)) (-4 *5 (-1274 *3)) (-4 *3 (-319)) (-5 *2 (-112)) (-5 *1 (-469 *3 *5)))) (-1431 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1298 (-666 *3))) (-4 *4 (-319)) (-5 *2 (-666 *3)) (-5 *1 (-469 *4 *3)) (-4 *3 (-1274 *4)))) (-3045 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1274 *4)) (-5 *2 (-1298 (-666 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-666 *6)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-319)) (-5 *2 (-793)) (-5 *1 (-469 *5 *3)))) (-1336 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1274 *3))))) +(-10 -7 (-15 -1336 (|#2| |#2| |#1|)) (-15 -1845 ((-793) |#2| (-666 |#2|))) (-15 -3045 ((-3 (-1298 (-666 |#2|)) "failed") (-793) |#1| (-666 |#2|))) (-15 -1431 ((-3 (-666 |#2|) "failed") |#2| |#1| (-1298 (-666 |#2|)))) (-15 -2383 ((-112) |#1| (-666 |#2|)))) +((-2800 (((-432 |#5|) |#5|) 24 T ELT))) +(((-470 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2800 ((-432 |#5|) |#5|))) (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207))))) (-815) (-570) (-570) (-978 |#4| |#2| |#1|)) (T -470)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207)))))) (-4 *5 (-815)) (-4 *7 (-570)) (-5 *2 (-432 *3)) (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-570)) (-4 *3 (-978 *7 *5 *4))))) +(-10 -7 (-15 -2800 ((-432 |#5|) |#5|))) +((-2410 ((|#3|) 38 T ELT)) (-1927 (((-1203 |#4|) (-1203 |#4|) (-1203 |#4|)) 34 T ELT))) +(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1927 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -2410 (|#3|))) (-815) (-871) (-938) (-978 |#3| |#1| |#2|)) (T -471)) +((-2410 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-938)) (-5 *1 (-471 *3 *4 *2 *5)) (-4 *5 (-978 *2 *3 *4)))) (-1927 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-938)) (-5 *1 (-471 *3 *4 *5 *6))))) +(-10 -7 (-15 -1927 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -2410 (|#3|))) +((-2800 (((-432 (-1203 |#1|)) (-1203 |#1|)) 43 T ELT))) +(((-472 |#1|) (-10 -7 (-15 -2800 ((-432 (-1203 |#1|)) (-1203 |#1|)))) (-319)) (T -472)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-432 (-1203 *4))) (-5 *1 (-472 *4)) (-5 *3 (-1203 *4))))) +(-10 -7 (-15 -2800 ((-432 (-1203 |#1|)) (-1203 |#1|)))) +((-3004 (((-52) |#2| (-1207) (-306 |#2|) (-1265 (-793))) 44 T ELT) (((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-793))) 43 T ELT) (((-52) |#2| (-1207) (-306 |#2|)) 36 T ELT) (((-52) (-1 |#2| (-578)) (-306 |#2|)) 29 T ELT)) (-4449 (((-52) |#2| (-1207) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578))) 88 T ELT) (((-52) (-1 |#2| (-421 (-578))) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578))) 87 T ELT) (((-52) |#2| (-1207) (-306 |#2|) (-1265 (-578))) 86 T ELT) (((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-578))) 85 T ELT) (((-52) |#2| (-1207) (-306 |#2|)) 80 T ELT) (((-52) (-1 |#2| (-578)) (-306 |#2|)) 79 T ELT)) (-3031 (((-52) |#2| (-1207) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578))) 74 T ELT) (((-52) (-1 |#2| (-421 (-578))) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578))) 72 T ELT)) (-3018 (((-52) |#2| (-1207) (-306 |#2|) (-1265 (-578))) 51 T ELT) (((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-578))) 50 T ELT))) +(((-473 |#1| |#2|) (-10 -7 (-15 -3004 ((-52) (-1 |#2| (-578)) (-306 |#2|))) (-15 -3004 ((-52) |#2| (-1207) (-306 |#2|))) (-15 -3004 ((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-793)))) (-15 -3004 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-793)))) (-15 -3018 ((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-578)))) (-15 -3018 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-578)))) (-15 -3031 ((-52) (-1 |#2| (-421 (-578))) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578)))) (-15 -3031 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578)))) (-15 -4449 ((-52) (-1 |#2| (-578)) (-306 |#2|))) (-15 -4449 ((-52) |#2| (-1207) (-306 |#2|))) (-15 -4449 ((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-578)))) (-15 -4449 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-578)))) (-15 -4449 ((-52) (-1 |#2| (-421 (-578))) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578)))) (-15 -4449 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578))))) (-13 (-570) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|))) (T -473)) +((-4449 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-421 (-578)))) (-5 *7 (-421 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *8))) (-4 *8 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *8 *3)))) (-4449 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-578)))) (-5 *4 (-306 *8)) (-5 *5 (-1265 (-421 (-578)))) (-5 *6 (-421 (-578))) (-4 *8 (-13 (-27) (-1233) (-444 *7))) (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *7 *8)))) (-4449 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *7))) (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *7 *3)))) (-4449 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-578))) (-5 *4 (-306 *7)) (-5 *5 (-1265 (-578))) (-4 *7 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *6 *7)))) (-4449 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *6 *3)))) (-4449 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-578))) (-5 *4 (-306 *6)) (-4 *6 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *5 *6)))) (-3031 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-421 (-578)))) (-5 *7 (-421 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *8))) (-4 *8 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *8 *3)))) (-3031 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-578)))) (-5 *4 (-306 *8)) (-5 *5 (-1265 (-421 (-578)))) (-5 *6 (-421 (-578))) (-4 *8 (-13 (-27) (-1233) (-444 *7))) (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *7 *8)))) (-3018 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *7))) (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *7 *3)))) (-3018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-578))) (-5 *4 (-306 *7)) (-5 *5 (-1265 (-578))) (-4 *7 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *6 *7)))) (-3004 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-793))) (-4 *3 (-13 (-27) (-1233) (-444 *7))) (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *7 *3)))) (-3004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-578))) (-5 *4 (-306 *7)) (-5 *5 (-1265 (-793))) (-4 *7 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *6 *7)))) (-3004 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *6 *3)))) (-3004 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-578))) (-5 *4 (-306 *6)) (-4 *6 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) (-5 *1 (-473 *5 *6))))) +(-10 -7 (-15 -3004 ((-52) (-1 |#2| (-578)) (-306 |#2|))) (-15 -3004 ((-52) |#2| (-1207) (-306 |#2|))) (-15 -3004 ((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-793)))) (-15 -3004 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-793)))) (-15 -3018 ((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-578)))) (-15 -3018 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-578)))) (-15 -3031 ((-52) (-1 |#2| (-421 (-578))) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578)))) (-15 -3031 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578)))) (-15 -4449 ((-52) (-1 |#2| (-578)) (-306 |#2|))) (-15 -4449 ((-52) |#2| (-1207) (-306 |#2|))) (-15 -4449 ((-52) (-1 |#2| (-578)) (-306 |#2|) (-1265 (-578)))) (-15 -4449 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-578)))) (-15 -4449 ((-52) (-1 |#2| (-421 (-578))) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578)))) (-15 -4449 ((-52) |#2| (-1207) (-306 |#2|) (-1265 (-421 (-578))) (-421 (-578))))) +((-1336 ((|#2| |#2| |#1|) 15 T ELT)) (-3029 (((-666 |#2|) |#2| (-666 |#2|) |#1| (-950)) 82 T ELT)) (-3537 (((-2 (|:| |plist| (-666 |#2|)) (|:| |modulo| |#1|)) |#2| (-666 |#2|) |#1| (-950)) 72 T ELT))) +(((-474 |#1| |#2|) (-10 -7 (-15 -3537 ((-2 (|:| |plist| (-666 |#2|)) (|:| |modulo| |#1|)) |#2| (-666 |#2|) |#1| (-950))) (-15 -3029 ((-666 |#2|) |#2| (-666 |#2|) |#1| (-950))) (-15 -1336 (|#2| |#2| |#1|))) (-319) (-1274 |#1|)) (T -474)) +((-1336 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1274 *3)))) (-3029 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-666 *3)) (-5 *5 (-950)) (-4 *3 (-1274 *4)) (-4 *4 (-319)) (-5 *1 (-474 *4 *3)))) (-3537 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-950)) (-4 *5 (-319)) (-4 *3 (-1274 *5)) (-5 *2 (-2 (|:| |plist| (-666 *3)) (|:| |modulo| *5))) (-5 *1 (-474 *5 *3)) (-5 *4 (-666 *3))))) +(-10 -7 (-15 -3537 ((-2 (|:| |plist| (-666 |#2|)) (|:| |modulo| |#1|)) |#2| (-666 |#2|) |#1| (-950))) (-15 -3029 ((-666 |#2|) |#2| (-666 |#2|) |#1| (-950))) (-15 -1336 (|#2| |#2| |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 28 T ELT)) (-2695 (($ |#3|) 25 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) 32 T ELT)) (-2693 (($ |#2| |#4| $) 33 T ELT)) (-2925 (($ |#2| (-735 |#3| |#4| |#5|)) 24 T ELT)) (-3097 (((-735 |#3| |#4| |#5|) $) 15 T ELT)) (-3595 ((|#3| $) 19 T ELT)) (-4160 ((|#4| $) 17 T ELT)) (-3110 ((|#2| $) 29 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2407 (($ |#2| |#3| |#4|) 26 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 36 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 34 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-475 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -3110 (|#2| $)) (-15 -3097 ((-735 |#3| |#4| |#5|) $)) (-15 -4160 (|#4| $)) (-15 -3595 (|#3| $)) (-15 -3136 ($ $)) (-15 -2925 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -2695 ($ |#3|)) (-15 -2407 ($ |#2| |#3| |#4|)) (-15 -2693 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-666 (-1207)) (-175) (-871) (-245 (-3226 |#1|) (-793)) (-1 (-112) (-2 (|:| -2087 |#3|) (|:| -2764 |#4|)) (-2 (|:| -2087 |#3|) (|:| -2764 |#4|))) (-978 |#2| |#4| (-888 |#1|))) (T -475)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-3226 *3) (-793))) (-14 *7 (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *6)) (-2 (|:| -2087 *5) (|:| -2764 *6)))) (-5 *1 (-475 *3 *4 *5 *6 *7 *2)) (-4 *5 (-871)) (-4 *2 (-978 *4 *6 (-888 *3))))) (-3110 (*1 *2 *1) (-12 (-14 *3 (-666 (-1207))) (-4 *5 (-245 (-3226 *3) (-793))) (-14 *6 (-1 (-112) (-2 (|:| -2087 *4) (|:| -2764 *5)) (-2 (|:| -2087 *4) (|:| -2764 *5)))) (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-871)) (-4 *7 (-978 *2 *5 (-888 *3))))) (-3097 (*1 *2 *1) (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-3226 *3) (-793))) (-14 *7 (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *6)) (-2 (|:| -2087 *5) (|:| -2764 *6)))) (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871)) (-4 *8 (-978 *4 *6 (-888 *3))))) (-4160 (*1 *2 *1) (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) (-14 *6 (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *2)) (-2 (|:| -2087 *5) (|:| -2764 *2)))) (-4 *2 (-245 (-3226 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7)) (-4 *5 (-871)) (-4 *7 (-978 *4 *2 (-888 *3))))) (-3595 (*1 *2 *1) (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-3226 *3) (-793))) (-14 *6 (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *5)) (-2 (|:| -2087 *2) (|:| -2764 *5)))) (-4 *2 (-871)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *7 (-978 *4 *5 (-888 *3))))) (-3136 (*1 *1 *1) (-12 (-14 *2 (-666 (-1207))) (-4 *3 (-175)) (-4 *5 (-245 (-3226 *2) (-793))) (-14 *6 (-1 (-112) (-2 (|:| -2087 *4) (|:| -2764 *5)) (-2 (|:| -2087 *4) (|:| -2764 *5)))) (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-871)) (-4 *7 (-978 *3 *5 (-888 *2))))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-871)) (-4 *6 (-245 (-3226 *4) (-793))) (-14 *7 (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *6)) (-2 (|:| -2087 *5) (|:| -2764 *6)))) (-14 *4 (-666 (-1207))) (-4 *2 (-175)) (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) (-4 *8 (-978 *2 *6 (-888 *4))))) (-2695 (*1 *1 *2) (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-3226 *3) (-793))) (-14 *6 (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *5)) (-2 (|:| -2087 *2) (|:| -2764 *5)))) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-871)) (-4 *7 (-978 *4 *5 (-888 *3))))) (-2407 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-666 (-1207))) (-4 *2 (-175)) (-4 *4 (-245 (-3226 *5) (-793))) (-14 *6 (-1 (-112) (-2 (|:| -2087 *3) (|:| -2764 *4)) (-2 (|:| -2087 *3) (|:| -2764 *4)))) (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-871)) (-4 *7 (-978 *2 *4 (-888 *5))))) (-2693 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-666 (-1207))) (-4 *2 (-175)) (-4 *3 (-245 (-3226 *4) (-793))) (-14 *6 (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *3)) (-2 (|:| -2087 *5) (|:| -2764 *3)))) (-5 *1 (-475 *4 *2 *5 *3 *6 *7)) (-4 *5 (-871)) (-4 *7 (-978 *2 *3 (-888 *4)))))) +(-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -3110 (|#2| $)) (-15 -3097 ((-735 |#3| |#4| |#5|) $)) (-15 -4160 (|#4| $)) (-15 -3595 (|#3| $)) (-15 -3136 ($ $)) (-15 -2925 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -2695 ($ |#3|)) (-15 -2407 ($ |#2| |#3| |#4|)) (-15 -2693 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3747 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-476 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3747 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-815) (-871) (-570) (-978 |#3| |#1| |#2|) (-13 (-1069 (-421 (-578))) (-376) (-10 -8 (-15 -2411 ($ |#4|)) (-15 -2519 (|#4| $)) (-15 -2530 (|#4| $))))) (T -476)) +((-3747 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-871)) (-4 *5 (-815)) (-4 *6 (-570)) (-4 *7 (-978 *6 *5 *3)) (-5 *1 (-476 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1069 (-421 (-578))) (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $)))))))) +(-10 -7 (-15 -3747 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2949 (((-666 |#3|) $) 41 T ELT)) (-3039 (((-112) $) NIL T ELT)) (-2774 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4233 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-4147 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) 49 T ELT)) (-3516 (($ (-666 |#4|)) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-2737 (($ |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#4|) $) 18 (|has| $ (-6 -4500)) ELT)) (-2537 ((|#3| $) 47 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#4|) $) 14 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3117 (((-666 |#3|) $) NIL T ELT)) (-1455 (((-112) |#3| $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 39 T ELT)) (-1696 (($) 17 T ELT)) (-4324 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (((-793) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 16 T ELT)) (-3343 (((-550) $) NIL (|has| |#4| (-633 (-550))) ELT) (($ (-666 |#4|)) 51 T ELT)) (-2423 (($ (-666 |#4|)) 13 T ELT)) (-1339 (($ $ |#3|) NIL T ELT)) (-2093 (($ $ |#3|) NIL T ELT)) (-3102 (($ $ |#3|) NIL T ELT)) (-2411 (((-886) $) 38 T ELT) (((-666 |#4|) $) 50 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 30 T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-477 |#1| |#2| |#3| |#4|) (-13 (-1007 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3343 ($ (-666 |#4|))) (-6 -4500) (-6 -4501))) (-1080) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -477)) +((-3343 (*1 *1 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-477 *3 *4 *5 *6))))) +(-13 (-1007 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3343 ($ (-666 |#4|))) (-6 -4500) (-6 -4501))) +((-2368 (($) 11 T ELT)) (-2379 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-478 |#1| |#2| |#3|) (-10 -8 (-15 -2379 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2368 (|#1|))) (-479 |#2| |#3|) (-175) (-23)) (T -478)) +NIL +(-10 -8 (-15 -2379 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2368 (|#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2818 (((-3 |#1| "failed") $) 27 T ELT)) (-3516 ((|#1| $) 28 T ELT)) (-3471 (($ $ $) 24 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3683 ((|#2| $) 20 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ |#1|) 26 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 25 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) +(((-479 |#1| |#2|) (-142) (-175) (-23)) (T -479)) +((-2379 (*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-3471 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) +(-13 (-484 |t#1| |t#2|) (-1069 |t#1|) (-10 -8 (-15 (-2379) ($) -1529) (-15 -3471 ($ $ $)))) +(((-102) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-484 |#1| |#2|) . T) ((-1069 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-4447 (((-1298 (-1298 (-578))) (-1298 (-1298 (-578))) (-950)) 26 T ELT)) (-2679 (((-1298 (-1298 (-578))) (-950)) 21 T ELT))) +(((-480) (-10 -7 (-15 -4447 ((-1298 (-1298 (-578))) (-1298 (-1298 (-578))) (-950))) (-15 -2679 ((-1298 (-1298 (-578))) (-950))))) (T -480)) +((-2679 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1298 (-1298 (-578)))) (-5 *1 (-480)))) (-4447 (*1 *2 *2 *3) (-12 (-5 *2 (-1298 (-1298 (-578)))) (-5 *3 (-950)) (-5 *1 (-480))))) +(-10 -7 (-15 -4447 ((-1298 (-1298 (-578))) (-1298 (-1298 (-578))) (-950))) (-15 -2679 ((-1298 (-1298 (-578))) (-950)))) +((-4264 (((-578) (-578)) 32 T ELT) (((-578)) 24 T ELT)) (-4220 (((-578) (-578)) 28 T ELT) (((-578)) 20 T ELT)) (-2391 (((-578) (-578)) 30 T ELT) (((-578)) 22 T ELT)) (-1782 (((-112) (-112)) 14 T ELT) (((-112)) 12 T ELT)) (-3333 (((-112) (-112)) 13 T ELT) (((-112)) 11 T ELT)) (-3549 (((-112) (-112)) 26 T ELT) (((-112)) 17 T ELT))) +(((-481) (-10 -7 (-15 -3333 ((-112))) (-15 -1782 ((-112))) (-15 -3333 ((-112) (-112))) (-15 -1782 ((-112) (-112))) (-15 -3549 ((-112))) (-15 -2391 ((-578))) (-15 -4220 ((-578))) (-15 -4264 ((-578))) (-15 -3549 ((-112) (-112))) (-15 -2391 ((-578) (-578))) (-15 -4220 ((-578) (-578))) (-15 -4264 ((-578) (-578))))) (T -481)) +((-4264 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) (-4220 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) (-4264 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) (-4220 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) (-2391 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) (-3549 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) (-1782 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) (-1782 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) (-3333 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481))))) +(-10 -7 (-15 -3333 ((-112))) (-15 -1782 ((-112))) (-15 -3333 ((-112) (-112))) (-15 -1782 ((-112) (-112))) (-15 -3549 ((-112))) (-15 -2391 ((-578))) (-15 -4220 ((-578))) (-15 -4264 ((-578))) (-15 -3549 ((-112) (-112))) (-15 -2391 ((-578) (-578))) (-15 -4220 ((-578) (-578))) (-15 -4264 ((-578) (-578)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3940 (((-666 (-392)) $) 34 T ELT) (((-666 (-392)) $ (-666 (-392))) 146 T ELT)) (-2933 (((-666 (-1125 (-392))) $) 16 T ELT) (((-666 (-1125 (-392))) $ (-666 (-1125 (-392)))) 142 T ELT)) (-4054 (((-666 (-666 (-972 (-229)))) (-666 (-666 (-972 (-229)))) (-666 (-898))) 58 T ELT)) (-1729 (((-666 (-666 (-972 (-229)))) $) 137 T ELT)) (-4414 (((-1303) $ (-972 (-229)) (-898)) 163 T ELT)) (-3470 (($ $) 136 T ELT) (($ (-666 (-666 (-972 (-229))))) 149 T ELT) (($ (-666 (-666 (-972 (-229)))) (-666 (-898)) (-666 (-898)) (-666 (-950))) 148 T ELT) (($ (-666 (-666 (-972 (-229)))) (-666 (-898)) (-666 (-898)) (-666 (-950)) (-666 (-272))) 150 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3173 (((-578) $) 110 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3246 (($) 147 T ELT)) (-3375 (((-666 (-229)) (-666 (-666 (-972 (-229))))) 89 T ELT)) (-2991 (((-1303) $ (-666 (-972 (-229))) (-898) (-898) (-950)) 155 T ELT) (((-1303) $ (-972 (-229))) 157 T ELT) (((-1303) $ (-972 (-229)) (-898) (-898) (-950)) 156 T ELT)) (-2411 (((-886) $) 169 T ELT) (($ (-666 (-666 (-972 (-229))))) 164 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1718 (((-1303) $ (-972 (-229))) 162 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-482) (-13 (-1131) (-10 -8 (-15 -3246 ($)) (-15 -3470 ($ $)) (-15 -3470 ($ (-666 (-666 (-972 (-229)))))) (-15 -3470 ($ (-666 (-666 (-972 (-229)))) (-666 (-898)) (-666 (-898)) (-666 (-950)))) (-15 -3470 ($ (-666 (-666 (-972 (-229)))) (-666 (-898)) (-666 (-898)) (-666 (-950)) (-666 (-272)))) (-15 -1729 ((-666 (-666 (-972 (-229)))) $)) (-15 -3173 ((-578) $)) (-15 -2933 ((-666 (-1125 (-392))) $)) (-15 -2933 ((-666 (-1125 (-392))) $ (-666 (-1125 (-392))))) (-15 -3940 ((-666 (-392)) $)) (-15 -3940 ((-666 (-392)) $ (-666 (-392)))) (-15 -2991 ((-1303) $ (-666 (-972 (-229))) (-898) (-898) (-950))) (-15 -2991 ((-1303) $ (-972 (-229)))) (-15 -2991 ((-1303) $ (-972 (-229)) (-898) (-898) (-950))) (-15 -1718 ((-1303) $ (-972 (-229)))) (-15 -4414 ((-1303) $ (-972 (-229)) (-898))) (-15 -2411 ($ (-666 (-666 (-972 (-229)))))) (-15 -2411 ((-886) $)) (-15 -4054 ((-666 (-666 (-972 (-229)))) (-666 (-666 (-972 (-229)))) (-666 (-898)))) (-15 -3375 ((-666 (-229)) (-666 (-666 (-972 (-229))))))))) (T -482)) +((-2411 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-482)))) (-3246 (*1 *1) (-5 *1 (-482))) (-3470 (*1 *1 *1) (-5 *1 (-482))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-482)))) (-3470 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *3 (-666 (-898))) (-5 *4 (-666 (-950))) (-5 *1 (-482)))) (-3470 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *3 (-666 (-898))) (-5 *4 (-666 (-950))) (-5 *5 (-666 (-272))) (-5 *1 (-482)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-482)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-482)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-482)))) (-2933 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-482)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-666 (-392))) (-5 *1 (-482)))) (-3940 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-392))) (-5 *1 (-482)))) (-2991 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-666 (-972 (-229)))) (-5 *4 (-898)) (-5 *5 (-950)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2991 (*1 *2 *1 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2991 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *5 (-950)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-1718 (*1 *2 *1 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))) (-4414 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-482)))) (-4054 (*1 *2 *2 *3) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *3 (-666 (-898))) (-5 *1 (-482)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *2 (-666 (-229))) (-5 *1 (-482))))) +(-13 (-1131) (-10 -8 (-15 -3246 ($)) (-15 -3470 ($ $)) (-15 -3470 ($ (-666 (-666 (-972 (-229)))))) (-15 -3470 ($ (-666 (-666 (-972 (-229)))) (-666 (-898)) (-666 (-898)) (-666 (-950)))) (-15 -3470 ($ (-666 (-666 (-972 (-229)))) (-666 (-898)) (-666 (-898)) (-666 (-950)) (-666 (-272)))) (-15 -1729 ((-666 (-666 (-972 (-229)))) $)) (-15 -3173 ((-578) $)) (-15 -2933 ((-666 (-1125 (-392))) $)) (-15 -2933 ((-666 (-1125 (-392))) $ (-666 (-1125 (-392))))) (-15 -3940 ((-666 (-392)) $)) (-15 -3940 ((-666 (-392)) $ (-666 (-392)))) (-15 -2991 ((-1303) $ (-666 (-972 (-229))) (-898) (-898) (-950))) (-15 -2991 ((-1303) $ (-972 (-229)))) (-15 -2991 ((-1303) $ (-972 (-229)) (-898) (-898) (-950))) (-15 -1718 ((-1303) $ (-972 (-229)))) (-15 -4414 ((-1303) $ (-972 (-229)) (-898))) (-15 -2411 ($ (-666 (-666 (-972 (-229)))))) (-15 -2411 ((-886) $)) (-15 -4054 ((-666 (-666 (-972 (-229)))) (-666 (-666 (-972 (-229)))) (-666 (-898)))) (-15 -3375 ((-666 (-229)) (-666 (-666 (-972 (-229)))))))) +((-2484 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-483 |#1| |#2| |#3|) (-10 -8 (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|))) (-484 |#2| |#3|) (-175) (-23)) (T -483)) +NIL +(-10 -8 (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3683 ((|#2| $) 20 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT))) +(((-484 |#1| |#2|) (-142) (-175) (-23)) (T -484)) +((-3683 (*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-2368 (*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2472 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) +(-13 (-1131) (-10 -8 (-15 -3683 (|t#2| $)) (-15 (-2368) ($) -1529) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2484 ($ $)) (-15 -2472 ($ $ $)) (-15 -2484 ($ $ $)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-1905 (((-3 (-666 (-495 |#1| |#2|)) "failed") (-666 (-495 |#1| |#2|)) (-666 (-888 |#1|))) 134 T ELT)) (-1605 (((-666 (-666 (-255 |#1| |#2|))) (-666 (-255 |#1| |#2|)) (-666 (-888 |#1|))) 131 T ELT)) (-2126 (((-2 (|:| |dpolys| (-666 (-255 |#1| |#2|))) (|:| |coords| (-666 (-578)))) (-666 (-255 |#1| |#2|)) (-666 (-888 |#1|))) 86 T ELT))) +(((-485 |#1| |#2| |#3|) (-10 -7 (-15 -1605 ((-666 (-666 (-255 |#1| |#2|))) (-666 (-255 |#1| |#2|)) (-666 (-888 |#1|)))) (-15 -1905 ((-3 (-666 (-495 |#1| |#2|)) "failed") (-666 (-495 |#1| |#2|)) (-666 (-888 |#1|)))) (-15 -2126 ((-2 (|:| |dpolys| (-666 (-255 |#1| |#2|))) (|:| |coords| (-666 (-578)))) (-666 (-255 |#1| |#2|)) (-666 (-888 |#1|))))) (-666 (-1207)) (-466) (-466)) (T -485)) +((-2126 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-888 *5))) (-14 *5 (-666 (-1207))) (-4 *6 (-466)) (-5 *2 (-2 (|:| |dpolys| (-666 (-255 *5 *6))) (|:| |coords| (-666 (-578))))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-666 (-255 *5 *6))) (-4 *7 (-466)))) (-1905 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 (-495 *4 *5))) (-5 *3 (-666 (-888 *4))) (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6)) (-4 *6 (-466)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-888 *5))) (-14 *5 (-666 (-1207))) (-4 *6 (-466)) (-5 *2 (-666 (-666 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-666 (-255 *5 *6))) (-4 *7 (-466))))) +(-10 -7 (-15 -1605 ((-666 (-666 (-255 |#1| |#2|))) (-666 (-255 |#1| |#2|)) (-666 (-888 |#1|)))) (-15 -1905 ((-3 (-666 (-495 |#1| |#2|)) "failed") (-666 (-495 |#1| |#2|)) (-666 (-888 |#1|)))) (-15 -2126 ((-2 (|:| |dpolys| (-666 (-255 |#1| |#2|))) (|:| |coords| (-666 (-578)))) (-666 (-255 |#1| |#2|)) (-666 (-888 |#1|))))) +((-3493 (((-3 $ "failed") $) 11 T ELT)) (-1433 (($ $ $) 23 T ELT)) (-1863 (($ $ $) 24 T ELT)) (-2495 (($ $ $) 9 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 22 T ELT))) +(((-486 |#1|) (-10 -8 (-15 -1863 (|#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -2495 (|#1| |#1| |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950)))) (-487)) (T -486)) +NIL +(-10 -8 (-15 -1863 (|#1| |#1| |#1|)) (-15 -1433 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -2495 (|#1| |#1| |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3534 (($) 19 T CONST)) (-3493 (((-3 $ "failed") $) 16 T ELT)) (-4382 (((-112) $) 18 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 25 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1433 (($ $ $) 22 T ELT)) (-1863 (($ $ $) 21 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2379 (($) 20 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 24 T ELT)) (** (($ $ (-950)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ $ (-578)) 23 T ELT)) (* (($ $ $) 15 T ELT))) +(((-487) (-142)) (T -487)) +((-3057 (*1 *1 *1) (-4 *1 (-487))) (-2495 (*1 *1 *1 *1) (-4 *1 (-487))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-487)) (-5 *2 (-578)))) (-1433 (*1 *1 *1 *1) (-4 *1 (-487))) (-1863 (*1 *1 *1 *1) (-4 *1 (-487)))) +(-13 (-748) (-10 -8 (-15 -3057 ($ $)) (-15 -2495 ($ $ $)) (-15 ** ($ $ (-578))) (-6 -4497) (-15 -1433 ($ $ $)) (-15 -1863 ($ $ $)))) +(((-102) . T) ((-632 (-886)) . T) ((-748) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 18 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-421 (-578))) NIL T ELT) (($ $ (-421 (-578)) (-421 (-578))) NIL T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|))) $) NIL T ELT)) (-1502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|)))) NIL T ELT)) (-1528 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-421 (-578)) $) NIL T ELT) (((-421 (-578)) $ (-421 (-578))) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-421 (-578))) NIL T ELT) (($ $ (-1113) (-421 (-578))) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-421 (-578)))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3864 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 29 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 35 (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 30 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-421 (-578))) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-421 (-578))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-578)) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) 28 (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-1294 |#2|)) 16 T ELT)) (-3683 (((-421 (-578)) $) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1294 |#2|)) NIL T ELT) (($ (-1283 |#1| |#2| |#3|)) 9 T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-421 (-578))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) 21 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-421 (-578))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-488 |#1| |#2| |#3|) (-13 (-1279 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1294 |#2|))) (-15 -2411 ($ (-1283 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -488)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1283 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-488 *3 *4 *5)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(-13 (-1279 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1294 |#2|))) (-15 -2411 ($ (-1283 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-1794 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) 19 T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) 16 T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-3244 (((-666 |#1|) $) NIL T ELT)) (-4300 (((-112) |#1| $) NIL T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4030 (((-666 |#1|) $) NIL T ELT)) (-3023 (((-112) |#1| $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-489 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2|) (-1131) (-1131) (-1224 |#1| |#2|) |#2|) (T -489)) +NIL +(-1224 |#1| |#2|) +((-3213 (((-112) $ $) NIL T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) NIL T ELT)) (-3997 (((-666 $) (-666 |#4|)) NIL T ELT)) (-2949 (((-666 |#3|) $) NIL T ELT)) (-3039 (((-112) $) NIL T ELT)) (-2774 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2596 ((|#4| |#4| $) NIL T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4233 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-3534 (($) NIL T CONST)) (-4147 (((-112) $) 29 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) NIL T ELT)) (-3516 (($ (-666 |#4|)) NIL T ELT)) (-4198 (((-3 $ "failed") $) 45 T ELT)) (-1707 ((|#4| |#4| $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-2737 (($ |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3069 ((|#4| |#4| $) NIL T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) NIL T ELT)) (-2729 (((-666 |#4|) $) 18 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2537 ((|#3| $) 38 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#4|) $) 19 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3117 (((-666 |#3|) $) NIL T ELT)) (-1455 (((-112) |#3| $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2757 (((-3 |#4| "failed") $) 42 T ELT)) (-1708 (((-666 |#4|) $) NIL T ELT)) (-3084 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3494 ((|#4| |#4| $) NIL T ELT)) (-3151 (((-112) $ $) NIL T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1922 ((|#4| |#4| $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-3 |#4| "failed") $) 40 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 58 T ELT)) (-2704 (($ $ |#4|) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 17 T ELT)) (-1696 (($) 14 T ELT)) (-3683 (((-793) $) NIL T ELT)) (-4324 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (((-793) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) NIL (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 22 T ELT)) (-1339 (($ $ |#3|) 52 T ELT)) (-2093 (($ $ |#3|) 54 T ELT)) (-2499 (($ $) NIL T ELT)) (-3102 (($ $ |#3|) NIL T ELT)) (-2411 (((-886) $) 35 T ELT) (((-666 |#4|) $) 46 T ELT)) (-2474 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) NIL T ELT)) (-2714 (((-112) |#3| $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-490 |#1| |#2| |#3| |#4|) (-1241 |#1| |#2| |#3| |#4|) (-570) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -490)) +NIL +(-1241 |#1| |#2| |#3| |#4|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-2551 (($) 17 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3343 (((-392) $) 21 T ELT) (((-229) $) 24 T ELT) (((-421 (-1203 (-578))) $) 18 T ELT) (((-550) $) 53 T ELT)) (-2411 (((-886) $) 51 T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (((-229) $) 23 T ELT) (((-392) $) 20 T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) 37 T CONST)) (-2379 (($) 8 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-491) (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))) (-1053) (-632 (-229)) (-632 (-392)) (-633 (-421 (-1203 (-578)))) (-633 (-550)) (-10 -8 (-15 -2551 ($))))) (T -491)) +((-2551 (*1 *1) (-5 *1 (-491)))) +(-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))) (-1053) (-632 (-229)) (-632 (-392)) (-633 (-421 (-1203 (-578)))) (-633 (-550)) (-10 -8 (-15 -2551 ($)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3666 (((-1166) $) 11 T ELT)) (-3655 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-492) (-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $))))) (T -492)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492))))) +(-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $)))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-1794 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) 20 T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) 18 T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-3244 (((-666 |#1|) $) 13 T ELT)) (-4300 (((-112) |#1| $) NIL T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4030 (((-666 |#1|) $) NIL T ELT)) (-3023 (((-112) |#1| $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 19 T ELT)) (-2436 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 11 (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3226 (((-793) $) 15 (|has| $ (-6 -4500)) ELT))) +(((-493 |#1| |#2| |#3|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) (-1131) (-1131) (-1189)) (T -493)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) +((-2308 (((-578) (-578) (-578)) 19 T ELT)) (-2836 (((-112) (-578) (-578) (-578) (-578)) 28 T ELT)) (-4169 (((-1298 (-666 (-578))) (-793) (-793)) 41 T ELT))) +(((-494) (-10 -7 (-15 -2308 ((-578) (-578) (-578))) (-15 -2836 ((-112) (-578) (-578) (-578) (-578))) (-15 -4169 ((-1298 (-666 (-578))) (-793) (-793))))) (T -494)) +((-4169 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1298 (-666 (-578)))) (-5 *1 (-494)))) (-2836 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-578)) (-5 *2 (-112)) (-5 *1 (-494)))) (-2308 (*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-494))))) +(-10 -7 (-15 -2308 ((-578) (-578) (-578))) (-15 -2836 ((-112) (-578) (-578) (-578) (-578))) (-15 -4169 ((-1298 (-666 (-578))) (-793) (-793)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-888 |#1|)) $) NIL T ELT)) (-4420 (((-1203 $) $ (-888 |#1|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#2| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#2| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#2| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-888 |#1|))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#2| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2035 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2127 (($ $ (-666 (-578))) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#2| (-938)) ELT)) (-2535 (($ $ |#2| (-496 (-3226 |#1|) (-793)) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-392))) (|has| |#2| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-578))) (|has| |#2| (-911 (-578)))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2936 (($ (-1203 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1203 $) (-888 |#1|)) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-496 (-3226 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3937 (((-496 (-3226 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) NIL T ELT)) (-2500 (($ (-1 (-496 (-3226 |#1|) (-793)) (-496 (-3226 |#1|) (-793))) $) NIL T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4006 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#2| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#2| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 $)) NIL T ELT)) (-3232 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2031 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3683 (((-496 (-3226 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-888 |#1|) (-633 (-550))) (|has| |#2| (-633 (-550)))) ELT)) (-4325 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#2| (-570)) ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-496 (-3226 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#2| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-495 |#1| |#2|) (-13 (-978 |#2| (-496 (-3226 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -2127 ($ $ (-666 (-578)))))) (-666 (-1207)) (-1080)) (T -495)) +((-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-495 *3 *4)) (-14 *3 (-666 (-1207))) (-4 *4 (-1080))))) +(-13 (-978 |#2| (-496 (-3226 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -2127 ($ $ (-666 (-578)))))) +((-3213 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3623 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-2695 (($ (-950)) NIL (|has| |#2| (-1080)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2424 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-2590 ((|#2| $ (-578) |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1131)) ELT)) (-3516 (((-578) $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-421 (-578)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) ((|#2| $) NIL (|has| |#2| (-1131)) ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-3493 (((-3 $ "failed") $) NIL (|has| |#2| (-1080)) ELT)) (-2062 (($) NIL (|has| |#2| (-381)) ELT)) (-3450 ((|#2| $ (-578) |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ (-578)) 11 T ELT)) (-2729 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL (|has| |#2| (-1080)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-1441 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3439 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#2| (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1298 $)) NIL (|has| |#2| (-1080)) ELT)) (-2617 (((-1189) $) NIL (|has| |#2| (-1131)) ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-2087 (($ (-950)) NIL (|has| |#2| (-381)) ELT)) (-4313 (((-1151) $) NIL (|has| |#2| (-1131)) ELT)) (-4189 ((|#2| $) NIL (|has| (-578) (-871)) ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ (-578) |#2|) NIL T ELT) ((|#2| $ (-578)) NIL T ELT)) (-1406 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-2841 (($ (-1298 |#2|)) NIL T ELT)) (-4425 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-2031 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-1298 |#2|) $) NIL T ELT) (($ (-578)) NIL (-2230 (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (|has| |#2| (-1080))) ELT) (($ (-421 (-578))) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (($ |#2|) NIL (|has| |#2| (-1131)) ELT) (((-886) $) NIL (|has| |#2| (-632 (-886))) ELT)) (-3753 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-2876 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2368 (($) NIL (|has| |#2| (-23)) CONST)) (-2379 (($) NIL (|has| |#2| (-1080)) CONST)) (-1676 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2404 (((-112) $ $) 17 (|has| |#2| (-871)) ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2472 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-950)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1080)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-578) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-950) $) NIL (|has| |#2| (-25)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-496 |#1| |#2|) (-245 |#1| |#2|) (-793) (-815)) (T -496)) +NIL +(-245 |#1| |#2|) +((-3213 (((-112) $ $) NIL T ELT)) (-2276 (((-666 (-900)) $) 15 T ELT)) (-4107 (((-520) $) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3742 (($ (-520) (-666 (-900))) 11 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 22 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-497) (-13 (-1114) (-10 -8 (-15 -3742 ($ (-520) (-666 (-900)))) (-15 -4107 ((-520) $)) (-15 -2276 ((-666 (-900)) $))))) (T -497)) +((-3742 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-666 (-900))) (-5 *1 (-497)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-666 (-900))) (-5 *1 (-497))))) +(-13 (-1114) (-10 -8 (-15 -3742 ($ (-520) (-666 (-900)))) (-15 -4107 ((-520) $)) (-15 -2276 ((-666 (-900)) $)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1957 (($ $ $) 48 T ELT)) (-3176 (($ $ $) 47 T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3667 ((|#1| $) 40 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 41 T ELT)) (-4328 (($ |#1| $) 18 T ELT)) (-1578 (($ (-666 |#1|)) 19 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-1994 ((|#1| $) 34 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 11 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 45 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 29 (|has| $ (-6 -4500)) ELT))) +(((-498 |#1|) (-13 (-999 |#1|) (-10 -8 (-15 -1578 ($ (-666 |#1|))))) (-871)) (T -498)) +((-1578 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-498 *3))))) +(-13 (-999 |#1|) (-10 -8 (-15 -1578 ($ (-666 |#1|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2512 (($ $) 71 T ELT)) (-1445 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1780 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 45 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (((-3 |#4| "failed") $) 117 T ELT)) (-3907 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 81 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-578)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-2623 (((-2 (|:| -3310 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-2411 (((-886) $) 110 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 32 T CONST)) (-2384 (((-112) $ $) 121 T ELT)) (-2484 (($ $) 77 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 72 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 78 T ELT))) +(((-499 |#1| |#2| |#3| |#4|) (-348 |#1| |#2| |#3| |#4|) (-376) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -499)) +NIL +(-348 |#1| |#2| |#3| |#4|) +((-2504 (((-578) (-666 (-578))) 53 T ELT)) (-2712 ((|#1| (-666 |#1|)) 94 T ELT)) (-4108 (((-666 |#1|) (-666 |#1|)) 95 T ELT)) (-1369 (((-666 |#1|) (-666 |#1|)) 97 T ELT)) (-2421 ((|#1| (-666 |#1|)) 96 T ELT)) (-4325 (((-666 (-578)) (-666 |#1|)) 56 T ELT))) +(((-500 |#1|) (-10 -7 (-15 -2421 (|#1| (-666 |#1|))) (-15 -2712 (|#1| (-666 |#1|))) (-15 -1369 ((-666 |#1|) (-666 |#1|))) (-15 -4108 ((-666 |#1|) (-666 |#1|))) (-15 -4325 ((-666 (-578)) (-666 |#1|))) (-15 -2504 ((-578) (-666 (-578))))) (-1274 (-578))) (T -500)) +((-2504 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-578)) (-5 *1 (-500 *4)) (-4 *4 (-1274 *2)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-1274 (-578))) (-5 *2 (-666 (-578))) (-5 *1 (-500 *4)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1274 (-578))) (-5 *1 (-500 *3)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1274 (-578))) (-5 *1 (-500 *3)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1274 (-578))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1274 (-578)))))) +(-10 -7 (-15 -2421 (|#1| (-666 |#1|))) (-15 -2712 (|#1| (-666 |#1|))) (-15 -1369 ((-666 |#1|) (-666 |#1|))) (-15 -4108 ((-666 |#1|) (-666 |#1|))) (-15 -4325 ((-666 (-578)) (-666 |#1|))) (-15 -2504 ((-578) (-666 (-578))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 (((-578) $) NIL (|has| (-578) (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| (-578) (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-578) (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| (-578) (-1069 (-578))) ELT)) (-3516 (((-578) $) NIL T ELT) (((-1207) $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| (-578) (-1069 (-578))) ELT) (((-578) $) NIL (|has| (-578) (-1069 (-578))) ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-578) (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-578) (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-578) (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 (((-578) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-578) (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3611 (($ (-1 (-578) (-578)) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-578) (-1183)) CONST)) (-2904 (($ (-421 (-578))) 9 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| (-578) (-319)) ELT) (((-421 (-578)) $) NIL T ELT)) (-3575 (((-578) $) NIL (|has| (-578) (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 (-578)) (-666 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-578) (-578)) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-306 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-306 (-578)))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-1207)) (-666 (-578))) NIL (|has| (-578) (-528 (-1207) (-578))) ELT) (($ $ (-1207) (-578)) NIL (|has| (-578) (-528 (-1207) (-578))) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ (-578)) NIL (|has| (-578) (-298 (-578) (-578))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) NIL (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 (((-578) $) NIL T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| (-578) (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| (-578) (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| (-578) (-633 (-550))) ELT) (((-392) $) NIL (|has| (-578) (-1053)) ELT) (((-229) $) NIL (|has| (-578) (-1053)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-578) (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 8 T ELT) (($ (-578)) NIL T ELT) (($ (-1207)) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL T ELT) (((-1035 16) $) 10 T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-578) (-938))) (|has| (-578) (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (((-578) $) NIL (|has| (-578) (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| (-578) (-842)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) NIL (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2495 (($ $ $) NIL T ELT) (($ (-578) (-578)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ (-578)) NIL T ELT))) +(((-501) (-13 (-1023 (-578)) (-632 (-421 (-578))) (-632 (-1035 16)) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -2904 ($ (-421 (-578))))))) (T -501)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-501)))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-501))))) +(-13 (-1023 (-578)) (-632 (-421 (-578))) (-632 (-1035 16)) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -2904 ($ (-421 (-578)))))) +((-1441 (((-666 |#2|) $) 31 T ELT)) (-1624 (((-112) |#2| $) 39 T ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 26 T ELT)) (-3364 (($ $ (-666 (-306 |#2|))) 13 T ELT) (($ $ (-306 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) 30 T ELT) (((-793) |#2| $) 37 T ELT)) (-2411 (((-886) $) 45 T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 23 T ELT)) (-2384 (((-112) $ $) 35 T ELT)) (-3226 (((-793) $) 18 T ELT))) +(((-502 |#1| |#2|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#2| |#2|)) (-15 -3364 (|#1| |#1| (-306 |#2|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#2|)))) (-15 -1624 ((-112) |#2| |#1|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -1441 ((-666 |#2|) |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3226 ((-793) |#1|))) (-503 |#2|) (-1248)) (T -502)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#2| |#2|)) (-15 -3364 (|#1| |#1| (-306 |#2|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#2|)))) (-15 -1624 ((-112) |#2| |#1|)) (-15 -4324 ((-793) |#2| |#1|)) (-15 -1441 ((-666 |#2|) |#1|)) (-15 -4324 ((-793) (-1 (-112) |#2|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3226 ((-793) |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-3534 (($) 7 T CONST)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-503 |#1|) (-142) (-1248)) (T -503)) +((-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1248)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4501)) (-4 *1 (-503 *3)) (-4 *3 (-1248)))) (-3673 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4500)) (-4 *1 (-503 *4)) (-4 *4 (-1248)) (-5 *2 (-112)))) (-2808 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4500)) (-4 *1 (-503 *4)) (-4 *4 (-1248)) (-5 *2 (-112)))) (-4324 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4500)) (-4 *1 (-503 *4)) (-4 *4 (-1248)) (-5 *2 (-793)))) (-2729 (*1 *2 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) (-5 *2 (-666 *3)))) (-1441 (*1 *2 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) (-5 *2 (-666 *3)))) (-4324 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) (-5 *2 (-793)))) (-1624 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-632 (-886))) (-6 (-632 (-886))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |t#1| (-1131)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3611 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4501)) (-15 -3439 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4500)) (PROGN (-15 -3673 ((-112) (-1 (-112) |t#1|) $)) (-15 -2808 ((-112) (-1 (-112) |t#1|) $)) (-15 -4324 ((-793) (-1 (-112) |t#1|) $)) (-15 -2729 ((-666 |t#1|) $)) (-15 -1441 ((-666 |t#1|) $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -4324 ((-793) |t#1| $)) (-15 -1624 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-2411 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-504 |#1|) (-142) (-1248)) (T -504)) +NIL +(-13 (-632 |t#1|) (-635 |t#1|)) +(((-635 |#1|) . T) ((-632 |#1|) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2234 (($ (-1189)) 8 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 15 T ELT) (((-1189) $) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 11 T ELT))) +(((-505) (-13 (-1131) (-632 (-1189)) (-10 -8 (-15 -2234 ($ (-1189)))))) (T -505)) +((-2234 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-505))))) +(-13 (-1131) (-632 (-1189)) (-10 -8 (-15 -2234 ($ (-1189))))) +((-1502 (($ $) 15 T ELT)) (-1478 (($ $) 24 T ELT)) (-1528 (($ $) 12 T ELT)) (-1541 (($ $) 10 T ELT)) (-1515 (($ $) 17 T ELT)) (-1489 (($ $) 22 T ELT))) +(((-506 |#1|) (-10 -8 (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1502 (|#1| |#1|))) (-507)) (T -506)) +NIL +(-10 -8 (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1502 (|#1| |#1|))) +((-1502 (($ $) 11 T ELT)) (-1478 (($ $) 10 T ELT)) (-1528 (($ $) 9 T ELT)) (-1541 (($ $) 8 T ELT)) (-1515 (($ $) 7 T ELT)) (-1489 (($ $) 6 T ELT))) +(((-507) (-142)) (T -507)) +((-1502 (*1 *1 *1) (-4 *1 (-507))) (-1478 (*1 *1 *1) (-4 *1 (-507))) (-1528 (*1 *1 *1) (-4 *1 (-507))) (-1541 (*1 *1 *1) (-4 *1 (-507))) (-1515 (*1 *1 *1) (-4 *1 (-507))) (-1489 (*1 *1 *1) (-4 *1 (-507)))) +(-13 (-10 -8 (-15 -1489 ($ $)) (-15 -1515 ($ $)) (-15 -1541 ($ $)) (-15 -1528 ($ $)) (-15 -1478 ($ $)) (-15 -1502 ($ $)))) +((-2800 (((-432 |#4|) |#4| (-1 (-432 |#2|) |#2|)) 54 T ELT))) +(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-432 |#4|) |#4| (-1 (-432 |#2|) |#2|)))) (-376) (-1274 |#1|) (-13 (-376) (-149) (-746 |#1| |#2|)) (-1274 |#3|)) (T -508)) +((-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-432 *3)) (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1274 *7))))) +(-10 -7 (-15 -2800 ((-432 |#4|) |#4| (-1 (-432 |#2|) |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3456 (((-666 $) (-1203 $) (-1207)) NIL T ELT) (((-666 $) (-1203 $)) NIL T ELT) (((-666 $) (-981 $)) NIL T ELT)) (-3007 (($ (-1203 $) (-1207)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-981 $)) NIL T ELT)) (-3623 (((-112) $) 39 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-2470 (((-112) $ $) 73 T ELT)) (-4318 (((-666 (-631 $)) $) 50 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3584 (($ $ (-306 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2811 (($ $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-4268 (((-666 $) (-1203 $) (-1207)) NIL T ELT) (((-666 $) (-1203 $)) NIL T ELT) (((-666 $) (-981 $)) NIL T ELT)) (-1567 (($ (-1203 $) (-1207)) NIL T ELT) (($ (-1203 $)) NIL T ELT) (($ (-981 $)) NIL T ELT)) (-2818 (((-3 (-631 $) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-3516 (((-631 $) $) NIL T ELT) (((-578) $) NIL T ELT) (((-421 (-578)) $) 55 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-421 (-578)))) (|:| |vec| (-1298 (-421 (-578))))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-421 (-578))) (-711 $)) NIL T ELT)) (-2512 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3783 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3968 (((-666 (-116)) $) NIL T ELT)) (-4397 (((-116) (-116)) NIL T ELT)) (-4382 (((-112) $) 42 T ELT)) (-2382 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-2519 (((-1156 (-578) (-631 $)) $) 37 T ELT)) (-2812 (($ $ (-578)) NIL T ELT)) (-1550 (((-1203 $) (-1203 $) (-631 $)) 87 T ELT) (((-1203 $) (-1203 $) (-666 (-631 $))) 62 T ELT) (($ $ (-631 $)) 76 T ELT) (($ $ (-666 (-631 $))) 77 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2782 (((-1203 $) (-631 $)) 74 (|has| $ (-1080)) ELT)) (-3611 (($ (-1 $ $) (-631 $)) NIL T ELT)) (-3238 (((-3 (-631 $) "failed") $) NIL T ELT)) (-3908 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-421 (-578)))) (|:| |vec| (-1298 (-421 (-578))))) (-1298 $) $) NIL T ELT) (((-711 (-421 (-578))) (-1298 $)) NIL T ELT)) (-2389 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4386 (((-666 (-631 $)) $) NIL T ELT)) (-2594 (($ (-116) $) NIL T ELT) (($ (-116) (-666 $)) NIL T ELT)) (-1413 (((-112) $ (-116)) NIL T ELT) (((-112) $ (-1207)) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-1737 (((-793) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3139 (((-112) $ $) NIL T ELT) (((-112) $ (-1207)) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3873 (((-112) $) NIL (|has| $ (-1069 (-578))) ELT)) (-3364 (($ $ (-631 $) $) NIL T ELT) (($ $ (-666 (-631 $)) (-666 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-666 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ $))) NIL T ELT) (($ $ (-666 (-116)) (-666 (-1 $ (-666 $)))) NIL T ELT) (($ $ (-116) (-1 $ (-666 $))) NIL T ELT) (($ $ (-116) (-1 $ $)) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ (-116) $) NIL T ELT) (($ (-116) $ $) NIL T ELT) (($ (-116) $ $ $) NIL T ELT) (($ (-116) $ $ $ $) NIL T ELT) (($ (-116) (-666 $)) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2909 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2031 (($ $) 36 T ELT) (($ $ (-793)) NIL T ELT)) (-2530 (((-1156 (-578) (-631 $)) $) 20 T ELT)) (-4269 (($ $) NIL (|has| $ (-1080)) ELT)) (-3343 (((-392) $) 101 T ELT) (((-229) $) 109 T ELT) (((-172 (-392)) $) 117 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-631 $)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-1156 (-578) (-631 $))) 21 T ELT)) (-3753 (((-793)) NIL T CONST)) (-2209 (($ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3619 (((-112) (-116)) 93 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) 10 T CONST)) (-2379 (($) 22 T CONST)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2384 (((-112) $ $) 24 T ELT)) (-2495 (($ $ $) 44 T ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-578))) NIL T ELT) (($ $ (-578)) 48 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT)) (* (($ (-421 (-578)) $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-578) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-950) $) NIL T ELT))) +(((-509) (-13 (-314) (-27) (-1069 (-578)) (-1069 (-421 (-578))) (-660 (-578)) (-1053) (-660 (-421 (-578))) (-149) (-633 (-172 (-392))) (-240) (-10 -8 (-15 -2411 ($ (-1156 (-578) (-631 $)))) (-15 -2519 ((-1156 (-578) (-631 $)) $)) (-15 -2530 ((-1156 (-578) (-631 $)) $)) (-15 -2512 ($ $)) (-15 -2470 ((-112) $ $)) (-15 -1550 ((-1203 $) (-1203 $) (-631 $))) (-15 -1550 ((-1203 $) (-1203 $) (-666 (-631 $)))) (-15 -1550 ($ $ (-631 $))) (-15 -1550 ($ $ (-666 (-631 $))))))) (T -509)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1156 (-578) (-631 (-509)))) (-5 *1 (-509)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-509)))) (-5 *1 (-509)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-509)))) (-5 *1 (-509)))) (-2512 (*1 *1 *1) (-5 *1 (-509))) (-2470 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-509)))) (-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-631 (-509))) (-5 *1 (-509)))) (-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-666 (-631 (-509)))) (-5 *1 (-509)))) (-1550 (*1 *1 *1 *2) (-12 (-5 *2 (-631 (-509))) (-5 *1 (-509)))) (-1550 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-631 (-509)))) (-5 *1 (-509))))) +(-13 (-314) (-27) (-1069 (-578)) (-1069 (-421 (-578))) (-660 (-578)) (-1053) (-660 (-421 (-578))) (-149) (-633 (-172 (-392))) (-240) (-10 -8 (-15 -2411 ($ (-1156 (-578) (-631 $)))) (-15 -2519 ((-1156 (-578) (-631 $)) $)) (-15 -2530 ((-1156 (-578) (-631 $)) $)) (-15 -2512 ($ $)) (-15 -2470 ((-112) $ $)) (-15 -1550 ((-1203 $) (-1203 $) (-631 $))) (-15 -1550 ((-1203 $) (-1203 $) (-666 (-631 $)))) (-15 -1550 ($ $ (-631 $))) (-15 -1550 ($ $ (-666 (-631 $)))))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) |#1|) 44 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 39 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 38 T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) 21 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 17 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) 41 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) 15 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 19 T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) 43 T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 24 T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 11 (|has| $ (-6 -4500)) ELT))) +(((-510 |#1| |#2|) (-19 |#1|) (-1248) (-578)) (T -510)) NIL (-19 |#1|) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-1543 (($ $ (-577) (-509 |#1| |#3|)) NIL T ELT)) (-1403 (($ $ (-577) (-509 |#1| |#2|)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2803 (((-509 |#1| |#3|) $ (-577)) NIL T ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-3381 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL T ELT)) (-3066 (((-792) $) NIL T ELT)) (-3748 (($ (-792) (-792) |#1|) NIL T ELT)) (-3080 (((-792) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-2664 (((-577) $) NIL T ELT)) (-2988 (((-577) $) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1707 (((-577) $) NIL T ELT)) (-2529 (((-577) $) NIL T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2397 (((-509 |#1| |#2|) $ (-577)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-510 |#1| |#2| |#3|) (-57 |#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) (-1247) (-577) (-577)) (T -510)) -NIL -(-57 |#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) -((-4027 (((-665 (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-792) (-792)) 32 T ELT)) (-1996 (((-665 (-1202 |#1|)) |#1| (-792) (-792) (-792)) 43 T ELT)) (-3614 (((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-665 |#3|) (-665 (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-792)) 107 T ELT))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-665 (-1202 |#1|)) |#1| (-792) (-792) (-792))) (-15 -4027 ((-665 (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-792) (-792))) (-15 -3614 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-665 |#3|) (-665 (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-792)))) (-361) (-1273 |#1|) (-1273 |#2|)) (T -511)) -((-3614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-2 (|:| -2225 (-710 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-710 *7))))) (-5 *5 (-792)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-361)) (-5 *2 (-2 (|:| -2225 (-710 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-710 *7)))) (-5 *1 (-511 *6 *7 *8)))) (-4027 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-792)) (-4 *5 (-361)) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -2225 (-710 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-710 *6))))) (-5 *1 (-511 *5 *6 *7)) (-5 *3 (-2 (|:| -2225 (-710 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-710 *6)))) (-4 *7 (-1273 *6)))) (-1996 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-792)) (-4 *3 (-361)) (-4 *5 (-1273 *3)) (-5 *2 (-665 (-1202 *3))) (-5 *1 (-511 *3 *5 *6)) (-4 *6 (-1273 *5))))) -(-10 -7 (-15 -1996 ((-665 (-1202 |#1|)) |#1| (-792) (-792) (-792))) (-15 -4027 ((-665 (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-792) (-792))) (-15 -3614 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) (-665 |#3|) (-665 (-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) (-792)))) -((-1333 (((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))) 70 T ELT)) (-1373 ((|#1| (-710 |#1|) |#1| (-792)) 24 T ELT)) (-2255 (((-792) (-792) (-792)) 34 T ELT)) (-2106 (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 50 T ELT)) (-2310 (((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|) 58 T ELT) (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 55 T ELT)) (-3344 ((|#1| (-710 |#1|) (-710 |#1|) |#1| (-577)) 28 T ELT)) (-1747 ((|#1| (-710 |#1|)) 18 T ELT))) -(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -1747 (|#1| (-710 |#1|))) (-15 -1373 (|#1| (-710 |#1|) |#1| (-792))) (-15 -3344 (|#1| (-710 |#1|) (-710 |#1|) |#1| (-577))) (-15 -2255 ((-792) (-792) (-792))) (-15 -2310 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2310 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -2106 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -1333 ((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))))) (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $)))) (-1273 |#1|) (-422 |#1| |#2|)) (T -512)) -((-1333 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2106 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2310 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2310 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2255 (*1 *2 *2 *2) (-12 (-5 *2 (-792)) (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-3344 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-710 *2)) (-5 *4 (-577)) (-4 *2 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-1373 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-710 *2)) (-5 *4 (-792)) (-4 *2 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-710 *2)) (-4 *4 (-1273 *2)) (-4 *2 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) -(-10 -7 (-15 -1747 (|#1| (-710 |#1|))) (-15 -1373 (|#1| (-710 |#1|) |#1| (-792))) (-15 -3344 (|#1| (-710 |#1|) (-710 |#1|) |#1| (-577))) (-15 -2255 ((-792) (-792) (-792))) (-15 -2310 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2310 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -2106 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -1333 ((-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|))) (-2 (|:| -2225 (-710 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-710 |#1|)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-2343 (($ $ $) 40 T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) $) NIL (|has| (-112) (-870)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-870))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2040 (($ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 (((-112) $ (-1264 (-577)) (-112)) NIL (|has| $ (-6 -4500)) ELT) (((-112) $ (-577) (-112)) 42 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-2736 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-2511 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-3448 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-3381 (((-112) $ (-577)) NIL T ELT)) (-3886 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1130)) ELT) (((-577) (-112) $) NIL (|has| (-112) (-1130)) ELT) (((-577) (-1 (-112) (-112)) $) NIL T ELT)) (-2728 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2331 (($ $ $) 38 T ELT)) (-2308 (($ $) NIL T ELT)) (-4389 (($ $ $) NIL T ELT)) (-3748 (($ (-792) (-112)) 27 T ELT)) (-2896 (($ $ $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 8 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL T ELT)) (-2223 (($ $ $) NIL (|has| (-112) (-870)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-4138 (((-665 (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL T ELT)) (-3437 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-112) (-112) (-112)) $ $) 35 T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4272 (($ $ $ (-577)) NIL T ELT) (($ (-112) $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-112) $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-3482 (($ $ (-112)) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-112)) (-665 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT) (($ $ (-665 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT)) (-3485 (((-665 (-112)) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 28 T ELT)) (-2435 (($ $ (-1264 (-577))) NIL T ELT) (((-112) $ (-577)) 22 T ELT) (((-112) $ (-577) (-112)) NIL T ELT)) (-1704 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-4323 (((-792) (-112) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-112) (-1130))) ELT) (((-792) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 29 T ELT)) (-3341 (((-549) $) NIL (|has| (-112) (-632 (-549))) ELT)) (-2422 (($ (-665 (-112))) NIL T ELT)) (-3702 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2410 (((-885) $) 26 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2319 (($ $ $) 36 T ELT)) (-3285 (($ $ $) NIL T ELT)) (-1559 (($ $ $) 45 T ELT)) (-1571 (($ $) 43 T ELT)) (-1548 (($ $ $) 44 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 30 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 31 T ELT)) (-3272 (($ $ $) NIL T ELT)) (-3224 (((-792) $) 13 (|has| $ (-6 -4499)) ELT))) -(((-513 |#1|) (-13 (-124) (-10 -8 (-15 -1571 ($ $)) (-15 -1559 ($ $ $)) (-15 -1548 ($ $ $)))) (-577)) (T -513)) -((-1571 (*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-1559 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-1548 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577))))) -(-13 (-124) (-10 -8 (-15 -1571 ($ $)) (-15 -1559 ($ $ $)) (-15 -1548 ($ $ $)))) -((-1395 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1202 |#4|)) 35 T ELT)) (-3828 (((-1202 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1202 |#4|)) 22 T ELT)) (-2696 (((-3 (-710 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-710 (-1202 |#4|))) 46 T ELT)) (-4441 (((-1202 (-1202 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3828 (|#2| (-1 |#1| |#4|) (-1202 |#4|))) (-15 -3828 ((-1202 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1202 |#4|))) (-15 -2696 ((-3 (-710 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-710 (-1202 |#4|)))) (-15 -4441 ((-1202 (-1202 |#4|)) (-1 |#4| |#1|) |#3|))) (-1079) (-1273 |#1|) (-1273 |#2|) (-1079)) (T -514)) -((-4441 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *6 (-1273 *5)) (-5 *2 (-1202 (-1202 *7))) (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1273 *6)))) (-2696 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-710 (-1202 *8))) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-1273 *5)) (-5 *2 (-710 *6)) (-5 *1 (-514 *5 *6 *7 *8)) (-4 *7 (-1273 *6)))) (-1395 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1202 *7)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *4 (-1273 *5)) (-5 *2 (-1202 *7)) (-5 *1 (-514 *5 *4 *6 *7)) (-4 *6 (-1273 *4)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1202 *7)) (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1273 *2))))) -(-10 -7 (-15 -3828 (|#2| (-1 |#1| |#4|) (-1202 |#4|))) (-15 -3828 ((-1202 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1395 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1202 |#4|))) (-15 -2696 ((-3 (-710 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-710 (-1202 |#4|)))) (-15 -4441 ((-1202 (-1202 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3060 (((-1302) $) 25 T ELT)) (-2435 (((-1188) $ (-1206)) 30 T ELT)) (-1646 (((-1302) $) 19 T ELT)) (-2410 (((-885) $) 27 T ELT) (($ (-1188)) 26 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 11 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 9 T ELT))) -(((-515) (-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $)) (-15 -2410 ($ (-1188)))))) (T -515)) -((-2435 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1188)) (-5 *1 (-515)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-515))))) -(-13 (-870) (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) (-15 -3060 ((-1302) $)) (-15 -2410 ($ (-1188))))) -((-2116 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-4162 ((|#1| |#4|) 10 T ELT)) (-2362 ((|#3| |#4|) 17 T ELT))) -(((-516 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 (|#1| |#4|)) (-15 -2362 (|#3| |#4|)) (-15 -2116 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-569) (-1022 |#1|) (-385 |#1|) (-385 |#2|)) (T -516)) -((-2116 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-2362 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-4 *2 (-385 *4)) (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) -(-10 -7 (-15 -4162 (|#1| |#4|)) (-15 -2362 (|#3| |#4|)) (-15 -2116 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3211 (((-112) $ $) NIL T ELT)) (-2650 (((-112) $ (-665 |#3|)) 126 T ELT) (((-112) $) 127 T ELT)) (-1516 (((-112) $) 178 T ELT)) (-4118 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-665 |#3|)) 121 T ELT)) (-4413 (((-1195 (-665 (-980 |#1|)) (-665 (-305 (-980 |#1|)))) (-665 |#4|)) 171 (|has| |#3| (-632 (-1206))) ELT)) (-1636 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2097 (((-112) $) 177 T ELT)) (-4101 (($ $) 131 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3959 (($ $ $) 99 T ELT) (($ (-665 $)) 101 T ELT)) (-2560 (((-112) |#4| $) 129 T ELT)) (-4465 (((-112) $ $) 82 T ELT)) (-2655 (($ (-665 |#4|)) 106 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3001 (($ (-665 |#4|)) 175 T ELT)) (-1793 (((-112) $) 176 T ELT)) (-3849 (($ $) 85 T ELT)) (-1732 (((-665 |#4|) $) 73 T ELT)) (-3263 (((-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)) $ (-665 |#3|)) NIL T ELT)) (-3778 (((-112) |#4| $) 89 T ELT)) (-2419 (((-577) $ (-665 |#3|)) 133 T ELT) (((-577) $) 134 T ELT)) (-2410 (((-885) $) 174 T ELT) (($ (-665 |#4|)) 102 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2894 (($ (-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-2383 (((-112) $ $) 84 T ELT)) (-2471 (($ $ $) 109 T ELT)) (** (($ $ (-792)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-517 |#1| |#2| |#3| |#4|) (-13 (-1130) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 -2471 ($ $ $)) (-15 -2097 ((-112) $)) (-15 -1516 ((-112) $)) (-15 -3778 ((-112) |#4| $)) (-15 -4465 ((-112) $ $)) (-15 -2560 ((-112) |#4| $)) (-15 -2650 ((-112) $ (-665 |#3|))) (-15 -2650 ((-112) $)) (-15 -3959 ($ $ $)) (-15 -3959 ($ (-665 $))) (-15 -1636 ($ $ $)) (-15 -1636 ($ $ |#4|)) (-15 -3849 ($ $)) (-15 -3263 ((-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)) $ (-665 |#3|))) (-15 -2894 ($ (-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)))) (-15 -2419 ((-577) $ (-665 |#3|))) (-15 -2419 ((-577) $)) (-15 -4101 ($ $)) (-15 -2655 ($ (-665 |#4|))) (-15 -3001 ($ (-665 |#4|))) (-15 -1793 ((-112) $)) (-15 -1732 ((-665 |#4|) $)) (-15 -2410 ($ (-665 |#4|))) (-15 -4118 ($ $ |#4|)) (-15 -4118 ($ $ |#4| (-665 |#3|))) (IF (|has| |#3| (-632 (-1206))) (-15 -4413 ((-1195 (-665 (-980 |#1|)) (-665 (-305 (-980 |#1|)))) (-665 |#4|))) |%noBranch|))) (-375) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -517)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-2471 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-2097 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-1516 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-3778 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-4465 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-2560 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2650 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-2650 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-3959 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-665 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-1636 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-1636 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) (-3849 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-3263 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *2 (-2 (|:| |mval| (-710 *4)) (|:| |invmval| (-710 *4)) (|:| |genIdeal| (-517 *4 *5 *6 *7)))) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-710 *3)) (|:| |invmval| (-710 *3)) (|:| |genIdeal| (-517 *3 *4 *5 *6)))) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-2419 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) (-2419 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-4101 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-2655 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) (-1793 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-1732 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *6)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) (-4118 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) (-4118 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-977 *4 *5 *6)))) (-4413 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *6 (-632 (-1206))) (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1195 (-665 (-980 *4)) (-665 (-305 (-980 *4))))) (-5 *1 (-517 *4 *5 *6 *7))))) -(-13 (-1130) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 -2471 ($ $ $)) (-15 -2097 ((-112) $)) (-15 -1516 ((-112) $)) (-15 -3778 ((-112) |#4| $)) (-15 -4465 ((-112) $ $)) (-15 -2560 ((-112) |#4| $)) (-15 -2650 ((-112) $ (-665 |#3|))) (-15 -2650 ((-112) $)) (-15 -3959 ($ $ $)) (-15 -3959 ($ (-665 $))) (-15 -1636 ($ $ $)) (-15 -1636 ($ $ |#4|)) (-15 -3849 ($ $)) (-15 -3263 ((-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)) $ (-665 |#3|))) (-15 -2894 ($ (-2 (|:| |mval| (-710 |#1|)) (|:| |invmval| (-710 |#1|)) (|:| |genIdeal| $)))) (-15 -2419 ((-577) $ (-665 |#3|))) (-15 -2419 ((-577) $)) (-15 -4101 ($ $)) (-15 -2655 ($ (-665 |#4|))) (-15 -3001 ($ (-665 |#4|))) (-15 -1793 ((-112) $)) (-15 -1732 ((-665 |#4|) $)) (-15 -2410 ($ (-665 |#4|))) (-15 -4118 ($ $ |#4|)) (-15 -4118 ($ $ |#4| (-665 |#3|))) (IF (|has| |#3| (-632 (-1206))) (-15 -4413 ((-1195 (-665 (-980 |#1|)) (-665 (-305 (-980 |#1|)))) (-665 |#4|))) |%noBranch|))) -((-3525 (((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 176 T ELT)) (-2859 (((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 177 T ELT)) (-3987 (((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 129 T ELT)) (-1632 (((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) NIL T ELT)) (-1592 (((-665 (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) 179 T ELT)) (-2608 (((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-665 (-887 |#1|))) 195 T ELT))) -(((-518 |#1| |#2|) (-10 -7 (-15 -3525 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2859 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1632 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3987 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1592 ((-665 (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2608 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-665 (-887 |#1|))))) (-665 (-1206)) (-792)) (T -518)) -((-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-5 *3 (-665 (-887 *4))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *1 (-518 *4 *5)))) (-1592 (*1 *2 *3) (-12 (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-665 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577)))))) (-5 *1 (-518 *4 *5)) (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))))) (-3987 (*1 *2 *2) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *4 (-792)) (-887 *3) (-254 *3 (-420 (-577))))) (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-518 *3 *4)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5))))) -(-10 -7 (-15 -3525 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2859 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1632 ((-112) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3987 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1592 ((-665 (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -2608 ((-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-792)) (-887 |#1|) (-254 |#1| (-420 (-577)))) (-665 (-887 |#1|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3599 (($) 6 T ELT)) (-2410 (((-885) $) 14 T ELT) (((-1206) $) 10 T ELT) (((-1188) $) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-519) (-13 (-1130) (-631 (-1206)) (-631 (-1188)) (-10 -8 (-15 -3599 ($))))) (T -519)) -((-3599 (*1 *1) (-5 *1 (-519)))) -(-13 (-1130) (-631 (-1206)) (-631 (-1188)) (-10 -8 (-15 -3599 ($)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2480 (((-665 (-896 |#2| |#1|)) $) 12 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3161 ((|#2| $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 16 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 26 T ELT))) -(((-520 |#1| |#2|) (-13 (-21) (-522 |#1| |#2|)) (-21) (-873)) (T -520)) -NIL -(-13 (-21) (-522 |#1| |#2|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2480 (((-665 (-896 |#2| |#1|)) $) 14 T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) 44 T ELT)) (-2925 (($ |#1| |#2|) 41 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-3161 ((|#2| $) NIL T ELT)) (-3109 ((|#1| $) 45 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 13 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2471 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 40 T ELT))) -(((-521 |#1| |#2|) (-13 (-23) (-522 |#1| |#2|)) (-23) (-873)) (T -521)) -NIL -(-13 (-23) (-522 |#1| |#2|)) -((-3211 (((-112) $ $) 7 T ELT)) (-2480 (((-665 (-896 |#2| |#1|)) $) 14 T ELT)) (-3134 (($ $) 15 T ELT)) (-2925 (($ |#1| |#2|) 18 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 19 T ELT)) (-3161 ((|#2| $) 16 T ELT)) (-3109 ((|#1| $) 17 T ELT)) (-3384 (((-1188) $) 13 (-12 (|has| |#2| (-1130)) (|has| |#1| (-1130))) ELT)) (-4312 (((-1150) $) 12 (-12 (|has| |#2| (-1130)) (|has| |#1| (-1130))) ELT)) (-2410 (((-885) $) 11 (-12 (|has| |#2| (-1130)) (|has| |#1| (-1130))) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-522 |#1| |#2|) (-141) (-102) (-873)) (T -522)) -((-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)))) (-2925 (*1 *1 *2 *3) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-873)) (-4 *2 (-102)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-873)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) (-2480 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)) (-5 *2 (-665 (-896 *4 *3)))))) -(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1130)) (IF (|has| |t#2| (-1130)) (-6 (-1130)) |%noBranch|) |%noBranch|) (-15 -3609 ($ (-1 |t#1| |t#1|) $)) (-15 -2925 ($ |t#1| |t#2|)) (-15 -3109 (|t#1| $)) (-15 -3161 (|t#2| $)) (-15 -3134 ($ $)) (-15 -2480 ((-665 (-896 |t#2| |t#1|)) $)))) -(((-102) . T) ((-631 (-885)) -12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ((-1130) -12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2480 (((-665 (-896 |#2| |#1|)) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3161 ((|#2| $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 22 T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT))) -(((-523 |#1| |#2|) (-13 (-813) (-522 |#1| |#2|)) (-813) (-873)) (T -523)) -NIL -(-13 (-813) (-522 |#1| |#2|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2480 (((-665 (-896 |#2| |#1|)) $) NIL T ELT)) (-1658 (($ $ $) 23 T ELT)) (-3262 (((-3 $ "failed") $ $) 19 T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3161 ((|#2| $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT))) -(((-524 |#1| |#2|) (-13 (-814) (-522 |#1| |#2|)) (-814) (-870)) (T -524)) -NIL -(-13 (-814) (-522 |#1| |#2|)) -((-3211 (((-112) $ $) NIL T ELT)) (-2480 (((-665 (-896 |#2| |#1|)) $) 39 T ELT)) (-3134 (($ $) 34 T ELT)) (-2925 (($ |#1| |#2|) 30 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-3161 ((|#2| $) 38 T ELT)) (-3109 ((|#1| $) 37 T ELT)) (-3384 (((-1188) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-4312 (((-1150) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-2410 (((-885) $) 28 (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 21 T ELT))) -(((-525 |#1| |#2|) (-522 |#1| |#2|) (-102) (-873)) (T -525)) -NIL -(-522 |#1| |#2|) -((-3362 (($ $ (-665 |#2|) (-665 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-526 |#1| |#2| |#3|) (-10 -8 (-15 -3362 (|#1| |#1| |#2| |#3|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#3|)))) (-527 |#2| |#3|) (-1130) (-1247)) (T -526)) -NIL -(-10 -8 (-15 -3362 (|#1| |#1| |#2| |#3|)) (-15 -3362 (|#1| |#1| (-665 |#2|) (-665 |#3|)))) -((-3362 (($ $ (-665 |#1|) (-665 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-527 |#1| |#2|) (-141) (-1130) (-1247)) (T -527)) -((-3362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *5)) (-4 *1 (-527 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1247)))) (-3362 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1247))))) -(-13 (-10 -8 (-15 -3362 ($ $ |t#1| |t#2|)) (-15 -3362 ($ $ (-665 |t#1|) (-665 |t#2|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2480 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|))) $) 19 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2221 (((-792) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-3017 ((|#1| $ (-577)) 24 T ELT)) (-4247 ((|#2| $ (-577)) 22 T ELT)) (-3513 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1617 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2961 (($ $ $) 55 (|has| |#2| (-813)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-2778 ((|#2| |#1| $) 51 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 11 T CONST)) (-2383 (((-112) $ $) 30 T ELT)) (-2471 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-528 |#1| |#2| |#3|) (-334 |#1| |#2|) (-1130) (-132) |#2|) (T -528)) -NIL -(-334 |#1| |#2|) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-1712 (((-112) (-112)) 32 T ELT)) (-2589 ((|#1| $ (-577) |#1|) 42 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) |#1|) $) 77 T ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3237 (($ $) 81 (|has| |#1| (-1130)) ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) 64 T ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-1450 (($ $ (-577)) 19 T ELT)) (-2140 (((-792) $) 13 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) 31 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 29 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2044 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 55 T ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) 56 T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) 28 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3795 (($ $ $ (-577)) 73 T ELT) (($ |#1| $ (-577)) 57 T ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-1430 (($ (-665 |#1|)) 43 T ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) 24 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 60 T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 21 T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 53 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-2209 (($ $ (-1264 (-577))) 71 T ELT) (($ $ (-577)) 65 T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) 61 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 51 T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) NIL T ELT)) (-2872 (($ $ $) 62 T ELT) (($ $ |#1|) 59 T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) 58 T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 22 (|has| $ (-6 -4499)) ELT))) -(((-529 |#1| |#2|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -1430 ($ (-665 |#1|))) (-15 -2140 ((-792) $)) (-15 -1450 ($ $ (-577))) (-15 -1712 ((-112) (-112))))) (-1247) (-577)) (T -529)) -((-1430 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-529 *3 *4)) (-14 *4 (-577)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-577)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-577))))) -(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -1430 ($ (-665 |#1|))) (-15 -2140 ((-792) $)) (-15 -1450 ($ $ (-577))) (-15 -1712 ((-112) (-112))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3676 (((-1165) $) 11 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1974 (((-1165) $) 13 T ELT)) (-2100 (((-1165) $) 9 T ELT)) (-2410 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-530) (-13 (-1113) (-10 -8 (-15 -2100 ((-1165) $)) (-15 -3676 ((-1165) $)) (-15 -1974 ((-1165) $))))) (T -530)) -((-2100 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530))))) -(-13 (-1113) (-10 -8 (-15 -2100 ((-1165) $)) (-15 -3676 ((-1165) $)) (-15 -1974 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 (((-594 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-594 |#1|) "failed") $) NIL T ELT)) (-3514 (((-594 |#1|) $) NIL T ELT)) (-1912 (($ (-1297 (-594 |#1|))) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3390 (((-112) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2202 (($ $ (-792)) NIL (-2229 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT) (($ $) NIL (-2229 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-949) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-854 (-949)) $) NIL (-2229 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3679 (((-112) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2755 (((-594 |#1|) $) NIL T ELT) (($ $ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 (-594 |#1|)) $) NIL T ELT) (((-1202 $) $ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2553 (((-949) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3574 (((-1202 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-3539 (((-1202 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 (-1202 (-594 |#1|)) "failed") $ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-4254 (($ $ (-1202 (-594 |#1|))) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-594 |#1|) (-380)) CONST)) (-2085 (($ (-949)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-854 (-949))) NIL T ELT) (((-949)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-792) $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 (-792) "failed") $ $) NIL (-2229 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $ (-792)) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2776 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-1773 (((-1202 (-594 |#1|))) NIL T ELT)) (-1494 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2513 (($) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2119 (((-1297 (-594 |#1|)) $) NIL T ELT) (((-710 (-594 |#1|)) (-1297 $)) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-594 |#1|)) NIL T ELT)) (-2580 (($ $) NIL (|has| (-594 |#1|) (-380)) ELT) (((-3 $ "failed") $) NIL (-2229 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT) (((-1297 $) (-949)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $ (-792)) NIL (|has| (-594 |#1|) (-380)) ELT)) (-1675 (($ $ (-792)) NIL (|has| (-594 |#1|) (-380)) ELT) (($ $) NIL (|has| (-594 |#1|) (-380)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT) (($ $ (-594 |#1|)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-594 |#1|)) NIL T ELT) (($ (-594 |#1|) $) NIL T ELT))) -(((-531 |#1| |#2|) (-340 (-594 |#1|)) (-949) (-949)) (T -531)) -NIL -(-340 (-594 |#1|)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) 51 T ELT)) (-1543 (($ $ (-577) |#4|) NIL T ELT)) (-1403 (($ $ (-577) |#5|) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2803 ((|#4| $ (-577)) NIL T ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) 50 T ELT)) (-3381 ((|#1| $ (-577) (-577)) 45 T ELT)) (-2728 (((-665 |#1|) $) NIL T ELT)) (-3066 (((-792) $) 33 T ELT)) (-3748 (($ (-792) (-792) |#1|) 30 T ELT)) (-3080 (((-792) $) 38 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-2664 (((-577) $) 31 T ELT)) (-2988 (((-577) $) 32 T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1707 (((-577) $) 37 T ELT)) (-2529 (((-577) $) 39 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) 55 (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 14 T ELT)) (-3414 (($) 16 T ELT)) (-2435 ((|#1| $ (-577) (-577)) 48 T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2397 ((|#5| $ (-577)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-532 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1247) (-577) (-577) (-385 |#1|) (-385 |#1|)) (T -532)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-3869 (($ $ (-578) (-510 |#1| |#3|)) NIL T ELT)) (-3697 (($ $ (-578) (-510 |#1| |#2|)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3978 (((-510 |#1| |#3|) $ (-578)) NIL T ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-3382 ((|#1| $ (-578) (-578)) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL T ELT)) (-3068 (((-793) $) NIL T ELT)) (-3749 (($ (-793) (-793) |#1|) NIL T ELT)) (-3082 (((-793) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1850 (((-578) $) NIL T ELT)) (-3156 (((-578) $) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-1694 (((-578) $) NIL T ELT)) (-2915 (((-578) $) NIL T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) (-578)) NIL T ELT) ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-4240 (((-510 |#1| |#2|) $ (-578)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-511 |#1| |#2| |#3|) (-57 |#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) (-1248) (-578) (-578)) (T -511)) +NIL +(-57 |#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) +((-1646 (((-666 (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793)) 32 T ELT)) (-2685 (((-666 (-1203 |#1|)) |#1| (-793) (-793) (-793)) 43 T ELT)) (-3081 (((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-666 |#3|) (-666 (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)) 107 T ELT))) +(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -2685 ((-666 (-1203 |#1|)) |#1| (-793) (-793) (-793))) (-15 -1646 ((-666 (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -3081 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-666 |#3|) (-666 (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)))) (-362) (-1274 |#1|) (-1274 |#2|)) (T -512)) +((-3081 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 (-2 (|:| -3198 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7))))) (-5 *5 (-793)) (-4 *8 (-1274 *7)) (-4 *7 (-1274 *6)) (-4 *6 (-362)) (-5 *2 (-2 (|:| -3198 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7)))) (-5 *1 (-512 *6 *7 *8)))) (-1646 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-4 *5 (-362)) (-4 *6 (-1274 *5)) (-5 *2 (-666 (-2 (|:| -3198 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6))))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-2 (|:| -3198 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6)))) (-4 *7 (-1274 *6)))) (-2685 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-793)) (-4 *3 (-362)) (-4 *5 (-1274 *3)) (-5 *2 (-666 (-1203 *3))) (-5 *1 (-512 *3 *5 *6)) (-4 *6 (-1274 *5))))) +(-10 -7 (-15 -2685 ((-666 (-1203 |#1|)) |#1| (-793) (-793) (-793))) (-15 -1646 ((-666 (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -3081 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-666 |#3|) (-666 (-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)))) +((-2514 (((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 70 T ELT)) (-1699 ((|#1| (-711 |#1|) |#1| (-793)) 24 T ELT)) (-2216 (((-793) (-793) (-793)) 34 T ELT)) (-4472 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 50 T ELT)) (-2744 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 58 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 55 T ELT)) (-2258 ((|#1| (-711 |#1|) (-711 |#1|) |#1| (-578)) 28 T ELT)) (-4042 ((|#1| (-711 |#1|)) 18 T ELT))) +(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -4042 (|#1| (-711 |#1|))) (-15 -1699 (|#1| (-711 |#1|) |#1| (-793))) (-15 -2258 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-578))) (-15 -2216 ((-793) (-793) (-793))) (-15 -2744 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2744 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -4472 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2514 ((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))))) (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $)))) (-1274 |#1|) (-423 |#1| |#2|)) (T -513)) +((-2514 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) (-4472 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) (-2744 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) (-2744 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) (-2216 (*1 *2 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) (-2258 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-578)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *5 (-1274 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-423 *2 *5)))) (-1699 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-793)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-4 *5 (-1274 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-423 *2 *5)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-711 *2)) (-4 *4 (-1274 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-423 *2 *4))))) +(-10 -7 (-15 -4042 (|#1| (-711 |#1|))) (-15 -1699 (|#1| (-711 |#1|) |#1| (-793))) (-15 -2258 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-578))) (-15 -2216 ((-793) (-793) (-793))) (-15 -2744 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2744 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -4472 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2514 ((-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3198 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2344 (($ $ $) 40 T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) $) NIL (|has| (-112) (-871)) ELT) (((-112) (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-4101 (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| (-112) (-871))) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4501)) ELT)) (-2042 (($ $) NIL (|has| (-112) (-871)) ELT) (($ (-1 (-112) (-112) (-112)) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 (((-112) $ (-1265 (-578)) (-112)) NIL (|has| $ (-6 -4501)) ELT) (((-112) $ (-578) (-112)) 42 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-2737 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-2512 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-3450 (((-112) $ (-578) (-112)) NIL (|has| $ (-6 -4501)) ELT)) (-3382 (((-112) $ (-578)) NIL T ELT)) (-3887 (((-578) (-112) $ (-578)) NIL (|has| (-112) (-1131)) ELT) (((-578) (-112) $) NIL (|has| (-112) (-1131)) ELT) (((-578) (-1 (-112) (-112)) $) NIL T ELT)) (-2729 (((-666 (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2332 (($ $ $) 38 T ELT)) (-2309 (($ $) NIL T ELT)) (-2067 (($ $ $) NIL T ELT)) (-3749 (($ (-793) (-112)) 27 T ELT)) (-3478 (($ $ $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 8 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL T ELT)) (-3176 (($ $ $) NIL (|has| (-112) (-871)) ELT) (($ (-1 (-112) (-112) (-112)) $ $) NIL T ELT)) (-1441 (((-666 (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL T ELT)) (-3439 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-112) (-112) (-112)) $ $) 35 T ELT) (($ (-1 (-112) (-112)) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4273 (($ $ $ (-578)) NIL T ELT) (($ (-112) $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-112) $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL T ELT)) (-4291 (($ $ (-112)) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-112)) (-666 (-112))) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-306 (-112))) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT) (($ $ (-666 (-306 (-112)))) NIL (-12 (|has| (-112) (-321 (-112))) (|has| (-112) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT)) (-4322 (((-666 (-112)) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 28 T ELT)) (-2436 (($ $ (-1265 (-578))) NIL T ELT) (((-112) $ (-578)) 22 T ELT) (((-112) $ (-578) (-112)) NIL T ELT)) (-1705 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-4324 (((-793) (-112) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-112) (-1131))) ELT) (((-793) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 29 T ELT)) (-3343 (((-550) $) NIL (|has| (-112) (-633 (-550))) ELT)) (-2423 (($ (-666 (-112))) NIL T ELT)) (-3703 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-112) $) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2411 (((-886) $) 26 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2320 (($ $ $) 36 T ELT)) (-3287 (($ $ $) NIL T ELT)) (-1561 (($ $ $) 45 T ELT)) (-1572 (($ $) 43 T ELT)) (-1548 (($ $ $) 44 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 30 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 31 T ELT)) (-3274 (($ $ $) NIL T ELT)) (-3226 (((-793) $) 13 (|has| $ (-6 -4500)) ELT))) +(((-514 |#1|) (-13 (-125) (-10 -8 (-15 -1572 ($ $)) (-15 -1561 ($ $ $)) (-15 -1548 ($ $ $)))) (-578)) (T -514)) +((-1572 (*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-578)))) (-1561 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-578)))) (-1548 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-578))))) +(-13 (-125) (-10 -8 (-15 -1572 ($ $)) (-15 -1561 ($ $ $)) (-15 -1548 ($ $ $)))) +((-1513 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1203 |#4|)) 35 T ELT)) (-1512 (((-1203 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1203 |#4|)) 22 T ELT)) (-2145 (((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1203 |#4|))) 46 T ELT)) (-4475 (((-1203 (-1203 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1512 (|#2| (-1 |#1| |#4|) (-1203 |#4|))) (-15 -1512 ((-1203 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1513 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1203 |#4|))) (-15 -2145 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1203 |#4|)))) (-15 -4475 ((-1203 (-1203 |#4|)) (-1 |#4| |#1|) |#3|))) (-1080) (-1274 |#1|) (-1274 |#2|) (-1080)) (T -515)) +((-4475 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *6 (-1274 *5)) (-5 *2 (-1203 (-1203 *7))) (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1274 *6)))) (-2145 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-711 (-1203 *8))) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-1274 *5)) (-5 *2 (-711 *6)) (-5 *1 (-515 *5 *6 *7 *8)) (-4 *7 (-1274 *6)))) (-1513 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1203 *7)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1274 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1274 *2)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *4 (-1274 *5)) (-5 *2 (-1203 *7)) (-5 *1 (-515 *5 *4 *6 *7)) (-4 *6 (-1274 *4)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1203 *7)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1274 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1274 *2))))) +(-10 -7 (-15 -1512 (|#2| (-1 |#1| |#4|) (-1203 |#4|))) (-15 -1512 ((-1203 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1513 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1203 |#4|))) (-15 -2145 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1203 |#4|)))) (-15 -4475 ((-1203 (-1203 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2574 (((-1303) $) 25 T ELT)) (-2436 (((-1189) $ (-1207)) 30 T ELT)) (-1647 (((-1303) $) 19 T ELT)) (-2411 (((-886) $) 27 T ELT) (($ (-1189)) 26 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 11 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 9 T ELT))) +(((-516) (-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $)) (-15 -2411 ($ (-1189)))))) (T -516)) +((-2436 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-516)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-516))))) +(-13 (-871) (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) (-15 -2574 ((-1303) $)) (-15 -2411 ($ (-1189))))) +((-1420 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3621 ((|#1| |#4|) 10 T ELT)) (-1992 ((|#3| |#4|) 17 T ELT))) +(((-517 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3621 (|#1| |#4|)) (-15 -1992 (|#3| |#4|)) (-15 -1420 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-570) (-1023 |#1|) (-386 |#1|) (-386 |#2|)) (T -517)) +((-1420 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *6 (-386 *4)) (-4 *3 (-386 *5)))) (-1992 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) (-4 *2 (-386 *4)) (-5 *1 (-517 *4 *5 *2 *3)) (-4 *3 (-386 *5)))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-1023 *2)) (-4 *2 (-570)) (-5 *1 (-517 *2 *4 *5 *3)) (-4 *5 (-386 *2)) (-4 *3 (-386 *4))))) +(-10 -7 (-15 -3621 (|#1| |#4|)) (-15 -1992 (|#3| |#4|)) (-15 -1420 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1723 (((-112) $ (-666 |#3|)) 126 T ELT) (((-112) $) 127 T ELT)) (-3623 (((-112) $) 178 T ELT)) (-4392 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-666 |#3|)) 121 T ELT)) (-4247 (((-1196 (-666 (-981 |#1|)) (-666 (-306 (-981 |#1|)))) (-666 |#4|)) 171 (|has| |#3| (-633 (-1207))) ELT)) (-2196 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-4382 (((-112) $) 177 T ELT)) (-4252 (($ $) 131 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3457 (($ $ $) 99 T ELT) (($ (-666 $)) 101 T ELT)) (-3277 (((-112) |#4| $) 129 T ELT)) (-1551 (((-112) $ $) 82 T ELT)) (-1780 (($ (-666 |#4|)) 106 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3309 (($ (-666 |#4|)) 175 T ELT)) (-4443 (((-112) $) 176 T ELT)) (-3660 (($ $) 85 T ELT)) (-1940 (((-666 |#4|) $) 73 T ELT)) (-4039 (((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-666 |#3|)) NIL T ELT)) (-4154 (((-112) |#4| $) 89 T ELT)) (-4425 (((-578) $ (-666 |#3|)) 133 T ELT) (((-578) $) 134 T ELT)) (-2411 (((-886) $) 174 T ELT) (($ (-666 |#4|)) 102 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3459 (($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-2384 (((-112) $ $) 84 T ELT)) (-2472 (($ $ $) 109 T ELT)) (** (($ $ (-793)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-518 |#1| |#2| |#3| |#4|) (-13 (-1131) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -2472 ($ $ $)) (-15 -4382 ((-112) $)) (-15 -3623 ((-112) $)) (-15 -4154 ((-112) |#4| $)) (-15 -1551 ((-112) $ $)) (-15 -3277 ((-112) |#4| $)) (-15 -1723 ((-112) $ (-666 |#3|))) (-15 -1723 ((-112) $)) (-15 -3457 ($ $ $)) (-15 -3457 ($ (-666 $))) (-15 -2196 ($ $ $)) (-15 -2196 ($ $ |#4|)) (-15 -3660 ($ $)) (-15 -4039 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-666 |#3|))) (-15 -3459 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -4425 ((-578) $ (-666 |#3|))) (-15 -4425 ((-578) $)) (-15 -4252 ($ $)) (-15 -1780 ($ (-666 |#4|))) (-15 -3309 ($ (-666 |#4|))) (-15 -4443 ((-112) $)) (-15 -1940 ((-666 |#4|) $)) (-15 -2411 ($ (-666 |#4|))) (-15 -4392 ($ $ |#4|)) (-15 -4392 ($ $ |#4| (-666 |#3|))) (IF (|has| |#3| (-633 (-1207))) (-15 -4247 ((-1196 (-666 (-981 |#1|)) (-666 (-306 (-981 |#1|)))) (-666 |#4|))) |%noBranch|))) (-376) (-815) (-871) (-978 |#1| |#2| |#3|)) (T -518)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-2472 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-4382 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-3623 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-4154 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-1551 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-3277 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-1723 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-1723 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-3457 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-666 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-2196 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-2196 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5)))) (-3660 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-4039 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4)) (|:| |genIdeal| (-518 *4 *5 *6 *7)))) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3)) (|:| |genIdeal| (-518 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-4425 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-578)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) (-4425 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-578)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-4252 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-4443 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-1940 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *6)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-4392 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5)))) (-4392 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-978 *4 *5 *6)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *6 (-633 (-1207))) (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1196 (-666 (-981 *4)) (-666 (-306 (-981 *4))))) (-5 *1 (-518 *4 *5 *6 *7))))) +(-13 (-1131) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -2472 ($ $ $)) (-15 -4382 ((-112) $)) (-15 -3623 ((-112) $)) (-15 -4154 ((-112) |#4| $)) (-15 -1551 ((-112) $ $)) (-15 -3277 ((-112) |#4| $)) (-15 -1723 ((-112) $ (-666 |#3|))) (-15 -1723 ((-112) $)) (-15 -3457 ($ $ $)) (-15 -3457 ($ (-666 $))) (-15 -2196 ($ $ $)) (-15 -2196 ($ $ |#4|)) (-15 -3660 ($ $)) (-15 -4039 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-666 |#3|))) (-15 -3459 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -4425 ((-578) $ (-666 |#3|))) (-15 -4425 ((-578) $)) (-15 -4252 ($ $)) (-15 -1780 ($ (-666 |#4|))) (-15 -3309 ($ (-666 |#4|))) (-15 -4443 ((-112) $)) (-15 -1940 ((-666 |#4|) $)) (-15 -2411 ($ (-666 |#4|))) (-15 -4392 ($ $ |#4|)) (-15 -4392 ($ $ |#4| (-666 |#3|))) (IF (|has| |#3| (-633 (-1207))) (-15 -4247 ((-1196 (-666 (-981 |#1|)) (-666 (-306 (-981 |#1|)))) (-666 |#4|))) |%noBranch|))) +((-1531 (((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) 176 T ELT)) (-3211 (((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) 177 T ELT)) (-3986 (((-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) 129 T ELT)) (-2159 (((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) NIL T ELT)) (-3008 (((-666 (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) 179 T ELT)) (-2475 (((-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-666 (-888 |#1|))) 195 T ELT))) +(((-519 |#1| |#2|) (-10 -7 (-15 -1531 ((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -3211 ((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -2159 ((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -3986 ((-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -3008 ((-666 (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -2475 ((-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-666 (-888 |#1|))))) (-666 (-1207)) (-793)) (T -519)) +((-2475 (*1 *2 *2 *3) (-12 (-5 *2 (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) (-255 *4 (-421 (-578))))) (-5 *3 (-666 (-888 *4))) (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *1 (-519 *4 *5)))) (-3008 (*1 *2 *3) (-12 (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *2 (-666 (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) (-255 *4 (-421 (-578)))))) (-5 *1 (-519 *4 *5)) (-5 *3 (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) (-255 *4 (-421 (-578))))))) (-3986 (*1 *2 *2) (-12 (-5 *2 (-518 (-421 (-578)) (-247 *4 (-793)) (-888 *3) (-255 *3 (-421 (-578))))) (-14 *3 (-666 (-1207))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) (-255 *4 (-421 (-578))))) (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-519 *4 *5)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) (-255 *4 (-421 (-578))))) (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-519 *4 *5)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) (-255 *4 (-421 (-578))))) (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-519 *4 *5))))) +(-10 -7 (-15 -1531 ((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -3211 ((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -2159 ((-112) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -3986 ((-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -3008 ((-666 (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578))))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))))) (-15 -2475 ((-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-518 (-421 (-578)) (-247 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-578)))) (-666 (-888 |#1|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2922 (($) 6 T ELT)) (-2411 (((-886) $) 14 T ELT) (((-1207) $) 10 T ELT) (((-1189) $) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-520) (-13 (-1131) (-632 (-1207)) (-632 (-1189)) (-10 -8 (-15 -2922 ($))))) (T -520)) +((-2922 (*1 *1) (-5 *1 (-520)))) +(-13 (-1131) (-632 (-1207)) (-632 (-1189)) (-10 -8 (-15 -2922 ($)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3761 (((-666 (-897 |#2| |#1|)) $) 12 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4263 ((|#2| $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 16 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 26 T ELT))) +(((-521 |#1| |#2|) (-13 (-21) (-523 |#1| |#2|)) (-21) (-874)) (T -521)) +NIL +(-13 (-21) (-523 |#1| |#2|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3761 (((-666 (-897 |#2| |#1|)) $) 14 T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) 44 T ELT)) (-2925 (($ |#1| |#2|) 41 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-4263 ((|#2| $) NIL T ELT)) (-3110 ((|#1| $) 45 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 13 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2472 (($ $ $) 31 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) 40 T ELT))) +(((-522 |#1| |#2|) (-13 (-23) (-523 |#1| |#2|)) (-23) (-874)) (T -522)) +NIL +(-13 (-23) (-523 |#1| |#2|)) +((-3213 (((-112) $ $) 7 T ELT)) (-3761 (((-666 (-897 |#2| |#1|)) $) 14 T ELT)) (-3136 (($ $) 15 T ELT)) (-2925 (($ |#1| |#2|) 18 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 19 T ELT)) (-4263 ((|#2| $) 16 T ELT)) (-3110 ((|#1| $) 17 T ELT)) (-2617 (((-1189) $) 13 (-12 (|has| |#2| (-1131)) (|has| |#1| (-1131))) ELT)) (-4313 (((-1151) $) 12 (-12 (|has| |#2| (-1131)) (|has| |#1| (-1131))) ELT)) (-2411 (((-886) $) 11 (-12 (|has| |#2| (-1131)) (|has| |#1| (-1131))) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-523 |#1| |#2|) (-142) (-102) (-874)) (T -523)) +((-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874)))) (-2925 (*1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-874)) (-4 *2 (-102)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-874)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874)) (-5 *2 (-666 (-897 *4 *3)))))) +(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1131)) (IF (|has| |t#2| (-1131)) (-6 (-1131)) |%noBranch|) |%noBranch|) (-15 -3611 ($ (-1 |t#1| |t#1|) $)) (-15 -2925 ($ |t#1| |t#2|)) (-15 -3110 (|t#1| $)) (-15 -4263 (|t#2| $)) (-15 -3136 ($ $)) (-15 -3761 ((-666 (-897 |t#2| |t#1|)) $)))) +(((-102) . T) ((-632 (-886)) -12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ((-1131) -12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3761 (((-666 (-897 |#2| |#1|)) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4263 ((|#2| $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 22 T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT))) +(((-524 |#1| |#2|) (-13 (-814) (-523 |#1| |#2|)) (-814) (-874)) (T -524)) +NIL +(-13 (-814) (-523 |#1| |#2|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3761 (((-666 (-897 |#2| |#1|)) $) NIL T ELT)) (-2424 (($ $ $) 23 T ELT)) (-4028 (((-3 $ "failed") $ $) 19 T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4263 ((|#2| $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT))) +(((-525 |#1| |#2|) (-13 (-815) (-523 |#1| |#2|)) (-815) (-871)) (T -525)) +NIL +(-13 (-815) (-523 |#1| |#2|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3761 (((-666 (-897 |#2| |#1|)) $) 39 T ELT)) (-3136 (($ $) 34 T ELT)) (-2925 (($ |#1| |#2|) 30 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-4263 ((|#2| $) 38 T ELT)) (-3110 ((|#1| $) 37 T ELT)) (-2617 (((-1189) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 (((-1151) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-2411 (((-886) $) 28 (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 21 T ELT))) +(((-526 |#1| |#2|) (-523 |#1| |#2|) (-102) (-874)) (T -526)) +NIL +(-523 |#1| |#2|) +((-3364 (($ $ (-666 |#2|) (-666 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-527 |#1| |#2| |#3|) (-10 -8 (-15 -3364 (|#1| |#1| |#2| |#3|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#3|)))) (-528 |#2| |#3|) (-1131) (-1248)) (T -527)) +NIL +(-10 -8 (-15 -3364 (|#1| |#1| |#2| |#3|)) (-15 -3364 (|#1| |#1| (-666 |#2|) (-666 |#3|)))) +((-3364 (($ $ (-666 |#1|) (-666 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-528 |#1| |#2|) (-142) (-1131) (-1248)) (T -528)) +((-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 *5)) (-4 *1 (-528 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1248)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1248))))) +(-13 (-10 -8 (-15 -3364 ($ $ |t#1| |t#2|)) (-15 -3364 ($ $ (-666 |t#1|) (-666 |t#2|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3761 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|))) $) 19 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2222 (((-793) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-2181 ((|#1| $ (-578)) 24 T ELT)) (-3124 ((|#2| $ (-578)) 22 T ELT)) (-1416 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-3304 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2832 (($ $ $) 55 (|has| |#2| (-814)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3708 ((|#2| |#1| $) 51 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 11 T CONST)) (-2384 (((-112) $ $) 30 T ELT)) (-2472 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-529 |#1| |#2| |#3|) (-335 |#1| |#2|) (-1131) (-133) |#2|) (T -529)) +NIL +(-335 |#1| |#2|) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-1740 (((-112) (-112)) 32 T ELT)) (-2590 ((|#1| $ (-578) |#1|) 42 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) |#1|) $) 77 T ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3777 (($ $) 81 (|has| |#1| (-1131)) ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-112) |#1|) $) 64 T ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-3515 (($ $ (-578)) 19 T ELT)) (-3622 (((-793) $) 13 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) 31 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 29 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1957 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 55 T ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) 56 T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) 28 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4328 (($ $ $ (-578)) 73 T ELT) (($ |#1| $ (-578)) 57 T ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-1495 (($ (-666 |#1|)) 43 T ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) 24 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 60 T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 21 T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) 53 T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-3022 (($ $ (-1265 (-578))) 71 T ELT) (($ $ (-578)) 65 T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) 61 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 51 T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) NIL T ELT)) (-3342 (($ $ $) 62 T ELT) (($ $ |#1|) 59 T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) 58 T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 22 (|has| $ (-6 -4500)) ELT))) +(((-530 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -1495 ($ (-666 |#1|))) (-15 -3622 ((-793) $)) (-15 -3515 ($ $ (-578))) (-15 -1740 ((-112) (-112))))) (-1248) (-578)) (T -530)) +((-1495 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-530 *3 *4)) (-14 *4 (-578)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1248)) (-14 *4 (-578)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1248)) (-14 *4 *2))) (-1740 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1248)) (-14 *4 (-578))))) +(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -1495 ($ (-666 |#1|))) (-15 -3622 ((-793) $)) (-15 -3515 ($ $ (-578))) (-15 -1740 ((-112) (-112))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2455 (((-1166) $) 11 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2443 (((-1166) $) 13 T ELT)) (-2101 (((-1166) $) 9 T ELT)) (-2411 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-531) (-13 (-1114) (-10 -8 (-15 -2101 ((-1166) $)) (-15 -2455 ((-1166) $)) (-15 -2443 ((-1166) $))))) (T -531)) +((-2101 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))) (-2455 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531))))) +(-13 (-1114) (-10 -8 (-15 -2101 ((-1166) $)) (-15 -2455 ((-1166) $)) (-15 -2443 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 (((-595 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-595 |#1|) "failed") $) NIL T ELT)) (-3516 (((-595 |#1|) $) NIL T ELT)) (-3095 (($ (-1298 (-595 |#1|))) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2681 (((-112) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2953 (($ $ (-793)) NIL (-2230 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT) (($ $) NIL (-2230 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-950) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-855 (-950)) $) NIL (-2230 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2488 (((-112) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1550 (((-595 |#1|) $) NIL T ELT) (($ $ (-950)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 (-595 |#1|)) $) NIL T ELT) (((-1203 $) $ (-950)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3193 (((-950) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3994 (((-1203 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3606 (((-1203 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-1203 (-595 |#1|)) "failed") $ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3207 (($ $ (-1203 (-595 |#1|))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-595 |#1|) (-381)) CONST)) (-2087 (($ (-950)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-855 (-950))) NIL T ELT) (((-950)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-793) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2230 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3683 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4269 (((-1203 (-595 |#1|))) NIL T ELT)) (-3430 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4062 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1453 (((-1298 (-595 |#1|)) $) NIL T ELT) (((-711 (-595 |#1|)) (-1298 $)) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-595 |#1|)) NIL T ELT)) (-2213 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2230 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT) (((-1298 $) (-950)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1676 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT) (($ (-595 |#1|) $) NIL T ELT))) +(((-532 |#1| |#2|) (-341 (-595 |#1|)) (-950) (-950)) (T -532)) +NIL +(-341 (-595 |#1|)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) 51 T ELT)) (-3869 (($ $ (-578) |#4|) NIL T ELT)) (-3697 (($ $ (-578) |#5|) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3978 ((|#4| $ (-578)) NIL T ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) 50 T ELT)) (-3382 ((|#1| $ (-578) (-578)) 45 T ELT)) (-2729 (((-666 |#1|) $) NIL T ELT)) (-3068 (((-793) $) 33 T ELT)) (-3749 (($ (-793) (-793) |#1|) 30 T ELT)) (-3082 (((-793) $) 38 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1850 (((-578) $) 31 T ELT)) (-3156 (((-578) $) 32 T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-1694 (((-578) $) 37 T ELT)) (-2915 (((-578) $) 39 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) 55 (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 14 T ELT)) (-1696 (($) 16 T ELT)) (-2436 ((|#1| $ (-578) (-578)) 48 T ELT) ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-4240 ((|#5| $ (-578)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-533 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1248) (-578) (-578) (-386 |#1|) (-386 |#1|)) (T -533)) NIL (-57 |#1| |#4| |#5|) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) NIL T ELT)) (-3932 ((|#1| $) NIL T ELT)) (-3840 (($ $) NIL T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) 70 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) $) NIL (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4500)) ELT)) (-2040 (($ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 23 (|has| $ (-6 -4500)) ELT)) (-4306 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) 21 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 24 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3919 ((|#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) 28 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 29 T ELT)) (-4197 (($ $) 18 T ELT) (($ $ (-792)) 32 T ELT)) (-3237 (($ $) 62 (|has| |#1| (-1130)) ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2736 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-1631 (((-112) $) NIL T ELT)) (-3886 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-2728 (((-665 |#1|) $) 27 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 31 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2044 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 65 T ELT)) (-2223 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2605 (($ |#1|) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) 58 (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3795 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-4272 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 13 T ELT) (($ $ (-792)) NIL T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2005 (((-112) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 12 T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) 17 T ELT)) (-3414 (($) 16 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") 15 T ELT) (($ $ "rest") 20 T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2209 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1704 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-2110 (((-112) $) 35 T ELT)) (-1751 (($ $) NIL T ELT)) (-4123 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) NIL T ELT)) (-3252 (($ $) 40 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 36 T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 26 T ELT)) (-2872 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-3702 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-665 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2410 (((-885) $) 50 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 54 (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 9 (|has| $ (-6 -4499)) ELT))) -(((-533 |#1| |#2|) (-687 |#1|) (-1247) (-577)) (T -533)) -NIL -(-687 |#1|) -((-1433 ((|#4| |#4|) 38 T ELT)) (-1875 (((-792) |#4|) 44 T ELT)) (-3309 (((-792) |#4|) 45 T ELT)) (-4111 (((-665 |#3|) |#4|) 55 (|has| |#3| (-6 -4500)) ELT)) (-2566 (((-3 |#4| "failed") |#4|) 67 T ELT)) (-2913 ((|#4| |#4|) 59 T ELT)) (-2620 ((|#1| |#4|) 58 T ELT))) -(((-534 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1433 (|#4| |#4|)) (-15 -1875 ((-792) |#4|)) (-15 -3309 ((-792) |#4|)) (IF (|has| |#3| (-6 -4500)) (-15 -4111 ((-665 |#3|) |#4|)) |%noBranch|) (-15 -2620 (|#1| |#4|)) (-15 -2913 (|#4| |#4|)) (-15 -2566 ((-3 |#4| "failed") |#4|))) (-375) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -534)) -((-2566 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2913 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2620 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-4111 (*1 *2 *3) (-12 (|has| *6 (-6 -4500)) (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3309 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1875 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(-10 -7 (-15 -1433 (|#4| |#4|)) (-15 -1875 ((-792) |#4|)) (-15 -3309 ((-792) |#4|)) (IF (|has| |#3| (-6 -4500)) (-15 -4111 ((-665 |#3|) |#4|)) |%noBranch|) (-15 -2620 (|#1| |#4|)) (-15 -2913 (|#4| |#4|)) (-15 -2566 ((-3 |#4| "failed") |#4|))) -((-1433 ((|#8| |#4|) 20 T ELT)) (-4111 (((-665 |#3|) |#4|) 29 (|has| |#7| (-6 -4500)) ELT)) (-2566 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-535 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1433 (|#8| |#4|)) (-15 -2566 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4500)) (-15 -4111 ((-665 |#3|) |#4|)) |%noBranch|)) (-569) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1022 |#1|) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -535)) -((-4111 (*1 *2 *3) (-12 (|has| *9 (-6 -4500)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-665 *6)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) (-4 *10 (-708 *7 *8 *9)))) (-2566 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) -(-10 -7 (-15 -1433 (|#8| |#4|)) (-15 -2566 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4500)) (-15 -4111 ((-665 |#3|) |#4|)) |%noBranch|)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1525 (($ (-792) (-792)) NIL T ELT)) (-2555 (($ $ $) NIL T ELT)) (-3439 (($ (-615 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3387 (((-112) $) NIL T ELT)) (-3119 (($ $ (-577) (-577)) 21 T ELT)) (-1448 (($ $ (-577) (-577)) NIL T ELT)) (-3734 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-1937 (($ $) NIL T ELT)) (-4405 (((-112) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-1554 (($ $ (-577) (-577) $) NIL T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) NIL T ELT)) (-1543 (($ $ (-577) (-615 |#1| |#3|)) NIL T ELT)) (-1403 (($ $ (-577) (-615 |#1| |#2|)) NIL T ELT)) (-2831 (($ (-792) |#1|) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1433 (($ $) 30 (|has| |#1| (-318)) ELT)) (-2803 (((-615 |#1| |#3|) $ (-577)) NIL T ELT)) (-1875 (((-792) $) 33 (|has| |#1| (-569)) ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) NIL T ELT)) (-3381 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL T ELT)) (-3309 (((-792) $) 35 (|has| |#1| (-569)) ELT)) (-4111 (((-665 (-615 |#1| |#2|)) $) 38 (|has| |#1| (-569)) ELT)) (-3066 (((-792) $) NIL T ELT)) (-3748 (($ (-792) (-792) |#1|) NIL T ELT)) (-3080 (((-792) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3845 ((|#1| $) 28 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-2664 (((-577) $) 10 T ELT)) (-2988 (((-577) $) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1707 (((-577) $) 13 T ELT)) (-2529 (((-577) $) NIL T ELT)) (-1868 (($ (-665 (-665 |#1|))) NIL T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) NIL T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1522 (((-665 (-665 |#1|)) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2566 (((-3 $ "failed") $) 42 (|has| |#1| (-375)) ELT)) (-1394 (($ $ $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) NIL T ELT)) (-4260 (($ (-665 |#1|)) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2101 (((-112) $) NIL T ELT)) (-2620 ((|#1| $) 26 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2397 (((-615 |#1| |#2|) $ (-577)) NIL T ELT)) (-2410 (($ (-615 |#1| |#2|)) NIL T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) NIL T ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-615 |#1| |#2|) $ (-615 |#1| |#2|)) NIL T ELT) (((-615 |#1| |#3|) (-615 |#1| |#3|) $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-536 |#1| |#2| |#3|) (-708 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) (-1079) (-577) (-577)) (T -536)) -NIL -(-708 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4243 (((-665 (-1246)) $) 13 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) (($ (-665 (-1246))) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-537) (-13 (-1113) (-10 -8 (-15 -2410 ($ (-665 (-1246)))) (-15 -4243 ((-665 (-1246)) $))))) (T -537)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537))))) -(-13 (-1113) (-10 -8 (-15 -2410 ($ (-665 (-1246)))) (-15 -4243 ((-665 (-1246)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3465 (((-1165) $) 14 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3243 (((-519) $) 11 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 21 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-538) (-13 (-1113) (-10 -8 (-15 -3243 ((-519) $)) (-15 -3465 ((-1165) $))))) (T -538)) -((-3243 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-538))))) -(-13 (-1113) (-10 -8 (-15 -3243 ((-519) $)) (-15 -3465 ((-1165) $)))) -((-1355 (((-712 (-1255)) $) 15 T ELT)) (-3928 (((-712 (-1253)) $) 38 T ELT)) (-4400 (((-712 (-1252)) $) 29 T ELT)) (-3212 (((-712 (-562)) $) 12 T ELT)) (-3210 (((-712 (-560)) $) 42 T ELT)) (-1831 (((-712 (-559)) $) 33 T ELT)) (-4029 (((-792) $ (-129)) 54 T ELT))) -(((-539 |#1|) (-10 -8 (-15 -4029 ((-792) |#1| (-129))) (-15 -3928 ((-712 (-1253)) |#1|)) (-15 -3210 ((-712 (-560)) |#1|)) (-15 -4400 ((-712 (-1252)) |#1|)) (-15 -1831 ((-712 (-559)) |#1|)) (-15 -1355 ((-712 (-1255)) |#1|)) (-15 -3212 ((-712 (-562)) |#1|))) (-540)) (T -539)) -NIL -(-10 -8 (-15 -4029 ((-792) |#1| (-129))) (-15 -3928 ((-712 (-1253)) |#1|)) (-15 -3210 ((-712 (-560)) |#1|)) (-15 -4400 ((-712 (-1252)) |#1|)) (-15 -1831 ((-712 (-559)) |#1|)) (-15 -1355 ((-712 (-1255)) |#1|)) (-15 -3212 ((-712 (-562)) |#1|))) -((-1355 (((-712 (-1255)) $) 12 T ELT)) (-3928 (((-712 (-1253)) $) 8 T ELT)) (-4400 (((-712 (-1252)) $) 10 T ELT)) (-3212 (((-712 (-562)) $) 13 T ELT)) (-3210 (((-712 (-560)) $) 9 T ELT)) (-1831 (((-712 (-559)) $) 11 T ELT)) (-4029 (((-792) $ (-129)) 7 T ELT)) (-2906 (((-712 (-130)) $) 14 T ELT)) (-2996 (($ $) 6 T ELT))) -(((-540) (-141)) (T -540)) -((-2906 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-130))))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-562))))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1255))))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-559))))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1252))))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-560))))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1253))))) (-4029 (*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-792))))) -(-13 (-175) (-10 -8 (-15 -2906 ((-712 (-130)) $)) (-15 -3212 ((-712 (-562)) $)) (-15 -1355 ((-712 (-1255)) $)) (-15 -1831 ((-712 (-559)) $)) (-15 -4400 ((-712 (-1252)) $)) (-15 -3210 ((-712 (-560)) $)) (-15 -3928 ((-712 (-1253)) $)) (-15 -4029 ((-792) $ (-129))))) -(((-175) . T)) -((-1764 (((-1202 |#1|) (-792)) 115 T ELT)) (-1880 (((-1297 |#1|) (-1297 |#1|) (-949)) 108 T ELT)) (-2250 (((-1302) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) |#1|) 123 T ELT)) (-2181 (((-1297 |#1|) (-1297 |#1|) (-792)) 53 T ELT)) (-2060 (((-1297 |#1|) (-949)) 110 T ELT)) (-4229 (((-1297 |#1|) (-1297 |#1|) (-577)) 30 T ELT)) (-1524 (((-1202 |#1|) (-1297 |#1|)) 116 T ELT)) (-2841 (((-1297 |#1|) (-949)) 137 T ELT)) (-3679 (((-112) (-1297 |#1|)) 120 T ELT)) (-2755 (((-1297 |#1|) (-1297 |#1|) (-949)) 100 T ELT)) (-4067 (((-1202 |#1|) (-1297 |#1|)) 131 T ELT)) (-2553 (((-949) (-1297 |#1|)) 96 T ELT)) (-3055 (((-1297 |#1|) (-1297 |#1|)) 38 T ELT)) (-2085 (((-1297 |#1|) (-949) (-949)) 140 T ELT)) (-2962 (((-1297 |#1|) (-1297 |#1|) (-1150) (-1150)) 29 T ELT)) (-3155 (((-1297 |#1|) (-1297 |#1|) (-792) (-1150)) 54 T ELT)) (-2225 (((-1297 (-1297 |#1|)) (-949)) 136 T ELT)) (-2494 (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 121 T ELT)) (** (((-1297 |#1|) (-1297 |#1|) (-577)) 67 T ELT)) (* (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 31 T ELT))) -(((-541 |#1|) (-10 -7 (-15 -2250 ((-1302) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) |#1|)) (-15 -2060 ((-1297 |#1|) (-949))) (-15 -2085 ((-1297 |#1|) (-949) (-949))) (-15 -1524 ((-1202 |#1|) (-1297 |#1|))) (-15 -1764 ((-1202 |#1|) (-792))) (-15 -3155 ((-1297 |#1|) (-1297 |#1|) (-792) (-1150))) (-15 -2181 ((-1297 |#1|) (-1297 |#1|) (-792))) (-15 -2962 ((-1297 |#1|) (-1297 |#1|) (-1150) (-1150))) (-15 -4229 ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2494 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2755 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -1880 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -3055 ((-1297 |#1|) (-1297 |#1|))) (-15 -2553 ((-949) (-1297 |#1|))) (-15 -3679 ((-112) (-1297 |#1|))) (-15 -2225 ((-1297 (-1297 |#1|)) (-949))) (-15 -2841 ((-1297 |#1|) (-949))) (-15 -4067 ((-1202 |#1|) (-1297 |#1|)))) (-361)) (T -541)) -((-4067 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-541 *4)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-949)) (-5 *1 (-541 *4)))) (-3055 (*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (-1880 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-2494 (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-4229 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-2962 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1150)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-2181 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3155 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1297 *5)) (-5 *3 (-792)) (-5 *4 (-1150)) (-4 *5 (-361)) (-5 *1 (-541 *5)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) (-4 *4 (-361)) (-5 *2 (-1302)) (-5 *1 (-541 *4))))) -(-10 -7 (-15 -2250 ((-1302) (-1297 (-665 (-2 (|:| -4119 |#1|) (|:| -2085 (-1150))))) |#1|)) (-15 -2060 ((-1297 |#1|) (-949))) (-15 -2085 ((-1297 |#1|) (-949) (-949))) (-15 -1524 ((-1202 |#1|) (-1297 |#1|))) (-15 -1764 ((-1202 |#1|) (-792))) (-15 -3155 ((-1297 |#1|) (-1297 |#1|) (-792) (-1150))) (-15 -2181 ((-1297 |#1|) (-1297 |#1|) (-792))) (-15 -2962 ((-1297 |#1|) (-1297 |#1|) (-1150) (-1150))) (-15 -4229 ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-577))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2494 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2755 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -1880 ((-1297 |#1|) (-1297 |#1|) (-949))) (-15 -3055 ((-1297 |#1|) (-1297 |#1|))) (-15 -2553 ((-949) (-1297 |#1|))) (-15 -3679 ((-112) (-1297 |#1|))) (-15 -2225 ((-1297 (-1297 |#1|)) (-949))) (-15 -2841 ((-1297 |#1|) (-949))) (-15 -4067 ((-1202 |#1|) (-1297 |#1|)))) -((-1355 (((-712 (-1255)) $) NIL T ELT)) (-3928 (((-712 (-1253)) $) NIL T ELT)) (-4400 (((-712 (-1252)) $) NIL T ELT)) (-3212 (((-712 (-562)) $) NIL T ELT)) (-3210 (((-712 (-560)) $) NIL T ELT)) (-1831 (((-712 (-559)) $) NIL T ELT)) (-4029 (((-792) $ (-129)) NIL T ELT)) (-2906 (((-712 (-130)) $) 26 T ELT)) (-2052 (((-1150) $ (-1150)) 31 T ELT)) (-3886 (((-1150) $) 30 T ELT)) (-1978 (((-112) $) 20 T ELT)) (-3858 (($ (-401)) 14 T ELT) (($ (-1188)) 16 T ELT)) (-3173 (((-112) $) 27 T ELT)) (-2410 (((-885) $) 34 T ELT)) (-2996 (($ $) 28 T ELT))) -(((-542) (-13 (-540) (-631 (-885)) (-10 -8 (-15 -3858 ($ (-401))) (-15 -3858 ($ (-1188))) (-15 -3173 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -3886 ((-1150) $)) (-15 -2052 ((-1150) $ (-1150)))))) (T -542)) -((-3858 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542)))) (-3858 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-542)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-542)))) (-2052 (*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-542))))) -(-13 (-540) (-631 (-885)) (-10 -8 (-15 -3858 ($ (-401))) (-15 -3858 ($ (-1188))) (-15 -3173 ((-112) $)) (-15 -1978 ((-112) $)) (-15 -3886 ((-1150) $)) (-15 -2052 ((-1150) $ (-1150))))) -((-4187 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-3916 (((-1 |#1| |#1|)) 10 T ELT))) -(((-543 |#1|) (-10 -7 (-15 -3916 ((-1 |#1| |#1|))) (-15 -4187 ((-1 |#1| |#1|) |#1|))) (-13 (-747) (-25))) (T -543)) -((-4187 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25))))) (-3916 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25)))))) -(-10 -7 (-15 -3916 ((-1 |#1| |#1|))) (-15 -4187 ((-1 |#1| |#1|) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2480 (((-665 (-896 |#1| (-792))) $) NIL T ELT)) (-1658 (($ $ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-2925 (($ (-792) |#1|) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3609 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3161 ((|#1| $) NIL T ELT)) (-3109 (((-792) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 27 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT))) -(((-544 |#1|) (-13 (-814) (-522 (-792) |#1|)) (-870)) (T -544)) -NIL -(-13 (-814) (-522 (-792) |#1|)) -((-3560 (((-665 |#2|) (-1202 |#1|) |#3|) 98 T ELT)) (-2503 (((-665 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#2|))))) (-710 |#1|) |#3| (-1 (-431 (-1202 |#1|)) (-1202 |#1|))) 114 T ELT)) (-2974 (((-1202 |#1|) (-710 |#1|)) 110 T ELT))) -(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -2974 ((-1202 |#1|) (-710 |#1|))) (-15 -3560 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -2503 ((-665 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#2|))))) (-710 |#1|) |#3| (-1 (-431 (-1202 |#1|)) (-1202 |#1|))))) (-375) (-375) (-13 (-375) (-869))) (T -545)) -((-2503 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *6)) (-5 *5 (-1 (-431 (-1202 *6)) (-1202 *6))) (-4 *6 (-375)) (-5 *2 (-665 (-2 (|:| |outval| *7) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 *7)))))) (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-869))))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *5)) (-4 *5 (-375)) (-5 *2 (-665 *6)) (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869))))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-710 *4)) (-4 *4 (-375)) (-5 *2 (-1202 *4)) (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-869)))))) -(-10 -7 (-15 -2974 ((-1202 |#1|) (-710 |#1|))) (-15 -3560 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -2503 ((-665 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#2|))))) (-710 |#1|) |#3| (-1 (-431 (-1202 |#1|)) (-1202 |#1|))))) -((-4334 (((-712 (-1255)) $ (-1255)) NIL T ELT)) (-1346 (((-712 (-562)) $ (-562)) NIL T ELT)) (-1838 (((-792) $ (-129)) 39 T ELT)) (-1671 (((-712 (-130)) $ (-130)) 40 T ELT)) (-1355 (((-712 (-1255)) $) NIL T ELT)) (-3928 (((-712 (-1253)) $) NIL T ELT)) (-4400 (((-712 (-1252)) $) NIL T ELT)) (-3212 (((-712 (-562)) $) NIL T ELT)) (-3210 (((-712 (-560)) $) NIL T ELT)) (-1831 (((-712 (-559)) $) NIL T ELT)) (-4029 (((-792) $ (-129)) 35 T ELT)) (-2906 (((-712 (-130)) $) 37 T ELT)) (-4042 (((-112) $) 27 T ELT)) (-1765 (((-712 $) (-592) (-982)) 18 T ELT) (((-712 $) (-504) (-982)) 24 T ELT)) (-2410 (((-885) $) 48 T ELT)) (-2996 (($ $) 42 T ELT))) -(((-546) (-13 (-788 (-592)) (-631 (-885)) (-10 -8 (-15 -1765 ((-712 $) (-504) (-982)))))) (T -546)) -((-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-504)) (-5 *4 (-982)) (-5 *2 (-712 (-546))) (-5 *1 (-546))))) -(-13 (-788 (-592)) (-631 (-885)) (-10 -8 (-15 -1765 ((-712 $) (-504) (-982))))) -((-3022 (((-864 (-577))) 12 T ELT)) (-3037 (((-864 (-577))) 14 T ELT)) (-2561 (((-854 (-577))) 9 T ELT))) -(((-547) (-10 -7 (-15 -2561 ((-854 (-577)))) (-15 -3022 ((-864 (-577)))) (-15 -3037 ((-864 (-577)))))) (T -547)) -((-3037 (*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) (-3022 (*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) (-2561 (*1 *2) (-12 (-5 *2 (-854 (-577))) (-5 *1 (-547))))) -(-10 -7 (-15 -2561 ((-854 (-577)))) (-15 -3022 ((-864 (-577)))) (-15 -3037 ((-864 (-577))))) -((-4128 (((-549) (-1206)) 15 T ELT)) (-3376 ((|#1| (-549)) 20 T ELT))) -(((-548 |#1|) (-10 -7 (-15 -4128 ((-549) (-1206))) (-15 -3376 (|#1| (-549)))) (-1247)) (T -548)) -((-3376 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1247)))) (-4128 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-549)) (-5 *1 (-548 *4)) (-4 *4 (-1247))))) -(-10 -7 (-15 -4128 ((-549) (-1206))) (-15 -3376 (|#1| (-549)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3484 (((-1188) $) 55 T ELT)) (-1363 (((-112) $) 51 T ELT)) (-2067 (((-1206) $) 52 T ELT)) (-3678 (((-112) $) 49 T ELT)) (-1965 (((-1188) $) 50 T ELT)) (-2056 (($ (-1188)) 56 T ELT)) (-2387 (((-112) $) NIL T ELT)) (-2196 (((-112) $) NIL T ELT)) (-2598 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3041 (($ $ (-665 (-1206))) 21 T ELT)) (-3376 (((-52) $) 23 T ELT)) (-3269 (((-112) $) NIL T ELT)) (-2086 (((-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2264 (($ $ (-665 (-1206)) (-1206)) 73 T ELT)) (-1343 (((-112) $) NIL T ELT)) (-3241 (((-228) $) NIL T ELT)) (-3543 (($ $) 44 T ELT)) (-3921 (((-885) $) NIL T ELT)) (-3503 (((-112) $ $) NIL T ELT)) (-2435 (($ $ (-577)) NIL T ELT) (($ $ (-665 (-577))) NIL T ELT)) (-2879 (((-665 $) $) 30 T ELT)) (-4469 (((-1206) (-665 $)) 57 T ELT)) (-3341 (($ (-1188)) NIL T ELT) (($ (-1206)) 19 T ELT) (($ (-577)) 8 T ELT) (($ (-228)) 28 T ELT) (($ (-885)) NIL T ELT) (($ (-665 $)) 65 T ELT) (((-1134) $) 12 T ELT) (($ (-1134)) 13 T ELT)) (-4205 (((-1206) (-1206) (-665 $)) 60 T ELT)) (-2410 (((-885) $) 54 T ELT)) (-1649 (($ $) 59 T ELT)) (-1367 (($ $) 58 T ELT)) (-2324 (($ $ (-665 $)) 66 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2911 (((-112) $) 29 T ELT)) (-2367 (($) 9 T CONST)) (-2378 (($) 11 T CONST)) (-2383 (((-112) $ $) 74 T ELT)) (-2494 (($ $ $) 82 T ELT)) (-2471 (($ $ $) 75 T ELT)) (** (($ $ (-792)) 81 T ELT) (($ $ (-577)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3224 (((-577) $) NIL T ELT))) -(((-549) (-13 (-1133 (-1188) (-1206) (-577) (-228) (-885)) (-632 (-1134)) (-10 -8 (-15 -3376 ((-52) $)) (-15 -3341 ($ (-1134))) (-15 -2324 ($ $ (-665 $))) (-15 -2264 ($ $ (-665 (-1206)) (-1206))) (-15 -3041 ($ $ (-665 (-1206)))) (-15 -2471 ($ $ $)) (-15 * ($ $ $)) (-15 -2494 ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ (-577))) (-15 0 ($) -1528) (-15 1 ($) -1528) (-15 -3543 ($ $)) (-15 -3484 ((-1188) $)) (-15 -2056 ($ (-1188))) (-15 -4469 ((-1206) (-665 $))) (-15 -4205 ((-1206) (-1206) (-665 $)))))) (T -549)) -((-3376 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549)))) (-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-549))) (-5 *1 (-549)))) (-2264 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1206)) (-5 *1 (-549)))) (-3041 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-549)))) (-2471 (*1 *1 *1 *1) (-5 *1 (-549))) (* (*1 *1 *1 *1) (-5 *1 (-549))) (-2494 (*1 *1 *1 *1) (-5 *1 (-549))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-549)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-549)))) (-2367 (*1 *1) (-5 *1 (-549))) (-2378 (*1 *1) (-5 *1 (-549))) (-3543 (*1 *1 *1) (-5 *1 (-549))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-549)))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-549)))) (-4469 (*1 *2 *3) (-12 (-5 *3 (-665 (-549))) (-5 *2 (-1206)) (-5 *1 (-549)))) (-4205 (*1 *2 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-549))) (-5 *1 (-549))))) -(-13 (-1133 (-1188) (-1206) (-577) (-228) (-885)) (-632 (-1134)) (-10 -8 (-15 -3376 ((-52) $)) (-15 -3341 ($ (-1134))) (-15 -2324 ($ $ (-665 $))) (-15 -2264 ($ $ (-665 (-1206)) (-1206))) (-15 -3041 ($ $ (-665 (-1206)))) (-15 -2471 ($ $ $)) (-15 * ($ $ $)) (-15 -2494 ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ (-577))) (-15 (-2367) ($) -1528) (-15 (-2378) ($) -1528) (-15 -3543 ($ $)) (-15 -3484 ((-1188) $)) (-15 -2056 ($ (-1188))) (-15 -4469 ((-1206) (-665 $))) (-15 -4205 ((-1206) (-1206) (-665 $))))) -((-4152 ((|#2| |#2|) 17 T ELT)) (-4307 ((|#2| |#2|) 13 T ELT)) (-3566 ((|#2| |#2| (-577) (-577)) 20 T ELT)) (-2015 ((|#2| |#2|) 15 T ELT))) -(((-550 |#1| |#2|) (-10 -7 (-15 -4307 (|#2| |#2|)) (-15 -2015 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3566 (|#2| |#2| (-577) (-577)))) (-13 (-569) (-148)) (-1288 |#1|)) (T -550)) -((-3566 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) (-4 *2 (-1288 *4)))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1288 *3)))) (-2015 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1288 *3)))) (-4307 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1288 *3))))) -(-10 -7 (-15 -4307 (|#2| |#2|)) (-15 -2015 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3566 (|#2| |#2| (-577) (-577)))) -((-3137 (((-665 (-305 (-980 |#2|))) (-665 |#2|) (-665 (-1206))) 32 T ELT)) (-3809 (((-665 |#2|) (-980 |#1|) |#3|) 54 T ELT) (((-665 |#2|) (-1202 |#1|) |#3|) 53 T ELT)) (-4075 (((-665 (-665 |#2|)) (-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)) |#3|) 106 T ELT))) -(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -3809 ((-665 |#2|) (-980 |#1|) |#3|)) (-15 -4075 ((-665 (-665 |#2|)) (-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)) |#3|)) (-15 -3137 ((-665 (-305 (-980 |#2|))) (-665 |#2|) (-665 (-1206))))) (-465) (-375) (-13 (-375) (-869))) (T -551)) -((-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1206))) (-4 *6 (-375)) (-5 *2 (-665 (-305 (-980 *6)))) (-5 *1 (-551 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-13 (-375) (-869))))) (-4075 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-665 (-665 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) (-4 *5 (-13 (-375) (-869))))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-980 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869))))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869)))))) -(-10 -7 (-15 -3809 ((-665 |#2|) (-1202 |#1|) |#3|)) (-15 -3809 ((-665 |#2|) (-980 |#1|) |#3|)) (-15 -4075 ((-665 (-665 |#2|)) (-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)) |#3|)) (-15 -3137 ((-665 (-305 (-980 |#2|))) (-665 |#2|) (-665 (-1206))))) -((-4442 ((|#2| |#2| |#1|) 17 T ELT)) (-1357 ((|#2| (-665 |#2|)) 31 T ELT)) (-4074 ((|#2| (-665 |#2|)) 52 T ELT))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1357 (|#2| (-665 |#2|))) (-15 -4074 (|#2| (-665 |#2|))) (-15 -4442 (|#2| |#2| |#1|))) (-318) (-1273 |#1|) |#1| (-1 |#1| |#1| (-792))) (T -552)) -((-4442 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-792))) (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1273 *3)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792))))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792)))))) -(-10 -7 (-15 -1357 (|#2| (-665 |#2|))) (-15 -4074 (|#2| (-665 |#2|))) (-15 -4442 (|#2| |#2| |#1|))) -((-2799 (((-431 (-1202 |#4|)) (-1202 |#4|) (-1 (-431 (-1202 |#3|)) (-1202 |#3|))) 89 T ELT) (((-431 |#4|) |#4| (-1 (-431 (-1202 |#3|)) (-1202 |#3|))) 210 T ELT))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 ((-431 |#4|) |#4| (-1 (-431 (-1202 |#3|)) (-1202 |#3|)))) (-15 -2799 ((-431 (-1202 |#4|)) (-1202 |#4|) (-1 (-431 (-1202 |#3|)) (-1202 |#3|))))) (-870) (-814) (-13 (-318) (-148)) (-977 |#3| |#2| |#1|)) (T -553)) -((-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *8 (-977 *7 *6 *5)) (-5 *2 (-431 (-1202 *8))) (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1202 *8)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) (-4 *3 (-977 *7 *6 *5))))) -(-10 -7 (-15 -2799 ((-431 |#4|) |#4| (-1 (-431 (-1202 |#3|)) (-1202 |#3|)))) (-15 -2799 ((-431 (-1202 |#4|)) (-1202 |#4|) (-1 (-431 (-1202 |#3|)) (-1202 |#3|))))) -((-4152 ((|#4| |#4|) 74 T ELT)) (-4307 ((|#4| |#4|) 70 T ELT)) (-3566 ((|#4| |#4| (-577) (-577)) 76 T ELT)) (-2015 ((|#4| |#4|) 72 T ELT))) -(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4307 (|#4| |#4|)) (-15 -2015 (|#4| |#4|)) (-15 -4152 (|#4| |#4|)) (-15 -3566 (|#4| |#4| (-577) (-577)))) (-13 (-375) (-380) (-632 (-577))) (-1273 |#1|) (-745 |#1| |#2|) (-1288 |#3|)) (T -554)) -((-3566 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) (-4 *5 (-1273 *4)) (-4 *6 (-745 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) (-4 *2 (-1288 *6)))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) (-2015 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) (-4307 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5))))) -(-10 -7 (-15 -4307 (|#4| |#4|)) (-15 -2015 (|#4| |#4|)) (-15 -4152 (|#4| |#4|)) (-15 -3566 (|#4| |#4| (-577) (-577)))) -((-4152 ((|#2| |#2|) 27 T ELT)) (-4307 ((|#2| |#2|) 23 T ELT)) (-3566 ((|#2| |#2| (-577) (-577)) 29 T ELT)) (-2015 ((|#2| |#2|) 25 T ELT))) -(((-555 |#1| |#2|) (-10 -7 (-15 -4307 (|#2| |#2|)) (-15 -2015 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3566 (|#2| |#2| (-577) (-577)))) (-13 (-375) (-380) (-632 (-577))) (-1288 |#1|)) (T -555)) -((-3566 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) (-5 *1 (-555 *4 *2)) (-4 *2 (-1288 *4)))) (-4152 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1288 *3)))) (-2015 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1288 *3)))) (-4307 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1288 *3))))) -(-10 -7 (-15 -4307 (|#2| |#2|)) (-15 -2015 (|#2| |#2|)) (-15 -4152 (|#2| |#2|)) (-15 -3566 (|#2| |#2| (-577) (-577)))) -((-2682 (((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)) 18 T ELT) (((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|)) 14 T ELT) (((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|)) 32 T ELT))) -(((-556 |#1| |#2|) (-10 -7 (-15 -2682 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -2682 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -2682 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) (-1079) (-1273 |#1|)) (T -556)) -((-2682 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4)))) (-2682 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4)))) (-2682 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1079)) (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1273 *5))))) -(-10 -7 (-15 -2682 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -2682 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -2682 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) -((-3198 (($ $ $) 84 T ELT)) (-4240 (((-431 $) $) 52 T ELT)) (-2817 (((-3 (-577) "failed") $) 64 T ELT)) (-3514 (((-577) $) 42 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 79 T ELT)) (-2748 (((-112) $) 26 T ELT)) (-3557 (((-420 (-577)) $) 77 T ELT)) (-1632 (((-112) $) 55 T ELT)) (-3924 (($ $ $ $) 92 T ELT)) (-2785 (((-112) $) 17 T ELT)) (-2283 (($ $ $) 62 T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 74 T ELT)) (-3651 (((-3 $ "failed") $) 69 T ELT)) (-3692 (($ $) 24 T ELT)) (-2533 (($ $ $) 90 T ELT)) (-2199 (($) 65 T ELT)) (-2606 (($ $) 58 T ELT)) (-2799 (((-431 $) $) 50 T ELT)) (-2793 (((-112) $) 15 T ELT)) (-2442 (((-792) $) 32 T ELT)) (-2030 (($ $) 11 T ELT) (($ $ (-792)) NIL T ELT)) (-3978 (($ $) 18 T ELT)) (-3341 (((-577) $) NIL T ELT) (((-549) $) 41 T ELT) (((-916 (-577)) $) 45 T ELT) (((-391) $) 35 T ELT) (((-228) $) 38 T ELT)) (-3234 (((-792)) 9 T ELT)) (-3254 (((-112) $ $) 21 T ELT)) (-3267 (($ $ $) 60 T ELT))) -(((-557 |#1|) (-10 -8 (-15 -2533 (|#1| |#1| |#1|)) (-15 -3924 (|#1| |#1| |#1| |#1|)) (-15 -3692 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -3198 (|#1| |#1| |#1|)) (-15 -3254 ((-112) |#1| |#1|)) (-15 -2793 ((-112) |#1|)) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-228) |#1|)) (-15 -3341 ((-391) |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3267 (|#1| |#1| |#1|)) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -3341 ((-577) |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2785 ((-112) |#1|)) (-15 -2442 ((-792) |#1|)) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -3234 ((-792)))) (-558)) (T -557)) -((-3234 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-557 *3)) (-4 *3 (-558))))) -(-10 -8 (-15 -2533 (|#1| |#1| |#1|)) (-15 -3924 (|#1| |#1| |#1| |#1|)) (-15 -3692 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -3198 (|#1| |#1| |#1|)) (-15 -3254 ((-112) |#1| |#1|)) (-15 -2793 ((-112) |#1|)) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-228) |#1|)) (-15 -3341 ((-391) |#1|)) (-15 -2283 (|#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3267 (|#1| |#1| |#1|)) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -3341 ((-577) |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2785 ((-112) |#1|)) (-15 -2442 ((-792) |#1|)) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -1632 ((-112) |#1|)) (-15 -3234 ((-792)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3198 (($ $ $) 93 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2865 (($ $ $ $) 82 T ELT)) (-4456 (($ $) 57 T ELT)) (-4240 (((-431 $) $) 58 T ELT)) (-3397 (((-112) $ $) 136 T ELT)) (-4459 (((-577) $) 125 T ELT)) (-1886 (($ $ $) 96 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 117 T ELT)) (-3514 (((-577) $) 118 T ELT)) (-3152 (($ $ $) 140 T ELT)) (-1953 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 115 T ELT) (((-710 (-577)) (-710 $)) 114 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 90 T ELT)) (-2748 (((-112) $) 92 T ELT)) (-3557 (((-420 (-577)) $) 91 T ELT)) (-2060 (($) 89 T ELT) (($ $) 88 T ELT)) (-3164 (($ $ $) 139 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 134 T ELT)) (-1632 (((-112) $) 59 T ELT)) (-3924 (($ $ $ $) 80 T ELT)) (-1642 (($ $ $) 94 T ELT)) (-2785 (((-112) $) 127 T ELT)) (-2283 (($ $ $) 105 T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 108 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3356 (((-112) $) 100 T ELT)) (-3651 (((-3 $ "failed") $) 102 T ELT)) (-1434 (((-112) $) 126 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 143 T ELT)) (-2832 (($ $ $ $) 81 T ELT)) (-1344 (($ $ $) 133 T ELT)) (-4167 (($ $ $) 132 T ELT)) (-3692 (($ $) 84 T ELT)) (-3490 (($ $) 97 T ELT)) (-2796 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 113 T ELT) (((-710 (-577)) (-1297 $)) 112 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2533 (($ $ $) 79 T ELT)) (-2199 (($) 101 T CONST)) (-1353 (($ $) 86 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2606 (($ $) 106 T ELT)) (-2799 (((-431 $) $) 56 T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 141 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 135 T ELT)) (-2793 (((-112) $) 99 T ELT)) (-2442 (((-792) $) 137 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 138 T ELT)) (-2030 (($ $) 123 T ELT) (($ $ (-792)) 121 T ELT)) (-1686 (($ $) 85 T ELT)) (-3978 (($ $) 87 T ELT)) (-3341 (((-577) $) 119 T ELT) (((-549) $) 110 T ELT) (((-916 (-577)) $) 109 T ELT) (((-391) $) 104 T ELT) (((-228) $) 103 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 116 T ELT)) (-3234 (((-792)) 32 T CONST)) (-3254 (((-112) $ $) 95 T ELT)) (-3267 (($ $ $) 107 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3646 (($) 98 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2460 (($ $ $ $) 83 T ELT)) (-3385 (($ $) 124 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $) 122 T ELT) (($ $ (-792)) 120 T ELT)) (-2440 (((-112) $ $) 131 T ELT)) (-2415 (((-112) $ $) 129 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 130 T ELT)) (-2403 (((-112) $ $) 128 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-577) $) 111 T ELT))) -(((-558) (-141)) (T -558)) -((-3356 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-3646 (*1 *1) (-4 *1 (-558))) (-3490 (*1 *1 *1) (-4 *1 (-558))) (-1886 (*1 *1 *1 *1) (-4 *1 (-558))) (-3254 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-1642 (*1 *1 *1 *1) (-4 *1 (-558))) (-3198 (*1 *1 *1 *1) (-4 *1 (-558))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-2751 (*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-2060 (*1 *1) (-4 *1 (-558))) (-2060 (*1 *1 *1) (-4 *1 (-558))) (-3978 (*1 *1 *1) (-4 *1 (-558))) (-1353 (*1 *1 *1) (-4 *1 (-558))) (-1686 (*1 *1 *1) (-4 *1 (-558))) (-3692 (*1 *1 *1) (-4 *1 (-558))) (-2460 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-2865 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-2832 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3924 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-2533 (*1 *1 *1 *1) (-4 *1 (-558)))) -(-13 (-1251) (-318) (-841) (-239) (-632 (-577)) (-1068 (-577)) (-659 (-577)) (-632 (-549)) (-632 (-916 (-577))) (-910 (-577)) (-144) (-1052) (-148) (-1182) (-10 -8 (-15 -3356 ((-112) $)) (-15 -2793 ((-112) $)) (-6 -4498) (-15 -3646 ($)) (-15 -3490 ($ $)) (-15 -1886 ($ $ $)) (-15 -3254 ((-112) $ $)) (-15 -1642 ($ $ $)) (-15 -3198 ($ $ $)) (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $)) (-15 -2060 ($)) (-15 -2060 ($ $)) (-15 -3978 ($ $)) (-15 -1353 ($ $)) (-15 -1686 ($ $)) (-15 -3692 ($ $)) (-15 -2460 ($ $ $ $)) (-15 -2865 ($ $ $ $)) (-15 -2832 ($ $ $ $)) (-15 -3924 ($ $ $ $)) (-15 -2533 ($ $ $)) (-6 -4497))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-144) . T) ((-174) . T) ((-632 (-228)) . T) ((-632 (-391)) . T) ((-632 (-549)) . T) ((-632 (-577)) . T) ((-632 (-916 (-577))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0=(-577)) . T) ((-669 $) . T) ((-661 $) . T) ((-659 #0#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-841) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-577)) . T) ((-948) . T) ((-1052) . T) ((-1068 (-577)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) . T) ((-1247) . T) ((-1251) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-559) (-13 (-865) (-10 -8 (-15 -2762 ($) -1528)))) (T -559)) -((-2762 (*1 *1) (-5 *1 (-559)))) -(-13 (-865) (-10 -8 (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) NIL T ELT)) (-3933 ((|#1| $) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) 70 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) $) NIL (|has| |#1| (-871)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-4101 (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4501)) ELT)) (-2042 (($ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 23 (|has| $ (-6 -4501)) ELT)) (-2466 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) 21 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) 24 (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3920 ((|#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) 28 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 29 T ELT)) (-4198 (($ $) 18 T ELT) (($ $ (-793)) 32 T ELT)) (-3777 (($ $) 62 (|has| |#1| (-1131)) ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2737 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-2149 (((-112) $) NIL T ELT)) (-3887 (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) (-1 (-112) |#1|) $) NIL T ELT)) (-2729 (((-666 |#1|) $) 27 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 31 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1957 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 65 T ELT)) (-3176 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2606 (($ |#1|) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) 58 (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4328 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4273 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1583 (((-112) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 12 T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) 17 T ELT)) (-1696 (($) 16 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") 15 T ELT) (($ $ "rest") 20 T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT) ((|#1| $ (-578)) NIL T ELT) ((|#1| $ (-578) |#1|) NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-3022 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-1705 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-1368 (((-112) $) 35 T ELT)) (-4076 (($ $) NIL T ELT)) (-4436 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) NIL T ELT)) (-3931 (($ $) 40 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 36 T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 26 T ELT)) (-3342 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-3703 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-666 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2411 (((-886) $) 50 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 54 (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 9 (|has| $ (-6 -4500)) ELT))) +(((-534 |#1| |#2|) (-688 |#1|) (-1248) (-578)) (T -534)) +NIL +(-688 |#1|) +((-1612 ((|#4| |#4|) 38 T ELT)) (-1875 (((-793) |#4|) 44 T ELT)) (-3199 (((-793) |#4|) 45 T ELT)) (-4342 (((-666 |#3|) |#4|) 55 (|has| |#3| (-6 -4501)) ELT)) (-3335 (((-3 |#4| "failed") |#4|) 67 T ELT)) (-3663 ((|#4| |#4|) 59 T ELT)) (-2598 ((|#1| |#4|) 58 T ELT))) +(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 (|#4| |#4|)) (-15 -1875 ((-793) |#4|)) (-15 -3199 ((-793) |#4|)) (IF (|has| |#3| (-6 -4501)) (-15 -4342 ((-666 |#3|) |#4|)) |%noBranch|) (-15 -2598 (|#1| |#4|)) (-15 -3663 (|#4| |#4|)) (-15 -3335 ((-3 |#4| "failed") |#4|))) (-376) (-386 |#1|) (-386 |#1|) (-709 |#1| |#2| |#3|)) (T -535)) +((-3335 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-2598 (*1 *2 *3) (-12 (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-376)) (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-709 *2 *4 *5)))) (-4342 (*1 *2 *3) (-12 (|has| *6 (-6 -4501)) (-4 *4 (-376)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-666 *6)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-3199 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-1875 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(-10 -7 (-15 -1612 (|#4| |#4|)) (-15 -1875 ((-793) |#4|)) (-15 -3199 ((-793) |#4|)) (IF (|has| |#3| (-6 -4501)) (-15 -4342 ((-666 |#3|) |#4|)) |%noBranch|) (-15 -2598 (|#1| |#4|)) (-15 -3663 (|#4| |#4|)) (-15 -3335 ((-3 |#4| "failed") |#4|))) +((-1612 ((|#8| |#4|) 20 T ELT)) (-4342 (((-666 |#3|) |#4|) 29 (|has| |#7| (-6 -4501)) ELT)) (-3335 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1612 (|#8| |#4|)) (-15 -3335 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4501)) (-15 -4342 ((-666 |#3|) |#4|)) |%noBranch|)) (-570) (-386 |#1|) (-386 |#1|) (-709 |#1| |#2| |#3|) (-1023 |#1|) (-386 |#5|) (-386 |#5|) (-709 |#5| |#6| |#7|)) (T -536)) +((-4342 (*1 *2 *3) (-12 (|has| *9 (-6 -4501)) (-4 *4 (-570)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-4 *7 (-1023 *4)) (-4 *8 (-386 *7)) (-4 *9 (-386 *7)) (-5 *2 (-666 *6)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-709 *4 *5 *6)) (-4 *10 (-709 *7 *8 *9)))) (-3335 (*1 *2 *3) (|partial| -12 (-4 *4 (-570)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-4 *7 (-1023 *4)) (-4 *2 (-709 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-709 *4 *5 *6)) (-4 *8 (-386 *7)) (-4 *9 (-386 *7)))) (-1612 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-4 *7 (-1023 *4)) (-4 *2 (-709 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-709 *4 *5 *6)) (-4 *8 (-386 *7)) (-4 *9 (-386 *7))))) +(-10 -7 (-15 -1612 (|#8| |#4|)) (-15 -3335 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4501)) (-15 -4342 ((-666 |#3|) |#4|)) |%noBranch|)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1526 (($ (-793) (-793)) NIL T ELT)) (-3216 (($ $ $) NIL T ELT)) (-1921 (($ (-616 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-2648 (((-112) $) NIL T ELT)) (-1923 (($ $ (-578) (-578)) 21 T ELT)) (-2701 (($ $ (-578) (-578)) NIL T ELT)) (-1839 (($ $ (-578) (-578) (-578) (-578)) NIL T ELT)) (-3368 (($ $) NIL T ELT)) (-2214 (((-112) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3962 (($ $ (-578) (-578) $) NIL T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578)) $) NIL T ELT)) (-3869 (($ $ (-578) (-616 |#1| |#3|)) NIL T ELT)) (-3697 (($ $ (-578) (-616 |#1| |#2|)) NIL T ELT)) (-2921 (($ (-793) |#1|) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1612 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3978 (((-616 |#1| |#3|) $ (-578)) NIL T ELT)) (-1875 (((-793) $) 33 (|has| |#1| (-570)) ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) NIL T ELT)) (-3382 ((|#1| $ (-578) (-578)) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL T ELT)) (-3199 (((-793) $) 35 (|has| |#1| (-570)) ELT)) (-4342 (((-666 (-616 |#1| |#2|)) $) 38 (|has| |#1| (-570)) ELT)) (-3068 (((-793) $) NIL T ELT)) (-3749 (($ (-793) (-793) |#1|) NIL T ELT)) (-3082 (((-793) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-3627 ((|#1| $) 28 (|has| |#1| (-6 (-4502 "*"))) ELT)) (-1850 (((-578) $) 10 T ELT)) (-3156 (((-578) $) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-1694 (((-578) $) 13 T ELT)) (-2915 (((-578) $) NIL T ELT)) (-1869 (($ (-666 (-666 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-578) (-578))) NIL T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3692 (((-666 (-666 |#1|)) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3335 (((-3 $ "failed") $) 42 (|has| |#1| (-376)) ELT)) (-1499 (($ $ $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) (-578)) NIL T ELT) ((|#1| $ (-578) (-578) |#1|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578))) NIL T ELT)) (-3266 (($ (-666 |#1|)) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-4415 (((-112) $) NIL T ELT)) (-2598 ((|#1| $) 26 (|has| |#1| (-6 (-4502 "*"))) ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-4240 (((-616 |#1| |#2|) $ (-578)) NIL T ELT)) (-2411 (($ (-616 |#1| |#2|)) NIL T ELT) (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) NIL T ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-578) $) NIL T ELT) (((-616 |#1| |#2|) $ (-616 |#1| |#2|)) NIL T ELT) (((-616 |#1| |#3|) (-616 |#1| |#3|) $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-537 |#1| |#2| |#3|) (-709 |#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) (-1080) (-578) (-578)) (T -537)) +NIL +(-709 |#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3073 (((-666 (-1247)) $) 13 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (($ (-666 (-1247))) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-538) (-13 (-1114) (-10 -8 (-15 -2411 ($ (-666 (-1247)))) (-15 -3073 ((-666 (-1247)) $))))) (T -538)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-538)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-538))))) +(-13 (-1114) (-10 -8 (-15 -2411 ($ (-666 (-1247)))) (-15 -3073 ((-666 (-1247)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4126 (((-1166) $) 14 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3820 (((-520) $) 11 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 21 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-539) (-13 (-1114) (-10 -8 (-15 -3820 ((-520) $)) (-15 -4126 ((-1166) $))))) (T -539)) +((-3820 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-539))))) +(-13 (-1114) (-10 -8 (-15 -3820 ((-520) $)) (-15 -4126 ((-1166) $)))) +((-2690 (((-713 (-1256)) $) 15 T ELT)) (-3143 (((-713 (-1254)) $) 38 T ELT)) (-2168 (((-713 (-1253)) $) 29 T ELT)) (-3520 (((-713 (-563)) $) 12 T ELT)) (-3506 (((-713 (-561)) $) 42 T ELT)) (-3629 (((-713 (-560)) $) 33 T ELT)) (-1665 (((-793) $ (-130)) 54 T ELT))) +(((-540 |#1|) (-10 -8 (-15 -1665 ((-793) |#1| (-130))) (-15 -3143 ((-713 (-1254)) |#1|)) (-15 -3506 ((-713 (-561)) |#1|)) (-15 -2168 ((-713 (-1253)) |#1|)) (-15 -3629 ((-713 (-560)) |#1|)) (-15 -2690 ((-713 (-1256)) |#1|)) (-15 -3520 ((-713 (-563)) |#1|))) (-541)) (T -540)) +NIL +(-10 -8 (-15 -1665 ((-793) |#1| (-130))) (-15 -3143 ((-713 (-1254)) |#1|)) (-15 -3506 ((-713 (-561)) |#1|)) (-15 -2168 ((-713 (-1253)) |#1|)) (-15 -3629 ((-713 (-560)) |#1|)) (-15 -2690 ((-713 (-1256)) |#1|)) (-15 -3520 ((-713 (-563)) |#1|))) +((-2690 (((-713 (-1256)) $) 12 T ELT)) (-3143 (((-713 (-1254)) $) 8 T ELT)) (-2168 (((-713 (-1253)) $) 10 T ELT)) (-3520 (((-713 (-563)) $) 13 T ELT)) (-3506 (((-713 (-561)) $) 9 T ELT)) (-3629 (((-713 (-560)) $) 11 T ELT)) (-1665 (((-793) $ (-130)) 7 T ELT)) (-3578 (((-713 (-131)) $) 14 T ELT)) (-3250 (($ $) 6 T ELT))) +(((-541) (-142)) (T -541)) +((-3578 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-131))))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-563))))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256))))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-560))))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1253))))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561))))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1254))))) (-1665 (*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-130)) (-5 *2 (-793))))) +(-13 (-176) (-10 -8 (-15 -3578 ((-713 (-131)) $)) (-15 -3520 ((-713 (-563)) $)) (-15 -2690 ((-713 (-1256)) $)) (-15 -3629 ((-713 (-560)) $)) (-15 -2168 ((-713 (-1253)) $)) (-15 -3506 ((-713 (-561)) $)) (-15 -3143 ((-713 (-1254)) $)) (-15 -1665 ((-793) $ (-130))))) +(((-176) . T)) +((-4184 (((-1203 |#1|) (-793)) 115 T ELT)) (-1881 (((-1298 |#1|) (-1298 |#1|) (-950)) 108 T ELT)) (-2177 (((-1303) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) |#1|) 123 T ELT)) (-4057 (((-1298 |#1|) (-1298 |#1|) (-793)) 53 T ELT)) (-2062 (((-1298 |#1|) (-950)) 110 T ELT)) (-2916 (((-1298 |#1|) (-1298 |#1|) (-578)) 30 T ELT)) (-3714 (((-1203 |#1|) (-1298 |#1|)) 116 T ELT)) (-3011 (((-1298 |#1|) (-950)) 137 T ELT)) (-2488 (((-112) (-1298 |#1|)) 120 T ELT)) (-1550 (((-1298 |#1|) (-1298 |#1|) (-950)) 100 T ELT)) (-1993 (((-1203 |#1|) (-1298 |#1|)) 131 T ELT)) (-3193 (((-950) (-1298 |#1|)) 96 T ELT)) (-3057 (((-1298 |#1|) (-1298 |#1|)) 38 T ELT)) (-2087 (((-1298 |#1|) (-950) (-950)) 140 T ELT)) (-2842 (((-1298 |#1|) (-1298 |#1|) (-1151) (-1151)) 29 T ELT)) (-4201 (((-1298 |#1|) (-1298 |#1|) (-793) (-1151)) 54 T ELT)) (-3198 (((-1298 (-1298 |#1|)) (-950)) 136 T ELT)) (-2495 (((-1298 |#1|) (-1298 |#1|) (-1298 |#1|)) 121 T ELT)) (** (((-1298 |#1|) (-1298 |#1|) (-578)) 67 T ELT)) (* (((-1298 |#1|) (-1298 |#1|) (-1298 |#1|)) 31 T ELT))) +(((-542 |#1|) (-10 -7 (-15 -2177 ((-1303) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) |#1|)) (-15 -2062 ((-1298 |#1|) (-950))) (-15 -2087 ((-1298 |#1|) (-950) (-950))) (-15 -3714 ((-1203 |#1|) (-1298 |#1|))) (-15 -4184 ((-1203 |#1|) (-793))) (-15 -4201 ((-1298 |#1|) (-1298 |#1|) (-793) (-1151))) (-15 -4057 ((-1298 |#1|) (-1298 |#1|) (-793))) (-15 -2842 ((-1298 |#1|) (-1298 |#1|) (-1151) (-1151))) (-15 -2916 ((-1298 |#1|) (-1298 |#1|) (-578))) (-15 ** ((-1298 |#1|) (-1298 |#1|) (-578))) (-15 * ((-1298 |#1|) (-1298 |#1|) (-1298 |#1|))) (-15 -2495 ((-1298 |#1|) (-1298 |#1|) (-1298 |#1|))) (-15 -1550 ((-1298 |#1|) (-1298 |#1|) (-950))) (-15 -1881 ((-1298 |#1|) (-1298 |#1|) (-950))) (-15 -3057 ((-1298 |#1|) (-1298 |#1|))) (-15 -3193 ((-950) (-1298 |#1|))) (-15 -2488 ((-112) (-1298 |#1|))) (-15 -3198 ((-1298 (-1298 |#1|)) (-950))) (-15 -3011 ((-1298 |#1|) (-950))) (-15 -1993 ((-1203 |#1|) (-1298 |#1|)))) (-362)) (T -542)) +((-1993 (*1 *2 *3) (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1298 *4)) (-5 *1 (-542 *4)) (-4 *4 (-362)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1298 (-1298 *4))) (-5 *1 (-542 *4)) (-4 *4 (-362)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-112)) (-5 *1 (-542 *4)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-950)) (-5 *1 (-542 *4)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-362)) (-5 *1 (-542 *3)))) (-1881 (*1 *2 *2 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-950)) (-4 *4 (-362)) (-5 *1 (-542 *4)))) (-1550 (*1 *2 *2 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-950)) (-4 *4 (-362)) (-5 *1 (-542 *4)))) (-2495 (*1 *2 *2 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-362)) (-5 *1 (-542 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-362)) (-5 *1 (-542 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-578)) (-4 *4 (-362)) (-5 *1 (-542 *4)))) (-2916 (*1 *2 *2 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-578)) (-4 *4 (-362)) (-5 *1 (-542 *4)))) (-2842 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-1151)) (-4 *4 (-362)) (-5 *1 (-542 *4)))) (-4057 (*1 *2 *2 *3) (-12 (-5 *2 (-1298 *4)) (-5 *3 (-793)) (-4 *4 (-362)) (-5 *1 (-542 *4)))) (-4201 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1298 *5)) (-5 *3 (-793)) (-5 *4 (-1151)) (-4 *5 (-362)) (-5 *1 (-542 *5)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)) (-4 *4 (-362)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)))) (-2087 (*1 *2 *3 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1298 *4)) (-5 *1 (-542 *4)) (-4 *4 (-362)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1298 *4)) (-5 *1 (-542 *4)) (-4 *4 (-362)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) (-4 *4 (-362)) (-5 *2 (-1303)) (-5 *1 (-542 *4))))) +(-10 -7 (-15 -2177 ((-1303) (-1298 (-666 (-2 (|:| -4120 |#1|) (|:| -2087 (-1151))))) |#1|)) (-15 -2062 ((-1298 |#1|) (-950))) (-15 -2087 ((-1298 |#1|) (-950) (-950))) (-15 -3714 ((-1203 |#1|) (-1298 |#1|))) (-15 -4184 ((-1203 |#1|) (-793))) (-15 -4201 ((-1298 |#1|) (-1298 |#1|) (-793) (-1151))) (-15 -4057 ((-1298 |#1|) (-1298 |#1|) (-793))) (-15 -2842 ((-1298 |#1|) (-1298 |#1|) (-1151) (-1151))) (-15 -2916 ((-1298 |#1|) (-1298 |#1|) (-578))) (-15 ** ((-1298 |#1|) (-1298 |#1|) (-578))) (-15 * ((-1298 |#1|) (-1298 |#1|) (-1298 |#1|))) (-15 -2495 ((-1298 |#1|) (-1298 |#1|) (-1298 |#1|))) (-15 -1550 ((-1298 |#1|) (-1298 |#1|) (-950))) (-15 -1881 ((-1298 |#1|) (-1298 |#1|) (-950))) (-15 -3057 ((-1298 |#1|) (-1298 |#1|))) (-15 -3193 ((-950) (-1298 |#1|))) (-15 -2488 ((-112) (-1298 |#1|))) (-15 -3198 ((-1298 (-1298 |#1|)) (-950))) (-15 -3011 ((-1298 |#1|) (-950))) (-15 -1993 ((-1203 |#1|) (-1298 |#1|)))) +((-2690 (((-713 (-1256)) $) NIL T ELT)) (-3143 (((-713 (-1254)) $) NIL T ELT)) (-2168 (((-713 (-1253)) $) NIL T ELT)) (-3520 (((-713 (-563)) $) NIL T ELT)) (-3506 (((-713 (-561)) $) NIL T ELT)) (-3629 (((-713 (-560)) $) NIL T ELT)) (-1665 (((-793) $ (-130)) NIL T ELT)) (-3578 (((-713 (-131)) $) 26 T ELT)) (-2022 (((-1151) $ (-1151)) 31 T ELT)) (-3887 (((-1151) $) 30 T ELT)) (-2485 (((-112) $) 20 T ELT)) (-3754 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-4353 (((-112) $) 27 T ELT)) (-2411 (((-886) $) 34 T ELT)) (-3250 (($ $) 28 T ELT))) +(((-543) (-13 (-541) (-632 (-886)) (-10 -8 (-15 -3754 ($ (-402))) (-15 -3754 ($ (-1189))) (-15 -4353 ((-112) $)) (-15 -2485 ((-112) $)) (-15 -3887 ((-1151) $)) (-15 -2022 ((-1151) $ (-1151)))))) (T -543)) +((-3754 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-543)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-543)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-543)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))) (-2022 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-543))))) +(-13 (-541) (-632 (-886)) (-10 -8 (-15 -3754 ($ (-402))) (-15 -3754 ($ (-1189))) (-15 -4353 ((-112) $)) (-15 -2485 ((-112) $)) (-15 -3887 ((-1151) $)) (-15 -2022 ((-1151) $ (-1151))))) +((-4188 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-3026 (((-1 |#1| |#1|)) 10 T ELT))) +(((-544 |#1|) (-10 -7 (-15 -3026 ((-1 |#1| |#1|))) (-15 -4188 ((-1 |#1| |#1|) |#1|))) (-13 (-748) (-25))) (T -544)) +((-4188 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))) (-3026 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25)))))) +(-10 -7 (-15 -3026 ((-1 |#1| |#1|))) (-15 -4188 ((-1 |#1| |#1|) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3761 (((-666 (-897 |#1| (-793))) $) NIL T ELT)) (-2424 (($ $ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-2925 (($ (-793) |#1|) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3611 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-4263 ((|#1| $) NIL T ELT)) (-3110 (((-793) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 27 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT))) +(((-545 |#1|) (-13 (-815) (-523 (-793) |#1|)) (-871)) (T -545)) +NIL +(-13 (-815) (-523 (-793) |#1|)) +((-3838 (((-666 |#2|) (-1203 |#1|) |#3|) 98 T ELT)) (-3983 (((-666 (-2 (|:| |outval| |#2|) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-432 (-1203 |#1|)) (-1203 |#1|))) 114 T ELT)) (-2979 (((-1203 |#1|) (-711 |#1|)) 110 T ELT))) +(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2979 ((-1203 |#1|) (-711 |#1|))) (-15 -3838 ((-666 |#2|) (-1203 |#1|) |#3|)) (-15 -3983 ((-666 (-2 (|:| |outval| |#2|) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-432 (-1203 |#1|)) (-1203 |#1|))))) (-376) (-376) (-13 (-376) (-870))) (T -546)) +((-3983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-432 (-1203 *6)) (-1203 *6))) (-4 *6 (-376)) (-5 *2 (-666 (-2 (|:| |outval| *7) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 *7)))))) (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-870))))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *5)) (-4 *5 (-376)) (-5 *2 (-666 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1203 *4)) (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-870)))))) +(-10 -7 (-15 -2979 ((-1203 |#1|) (-711 |#1|))) (-15 -3838 ((-666 |#2|) (-1203 |#1|) |#3|)) (-15 -3983 ((-666 (-2 (|:| |outval| |#2|) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-432 (-1203 |#1|)) (-1203 |#1|))))) +((-2740 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-2625 (((-713 (-563)) $ (-563)) NIL T ELT)) (-3709 (((-793) $ (-130)) 39 T ELT)) (-2558 (((-713 (-131)) $ (-131)) 40 T ELT)) (-2690 (((-713 (-1256)) $) NIL T ELT)) (-3143 (((-713 (-1254)) $) NIL T ELT)) (-2168 (((-713 (-1253)) $) NIL T ELT)) (-3520 (((-713 (-563)) $) NIL T ELT)) (-3506 (((-713 (-561)) $) NIL T ELT)) (-3629 (((-713 (-560)) $) NIL T ELT)) (-1665 (((-793) $ (-130)) 35 T ELT)) (-3578 (((-713 (-131)) $) 37 T ELT)) (-1775 (((-112) $) 27 T ELT)) (-4194 (((-713 $) (-593) (-983)) 18 T ELT) (((-713 $) (-505) (-983)) 24 T ELT)) (-2411 (((-886) $) 48 T ELT)) (-3250 (($ $) 42 T ELT))) +(((-547) (-13 (-789 (-593)) (-632 (-886)) (-10 -8 (-15 -4194 ((-713 $) (-505) (-983)))))) (T -547)) +((-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-505)) (-5 *4 (-983)) (-5 *2 (-713 (-547))) (-5 *1 (-547))))) +(-13 (-789 (-593)) (-632 (-886)) (-10 -8 (-15 -4194 ((-713 $) (-505) (-983))))) +((-3024 (((-865 (-578))) 12 T ELT)) (-3038 (((-865 (-578))) 14 T ELT)) (-2562 (((-855 (-578))) 9 T ELT))) +(((-548) (-10 -7 (-15 -2562 ((-855 (-578)))) (-15 -3024 ((-865 (-578)))) (-15 -3038 ((-865 (-578)))))) (T -548)) +((-3038 (*1 *2) (-12 (-5 *2 (-865 (-578))) (-5 *1 (-548)))) (-3024 (*1 *2) (-12 (-5 *2 (-865 (-578))) (-5 *1 (-548)))) (-2562 (*1 *2) (-12 (-5 *2 (-855 (-578))) (-5 *1 (-548))))) +(-10 -7 (-15 -2562 ((-855 (-578)))) (-15 -3024 ((-865 (-578)))) (-15 -3038 ((-865 (-578))))) +((-1342 (((-550) (-1207)) 15 T ELT)) (-3378 ((|#1| (-550)) 20 T ELT))) +(((-549 |#1|) (-10 -7 (-15 -1342 ((-550) (-1207))) (-15 -3378 (|#1| (-550)))) (-1248)) (T -549)) +((-3378 (*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-549 *2)) (-4 *2 (-1248)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-550)) (-5 *1 (-549 *4)) (-4 *4 (-1248))))) +(-10 -7 (-15 -1342 ((-550) (-1207))) (-15 -3378 (|#1| (-550)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4310 (((-1189) $) 55 T ELT)) (-2763 (((-112) $) 51 T ELT)) (-2068 (((-1207) $) 52 T ELT)) (-2476 (((-112) $) 49 T ELT)) (-1966 (((-1189) $) 50 T ELT)) (-2063 (($ (-1189)) 56 T ELT)) (-4149 (((-112) $) NIL T ELT)) (-2896 (((-112) $) NIL T ELT)) (-2376 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3043 (($ $ (-666 (-1207))) 21 T ELT)) (-3378 (((-52) $) 23 T ELT)) (-2794 (((-112) $) NIL T ELT)) (-2088 (((-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2265 (($ $ (-666 (-1207)) (-1207)) 73 T ELT)) (-2601 (((-112) $) NIL T ELT)) (-3243 (((-229) $) NIL T ELT)) (-3545 (($ $) 44 T ELT)) (-3922 (((-886) $) NIL T ELT)) (-3505 (((-112) $ $) NIL T ELT)) (-2436 (($ $ (-578)) NIL T ELT) (($ $ (-666 (-578))) NIL T ELT)) (-2879 (((-666 $) $) 30 T ELT)) (-4470 (((-1207) (-666 $)) 57 T ELT)) (-3343 (($ (-1189)) NIL T ELT) (($ (-1207)) 19 T ELT) (($ (-578)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-886)) NIL T ELT) (($ (-666 $)) 65 T ELT) (((-1135) $) 12 T ELT) (($ (-1135)) 13 T ELT)) (-4208 (((-1207) (-1207) (-666 $)) 60 T ELT)) (-2411 (((-886) $) 54 T ELT)) (-2321 (($ $) 59 T ELT)) (-2871 (($ $) 58 T ELT)) (-1674 (($ $ (-666 $)) 66 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3641 (((-112) $) 29 T ELT)) (-2368 (($) 9 T CONST)) (-2379 (($) 11 T CONST)) (-2384 (((-112) $ $) 74 T ELT)) (-2495 (($ $ $) 82 T ELT)) (-2472 (($ $ $) 75 T ELT)) (** (($ $ (-793)) 81 T ELT) (($ $ (-578)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3226 (((-578) $) NIL T ELT))) +(((-550) (-13 (-1134 (-1189) (-1207) (-578) (-229) (-886)) (-633 (-1135)) (-10 -8 (-15 -3378 ((-52) $)) (-15 -3343 ($ (-1135))) (-15 -1674 ($ $ (-666 $))) (-15 -2265 ($ $ (-666 (-1207)) (-1207))) (-15 -3043 ($ $ (-666 (-1207)))) (-15 -2472 ($ $ $)) (-15 * ($ $ $)) (-15 -2495 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-578))) (-15 0 ($) -1529) (-15 1 ($) -1529) (-15 -3545 ($ $)) (-15 -4310 ((-1189) $)) (-15 -2063 ($ (-1189))) (-15 -4470 ((-1207) (-666 $))) (-15 -4208 ((-1207) (-1207) (-666 $)))))) (T -550)) +((-3378 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-550)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-550)))) (-1674 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-550))) (-5 *1 (-550)))) (-2265 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-1207)) (-5 *1 (-550)))) (-3043 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-550)))) (-2472 (*1 *1 *1 *1) (-5 *1 (-550))) (* (*1 *1 *1 *1) (-5 *1 (-550))) (-2495 (*1 *1 *1 *1) (-5 *1 (-550))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-550)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-550)))) (-2368 (*1 *1) (-5 *1 (-550))) (-2379 (*1 *1) (-5 *1 (-550))) (-3545 (*1 *1 *1) (-5 *1 (-550))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-550)))) (-2063 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-550)))) (-4470 (*1 *2 *3) (-12 (-5 *3 (-666 (-550))) (-5 *2 (-1207)) (-5 *1 (-550)))) (-4208 (*1 *2 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-550))) (-5 *1 (-550))))) +(-13 (-1134 (-1189) (-1207) (-578) (-229) (-886)) (-633 (-1135)) (-10 -8 (-15 -3378 ((-52) $)) (-15 -3343 ($ (-1135))) (-15 -1674 ($ $ (-666 $))) (-15 -2265 ($ $ (-666 (-1207)) (-1207))) (-15 -3043 ($ $ (-666 (-1207)))) (-15 -2472 ($ $ $)) (-15 * ($ $ $)) (-15 -2495 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-578))) (-15 (-2368) ($) -1529) (-15 (-2379) ($) -1529) (-15 -3545 ($ $)) (-15 -4310 ((-1189) $)) (-15 -2063 ($ (-1189))) (-15 -4470 ((-1207) (-666 $))) (-15 -4208 ((-1207) (-1207) (-666 $))))) +((-1591 ((|#2| |#2|) 17 T ELT)) (-2478 ((|#2| |#2|) 13 T ELT)) (-3900 ((|#2| |#2| (-578) (-578)) 20 T ELT)) (-1689 ((|#2| |#2|) 15 T ELT))) +(((-551 |#1| |#2|) (-10 -7 (-15 -2478 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -3900 (|#2| |#2| (-578) (-578)))) (-13 (-570) (-149)) (-1289 |#1|)) (T -551)) +((-3900 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-578)) (-4 *4 (-13 (-570) (-149))) (-5 *1 (-551 *4 *2)) (-4 *2 (-1289 *4)))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1289 *3)))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1289 *3)))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1289 *3))))) +(-10 -7 (-15 -2478 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -3900 (|#2| |#2| (-578) (-578)))) +((-2072 (((-666 (-306 (-981 |#2|))) (-666 |#2|) (-666 (-1207))) 32 T ELT)) (-4473 (((-666 |#2|) (-981 |#1|) |#3|) 54 T ELT) (((-666 |#2|) (-1203 |#1|) |#3|) 53 T ELT)) (-2071 (((-666 (-666 |#2|)) (-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207)) |#3|) 106 T ELT))) +(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -4473 ((-666 |#2|) (-1203 |#1|) |#3|)) (-15 -4473 ((-666 |#2|) (-981 |#1|) |#3|)) (-15 -2071 ((-666 (-666 |#2|)) (-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207)) |#3|)) (-15 -2072 ((-666 (-306 (-981 |#2|))) (-666 |#2|) (-666 (-1207))))) (-466) (-376) (-13 (-376) (-870))) (T -552)) +((-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 (-1207))) (-4 *6 (-376)) (-5 *2 (-666 (-306 (-981 *6)))) (-5 *1 (-552 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-13 (-376) (-870))))) (-2071 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-666 (-981 *6))) (-5 *4 (-666 (-1207))) (-4 *6 (-466)) (-5 *2 (-666 (-666 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-870))))) (-4473 (*1 *2 *3 *4) (-12 (-5 *3 (-981 *5)) (-4 *5 (-466)) (-5 *2 (-666 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))) (-4473 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *5)) (-4 *5 (-466)) (-5 *2 (-666 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870)))))) +(-10 -7 (-15 -4473 ((-666 |#2|) (-1203 |#1|) |#3|)) (-15 -4473 ((-666 |#2|) (-981 |#1|) |#3|)) (-15 -2071 ((-666 (-666 |#2|)) (-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207)) |#3|)) (-15 -2072 ((-666 (-306 (-981 |#2|))) (-666 |#2|) (-666 (-1207))))) +((-1336 ((|#2| |#2| |#1|) 17 T ELT)) (-2710 ((|#2| (-666 |#2|)) 31 T ELT)) (-2061 ((|#2| (-666 |#2|)) 52 T ELT))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 (|#2| (-666 |#2|))) (-15 -2061 (|#2| (-666 |#2|))) (-15 -1336 (|#2| |#2| |#1|))) (-319) (-1274 |#1|) |#1| (-1 |#1| |#1| (-793))) (T -553)) +((-1336 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793))) (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1274 *3)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793)))))) +(-10 -7 (-15 -2710 (|#2| (-666 |#2|))) (-15 -2061 (|#2| (-666 |#2|))) (-15 -1336 (|#2| |#2| |#1|))) +((-2800 (((-432 (-1203 |#4|)) (-1203 |#4|) (-1 (-432 (-1203 |#3|)) (-1203 |#3|))) 89 T ELT) (((-432 |#4|) |#4| (-1 (-432 (-1203 |#3|)) (-1203 |#3|))) 210 T ELT))) +(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-432 |#4|) |#4| (-1 (-432 (-1203 |#3|)) (-1203 |#3|)))) (-15 -2800 ((-432 (-1203 |#4|)) (-1203 |#4|) (-1 (-432 (-1203 |#3|)) (-1203 |#3|))))) (-871) (-815) (-13 (-319) (-149)) (-978 |#3| |#2| |#1|)) (T -554)) +((-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-432 (-1203 *7)) (-1203 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *8 (-978 *7 *6 *5)) (-5 *2 (-432 (-1203 *8))) (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1203 *8)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-432 (-1203 *7)) (-1203 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *2 (-432 *3)) (-5 *1 (-554 *5 *6 *7 *3)) (-4 *3 (-978 *7 *6 *5))))) +(-10 -7 (-15 -2800 ((-432 |#4|) |#4| (-1 (-432 (-1203 |#3|)) (-1203 |#3|)))) (-15 -2800 ((-432 (-1203 |#4|)) (-1203 |#4|) (-1 (-432 (-1203 |#3|)) (-1203 |#3|))))) +((-1591 ((|#4| |#4|) 74 T ELT)) (-2478 ((|#4| |#4|) 70 T ELT)) (-3900 ((|#4| |#4| (-578) (-578)) 76 T ELT)) (-1689 ((|#4| |#4|) 72 T ELT))) +(((-555 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2478 (|#4| |#4|)) (-15 -1689 (|#4| |#4|)) (-15 -1591 (|#4| |#4|)) (-15 -3900 (|#4| |#4| (-578) (-578)))) (-13 (-376) (-381) (-633 (-578))) (-1274 |#1|) (-746 |#1| |#2|) (-1289 |#3|)) (T -555)) +((-3900 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-578)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-4 *5 (-1274 *4)) (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2)) (-4 *2 (-1289 *6)))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-4 *4 (-1274 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1289 *5)))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-4 *4 (-1274 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1289 *5)))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-4 *4 (-1274 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1289 *5))))) +(-10 -7 (-15 -2478 (|#4| |#4|)) (-15 -1689 (|#4| |#4|)) (-15 -1591 (|#4| |#4|)) (-15 -3900 (|#4| |#4| (-578) (-578)))) +((-1591 ((|#2| |#2|) 27 T ELT)) (-2478 ((|#2| |#2|) 23 T ELT)) (-3900 ((|#2| |#2| (-578) (-578)) 29 T ELT)) (-1689 ((|#2| |#2|) 25 T ELT))) +(((-556 |#1| |#2|) (-10 -7 (-15 -2478 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -3900 (|#2| |#2| (-578) (-578)))) (-13 (-376) (-381) (-633 (-578))) (-1289 |#1|)) (T -556)) +((-3900 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-578)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-5 *1 (-556 *4 *2)) (-4 *2 (-1289 *4)))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1289 *3)))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1289 *3)))) (-2478 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1289 *3))))) +(-10 -7 (-15 -2478 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -3900 (|#2| |#2| (-578) (-578)))) +((-2005 (((-3 (-578) "failed") |#2| |#1| (-1 (-3 (-578) "failed") |#1|)) 18 T ELT) (((-3 (-578) "failed") |#2| |#1| (-578) (-1 (-3 (-578) "failed") |#1|)) 14 T ELT) (((-3 (-578) "failed") |#2| (-578) (-1 (-3 (-578) "failed") |#1|)) 32 T ELT))) +(((-557 |#1| |#2|) (-10 -7 (-15 -2005 ((-3 (-578) "failed") |#2| (-578) (-1 (-3 (-578) "failed") |#1|))) (-15 -2005 ((-3 (-578) "failed") |#2| |#1| (-578) (-1 (-3 (-578) "failed") |#1|))) (-15 -2005 ((-3 (-578) "failed") |#2| |#1| (-1 (-3 (-578) "failed") |#1|)))) (-1080) (-1274 |#1|)) (T -557)) +((-2005 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-578) "failed") *4)) (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1274 *4)))) (-2005 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-578) "failed") *4)) (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1274 *4)))) (-2005 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-578) "failed") *5)) (-4 *5 (-1080)) (-5 *2 (-578)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1274 *5))))) +(-10 -7 (-15 -2005 ((-3 (-578) "failed") |#2| (-578) (-1 (-3 (-578) "failed") |#1|))) (-15 -2005 ((-3 (-578) "failed") |#2| |#1| (-578) (-1 (-3 (-578) "failed") |#1|))) (-15 -2005 ((-3 (-578) "failed") |#2| |#1| (-1 (-3 (-578) "failed") |#1|)))) +((-1452 (($ $ $) 84 T ELT)) (-3034 (((-432 $) $) 52 T ELT)) (-2818 (((-3 (-578) "failed") $) 64 T ELT)) (-3516 (((-578) $) 42 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 79 T ELT)) (-1474 (((-112) $) 26 T ELT)) (-3805 (((-421 (-578)) $) 77 T ELT)) (-2159 (((-112) $) 55 T ELT)) (-3092 (($ $ $ $) 92 T ELT)) (-3789 (((-112) $) 17 T ELT)) (-2492 (($ $ $) 62 T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 74 T ELT)) (-2204 (((-3 $ "failed") $) 69 T ELT)) (-3695 (($ $) 24 T ELT)) (-2961 (($ $ $) 90 T ELT)) (-2199 (($) 65 T ELT)) (-2454 (($ $) 58 T ELT)) (-2800 (((-432 $) $) 50 T ELT)) (-3873 (((-112) $) 15 T ELT)) (-1449 (((-793) $) 32 T ELT)) (-2031 (($ $) 11 T ELT) (($ $ (-793)) NIL T ELT)) (-3979 (($ $) 18 T ELT)) (-3343 (((-578) $) NIL T ELT) (((-550) $) 41 T ELT) (((-917 (-578)) $) 45 T ELT) (((-392) $) 35 T ELT) (((-229) $) 38 T ELT)) (-3753 (((-793)) 9 T ELT)) (-3953 (((-112) $ $) 21 T ELT)) (-2776 (($ $ $) 60 T ELT))) +(((-558 |#1|) (-10 -8 (-15 -2961 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -1452 (|#1| |#1| |#1|)) (-15 -3953 ((-112) |#1| |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -3343 ((-229) |#1|)) (-15 -3343 ((-392) |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2454 (|#1| |#1|)) (-15 -2776 (|#1| |#1| |#1|)) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -3343 ((-578) |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -3789 ((-112) |#1|)) (-15 -1449 ((-793) |#1|)) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -2159 ((-112) |#1|)) (-15 -3753 ((-793)))) (-559)) (T -558)) +((-3753 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559))))) +(-10 -8 (-15 -2961 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3979 (|#1| |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -1452 (|#1| |#1| |#1|)) (-15 -3953 ((-112) |#1| |#1|)) (-15 -3873 ((-112) |#1|)) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -3343 ((-229) |#1|)) (-15 -3343 ((-392) |#1|)) (-15 -2492 (|#1| |#1| |#1|)) (-15 -2454 (|#1| |#1|)) (-15 -2776 (|#1| |#1| |#1|)) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -3343 ((-578) |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -3789 ((-112) |#1|)) (-15 -1449 ((-793) |#1|)) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -2159 ((-112) |#1|)) (-15 -3753 ((-793)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-1452 (($ $ $) 93 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3267 (($ $ $ $) 82 T ELT)) (-1457 (($ $) 57 T ELT)) (-3034 (((-432 $) $) 58 T ELT)) (-2732 (((-112) $ $) 136 T ELT)) (-1490 (((-578) $) 125 T ELT)) (-1887 (($ $ $) 96 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 117 T ELT)) (-3516 (((-578) $) 118 T ELT)) (-3154 (($ $ $) 140 T ELT)) (-2242 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 115 T ELT) (((-711 (-578)) (-711 $)) 114 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 90 T ELT)) (-1474 (((-112) $) 92 T ELT)) (-3805 (((-421 (-578)) $) 91 T ELT)) (-2062 (($) 89 T ELT) (($ $) 88 T ELT)) (-3166 (($ $ $) 139 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 134 T ELT)) (-2159 (((-112) $) 59 T ELT)) (-3092 (($ $ $ $) 80 T ELT)) (-2256 (($ $ $) 94 T ELT)) (-3789 (((-112) $) 127 T ELT)) (-2492 (($ $ $) 105 T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 108 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2382 (((-112) $) 100 T ELT)) (-2204 (((-3 $ "failed") $) 102 T ELT)) (-1721 (((-112) $) 126 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 143 T ELT)) (-2931 (($ $ $ $) 81 T ELT)) (-1345 (($ $ $) 133 T ELT)) (-3667 (($ $ $) 132 T ELT)) (-3695 (($ $) 84 T ELT)) (-3492 (($ $) 97 T ELT)) (-3908 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 113 T ELT) (((-711 (-578)) (-1298 $)) 112 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2961 (($ $ $) 79 T ELT)) (-2199 (($) 101 T CONST)) (-1354 (($ $) 86 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2454 (($ $) 106 T ELT)) (-2800 (((-432 $) $) 56 T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 141 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 135 T ELT)) (-3873 (((-112) $) 99 T ELT)) (-1449 (((-793) $) 137 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 138 T ELT)) (-2031 (($ $) 123 T ELT) (($ $ (-793)) 121 T ELT)) (-1687 (($ $) 85 T ELT)) (-3979 (($ $) 87 T ELT)) (-3343 (((-578) $) 119 T ELT) (((-550) $) 110 T ELT) (((-917 (-578)) $) 109 T ELT) (((-392) $) 104 T ELT) (((-229) $) 103 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-578)) 116 T ELT)) (-3753 (((-793)) 32 T CONST)) (-3953 (((-112) $ $) 95 T ELT)) (-2776 (($ $ $) 107 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3648 (($) 98 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-3559 (($ $ $ $) 83 T ELT)) (-2628 (($ $) 124 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $) 122 T ELT) (($ $ (-793)) 120 T ELT)) (-2441 (((-112) $ $) 131 T ELT)) (-2416 (((-112) $ $) 129 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 130 T ELT)) (-2404 (((-112) $ $) 128 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-578) $) 111 T ELT))) +(((-559) (-142)) (T -559)) +((-2382 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-3648 (*1 *1) (-4 *1 (-559))) (-3492 (*1 *1 *1) (-4 *1 (-559))) (-1887 (*1 *1 *1 *1) (-4 *1 (-559))) (-3953 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-2256 (*1 *1 *1 *1) (-4 *1 (-559))) (-1452 (*1 *1 *1 *1) (-4 *1 (-559))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-578))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-578))))) (-2062 (*1 *1) (-4 *1 (-559))) (-2062 (*1 *1 *1) (-4 *1 (-559))) (-3979 (*1 *1 *1) (-4 *1 (-559))) (-1354 (*1 *1 *1) (-4 *1 (-559))) (-1687 (*1 *1 *1) (-4 *1 (-559))) (-3695 (*1 *1 *1) (-4 *1 (-559))) (-3559 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-3267 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2931 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-3092 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2961 (*1 *1 *1 *1) (-4 *1 (-559)))) +(-13 (-1252) (-319) (-842) (-240) (-633 (-578)) (-1069 (-578)) (-660 (-578)) (-633 (-550)) (-633 (-917 (-578))) (-911 (-578)) (-145) (-1053) (-149) (-1183) (-10 -8 (-15 -2382 ((-112) $)) (-15 -3873 ((-112) $)) (-6 -4499) (-15 -3648 ($)) (-15 -3492 ($ $)) (-15 -1887 ($ $ $)) (-15 -3953 ((-112) $ $)) (-15 -2256 ($ $ $)) (-15 -1452 ($ $ $)) (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $)) (-15 -2062 ($)) (-15 -2062 ($ $)) (-15 -3979 ($ $)) (-15 -1354 ($ $)) (-15 -1687 ($ $)) (-15 -3695 ($ $)) (-15 -3559 ($ $ $ $)) (-15 -3267 ($ $ $ $)) (-15 -2931 ($ $ $ $)) (-15 -3092 ($ $ $ $)) (-15 -2961 ($ $ $)) (-6 -4498))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-145) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-392)) . T) ((-633 (-550)) . T) ((-633 (-578)) . T) ((-633 (-917 (-578))) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0=(-578)) . T) ((-670 $) . T) ((-662 $) . T) ((-660 #0#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-842) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-911 (-578)) . T) ((-949) . T) ((-1053) . T) ((-1069 (-578)) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) . T) ((-1248) . T) ((-1252) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-560) (-13 (-866) (-10 -8 (-15 -3534 ($) -1529)))) (T -560)) +((-3534 (*1 *1) (-5 *1 (-560)))) +(-13 (-866) (-10 -8 (-15 -3534 ($) -1529))) ((|Integer|) (|%not| (|%ilt| 16 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-560) (-13 (-865) (-10 -8 (-15 -2762 ($) -1528)))) (T -560)) -((-2762 (*1 *1) (-5 *1 (-560)))) -(-13 (-865) (-10 -8 (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-561) (-13 (-866) (-10 -8 (-15 -3534 ($) -1529)))) (T -561)) +((-3534 (*1 *1) (-5 *1 (-561)))) +(-13 (-866) (-10 -8 (-15 -3534 ($) -1529))) ((|Integer|) (|%not| (|%ilt| 32 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-561) (-13 (-865) (-10 -8 (-15 -2762 ($) -1528)))) (T -561)) -((-2762 (*1 *1) (-5 *1 (-561)))) -(-13 (-865) (-10 -8 (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-562) (-13 (-866) (-10 -8 (-15 -3534 ($) -1529)))) (T -562)) +((-3534 (*1 *1) (-5 *1 (-562)))) +(-13 (-866) (-10 -8 (-15 -3534 ($) -1529))) ((|Integer|) (|%not| (|%ilt| 64 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-562) (-13 (-865) (-10 -8 (-15 -2762 ($) -1528)))) (T -562)) -((-2762 (*1 *1) (-5 *1 (-562)))) -(-13 (-865) (-10 -8 (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-563) (-13 (-866) (-10 -8 (-15 -3534 ($) -1529)))) (T -563)) +((-3534 (*1 *1) (-5 *1 (-563)))) +(-13 (-866) (-10 -8 (-15 -3534 ($) -1529))) ((|Integer|) (|%not| (|%ilt| 8 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-3425 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-3242 (((-665 |#1|) $) NIL T ELT)) (-2404 (((-112) |#1| $) NIL T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3887 (((-665 |#1|) $) NIL T ELT)) (-1593 (((-112) |#1| $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-563 |#1| |#2| |#3|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499)))) (T -563)) -NIL -(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) -((-4449 (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1202 |#2|) (-1202 |#2|))) 50 T ELT))) -(((-564 |#1| |#2|) (-10 -7 (-15 -4449 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1202 |#2|) (-1202 |#2|))))) (-569) (-13 (-27) (-443 |#1|))) (T -564)) -((-4449 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1202 *3) (-1202 *3))) (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) (-5 *1 (-564 *6 *3))))) -(-10 -7 (-15 -4449 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1202 |#2|) (-1202 |#2|))))) -((-2842 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 216 T ELT)) (-2233 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212 T ELT)) (-1637 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 220 T ELT))) -(((-565 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1637 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2842 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2233 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-569) (-1068 (-577))) (-13 (-27) (-443 |#1|)) (-1273 |#2|) (-1273 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -565)) -((-2233 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *7 (-1273 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-354 *5 *6 *7)))) (-2842 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) -(-10 -7 (-15 -1637 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2842 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2233 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3884 (((-112) (-577) (-577)) 12 T ELT)) (-1977 (((-577) (-577)) 7 T ELT)) (-4264 (((-577) (-577) (-577)) 10 T ELT))) -(((-566) (-10 -7 (-15 -1977 ((-577) (-577))) (-15 -4264 ((-577) (-577) (-577))) (-15 -3884 ((-112) (-577) (-577))))) (T -566)) -((-3884 (*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566)))) (-4264 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566)))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) -(-10 -7 (-15 -1977 ((-577) (-577))) (-15 -4264 ((-577) (-577) (-577))) (-15 -3884 ((-112) (-577) (-577)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3688 ((|#1| $) 68 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-1501 (($ $) 98 T ELT)) (-1371 (($ $) 81 T ELT)) (-1658 ((|#1| $) 69 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2809 (($ $) 80 T ELT)) (-1477 (($ $) 97 T ELT)) (-1348 (($ $) 82 T ELT)) (-1527 (($ $) 96 T ELT)) (-1391 (($ $) 83 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 76 T ELT)) (-3514 (((-577) $) 77 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2779 (($ |#1| |#1|) 73 T ELT)) (-2785 (((-112) $) 67 T ELT)) (-2549 (($) 108 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 79 T ELT)) (-1434 (((-112) $) 66 T ELT)) (-1344 (($ $ $) 109 T ELT)) (-4167 (($ $ $) 110 T ELT)) (-3863 (($ $) 105 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3461 (($ |#1| |#1|) 74 T ELT) (($ |#1|) 72 T ELT) (($ (-420 (-577))) 71 T ELT)) (-1994 ((|#1| $) 70 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-3585 (($ $) 106 T ELT)) (-1540 (($ $) 95 T ELT)) (-1402 (($ $) 84 T ELT)) (-1515 (($ $) 94 T ELT)) (-1381 (($ $) 85 T ELT)) (-1489 (($ $) 93 T ELT)) (-1360 (($ $) 86 T ELT)) (-3606 (((-112) $ |#1|) 65 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-577)) 75 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1575 (($ $) 104 T ELT)) (-1435 (($ $) 92 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-1551 (($ $) 103 T ELT)) (-1413 (($ $) 91 T ELT)) (-1597 (($ $) 102 T ELT)) (-1456 (($ $) 90 T ELT)) (-3501 (($ $) 101 T ELT)) (-1466 (($ $) 89 T ELT)) (-1586 (($ $) 100 T ELT)) (-1446 (($ $) 88 T ELT)) (-1562 (($ $) 99 T ELT)) (-1423 (($ $) 87 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2440 (((-112) $ $) 111 T ELT)) (-2415 (((-112) $ $) 113 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 112 T ELT)) (-2403 (((-112) $ $) 114 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ $) 107 T ELT) (($ $ (-420 (-577))) 78 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-567 |#1|) (-141) (-13 (-417) (-1232))) (T -567)) -((-3461 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-2779 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-3461 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) (-2785 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) (-3606 (*1 *2 *1 *3) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112))))) -(-13 (-465) (-870) (-1232) (-1032) (-1068 (-577)) (-10 -8 (-6 -3908) (-15 -3461 ($ |t#1| |t#1|)) (-15 -2779 ($ |t#1| |t#1|)) (-15 -3461 ($ |t#1|)) (-15 -3461 ($ (-420 (-577)))) (-15 -1994 (|t#1| $)) (-15 -1658 (|t#1| $)) (-15 -3688 (|t#1| $)) (-15 -2785 ((-112) $)) (-15 -1434 ((-112) $)) (-15 -3606 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-295) . T) ((-301) . T) ((-465) . T) ((-506) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-870) . T) ((-873) . T) ((-1032) . T) ((-1068 (-577)) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) . T) ((-1235) . T) ((-1247) . T)) -((-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 9 T ELT)) (-3913 (($ $) 11 T ELT)) (-4244 (((-112) $) 20 T ELT)) (-4281 (((-3 $ "failed") $) 16 T ELT)) (-1370 (((-112) $ $) 22 T ELT))) -(((-568 |#1|) (-10 -8 (-15 -4244 ((-112) |#1|)) (-15 -1370 ((-112) |#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1936 ((-2 (|:| -2117 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|))) (-569)) (T -568)) -NIL -(-10 -8 (-15 -4244 ((-112) |#1|)) (-15 -1370 ((-112) |#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -1936 ((-2 (|:| -2117 |#1|) (|:| -4486 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-569) (-141)) (T -569)) -((-3200 (*1 *1 *1 *1) (|partial| -4 *1 (-569))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2117 *1) (|:| -4486 *1) (|:| |associate| *1))) (-4 *1 (-569)))) (-3913 (*1 *1 *1) (-4 *1 (-569))) (-1370 (*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-301) (-10 -8 (-15 -3200 ((-3 $ "failed") $ $)) (-15 -1936 ((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $)) (-15 -3913 ($ $)) (-15 -1370 ((-112) $ $)) (-15 -4244 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-4351 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1206) (-665 |#2|)) 38 T ELT)) (-3182 (((-599 |#2|) |#2| (-1206)) 63 T ELT)) (-2952 (((-3 |#2| "failed") |#2| (-1206)) 156 T ELT)) (-2599 (((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) (-630 |#2|) (-665 (-630 |#2|))) 159 T ELT)) (-3699 (((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) |#2|) 41 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -3699 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) |#2|)) (-15 -4351 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1206) (-665 |#2|))) (-15 -2952 ((-3 |#2| "failed") |#2| (-1206))) (-15 -3182 ((-599 |#2|) |#2| (-1206))) (-15 -2599 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) (-630 |#2|) (-665 (-630 |#2|))))) (-13 (-465) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -570)) -((-2599 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1206)) (-5 *6 (-665 (-630 *3))) (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *7))) (-4 *7 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-2952 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-4351 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3)))) (-3699 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) -(-10 -7 (-15 -3699 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) |#2|)) (-15 -4351 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1206) (-665 |#2|))) (-15 -2952 ((-3 |#2| "failed") |#2| (-1206))) (-15 -3182 ((-599 |#2|) |#2| (-1206))) (-15 -2599 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1206) (-630 |#2|) (-665 (-630 |#2|))))) -((-4240 (((-431 |#1|) |#1|) 19 T ELT)) (-2799 (((-431 |#1|) |#1|) 34 T ELT)) (-2731 (((-3 |#1| "failed") |#1|) 49 T ELT)) (-2121 (((-431 |#1|) |#1|) 60 T ELT))) -(((-571 |#1|) (-10 -7 (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -2121 ((-431 |#1|) |#1|)) (-15 -2731 ((-3 |#1| "failed") |#1|))) (-558)) (T -571)) -((-2731 (*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558)))) (-2121 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-4240 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) -(-10 -7 (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -2121 ((-431 |#1|) |#1|)) (-15 -2731 ((-3 |#1| "failed") |#1|))) -((-3640 (($) 9 T ELT)) (-2230 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 34 T ELT)) (-3242 (((-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 31 T ELT)) (-3795 (($ (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28 T ELT)) (-2432 (($ (-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26 T ELT)) (-2753 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 38 T ELT)) (-3485 (((-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36 T ELT)) (-3471 (((-1302)) 11 T ELT))) -(((-572) (-10 -8 (-15 -3640 ($)) (-15 -3471 ((-1302))) (-15 -3242 ((-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -2432 ($ (-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3795 ($ (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2230 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3485 ((-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2753 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -572)) -((-2753 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-2230 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-572)))) (-2432 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-572)))) (-3471 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-572)))) (-3640 (*1 *1) (-5 *1 (-572)))) -(-10 -8 (-15 -3640 ($)) (-15 -3471 ((-1302))) (-15 -3242 ((-665 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -2432 ($ (-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3795 ($ (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2230 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3485 ((-665 (-2 (|:| -3171 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2753 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1187 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1641 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-4419 (((-1202 (-420 (-1202 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1202 |#2|)) 35 T ELT)) (-3922 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) |#2| (-1202 |#2|)) 115 T ELT)) (-4249 (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 85 T ELT) (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|)) 55 T ELT)) (-3274 (((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-420 (-1202 |#2|))) 92 T ELT) (((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1202 |#2|)) 114 T ELT)) (-2322 (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 110 T ELT) (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) |#2| (-1202 |#2|)) 116 T ELT)) (-3956 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))) 133 (|has| |#3| (-677 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|)) 132 (|has| |#3| (-677 |#2|)) ELT)) (-2935 ((|#2| (-1202 (-420 (-1202 |#2|))) (-630 |#2|) |#2|) 53 T ELT)) (-2500 (((-1202 (-420 (-1202 |#2|))) (-1202 |#2|) (-630 |#2|)) 34 T ELT))) -(((-573 |#1| |#2| |#3|) (-10 -7 (-15 -4249 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -4249 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -3274 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1202 |#2|))) (-15 -3274 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -3922 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) |#2| (-1202 |#2|))) (-15 -3922 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -2322 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) |#2| (-1202 |#2|))) (-15 -2322 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -4419 ((-1202 (-420 (-1202 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1202 |#2|))) (-15 -2935 (|#2| (-1202 (-420 (-1202 |#2|))) (-630 |#2|) |#2|)) (-15 -2500 ((-1202 (-420 (-1202 |#2|))) (-1202 |#2|) (-630 |#2|))) (IF (|has| |#3| (-677 |#2|)) (PROGN (-15 -3956 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -3956 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))))) |%noBranch|)) (-13 (-465) (-1068 (-577)) (-148) (-659 (-577))) (-13 (-443 |#1|) (-27) (-1232)) (-1130)) (T -573)) -((-3956 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-420 (-1202 *4))) (-4 *4 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) (-3956 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1202 *4)) (-4 *4 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-1202 (-420 (-1202 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1202 *6)) (-4 *7 (-1130)))) (-2935 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1202 (-420 (-1202 *2)))) (-5 *4 (-630 *2)) (-4 *2 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1130)))) (-4419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-1202 (-420 (-1202 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1202 *3)) (-4 *7 (-1130)))) (-2322 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-5 *5 (-420 (-1202 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130)))) (-2322 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-5 *5 (-1202 *2)) (-4 *2 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130)))) (-3922 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-5 *6 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130)))) (-3922 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-5 *6 (-1202 *3)) (-4 *3 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130)))) (-3274 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) (-3274 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) (-4249 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) (-4249 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130))))) -(-10 -7 (-15 -4249 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -4249 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -3274 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1202 |#2|))) (-15 -3274 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -3922 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) |#2| (-1202 |#2|))) (-15 -3922 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -2322 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) |#2| (-1202 |#2|))) (-15 -2322 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)) (-630 |#2|) |#2| (-420 (-1202 |#2|)))) (-15 -4419 ((-1202 (-420 (-1202 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1202 |#2|))) (-15 -2935 (|#2| (-1202 (-420 (-1202 |#2|))) (-630 |#2|) |#2|)) (-15 -2500 ((-1202 (-420 (-1202 |#2|))) (-1202 |#2|) (-630 |#2|))) (IF (|has| |#3| (-677 |#2|)) (PROGN (-15 -3956 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1202 |#2|))) (-15 -3956 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-420 (-1202 |#2|))))) |%noBranch|)) -((-1740 (((-577) (-577) (-792)) 85 T ELT)) (-1832 (((-577) (-577)) 83 T ELT)) (-3063 (((-577) (-577)) 81 T ELT)) (-1352 (((-577) (-577)) 87 T ELT)) (-2364 (((-577) (-577) (-577)) 65 T ELT)) (-4178 (((-577) (-577) (-577)) 62 T ELT)) (-2131 (((-420 (-577)) (-577)) 30 T ELT)) (-2215 (((-577) (-577)) 34 T ELT)) (-1613 (((-577) (-577)) 74 T ELT)) (-4433 (((-577) (-577)) 46 T ELT)) (-1415 (((-665 (-577)) (-577)) 80 T ELT)) (-3614 (((-577) (-577) (-577) (-577) (-577)) 58 T ELT)) (-1864 (((-420 (-577)) (-577)) 55 T ELT))) -(((-574) (-10 -7 (-15 -1864 ((-420 (-577)) (-577))) (-15 -3614 ((-577) (-577) (-577) (-577) (-577))) (-15 -1415 ((-665 (-577)) (-577))) (-15 -4433 ((-577) (-577))) (-15 -1613 ((-577) (-577))) (-15 -2215 ((-577) (-577))) (-15 -2131 ((-420 (-577)) (-577))) (-15 -4178 ((-577) (-577) (-577))) (-15 -2364 ((-577) (-577) (-577))) (-15 -1352 ((-577) (-577))) (-15 -3063 ((-577) (-577))) (-15 -1832 ((-577) (-577))) (-15 -1740 ((-577) (-577) (-792))))) (T -574)) -((-1740 (*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-792)) (-5 *1 (-574)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2364 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-4178 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-2131 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-2215 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-4433 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-1415 (*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-3614 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-1864 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) -(-10 -7 (-15 -1864 ((-420 (-577)) (-577))) (-15 -3614 ((-577) (-577) (-577) (-577) (-577))) (-15 -1415 ((-665 (-577)) (-577))) (-15 -4433 ((-577) (-577))) (-15 -1613 ((-577) (-577))) (-15 -2215 ((-577) (-577))) (-15 -2131 ((-420 (-577)) (-577))) (-15 -4178 ((-577) (-577) (-577))) (-15 -2364 ((-577) (-577) (-577))) (-15 -1352 ((-577) (-577))) (-15 -3063 ((-577) (-577))) (-15 -1832 ((-577) (-577))) (-15 -1740 ((-577) (-577) (-792)))) -((-3617 (((-2 (|:| |answer| |#4|) (|:| -1744 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3617 ((-2 (|:| |answer| |#4|) (|:| -1744 |#4|)) |#4| (-1 |#2| |#2|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -575)) -((-3617 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-4 *7 (-1273 (-420 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1744 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7))))) -(-10 -7 (-15 -3617 ((-2 (|:| |answer| |#4|) (|:| -1744 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3617 (((-2 (|:| |answer| (-420 |#2|)) (|:| -1744 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-576 |#1| |#2|) (-10 -7 (-15 -3617 ((-2 (|:| |answer| (-420 |#2|)) (|:| -1744 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1273 |#1|)) (T -576)) -((-3617 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| (-420 *6)) (|:| -1744 (-420 *6)) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) -(-10 -7 (-15 -3617 ((-2 (|:| |answer| (-420 |#2|)) (|:| -1744 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 29 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 95 T ELT)) (-3913 (($ $) 96 T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3198 (($ $ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2865 (($ $ $ $) 49 T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL T ELT)) (-1886 (($ $ $) 90 T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL T ELT)) (-3152 (($ $ $) 50 T ELT)) (-1953 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 75 T ELT) (((-710 (-577)) (-710 $)) 71 T ELT)) (-4281 (((-3 $ "failed") $) 92 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2748 (((-112) $) NIL T ELT)) (-3557 (((-420 (-577)) $) NIL T ELT)) (-2060 (($) 77 T ELT) (($ $) 78 T ELT)) (-3164 (($ $ $) 89 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3924 (($ $ $ $) NIL T ELT)) (-1642 (($ $ $) 68 T ELT)) (-2785 (((-112) $) NIL T ELT)) (-2283 (($ $ $) NIL T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-2097 (((-112) $) 31 T ELT)) (-3356 (((-112) $) 84 T ELT)) (-3651 (((-3 $ "failed") $) NIL T ELT)) (-1434 (((-112) $) 7 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2832 (($ $ $ $) 51 T ELT)) (-1344 (($ $ $) 86 T ELT)) (-4167 (($ $ $) 85 T ELT)) (-3692 (($ $) NIL T ELT)) (-3490 (($ $) 46 T ELT)) (-2796 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) 67 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-1353 (($ $) 35 T ELT)) (-4312 (((-1150) $) 39 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 127 T ELT)) (-2420 (($ $ $) 93 T ELT) (($ (-665 $)) NIL T ELT)) (-2606 (($ $) NIL T ELT)) (-2799 (((-431 $) $) 113 T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) 111 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2793 (((-112) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 88 T ELT)) (-2030 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1686 (($ $) 37 T ELT)) (-3978 (($ $) 33 T ELT)) (-3341 (((-577) $) 45 T ELT) (((-549) $) 60 T ELT) (((-916 (-577)) $) NIL T ELT) (((-391) $) 54 T ELT) (((-228) $) 57 T ELT) (((-1188) $) 62 T ELT)) (-2410 (((-885) $) 43 T ELT) (($ (-577)) 44 T ELT) (($ $) NIL T ELT) (($ (-577)) 44 T ELT)) (-3234 (((-792)) NIL T CONST)) (-3254 (((-112) $ $) NIL T ELT)) (-3267 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (($) 32 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2460 (($ $ $ $) 48 T ELT)) (-3385 (($ $) 76 T ELT)) (-2367 (($) 27 T CONST)) (-2378 (($) 30 T CONST)) (-2792 (((-1188) $) 23 T ELT) (((-1188) $ (-112)) 24 T ELT) (((-1302) (-843) $) 25 T ELT) (((-1302) (-843) $ (-112)) 26 T ELT)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2440 (((-112) $ $) 47 T ELT)) (-2415 (((-112) $ $) 79 T ELT)) (-2383 (((-112) $ $) 28 T ELT)) (-2428 (((-112) $ $) 80 T ELT)) (-2403 (((-112) $ $) 40 T ELT)) (-2483 (($ $) 13 T ELT) (($ $ $) 36 T ELT)) (-2471 (($ $ $) 34 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 83 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 82 T ELT) (($ $ $) 81 T ELT) (($ (-577) $) 82 T ELT))) -(((-577) (-13 (-558) (-632 (-1188)) (-849) (-10 -7 (-6 -4486) (-6 -4491) (-6 -4487) (-6 -4481)))) (T -577)) -NIL -(-13 (-558) (-632 (-1188)) (-849) (-10 -7 (-6 -4486) (-6 -4491) (-6 -4487) (-6 -4481))) -((-3175 (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790) (-1093)) 116 T ELT) (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790)) 118 T ELT)) (-3491 (((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1206)) 195 T ELT) (((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1188)) 194 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391) (-1093)) 199 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391)) 200 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391)) 201 T ELT) (((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391))))) 202 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391)))) 190 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391)) 189 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391)) 185 T ELT) (((-1065) (-790)) 177 T ELT) (((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391) (-1093)) 184 T ELT))) -(((-578) (-10 -7 (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391) (-1093))) (-15 -3491 ((-1065) (-790))) (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391) (-1093))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790) (-1093))) (-15 -3491 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1188))) (-15 -3491 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1206))))) (T -578)) -((-3491 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) (-5 *5 (-1206)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) (-5 *5 (-1188)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-790)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *1 (-578)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1065)) (-5 *1 (-578)))) (-3491 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578))))) -(-10 -7 (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391) (-1093))) (-15 -3491 ((-1065) (-790))) (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-1124 (-864 (-391))))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391))) (-15 -3491 ((-1065) (-327 (-391)) (-665 (-1124 (-864 (-391)))) (-391) (-391) (-1093))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065))) (-790) (-1093))) (-15 -3491 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1188))) (-15 -3491 ((-3 (-1065) "failed") (-327 (-391)) (-1122 (-864 (-391))) (-1206)))) -((-1472 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|)) 195 T ELT)) (-2303 (((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|)) 97 T ELT)) (-3972 (((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|) 191 T ELT)) (-3558 (((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206))) 200 T ELT)) (-1685 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1206)) 209 (|has| |#3| (-677 |#2|)) ELT))) -(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -2303 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3972 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -1472 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|))) (-15 -3558 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)))) (IF (|has| |#3| (-677 |#2|)) (-15 -1685 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1206))) |%noBranch|)) (-13 (-465) (-1068 (-577)) (-148) (-659 (-577))) (-13 (-443 |#1|) (-27) (-1232)) (-1130)) (T -579)) -((-1685 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1206)) (-4 *4 (-13 (-443 *7) (-27) (-1232))) (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) (-3558 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-4 *2 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1130)))) (-1472 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1130)))) (-3972 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130)))) (-2303 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1232))) (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130))))) -(-10 -7 (-15 -2303 ((-599 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3972 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -1472 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-665 |#2|))) (-15 -3558 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1206)))) (IF (|has| |#3| (-677 |#2|)) (-15 -1685 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2225 (-665 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1206))) |%noBranch|)) -((-1841 (((-2 (|:| -4321 |#2|) (|:| |nconst| |#2|)) |#2| (-1206)) 64 T ELT)) (-3183 (((-3 |#2| "failed") |#2| (-1206) (-864 |#2|) (-864 |#2|)) 175 (-12 (|has| |#2| (-1169)) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-910 (-577)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)) 154 (-12 (|has| |#2| (-647)) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-910 (-577)))) ELT)) (-1816 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)) 156 (-12 (|has| |#2| (-647)) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-910 (-577)))) ELT))) -(((-580 |#1| |#2|) (-10 -7 (-15 -1841 ((-2 (|:| -4321 |#2|) (|:| |nconst| |#2|)) |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (PROGN (IF (|has| |#2| (-647)) (PROGN (-15 -1816 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206))) (-15 -3183 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) (IF (|has| |#2| (-1169)) (-15 -3183 ((-3 |#2| "failed") |#2| (-1206) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1068 (-577)) (-465) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -580)) -((-3183 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1206)) (-5 *4 (-864 *2)) (-4 *2 (-1169)) (-4 *2 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *1 (-580 *5 *2)))) (-3183 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-1816 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-1841 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) (-5 *2 (-2 (|:| -4321 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) -(-10 -7 (-15 -1841 ((-2 (|:| -4321 |#2|) (|:| |nconst| |#2|)) |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (PROGN (IF (|has| |#2| (-647)) (PROGN (-15 -1816 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206))) (-15 -3183 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) (IF (|has| |#2| (-1169)) (-15 -3183 ((-3 |#2| "failed") |#2| (-1206) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-4165 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-665 (-420 |#2|))) 41 T ELT)) (-3491 (((-599 (-420 |#2|)) (-420 |#2|)) 28 T ELT)) (-1369 (((-3 (-420 |#2|) "failed") (-420 |#2|)) 17 T ELT)) (-4233 (((-3 (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|)) 48 T ELT))) -(((-581 |#1| |#2|) (-10 -7 (-15 -3491 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -1369 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -4233 ((-3 (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -4165 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-665 (-420 |#2|))))) (-13 (-375) (-148) (-1068 (-577))) (-1273 |#1|)) (T -581)) -((-4165 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-665 (-420 *6))) (-5 *3 (-420 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-581 *5 *6)))) (-4233 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -1827 (-420 *5)) (|:| |coeff| (-420 *5)))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) (-1369 (*1 *2 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148) (-1068 (-577)))) (-5 *1 (-581 *3 *4)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) -(-10 -7 (-15 -3491 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -1369 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -4233 ((-3 (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -4165 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-665 (-420 |#2|))))) -((-2897 (((-3 (-577) "failed") |#1|) 14 T ELT)) (-3269 (((-112) |#1|) 13 T ELT)) (-2086 (((-577) |#1|) 9 T ELT))) -(((-582 |#1|) (-10 -7 (-15 -2086 ((-577) |#1|)) (-15 -3269 ((-112) |#1|)) (-15 -2897 ((-3 (-577) "failed") |#1|))) (-1068 (-577))) (T -582)) -((-2897 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2)))) (-3269 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1068 (-577))))) (-2086 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2))))) -(-10 -7 (-15 -2086 ((-577) |#1|)) (-15 -3269 ((-112) |#1|)) (-15 -2897 ((-3 (-577) "failed") |#1|))) -((-1639 (((-3 (-2 (|:| |mainpart| (-420 (-980 |#1|))) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 (-980 |#1|))) (|:| |logand| (-420 (-980 |#1|))))))) "failed") (-420 (-980 |#1|)) (-1206) (-665 (-420 (-980 |#1|)))) 48 T ELT)) (-1341 (((-599 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-1206)) 28 T ELT)) (-2065 (((-3 (-420 (-980 |#1|)) "failed") (-420 (-980 |#1|)) (-1206)) 23 T ELT)) (-3744 (((-3 (-2 (|:| -1827 (-420 (-980 |#1|))) (|:| |coeff| (-420 (-980 |#1|)))) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))) 35 T ELT))) -(((-583 |#1|) (-10 -7 (-15 -1341 ((-599 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -2065 ((-3 (-420 (-980 |#1|)) "failed") (-420 (-980 |#1|)) (-1206))) (-15 -1639 ((-3 (-2 (|:| |mainpart| (-420 (-980 |#1|))) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 (-980 |#1|))) (|:| |logand| (-420 (-980 |#1|))))))) "failed") (-420 (-980 |#1|)) (-1206) (-665 (-420 (-980 |#1|))))) (-15 -3744 ((-3 (-2 (|:| -1827 (-420 (-980 |#1|))) (|:| |coeff| (-420 (-980 |#1|)))) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))))) (-13 (-569) (-1068 (-577)) (-148))) (T -583)) -((-3744 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) (-5 *2 (-2 (|:| -1827 (-420 (-980 *5))) (|:| |coeff| (-420 (-980 *5))))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-980 *5))))) (-1639 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 (-420 (-980 *6)))) (-5 *3 (-420 (-980 *6))) (-4 *6 (-13 (-569) (-1068 (-577)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-583 *6)))) (-2065 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-148))) (-5 *1 (-583 *4)))) (-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) (-5 *2 (-599 (-420 (-980 *5)))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-980 *5)))))) -(-10 -7 (-15 -1341 ((-599 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -2065 ((-3 (-420 (-980 |#1|)) "failed") (-420 (-980 |#1|)) (-1206))) (-15 -1639 ((-3 (-2 (|:| |mainpart| (-420 (-980 |#1|))) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 (-980 |#1|))) (|:| |logand| (-420 (-980 |#1|))))))) "failed") (-420 (-980 |#1|)) (-1206) (-665 (-420 (-980 |#1|))))) (-15 -3744 ((-3 (-2 (|:| -1827 (-420 (-980 |#1|))) (|:| |coeff| (-420 (-980 |#1|)))) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))))) -((-3211 (((-112) $ $) 75 T ELT)) (-1516 (((-112) $) 48 T ELT)) (-3688 ((|#1| $) 39 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) 79 T ELT)) (-1501 (($ $) 139 T ELT)) (-1371 (($ $) 118 T ELT)) (-1658 ((|#1| $) 37 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $) NIL T ELT)) (-1477 (($ $) 141 T ELT)) (-1348 (($ $) 114 T ELT)) (-1527 (($ $) 143 T ELT)) (-1391 (($ $) 122 T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) 93 T ELT)) (-3514 (((-577) $) 95 T ELT)) (-4281 (((-3 $ "failed") $) 78 T ELT)) (-2779 (($ |#1| |#1|) 35 T ELT)) (-2785 (((-112) $) 44 T ELT)) (-2549 (($) 104 T ELT)) (-2097 (((-112) $) 55 T ELT)) (-4341 (($ $ (-577)) NIL T ELT)) (-1434 (((-112) $) 45 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3863 (($ $) 106 T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3461 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-420 (-577))) 92 T ELT)) (-1994 ((|#1| $) 36 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) 81 T ELT) (($ (-665 $)) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) 80 T ELT)) (-3585 (($ $) 108 T ELT)) (-1540 (($ $) 147 T ELT)) (-1402 (($ $) 120 T ELT)) (-1515 (($ $) 149 T ELT)) (-1381 (($ $) 124 T ELT)) (-1489 (($ $) 145 T ELT)) (-1360 (($ $) 116 T ELT)) (-3606 (((-112) $ |#1|) 42 T ELT)) (-2410 (((-885) $) 100 T ELT) (($ (-577)) 83 T ELT) (($ $) NIL T ELT) (($ (-577)) 83 T ELT)) (-3234 (((-792)) 102 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) 161 T ELT)) (-1435 (($ $) 130 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-1551 (($ $) 159 T ELT)) (-1413 (($ $) 126 T ELT)) (-1597 (($ $) 157 T ELT)) (-1456 (($ $) 137 T ELT)) (-3501 (($ $) 155 T ELT)) (-1466 (($ $) 135 T ELT)) (-1586 (($ $) 153 T ELT)) (-1446 (($ $) 132 T ELT)) (-1562 (($ $) 151 T ELT)) (-1423 (($ $) 128 T ELT)) (-2367 (($) 30 T CONST)) (-2378 (($) 10 T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 49 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 47 T ELT)) (-2483 (($ $) 53 T ELT) (($ $ $) 54 T ELT)) (-2471 (($ $ $) 52 T ELT)) (** (($ $ (-949)) 71 T ELT) (($ $ (-792)) NIL T ELT) (($ $ $) 110 T ELT) (($ $ (-420 (-577))) 163 T ELT)) (* (($ (-949) $) 66 T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 65 T ELT) (($ $ $) 61 T ELT))) -(((-584 |#1|) (-567 |#1|) (-13 (-417) (-1232))) (T -584)) -NIL -(-567 |#1|) -((-1440 (((-3 (-665 (-1202 (-577))) "failed") (-665 (-1202 (-577))) (-1202 (-577))) 27 T ELT))) -(((-585) (-10 -7 (-15 -1440 ((-3 (-665 (-1202 (-577))) "failed") (-665 (-1202 (-577))) (-1202 (-577)))))) (T -585)) -((-1440 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 (-577)))) (-5 *3 (-1202 (-577))) (-5 *1 (-585))))) -(-10 -7 (-15 -1440 ((-3 (-665 (-1202 (-577))) "failed") (-665 (-1202 (-577))) (-1202 (-577))))) -((-1701 (((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-1206)) 19 T ELT)) (-2724 (((-665 (-630 |#2|)) (-665 |#2|) (-1206)) 23 T ELT)) (-1339 (((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-665 (-630 |#2|))) 11 T ELT)) (-4379 ((|#2| |#2| (-1206)) 59 (|has| |#1| (-569)) ELT)) (-1411 ((|#2| |#2| (-1206)) 87 (-12 (|has| |#2| (-295)) (|has| |#1| (-465))) ELT)) (-4354 (((-630 |#2|) (-630 |#2|) (-665 (-630 |#2|)) (-1206)) 25 T ELT)) (-4070 (((-630 |#2|) (-665 (-630 |#2|))) 24 T ELT)) (-4295 (((-599 |#2|) |#2| (-1206) (-1 (-599 |#2|) |#2| (-1206)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206))) 115 (-12 (|has| |#2| (-295)) (|has| |#2| (-647)) (|has| |#2| (-1068 (-1206))) (|has| |#1| (-632 (-916 (-577)))) (|has| |#1| (-465)) (|has| |#1| (-910 (-577)))) ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -1701 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-1206))) (-15 -4070 ((-630 |#2|) (-665 (-630 |#2|)))) (-15 -4354 ((-630 |#2|) (-630 |#2|) (-665 (-630 |#2|)) (-1206))) (-15 -1339 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-665 (-630 |#2|)))) (-15 -2724 ((-665 (-630 |#2|)) (-665 |#2|) (-1206))) (IF (|has| |#1| (-569)) (-15 -4379 (|#2| |#2| (-1206))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -1411 (|#2| |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (IF (|has| |#2| (-647)) (IF (|has| |#2| (-1068 (-1206))) (-15 -4295 ((-599 |#2|) |#2| (-1206) (-1 (-599 |#2|) |#2| (-1206)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1130) (-443 |#1|)) (T -586)) -((-4295 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-599 *3) *3 (-1206))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1206))) (-4 *3 (-295)) (-4 *3 (-647)) (-4 *3 (-1068 *4)) (-4 *3 (-443 *7)) (-5 *4 (-1206)) (-4 *7 (-632 (-916 (-577)))) (-4 *7 (-465)) (-4 *7 (-910 (-577))) (-4 *7 (-1130)) (-5 *2 (-599 *3)) (-5 *1 (-586 *7 *3)))) (-1411 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-465)) (-4 *4 (-1130)) (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4)))) (-4379 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-4 *4 (-1130)) (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-1206)) (-4 *6 (-443 *5)) (-4 *5 (-1130)) (-5 *2 (-665 (-630 *6))) (-5 *1 (-586 *5 *6)))) (-1339 (*1 *2 *2 *2) (-12 (-5 *2 (-665 (-630 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1130)) (-5 *1 (-586 *3 *4)))) (-4354 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-665 (-630 *6))) (-5 *4 (-1206)) (-5 *2 (-630 *6)) (-4 *6 (-443 *5)) (-4 *5 (-1130)) (-5 *1 (-586 *5 *6)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-665 (-630 *5))) (-4 *4 (-1130)) (-5 *2 (-630 *5)) (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4)))) (-1701 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-630 *5))) (-5 *3 (-1206)) (-4 *5 (-443 *4)) (-4 *4 (-1130)) (-5 *1 (-586 *4 *5))))) -(-10 -7 (-15 -1701 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-1206))) (-15 -4070 ((-630 |#2|) (-665 (-630 |#2|)))) (-15 -4354 ((-630 |#2|) (-630 |#2|) (-665 (-630 |#2|)) (-1206))) (-15 -1339 ((-665 (-630 |#2|)) (-665 (-630 |#2|)) (-665 (-630 |#2|)))) (-15 -2724 ((-665 (-630 |#2|)) (-665 |#2|) (-1206))) (IF (|has| |#1| (-569)) (-15 -4379 (|#2| |#2| (-1206))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -1411 (|#2| |#2| (-1206))) (IF (|has| |#1| (-632 (-916 (-577)))) (IF (|has| |#1| (-910 (-577))) (IF (|has| |#2| (-647)) (IF (|has| |#2| (-1068 (-1206))) (-15 -4295 ((-599 |#2|) |#2| (-1206) (-1 (-599 |#2|) |#2| (-1206)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1206)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2673 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-665 |#1|) "failed") (-577) |#1| |#1|)) 199 T ELT)) (-4333 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-665 (-420 |#2|))) 174 T ELT)) (-4436 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-665 (-420 |#2|))) 171 T ELT)) (-3542 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162 T ELT)) (-4169 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185 T ELT)) (-2901 (((-3 (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|)) 202 T ELT)) (-1976 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|)) 205 T ELT)) (-2103 (((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-1873 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-4316 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-665 (-420 |#2|))) 178 T ELT)) (-1331 (((-3 (-641 |#1| |#2|) "failed") (-641 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 166 T ELT)) (-2786 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 189 T ELT)) (-3380 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|)) 210 T ELT))) -(((-587 |#1| |#2|) (-10 -7 (-15 -4169 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2786 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2673 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-665 |#1|) "failed") (-577) |#1| |#1|))) (-15 -1976 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -3380 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -4333 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-665 (-420 |#2|)))) (-15 -4316 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-665 (-420 |#2|)))) (-15 -2901 ((-3 (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -4436 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-665 (-420 |#2|)))) (-15 -3542 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1331 ((-3 (-641 |#1| |#2|) "failed") (-641 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2103 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1873 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-375) (-1273 |#1|)) (T -587)) -((-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-587 *5 *3)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-1331 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3867 *4) (|:| |sol?| (-112))) (-577) *4)) (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *1 (-587 *4 *5)))) (-3542 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1827 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1273 *4)))) (-4436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-665 (-420 *7))) (-4 *7 (-1273 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-587 *6 *7)))) (-2901 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -1827 (-420 *6)) (|:| |coeff| (-420 *6)))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-4316 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3867 *7) (|:| |sol?| (-112))) (-577) *7)) (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-4333 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1827 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-3380 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3867 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -1827 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-1976 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1827 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -1827 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2673 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-665 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2786 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3867 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-4169 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1827 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(-10 -7 (-15 -4169 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2786 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2673 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-665 |#1|) "failed") (-577) |#1| |#1|))) (-15 -1976 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -3380 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -4333 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-665 (-420 |#2|)))) (-15 -4316 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-665 (-420 |#2|)))) (-15 -2901 ((-3 (-2 (|:| -1827 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -4436 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-665 (-420 |#2|)))) (-15 -3542 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1331 ((-3 (-641 |#1| |#2|) "failed") (-641 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3867 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2103 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1873 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-1455 (((-3 |#2| "failed") |#2| (-1206) (-1206)) 10 T ELT))) -(((-588 |#1| |#2|) (-10 -7 (-15 -1455 ((-3 |#2| "failed") |#2| (-1206) (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-1169) (-29 |#1|))) (T -588)) -((-1455 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-588 *4 *2)) (-4 *2 (-13 (-1232) (-987) (-1169) (-29 *4)))))) -(-10 -7 (-15 -1455 ((-3 |#2| "failed") |#2| (-1206) (-1206)))) -((-4334 (((-712 (-1255)) $ (-1255)) 26 T ELT)) (-1346 (((-712 (-562)) $ (-562)) 25 T ELT)) (-1838 (((-792) $ (-129)) 27 T ELT)) (-1671 (((-712 (-130)) $ (-130)) 24 T ELT)) (-1355 (((-712 (-1255)) $) 12 T ELT)) (-3928 (((-712 (-1253)) $) 8 T ELT)) (-4400 (((-712 (-1252)) $) 10 T ELT)) (-3212 (((-712 (-562)) $) 13 T ELT)) (-3210 (((-712 (-560)) $) 9 T ELT)) (-1831 (((-712 (-559)) $) 11 T ELT)) (-4029 (((-792) $ (-129)) 7 T ELT)) (-2906 (((-712 (-130)) $) 14 T ELT)) (-2996 (($ $) 6 T ELT))) -(((-589) (-141)) (T -589)) -NIL -(-13 (-540) (-883)) -(((-175) . T) ((-540) . T) ((-883) . T)) -((-4334 (((-712 (-1255)) $ (-1255)) NIL T ELT)) (-1346 (((-712 (-562)) $ (-562)) NIL T ELT)) (-1838 (((-792) $ (-129)) NIL T ELT)) (-1671 (((-712 (-130)) $ (-130)) NIL T ELT)) (-1355 (((-712 (-1255)) $) NIL T ELT)) (-3928 (((-712 (-1253)) $) NIL T ELT)) (-4400 (((-712 (-1252)) $) NIL T ELT)) (-3212 (((-712 (-562)) $) NIL T ELT)) (-3210 (((-712 (-560)) $) NIL T ELT)) (-1831 (((-712 (-559)) $) NIL T ELT)) (-4029 (((-792) $ (-129)) NIL T ELT)) (-2906 (((-712 (-130)) $) NIL T ELT)) (-1978 (((-112) $) NIL T ELT)) (-4040 (($ (-401)) 14 T ELT) (($ (-1188)) 16 T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2996 (($ $) NIL T ELT))) -(((-590) (-13 (-589) (-631 (-885)) (-10 -8 (-15 -4040 ($ (-401))) (-15 -4040 ($ (-1188))) (-15 -1978 ((-112) $))))) (T -590)) -((-4040 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590)))) (-4040 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-590)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590))))) -(-13 (-589) (-631 (-885)) (-10 -8 (-15 -4040 ($ (-401))) (-15 -4040 ($ (-1188))) (-15 -1978 ((-112) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2142 (($) 7 T CONST)) (-3384 (((-1188) $) NIL T ELT)) (-1697 (($) 6 T CONST)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 15 T ELT)) (-1806 (($) 9 T CONST)) (-1713 (($) 8 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 11 T ELT))) -(((-591) (-13 (-1130) (-10 -8 (-15 -1697 ($) -1528) (-15 -2142 ($) -1528) (-15 -1713 ($) -1528) (-15 -1806 ($) -1528)))) (T -591)) -((-1697 (*1 *1) (-5 *1 (-591))) (-2142 (*1 *1) (-5 *1 (-591))) (-1713 (*1 *1) (-5 *1 (-591))) (-1806 (*1 *1) (-5 *1 (-591)))) -(-13 (-1130) (-10 -8 (-15 -1697 ($) -1528) (-15 -2142 ($) -1528) (-15 -1713 ($) -1528) (-15 -1806 ($) -1528))) -((-3211 (((-112) $ $) NIL T ELT)) (-1786 (((-712 $) (-504)) 21 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3150 (($ (-1188)) 14 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 33 T ELT)) (-2033 (((-215 4 (-130)) $) 24 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 26 T ELT))) -(((-592) (-13 (-1130) (-10 -8 (-15 -3150 ($ (-1188))) (-15 -2033 ((-215 4 (-130)) $)) (-15 -1786 ((-712 $) (-504)))))) (T -592)) -((-3150 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-592)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-712 (-592))) (-5 *1 (-592))))) -(-13 (-1130) (-10 -8 (-15 -3150 ($ (-1188))) (-15 -2033 ((-215 4 (-130)) $)) (-15 -1786 ((-712 $) (-504))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $ (-577)) 75 T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2299 (($ (-1202 (-577)) (-577)) 81 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 66 T ELT)) (-1653 (($ $) 43 T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3890 (((-792) $) 16 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2305 (((-577)) 37 T ELT)) (-2224 (((-577) $) 41 T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-4013 (($ $ (-577)) 24 T ELT)) (-3200 (((-3 $ "failed") $ $) 71 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) 17 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 72 T ELT)) (-4279 (((-1187 (-577)) $) 19 T ELT)) (-1470 (($ $) 26 T ELT)) (-2410 (((-885) $) 102 T ELT) (($ (-577)) 61 T ELT) (($ $) NIL T ELT)) (-3234 (((-792)) 15 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3908 (((-577) $ (-577)) 46 T ELT)) (-2367 (($) 44 T CONST)) (-2378 (($) 21 T CONST)) (-2383 (((-112) $ $) 52 T ELT)) (-2483 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-2471 (($ $ $) 59 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 62 T ELT) (($ $ $) 63 T ELT))) -(((-593 |#1| |#2|) (-892 |#1|) (-577) (-112)) (T -593)) -NIL -(-892 |#1|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 30 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 59 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 $ "failed") $) 95 T ELT)) (-3514 (($ $) 94 T ELT)) (-1912 (($ (-1297 $)) 93 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 44 T ELT)) (-2060 (($) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) 61 T ELT)) (-3390 (((-112) $) NIL T ELT)) (-2202 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) 49 (|has| $ (-380)) ELT)) (-3679 (((-112) $) NIL (|has| $ (-380)) ELT)) (-2755 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 $) $ (-949)) NIL (|has| $ (-380)) ELT) (((-1202 $) $) 104 T ELT)) (-2553 (((-949) $) 67 T ELT)) (-3574 (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-3539 (((-3 (-1202 $) "failed") $ $) NIL (|has| $ (-380)) ELT) (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-4254 (($ $ (-1202 $)) NIL (|has| $ (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-2085 (($ (-949)) 60 T ELT)) (-2267 (((-112) $) 87 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) 28 (|has| $ (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 54 T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-949)) 86 T ELT) (((-854 (-949))) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-3 (-792) "failed") $ $) NIL T ELT) (((-792) $) NIL T ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2776 (((-949) $) 85 T ELT) (((-854 (-949)) $) NIL T ELT)) (-1773 (((-1202 $)) 102 T ELT)) (-1494 (($) 66 T ELT)) (-2513 (($) 50 (|has| $ (-380)) ELT)) (-2119 (((-710 $) (-1297 $)) NIL T ELT) (((-1297 $) $) 91 T ELT)) (-3341 (((-577) $) 40 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) 42 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL T ELT) (($ $) 105 T ELT)) (-3234 (((-792)) 51 T CONST)) (-2525 (((-112) $ $) 107 T ELT)) (-2225 (((-1297 $) (-949)) 97 T ELT) (((-1297 $)) 96 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) 31 T CONST)) (-2378 (($) 27 T CONST)) (-3077 (($ $ (-792)) NIL (|has| $ (-380)) ELT) (($ $) NIL (|has| $ (-380)) ELT)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 34 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-594 |#1|) (-13 (-361) (-340 $) (-632 (-577))) (-949)) (T -594)) -NIL -(-13 (-361) (-340 $) (-632 (-577))) -((-1687 (((-1302) (-1188)) 10 T ELT))) -(((-595) (-10 -7 (-15 -1687 ((-1302) (-1188))))) (T -595)) -((-1687 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-595))))) -(-10 -7 (-15 -1687 ((-1302) (-1188)))) -((-2574 (((-599 |#2|) (-599 |#2|)) 42 T ELT)) (-4198 (((-665 |#2|) (-599 |#2|)) 44 T ELT)) (-4421 ((|#2| (-599 |#2|)) 50 T ELT))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2574 ((-599 |#2|) (-599 |#2|))) (-15 -4198 ((-665 |#2|) (-599 |#2|))) (-15 -4421 (|#2| (-599 |#2|)))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-29 |#1|) (-1232))) (T -596)) -((-4421 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1232))) (-5 *1 (-596 *4 *2)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1232))) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-665 *5)) (-5 *1 (-596 *4 *5)))) (-2574 (*1 *2 *2) (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1232))) (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-596 *3 *4))))) -(-10 -7 (-15 -2574 ((-599 |#2|) (-599 |#2|))) (-15 -4198 ((-665 |#2|) (-599 |#2|))) (-15 -4421 (|#2| (-599 |#2|)))) -((-3609 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 30 T ELT))) -(((-597 |#1| |#2|) (-10 -7 (-15 -3609 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -3609 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3609 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3609 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-375) (-375)) (T -597)) -((-3609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-597 *5 *6)))) (-3609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) (-3609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1827 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| -1827 *6) (|:| |coeff| *6))) (-5 *1 (-597 *5 *6)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6))))) -(-10 -7 (-15 -3609 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -3609 ((-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1827 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3609 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3609 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1824 (($ (-519) (-610)) 14 T ELT)) (-2708 (($ (-519) (-610) $) 16 T ELT)) (-3963 (($ (-519) (-610)) 15 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-1211)) 7 T ELT) (((-1211) $) 6 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-598) (-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -1824 ($ (-519) (-610))) (-15 -3963 ($ (-519) (-610))) (-15 -2708 ($ (-519) (-610) $))))) (T -598)) -((-1824 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-2708 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -1824 ($ (-519) (-610))) (-15 -3963 ($ (-519) (-610))) (-15 -2708 ($ (-519) (-610) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 76 T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-1827 ((|#1| $) 30 T ELT)) (-1779 (((-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-1774 (($ |#1| (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) (-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-1744 (((-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) $) 31 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3293 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1206)) 49 (|has| |#1| (-1068 (-1206))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1366 (((-112) $) 35 T ELT)) (-2030 ((|#1| $ (-1 |#1| |#1|)) 88 T ELT) ((|#1| $ (-1206)) 89 (|has| |#1| (-926 (-1206))) ELT)) (-2410 (((-885) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 18 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 85 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 16 T ELT) (($ (-420 (-577)) $) 41 T ELT) (($ $ (-420 (-577))) NIL T ELT))) -(((-599 |#1|) (-13 (-738 (-420 (-577))) (-1068 |#1|) (-10 -8 (-15 -1774 ($ |#1| (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) (-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1827 (|#1| $)) (-15 -1744 ((-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) $)) (-15 -1779 ((-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1366 ((-112) $)) (-15 -3293 ($ |#1| |#1|)) (-15 -2030 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-926 (-1206))) (-15 -2030 (|#1| $ (-1206))) |%noBranch|) (IF (|has| |#1| (-1068 (-1206))) (-15 -3293 ($ |#1| (-1206))) |%noBranch|))) (-375)) (T -599)) -((-1774 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *2)) (|:| |logand| (-1202 *2))))) (-5 *4 (-665 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-375)) (-5 *1 (-599 *2)))) (-1827 (*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *3)) (|:| |logand| (-1202 *3))))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-3293 (*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-2030 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-2030 (*1 *2 *1 *3) (-12 (-4 *2 (-375)) (-4 *2 (-926 *3)) (-5 *1 (-599 *2)) (-5 *3 (-1206)))) (-3293 (*1 *1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *1 (-599 *2)) (-4 *2 (-1068 *3)) (-4 *2 (-375))))) -(-13 (-738 (-420 (-577))) (-1068 |#1|) (-10 -8 (-15 -1774 ($ |#1| (-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) (-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1827 (|#1| $)) (-15 -1744 ((-665 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 |#1|)) (|:| |logand| (-1202 |#1|)))) $)) (-15 -1779 ((-665 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1366 ((-112) $)) (-15 -3293 ($ |#1| |#1|)) (-15 -2030 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-926 (-1206))) (-15 -2030 (|#1| $ (-1206))) |%noBranch|) (IF (|has| |#1| (-1068 (-1206))) (-15 -3293 ($ |#1| (-1206))) |%noBranch|))) -((-3093 (((-112) |#1|) 16 T ELT)) (-4360 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-1812 (((-2 (|:| -3646 |#1|) (|:| -2182 (-792))) |#1|) 38 T ELT) (((-3 |#1| "failed") |#1| (-792)) 18 T ELT)) (-2657 (((-112) |#1| (-792)) 19 T ELT)) (-3424 ((|#1| |#1|) 42 T ELT)) (-3496 ((|#1| |#1| (-792)) 45 T ELT))) -(((-600 |#1|) (-10 -7 (-15 -2657 ((-112) |#1| (-792))) (-15 -1812 ((-3 |#1| "failed") |#1| (-792))) (-15 -1812 ((-2 (|:| -3646 |#1|) (|:| -2182 (-792))) |#1|)) (-15 -3496 (|#1| |#1| (-792))) (-15 -3093 ((-112) |#1|)) (-15 -4360 ((-3 |#1| "failed") |#1|)) (-15 -3424 (|#1| |#1|))) (-558)) (T -600)) -((-3424 (*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-4360 (*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-3496 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-1812 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3646 *3) (|:| -2182 (-792)))) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-1812 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) -(-10 -7 (-15 -2657 ((-112) |#1| (-792))) (-15 -1812 ((-3 |#1| "failed") |#1| (-792))) (-15 -1812 ((-2 (|:| -3646 |#1|) (|:| -2182 (-792))) |#1|)) (-15 -3496 (|#1| |#1| (-792))) (-15 -3093 ((-112) |#1|)) (-15 -4360 ((-3 |#1| "failed") |#1|)) (-15 -3424 (|#1| |#1|))) -((-3244 (((-1202 |#1|) (-949)) 44 T ELT))) -(((-601 |#1|) (-10 -7 (-15 -3244 ((-1202 |#1|) (-949)))) (-361)) (T -601)) -((-3244 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-601 *4)) (-4 *4 (-361))))) -(-10 -7 (-15 -3244 ((-1202 |#1|) (-949)))) -((-2574 (((-599 (-420 (-980 |#1|))) (-599 (-420 (-980 |#1|)))) 27 T ELT)) (-3491 (((-3 (-327 |#1|) (-665 (-327 |#1|))) (-420 (-980 |#1|)) (-1206)) 34 (|has| |#1| (-148)) ELT)) (-4198 (((-665 (-327 |#1|)) (-599 (-420 (-980 |#1|)))) 19 T ELT)) (-3054 (((-327 |#1|) (-420 (-980 |#1|)) (-1206)) 32 (|has| |#1| (-148)) ELT)) (-4421 (((-327 |#1|) (-599 (-420 (-980 |#1|)))) 21 T ELT))) -(((-602 |#1|) (-10 -7 (-15 -2574 ((-599 (-420 (-980 |#1|))) (-599 (-420 (-980 |#1|))))) (-15 -4198 ((-665 (-327 |#1|)) (-599 (-420 (-980 |#1|))))) (-15 -4421 ((-327 |#1|) (-599 (-420 (-980 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3491 ((-3 (-327 |#1|) (-665 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -3054 ((-327 |#1|) (-420 (-980 |#1|)) (-1206)))) |%noBranch|)) (-13 (-465) (-1068 (-577)) (-659 (-577)))) (T -602)) -((-3054 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *5)) (-5 *1 (-602 *5)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (-327 *5) (-665 (-327 *5)))) (-5 *1 (-602 *5)))) (-4421 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-980 *4)))) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-602 *4)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-980 *4)))) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-665 (-327 *4))) (-5 *1 (-602 *4)))) (-2574 (*1 *2 *2) (-12 (-5 *2 (-599 (-420 (-980 *3)))) (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-602 *3))))) -(-10 -7 (-15 -2574 ((-599 (-420 (-980 |#1|))) (-599 (-420 (-980 |#1|))))) (-15 -4198 ((-665 (-327 |#1|)) (-599 (-420 (-980 |#1|))))) (-15 -4421 ((-327 |#1|) (-599 (-420 (-980 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3491 ((-3 (-327 |#1|) (-665 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -3054 ((-327 |#1|) (-420 (-980 |#1|)) (-1206)))) |%noBranch|)) -((-1583 (((-665 (-710 (-577))) (-665 (-949)) (-665 (-933 (-577)))) 78 T ELT) (((-665 (-710 (-577))) (-665 (-949))) 79 T ELT) (((-710 (-577)) (-665 (-949)) (-933 (-577))) 72 T ELT)) (-3147 (((-792) (-665 (-949))) 69 T ELT))) -(((-603) (-10 -7 (-15 -3147 ((-792) (-665 (-949)))) (-15 -1583 ((-710 (-577)) (-665 (-949)) (-933 (-577)))) (-15 -1583 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -1583 ((-665 (-710 (-577))) (-665 (-949)) (-665 (-933 (-577))))))) (T -603)) -((-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-933 (-577)))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-603)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-603)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-949))) (-5 *4 (-933 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-603)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-792)) (-5 *1 (-603))))) -(-10 -7 (-15 -3147 ((-792) (-665 (-949)))) (-15 -1583 ((-710 (-577)) (-665 (-949)) (-933 (-577)))) (-15 -1583 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -1583 ((-665 (-710 (-577))) (-665 (-949)) (-665 (-933 (-577)))))) -((-2347 (((-665 |#5|) |#5| (-112)) 100 T ELT)) (-2733 (((-112) |#5| (-665 |#5|)) 34 T ELT))) -(((-604 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2347 ((-665 |#5|) |#5| (-112))) (-15 -2733 ((-112) |#5| (-665 |#5|)))) (-13 (-318) (-148)) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3| |#4|)) (T -604)) -((-2733 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1139 *5 *6 *7 *8)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-604 *5 *6 *7 *8 *3)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-665 *3)) (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1139 *5 *6 *7 *8))))) -(-10 -7 (-15 -2347 ((-665 |#5|) |#5| (-112))) (-15 -2733 ((-112) |#5| (-665 |#5|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3664 (((-1165) $) 11 T ELT)) (-3653 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-605) (-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $))))) (T -605)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605))))) -(-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $)))) -((-3211 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-4280 (($ $) 38 T ELT)) (-1900 (($ $) NIL T ELT)) (-4458 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3589 (((-112) $ $) 67 T ELT)) (-3564 (((-112) $ $ (-577)) 62 T ELT)) (-2574 (((-665 $) $ (-145)) 75 T ELT) (((-665 $) $ (-142)) 76 T ELT)) (-3047 (((-112) (-1 (-112) (-145) (-145)) $) NIL T ELT) (((-112) $) NIL (|has| (-145) (-870)) ELT)) (-1461 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-145) (-870))) ELT)) (-2040 (($ (-1 (-112) (-145) (-145)) $) NIL T ELT) (($ $) NIL (|has| (-145) (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 (((-145) $ (-577) (-145)) 59 (|has| $ (-6 -4500)) ELT) (((-145) $ (-1264 (-577)) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-2447 (($ $ (-145)) 79 T ELT) (($ $ (-142)) 80 T ELT)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-1803 (($ $ (-1264 (-577)) $) 57 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2736 (($ (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-3381 (((-145) $ (-577)) NIL T ELT)) (-3613 (((-112) $ $) 88 T ELT)) (-3886 (((-577) (-1 (-112) (-145)) $) NIL T ELT) (((-577) (-145) $) NIL (|has| (-145) (-1130)) ELT) (((-577) (-145) $ (-577)) 64 (|has| (-145) (-1130)) ELT) (((-577) $ $ (-577)) 63 T ELT) (((-577) (-142) $ (-577)) 66 T ELT)) (-2728 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) (-145)) 9 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 32 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-2223 (($ (-1 (-112) (-145) (-145)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-4138 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1962 (((-577) $) 47 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-4036 (((-112) $ $ (-145)) 89 T ELT)) (-4463 (((-792) $ $ (-145)) 86 T ELT)) (-3437 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-145) (-145)) $) NIL T ELT) (($ (-1 (-145) (-145) (-145)) $ $) NIL T ELT)) (-1480 (($ $) 41 T ELT)) (-3028 (($ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2457 (($ $ (-145)) 77 T ELT) (($ $ (-142)) 78 T ELT)) (-3384 (((-1188) $) 43 (|has| (-145) (-1130)) ELT)) (-4272 (($ (-145) $ (-577)) NIL T ELT) (($ $ $ (-577)) 27 T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) 85 (|has| (-145) (-1130)) ELT)) (-4188 (((-145) $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-3482 (($ $ (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-145)) (-665 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-3485 (((-665 (-145)) $) NIL T ELT)) (-2392 (((-112) $) 15 T ELT)) (-3414 (($) 12 T ELT)) (-2435 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) 68 T ELT) (($ $ (-1264 (-577))) 25 T ELT) (($ $ $) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1530 (($ $ $ (-577)) 81 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 20 T ELT)) (-3341 (((-549) $) NIL (|has| (-145) (-632 (-549))) ELT)) (-2422 (($ (-665 (-145))) NIL T ELT)) (-3702 (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-665 $)) 82 T ELT)) (-2410 (($ (-145)) NIL T ELT) (((-885) $) 31 (|has| (-145) (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-1835 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-2383 (((-112) $ $) 17 (|has| (-145) (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-2403 (((-112) $ $) 18 (|has| (-145) (-870)) ELT)) (-3224 (((-792) $) 16 (|has| $ (-6 -4499)) ELT))) -(((-606 |#1|) (-1174) (-577)) (T -606)) -NIL -(-1174) -((-1954 (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1124 |#4|)) 32 T ELT))) -(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1954 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1124 |#4|))) (-15 -1954 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) (-814) (-870) (-569) (-977 |#3| |#1| |#2|)) (T -607)) -((-1954 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) (-1954 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1124 *3)) (-4 *3 (-977 *7 *6 *4)) (-4 *6 (-814)) (-4 *4 (-870)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *6 *4 *7 *3))))) -(-10 -7 (-15 -1954 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1124 |#4|))) (-15 -1954 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 71 T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-577)) 58 T ELT) (($ $ (-577) (-577)) 59 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 65 T ELT)) (-4087 (($ $) 109 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3764 (((-885) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1056 (-864 (-577))) (-1206) |#1| (-420 (-577))) 241 T ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 36 T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2741 (((-112) $) NIL T ELT)) (-3890 (((-577) $) 63 T ELT) (((-577) $ (-577)) 64 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2393 (($ $ (-949)) 83 T ELT)) (-4195 (($ (-1 |#1| (-577)) $) 80 T ELT)) (-2338 (((-112) $) 26 T ELT)) (-2925 (($ |#1| (-577)) 22 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2558 (($ (-1056 (-864 (-577))) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 13 T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3491 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4015 (((-3 $ "failed") $ $ (-112)) 108 T ELT)) (-4355 (($ $ $) 116 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1553 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 15 T ELT)) (-1374 (((-1056 (-864 (-577))) $) 14 T ELT)) (-4013 (($ $ (-577)) 47 T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT)) (-2435 ((|#1| $ (-577)) 62 T ELT) (($ $ $) NIL (|has| (-577) (-1142)) ELT)) (-2030 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-2776 (((-577) $) NIL T ELT)) (-1470 (($ $) 48 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) 29 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 28 (|has| |#1| (-174)) ELT)) (-2778 ((|#1| $ (-577)) 61 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 39 T CONST)) (-4368 ((|#1| $) NIL T ELT)) (-2395 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1846 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2928 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3989 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3547 (($ $) 201 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3158 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1654 (($ $ (-420 (-577))) 177 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4014 (($ $ |#1|) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2127 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3817 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4391 (($ $) 203 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1798 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2742 (($ $) 199 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3565 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1383 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3926 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2238 (($ $) 209 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2039 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4214 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2084 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2874 (($ $) 213 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1715 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2011 (($ $) 215 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4108 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4332 (($ $) 211 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1439 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1425 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2895 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-3908 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-2367 (($) 30 T CONST)) (-2378 (($) 40 T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-2383 (((-112) $ $) 73 T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-2471 (($ $ $) 88 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 111 T ELT)) (* (($ (-949) $) 98 T ELT) (($ (-792) $) 96 T ELT) (($ (-577) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-608 |#1|) (-13 (-1275 |#1| (-577)) (-10 -8 (-15 -2558 ($ (-1056 (-864 (-577))) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -1374 ((-1056 (-864 (-577))) $)) (-15 -1553 ((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -4447 ($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2338 ((-112) $)) (-15 -4195 ($ (-1 |#1| (-577)) $)) (-15 -4015 ((-3 $ "failed") $ $ (-112))) (-15 -4087 ($ $)) (-15 -4355 ($ $ $)) (-15 -3764 ((-885) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1056 (-864 (-577))) (-1206) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $)) (-15 -4014 ($ $ |#1|)) (-15 -1654 ($ $ (-420 (-577)))) (-15 -3817 ($ $)) (-15 -2127 ($ $)) (-15 -3989 ($ $)) (-15 -3926 ($ $)) (-15 -1846 ($ $)) (-15 -3565 ($ $)) (-15 -3158 ($ $)) (-15 -1798 ($ $)) (-15 -2084 ($ $)) (-15 -2895 ($ $)) (-15 -2039 ($ $)) (-15 -1439 ($ $)) (-15 -1715 ($ $)) (-15 -4108 ($ $)) (-15 -2928 ($ $)) (-15 -1383 ($ $)) (-15 -2395 ($ $)) (-15 -2742 ($ $)) (-15 -3547 ($ $)) (-15 -4391 ($ $)) (-15 -4214 ($ $)) (-15 -1425 ($ $)) (-15 -2238 ($ $)) (-15 -4332 ($ $)) (-15 -2874 ($ $)) (-15 -2011 ($ $))) |%noBranch|))) (-1079)) (T -608)) -((-2338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-2558 (*1 *1 *2 *3) (-12 (-5 *2 (-1056 (-864 (-577)))) (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1079)) (-5 *1 (-608 *4)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-1056 (-864 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-4447 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) (-4195 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) (-4015 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) (-4087 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079)))) (-4355 (*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079)))) (-3764 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *6)))) (-5 *4 (-1056 (-864 (-577)))) (-5 *5 (-1206)) (-5 *7 (-420 (-577))) (-4 *6 (-1079)) (-5 *2 (-885)) (-5 *1 (-608 *6)))) (-3491 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1654 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1079)))) (-3817 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2127 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3989 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1846 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3565 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3158 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1798 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2084 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2895 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2039 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1439 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1715 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4108 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2928 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1383 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2395 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2742 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-3547 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4214 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-1425 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2238 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-4332 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2874 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) (-2011 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(-13 (-1275 |#1| (-577)) (-10 -8 (-15 -2558 ($ (-1056 (-864 (-577))) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -1374 ((-1056 (-864 (-577))) $)) (-15 -1553 ((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -4447 ($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2338 ((-112) $)) (-15 -4195 ($ (-1 |#1| (-577)) $)) (-15 -4015 ((-3 $ "failed") $ $ (-112))) (-15 -4087 ($ $)) (-15 -4355 ($ $ $)) (-15 -3764 ((-885) (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1056 (-864 (-577))) (-1206) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $)) (-15 -4014 ($ $ |#1|)) (-15 -1654 ($ $ (-420 (-577)))) (-15 -3817 ($ $)) (-15 -2127 ($ $)) (-15 -3989 ($ $)) (-15 -3926 ($ $)) (-15 -1846 ($ $)) (-15 -3565 ($ $)) (-15 -3158 ($ $)) (-15 -1798 ($ $)) (-15 -2084 ($ $)) (-15 -2895 ($ $)) (-15 -2039 ($ $)) (-15 -1439 ($ $)) (-15 -1715 ($ $)) (-15 -4108 ($ $)) (-15 -2928 ($ $)) (-15 -1383 ($ $)) (-15 -2395 ($ $)) (-15 -2742 ($ $)) (-15 -3547 ($ $)) (-15 -4391 ($ $)) (-15 -4214 ($ $)) (-15 -1425 ($ $)) (-15 -2238 ($ $)) (-15 -4332 ($ $)) (-15 -2874 ($ $)) (-15 -2011 ($ $))) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 63 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4447 (($ (-1187 |#1|)) 9 T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) 44 T ELT)) (-2741 (((-112) $) 56 T ELT)) (-3890 (((-792) $) 61 T ELT) (((-792) $ (-792)) 60 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) 46 (|has| |#1| (-569)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-1187 |#1|) $) 25 T ELT)) (-3234 (((-792)) 55 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) 10 T CONST)) (-2378 (($) 14 T CONST)) (-2383 (((-112) $ $) 24 T ELT)) (-2483 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-2471 (($ $ $) 27 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 53 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-577)) 38 T ELT))) -(((-609 |#1|) (-13 (-1079) (-111 |#1| |#1|) (-10 -8 (-15 -2929 ((-1187 |#1|) $)) (-15 -4447 ($ (-1187 |#1|))) (-15 -2741 ((-112) $)) (-15 -3890 ((-792) $)) (-15 -3890 ((-792) $ (-792))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) (-1079)) (T -609)) -((-2929 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (-4447 (*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-609 *3)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (-3890 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1079))))) -(-13 (-1079) (-111 |#1| |#1|) (-10 -8 (-15 -2929 ((-1187 |#1|) $)) (-15 -4447 ($ (-1187 |#1|))) (-15 -2741 ((-112) $)) (-15 -3890 ((-792) $)) (-15 -3890 ((-792) $ (-792))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3118 (($) 8 T CONST)) (-2710 (($) 7 T CONST)) (-4339 (($ $ (-665 $)) 16 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3909 (($) 6 T CONST)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-1211)) 15 T ELT) (((-1211) $) 10 T ELT)) (-1351 (($) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-610) (-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -3909 ($) -1528) (-15 -2710 ($) -1528) (-15 -3118 ($) -1528) (-15 -1351 ($) -1528) (-15 -4339 ($ $ (-665 $)))))) (T -610)) -((-3909 (*1 *1) (-5 *1 (-610))) (-2710 (*1 *1) (-5 *1 (-610))) (-3118 (*1 *1) (-5 *1 (-610))) (-1351 (*1 *1) (-5 *1 (-610))) (-4339 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-610))) (-5 *1 (-610))))) -(-13 (-1130) (-503 (-1211)) (-10 -8 (-15 -3909 ($) -1528) (-15 -2710 ($) -1528) (-15 -3118 ($) -1528) (-15 -1351 ($) -1528) (-15 -4339 ($ $ (-665 $))))) -((-3609 (((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)) 15 T ELT))) -(((-611 |#1| |#2|) (-10 -7 (-15 -3609 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) (-1247) (-1247)) (T -611)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6))))) -(-10 -7 (-15 -3609 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) -((-3609 (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1187 |#2|)) 20 T ELT) (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-614 |#2|)) 19 T ELT) (((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|)) 18 T ELT))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -3609 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -3609 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-614 |#2|))) (-15 -3609 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1187 |#2|)))) (-1247) (-1247) (-1247)) (T -612)) -((-3609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1187 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) (-5 *1 (-612 *6 *7 *8)))) (-3609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) (-5 *1 (-612 *6 *7 *8)))) (-3609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-614 *8)) (-5 *1 (-612 *6 *7 *8))))) -(-10 -7 (-15 -3609 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -3609 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-614 |#2|))) (-15 -3609 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1187 |#2|)))) -((-3006 ((|#3| |#3| (-665 (-630 |#3|)) (-665 (-1206))) 57 T ELT)) (-2001 (((-171 |#2|) |#3|) 122 T ELT)) (-2927 ((|#3| (-171 |#2|)) 46 T ELT)) (-4131 ((|#2| |#3|) 21 T ELT)) (-2542 ((|#3| |#2|) 35 T ELT))) -(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -2927 (|#3| (-171 |#2|))) (-15 -4131 (|#2| |#3|)) (-15 -2542 (|#3| |#2|)) (-15 -2001 ((-171 |#2|) |#3|)) (-15 -3006 (|#3| |#3| (-665 (-630 |#3|)) (-665 (-1206))))) (-569) (-13 (-443 |#1|) (-1032) (-1232)) (-13 (-443 (-171 |#1|)) (-1032) (-1232))) (T -613)) -((-3006 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-665 (-1206))) (-4 *2 (-13 (-443 (-171 *5)) (-1032) (-1232))) (-4 *5 (-569)) (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1032) (-1232))))) (-2001 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) (-4 *5 (-13 (-443 *4) (-1032) (-1232))) (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232))))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1032) (-1232))))) (-4131 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) (-5 *1 (-613 *4 *2 *3)) (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232))))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232))) (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) (-5 *1 (-613 *4 *5 *2))))) -(-10 -7 (-15 -2927 (|#3| (-171 |#2|))) (-15 -4131 (|#2| |#3|)) (-15 -2542 (|#3| |#2|)) (-15 -2001 ((-171 |#2|) |#3|)) (-15 -3006 (|#3| |#3| (-665 (-630 |#3|)) (-665 (-1206))))) -((-4232 (($ (-1 (-112) |#1|) $) 17 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4168 (($ (-1 |#1| |#1|) |#1|) 9 T ELT)) (-4210 (($ (-1 (-112) |#1|) $) 13 T ELT)) (-4221 (($ (-1 (-112) |#1|) $) 15 T ELT)) (-2422 (((-1187 |#1|) $) 18 T ELT)) (-2410 (((-885) $) NIL T ELT))) -(((-614 |#1|) (-13 (-631 (-885)) (-10 -8 (-15 -3609 ($ (-1 |#1| |#1|) $)) (-15 -4210 ($ (-1 (-112) |#1|) $)) (-15 -4221 ($ (-1 (-112) |#1|) $)) (-15 -4232 ($ (-1 (-112) |#1|) $)) (-15 -4168 ($ (-1 |#1| |#1|) |#1|)) (-15 -2422 ((-1187 |#1|) $)))) (-1247)) (T -614)) -((-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-4210 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-4221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-4232 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-4168 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1247))))) -(-13 (-631 (-885)) (-10 -8 (-15 -3609 ($ (-1 |#1| |#1|) $)) (-15 -4210 ($ (-1 (-112) |#1|) $)) (-15 -4221 ($ (-1 (-112) |#1|) $)) (-15 -4232 ($ (-1 (-112) |#1|) $)) (-15 -4168 ($ (-1 |#1| |#1|) |#1|)) (-15 -2422 ((-1187 |#1|) $)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1525 (($ (-792)) NIL (|has| |#1| (-23)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-710 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2323 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3490 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3511 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4437 (($ $ $) NIL (|has| |#1| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) NIL T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2483 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-747)) ELT) (($ $ |#1|) NIL (|has| |#1| (-747)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-615 |#1| |#2|) (-1295 |#1|) (-1247) (-577)) (T -615)) -NIL -(-1295 |#1|) -((-3425 (((-1302) $ |#2| |#2|) 35 T ELT)) (-3167 ((|#2| $) 23 T ELT)) (-1962 ((|#2| $) 21 T ELT)) (-3437 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3609 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4188 ((|#3| $) 26 T ELT)) (-3482 (($ $ |#3|) 33 T ELT)) (-3153 (((-112) |#3| $) 17 T ELT)) (-3485 (((-665 |#3|) $) 15 T ELT)) (-2435 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-616 |#1| |#2| |#3|) (-10 -8 (-15 -3425 ((-1302) |#1| |#2| |#2|)) (-15 -3482 (|#1| |#1| |#3|)) (-15 -4188 (|#3| |#1|)) (-15 -3167 (|#2| |#1|)) (-15 -1962 (|#2| |#1|)) (-15 -3153 ((-112) |#3| |#1|)) (-15 -3485 ((-665 |#3|) |#1|)) (-15 -2435 (|#3| |#1| |#2|)) (-15 -2435 (|#3| |#1| |#2| |#3|)) (-15 -3437 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3609 (|#1| (-1 |#3| |#3|) |#1|))) (-617 |#2| |#3|) (-1130) (-1247)) (T -616)) -NIL -(-10 -8 (-15 -3425 ((-1302) |#1| |#2| |#2|)) (-15 -3482 (|#1| |#1| |#3|)) (-15 -4188 (|#3| |#1|)) (-15 -3167 (|#2| |#1|)) (-15 -1962 (|#2| |#1|)) (-15 -3153 ((-112) |#3| |#1|)) (-15 -3485 ((-665 |#3|) |#1|)) (-15 -2435 (|#3| |#1| |#2|)) (-15 -2435 (|#3| |#1| |#2| |#3|)) (-15 -3437 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3609 (|#1| (-1 |#3| |#3|) |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-3425 (((-1302) $ |#1| |#1|) 41 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4500)) ELT)) (-2762 (($) 7 T CONST)) (-3448 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) 52 T ELT)) (-2728 (((-665 |#2|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 ((|#1| $) 44 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#2|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 ((|#1| $) 45 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#2| (-1130)) ELT)) (-3887 (((-665 |#1|) $) 47 T ELT)) (-1593 (((-112) |#1| $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| |#2| (-1130)) ELT)) (-4188 ((|#2| $) 43 (|has| |#1| (-870)) ELT)) (-3482 (($ $ |#2|) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#2| $ |#1| |#2|) 51 T ELT) ((|#2| $ |#1|) 50 T ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) 29 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#2| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-617 |#1| |#2|) (-141) (-1130) (-1247)) (T -617)) -((-3485 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-665 *4)))) (-1593 (*1 *2 *3 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-112)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-665 *3)))) (-3153 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1130)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) (-4 *2 (-870)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) (-4 *2 (-870)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) (-4 *3 (-870)) (-4 *2 (-1247)))) (-3482 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) (-3425 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) (-5 *2 (-1302))))) -(-13 (-502 |t#2|) (-299 |t#1| |t#2|) (-10 -8 (-15 -3485 ((-665 |t#2|) $)) (-15 -1593 ((-112) |t#1| $)) (-15 -3887 ((-665 |t#1|) $)) (IF (|has| |t#2| (-1130)) (IF (|has| $ (-6 -4499)) (-15 -3153 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-870)) (PROGN (-15 -1962 (|t#1| $)) (-15 -3167 (|t#1| $)) (-15 -4188 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4500)) (PROGN (-15 -3482 ($ $ |t#2|)) (-15 -3425 ((-1302) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#2| (-1130)) (|has| |#2| (-102))) ((-631 (-885)) -2229 (|has| |#2| (-1130)) (|has| |#2| (-631 (-885)))) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-1130) |has| |#2| (-1130)) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) (((-1246) $) 14 T ELT) (($ (-665 (-1246))) 13 T ELT)) (-1618 (((-665 (-1246)) $) 10 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-618) (-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -2410 ($ (-665 (-1246)))) (-15 -1618 ((-665 (-1246)) $))))) (T -618)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618))))) -(-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -2410 ($ (-665 (-1246)))) (-15 -1618 ((-665 (-1246)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2117 (((-3 $ "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1985 (((-1297 (-710 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 (-710 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3955 (((-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2762 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3666 (((-3 $ "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2470 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1677 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1826 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1488 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3185 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1380 (($ $ (-949)) NIL T ELT)) (-2932 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2993 (((-1202 |#1|) $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2829 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3661 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1550 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1912 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4281 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1875 (((-949)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3506 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3328 (($ $ (-949)) NIL T ELT)) (-3842 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3195 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3950 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2249 (((-3 $ "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2164 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4470 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3065 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3258 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-4235 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1748 (($ $ (-949)) NIL T ELT)) (-1591 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2369 (((-1202 |#1|) $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3570 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3163 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3677 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4404 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2027 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1796 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1342 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2435 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2119 (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3341 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3463 (((-665 (-980 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-665 (-980 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4365 (($ $ $) NIL T ELT)) (-2137 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2410 (((-885) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3898 (((-665 (-1297 |#1|))) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3899 (($ $ $ $) NIL T ELT)) (-1984 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4177 (($ (-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1416 (($ $ $) NIL T ELT)) (-2989 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4176 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2102 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2367 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 24 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) 19 T ELT) (($ |#1| $) NIL T ELT))) -(((-619 |#1| |#2|) (-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -2410 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-765 |#1|)) (T -619)) -((-2410 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-765 *3))))) -(-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -2410 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-620) (-13 (-1130) (-503 (-130)))) (T -620)) -NIL -(-13 (-1130) (-503 (-130))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3715 (($) 12 T CONST)) (-2815 (($) 10 T CONST)) (-2135 (($) 13 T CONST)) (-3792 (($) 11 T CONST)) (-2491 (($) 14 T CONST)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-621) (-13 (-1130) (-682) (-10 -8 (-15 -2815 ($) -1528) (-15 -3792 ($) -1528) (-15 -3715 ($) -1528) (-15 -2135 ($) -1528) (-15 -2491 ($) -1528)))) (T -621)) -((-2815 (*1 *1) (-5 *1 (-621))) (-3792 (*1 *1) (-5 *1 (-621))) (-3715 (*1 *1) (-5 *1 (-621))) (-2135 (*1 *1) (-5 *1 (-621))) (-2491 (*1 *1) (-5 *1 (-621)))) -(-13 (-1130) (-682) (-10 -8 (-15 -2815 ($) -1528) (-15 -3792 ($) -1528) (-15 -3715 ($) -1528) (-15 -2135 ($) -1528) (-15 -2491 ($) -1528))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1928 (($) 11 T CONST)) (-3818 (($) 17 T CONST)) (-3007 (($) 21 T CONST)) (-4410 (($) 19 T CONST)) (-1809 (($) 14 T CONST)) (-3126 (($) 20 T CONST)) (-1596 (($) 12 T CONST)) (-3492 (($) 13 T CONST)) (-2481 (($) 18 T CONST)) (-3232 (($) 15 T CONST)) (-2812 (($) 16 T CONST)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (((-130) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-622) (-13 (-1130) (-631 (-130)) (-10 -8 (-15 -1928 ($) -1528) (-15 -1596 ($) -1528) (-15 -3492 ($) -1528) (-15 -1809 ($) -1528) (-15 -3232 ($) -1528) (-15 -2812 ($) -1528) (-15 -3818 ($) -1528) (-15 -2481 ($) -1528) (-15 -4410 ($) -1528) (-15 -3126 ($) -1528) (-15 -3007 ($) -1528)))) (T -622)) -((-1928 (*1 *1) (-5 *1 (-622))) (-1596 (*1 *1) (-5 *1 (-622))) (-3492 (*1 *1) (-5 *1 (-622))) (-1809 (*1 *1) (-5 *1 (-622))) (-3232 (*1 *1) (-5 *1 (-622))) (-2812 (*1 *1) (-5 *1 (-622))) (-3818 (*1 *1) (-5 *1 (-622))) (-2481 (*1 *1) (-5 *1 (-622))) (-4410 (*1 *1) (-5 *1 (-622))) (-3126 (*1 *1) (-5 *1 (-622))) (-3007 (*1 *1) (-5 *1 (-622)))) -(-13 (-1130) (-631 (-130)) (-10 -8 (-15 -1928 ($) -1528) (-15 -1596 ($) -1528) (-15 -3492 ($) -1528) (-15 -1809 ($) -1528) (-15 -3232 ($) -1528) (-15 -2812 ($) -1528) (-15 -3818 ($) -1528) (-15 -2481 ($) -1528) (-15 -4410 ($) -1528) (-15 -3126 ($) -1528) (-15 -3007 ($) -1528))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1843 (($) 15 T CONST)) (-4136 (($) 16 T CONST)) (-1601 (($) 13 T CONST)) (-2815 (($) 10 T CONST)) (-3846 (($) 12 T CONST)) (-4245 (($) 11 T CONST)) (-3792 (($) 14 T CONST)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-623) (-13 (-1130) (-682) (-10 -8 (-15 -2815 ($) -1528) (-15 -4245 ($) -1528) (-15 -3846 ($) -1528) (-15 -1601 ($) -1528) (-15 -3792 ($) -1528) (-15 -1843 ($) -1528) (-15 -4136 ($) -1528)))) (T -623)) -((-2815 (*1 *1) (-5 *1 (-623))) (-4245 (*1 *1) (-5 *1 (-623))) (-3846 (*1 *1) (-5 *1 (-623))) (-1601 (*1 *1) (-5 *1 (-623))) (-3792 (*1 *1) (-5 *1 (-623))) (-1843 (*1 *1) (-5 *1 (-623))) (-4136 (*1 *1) (-5 *1 (-623)))) -(-13 (-1130) (-682) (-10 -8 (-15 -2815 ($) -1528) (-15 -4245 ($) -1528) (-15 -3846 ($) -1528) (-15 -1601 ($) -1528) (-15 -3792 ($) -1528) (-15 -1843 ($) -1528) (-15 -4136 ($) -1528))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4157 (($) 15 T CONST)) (-1457 (($) 18 T CONST)) (-1601 (($) 13 T CONST)) (-2815 (($) 10 T CONST)) (-3846 (($) 12 T CONST)) (-4245 (($) 11 T CONST)) (-4231 (($) 16 T CONST)) (-3792 (($) 14 T CONST)) (-2491 (($) 17 T CONST)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-624) (-13 (-1130) (-682) (-10 -8 (-15 -2815 ($) -1528) (-15 -4245 ($) -1528) (-15 -3846 ($) -1528) (-15 -1601 ($) -1528) (-15 -3792 ($) -1528) (-15 -4157 ($) -1528) (-15 -4231 ($) -1528) (-15 -2491 ($) -1528) (-15 -1457 ($) -1528)))) (T -624)) -((-2815 (*1 *1) (-5 *1 (-624))) (-4245 (*1 *1) (-5 *1 (-624))) (-3846 (*1 *1) (-5 *1 (-624))) (-1601 (*1 *1) (-5 *1 (-624))) (-3792 (*1 *1) (-5 *1 (-624))) (-4157 (*1 *1) (-5 *1 (-624))) (-4231 (*1 *1) (-5 *1 (-624))) (-2491 (*1 *1) (-5 *1 (-624))) (-1457 (*1 *1) (-5 *1 (-624)))) -(-13 (-1130) (-682) (-10 -8 (-15 -2815 ($) -1528) (-15 -4245 ($) -1528) (-15 -3846 ($) -1528) (-15 -1601 ($) -1528) (-15 -3792 ($) -1528) (-15 -4157 ($) -1528) (-15 -4231 ($) -1528) (-15 -2491 ($) -1528) (-15 -1457 ($) -1528))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 19 T ELT) (($ (-620)) 12 T ELT) (((-620) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-625) (-13 (-1130) (-503 (-620)) (-503 (-130)))) (T -625)) -NIL -(-13 (-1130) (-503 (-620)) (-503 (-130))) -((-3211 (((-112) $ $) NIL T ELT)) (-3456 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) 39 T ELT)) (-3735 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-3425 (((-1302) $ (-1188) (-1188)) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-1188) |#1|) 49 T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#1| "failed") (-1188) $) 52 T ELT)) (-2762 (($) NIL T CONST)) (-4216 (($ $ (-1188)) 25 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT)) (-1991 (((-3 |#1| "failed") (-1188) $) 53 T ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2736 (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT)) (-2511 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT)) (-2607 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) 38 T ELT)) (-3448 ((|#1| $ (-1188) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-1188)) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1781 (($ $) 54 T ELT)) (-2258 (($ (-401)) 23 T ELT) (($ (-401) (-1188)) 22 T ELT)) (-4105 (((-401) $) 40 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (((-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT)) (-1962 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3242 (((-665 (-1188)) $) 45 T ELT)) (-2404 (((-112) (-1188) $) NIL T ELT)) (-1368 (((-1188) $) 41 T ELT)) (-3398 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL T ELT)) (-3887 (((-665 (-1188)) $) NIL T ELT)) (-1593 (((-112) (-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 ((|#1| $) NIL (|has| (-1188) (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) "failed") (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ $ (-665 (-305 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 43 T ELT)) (-2435 ((|#1| $ (-1188) |#1|) NIL T ELT) ((|#1| $ (-1188)) 48 T ELT)) (-2427 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (((-792) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (((-792) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT)) (-2410 (((-885) $) 21 T ELT)) (-2996 (($ $) 26 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3236 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 20 T ELT)) (-3224 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) -(((-626 |#1|) (-13 (-376 (-401) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) (-1223 (-1188) |#1|) (-10 -8 (-6 -4499) (-15 -1781 ($ $)))) (-1130)) (T -626)) -((-1781 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1130))))) -(-13 (-376 (-401) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) (-1223 (-1188) |#1|) (-10 -8 (-6 -4499) (-15 -1781 ($ $)))) -((-2318 (((-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) $) 16 T ELT)) (-3242 (((-665 |#2|) $) 20 T ELT)) (-2404 (((-112) |#2| $) 12 T ELT))) -(((-627 |#1| |#2| |#3|) (-10 -8 (-15 -3242 ((-665 |#2|) |#1|)) (-15 -2404 ((-112) |#2| |#1|)) (-15 -2318 ((-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|))) (-628 |#2| |#3|) (-1130) (-1130)) (T -627)) -NIL -(-10 -8 (-15 -3242 ((-665 |#2|) |#1|)) (-15 -2404 ((-112) |#2| |#1|)) (-15 -2318 ((-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|))) -((-3211 (((-112) $ $) 20 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 56 (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2762 (($) 7 T CONST)) (-3860 (($ $) 59 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 47 (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 57 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 54 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 53 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-3242 (((-665 |#1|) $) 64 T ELT)) (-2404 (((-112) |#1| $) 65 T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 40 T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 41 T ELT)) (-4312 (((-1150) $) 22 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 52 T ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 42 T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) 27 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 26 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 25 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 24 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 49 T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 51 T ELT)) (-2410 (((-885) $) 18 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 43 T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-628 |#1| |#2|) (-141) (-1130) (-1130)) (T -628)) -((-2404 (*1 *2 *3 *1) (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-112)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-5 *2 (-665 *3)))) (-1991 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-3255 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(-13 (-232 (-2 (|:| -3171 |t#1|) (|:| -2753 |t#2|))) (-10 -8 (-15 -2404 ((-112) |t#1| $)) (-15 -3242 ((-665 |t#1|) $)) (-15 -1991 ((-3 |t#2| "failed") |t#1| $)) (-15 -3255 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) ((-102) -2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ((-631 (-885)) -2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885)))) ((-152 #0#) . T) ((-632 (-549)) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-320 #0#) -12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ((-502 #0#) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ((-1130) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) ((-1247) . T)) -((-2490 (((-630 |#2|) |#1|) 17 T ELT)) (-3111 (((-3 |#1| "failed") (-630 |#2|)) 21 T ELT))) -(((-629 |#1| |#2|) (-10 -7 (-15 -2490 ((-630 |#2|) |#1|)) (-15 -3111 ((-3 |#1| "failed") (-630 |#2|)))) (-1130) (-1130)) (T -629)) -((-3111 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) (-5 *1 (-629 *2 *4)))) (-2490 (*1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) -(-10 -7 (-15 -2490 ((-630 |#2|) |#1|)) (-15 -3111 ((-3 |#1| "failed") (-630 |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4474 (((-3 (-1206) "failed") $) 46 T ELT)) (-3058 (((-1302) $ (-792)) 22 T ELT)) (-3886 (((-792) $) 20 T ELT)) (-4396 (((-115) $) 9 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2593 (($ (-115) (-665 |#1|) (-792)) 32 T ELT) (($ (-1206)) 33 T ELT)) (-4450 (((-112) $ (-115)) 15 T ELT) (((-112) $ (-1206)) 13 T ELT)) (-1736 (((-792) $) 17 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3341 (((-916 (-577)) $) 95 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 102 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-549) $) 88 (|has| |#1| (-632 (-549))) ELT)) (-2410 (((-885) $) 72 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4278 (((-665 |#1|) $) 19 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 51 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 53 T ELT))) -(((-630 |#1|) (-13 (-133) (-870) (-908 |#1|) (-10 -8 (-15 -4396 ((-115) $)) (-15 -4278 ((-665 |#1|) $)) (-15 -1736 ((-792) $)) (-15 -2593 ($ (-115) (-665 |#1|) (-792))) (-15 -2593 ($ (-1206))) (-15 -4474 ((-3 (-1206) "failed") $)) (-15 -4450 ((-112) $ (-115))) (-15 -4450 ((-112) $ (-1206))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) (-1130)) (T -630)) -((-4396 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-2593 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-1130)) (-5 *1 (-630 *5)))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-4474 (*1 *2 *1) (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) (-4450 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-630 *4)) (-4 *4 (-1130)))) (-4450 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-112)) (-5 *1 (-630 *4)) (-4 *4 (-1130))))) -(-13 (-133) (-870) (-908 |#1|) (-10 -8 (-15 -4396 ((-115) $)) (-15 -4278 ((-665 |#1|) $)) (-15 -1736 ((-792) $)) (-15 -2593 ($ (-115) (-665 |#1|) (-792))) (-15 -2593 ($ (-1206))) (-15 -4474 ((-3 (-1206) "failed") $)) (-15 -4450 ((-112) $ (-115))) (-15 -4450 ((-112) $ (-1206))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) -((-2410 ((|#1| $) 6 T ELT))) -(((-631 |#1|) (-141) (-1247)) (T -631)) -((-2410 (*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1247))))) -(-13 (-10 -8 (-15 -2410 (|t#1| $)))) -((-3341 ((|#1| $) 6 T ELT))) -(((-632 |#1|) (-141) (-1247)) (T -632)) -((-3341 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247))))) -(-13 (-10 -8 (-15 -3341 (|t#1| $)))) -((-3725 (((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)) 15 T ELT) (((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 16 T ELT))) -(((-633 |#1| |#2|) (-10 -7 (-15 -3725 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -3725 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -633)) -((-3725 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-1202 (-420 *6))) (-5 *1 (-633 *5 *6)) (-5 *3 (-420 *6)))) (-3725 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-1202 (-420 *5))) (-5 *1 (-633 *4 *5)) (-5 *3 (-420 *5))))) -(-10 -7 (-15 -3725 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -3725 ((-3 (-1202 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) -((-2410 (($ |#1|) 6 T ELT))) -(((-634 |#1|) (-141) (-1247)) (T -634)) -((-2410 (*1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1247))))) -(-13 (-10 -8 (-15 -2410 ($ |t#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-3864 (($) 14 T CONST)) (-4301 (($) 15 T CONST)) (-2331 (($ $ $) 29 T ELT)) (-2308 (($ $) 27 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4265 (($ $ $) 30 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2434 (($) 11 T CONST)) (-2211 (($ $ $) 31 T ELT)) (-2410 (((-885) $) 35 T ELT)) (-2354 (((-112) $ (|[\|\|]| -2434)) 24 T ELT) (((-112) $ (|[\|\|]| -3864)) 26 T ELT) (((-112) $ (|[\|\|]| -4301)) 21 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2319 (($ $ $) 28 T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2383 (((-112) $ $) 18 T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-635) (-13 (-997) (-10 -8 (-15 -3864 ($) -1528) (-15 -2354 ((-112) $ (|[\|\|]| -2434))) (-15 -2354 ((-112) $ (|[\|\|]| -3864))) (-15 -2354 ((-112) $ (|[\|\|]| -4301)))))) (T -635)) -((-3864 (*1 *1) (-5 *1 (-635))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2434)) (-5 *2 (-112)) (-5 *1 (-635)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3864)) (-5 *2 (-112)) (-5 *1 (-635)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4301)) (-5 *2 (-112)) (-5 *1 (-635))))) -(-13 (-997) (-10 -8 (-15 -3864 ($) -1528) (-15 -2354 ((-112) $ (|[\|\|]| -2434))) (-15 -2354 ((-112) $ (|[\|\|]| -3864))) (-15 -2354 ((-112) $ (|[\|\|]| -4301))))) -((-3341 (($ |#1|) 6 T ELT))) -(((-636 |#1|) (-141) (-1247)) (T -636)) -((-3341 (*1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1247))))) -(-13 (-10 -8 (-15 -3341 ($ |t#1|)))) -((-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-637 |#1| |#2|) (-10 -8 (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-638 |#2|) (-1079)) (T -637)) -NIL -(-10 -8 (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 41 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#1| $) 42 T ELT))) -(((-638 |#1|) (-141) (-1079)) (T -638)) -((-2410 (*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1079))))) -(-13 (-1079) (-669 |t#1|) (-10 -8 (-15 -2410 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-747) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| |#1| (-869)) ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2518 ((|#1| $) 13 T ELT)) (-1434 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2528 ((|#3| $) 15 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3234 (((-792)) 20 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#1| (-869)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) 12 T CONST)) (-2440 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2494 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-639 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (-15 -2494 ($ $ |#3|)) (-15 -2494 ($ |#1| |#3|)) (-15 -2518 (|#1| $)) (-15 -2528 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-747) |#2|)) (T -639)) -((-2494 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-747) *4)))) (-2494 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-639 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-747) *4)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-639 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-747) *3)))) (-2528 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (-15 -2494 ($ $ |#3|)) (-15 -2494 ($ |#1| |#3|)) (-15 -2518 (|#1| $)) (-15 -2528 (|#3| $)))) -((-1852 ((|#2| |#2| (-1206) (-1206)) 16 T ELT))) -(((-640 |#1| |#2|) (-10 -7 (-15 -1852 (|#2| |#2| (-1206) (-1206)))) (-13 (-318) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-987) (-29 |#1|))) (T -640)) -((-1852 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-1232) (-987) (-29 *4)))))) -(-10 -7 (-15 -1852 (|#2| |#2| (-1206) (-1206)))) -((-3211 (((-112) $ $) 64 T ELT)) (-1516 (((-112) $) 58 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-4253 ((|#1| $) 55 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1778 (((-2 (|:| -2129 $) (|:| -2075 (-420 |#2|))) (-420 |#2|)) 111 (|has| |#1| (-375)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 99 T ELT) (((-3 |#2| "failed") $) 95 T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) 27 T ELT)) (-4281 (((-3 $ "failed") $) 88 T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3890 (((-577) $) 22 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) 40 T ELT)) (-2925 (($ |#1| (-577)) 24 T ELT)) (-3109 ((|#1| $) 57 T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) 101 (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3200 (((-3 $ "failed") $ $) 93 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2442 (((-792) $) 115 (|has| |#1| (-375)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 114 (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-2776 (((-577) $) 38 T ELT)) (-3341 (((-420 |#2|) $) 47 T ELT)) (-2410 (((-885) $) 69 T ELT) (($ (-577)) 35 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-2778 ((|#1| $ (-577)) 72 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) 9 T CONST)) (-2378 (($) 14 T CONST)) (-1675 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) 21 T ELT)) (-2483 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 90 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-641 |#1| |#2|) (-13 (-233 |#2|) (-569) (-632 (-420 |#2|)) (-424 |#1|) (-1068 |#2|) (-10 -8 (-15 -2338 ((-112) $)) (-15 -2776 ((-577) $)) (-15 -3890 ((-577) $)) (-15 -3134 ($ $)) (-15 -3109 (|#1| $)) (-15 -4253 (|#1| $)) (-15 -2778 (|#1| $ (-577))) (-15 -2925 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -1778 ((-2 (|:| -2129 $) (|:| -2075 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) (-569) (-1273 |#1|)) (T -641)) -((-2338 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-641 *3 *4)) (-4 *4 (-1273 *3)))) (-2776 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) (-4 *4 (-1273 *3)))) (-3890 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) (-4 *4 (-1273 *3)))) (-3134 (*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) (-3109 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) (-4253 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) (-4 *4 (-1273 *2)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) (-4 *4 (-1273 *2)))) (-1778 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2129 (-641 *4 *5)) (|:| -2075 (-420 *5)))) (-5 *1 (-641 *4 *5)) (-5 *3 (-420 *5))))) -(-13 (-233 |#2|) (-569) (-632 (-420 |#2|)) (-424 |#1|) (-1068 |#2|) (-10 -8 (-15 -2338 ((-112) $)) (-15 -2776 ((-577) $)) (-15 -3890 ((-577) $)) (-15 -3134 ($ $)) (-15 -3109 (|#1| $)) (-15 -4253 (|#1| $)) (-15 -2778 (|#1| $ (-577))) (-15 -2925 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -1778 ((-2 (|:| -2129 $) (|:| -2075 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) -((-4202 (((-665 |#6|) (-665 |#4|) (-112)) 54 T ELT)) (-2358 ((|#6| |#6|) 48 T ELT))) -(((-642 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2358 (|#6| |#6|)) (-15 -4202 ((-665 |#6|) (-665 |#4|) (-112)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|) (-1139 |#1| |#2| |#3| |#4|)) (T -642)) -((-4202 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *10)) (-5 *1 (-642 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *10 (-1139 *5 *6 *7 *8)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-642 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *2 (-1139 *3 *4 *5 *6))))) -(-10 -7 (-15 -2358 (|#6| |#6|)) (-15 -4202 ((-665 |#6|) (-665 |#4|) (-112)))) -((-2109 (((-112) |#3| (-792) (-665 |#3|)) 29 T ELT)) (-4097 (((-3 (-2 (|:| |polfac| (-665 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-665 (-1202 |#3|)))) "failed") |#3| (-665 (-1202 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1679 (-665 (-2 (|:| |irr| |#4|) (|:| -2938 (-577)))))) (-665 |#3|) (-665 |#1|) (-665 |#3|)) 69 T ELT))) -(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2109 ((-112) |#3| (-792) (-665 |#3|))) (-15 -4097 ((-3 (-2 (|:| |polfac| (-665 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-665 (-1202 |#3|)))) "failed") |#3| (-665 (-1202 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1679 (-665 (-2 (|:| |irr| |#4|) (|:| -2938 (-577)))))) (-665 |#3|) (-665 |#1|) (-665 |#3|)))) (-870) (-814) (-318) (-977 |#3| |#2| |#1|)) (T -643)) -((-4097 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1679 (-665 (-2 (|:| |irr| *10) (|:| -2938 (-577))))))) (-5 *6 (-665 *3)) (-5 *7 (-665 *8)) (-4 *8 (-870)) (-4 *3 (-318)) (-4 *10 (-977 *3 *9 *8)) (-4 *9 (-814)) (-5 *2 (-2 (|:| |polfac| (-665 *10)) (|:| |correct| *3) (|:| |corrfact| (-665 (-1202 *3))))) (-5 *1 (-643 *8 *9 *3 *10)) (-5 *4 (-665 (-1202 *3))))) (-2109 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-792)) (-5 *5 (-665 *3)) (-4 *3 (-318)) (-4 *6 (-870)) (-4 *7 (-814)) (-5 *2 (-112)) (-5 *1 (-643 *6 *7 *3 *8)) (-4 *8 (-977 *3 *7 *6))))) -(-10 -7 (-15 -2109 ((-112) |#3| (-792) (-665 |#3|))) (-15 -4097 ((-3 (-2 (|:| |polfac| (-665 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-665 (-1202 |#3|)))) "failed") |#3| (-665 (-1202 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1679 (-665 (-2 (|:| |irr| |#4|) (|:| -2938 (-577)))))) (-665 |#3|) (-665 |#1|) (-665 |#3|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3664 (((-1165) $) 11 T ELT)) (-3653 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-644) (-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $))))) (T -644)) -((-3653 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644))))) -(-13 (-1113) (-10 -8 (-15 -3653 ((-1165) $)) (-15 -3664 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4417 (((-665 |#1|) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2955 (($ $) 77 T ELT)) (-3863 (((-685 |#1| |#2|) $) 60 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 81 T ELT)) (-3961 (((-665 (-305 |#2|)) $ $) 42 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3585 (($ (-685 |#1| |#2|)) 56 T ELT)) (-2744 (($ $ $) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2410 (((-885) $) 66 T ELT) (((-1312 |#1| |#2|) $) NIL T ELT) (((-1317 |#1| |#2|) $) 74 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 61 T CONST)) (-1749 (((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-3406 (((-665 (-685 |#1| |#2|)) (-665 |#1|)) 73 T ELT)) (-2662 (((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-2383 (((-112) $ $) 62 T ELT)) (-2494 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-645 |#1| |#2| |#3|) (-13 (-486) (-10 -8 (-15 -3585 ($ (-685 |#1| |#2|))) (-15 -3863 ((-685 |#1| |#2|) $)) (-15 -2662 ((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $)) (-15 -2410 ((-1312 |#1| |#2|) $)) (-15 -2410 ((-1317 |#1| |#2|) $)) (-15 -2955 ($ $)) (-15 -4417 ((-665 |#1|) $)) (-15 -3406 ((-665 (-685 |#1| |#2|)) (-665 |#1|))) (-15 -1749 ((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $)) (-15 -3961 ((-665 (-305 |#2|)) $ $)))) (-870) (-13 (-174) (-738 (-420 (-577)))) (-949)) (T -645)) -((-3585 (*1 *1 *2) (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-5 *1 (-645 *3 *4 *5)) (-14 *5 (-949)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-685 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| (-917 *3)) (|:| |c| *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1317 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-2955 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-13 (-174) (-738 (-420 (-577))))) (-14 *4 (-949)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-685 *4 *5))) (-5 *1 (-645 *4 *5 *6)) (-4 *5 (-13 (-174) (-738 (-420 (-577))))) (-14 *6 (-949)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| (-693 *3)) (|:| |c| *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) (-3961 (*1 *2 *1 *1) (-12 (-5 *2 (-665 (-305 *4))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949))))) -(-13 (-486) (-10 -8 (-15 -3585 ($ (-685 |#1| |#2|))) (-15 -3863 ((-685 |#1| |#2|) $)) (-15 -2662 ((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $)) (-15 -2410 ((-1312 |#1| |#2|) $)) (-15 -2410 ((-1317 |#1| |#2|) $)) (-15 -2955 ($ $)) (-15 -4417 ((-665 |#1|) $)) (-15 -3406 ((-665 (-685 |#1| |#2|)) (-665 |#1|))) (-15 -1749 ((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $)) (-15 -3961 ((-665 (-305 |#2|)) $ $)))) -((-4202 (((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)) 103 T ELT) (((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112)) 77 T ELT)) (-4140 (((-112) (-665 (-801 |#1| (-887 |#2|)))) 26 T ELT)) (-3094 (((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)) 102 T ELT)) (-2538 (((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112)) 76 T ELT)) (-3849 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|)))) 30 T ELT)) (-2813 (((-3 (-665 (-801 |#1| (-887 |#2|))) "failed") (-665 (-801 |#1| (-887 |#2|)))) 29 T ELT))) -(((-646 |#1| |#2|) (-10 -7 (-15 -4140 ((-112) (-665 (-801 |#1| (-887 |#2|))))) (-15 -2813 ((-3 (-665 (-801 |#1| (-887 |#2|))) "failed") (-665 (-801 |#1| (-887 |#2|))))) (-15 -3849 ((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))))) (-15 -2538 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -3094 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -4202 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -4202 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)))) (-465) (-665 (-1206))) (T -646)) -((-4202 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) (-5 *1 (-646 *5 *6)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-646 *5 *6)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) (-5 *1 (-646 *5 *6)))) (-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-646 *5 *6)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4)))) (-2813 (*1 *2 *2) (|partial| -12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-665 (-801 *4 (-887 *5)))) (-4 *4 (-465)) (-14 *5 (-665 (-1206))) (-5 *2 (-112)) (-5 *1 (-646 *4 *5))))) -(-10 -7 (-15 -4140 ((-112) (-665 (-801 |#1| (-887 |#2|))))) (-15 -2813 ((-3 (-665 (-801 |#1| (-887 |#2|))) "failed") (-665 (-801 |#1| (-887 |#2|))))) (-15 -3849 ((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))))) (-15 -2538 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -3094 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -4202 ((-665 (-1076 |#1| |#2|)) (-665 (-801 |#1| (-887 |#2|))) (-112))) (-15 -4202 ((-665 (-1176 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|)))) (-665 (-801 |#1| (-887 |#2|))) (-112)))) -((-1501 (($ $) 38 T ELT)) (-1371 (($ $) 21 T ELT)) (-1477 (($ $) 37 T ELT)) (-1348 (($ $) 22 T ELT)) (-1527 (($ $) 36 T ELT)) (-1391 (($ $) 23 T ELT)) (-2549 (($) 48 T ELT)) (-3863 (($ $) 45 T ELT)) (-3942 (($ $) 17 T ELT)) (-3293 (($ $ (-1122 $)) 7 T ELT) (($ $ (-1206)) 6 T ELT)) (-3585 (($ $) 46 T ELT)) (-4451 (($ $) 15 T ELT)) (-1335 (($ $) 16 T ELT)) (-1540 (($ $) 35 T ELT)) (-1402 (($ $) 24 T ELT)) (-1515 (($ $) 34 T ELT)) (-1381 (($ $) 25 T ELT)) (-1489 (($ $) 33 T ELT)) (-1360 (($ $) 26 T ELT)) (-1575 (($ $) 44 T ELT)) (-1435 (($ $) 32 T ELT)) (-1551 (($ $) 43 T ELT)) (-1413 (($ $) 31 T ELT)) (-1597 (($ $) 42 T ELT)) (-1456 (($ $) 30 T ELT)) (-3501 (($ $) 41 T ELT)) (-1466 (($ $) 29 T ELT)) (-1586 (($ $) 40 T ELT)) (-1446 (($ $) 28 T ELT)) (-1562 (($ $) 39 T ELT)) (-1423 (($ $) 27 T ELT)) (-3228 (($ $) 19 T ELT)) (-2464 (($ $) 20 T ELT)) (-3085 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-647) (-141)) (T -647)) -((-2464 (*1 *1 *1) (-4 *1 (-647))) (-3228 (*1 *1 *1) (-4 *1 (-647))) (-3085 (*1 *1 *1) (-4 *1 (-647))) (-3942 (*1 *1 *1) (-4 *1 (-647))) (-1335 (*1 *1 *1) (-4 *1 (-647))) (-4451 (*1 *1 *1) (-4 *1 (-647)))) -(-13 (-987) (-1232) (-10 -8 (-15 -2464 ($ $)) (-15 -3228 ($ $)) (-15 -3085 ($ $)) (-15 -3942 ($ $)) (-15 -1335 ($ $)) (-15 -4451 ($ $)))) -(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-987) . T) ((-1232) . T) ((-1235) . T)) -((-4396 (((-115) (-115)) 88 T ELT)) (-3942 ((|#2| |#2|) 28 T ELT)) (-3293 ((|#2| |#2| (-1122 |#2|)) 84 T ELT) ((|#2| |#2| (-1206)) 50 T ELT)) (-4451 ((|#2| |#2|) 27 T ELT)) (-1335 ((|#2| |#2|) 29 T ELT)) (-3540 (((-112) (-115)) 33 T ELT)) (-3228 ((|#2| |#2|) 24 T ELT)) (-2464 ((|#2| |#2|) 26 T ELT)) (-3085 ((|#2| |#2|) 25 T ELT))) -(((-648 |#1| |#2|) (-10 -7 (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -2464 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3085 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -4451 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -3293 (|#2| |#2| (-1206))) (-15 -3293 (|#2| |#2| (-1122 |#2|)))) (-569) (-13 (-443 |#1|) (-1032) (-1232))) (T -648)) -((-3293 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) (-4 *4 (-569)) (-5 *1 (-648 *4 *2)))) (-3293 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-648 *4 *2)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-4451 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-3085 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-443 *3) (-1032) (-1232))))) (-4396 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-648 *3 *4)) (-4 *4 (-13 (-443 *3) (-1032) (-1232))))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232)))))) -(-10 -7 (-15 -3540 ((-112) (-115))) (-15 -4396 ((-115) (-115))) (-15 -2464 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3085 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -4451 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -3293 (|#2| |#2| (-1206))) (-15 -3293 (|#2| |#2| (-1122 |#2|)))) -((-3643 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 63 T ELT)) (-3685 (((-665 (-254 |#1| |#2|)) (-665 (-494 |#1| |#2|))) 89 T ELT)) (-1813 (((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-887 |#1|)) 91 T ELT) (((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)) (-887 |#1|)) 90 T ELT)) (-1946 (((-2 (|:| |gblist| (-665 (-254 |#1| |#2|))) (|:| |gvlist| (-665 (-577)))) (-665 (-494 |#1| |#2|))) 134 T ELT)) (-2891 (((-665 (-494 |#1| |#2|)) (-887 |#1|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|))) 104 T ELT)) (-3981 (((-2 (|:| |glbase| (-665 (-254 |#1| |#2|))) (|:| |glval| (-665 (-577)))) (-665 (-254 |#1| |#2|))) 145 T ELT)) (-3550 (((-1297 |#2|) (-494 |#1| |#2|) (-665 (-494 |#1| |#2|))) 68 T ELT)) (-2732 (((-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|))) 47 T ELT)) (-2499 (((-254 |#1| |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|))) 60 T ELT)) (-3590 (((-254 |#1| |#2|) (-665 |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|))) 112 T ELT))) -(((-649 |#1| |#2|) (-10 -7 (-15 -1946 ((-2 (|:| |gblist| (-665 (-254 |#1| |#2|))) (|:| |gvlist| (-665 (-577)))) (-665 (-494 |#1| |#2|)))) (-15 -3981 ((-2 (|:| |glbase| (-665 (-254 |#1| |#2|))) (|:| |glval| (-665 (-577)))) (-665 (-254 |#1| |#2|)))) (-15 -3685 ((-665 (-254 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -1813 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -1813 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -2732 ((-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -3550 ((-1297 |#2|) (-494 |#1| |#2|) (-665 (-494 |#1| |#2|)))) (-15 -3590 ((-254 |#1| |#2|) (-665 |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -2891 ((-665 (-494 |#1| |#2|)) (-887 |#1|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -2499 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -3643 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) (-665 (-1206)) (-465)) (T -649)) -((-3643 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-494 *4 *5)) (-5 *1 (-649 *4 *5)))) (-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5)))) (-2891 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-887 *4)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5)))) (-3590 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-254 *5 *6))) (-4 *6 (-465)) (-5 *2 (-254 *5 *6)) (-14 *5 (-665 (-1206))) (-5 *1 (-649 *5 *6)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-1297 *6)) (-5 *1 (-649 *5 *6)))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-665 (-494 *3 *4))) (-14 *3 (-665 (-1206))) (-4 *4 (-465)) (-5 *1 (-649 *3 *4)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) (-4 *6 (-465)))) (-1813 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) (-4 *6 (-465)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-665 (-254 *4 *5))) (-5 *1 (-649 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |glbase| (-665 (-254 *4 *5))) (|:| |glval| (-665 (-577))))) (-5 *1 (-649 *4 *5)) (-5 *3 (-665 (-254 *4 *5))))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |gblist| (-665 (-254 *4 *5))) (|:| |gvlist| (-665 (-577))))) (-5 *1 (-649 *4 *5))))) -(-10 -7 (-15 -1946 ((-2 (|:| |gblist| (-665 (-254 |#1| |#2|))) (|:| |gvlist| (-665 (-577)))) (-665 (-494 |#1| |#2|)))) (-15 -3981 ((-2 (|:| |glbase| (-665 (-254 |#1| |#2|))) (|:| |glval| (-665 (-577)))) (-665 (-254 |#1| |#2|)))) (-15 -3685 ((-665 (-254 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -1813 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -1813 ((-494 |#1| |#2|) (-665 (-494 |#1| |#2|)) (-887 |#1|))) (-15 -2732 ((-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -3550 ((-1297 |#2|) (-494 |#1| |#2|) (-665 (-494 |#1| |#2|)))) (-15 -3590 ((-254 |#1| |#2|) (-665 |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -2891 ((-665 (-494 |#1| |#2|)) (-887 |#1|) (-665 (-494 |#1| |#2|)) (-665 (-494 |#1| |#2|)))) (-15 -2499 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-665 (-254 |#1| |#2|)))) (-15 -3643 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) NIL T ELT)) (-3425 (((-1302) $ (-1188) (-1188)) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 (((-52) $ (-1188) (-52)) 16 T ELT) (((-52) $ (-1206) (-52)) 17 T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 (-52) "failed") (-1188) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-52) "failed") (-1188) $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $ (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (((-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $ (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 (((-52) $ (-1188) (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3381 (((-52) $ (-1188)) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1781 (($ $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-1962 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-1709 (($ (-401)) 9 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-52) (-1130)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT)) (-3242 (((-665 (-1188)) $) NIL T ELT)) (-2404 (((-112) (-1188) $) NIL T ELT)) (-3398 (((-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) $) NIL T ELT)) (-3887 (((-665 (-1188)) $) NIL T ELT)) (-1593 (((-112) (-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-52) (-1130)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT)) (-4188 (((-52) $) NIL (|has| (-1188) (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) "failed") (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL T ELT)) (-3482 (($ $ (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-665 (-52)) (-665 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-665 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-3485 (((-665 (-52)) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 (((-52) $ (-1188)) 14 T ELT) (((-52) $ (-1188) (-52)) NIL T ELT) (((-52) $ (-1206)) 15 T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-1130))) ELT) (((-792) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT) (((-792) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-52) (-631 (-885))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-650) (-13 (-1223 (-1188) (-52)) (-297 (-1206) (-52)) (-10 -8 (-15 -1709 ($ (-401))) (-15 -1781 ($ $)) (-15 -2589 ((-52) $ (-1206) (-52)))))) (T -650)) -((-1709 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-650)))) (-1781 (*1 *1 *1) (-5 *1 (-650))) (-2589 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1206)) (-5 *1 (-650))))) -(-13 (-1223 (-1188) (-52)) (-297 (-1206) (-52)) (-10 -8 (-15 -1709 ($ (-401))) (-15 -1781 ($ $)) (-15 -2589 ((-52) $ (-1206) (-52))))) -((-2494 (($ $ |#2|) 10 T ELT))) -(((-651 |#1| |#2|) (-10 -8 (-15 -2494 (|#1| |#1| |#2|))) (-652 |#2|) (-174)) (T -651)) -NIL -(-10 -8 (-15 -2494 (|#1| |#1| |#2|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2422 (($ $ $) 34 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 33 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-652 |#1|) (-141) (-174)) (T -652)) -((-2422 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) -(-13 (-738 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2422 ($ $ $)) (IF (|has| |t#1| (-375)) (-15 -2494 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2117 (((-3 $ "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1985 (((-1297 (-710 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 (-710 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3955 (((-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2762 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3666 (((-3 $ "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2470 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1677 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1826 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1488 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3185 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1380 (($ $ (-949)) NIL T ELT)) (-2932 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2993 (((-1202 |#1|) $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2829 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3661 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1550 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1912 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4281 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1875 (((-949)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3506 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3328 (($ $ (-949)) NIL T ELT)) (-3842 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3195 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3950 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2249 (((-3 $ "failed")) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2164 (((-710 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4470 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3065 (((-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3258 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-4235 (((-1202 (-980 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))) ELT)) (-1748 (($ $ (-949)) NIL T ELT)) (-1591 ((|#1| $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2369 (((-1202 |#1|) $) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3570 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3163 (((-1202 |#1|) $) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3677 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4404 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2027 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-1796 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1342 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2435 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2119 (((-710 |#1|) (-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-3341 (($ (-1297 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3463 (((-665 (-980 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-665 (-980 |#1|)) (-1297 $)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4365 (($ $ $) NIL T ELT)) (-2137 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2410 (((-885) $) NIL T ELT) ((|#2| $) 12 T ELT) (($ |#2|) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3898 (((-665 (-1297 |#1|))) NIL (-2229 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3899 (($ $ $ $) NIL T ELT)) (-1984 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4177 (($ (-710 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1416 (($ $ $) NIL T ELT)) (-2989 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-4176 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2102 (((-112)) NIL (|has| |#2| (-379 |#1|)) ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 20 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 11 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-653 |#1| |#2|) (-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -2410 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-765 |#1|)) (T -653)) -((-2410 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-653 *3 *2)) (-4 *2 (-765 *3))))) -(-13 (-765 |#1|) (-631 |#2|) (-10 -8 (-15 -2410 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) -((-4346 (((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1188)) 106 T ELT) (((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|))) 131 T ELT)) (-2467 (((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|))) 136 T ELT))) -(((-654 |#1| |#2|) (-10 -7 (-15 -4346 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -2467 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -4346 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1188)))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -654)) -((-4346 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1188)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-864 *3)) (-5 *1 (-654 *6 *3)))) (-2467 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-854 *3))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-854 *3)) (-5 *1 (-654 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) (-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1232) (-443 *5))) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-654 *5 *3))))) -(-10 -7 (-15 -4346 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -2467 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -4346 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1188)))) -((-4346 (((-3 (-864 (-420 (-980 |#1|))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))) (-1188)) 86 T ELT) (((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|)))) 20 T ELT) (((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-864 (-980 |#1|)))) 35 T ELT)) (-2467 (((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|)))) 23 T ELT) (((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-854 (-980 |#1|)))) 43 T ELT))) -(((-655 |#1|) (-10 -7 (-15 -4346 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-864 (-980 |#1|))))) (-15 -4346 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -2467 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-854 (-980 |#1|))))) (-15 -2467 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -4346 ((-3 (-864 (-420 (-980 |#1|))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))) (-1188)))) (-465)) (T -655)) -((-4346 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-420 (-980 *6)))) (-5 *5 (-1188)) (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-864 *3)) (-5 *1 (-655 *6)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-465)) (-5 *2 (-854 *3)) (-5 *1 (-655 *5)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-854 (-980 *5)))) (-4 *5 (-465)) (-5 *2 (-854 (-420 (-980 *5)))) (-5 *1 (-655 *5)) (-5 *3 (-420 (-980 *5))))) (-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-465)) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-655 *5)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 (-980 *5)))) (-4 *5 (-465)) (-5 *2 (-3 (-864 (-420 (-980 *5))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 *5))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 *5))) "failed"))) "failed")) (-5 *1 (-655 *5)) (-5 *3 (-420 (-980 *5)))))) -(-10 -7 (-15 -4346 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-864 (-980 |#1|))))) (-15 -4346 ((-3 (-864 (-420 (-980 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-420 (-980 |#1|))) "failed"))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -2467 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-854 (-980 |#1|))))) (-15 -2467 ((-854 (-420 (-980 |#1|))) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -4346 ((-3 (-864 (-420 (-980 |#1|))) "failed") (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))) (-1188)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) 11 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3958 (($ (-217 |#1|)) 12 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-887 |#1|)) 7 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-656 |#1|) (-13 (-865) (-634 (-887 |#1|)) (-10 -8 (-15 -3958 ($ (-217 |#1|))))) (-665 (-1206))) (T -656)) -((-3958 (*1 *1 *2) (-12 (-5 *2 (-217 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-656 *3))))) -(-13 (-865) (-634 (-887 |#1|)) (-10 -8 (-15 -3958 ($ (-217 |#1|))))) -((-3723 (((-3 (-1297 (-420 |#1|)) "failed") (-1297 |#2|) |#2|) 64 (-2308 (|has| |#1| (-375))) ELT) (((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|) 49 (|has| |#1| (-375)) ELT)) (-3021 (((-112) (-1297 |#2|)) 33 T ELT)) (-4011 (((-3 (-1297 |#1|) "failed") (-1297 |#2|)) 40 T ELT))) -(((-657 |#1| |#2|) (-10 -7 (-15 -3021 ((-112) (-1297 |#2|))) (-15 -4011 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-375)) (-15 -3723 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -3723 ((-3 (-1297 (-420 |#1|)) "failed") (-1297 |#2|) |#2|)))) (-569) (-13 (-1079) (-659 |#1|))) (T -657)) -((-3723 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) (-2308 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1297 (-420 *5))) (-5 *1 (-657 *5 *4)))) (-3723 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1297 *5)) (-5 *1 (-657 *5 *4)))) (-4011 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) (-4 *4 (-569)) (-5 *2 (-1297 *4)) (-5 *1 (-657 *4 *5)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-657 *4 *5))))) -(-10 -7 (-15 -3021 ((-112) (-1297 |#2|))) (-15 -4011 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-375)) (-15 -3723 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -3723 ((-3 (-1297 (-420 |#1|)) "failed") (-1297 |#2|) |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2480 (((-665 (-896 (-656 |#2|) |#1|)) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-2925 (($ |#1| (-656 |#2|)) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3129 (($ (-665 |#1|)) 25 T ELT)) (-3161 (((-656 |#2|) $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2419 (((-135)) 16 T ELT)) (-2119 (((-1297 |#1|) $) 44 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-656 |#2|)) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 20 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 17 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-658 |#1| |#2|) (-13 (-1304 |#1|) (-634 (-656 |#2|)) (-522 |#1| (-656 |#2|)) (-10 -8 (-15 -3129 ($ (-665 |#1|))) (-15 -2119 ((-1297 |#1|) $)))) (-375) (-665 (-1206))) (T -658)) -((-3129 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-658 *3 *4)) (-14 *4 (-665 (-1206))))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-658 *3 *4)) (-4 *3 (-375)) (-14 *4 (-665 (-1206)))))) -(-13 (-1304 |#1|) (-634 (-656 |#2|)) (-522 |#1| (-656 |#2|)) (-10 -8 (-15 -3129 ($ (-665 |#1|))) (-15 -2119 ((-1297 |#1|) $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-1953 (((-710 |#1|) (-710 $)) 30 T ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 29 T ELT)) (-2796 (((-710 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) -(((-659 |#1|) (-141) (-1079)) (T -659)) -((-2796 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) (-5 *2 (-710 *4)))) (-2796 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| -1670 (-710 *4)) (|:| |vec| (-1297 *4)))))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-710 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) (-5 *2 (-710 *4)))) (-1953 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-659 *5)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -1670 (-710 *5)) (|:| |vec| (-1297 *5))))))) -(-13 (-669 |t#1|) (-10 -8 (-15 -2796 ((-710 |t#1|) (-1297 $))) (-15 -2796 ((-2 (|:| -1670 (-710 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-1297 $) $)) (-15 -1953 ((-710 |t#1|) (-710 $))) (-15 -1953 ((-2 (|:| -1670 (-710 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-710 $) (-1297 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3462 (($ (-665 |#1|)) 23 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 ((|#1| $ (-658 |#1| |#2|)) 46 T ELT)) (-2419 (((-135)) 13 T ELT)) (-2119 (((-1297 |#1|) $) 42 T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 18 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 14 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-660 |#1| |#2|) (-13 (-1304 |#1|) (-297 (-658 |#1| |#2|) |#1|) (-10 -8 (-15 -3462 ($ (-665 |#1|))) (-15 -2119 ((-1297 |#1|) $)))) (-375) (-665 (-1206))) (T -660)) -((-3462 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-660 *3 *4)) (-14 *4 (-665 (-1206))))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-660 *3 *4)) (-4 *3 (-375)) (-14 *4 (-665 (-1206)))))) -(-13 (-1304 |#1|) (-297 (-658 |#1| |#2|) |#1|) (-10 -8 (-15 -3462 ($ (-665 |#1|))) (-15 -2119 ((-1297 |#1|) $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT) (($ $ |#1|) 17 T ELT))) -(((-661 |#1|) (-141) (-1142)) (T -661)) -NIL -(-13 (-667 |t#1|) (-1081 |t#1|)) -(((-102) . T) ((-631 (-885)) . T) ((-667 |#1|) . T) ((-1081 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-4463 ((|#2| (-665 |#1|) (-665 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-665 |#1|) (-665 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) |#2|) 17 T ELT) ((|#2| (-665 |#1|) (-665 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|)) 12 T ELT))) -(((-662 |#1| |#2|) (-10 -7 (-15 -4463 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|))) (-15 -4463 (|#2| (-665 |#1|) (-665 |#2|) |#1|)) (-15 -4463 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) |#2|)) (-15 -4463 (|#2| (-665 |#1|) (-665 |#2|) |#1| |#2|)) (-15 -4463 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) (-1 |#2| |#1|))) (-15 -4463 (|#2| (-665 |#1|) (-665 |#2|) |#1| (-1 |#2| |#1|)))) (-1130) (-1247)) (T -662)) -((-4463 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) (-4463 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *1 (-662 *5 *6)))) (-4463 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) (-4463 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 *5)) (-4 *6 (-1130)) (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-662 *6 *5)))) (-4463 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) (-4463 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *6))))) -(-10 -7 (-15 -4463 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|))) (-15 -4463 (|#2| (-665 |#1|) (-665 |#2|) |#1|)) (-15 -4463 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) |#2|)) (-15 -4463 (|#2| (-665 |#1|) (-665 |#2|) |#1| |#2|)) (-15 -4463 ((-1 |#2| |#1|) (-665 |#1|) (-665 |#2|) (-1 |#2| |#1|))) (-15 -4463 (|#2| (-665 |#1|) (-665 |#2|) |#1| (-1 |#2| |#1|)))) -((-2090 (((-665 |#2|) (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|) 16 T ELT)) (-2511 ((|#2| (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|) 18 T ELT)) (-3609 (((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)) 13 T ELT))) -(((-663 |#1| |#2|) (-10 -7 (-15 -2090 ((-665 |#2|) (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -3609 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) (-1247) (-1247)) (T -663)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-665 *6)) (-5 *1 (-663 *5 *6)))) (-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) (-2090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-665 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-665 *5)) (-5 *1 (-663 *6 *5))))) -(-10 -7 (-15 -2090 ((-665 |#2|) (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-665 |#1|) |#2|)) (-15 -3609 ((-665 |#2|) (-1 |#2| |#1|) (-665 |#1|)))) -((-3609 (((-665 |#3|) (-1 |#3| |#1| |#2|) (-665 |#1|) (-665 |#2|)) 21 T ELT))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -3609 ((-665 |#3|) (-1 |#3| |#1| |#2|) (-665 |#1|) (-665 |#2|)))) (-1247) (-1247) (-1247)) (T -664)) -((-3609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-665 *6)) (-5 *5 (-665 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-665 *8)) (-5 *1 (-664 *6 *7 *8))))) -(-10 -7 (-15 -3609 ((-665 |#3|) (-1 |#3| |#1| |#2|) (-665 |#1|) (-665 |#2|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) NIL T ELT)) (-3932 ((|#1| $) NIL T ELT)) (-3840 (($ $) NIL T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) $) NIL (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1461 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2040 (($ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-4306 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-3061 (($ $ $) 37 (|has| |#1| (-1130)) ELT)) (-1589 (($ $ $) 41 (|has| |#1| (-1130)) ELT)) (-2023 (($ $ $) 44 (|has| |#1| (-1130)) ELT)) (-3402 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3919 ((|#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-4197 (($ $) 23 T ELT) (($ $ (-792)) NIL T ELT)) (-3237 (($ $) NIL (|has| |#1| (-1130)) ELT)) (-3860 (($ $) 36 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) NIL (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2736 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-1631 (((-112) $) NIL T ELT)) (-3886 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2296 (((-112) $) 11 T ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3873 (($) 9 T CONST)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2044 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-2223 (($ $ $) NIL (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2605 (($ |#1|) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3795 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-4272 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 20 T ELT) (($ $ (-792)) NIL T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2005 (((-112) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) 39 T ELT)) (-3414 (($) 38 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) 42 T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2209 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-1704 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-2110 (((-112) $) NIL T ELT)) (-1751 (($ $) NIL T ELT)) (-4123 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) 53 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) NIL T ELT)) (-1797 (($ |#1| $) 12 T ELT)) (-2872 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3702 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-665 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2408 (($ $ $) 13 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2792 (((-1188) $) 31 (|has| |#1| (-849)) ELT) (((-1188) $ (-112)) 32 (|has| |#1| (-849)) ELT) (((-1302) (-843) $) 33 (|has| |#1| (-849)) ELT) (((-1302) (-843) $ (-112)) 34 (|has| |#1| (-849)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-665 |#1|) (-13 (-687 |#1|) (-10 -8 (-15 -3873 ($) -1528) (-15 -2296 ((-112) $)) (-15 -1797 ($ |#1| $)) (-15 -2408 ($ $ $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -3061 ($ $ $)) (-15 -1589 ($ $ $)) (-15 -2023 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) (-1247)) (T -665)) -((-3873 (*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-1247)))) (-1797 (*1 *1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) (-2408 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) (-3061 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)))) (-1589 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)))) (-2023 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) -(-13 (-687 |#1|) (-10 -8 (-15 -3873 ($) -1528) (-15 -2296 ((-112) $)) (-15 -1797 ($ |#1| $)) (-15 -2408 ($ $ $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -3061 ($ $ $)) (-15 -1589 ($ $ $)) (-15 -2023 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 11 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-666 |#1|) (-13 (-1113) (-631 |#1|)) (-1130)) (T -666)) -NIL -(-13 (-1113) (-631 |#1|)) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT))) -(((-667 |#1|) (-141) (-1142)) (T -667)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1142))))) -(-13 (-1130) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1739 (($ |#1| |#1| $) 43 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3237 (($ $) 45 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) 56 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 9 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 37 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 47 T ELT)) (-3795 (($ |#1| $) 29 T ELT) (($ |#1| $ (-792)) 42 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3127 ((|#1| $) 50 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 23 T ELT)) (-3414 (($) 28 T ELT)) (-2764 (((-112) $) 54 T ELT)) (-1913 (((-665 (-2 (|:| -2753 |#1|) (|:| -4323 (-792)))) $) 67 T ELT)) (-2427 (($) 26 T ELT) (($ (-665 |#1|)) 19 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 63 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 20 T ELT)) (-3341 (((-549) $) 34 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) NIL T ELT)) (-2410 (((-885) $) 14 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 24 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 69 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 17 (|has| $ (-6 -4499)) ELT))) -(((-668 |#1|) (-13 (-716 |#1|) (-10 -8 (-6 -4499) (-15 -2764 ((-112) $)) (-15 -1739 ($ |#1| |#1| $)))) (-1130)) (T -668)) -((-2764 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-1130)))) (-1739 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1130))))) -(-13 (-716 |#1|) (-10 -8 (-6 -4499) (-15 -2764 ((-112) $)) (-15 -1739 ($ |#1| |#1| $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT))) -(((-669 |#1|) (-141) (-1088)) (T -669)) -NIL -(-13 (-21) (-667 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792) $) 17 T ELT)) (-4446 (($ $ |#1|) 69 T ELT)) (-3823 (($ $) 39 T ELT)) (-1538 (($ $) 37 T ELT)) (-2817 (((-3 |#1| "failed") $) 61 T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-1399 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3771 (((-885) $ (-1 (-885) (-885) (-885)) (-1 (-885) (-885) (-885)) (-577)) 56 T ELT)) (-3017 ((|#1| $ (-577)) 35 T ELT)) (-3757 ((|#2| $ (-577)) 34 T ELT)) (-3513 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-4180 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-1999 (($) 11 T ELT)) (-2804 (($ |#1| |#2|) 24 T ELT)) (-3851 (($ (-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|)))) 25 T ELT)) (-2750 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|))) $) 14 T ELT)) (-1959 (($ |#1| $) 71 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1789 (((-112) $ $) 76 T ELT)) (-2410 (((-885) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 27 T ELT))) -(((-670 |#1| |#2| |#3|) (-13 (-1130) (-1068 |#1|) (-10 -8 (-15 -3771 ((-885) $ (-1 (-885) (-885) (-885)) (-1 (-885) (-885) (-885)) (-577))) (-15 -2750 ((-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|))) $)) (-15 -2804 ($ |#1| |#2|)) (-15 -3851 ($ (-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|))))) (-15 -3757 (|#2| $ (-577))) (-15 -3017 (|#1| $ (-577))) (-15 -1538 ($ $)) (-15 -3823 ($ $)) (-15 -2221 ((-792) $)) (-15 -1999 ($)) (-15 -4446 ($ $ |#1|)) (-15 -1959 ($ |#1| $)) (-15 -1399 ($ |#1| |#2| $)) (-15 -1399 ($ $ $)) (-15 -1789 ((-112) $ $)) (-15 -4180 ($ (-1 |#2| |#2|) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)))) (-1130) (-23) |#2|) (T -670)) -((-3771 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-885) (-885) (-885))) (-5 *4 (-577)) (-5 *2 (-885)) (-5 *1 (-670 *5 *6 *7)) (-4 *5 (-1130)) (-4 *6 (-23)) (-14 *7 *6))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 *4)))) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4))) (-2804 (*1 *1 *2 *3) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 *4)))) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-670 *3 *4 *5)))) (-3757 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-670 *4 *2 *5)) (-4 *4 (-1130)) (-14 *5 *2))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-1130)) (-5 *1 (-670 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1538 (*1 *1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-3823 (*1 *1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4))) (-1999 (*1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-4446 (*1 *1 *1 *2) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-1959 (*1 *1 *2 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-1399 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-1399 (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) (-14 *4 *3))) (-1789 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-670 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1130) (-1068 |#1|) (-10 -8 (-15 -3771 ((-885) $ (-1 (-885) (-885) (-885)) (-1 (-885) (-885) (-885)) (-577))) (-15 -2750 ((-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|))) $)) (-15 -2804 ($ |#1| |#2|)) (-15 -3851 ($ (-665 (-2 (|:| |gen| |#1|) (|:| -3585 |#2|))))) (-15 -3757 (|#2| $ (-577))) (-15 -3017 (|#1| $ (-577))) (-15 -1538 ($ $)) (-15 -3823 ($ $)) (-15 -2221 ((-792) $)) (-15 -1999 ($)) (-15 -4446 ($ $ |#1|)) (-15 -1959 ($ |#1| $)) (-15 -1399 ($ |#1| |#2| $)) (-15 -1399 ($ $ $)) (-15 -1789 ((-112) $ $)) (-15 -4180 ($ (-1 |#2| |#2|) $)) (-15 -3513 ($ (-1 |#1| |#1|) $)))) -((-1962 (((-577) $) 31 T ELT)) (-4272 (($ |#2| $ (-577)) 27 T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) 12 T ELT)) (-1593 (((-112) (-577) $) 18 T ELT)) (-3702 (($ $ |#2|) 24 T ELT) (($ |#2| $) 25 T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT))) -(((-671 |#1| |#2|) (-10 -8 (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -3702 (|#1| (-665 |#1|))) (-15 -3702 (|#1| |#1| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#2|)) (-15 -1962 ((-577) |#1|)) (-15 -3887 ((-665 (-577)) |#1|)) (-15 -1593 ((-112) (-577) |#1|))) (-672 |#2|) (-1247)) (T -671)) -NIL -(-10 -8 (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -3702 (|#1| (-665 |#1|))) (-15 -3702 (|#1| |#1| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#2|)) (-15 -1962 ((-577) |#1|)) (-15 -3887 ((-665 (-577)) |#1|)) (-15 -1593 ((-112) (-577) |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3860 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 52 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) 70 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-3482 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-1704 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 72 T ELT)) (-3702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-672 |#1|) (-141) (-1247)) (T -672)) -((-3748 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-3702 (*1 *1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-3702 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-3609 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-1704 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-1704 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-4272 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-672 *2)) (-4 *2 (-1247)))) (-4272 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) (-2589 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1264 (-577))) (|has| *1 (-6 -4500)) (-4 *1 (-672 *2)) (-4 *2 (-1247))))) -(-13 (-617 (-577) |t#1|) (-152 |t#1|) (-297 (-1264 (-577)) $) (-10 -8 (-15 -3748 ($ (-792) |t#1|)) (-15 -3702 ($ $ |t#1|)) (-15 -3702 ($ |t#1| $)) (-15 -3702 ($ $ $)) (-15 -3702 ($ (-665 $))) (-15 -3609 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1704 ($ $ (-577))) (-15 -1704 ($ $ (-1264 (-577)))) (-15 -4272 ($ |t#1| $ (-577))) (-15 -4272 ($ $ $ (-577))) (IF (|has| $ (-6 -4500)) (-15 -2589 (|t#1| $ (-1264 (-577)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-3766 (((-3 |#2| "failed") |#3| |#2| (-1206) |#2| (-665 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) "failed") |#3| |#2| (-1206)) 44 T ELT))) -(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -3766 ((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) "failed") |#3| |#2| (-1206))) (-15 -3766 ((-3 |#2| "failed") |#3| |#2| (-1206) |#2| (-665 |#2|)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987)) (-677 |#2|)) (T -673)) -((-3766 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *2)) (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-677 *2)))) (-3766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1206)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1232) (-987))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2225 (-665 *4)))) (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-677 *4))))) -(-10 -7 (-15 -3766 ((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) "failed") |#3| |#2| (-1206))) (-15 -3766 ((-3 |#2| "failed") |#3| |#2| (-1206) |#2| (-665 |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2600 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4258 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3113 (($ $ (-792)) NIL (|has| |#1| (-375)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4135 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1656 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3695 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1810 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2675 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) NIL T ELT)) (-2903 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3479 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3569 (((-792) $) NIL T ELT)) (-1640 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2455 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2449 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1874 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2018 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2747 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2435 ((|#1| $ |#1|) NIL T ELT)) (-2026 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2776 (((-792) $) NIL T ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-4177 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1420 (($ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-674 |#1|) (-677 |#1|) (-239)) (T -674)) -NIL -(-677 |#1|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2600 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4258 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3113 (($ $ (-792)) NIL (|has| |#1| (-375)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4135 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1656 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3695 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1810 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2675 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) NIL T ELT)) (-2903 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3479 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3569 (((-792) $) NIL T ELT)) (-1640 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2455 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2449 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1874 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2018 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2747 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2435 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2026 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2776 (((-792) $) NIL T ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-4177 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1420 (($ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-675 |#1| |#2|) (-13 (-677 |#1|) (-297 |#2| |#2|)) (-239) (-13 (-669 |#1|) (-10 -8 (-15 -2030 ($ $))))) (T -675)) -NIL -(-13 (-677 |#1|) (-297 |#2| |#2|)) -((-2600 (($ $) 29 T ELT)) (-1420 (($ $) 27 T ELT)) (-1675 (($) 13 T ELT))) -(((-676 |#1| |#2|) (-10 -8 (-15 -2600 (|#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1675 (|#1|))) (-677 |#2|) (-1079)) (T -676)) -NIL -(-10 -8 (-15 -2600 (|#1| |#1|)) (-15 -1420 (|#1| |#1|)) (-15 -1675 (|#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2600 (($ $) 87 (|has| |#1| (-375)) ELT)) (-4258 (($ $ $) 89 (|has| |#1| (-375)) ELT)) (-3113 (($ $ (-792)) 88 (|has| |#1| (-375)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4135 (($ $ $) 50 (|has| |#1| (-375)) ELT)) (-1656 (($ $ $) 51 (|has| |#1| (-375)) ELT)) (-3695 (($ $ $) 53 (|has| |#1| (-375)) ELT)) (-1810 (($ $ $) 48 (|has| |#1| (-375)) ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 47 (|has| |#1| (-375)) ELT)) (-4145 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)) ELT)) (-2675 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 52 (|has| |#1| (-375)) ELT)) (-2817 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3514 (((-577) $) 79 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 76 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 75 T ELT)) (-3134 (($ $) 69 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3008 (($ $) 60 (|has| |#1| (-465)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-2925 (($ |#1| (-792)) 67 T ELT)) (-2903 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-3479 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 (|has| |#1| (-569)) ELT)) (-3569 (((-792) $) 71 T ELT)) (-1640 (($ $ $) 57 (|has| |#1| (-375)) ELT)) (-2455 (($ $ $) 58 (|has| |#1| (-375)) ELT)) (-2449 (($ $ $) 46 (|has| |#1| (-375)) ELT)) (-1874 (($ $ $) 55 (|has| |#1| (-375)) ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 54 (|has| |#1| (-375)) ELT)) (-2018 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)) ELT)) (-2747 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 59 (|has| |#1| (-375)) ELT)) (-3109 ((|#1| $) 70 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)) ELT)) (-2435 ((|#1| $ |#1|) 92 T ELT)) (-2026 (($ $ $) 86 (|has| |#1| (-375)) ELT)) (-2776 (((-792) $) 72 T ELT)) (-2091 ((|#1| $) 61 (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 78 (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 73 T ELT)) (-2929 (((-665 |#1|) $) 66 T ELT)) (-2778 ((|#1| $ (-792)) 68 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-4177 ((|#1| $ |#1| |#1|) 65 T ELT)) (-1420 (($ $) 90 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($) 91 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) -(((-677 |#1|) (-141) (-1079)) (T -677)) -((-1675 (*1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) (-1420 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) (-4258 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-677 *3)) (-4 *3 (-1079)) (-4 *3 (-375)))) (-2600 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2026 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(-13 (-875 |t#1|) (-297 |t#1| |t#1|) (-10 -8 (-15 -1675 ($)) (-15 -1420 ($ $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -4258 ($ $ $)) (-15 -3113 ($ $ (-792))) (-15 -2600 ($ $)) (-15 -2026 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-297 |#1| |#1|) . T) ((-424 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-875 |#1|) . T)) -((-2774 (((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))) 85 (|has| |#1| (-27)) ELT)) (-2799 (((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))) 84 (|has| |#1| (-27)) ELT) (((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 19 T ELT))) -(((-678 |#1| |#2|) (-10 -7 (-15 -2799 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2799 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)))) (-15 -2774 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))))) |%noBranch|)) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -678)) -((-2774 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5))))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5))))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-674 (-420 *6)))) (-5 *1 (-678 *5 *6)) (-5 *3 (-674 (-420 *6)))))) -(-10 -7 (-15 -2799 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2799 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|)))) (-15 -2774 ((-665 (-674 (-420 |#2|))) (-674 (-420 |#2|))))) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2600 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4258 (($ $ $) 28 (|has| |#1| (-375)) ELT)) (-3113 (($ $ (-792)) 31 (|has| |#1| (-375)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4135 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1656 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3695 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1810 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2675 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) NIL T ELT)) (-2903 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3479 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3569 (((-792) $) NIL T ELT)) (-1640 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2455 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2449 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1874 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2018 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2747 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2435 ((|#1| $ |#1|) 24 T ELT)) (-2026 (($ $ $) 33 (|has| |#1| (-375)) ELT)) (-2776 (((-792) $) NIL T ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-4177 ((|#1| $ |#1| |#1|) 23 T ELT)) (-1420 (($ $) NIL T ELT)) (-2367 (($) 21 T CONST)) (-2378 (($) 8 T CONST)) (-1675 (($) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-679 |#1| |#2|) (-677 |#1|) (-1079) (-1 |#1| |#1|)) (T -679)) -NIL -(-677 |#1|) -((-4258 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-3113 ((|#2| |#2| (-792) (-1 |#1| |#1|)) 45 T ELT)) (-2026 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-680 |#1| |#2|) (-10 -7 (-15 -4258 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3113 (|#2| |#2| (-792) (-1 |#1| |#1|))) (-15 -2026 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-375) (-677 |#1|)) (T -680)) -((-2026 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) (-4 *2 (-677 *4)))) (-3113 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-680 *5 *2)) (-4 *2 (-677 *5)))) (-4258 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) (-4 *2 (-677 *4))))) -(-10 -7 (-15 -4258 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3113 (|#2| |#2| (-792) (-1 |#1| |#1|))) (-15 -2026 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3285 (($ $ $) 9 T ELT))) -(((-681 |#1|) (-10 -8 (-15 -3285 (|#1| |#1| |#1|))) (-682)) (T -681)) -NIL -(-10 -8 (-15 -3285 (|#1| |#1| |#1|))) -((-3235 (($ $) 8 T ELT)) (-3285 (($ $ $) 6 T ELT)) (-3272 (($ $ $) 7 T ELT))) -(((-682) (-141)) (T -682)) -((-3235 (*1 *1 *1) (-4 *1 (-682))) (-3272 (*1 *1 *1 *1) (-4 *1 (-682))) (-3285 (*1 *1 *1 *1) (-4 *1 (-682)))) -(-13 (-1247) (-10 -8 (-15 -3235 ($ $)) (-15 -3272 ($ $ $)) (-15 -3285 ($ $ $)))) -(((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 15 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2518 ((|#1| $) 23 T ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-3384 (((-1188) $) 48 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2528 ((|#3| $) 24 T ELT)) (-2410 (((-885) $) 43 T ELT)) (-2525 (((-112) $ $) 22 T ELT)) (-2367 (($) 10 T CONST)) (-2440 (((-112) $ $) NIL (|has| |#1| (-812)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-812)) ELT)) (-2383 (((-112) $ $) 20 T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-812)) ELT)) (-2403 (((-112) $ $) 26 (|has| |#1| (-812)) ELT)) (-2494 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-2483 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 29 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-683 |#1| |#2| |#3|) (-13 (-738 |#2|) (-10 -8 (IF (|has| |#1| (-812)) (-6 (-812)) |%noBranch|) (-15 -2494 ($ $ |#3|)) (-15 -2494 ($ |#1| |#3|)) (-15 -2518 (|#1| $)) (-15 -2528 (|#3| $)))) (-738 |#2|) (-174) (|SubsetCategory| (-747) |#2|)) (T -683)) -((-2494 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4)) (-4 *2 (|SubsetCategory| (-747) *4)))) (-2494 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-683 *2 *4 *3)) (-4 *2 (-738 *4)) (-4 *3 (|SubsetCategory| (-747) *4)))) (-2518 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-738 *3)) (-5 *1 (-683 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-747) *3)))) (-2528 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4))))) -(-13 (-738 |#2|) (-10 -8 (IF (|has| |#1| (-812)) (-6 (-812)) |%noBranch|) (-15 -2494 ($ $ |#3|)) (-15 -2494 ($ |#1| |#3|)) (-15 -2518 (|#1| $)) (-15 -2528 (|#3| $)))) -((-2615 (((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|)) 33 T ELT))) -(((-684 |#1|) (-10 -7 (-15 -2615 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|)))) (-937)) (T -684)) -((-2615 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *4))) (-5 *3 (-1202 *4)) (-4 *4 (-937)) (-5 *1 (-684 *4))))) -(-10 -7 (-15 -2615 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-4417 (((-665 |#1|) $) 84 T ELT)) (-4370 (($ $ (-792)) 94 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3216 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 50 T ELT)) (-2817 (((-3 (-693 |#1|) "failed") $) NIL T ELT)) (-3514 (((-693 |#1|) $) NIL T ELT)) (-3134 (($ $) 93 T ELT)) (-3641 (((-792) $) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-1475 (($ (-693 |#1|) |#2|) 70 T ELT)) (-2955 (($ $) 89 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3855 (((-1321 |#1| |#2|) (-1321 |#1| |#2|) $) 49 T ELT)) (-3388 (((-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3095 (((-693 |#1|) $) NIL T ELT)) (-3109 ((|#2| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3362 (($ $ |#1| $) 32 T ELT) (($ $ (-665 |#1|) (-665 $)) 34 T ELT)) (-2776 (((-792) $) 91 T ELT)) (-2422 (($ $ $) 20 T ELT) (($ (-693 |#1|) (-693 |#1|)) 79 T ELT) (($ (-693 |#1|) $) 77 T ELT) (($ $ (-693 |#1|)) 78 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1312 |#1| |#2|) $) 60 T ELT) (((-1321 |#1| |#2|) $) 43 T ELT) (($ (-693 |#1|)) 27 T ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-693 |#1|)) NIL T ELT)) (-2671 ((|#2| (-1321 |#1| |#2|) $) 45 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 23 T CONST)) (-2662 (((-665 (-2 (|:| |k| (-693 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3030 (((-3 $ "failed") (-1312 |#1| |#2|)) 62 T ELT)) (-1825 (($ (-693 |#1|)) 14 T ELT)) (-2383 (((-112) $ $) 46 T ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-693 |#1|)) NIL T ELT))) -(((-685 |#1| |#2|) (-13 (-386 |#1| |#2|) (-394 |#2| (-693 |#1|)) (-10 -8 (-15 -3030 ((-3 $ "failed") (-1312 |#1| |#2|))) (-15 -2422 ($ (-693 |#1|) (-693 |#1|))) (-15 -2422 ($ (-693 |#1|) $)) (-15 -2422 ($ $ (-693 |#1|))))) (-870) (-174)) (T -685)) -((-3030 (*1 *1 *2) (|partial| -12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *1 (-685 *3 *4)))) (-2422 (*1 *1 *2 *2) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174)))) (-2422 (*1 *1 *2 *1) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) (-4 *4 (-174))))) -(-13 (-386 |#1| |#2|) (-394 |#2| (-693 |#1|)) (-10 -8 (-15 -3030 ((-3 $ "failed") (-1312 |#1| |#2|))) (-15 -2422 ($ (-693 |#1|) (-693 |#1|))) (-15 -2422 ($ (-693 |#1|) $)) (-15 -2422 ($ $ (-693 |#1|))))) -((-3047 (((-112) $) NIL T ELT) (((-112) (-1 (-112) |#2| |#2|) $) 59 T ELT)) (-1461 (($ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $) 12 T ELT)) (-3402 (($ (-1 (-112) |#2|) $) 29 T ELT)) (-3823 (($ $) 65 T ELT)) (-3237 (($ $) 74 T ELT)) (-1991 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 43 T ELT)) (-2511 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3886 (((-577) |#2| $ (-577)) 71 T ELT) (((-577) |#2| $) NIL T ELT) (((-577) (-1 (-112) |#2|) $) 54 T ELT)) (-3748 (($ (-792) |#2|) 63 T ELT)) (-2044 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 31 T ELT)) (-2223 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 24 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-2605 (($ |#2|) 15 T ELT)) (-3795 (($ $ $ (-577)) 42 T ELT) (($ |#2| $ (-577)) 40 T ELT)) (-1520 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53 T ELT)) (-2209 (($ $ (-1264 (-577))) 51 T ELT) (($ $ (-577)) 44 T ELT)) (-1530 (($ $ $ (-577)) 70 T ELT)) (-3978 (($ $) 68 T ELT)) (-2403 (((-112) $ $) 76 T ELT))) -(((-686 |#1| |#2|) (-10 -8 (-15 -2605 (|#1| |#2|)) (-15 -2209 (|#1| |#1| (-577))) (-15 -2209 (|#1| |#1| (-1264 (-577)))) (-15 -1991 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3795 (|#1| |#2| |#1| (-577))) (-15 -3795 (|#1| |#1| |#1| (-577))) (-15 -2044 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3402 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| |#2| |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2044 (|#1| |#1| |#1|)) (-15 -2223 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3047 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3886 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3886 ((-577) |#2| |#1|)) (-15 -3886 ((-577) |#2| |#1| (-577))) (-15 -2223 (|#1| |#1| |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -1530 (|#1| |#1| |#1| (-577))) (-15 -3823 (|#1| |#1|)) (-15 -1461 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1461 (|#1| |#1|)) (-15 -2403 ((-112) |#1| |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1520 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| (-792) |#2|)) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3978 (|#1| |#1|))) (-687 |#2|) (-1247)) (T -686)) -NIL -(-10 -8 (-15 -2605 (|#1| |#2|)) (-15 -2209 (|#1| |#1| (-577))) (-15 -2209 (|#1| |#1| (-1264 (-577)))) (-15 -1991 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3795 (|#1| |#2| |#1| (-577))) (-15 -3795 (|#1| |#1| |#1| (-577))) (-15 -2044 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3402 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1991 (|#1| |#2| |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2044 (|#1| |#1| |#1|)) (-15 -2223 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3047 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3886 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3886 ((-577) |#2| |#1|)) (-15 -3886 ((-577) |#2| |#1| (-577))) (-15 -2223 (|#1| |#1| |#1|)) (-15 -3047 ((-112) |#1|)) (-15 -1530 (|#1| |#1| |#1| (-577))) (-15 -3823 (|#1| |#1|)) (-15 -1461 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1461 (|#1| |#1|)) (-15 -2403 ((-112) |#1| |#1|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2511 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1520 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3748 (|#1| (-792) |#2|)) (-15 -3609 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3978 (|#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-3932 ((|#1| $) 66 T ELT)) (-3840 (($ $) 68 T ELT)) (-3425 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) $) 144 (|has| |#1| (-870)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) 138 T ELT)) (-1461 (($ $) 148 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4500)) ELT)) (-2040 (($ $) 143 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $) 137 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-4306 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 119 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-3402 (($ (-1 (-112) |#1|) $) 131 T ELT)) (-4232 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4499)) ELT)) (-3919 ((|#1| $) 67 T ELT)) (-2762 (($) 7 T CONST)) (-3823 (($ $) 146 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 136 T ELT)) (-4197 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-3237 (($ $) 133 (|has| |#1| (-1130)) ELT)) (-3860 (($ $) 101 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ |#1| $) 132 (|has| |#1| (-1130)) ELT) (($ (-1 (-112) |#1|) $) 127 T ELT)) (-2736 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4499)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3448 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 89 T ELT)) (-1631 (((-112) $) 85 T ELT)) (-3886 (((-577) |#1| $ (-577)) 141 (|has| |#1| (-1130)) ELT) (((-577) |#1| $) 140 (|has| |#1| (-1130)) ELT) (((-577) (-1 (-112) |#1|) $) 139 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3748 (($ (-792) |#1|) 111 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 97 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 154 (|has| |#1| (-870)) ELT)) (-2044 (($ $ $) 134 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 130 T ELT)) (-2223 (($ $ $) 142 (|has| |#1| (-870)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 135 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 96 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 153 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-2605 (($ |#1|) 124 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-3795 (($ $ $ (-577)) 129 T ELT) (($ |#1| $ (-577)) 128 T ELT)) (-4272 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-3887 (((-665 (-577)) $) 94 T ELT)) (-1593 (((-112) (-577) $) 93 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-3482 (($ $ |#1|) 98 (|has| $ (-6 -4500)) ELT)) (-2005 (((-112) $) 86 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 92 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-2209 (($ $ (-1264 (-577))) 126 T ELT) (($ $ (-577)) 125 T ELT)) (-1704 (($ $ (-1264 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-1751 (($ $) 63 T ELT)) (-4123 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) 64 T ELT)) (-3252 (($ $) 65 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1530 (($ $ $ (-577)) 145 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 100 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 109 T ELT)) (-2872 (($ $ $) 62 T ELT) (($ $ |#1|) 61 T ELT)) (-3702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-665 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) 152 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 150 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) 151 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 149 (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-687 |#1|) (-141) (-1247)) (T -687)) -((-2605 (*1 *1 *2) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1247))))) -(-13 (-1179 |t#1|) (-385 |t#1|) (-293 |t#1|) (-10 -8 (-15 -2605 ($ |t#1|)))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-293 |#1|) . T) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1040 |#1|) . T) ((-1130) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1179 |#1|) . T) ((-1247) . T) ((-1285 |#1|) . T)) -((-3766 (((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|))))) (-665 (-665 |#1|)) (-665 (-1297 |#1|))) 22 T ELT) (((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|))))) (-710 |#1|) (-665 (-1297 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-665 (-665 |#1|)) (-1297 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)) 14 T ELT)) (-1875 (((-792) (-710 |#1|) (-1297 |#1|)) 30 T ELT)) (-3420 (((-3 (-1297 |#1|) "failed") (-710 |#1|) (-1297 |#1|)) 24 T ELT)) (-3233 (((-112) (-710 |#1|) (-1297 |#1|)) 27 T ELT))) -(((-688 |#1|) (-10 -7 (-15 -3766 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|))) (-15 -3766 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-665 (-665 |#1|)) (-1297 |#1|))) (-15 -3766 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|))))) (-710 |#1|) (-665 (-1297 |#1|)))) (-15 -3766 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|))))) (-665 (-665 |#1|)) (-665 (-1297 |#1|)))) (-15 -3420 ((-3 (-1297 |#1|) "failed") (-710 |#1|) (-1297 |#1|))) (-15 -3233 ((-112) (-710 |#1|) (-1297 |#1|))) (-15 -1875 ((-792) (-710 |#1|) (-1297 |#1|)))) (-375)) (T -688)) -((-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-5 *2 (-792)) (-5 *1 (-688 *5)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-5 *2 (-112)) (-5 *1 (-688 *5)))) (-3420 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-710 *4)) (-4 *4 (-375)) (-5 *1 (-688 *4)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) (-5 *2 (-665 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2225 (-665 (-1297 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) (-5 *2 (-665 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2225 (-665 (-1297 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2225 (-665 (-1297 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -2225 (-665 (-1297 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1297 *5))))) -(-10 -7 (-15 -3766 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|))) (-15 -3766 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-665 (-665 |#1|)) (-1297 |#1|))) (-15 -3766 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|))))) (-710 |#1|) (-665 (-1297 |#1|)))) (-15 -3766 ((-665 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|))))) (-665 (-665 |#1|)) (-665 (-1297 |#1|)))) (-15 -3420 ((-3 (-1297 |#1|) "failed") (-710 |#1|) (-1297 |#1|))) (-15 -3233 ((-112) (-710 |#1|) (-1297 |#1|))) (-15 -1875 ((-792) (-710 |#1|) (-1297 |#1|)))) -((-3766 (((-665 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|)))) |#4| (-665 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|))) |#4| |#3|) 60 T ELT)) (-1875 (((-792) |#4| |#3|) 18 T ELT)) (-3420 (((-3 |#3| "failed") |#4| |#3|) 21 T ELT)) (-3233 (((-112) |#4| |#3|) 14 T ELT))) -(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3766 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|))) |#4| |#3|)) (-15 -3766 ((-665 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|)))) |#4| (-665 |#3|))) (-15 -3420 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3233 ((-112) |#4| |#3|)) (-15 -1875 ((-792) |#4| |#3|))) (-375) (-13 (-385 |#1|) (-10 -7 (-6 -4500))) (-13 (-385 |#1|) (-10 -7 (-6 -4500))) (-708 |#1| |#2| |#3|)) (T -689)) -((-1875 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-792)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-3233 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-112)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-3420 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-375)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4500)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))) (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2)))) (-3766 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-665 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2225 (-665 *7))))) (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-665 *7)) (-4 *3 (-708 *5 *6 *7)))) (-3766 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) -(-10 -7 (-15 -3766 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|))) |#4| |#3|)) (-15 -3766 ((-665 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|)))) |#4| (-665 |#3|))) (-15 -3420 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3233 ((-112) |#4| |#3|)) (-15 -1875 ((-792) |#4| |#3|))) -((-4288 (((-2 (|:| |particular| (-3 (-1297 (-420 |#4|)) "failed")) (|:| -2225 (-665 (-1297 (-420 |#4|))))) (-665 |#4|) (-665 |#3|)) 51 T ELT))) -(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4288 ((-2 (|:| |particular| (-3 (-1297 (-420 |#4|)) "failed")) (|:| -2225 (-665 (-1297 (-420 |#4|))))) (-665 |#4|) (-665 |#3|)))) (-569) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -690)) -((-4288 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *7)) (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 (-420 *8)) "failed")) (|:| -2225 (-665 (-1297 (-420 *8)))))) (-5 *1 (-690 *5 *6 *7 *8))))) -(-10 -7 (-15 -4288 ((-2 (|:| |particular| (-3 (-1297 (-420 |#4|)) "failed")) (|:| -2225 (-665 (-1297 (-420 |#4|))))) (-665 |#4|) (-665 |#3|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2117 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-1880 ((|#2| $) NIL T ELT)) (-3387 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1985 (((-1297 (-710 |#2|))) NIL T ELT) (((-1297 (-710 |#2|)) (-1297 $)) NIL T ELT)) (-4405 (((-112) $) NIL T ELT)) (-3955 (((-1297 $)) 42 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2831 (($ |#2|) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1433 (($ $) NIL (|has| |#2| (-318)) ELT)) (-2803 (((-246 |#1| |#2|) $ (-577)) NIL T ELT)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (|has| |#2| (-569)) ELT)) (-3666 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-2470 (((-710 |#2|)) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-1677 ((|#2| $) NIL T ELT)) (-1826 (((-710 |#2|) $) NIL T ELT) (((-710 |#2|) $ (-1297 $)) NIL T ELT)) (-1488 (((-3 $ "failed") $) NIL (|has| |#2| (-569)) ELT)) (-3185 (((-1202 (-980 |#2|))) NIL (|has| |#2| (-375)) ELT)) (-1380 (($ $ (-949)) NIL T ELT)) (-2932 ((|#2| $) NIL T ELT)) (-2993 (((-1202 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-2829 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-3661 (((-1202 |#2|) $) NIL T ELT)) (-1550 (((-112)) NIL T ELT)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-1912 (($ (-1297 |#2|)) NIL T ELT) (($ (-1297 |#2|) (-1297 $)) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1875 (((-792) $) NIL (|has| |#2| (-569)) ELT) (((-949)) 43 T ELT)) (-3381 ((|#2| $ (-577) (-577)) NIL T ELT)) (-3506 (((-112)) NIL T ELT)) (-3328 (($ $ (-949)) NIL T ELT)) (-2728 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3309 (((-792) $) NIL (|has| |#2| (-569)) ELT)) (-4111 (((-665 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-569)) ELT)) (-3066 (((-792) $) NIL T ELT)) (-3842 (((-112)) NIL T ELT)) (-3080 (((-792) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3845 ((|#2| $) NIL (|has| |#2| (-6 (-4501 "*"))) ELT)) (-2664 (((-577) $) NIL T ELT)) (-2988 (((-577) $) NIL T ELT)) (-4138 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1707 (((-577) $) NIL T ELT)) (-2529 (((-577) $) NIL T ELT)) (-1868 (($ (-665 (-665 |#2|))) NIL T ELT)) (-3437 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1522 (((-665 (-665 |#2|)) $) NIL T ELT)) (-3195 (((-112)) NIL T ELT)) (-3950 (((-112)) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-1990 (((-3 (-2 (|:| |particular| $) (|:| -2225 (-665 $))) "failed")) NIL (|has| |#2| (-569)) ELT)) (-2249 (((-3 $ "failed")) NIL (|has| |#2| (-569)) ELT)) (-2164 (((-710 |#2|)) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-4470 ((|#2| $) NIL T ELT)) (-3065 (((-710 |#2|) $) NIL T ELT) (((-710 |#2|) $ (-1297 $)) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3258 (((-3 $ "failed") $) NIL (|has| |#2| (-569)) ELT)) (-4235 (((-1202 (-980 |#2|))) NIL (|has| |#2| (-375)) ELT)) (-1748 (($ $ (-949)) NIL T ELT)) (-1591 ((|#2| $) NIL T ELT)) (-2369 (((-1202 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-3570 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-3163 (((-1202 |#2|) $) NIL T ELT)) (-3677 (((-112)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4404 (((-112)) NIL T ELT)) (-2027 (((-112)) NIL T ELT)) (-1796 (((-112)) NIL T ELT)) (-2566 (((-3 $ "failed") $) NIL (|has| |#2| (-375)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1342 (((-112)) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) ((|#2| $ (-577) (-577)) 28 T ELT) ((|#2| $ (-577)) NIL T ELT)) (-2030 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-1747 ((|#2| $) NIL T ELT)) (-4260 (($ (-665 |#2|)) NIL T ELT)) (-2101 (((-112) $) NIL T ELT)) (-2413 (((-246 |#1| |#2|) $) NIL T ELT)) (-2620 ((|#2| $) NIL (|has| |#2| (-6 (-4501 "*"))) ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2119 (((-710 |#2|) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT) (((-710 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $ (-1297 $)) 31 T ELT)) (-3341 (($ (-1297 |#2|)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT)) (-3463 (((-665 (-980 |#2|))) NIL T ELT) (((-665 (-980 |#2|)) (-1297 $)) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2137 (((-112)) NIL T ELT)) (-2397 (((-246 |#1| |#2|) $ (-577)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (((-710 |#2|) $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) 41 T ELT)) (-3898 (((-665 (-1297 |#2|))) NIL (|has| |#2| (-569)) ELT)) (-3899 (($ $ $ $) NIL T ELT)) (-1984 (((-112)) NIL T ELT)) (-4177 (($ (-710 |#2|) $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) NIL T ELT)) (-1416 (($ $ $) NIL T ELT)) (-2989 (((-112)) NIL T ELT)) (-4176 (((-112)) NIL T ELT)) (-2102 (((-112)) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#2| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-691 |#1| |#2|) (-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-430 |#2|)) (-949) (-174)) (T -691)) -NIL -(-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-430 |#2|)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2349 (((-665 (-1165)) $) 10 T ELT)) (-2410 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-692) (-13 (-1113) (-10 -8 (-15 -2349 ((-665 (-1165)) $))))) (T -692)) -((-2349 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-692))))) -(-13 (-1113) (-10 -8 (-15 -2349 ((-665 (-1165)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4417 (((-665 |#1|) $) NIL T ELT)) (-3867 (($ $) 62 T ELT)) (-1699 (((-112) $) NIL T ELT)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-1771 (((-3 $ "failed") (-840 |#1|)) 27 T ELT)) (-3331 (((-112) (-840 |#1|)) 17 T ELT)) (-2048 (($ (-840 |#1|)) 28 T ELT)) (-2887 (((-112) $ $) 36 T ELT)) (-3490 (((-949) $) 43 T ELT)) (-3854 (($ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2799 (((-665 $) (-840 |#1|)) 19 T ELT)) (-2410 (((-885) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-840 |#1|) $) 47 T ELT) (((-698 |#1|) $) 52 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2489 (((-59 (-665 $)) (-665 |#1|) (-949)) 67 T ELT)) (-3700 (((-665 $) (-665 |#1|) (-949)) 70 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 63 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 46 T ELT))) -(((-693 |#1|) (-13 (-870) (-1068 |#1|) (-10 -8 (-15 -1699 ((-112) $)) (-15 -3854 ($ $)) (-15 -3867 ($ $)) (-15 -3490 ((-949) $)) (-15 -2887 ((-112) $ $)) (-15 -2410 ((-840 |#1|) $)) (-15 -2410 ((-698 |#1|) $)) (-15 -2799 ((-665 $) (-840 |#1|))) (-15 -3331 ((-112) (-840 |#1|))) (-15 -2048 ($ (-840 |#1|))) (-15 -1771 ((-3 $ "failed") (-840 |#1|))) (-15 -4417 ((-665 |#1|) $)) (-15 -2489 ((-59 (-665 $)) (-665 |#1|) (-949))) (-15 -3700 ((-665 $) (-665 |#1|) (-949))))) (-870)) (T -693)) -((-1699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-3854 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) (-3867 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-2887 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-698 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-693 *4))) (-5 *1 (-693 *4)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-112)) (-5 *1 (-693 *4)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3)))) (-1771 (*1 *1 *2) (|partial| -12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) (-5 *2 (-59 (-665 (-693 *5)))) (-5 *1 (-693 *5)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) (-5 *2 (-665 (-693 *5))) (-5 *1 (-693 *5))))) -(-13 (-870) (-1068 |#1|) (-10 -8 (-15 -1699 ((-112) $)) (-15 -3854 ($ $)) (-15 -3867 ($ $)) (-15 -3490 ((-949) $)) (-15 -2887 ((-112) $ $)) (-15 -2410 ((-840 |#1|) $)) (-15 -2410 ((-698 |#1|) $)) (-15 -2799 ((-665 $) (-840 |#1|))) (-15 -3331 ((-112) (-840 |#1|))) (-15 -2048 ($ (-840 |#1|))) (-15 -1771 ((-3 $ "failed") (-840 |#1|))) (-15 -4417 ((-665 |#1|) $)) (-15 -2489 ((-59 (-665 $)) (-665 |#1|) (-949))) (-15 -3700 ((-665 $) (-665 |#1|) (-949))))) -((-4119 ((|#2| $) 100 T ELT)) (-3840 (($ $) 121 T ELT)) (-2641 (((-112) $ (-792)) 35 T ELT)) (-4197 (($ $) 109 T ELT) (($ $ (-792)) 112 T ELT)) (-1631 (((-112) $) 122 T ELT)) (-4284 (((-665 $) $) 96 T ELT)) (-2975 (((-112) $ $) 92 T ELT)) (-1967 (((-112) $ (-792)) 33 T ELT)) (-3167 (((-577) $) 66 T ELT)) (-1962 (((-577) $) 65 T ELT)) (-3417 (((-112) $ (-792)) 31 T ELT)) (-1452 (((-112) $) 98 T ELT)) (-2756 ((|#2| $) 113 T ELT) (($ $ (-792)) 117 T ELT)) (-4272 (($ $ $ (-577)) 83 T ELT) (($ |#2| $ (-577)) 82 T ELT)) (-3887 (((-665 (-577)) $) 64 T ELT)) (-1593 (((-112) (-577) $) 59 T ELT)) (-4188 ((|#2| $) NIL T ELT) (($ $ (-792)) 108 T ELT)) (-4013 (($ $ (-577)) 125 T ELT)) (-2005 (((-112) $) 124 T ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 42 T ELT)) (-3485 (((-665 |#2|) $) 46 T ELT)) (-2435 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1264 (-577))) 79 T ELT) ((|#2| $ (-577)) 57 T ELT) ((|#2| $ (-577) |#2|) 58 T ELT)) (-1722 (((-577) $ $) 91 T ELT)) (-1704 (($ $ (-1264 (-577))) 78 T ELT) (($ $ (-577)) 72 T ELT)) (-2110 (((-112) $) 87 T ELT)) (-1751 (($ $) 105 T ELT)) (-2909 (((-792) $) 104 T ELT)) (-3252 (($ $) 103 T ELT)) (-2422 (($ (-665 |#2|)) 53 T ELT)) (-1470 (($ $) 126 T ELT)) (-2421 (((-665 $) $) 90 T ELT)) (-3737 (((-112) $ $) 89 T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 41 T ELT)) (-2383 (((-112) $ $) 20 T ELT)) (-3224 (((-792) $) 39 T ELT))) -(((-694 |#1| |#2|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4013 (|#1| |#1| (-577))) (-15 -1631 ((-112) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -2435 (|#2| |#1| (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577))) (-15 -3485 ((-665 |#2|) |#1|)) (-15 -1593 ((-112) (-577) |#1|)) (-15 -3887 ((-665 (-577)) |#1|)) (-15 -1962 ((-577) |#1|)) (-15 -3167 ((-577) |#1|)) (-15 -2422 (|#1| (-665 |#2|))) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -1704 (|#1| |#1| (-577))) (-15 -1704 (|#1| |#1| (-1264 (-577)))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -1751 (|#1| |#1|)) (-15 -2909 ((-792) |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -2756 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "last")) (-15 -2756 (|#2| |#1|)) (-15 -4197 (|#1| |#1| (-792))) (-15 -2435 (|#1| |#1| "rest")) (-15 -4197 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "first")) (-15 -4188 (|#2| |#1|)) (-15 -2975 ((-112) |#1| |#1|)) (-15 -3737 ((-112) |#1| |#1|)) (-15 -1722 ((-577) |#1| |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2435 (|#2| |#1| "value")) (-15 -4119 (|#2| |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -4284 ((-665 |#1|) |#1|)) (-15 -2421 ((-665 |#1|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792)))) (-695 |#2|) (-1247)) (T -694)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -1470 (|#1| |#1|)) (-15 -4013 (|#1| |#1| (-577))) (-15 -1631 ((-112) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -2435 (|#2| |#1| (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577))) (-15 -3485 ((-665 |#2|) |#1|)) (-15 -1593 ((-112) (-577) |#1|)) (-15 -3887 ((-665 (-577)) |#1|)) (-15 -1962 ((-577) |#1|)) (-15 -3167 ((-577) |#1|)) (-15 -2422 (|#1| (-665 |#2|))) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -1704 (|#1| |#1| (-577))) (-15 -1704 (|#1| |#1| (-1264 (-577)))) (-15 -4272 (|#1| |#2| |#1| (-577))) (-15 -4272 (|#1| |#1| |#1| (-577))) (-15 -1751 (|#1| |#1|)) (-15 -2909 ((-792) |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -2756 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "last")) (-15 -2756 (|#2| |#1|)) (-15 -4197 (|#1| |#1| (-792))) (-15 -2435 (|#1| |#1| "rest")) (-15 -4197 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "first")) (-15 -4188 (|#2| |#1|)) (-15 -2975 ((-112) |#1| |#1|)) (-15 -3737 ((-112) |#1| |#1|)) (-15 -1722 ((-577) |#1| |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2435 (|#2| |#1| "value")) (-15 -4119 (|#2| |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -4284 ((-665 |#1|) |#1|)) (-15 -2421 ((-665 |#1|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792)))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-3932 ((|#1| $) 66 T ELT)) (-3840 (($ $) 68 T ELT)) (-3425 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-4306 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 119 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 104 T ELT)) (-3919 ((|#1| $) 67 T ELT)) (-2762 (($) 7 T CONST)) (-3649 (($ $) 126 T ELT)) (-4197 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-3860 (($ $) 101 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#1| $) 102 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 105 T ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3448 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 89 T ELT)) (-1631 (((-112) $) 85 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3076 (((-792) $) 125 T ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3748 (($ (-792) |#1|) 111 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 97 (|has| (-577) (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 96 (|has| (-577) (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-4251 (($ $) 128 T ELT)) (-3697 (((-112) $) 129 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-4272 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-3887 (((-665 (-577)) $) 94 T ELT)) (-1593 (((-112) (-577) $) 93 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3378 ((|#1| $) 127 T ELT)) (-4188 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-3482 (($ $ |#1|) 98 (|has| $ (-6 -4500)) ELT)) (-4013 (($ $ (-577)) 124 T ELT)) (-2005 (((-112) $) 86 T ELT)) (-2405 (((-112) $) 130 T ELT)) (-1729 (((-112) $) 131 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 92 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-1704 (($ $ (-1264 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-1751 (($ $) 63 T ELT)) (-4123 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) 64 T ELT)) (-3252 (($ $) 65 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 100 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 109 T ELT)) (-2872 (($ $ $) 62 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4500)) ELT)) (-3702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-665 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-1470 (($ $) 123 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-695 |#1|) (-141) (-1247)) (T -695)) -((-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) (-4232 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-4251 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) (-3649 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) (-1470 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) -(-13 (-1179 |t#1|) (-10 -8 (-15 -2736 ($ (-1 (-112) |t#1|) $)) (-15 -4232 ($ (-1 (-112) |t#1|) $)) (-15 -1729 ((-112) $)) (-15 -2405 ((-112) $)) (-15 -3697 ((-112) $)) (-15 -4251 ($ $)) (-15 -3378 (|t#1| $)) (-15 -3649 ($ $)) (-15 -3076 ((-792) $)) (-15 -4013 ($ $ (-577))) (-15 -1470 ($ $)))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1179 |#1|) . T) ((-1247) . T) ((-1285 |#1|) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1585 (($ (-792) (-792) (-792)) 53 (|has| |#1| (-1079)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4016 ((|#1| $ (-792) (-792) (-792) |#1|) 47 T ELT)) (-2762 (($) NIL T CONST)) (-1399 (($ $ $) 57 (|has| |#1| (-1079)) ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1925 (((-1297 (-792)) $) 12 T ELT)) (-1738 (($ (-1206) $ $) 34 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2790 (($ (-792)) 55 (|has| |#1| (-1079)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-792) (-792) (-792)) 44 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2422 (($ (-665 (-665 (-665 |#1|)))) 67 T ELT)) (-2410 (($ (-986 (-986 (-986 |#1|)))) 23 T ELT) (((-986 (-986 (-986 |#1|))) $) 19 T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-696 |#1|) (-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1079)) (PROGN (-15 -1585 ($ (-792) (-792) (-792))) (-15 -2790 ($ (-792))) (-15 -1399 ($ $ $))) |%noBranch|) (-15 -2422 ($ (-665 (-665 (-665 |#1|))))) (-15 -2435 (|#1| $ (-792) (-792) (-792))) (-15 -4016 (|#1| $ (-792) (-792) (-792) |#1|)) (-15 -2410 ($ (-986 (-986 (-986 |#1|))))) (-15 -2410 ((-986 (-986 (-986 |#1|))) $)) (-15 -1738 ($ (-1206) $ $)) (-15 -1925 ((-1297 (-792)) $)))) (-1130)) (T -696)) -((-1585 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) (-4 *3 (-1130)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) (-4 *3 (-1130)))) (-1399 (*1 *1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-1079)) (-4 *2 (-1130)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-665 *3)))) (-4 *3 (-1130)) (-5 *1 (-696 *3)))) (-2435 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130)))) (-4016 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-4 *3 (-1130)) (-5 *1 (-696 *3)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-5 *1 (-696 *3)) (-4 *3 (-1130)))) (-1738 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-696 *3)) (-4 *3 (-1130)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-1297 (-792))) (-5 *1 (-696 *3)) (-4 *3 (-1130))))) -(-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1079)) (PROGN (-15 -1585 ($ (-792) (-792) (-792))) (-15 -2790 ($ (-792))) (-15 -1399 ($ $ $))) |%noBranch|) (-15 -2422 ($ (-665 (-665 (-665 |#1|))))) (-15 -2435 (|#1| $ (-792) (-792) (-792))) (-15 -4016 (|#1| $ (-792) (-792) (-792) |#1|)) (-15 -2410 ($ (-986 (-986 (-986 |#1|))))) (-15 -2410 ((-986 (-986 (-986 |#1|))) $)) (-15 -1738 ($ (-1206) $ $)) (-15 -1925 ((-1297 (-792)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3133 (((-496) $) 10 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 19 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-1165) $) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-697) (-13 (-1113) (-10 -8 (-15 -3133 ((-496) $)) (-15 -4115 ((-1165) $))))) (T -697)) -((-3133 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-697)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-697))))) -(-13 (-1113) (-10 -8 (-15 -3133 ((-496) $)) (-15 -4115 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4417 (((-665 |#1|) $) 15 T ELT)) (-3867 (($ $) 19 T ELT)) (-1699 (((-112) $) 20 T ELT)) (-2817 (((-3 |#1| "failed") $) 23 T ELT)) (-3514 ((|#1| $) 21 T ELT)) (-4197 (($ $) 37 T ELT)) (-2955 (($ $) 25 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-2887 (((-112) $ $) 47 T ELT)) (-3490 (((-949) $) 40 T ELT)) (-3854 (($ $) 18 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 ((|#1| $) 36 T ELT)) (-2410 (((-885) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-840 |#1|) $) 28 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 13 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-698 |#1|) (-13 (-870) (-1068 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2410 ((-840 |#1|) $)) (-15 -4188 (|#1| $)) (-15 -3854 ($ $)) (-15 -3490 ((-949) $)) (-15 -2887 ((-112) $ $)) (-15 -2955 ($ $)) (-15 -4197 ($ $)) (-15 -1699 ((-112) $)) (-15 -3867 ($ $)) (-15 -4417 ((-665 |#1|) $)))) (-870)) (T -698)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-4188 (*1 *2 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-3854 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-2887 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-2955 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-4197 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) (-3867 (*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870))))) -(-13 (-870) (-1068 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2410 ((-840 |#1|) $)) (-15 -4188 (|#1| $)) (-15 -3854 ($ $)) (-15 -3490 ((-949) $)) (-15 -2887 ((-112) $ $)) (-15 -2955 ($ $)) (-15 -4197 ($ $)) (-15 -1699 ((-112) $)) (-15 -3867 ($ $)) (-15 -4417 ((-665 |#1|) $)))) -((-2644 ((|#1| (-1 |#1| (-792) |#1|) (-792) |#1|) 11 T ELT)) (-3516 ((|#1| (-1 |#1| |#1|) (-792) |#1|) 9 T ELT))) -(((-699 |#1|) (-10 -7 (-15 -3516 (|#1| (-1 |#1| |#1|) (-792) |#1|)) (-15 -2644 (|#1| (-1 |#1| (-792) |#1|) (-792) |#1|))) (-1130)) (T -699)) -((-2644 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-792) *2)) (-5 *4 (-792)) (-4 *2 (-1130)) (-5 *1 (-699 *2)))) (-3516 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-792)) (-4 *2 (-1130)) (-5 *1 (-699 *2))))) -(-10 -7 (-15 -3516 (|#1| (-1 |#1| |#1|) (-792) |#1|)) (-15 -2644 (|#1| (-1 |#1| (-792) |#1|) (-792) |#1|))) -((-4431 ((|#2| |#1| |#2|) 9 T ELT)) (-4420 ((|#1| |#1| |#2|) 8 T ELT))) -(((-700 |#1| |#2|) (-10 -7 (-15 -4420 (|#1| |#1| |#2|)) (-15 -4431 (|#2| |#1| |#2|))) (-1130) (-1130)) (T -700)) -((-4431 (*1 *2 *3 *2) (-12 (-5 *1 (-700 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-4420 (*1 *2 *2 *3) (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(-10 -7 (-15 -4420 (|#1| |#1| |#2|)) (-15 -4431 (|#2| |#1| |#2|))) -((-2037 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-701 |#1| |#2| |#3|) (-10 -7 (-15 -2037 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1130) (-1130) (-1130)) (T -701)) -((-2037 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-701 *5 *6 *2))))) -(-10 -7 (-15 -2037 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1892 (((-1246) $) 21 T ELT)) (-1845 (((-665 (-1246)) $) 19 T ELT)) (-2176 (($ (-665 (-1246)) (-1246)) 14 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 29 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT) (((-1246) $) 22 T ELT) (($ (-1148)) 10 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-702) (-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -2410 ($ (-1148))) (-15 -2176 ($ (-665 (-1246)) (-1246))) (-15 -1845 ((-665 (-1246)) $)) (-15 -1892 ((-1246) $))))) (T -702)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-702)))) (-2176 (*1 *1 *2 *3) (-12 (-5 *2 (-665 (-1246))) (-5 *3 (-1246)) (-5 *1 (-702)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-702)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-702))))) -(-13 (-1113) (-631 (-1246)) (-10 -8 (-15 -2410 ($ (-1148))) (-15 -2176 ($ (-665 (-1246)) (-1246))) (-15 -1845 ((-665 (-1246)) $)) (-15 -1892 ((-1246) $)))) -((-2644 (((-1 |#1| (-792) |#1|) (-1 |#1| (-792) |#1|)) 26 T ELT)) (-1904 (((-1 |#1|) |#1|) 8 T ELT)) (-3307 ((|#1| |#1|) 19 T ELT)) (-3039 (((-665 |#1|) (-1 (-665 |#1|) (-665 |#1|)) (-577)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-2410 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-792)) 23 T ELT))) -(((-703 |#1|) (-10 -7 (-15 -1904 ((-1 |#1|) |#1|)) (-15 -2410 ((-1 |#1|) |#1|)) (-15 -3039 (|#1| (-1 |#1| |#1|))) (-15 -3039 ((-665 |#1|) (-1 (-665 |#1|) (-665 |#1|)) (-577))) (-15 -3307 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-792))) (-15 -2644 ((-1 |#1| (-792) |#1|) (-1 |#1| (-792) |#1|)))) (-1130)) (T -703)) -((-2644 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-792) *3)) (-4 *3 (-1130)) (-5 *1 (-703 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *4 (-1130)) (-5 *1 (-703 *4)))) (-3307 (*1 *2 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-1130)))) (-3039 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-665 *5) (-665 *5))) (-5 *4 (-577)) (-5 *2 (-665 *5)) (-5 *1 (-703 *5)) (-4 *5 (-1130)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-703 *2)) (-4 *2 (-1130)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130)))) (-1904 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130))))) -(-10 -7 (-15 -1904 ((-1 |#1|) |#1|)) (-15 -2410 ((-1 |#1|) |#1|)) (-15 -3039 (|#1| (-1 |#1| |#1|))) (-15 -3039 ((-665 |#1|) (-1 (-665 |#1|) (-665 |#1|)) (-577))) (-15 -3307 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-792))) (-15 -2644 ((-1 |#1| (-792) |#1|) (-1 |#1| (-792) |#1|)))) -((-3090 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-3917 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-1528 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-4321 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-704 |#1| |#2|) (-10 -7 (-15 -4321 ((-1 |#2| |#1|) |#2|)) (-15 -3917 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1528 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3090 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1130) (-1130)) (T -704)) -((-3090 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *4)) (-5 *1 (-704 *4 *5)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *4)) (-5 *1 (-704 *4 *5)) (-4 *4 (-1130)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1 *5)) (-5 *1 (-704 *4 *5)))) (-4321 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-704 *4 *3)) (-4 *4 (-1130)) (-4 *3 (-1130))))) -(-10 -7 (-15 -4321 ((-1 |#2| |#1|) |#2|)) (-15 -3917 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1528 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3090 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3988 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-4092 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-4277 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-3429 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2416 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-705 |#1| |#2| |#3|) (-10 -7 (-15 -4092 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4277 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3429 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3988 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1130) (-1130) (-1130)) (T -705)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-1 *7 *5)) (-5 *1 (-705 *5 *6 *7)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-705 *4 *5 *6)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *4 (-1130)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *5 (-1130)))) (-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *4 *5 *6)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1130)) (-4 *4 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *5 *4 *6))))) -(-10 -7 (-15 -4092 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4277 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3429 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2416 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3988 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2511 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3609 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-706 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3609 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3609 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2511 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1079) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1079) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -706)) -((-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-706 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9)))) (-3609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) -(-10 -7 (-15 -3609 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3609 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2511 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-1525 (($ (-792) (-792)) 42 T ELT)) (-2555 (($ $ $) 73 T ELT)) (-3439 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3387 (((-112) $) 36 T ELT)) (-3119 (($ $ (-577) (-577)) 84 T ELT)) (-1448 (($ $ (-577) (-577)) 85 T ELT)) (-3734 (($ $ (-577) (-577) (-577) (-577)) 90 T ELT)) (-1937 (($ $) 71 T ELT)) (-4405 (((-112) $) 15 T ELT)) (-1554 (($ $ (-577) (-577) $) 91 T ELT)) (-2589 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) 89 T ELT)) (-2831 (($ (-792) |#2|) 55 T ELT)) (-1868 (($ (-665 (-665 |#2|))) 51 T ELT) (($ (-792) (-792) (-1 |#2| (-577) (-577))) 53 T ELT)) (-1522 (((-665 (-665 |#2|)) $) 80 T ELT)) (-1394 (($ $ $) 72 T ELT)) (-3200 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-2435 ((|#2| $ (-577) (-577)) NIL T ELT) ((|#2| $ (-577) (-577) |#2|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) 88 T ELT)) (-4260 (($ (-665 |#2|)) 56 T ELT) (($ (-665 $)) 58 T ELT)) (-2101 (((-112) $) 28 T ELT)) (-2410 (($ |#4|) 63 T ELT) (((-885) $) NIL T ELT)) (-3110 (((-112) $) 38 T ELT)) (-2494 (($ $ |#2|) 124 T ELT)) (-2483 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-2471 (($ $ $) 93 T ELT)) (** (($ $ (-792)) 111 T ELT) (($ $ (-577)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-577) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2410 ((-885) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -2494 (|#1| |#1| |#2|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -1554 (|#1| |#1| (-577) (-577) |#1|)) (-15 -3734 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -1448 (|#1| |#1| (-577) (-577))) (-15 -3119 (|#1| |#1| (-577) (-577))) (-15 -2589 (|#1| |#1| (-665 (-577)) (-665 (-577)) |#1|)) (-15 -2435 (|#1| |#1| (-665 (-577)) (-665 (-577)))) (-15 -1522 ((-665 (-665 |#2|)) |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1937 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3439 (|#1| |#3|)) (-15 -2410 (|#1| |#4|)) (-15 -4260 (|#1| (-665 |#1|))) (-15 -4260 (|#1| (-665 |#2|))) (-15 -2831 (|#1| (-792) |#2|)) (-15 -1868 (|#1| (-792) (-792) (-1 |#2| (-577) (-577)))) (-15 -1868 (|#1| (-665 (-665 |#2|)))) (-15 -1525 (|#1| (-792) (-792))) (-15 -3110 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -2101 ((-112) |#1|)) (-15 -4405 ((-112) |#1|)) (-15 -2589 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) (-577)))) (-708 |#2| |#3| |#4|) (-1079) (-385 |#2|) (-385 |#2|)) (T -707)) -NIL -(-10 -8 (-15 -2410 ((-885) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -2494 (|#1| |#1| |#2|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-792))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -1554 (|#1| |#1| (-577) (-577) |#1|)) (-15 -3734 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -1448 (|#1| |#1| (-577) (-577))) (-15 -3119 (|#1| |#1| (-577) (-577))) (-15 -2589 (|#1| |#1| (-665 (-577)) (-665 (-577)) |#1|)) (-15 -2435 (|#1| |#1| (-665 (-577)) (-665 (-577)))) (-15 -1522 ((-665 (-665 |#2|)) |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1394 (|#1| |#1| |#1|)) (-15 -1937 (|#1| |#1|)) (-15 -3439 (|#1| |#1|)) (-15 -3439 (|#1| |#3|)) (-15 -2410 (|#1| |#4|)) (-15 -4260 (|#1| (-665 |#1|))) (-15 -4260 (|#1| (-665 |#2|))) (-15 -2831 (|#1| (-792) |#2|)) (-15 -1868 (|#1| (-792) (-792) (-1 |#2| (-577) (-577)))) (-15 -1868 (|#1| (-665 (-665 |#2|)))) (-15 -1525 (|#1| (-792) (-792))) (-15 -3110 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -2101 ((-112) |#1|)) (-15 -4405 ((-112) |#1|)) (-15 -2589 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) (-577)))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1525 (($ (-792) (-792)) 99 T ELT)) (-2555 (($ $ $) 88 T ELT)) (-3439 (($ |#2|) 92 T ELT) (($ $) 91 T ELT)) (-3387 (((-112) $) 101 T ELT)) (-3119 (($ $ (-577) (-577)) 84 T ELT)) (-1448 (($ $ (-577) (-577)) 83 T ELT)) (-3734 (($ $ (-577) (-577) (-577) (-577)) 82 T ELT)) (-1937 (($ $) 90 T ELT)) (-4405 (((-112) $) 103 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-1554 (($ $ (-577) (-577) $) 81 T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) 45 T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) 85 T ELT)) (-1543 (($ $ (-577) |#2|) 43 T ELT)) (-1403 (($ $ (-577) |#3|) 42 T ELT)) (-2831 (($ (-792) |#1|) 96 T ELT)) (-2762 (($) 7 T CONST)) (-1433 (($ $) 68 (|has| |#1| (-318)) ELT)) (-2803 ((|#2| $ (-577)) 47 T ELT)) (-1875 (((-792) $) 67 (|has| |#1| (-569)) ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) 44 T ELT)) (-3381 ((|#1| $ (-577) (-577)) 49 T ELT)) (-2728 (((-665 |#1|) $) 31 T ELT)) (-3309 (((-792) $) 66 (|has| |#1| (-569)) ELT)) (-4111 (((-665 |#3|) $) 65 (|has| |#1| (-569)) ELT)) (-3066 (((-792) $) 52 T ELT)) (-3748 (($ (-792) (-792) |#1|) 58 T ELT)) (-3080 (((-792) $) 51 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3845 ((|#1| $) 63 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-2664 (((-577) $) 56 T ELT)) (-2988 (((-577) $) 54 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1707 (((-577) $) 55 T ELT)) (-2529 (((-577) $) 53 T ELT)) (-1868 (($ (-665 (-665 |#1|))) 98 T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) 97 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-1522 (((-665 (-665 |#1|)) $) 87 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2566 (((-3 $ "failed") $) 62 (|has| |#1| (-375)) ELT)) (-1394 (($ $ $) 89 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) 57 T ELT)) (-3200 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) (-577)) 50 T ELT) ((|#1| $ (-577) (-577) |#1|) 48 T ELT) (($ $ (-665 (-577)) (-665 (-577))) 86 T ELT)) (-4260 (($ (-665 |#1|)) 95 T ELT) (($ (-665 $)) 94 T ELT)) (-2101 (((-112) $) 102 T ELT)) (-2620 ((|#1| $) 64 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2397 ((|#3| $ (-577)) 46 T ELT)) (-2410 (($ |#3|) 93 T ELT) (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) 100 T ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2494 (($ $ |#1|) 69 (|has| |#1| (-375)) ELT)) (-2483 (($ $ $) 79 T ELT) (($ $) 78 T ELT)) (-2471 (($ $ $) 80 T ELT)) (** (($ $ (-792)) 71 T ELT) (($ $ (-577)) 61 (|has| |#1| (-375)) ELT)) (* (($ $ $) 77 T ELT) (($ |#1| $) 76 T ELT) (($ $ |#1|) 75 T ELT) (($ (-577) $) 74 T ELT) ((|#3| $ |#3|) 73 T ELT) ((|#2| |#2| $) 72 T ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-708 |#1| |#2| |#3|) (-141) (-1079) (-385 |t#1|) (-385 |t#1|)) (T -708)) -((-4405 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-1525 (*1 *1 *2 *2) (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1868 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1079)) (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-2831 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4260 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4260 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2410 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-3439 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-3439 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-1937 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-1394 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2555 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-665 (-665 *3))))) (-2435 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2589 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3119 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1448 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3734 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1554 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2471 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2483 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1079)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3200 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (-1433 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-318)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-665 *5)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-2566 (*1 *1 *1) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-375))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4500) (-6 -4499) (-15 -4405 ((-112) $)) (-15 -2101 ((-112) $)) (-15 -3387 ((-112) $)) (-15 -3110 ((-112) $)) (-15 -1525 ($ (-792) (-792))) (-15 -1868 ($ (-665 (-665 |t#1|)))) (-15 -1868 ($ (-792) (-792) (-1 |t#1| (-577) (-577)))) (-15 -2831 ($ (-792) |t#1|)) (-15 -4260 ($ (-665 |t#1|))) (-15 -4260 ($ (-665 $))) (-15 -2410 ($ |t#3|)) (-15 -3439 ($ |t#2|)) (-15 -3439 ($ $)) (-15 -1937 ($ $)) (-15 -1394 ($ $ $)) (-15 -2555 ($ $ $)) (-15 -1522 ((-665 (-665 |t#1|)) $)) (-15 -2435 ($ $ (-665 (-577)) (-665 (-577)))) (-15 -2589 ($ $ (-665 (-577)) (-665 (-577)) $)) (-15 -3119 ($ $ (-577) (-577))) (-15 -1448 ($ $ (-577) (-577))) (-15 -3734 ($ $ (-577) (-577) (-577) (-577))) (-15 -1554 ($ $ (-577) (-577) $)) (-15 -2471 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -2483 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-577) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-792))) (IF (|has| |t#1| (-569)) (-15 -3200 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -2494 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -1433 ($ $)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -1875 ((-792) $)) (-15 -3309 ((-792) $)) (-15 -4111 ((-665 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4501 "*"))) (PROGN (-15 -2620 (|t#1| $)) (-15 -3845 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -2566 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-57 |#1| |#2| |#3|) . T) ((-1247) . T)) -((-1433 ((|#4| |#4|) 92 (|has| |#1| (-318)) ELT)) (-1875 (((-792) |#4|) 120 (|has| |#1| (-569)) ELT)) (-3309 (((-792) |#4|) 96 (|has| |#1| (-569)) ELT)) (-4111 (((-665 |#3|) |#4|) 103 (|has| |#1| (-569)) ELT)) (-3131 (((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|) 135 (|has| |#1| (-318)) ELT)) (-3845 ((|#1| |#4|) 52 T ELT)) (-3888 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-569)) ELT)) (-2566 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-375)) ELT)) (-3502 ((|#4| |#4|) 88 (|has| |#1| (-569)) ELT)) (-3296 ((|#4| |#4| |#1| (-577) (-577)) 60 T ELT)) (-2389 ((|#4| |#4| (-577) (-577)) 55 T ELT)) (-3418 ((|#4| |#4| |#1| (-577) (-577)) 65 T ELT)) (-2620 ((|#1| |#4|) 98 T ELT)) (-1420 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-569)) ELT))) -(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2620 (|#1| |#4|)) (-15 -3845 (|#1| |#4|)) (-15 -2389 (|#4| |#4| (-577) (-577))) (-15 -3296 (|#4| |#4| |#1| (-577) (-577))) (-15 -3418 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -1875 ((-792) |#4|)) (-15 -3309 ((-792) |#4|)) (-15 -4111 ((-665 |#3|) |#4|)) (-15 -3502 (|#4| |#4|)) (-15 -3888 ((-3 |#4| "failed") |#4|)) (-15 -1420 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -1433 (|#4| |#4|)) (-15 -3131 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2566 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -709)) -((-2566 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3131 (*1 *2 *3 *3) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-709 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5)))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-1420 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3888 (*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-4111 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3309 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1875 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3418 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-3296 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-2389 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-709 *4 *5 *6 *2)) (-4 *2 (-708 *4 *5 *6)))) (-3845 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-2620 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5))))) -(-10 -7 (-15 -2620 (|#1| |#4|)) (-15 -3845 (|#1| |#4|)) (-15 -2389 (|#4| |#4| (-577) (-577))) (-15 -3296 (|#4| |#4| |#1| (-577) (-577))) (-15 -3418 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -1875 ((-792) |#4|)) (-15 -3309 ((-792) |#4|)) (-15 -4111 ((-665 |#3|) |#4|)) (-15 -3502 (|#4| |#4|)) (-15 -3888 ((-3 |#4| "failed") |#4|)) (-15 -1420 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -1433 (|#4| |#4|)) (-15 -3131 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2566 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1525 (($ (-792) (-792)) 64 T ELT)) (-2555 (($ $ $) NIL T ELT)) (-3439 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3387 (((-112) $) NIL T ELT)) (-3119 (($ $ (-577) (-577)) 22 T ELT)) (-1448 (($ $ (-577) (-577)) NIL T ELT)) (-3734 (($ $ (-577) (-577) (-577) (-577)) NIL T ELT)) (-1937 (($ $) NIL T ELT)) (-4405 (((-112) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-1554 (($ $ (-577) (-577) $) NIL T ELT)) (-2589 ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577)) $) NIL T ELT)) (-1543 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-1403 (($ $ (-577) (-1297 |#1|)) NIL T ELT)) (-2831 (($ (-792) |#1|) 37 T ELT)) (-2762 (($) NIL T CONST)) (-1433 (($ $) 46 (|has| |#1| (-318)) ELT)) (-2803 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-1875 (((-792) $) 48 (|has| |#1| (-569)) ELT)) (-3448 ((|#1| $ (-577) (-577) |#1|) 69 T ELT)) (-3381 ((|#1| $ (-577) (-577)) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL T ELT)) (-3309 (((-792) $) 50 (|has| |#1| (-569)) ELT)) (-4111 (((-665 (-1297 |#1|)) $) 53 (|has| |#1| (-569)) ELT)) (-3066 (((-792) $) 32 T ELT)) (-3748 (($ (-792) (-792) |#1|) 28 T ELT)) (-3080 (((-792) $) 33 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3845 ((|#1| $) 44 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-2664 (((-577) $) 10 T ELT)) (-2988 (((-577) $) 11 T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1707 (((-577) $) 14 T ELT)) (-2529 (((-577) $) 65 T ELT)) (-1868 (($ (-665 (-665 |#1|))) NIL T ELT) (($ (-792) (-792) (-1 |#1| (-577) (-577))) NIL T ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1522 (((-665 (-665 |#1|)) $) 76 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2566 (((-3 $ "failed") $) 60 (|has| |#1| (-375)) ELT)) (-1394 (($ $ $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3482 (($ $ |#1|) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) (-577)) NIL T ELT) ((|#1| $ (-577) (-577) |#1|) NIL T ELT) (($ $ (-665 (-577)) (-665 (-577))) NIL T ELT)) (-4260 (($ (-665 |#1|)) NIL T ELT) (($ (-665 $)) NIL T ELT) (($ (-1297 |#1|)) 70 T ELT)) (-2101 (((-112) $) NIL T ELT)) (-2620 ((|#1| $) 42 (|has| |#1| (-6 (-4501 "*"))) ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) 80 (|has| |#1| (-632 (-549))) ELT)) (-2397 (((-1297 |#1|) $ (-577)) NIL T ELT)) (-2410 (($ (-1297 |#1|)) NIL T ELT) (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) NIL T ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) 38 T ELT) (($ $ (-577)) 62 (|has| |#1| (-375)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-577) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) NIL T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-710 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -4260 ($ (-1297 |#1|))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2566 ((-3 $ "failed") $)) |%noBranch|))) (-1079)) (T -710)) -((-2566 (*1 *1 *1) (|partial| -12 (-5 *1 (-710 *2)) (-4 *2 (-375)) (-4 *2 (-1079)))) (-4260 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3))))) -(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -4260 ($ (-1297 |#1|))) (IF (|has| |#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2566 ((-3 $ "failed") $)) |%noBranch|))) -((-4037 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|)) 37 T ELT)) (-1576 (((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|) 32 T ELT)) (-4078 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-792)) 43 T ELT)) (-2661 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|)) 25 T ELT)) (-2569 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|)) 29 T ELT) (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 27 T ELT)) (-2514 (((-710 |#1|) (-710 |#1|) |#1| (-710 |#1|)) 31 T ELT)) (-1719 (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 23 T ELT)) (** (((-710 |#1|) (-710 |#1|) (-792)) 46 T ELT))) -(((-711 |#1|) (-10 -7 (-15 -1719 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2661 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2569 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2569 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2514 ((-710 |#1|) (-710 |#1|) |#1| (-710 |#1|))) (-15 -1576 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -4037 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -4078 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-792))) (-15 ** ((-710 |#1|) (-710 |#1|) (-792)))) (-1079)) (T -711)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-711 *4)))) (-4078 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-711 *4)))) (-4037 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-1576 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-2514 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-2569 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-2569 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-2661 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) (-1719 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) -(-10 -7 (-15 -1719 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2661 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2569 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2569 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2514 ((-710 |#1|) (-710 |#1|) |#1| (-710 |#1|))) (-15 -1576 ((-710 |#1|) (-710 |#1|) (-710 |#1|) |#1|)) (-15 -4037 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -4078 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-710 |#1|) (-792))) (-15 ** ((-710 |#1|) (-710 |#1|) (-792)))) -((-2817 (((-3 |#1| "failed") $) 18 T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-4149 (($) 7 T CONST)) (-2587 (($ |#1|) 8 T ELT)) (-2410 (($ |#1|) 16 T ELT) (((-885) $) 23 T ELT)) (-2354 (((-112) $ (|[\|\|]| |#1|)) 14 T ELT) (((-112) $ (|[\|\|]| -4149)) 11 T ELT)) (-4031 ((|#1| $) 15 T ELT))) -(((-712 |#1|) (-13 (-1292) (-1068 |#1|) (-631 (-885)) (-10 -8 (-15 -2587 ($ |#1|)) (-15 -2354 ((-112) $ (|[\|\|]| |#1|))) (-15 -2354 ((-112) $ (|[\|\|]| -4149))) (-15 -4031 (|#1| $)) (-15 -4149 ($) -1528))) (-631 (-885))) (T -712)) -((-2587 (*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885))))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-631 (-885))) (-5 *2 (-112)) (-5 *1 (-712 *4)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4149)) (-5 *2 (-112)) (-5 *1 (-712 *4)) (-4 *4 (-631 (-885))))) (-4031 (*1 *2 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885))))) (-4149 (*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885)))))) -(-13 (-1292) (-1068 |#1|) (-631 (-885)) (-10 -8 (-15 -2587 ($ |#1|)) (-15 -2354 ((-112) $ (|[\|\|]| |#1|))) (-15 -2354 ((-112) $ (|[\|\|]| -4149))) (-15 -4031 (|#1| $)) (-15 -4149 ($) -1528))) -((-4062 ((|#2| |#2| |#4|) 29 T ELT)) (-3464 (((-710 |#2|) |#3| |#4|) 35 T ELT)) (-2193 (((-710 |#2|) |#2| |#4|) 34 T ELT)) (-2819 (((-1297 |#2|) |#2| |#4|) 16 T ELT)) (-3839 ((|#2| |#3| |#4|) 28 T ELT)) (-3738 (((-710 |#2|) |#3| |#4| (-792) (-792)) 47 T ELT)) (-3794 (((-710 |#2|) |#2| |#4| (-792)) 46 T ELT))) -(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2819 ((-1297 |#2|) |#2| |#4|)) (-15 -3839 (|#2| |#3| |#4|)) (-15 -4062 (|#2| |#2| |#4|)) (-15 -2193 ((-710 |#2|) |#2| |#4|)) (-15 -3794 ((-710 |#2|) |#2| |#4| (-792))) (-15 -3464 ((-710 |#2|) |#3| |#4|)) (-15 -3738 ((-710 |#2|) |#3| |#4| (-792) (-792)))) (-1130) (-926 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4499)))) (T -713)) -((-3738 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *7 (-926 *6)) (-5 *2 (-710 *7)) (-5 *1 (-713 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499)))))) (-3464 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *6 (-926 *5)) (-5 *2 (-710 *6)) (-5 *1 (-713 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499)))))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *3 (-926 *6)) (-5 *2 (-710 *3)) (-5 *1 (-713 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499)))))) (-2193 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-710 *3)) (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499)))))) (-4062 (*1 *2 *2 *3) (-12 (-4 *4 (-1130)) (-4 *2 (-926 *4)) (-5 *1 (-713 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4499)))))) (-3839 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *2 (-926 *5)) (-5 *1 (-713 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499)))))) (-2819 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-1297 *3)) (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) -(-10 -7 (-15 -2819 ((-1297 |#2|) |#2| |#4|)) (-15 -3839 (|#2| |#3| |#4|)) (-15 -4062 (|#2| |#2| |#4|)) (-15 -2193 ((-710 |#2|) |#2| |#4|)) (-15 -3794 ((-710 |#2|) |#2| |#4| (-792))) (-15 -3464 ((-710 |#2|) |#3| |#4|)) (-15 -3738 ((-710 |#2|) |#3| |#4| (-792) (-792)))) -((-2116 (((-2 (|:| |num| (-710 |#1|)) (|:| |den| |#1|)) (-710 |#2|)) 20 T ELT)) (-4162 ((|#1| (-710 |#2|)) 9 T ELT)) (-2362 (((-710 |#1|) (-710 |#2|)) 18 T ELT))) -(((-714 |#1| |#2|) (-10 -7 (-15 -4162 (|#1| (-710 |#2|))) (-15 -2362 ((-710 |#1|) (-710 |#2|))) (-15 -2116 ((-2 (|:| |num| (-710 |#1|)) (|:| |den| |#1|)) (-710 |#2|)))) (-569) (-1022 |#1|)) (T -714)) -((-2116 (*1 *2 *3) (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| (-710 *4)) (|:| |den| *4))) (-5 *1 (-714 *4 *5)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) (-5 *2 (-710 *4)) (-5 *1 (-714 *4 *5)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-710 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-714 *2 *4))))) -(-10 -7 (-15 -4162 (|#1| (-710 |#2|))) (-15 -2362 ((-710 |#1|) (-710 |#2|))) (-15 -2116 ((-2 (|:| |num| (-710 |#1|)) (|:| |den| |#1|)) (-710 |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-2716 (((-710 (-720))) NIL T ELT) (((-710 (-720)) (-1297 $)) NIL T ELT)) (-1880 (((-720) $) NIL T ELT)) (-1501 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1371 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-720) (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-4456 (($ $) NIL (-2229 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-4240 (((-431 $) $) NIL (-2229 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-2809 (($ $) NIL (-12 (|has| (-720) (-1032)) (|has| (-720) (-1232))) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-3397 (((-112) $ $) NIL (|has| (-720) (-318)) ELT)) (-2221 (((-792)) NIL (|has| (-720) (-380)) ELT)) (-1477 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1348 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1527 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1391 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-720) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-720) (-1068 (-420 (-577)))) ELT)) (-3514 (((-577) $) NIL T ELT) (((-720) $) NIL T ELT) (((-420 (-577)) $) NIL (|has| (-720) (-1068 (-420 (-577)))) ELT)) (-1912 (($ (-1297 (-720))) NIL T ELT) (($ (-1297 (-720)) (-1297 $)) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-720) (-361)) ELT)) (-3152 (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-3449 (((-710 (-720)) $) NIL T ELT) (((-710 (-720)) $ (-1297 $)) NIL T ELT)) (-1953 (((-710 (-720)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-720))) (|:| |vec| (-1297 (-720)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-720) (-659 (-577))) ELT) (((-710 (-577)) (-710 $)) NIL (|has| (-720) (-659 (-577))) ELT)) (-2511 (((-3 $ "failed") (-420 (-1202 (-720)))) NIL (|has| (-720) (-375)) ELT) (($ (-1202 (-720))) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2821 (((-720) $) 29 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-720) (-558)) ELT)) (-2748 (((-112) $) NIL (|has| (-720) (-558)) ELT)) (-3557 (((-420 (-577)) $) NIL (|has| (-720) (-558)) ELT)) (-1875 (((-949)) NIL T ELT)) (-2060 (($) NIL (|has| (-720) (-380)) ELT)) (-3164 (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| (-720) (-318)) ELT)) (-3619 (($) NIL (|has| (-720) (-361)) ELT)) (-3390 (((-112) $) NIL (|has| (-720) (-361)) ELT)) (-2202 (($ $) NIL (|has| (-720) (-361)) ELT) (($ $ (-792)) NIL (|has| (-720) (-361)) ELT)) (-1632 (((-112) $) NIL (-2229 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-2071 (((-2 (|:| |r| (-720)) (|:| |phi| (-720))) $) NIL (-12 (|has| (-720) (-1090)) (|has| (-720) (-1232))) ELT)) (-2549 (($) NIL (|has| (-720) (-1232)) ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-720) (-910 (-391))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-720) (-910 (-577))) ELT)) (-3890 (((-854 (-949)) $) NIL (|has| (-720) (-361)) ELT) (((-949) $) NIL (|has| (-720) (-361)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (-12 (|has| (-720) (-1032)) (|has| (-720) (-1232))) ELT)) (-2755 (((-720) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-720) (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-720) (-318)) ELT)) (-4067 (((-1202 (-720)) $) NIL (|has| (-720) (-375)) ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3609 (($ (-1 (-720) (-720)) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| (-720) (-380)) ELT)) (-3863 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2500 (((-1202 (-720)) $) NIL T ELT)) (-2796 (((-710 (-720)) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-720))) (|:| |vec| (-1297 (-720)))) (-1297 $) $) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-720) (-659 (-577))) ELT) (((-710 (-577)) (-1297 $)) NIL (|has| (-720) (-659 (-577))) ELT)) (-2388 (($ (-665 $)) NIL (|has| (-720) (-318)) ELT) (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| (-720) (-375)) ELT)) (-2199 (($) NIL (|has| (-720) (-361)) CONST)) (-2085 (($ (-949)) NIL (|has| (-720) (-380)) ELT)) (-4098 (($) NIL T ELT)) (-2833 (((-720) $) 31 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| (-720) (-318)) ELT)) (-2420 (($ (-665 $)) NIL (|has| (-720) (-318)) ELT) (($ $ $) NIL (|has| (-720) (-318)) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| (-720) (-361)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) ELT)) (-2799 (((-431 $) $) NIL (-2229 (-12 (|has| (-720) (-318)) (|has| (-720) (-937))) (|has| (-720) (-375))) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-720) (-318)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| (-720) (-318)) ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ (-720)) NIL (|has| (-720) (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-720) (-318)) ELT)) (-3585 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-3362 (($ $ (-1206) (-720)) NIL (|has| (-720) (-527 (-1206) (-720))) ELT) (($ $ (-665 (-1206)) (-665 (-720))) NIL (|has| (-720) (-527 (-1206) (-720))) ELT) (($ $ (-665 (-305 (-720)))) NIL (|has| (-720) (-320 (-720))) ELT) (($ $ (-305 (-720))) NIL (|has| (-720) (-320 (-720))) ELT) (($ $ (-720) (-720)) NIL (|has| (-720) (-320 (-720))) ELT) (($ $ (-665 (-720)) (-665 (-720))) NIL (|has| (-720) (-320 (-720))) ELT)) (-2442 (((-792) $) NIL (|has| (-720) (-318)) ELT)) (-2435 (($ $ (-720)) NIL (|has| (-720) (-297 (-720) (-720))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| (-720) (-318)) ELT)) (-1611 (((-720)) NIL T ELT) (((-720) (-1297 $)) NIL T ELT)) (-2723 (((-3 (-792) "failed") $ $) NIL (|has| (-720) (-361)) ELT) (((-792) $) NIL (|has| (-720) (-361)) ELT)) (-2030 (($ $ (-1 (-720) (-720)) (-792)) NIL T ELT) (($ $ (-1 (-720) (-720))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT) (($ $) NIL (-2229 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT)) (-1935 (((-710 (-720)) (-1297 $) (-1 (-720) (-720))) NIL (|has| (-720) (-375)) ELT)) (-1773 (((-1202 (-720))) NIL T ELT)) (-1540 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1402 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1494 (($) NIL (|has| (-720) (-361)) ELT)) (-1515 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1381 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1489 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1360 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-2119 (((-710 (-720)) (-1297 $)) NIL T ELT) (((-1297 (-720)) $) NIL T ELT) (((-710 (-720)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-720)) $ (-1297 $)) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-720) (-632 (-549))) ELT) (((-171 (-228)) $) NIL (|has| (-720) (-1052)) ELT) (((-171 (-391)) $) NIL (|has| (-720) (-1052)) ELT) (((-916 (-391)) $) NIL (|has| (-720) (-632 (-916 (-391)))) ELT) (((-916 (-577)) $) NIL (|has| (-720) (-632 (-916 (-577)))) ELT) (($ (-1202 (-720))) NIL T ELT) (((-1202 (-720)) $) NIL T ELT) (($ (-1297 (-720))) NIL T ELT) (((-1297 (-720)) $) NIL T ELT)) (-2744 (($ $) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-2229 (-12 (|has| (-720) (-318)) (|has| $ (-146)) (|has| (-720) (-937))) (|has| (-720) (-361))) ELT)) (-3920 (($ (-720) (-720)) 12 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-720)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-577))) 19 T ELT) (($ (-171 (-720))) 28 T ELT) (($ (-171 (-722))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| (-720) (-1068 (-420 (-577)))) (|has| (-720) (-375))) ELT)) (-2580 (($ $) NIL (|has| (-720) (-361)) ELT) (((-3 $ "failed") $) NIL (-2229 (-12 (|has| (-720) (-318)) (|has| $ (-146)) (|has| (-720) (-937))) (|has| (-720) (-146))) ELT)) (-3400 (((-1202 (-720)) $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT)) (-1575 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1435 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-1551 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1413 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1597 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1456 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-4278 (((-720) $) NIL (|has| (-720) (-1232)) ELT)) (-3501 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1466 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1586 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1446 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1562 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-1423 (($ $) NIL (|has| (-720) (-1232)) ELT)) (-3385 (($ $) NIL (|has| (-720) (-1090)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-720) (-720)) (-792)) NIL T ELT) (($ $ (-1 (-720) (-720))) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-720) (-375)) (|has| (-720) (-926 (-1206)))) (|has| (-720) (-928 (-1206)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT) (($ $) NIL (-2229 (-12 (|has| (-720) (-239)) (|has| (-720) (-375))) (|has| (-720) (-238))) ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL (|has| (-720) (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ $) NIL (|has| (-720) (-1232)) ELT) (($ $ (-420 (-577))) NIL (-12 (|has| (-720) (-1032)) (|has| (-720) (-1232))) ELT) (($ $ (-577)) NIL (|has| (-720) (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-720) $) NIL T ELT) (($ $ (-720)) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-720) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-720) (-375)) ELT))) -(((-715) (-13 (-400) (-167 (-720)) (-10 -8 (-15 -2410 ($ (-171 (-391)))) (-15 -2410 ($ (-171 (-577)))) (-15 -2410 ($ (-171 (-720)))) (-15 -2410 ($ (-171 (-722)))) (-15 -2410 ((-171 (-391)) $))))) (T -715)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-715)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-171 (-720))) (-5 *1 (-715)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-171 (-722))) (-5 *1 (-715)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715))))) -(-13 (-400) (-167 (-720)) (-10 -8 (-15 -2410 ($ (-171 (-391)))) (-15 -2410 ($ (-171 (-577)))) (-15 -2410 ($ (-171 (-720)))) (-15 -2410 ($ (-171 (-722)))) (-15 -2410 ((-171 (-391)) $)))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3237 (($ $) 63 T ELT)) (-3860 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT) (($ |#1| $ (-792)) 64 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-1913 (((-665 (-2 (|:| -2753 |#1|) (|:| -4323 (-792)))) $) 62 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 51 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-716 |#1|) (-141) (-1130)) (T -716)) -((-3795 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-716 *2)) (-4 *2 (-1130)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1130)))) (-1913 (*1 *2 *1) (-12 (-4 *1 (-716 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-2 (|:| -2753 *3) (|:| -4323 (-792)))))))) -(-13 (-241 |t#1|) (-10 -8 (-15 -3795 ($ |t#1| $ (-792))) (-15 -3237 ($ $)) (-15 -1913 ((-665 (-2 (|:| -2753 |t#1|) (|:| -4323 (-792)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-2552 (((-665 |#1|) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))) (-577)) 65 T ELT)) (-2492 ((|#1| |#1| (-577)) 62 T ELT)) (-2420 ((|#1| |#1| |#1| (-577)) 46 T ELT)) (-2799 (((-665 |#1|) |#1| (-577)) 49 T ELT)) (-2579 ((|#1| |#1| (-577) |#1| (-577)) 40 T ELT)) (-2722 (((-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))) |#1| (-577)) 61 T ELT))) -(((-717 |#1|) (-10 -7 (-15 -2420 (|#1| |#1| |#1| (-577))) (-15 -2492 (|#1| |#1| (-577))) (-15 -2799 ((-665 |#1|) |#1| (-577))) (-15 -2722 ((-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))) |#1| (-577))) (-15 -2552 ((-665 |#1|) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))) (-577))) (-15 -2579 (|#1| |#1| (-577) |#1| (-577)))) (-1273 (-577))) (T -717)) -((-2579 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| -2799 *5) (|:| -2776 (-577))))) (-5 *4 (-577)) (-4 *5 (-1273 *4)) (-5 *2 (-665 *5)) (-5 *1 (-717 *5)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-665 (-2 (|:| -2799 *3) (|:| -2776 *4)))) (-5 *1 (-717 *3)) (-4 *3 (-1273 *4)))) (-2799 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-665 *3)) (-5 *1 (-717 *3)) (-4 *3 (-1273 *4)))) (-2492 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3)))) (-2420 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3))))) -(-10 -7 (-15 -2420 (|#1| |#1| |#1| (-577))) (-15 -2492 (|#1| |#1| (-577))) (-15 -2799 ((-665 |#1|) |#1| (-577))) (-15 -2722 ((-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))) |#1| (-577))) (-15 -2552 ((-665 |#1|) (-665 (-2 (|:| -2799 |#1|) (|:| -2776 (-577)))) (-577))) (-15 -2579 (|#1| |#1| (-577) |#1| (-577)))) -((-3360 (((-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 17 T ELT)) (-2484 (((-1163 (-228)) (-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 53 T ELT) (((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 55 T ELT) (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 57 T ELT)) (-2111 (((-1163 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-665 (-271))) NIL T ELT)) (-4028 (((-1163 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271))) 58 T ELT))) -(((-718) (-10 -7 (-15 -2484 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2484 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2484 ((-1163 (-228)) (-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -4028 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2111 ((-1163 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -3360 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -718)) -((-3360 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1 (-228) (-228) (-228) (-228))) (-5 *2 (-1 (-971 (-228)) (-228) (-228))) (-5 *1 (-718)))) (-2111 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) (-4028 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) (-2484 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-228))) (-5 *5 (-665 (-271))) (-5 *1 (-718)))) (-2484 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-228))) (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) (-2484 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718))))) -(-10 -7 (-15 -2484 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2484 ((-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2484 ((-1163 (-228)) (-1163 (-228)) (-1 (-971 (-228)) (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -4028 ((-1163 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1124 (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -2111 ((-1163 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1124 (-228)) (-665 (-271)))) (-15 -3360 ((-1 (-971 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) -((-2799 (((-431 (-1202 |#4|)) (-1202 |#4|)) 86 T ELT) (((-431 |#4|) |#4|) 266 T ELT))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 ((-431 |#4|) |#4|)) (-15 -2799 ((-431 (-1202 |#4|)) (-1202 |#4|)))) (-870) (-814) (-361) (-977 |#3| |#2| |#1|)) (T -719)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) -(-10 -7 (-15 -2799 ((-431 |#4|) |#4|)) (-15 -2799 ((-431 (-1202 |#4|)) (-1202 |#4|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 97 T ELT)) (-3277 (((-577) $) 34 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-4083 (($ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-2809 (($ $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4019 (($ $) NIL T ELT)) (-2817 (((-3 (-577) "failed") $) 85 T ELT) (((-3 (-420 (-577)) "failed") $) 28 T ELT) (((-3 (-391) "failed") $) 82 T ELT)) (-3514 (((-577) $) 87 T ELT) (((-420 (-577)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-3152 (($ $ $) 109 T ELT)) (-4281 (((-3 $ "failed") $) 100 T ELT)) (-3164 (($ $ $) 108 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3130 (((-949)) 89 T ELT) (((-949) (-949)) 88 T ELT)) (-2785 (((-112) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL T ELT)) (-3890 (((-577) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL T ELT)) (-2755 (($ $) NIL T ELT)) (-1434 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2987 (((-577) (-577)) 94 T ELT) (((-577)) 95 T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL (-12 (-2308 (|has| $ (-6 -4482))) (-2308 (|has| $ (-6 -4490)))) ELT)) (-2882 (((-577) (-577)) 92 T ELT) (((-577)) 93 T ELT)) (-4167 (($ $ $) NIL T ELT) (($) NIL (-12 (-2308 (|has| $ (-6 -4482))) (-2308 (|has| $ (-6 -4490)))) ELT)) (-3031 (((-577) $) 17 T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 104 T ELT)) (-3101 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL T ELT)) (-2136 (($ $) NIL T ELT)) (-3241 (($ (-577) (-577)) NIL T ELT) (($ (-577) (-577) (-949)) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) 105 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2182 (((-577) $) 24 T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 107 T ELT)) (-4279 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-2688 (((-949) (-577)) NIL (|has| $ (-6 -4490)) ELT)) (-3341 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-916 (-391)) $) NIL T ELT)) (-2410 (((-885) $) 63 T ELT) (($ (-577)) 75 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 78 T ELT) (($ (-577)) 75 T ELT) (($ (-420 (-577))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-722)) 66 T ELT)) (-3234 (((-792)) 119 T CONST)) (-2245 (($ (-577) (-577) (-949)) 54 T ELT)) (-1465 (($ $) NIL T ELT)) (-1750 (((-949)) NIL T ELT) (((-949) (-949)) NIL (|has| $ (-6 -4490)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (((-949)) 91 T ELT) (((-949) (-949)) 90 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL T ELT)) (-2367 (($) 37 T CONST)) (-2378 (($) 18 T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 96 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 118 T ELT)) (-2494 (($ $ $) 77 T ELT)) (-2483 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-2471 (($ $ $) 114 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) 103 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-720) (-13 (-417) (-400) (-375) (-1068 (-391)) (-1068 (-420 (-577))) (-148) (-10 -8 (-15 -3130 ((-949) (-949))) (-15 -3130 ((-949))) (-15 -3646 ((-949) (-949))) (-15 -2882 ((-577) (-577))) (-15 -2882 ((-577))) (-15 -2987 ((-577) (-577))) (-15 -2987 ((-577))) (-15 -2410 ((-391) $)) (-15 -2410 ($ (-722))) (-15 -3031 ((-577) $)) (-15 -2182 ((-577) $)) (-15 -2245 ($ (-577) (-577) (-949)))))) (T -720)) -((-2182 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-3031 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-3130 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) (-3646 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-2882 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-2987 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-720)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-722)) (-5 *1 (-720)))) (-2245 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-5 *1 (-720))))) -(-13 (-417) (-400) (-375) (-1068 (-391)) (-1068 (-420 (-577))) (-148) (-10 -8 (-15 -3130 ((-949) (-949))) (-15 -3130 ((-949))) (-15 -3646 ((-949) (-949))) (-15 -2882 ((-577) (-577))) (-15 -2882 ((-577))) (-15 -2987 ((-577) (-577))) (-15 -2987 ((-577))) (-15 -2410 ((-391) $)) (-15 -2410 ($ (-722))) (-15 -3031 ((-577) $)) (-15 -2182 ((-577) $)) (-15 -2245 ($ (-577) (-577) (-949))))) -((-2991 (((-710 |#1|) (-710 |#1|) |#1| |#1|) 85 T ELT)) (-1433 (((-710 |#1|) (-710 |#1|) |#1|) 66 T ELT)) (-4071 (((-710 |#1|) (-710 |#1|) |#1|) 86 T ELT)) (-3929 (((-710 |#1|) (-710 |#1|)) 67 T ELT)) (-3131 (((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|) 84 T ELT))) -(((-721 |#1|) (-10 -7 (-15 -3929 ((-710 |#1|) (-710 |#1|))) (-15 -1433 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -4071 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -2991 ((-710 |#1|) (-710 |#1|) |#1| |#1|)) (-15 -3131 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|))) (-318)) (T -721)) -((-3131 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-721 *3)) (-4 *3 (-318)))) (-2991 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) (-4071 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) (-1433 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) -(-10 -7 (-15 -3929 ((-710 |#1|) (-710 |#1|))) (-15 -1433 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -4071 ((-710 |#1|) (-710 |#1|) |#1|)) (-15 -2991 ((-710 |#1|) (-710 |#1|) |#1| |#1|)) (-15 -3131 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3198 (($ $ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2865 (($ $ $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL T ELT)) (-1886 (($ $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) 31 T ELT)) (-3514 (((-577) $) 29 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2748 (((-112) $) NIL T ELT)) (-3557 (((-420 (-577)) $) NIL T ELT)) (-2060 (($ $) NIL T ELT) (($) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3924 (($ $ $ $) NIL T ELT)) (-1642 (($ $ $) NIL T ELT)) (-2785 (((-112) $) NIL T ELT)) (-2283 (($ $ $) NIL T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3356 (((-112) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL T ELT)) (-1434 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2832 (($ $ $ $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4349 (((-949) (-949)) 10 T ELT) (((-949)) 9 T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3692 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT)) (-2388 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-1353 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2606 (($ $) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2793 (((-112) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-1686 (($ $) NIL T ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-228) $) NIL T ELT) (((-391) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-549) $) NIL T ELT) (((-577) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) 28 T ELT) (($ $) NIL T ELT) (($ (-577)) 28 T ELT) (((-327 $) (-327 (-577))) 18 T ELT)) (-3234 (((-792)) NIL T CONST)) (-3254 (((-112) $ $) NIL T ELT)) (-3267 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (($) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2460 (($ $ $ $) NIL T ELT)) (-3385 (($ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-722) (-13 (-400) (-558) (-10 -8 (-15 -4349 ((-949) (-949))) (-15 -4349 ((-949))) (-15 -2410 ((-327 $) (-327 (-577))))))) (T -722)) -((-4349 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722)))) (-4349 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-722))) (-5 *1 (-722))))) -(-13 (-400) (-558) (-10 -8 (-15 -4349 ((-949) (-949))) (-15 -4349 ((-949))) (-15 -2410 ((-327 $) (-327 (-577)))))) -((-3518 (((-1 |#4| |#2| |#3|) |#1| (-1206) (-1206)) 19 T ELT)) (-1767 (((-1 |#4| |#2| |#3|) (-1206)) 12 T ELT))) -(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1767 ((-1 |#4| |#2| |#3|) (-1206))) (-15 -3518 ((-1 |#4| |#2| |#3|) |#1| (-1206) (-1206)))) (-632 (-549)) (-1247) (-1247) (-1247)) (T -723)) -((-3518 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *3 *5 *6 *7)) (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247))))) -(-10 -7 (-15 -1767 ((-1 |#4| |#2| |#3|) (-1206))) (-15 -3518 ((-1 |#4| |#2| |#3|) |#1| (-1206) (-1206)))) -((-3508 (((-1 (-228) (-228) (-228)) |#1| (-1206) (-1206)) 43 T ELT) (((-1 (-228) (-228)) |#1| (-1206)) 48 T ELT))) -(((-724 |#1|) (-10 -7 (-15 -3508 ((-1 (-228) (-228)) |#1| (-1206))) (-15 -3508 ((-1 (-228) (-228) (-228)) |#1| (-1206) (-1206)))) (-632 (-549))) (T -724)) -((-3508 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-724 *3)) (-4 *3 (-632 (-549))))) (-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-724 *3)) (-4 *3 (-632 (-549)))))) -(-10 -7 (-15 -3508 ((-1 (-228) (-228)) |#1| (-1206))) (-15 -3508 ((-1 (-228) (-228) (-228)) |#1| (-1206) (-1206)))) -((-2264 (((-1206) |#1| (-1206) (-665 (-1206))) 10 T ELT) (((-1206) |#1| (-1206) (-1206) (-1206)) 13 T ELT) (((-1206) |#1| (-1206) (-1206)) 12 T ELT) (((-1206) |#1| (-1206)) 11 T ELT))) -(((-725 |#1|) (-10 -7 (-15 -2264 ((-1206) |#1| (-1206))) (-15 -2264 ((-1206) |#1| (-1206) (-1206))) (-15 -2264 ((-1206) |#1| (-1206) (-1206) (-1206))) (-15 -2264 ((-1206) |#1| (-1206) (-665 (-1206))))) (-632 (-549))) (T -725)) -((-2264 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) (-2264 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) (-2264 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) (-2264 (*1 *2 *3 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549)))))) -(-10 -7 (-15 -2264 ((-1206) |#1| (-1206))) (-15 -2264 ((-1206) |#1| (-1206) (-1206))) (-15 -2264 ((-1206) |#1| (-1206) (-1206) (-1206))) (-15 -2264 ((-1206) |#1| (-1206) (-665 (-1206))))) -((-4292 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-726 |#1| |#2|) (-10 -7 (-15 -4292 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1247) (-1247)) (T -726)) -((-4292 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-726 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247))))) -(-10 -7 (-15 -4292 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3936 (((-1 |#3| |#2|) (-1206)) 11 T ELT)) (-3518 (((-1 |#3| |#2|) |#1| (-1206)) 21 T ELT))) -(((-727 |#1| |#2| |#3|) (-10 -7 (-15 -3936 ((-1 |#3| |#2|) (-1206))) (-15 -3518 ((-1 |#3| |#2|) |#1| (-1206)))) (-632 (-549)) (-1247) (-1247)) (T -727)) -((-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *3 *5 *6)) (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *4 *5 *6)) (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))))) -(-10 -7 (-15 -3936 ((-1 |#3| |#2|) (-1206))) (-15 -3518 ((-1 |#3| |#2|) |#1| (-1206)))) -((-2089 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#4|)) (-665 |#3|) (-665 |#4|) (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| |#4|)))) (-665 (-792)) (-1297 (-665 (-1202 |#3|))) |#3|) 92 T ELT)) (-2591 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#3|)) (-665 |#3|) (-665 |#4|) (-665 (-792)) |#3|) 110 T ELT)) (-2743 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 |#3|) (-665 (-792)) (-665 (-1202 |#4|)) (-1297 (-665 (-1202 |#3|))) |#3|) 47 T ELT))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2743 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 |#3|) (-665 (-792)) (-665 (-1202 |#4|)) (-1297 (-665 (-1202 |#3|))) |#3|)) (-15 -2591 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#3|)) (-665 |#3|) (-665 |#4|) (-665 (-792)) |#3|)) (-15 -2089 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#4|)) (-665 |#3|) (-665 |#4|) (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| |#4|)))) (-665 (-792)) (-1297 (-665 (-1202 |#3|))) |#3|))) (-814) (-870) (-318) (-977 |#3| |#1| |#2|)) (T -728)) -((-2089 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-665 (-1202 *13))) (-5 *3 (-1202 *13)) (-5 *4 (-665 *12)) (-5 *5 (-665 *10)) (-5 *6 (-665 *13)) (-5 *7 (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| *13))))) (-5 *8 (-665 (-792))) (-5 *9 (-1297 (-665 (-1202 *10)))) (-4 *12 (-870)) (-4 *10 (-318)) (-4 *13 (-977 *10 *11 *12)) (-4 *11 (-814)) (-5 *1 (-728 *11 *12 *10 *13)))) (-2591 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-665 *11)) (-5 *5 (-665 (-1202 *9))) (-5 *6 (-665 *9)) (-5 *7 (-665 *12)) (-5 *8 (-665 (-792))) (-4 *11 (-870)) (-4 *9 (-318)) (-4 *12 (-977 *9 *10 *11)) (-4 *10 (-814)) (-5 *2 (-665 (-1202 *12))) (-5 *1 (-728 *10 *11 *9 *12)) (-5 *3 (-1202 *12)))) (-2743 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-665 (-1202 *11))) (-5 *3 (-1202 *11)) (-5 *4 (-665 *10)) (-5 *5 (-665 *8)) (-5 *6 (-665 (-792))) (-5 *7 (-1297 (-665 (-1202 *8)))) (-4 *10 (-870)) (-4 *8 (-318)) (-4 *11 (-977 *8 *9 *10)) (-4 *9 (-814)) (-5 *1 (-728 *9 *10 *8 *11))))) -(-10 -7 (-15 -2743 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 |#3|) (-665 (-792)) (-665 (-1202 |#4|)) (-1297 (-665 (-1202 |#3|))) |#3|)) (-15 -2591 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#3|)) (-665 |#3|) (-665 |#4|) (-665 (-792)) |#3|)) (-15 -2089 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-665 |#2|) (-665 (-1202 |#4|)) (-665 |#3|) (-665 |#4|) (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| |#4|)))) (-665 (-792)) (-1297 (-665 (-1202 |#3|))) |#3|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3134 (($ $) 48 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2925 (($ |#1| (-792)) 46 T ELT)) (-3569 (((-792) $) 50 T ELT)) (-3109 ((|#1| $) 49 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2776 (((-792) $) 51 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 45 (|has| |#1| (-174)) ELT)) (-2778 ((|#1| $ (-792)) 47 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT))) -(((-729 |#1|) (-141) (-1079)) (T -729)) -((-2776 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079))))) -(-13 (-1079) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2776 ((-792) $)) (-15 -3569 ((-792) $)) (-15 -3109 (|t#1| $)) (-15 -3134 ($ $)) (-15 -2778 (|t#1| $ (-792))) (-15 -2925 ($ |t#1| (-792))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3609 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-730 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3609 (|#6| (-1 |#4| |#1|) |#3|))) (-569) (-1273 |#1|) (-1273 (-420 |#2|)) (-569) (-1273 |#4|) (-1273 (-420 |#5|))) (T -730)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-420 *8))) (-5 *1 (-730 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-420 *6))) (-4 *8 (-1273 *7))))) -(-10 -7 (-15 -3609 (|#6| (-1 |#4| |#1|) |#3|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4418 (((-1188) (-885)) 38 T ELT)) (-1646 (((-1302) (-1188)) 31 T ELT)) (-2288 (((-1188) (-885)) 28 T ELT)) (-4476 (((-1188) (-885)) 29 T ELT)) (-2410 (((-885) $) NIL T ELT) (((-1188) (-885)) 27 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-731) (-13 (-1130) (-10 -7 (-15 -2410 ((-1188) (-885))) (-15 -2288 ((-1188) (-885))) (-15 -4476 ((-1188) (-885))) (-15 -4418 ((-1188) (-885))) (-15 -1646 ((-1302) (-1188)))))) (T -731)) -((-2410 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-4476 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-4418 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-731))))) -(-13 (-1130) (-10 -7 (-15 -2410 ((-1188) (-885))) (-15 -2288 ((-1188) (-885))) (-15 -4476 ((-1188) (-885))) (-15 -4418 ((-1188) (-885))) (-15 -1646 ((-1302) (-1188))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) NIL T ELT)) (-2511 (($ |#1| |#2|) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2305 ((|#2| $) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2239 (((-3 $ "failed") $ $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-732 |#1| |#2| |#3| |#4| |#5|) (-13 (-375) (-10 -8 (-15 -2305 (|#2| $)) (-15 -2410 (|#1| $)) (-15 -2511 ($ |#1| |#2|)) (-15 -2239 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -732)) -((-2305 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-732 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2410 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2511 (*1 *1 *2 *3) (-12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2239 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-375) (-10 -8 (-15 -2305 (|#2| $)) (-15 -2410 (|#1| $)) (-15 -2511 ($ |#1| |#2|)) (-15 -2239 ((-3 $ "failed") $ $)))) -((-3211 (((-112) $ $) 87 T ELT)) (-1516 (((-112) $) 36 T ELT)) (-2535 (((-1297 |#1|) $ (-792)) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-4052 (($ (-1202 |#1|)) NIL T ELT)) (-4419 (((-1202 $) $ (-1112)) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2907 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2221 (((-792)) 54 (|has| |#1| (-380)) ELT)) (-2478 (($ $ (-792)) NIL T ELT)) (-2485 (($ $ (-792)) NIL T ELT)) (-2132 ((|#2| |#2|) 50 T ELT)) (-1778 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT)) (-3760 (($ $ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) NIL (|has| |#1| (-174)) ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) 40 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-2511 (($ |#2|) 48 T ELT)) (-4281 (((-3 $ "failed") $) 97 T ELT)) (-2060 (($) 58 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2425 (($ $ $) NIL T ELT)) (-4435 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3536 (((-2 (|:| -2671 |#1|) (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-2938 (((-986 $)) 89 T ELT)) (-4313 (($ $ |#1| (-792) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3890 (((-792) $ $) NIL (|has| |#1| (-569)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-2935 (($ (-1202 |#1|) (-1112)) NIL T ELT) (($ (-1202 $) (-1112)) NIL T ELT)) (-2393 (($ $ (-792)) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) 85 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2305 ((|#2|) 51 T ELT)) (-3569 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4309 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3728 (((-1202 |#1|) $) NIL T ELT)) (-2505 (((-3 (-1112) "failed") $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-2500 ((|#2| $) 47 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) 34 T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3691 (((-2 (|:| -1636 $) (|:| -4369 $)) $ (-792)) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-1112)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2199 (($) NIL (|has| |#1| (-1182)) CONST)) (-2085 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2488 (($ $) 88 (|has| |#1| (-361)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-1616 (((-3 $ "failed") $ (-792)) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 98 (|has| |#1| (-375)) ELT)) (-1611 (($ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2776 (((-792) $) 38 T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2621 (((-986 $)) 42 T ELT)) (-2341 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-2410 (((-885) $) 68 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1112)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) 70 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) 25 T CONST)) (-3191 (((-1297 |#1|) $) 83 T ELT)) (-3889 (($ (-1297 |#1|)) 57 T ELT)) (-2378 (($) 8 T CONST)) (-1675 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-3968 (((-1297 |#1|) $) NIL T ELT)) (-2383 (((-112) $ $) 76 T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 39 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 92 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) -(((-733 |#1| |#2|) (-13 (-1273 |#1|) (-634 |#2|) (-10 -8 (-15 -2132 (|#2| |#2|)) (-15 -2305 (|#2|)) (-15 -2511 ($ |#2|)) (-15 -2500 (|#2| $)) (-15 -3191 ((-1297 |#1|) $)) (-15 -3889 ($ (-1297 |#1|))) (-15 -3968 ((-1297 |#1|) $)) (-15 -2938 ((-986 $))) (-15 -2621 ((-986 $))) (IF (|has| |#1| (-361)) (-15 -2488 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) (-1079) (-1273 |#1|)) (T -733)) -((-2132 (*1 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3)))) (-2305 (*1 *2) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) (-2511 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3)))) (-2500 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) (-3191 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-3968 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-2938 (*1 *2) (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-2621 (*1 *2) (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) (-4 *4 (-1273 *3)))) (-2488 (*1 *1 *1) (-12 (-4 *2 (-361)) (-4 *2 (-1079)) (-5 *1 (-733 *2 *3)) (-4 *3 (-1273 *2))))) -(-13 (-1273 |#1|) (-634 |#2|) (-10 -8 (-15 -2132 (|#2| |#2|)) (-15 -2305 (|#2|)) (-15 -2511 ($ |#2|)) (-15 -2500 (|#2| $)) (-15 -3191 ((-1297 |#1|) $)) (-15 -3889 ($ (-1297 |#1|))) (-15 -3968 ((-1297 |#1|) $)) (-15 -2938 ((-986 $))) (-15 -2621 ((-986 $))) (IF (|has| |#1| (-361)) (-15 -2488 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 ((|#1| $) 13 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2182 ((|#2| $) 12 T ELT)) (-2422 (($ |#1| |#2|) 16 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-2 (|:| -2085 |#1|) (|:| -2182 |#2|))) 15 T ELT) (((-2 (|:| -2085 |#1|) (|:| -2182 |#2|)) $) 14 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 11 T ELT))) -(((-734 |#1| |#2| |#3|) (-13 (-870) (-503 (-2 (|:| -2085 |#1|) (|:| -2182 |#2|))) (-10 -8 (-15 -2182 (|#2| $)) (-15 -2085 (|#1| $)) (-15 -2422 ($ |#1| |#2|)))) (-870) (-1130) (-1 (-112) (-2 (|:| -2085 |#1|) (|:| -2182 |#2|)) (-2 (|:| -2085 |#1|) (|:| -2182 |#2|)))) (T -734)) -((-2182 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-734 *3 *2 *4)) (-4 *3 (-870)) (-14 *4 (-1 (-112) (-2 (|:| -2085 *3) (|:| -2182 *2)) (-2 (|:| -2085 *3) (|:| -2182 *2)))))) (-2085 (*1 *2 *1) (-12 (-4 *2 (-870)) (-5 *1 (-734 *2 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *3)) (-2 (|:| -2085 *2) (|:| -2182 *3)))))) (-2422 (*1 *1 *2 *3) (-12 (-5 *1 (-734 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-1130)) (-14 *4 (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *3)) (-2 (|:| -2085 *2) (|:| -2182 *3))))))) -(-13 (-870) (-503 (-2 (|:| -2085 |#1|) (|:| -2182 |#2|))) (-10 -8 (-15 -2182 (|#2| $)) (-15 -2085 (|#1| $)) (-15 -2422 ($ |#1| |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 66 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 102 T ELT) (((-3 (-115) "failed") $) 108 T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-4281 (((-3 $ "failed") $) 103 T ELT)) (-3947 ((|#2| (-115) |#2|) 93 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3718 (($ |#1| (-373 (-115))) 14 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3498 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-4452 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-2435 ((|#2| $ |#2|) 33 T ELT)) (-3741 ((|#1| |#1|) 118 (|has| |#1| (-174)) ELT)) (-2410 (((-885) $) 73 T ELT) (($ (-577)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 37 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1420 (($ $) 112 (|has| |#1| (-174)) ELT) (($ $ $) 116 (|has| |#1| (-174)) ELT)) (-2367 (($) 21 T CONST)) (-2378 (($) 9 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 83 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ (-115) (-577)) NIL T ELT) (($ $ (-577)) 64 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 111 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 109 (|has| |#1| (-174)) ELT) (($ $ |#1|) 110 (|has| |#1| (-174)) ELT))) -(((-735 |#1| |#2|) (-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1420 ($ $)) (-15 -1420 ($ $ $)) (-15 -3741 (|#1| |#1|))) |%noBranch|) (-15 -4452 ($ $ (-1 |#2| |#2|))) (-15 -3498 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -3947 (|#2| (-115) |#2|)) (-15 -3718 ($ |#1| (-373 (-115)))))) (-1079) (-669 |#1|)) (T -735)) -((-1420 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) (-4 *3 (-669 *2)))) (-1420 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) (-4 *3 (-669 *2)))) (-3741 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) (-4 *3 (-669 *2)))) (-4452 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-735 *4 *5)) (-4 *5 (-669 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)) (-4 *4 (-669 *3)))) (-3947 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1079)) (-5 *1 (-735 *4 *2)) (-4 *2 (-669 *4)))) (-3718 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1079)) (-5 *1 (-735 *2 *4)) (-4 *4 (-669 *2))))) -(-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1420 ($ $)) (-15 -1420 ($ $ $)) (-15 -3741 (|#1| |#1|))) |%noBranch|) (-15 -4452 ($ $ (-1 |#2| |#2|))) (-15 -3498 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -3947 (|#2| (-115) |#2|)) (-15 -3718 ($ |#1| (-373 (-115)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 33 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2511 (($ |#1| |#2|) 25 T ELT)) (-4281 (((-3 $ "failed") $) 51 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2305 ((|#2| $) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 52 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2239 (((-3 $ "failed") $ $) 50 T ELT)) (-2410 (((-885) $) 24 T ELT) (($ (-577)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3234 (((-792)) 28 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 16 T CONST)) (-2378 (($) 30 T CONST)) (-2383 (((-112) $ $) 41 T ELT)) (-2483 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-2471 (($ $ $) 43 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-736 |#1| |#2| |#3| |#4| |#5|) (-13 (-1079) (-10 -8 (-15 -2305 (|#2| $)) (-15 -2410 (|#1| $)) (-15 -2511 ($ |#1| |#2|)) (-15 -2239 ((-3 $ "failed") $ $)) (-15 -4281 ((-3 $ "failed") $)) (-15 -3055 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -736)) -((-4281 (*1 *1 *1) (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2305 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-736 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2410 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2511 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2239 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3055 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1079) (-10 -8 (-15 -2305 (|#2| $)) (-15 -2410 (|#1| $)) (-15 -2511 ($ |#1| |#2|)) (-15 -2239 ((-3 $ "failed") $ $)) (-15 -4281 ((-3 $ "failed") $)) (-15 -3055 ($ $)))) -((* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-737 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-738 |#2|) (-174)) (T -737)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-738 |#1|) (-141) (-174)) (T -738)) -NIL -(-13 (-111 |t#1| |t#1|) (-661 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1886 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-1405 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-1885 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 16 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3362 ((|#1| $ |#1|) 24 T ELT) (((-854 |#1|) $ (-854 |#1|)) 32 T ELT)) (-2744 (($ $ $) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-2410 (((-885) $) 39 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 9 T CONST)) (-2383 (((-112) $ $) 48 T ELT)) (-2494 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-739 |#1|) (-13 (-486) (-10 -8 (-15 -1885 ($ |#1| |#1| |#1| |#1|)) (-15 -1886 ($ |#1|)) (-15 -1405 ($ |#1|)) (-15 -4281 ($)) (-15 -1886 ($ $ |#1|)) (-15 -1405 ($ $ |#1|)) (-15 -4281 ($ $)) (-15 -3362 (|#1| $ |#1|)) (-15 -3362 ((-854 |#1|) $ (-854 |#1|))))) (-375)) (T -739)) -((-1885 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-1886 (*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-1405 (*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-4281 (*1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-1886 (*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-1405 (*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-4281 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-3362 (*1 *2 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) (-3362 (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-375)) (-5 *1 (-739 *3))))) -(-13 (-486) (-10 -8 (-15 -1885 ($ |#1| |#1| |#1| |#1|)) (-15 -1886 ($ |#1|)) (-15 -1405 ($ |#1|)) (-15 -4281 ($)) (-15 -1886 ($ $ |#1|)) (-15 -1405 ($ $ |#1|)) (-15 -4281 ($ $)) (-15 -3362 (|#1| $ |#1|)) (-15 -3362 ((-854 |#1|) $ (-854 |#1|))))) -((-1380 (($ $ (-949)) 19 T ELT)) (-1748 (($ $ (-949)) 20 T ELT)) (** (($ $ (-949)) 10 T ELT))) -(((-740 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-949))) (-15 -1748 (|#1| |#1| (-949))) (-15 -1380 (|#1| |#1| (-949)))) (-741)) (T -740)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-949))) (-15 -1748 (|#1| |#1| (-949))) (-15 -1380 (|#1| |#1| (-949)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1380 (($ $ (-949)) 16 T ELT)) (-1748 (($ $ (-949)) 15 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT)) (* (($ $ $) 17 T ELT))) -(((-741) (-141)) (T -741)) -((* (*1 *1 *1 *1) (-4 *1 (-741))) (-1380 (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) (-1748 (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949))))) -(-13 (-1130) (-10 -8 (-15 * ($ $ $)) (-15 -1380 ($ $ (-949))) (-15 -1748 ($ $ (-949))) (-15 ** ($ $ (-949))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-1380 (($ $ (-949)) NIL T ELT) (($ $ (-792)) 18 T ELT)) (-2097 (((-112) $) 10 T ELT)) (-1748 (($ $ (-949)) NIL T ELT) (($ $ (-792)) 19 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 16 T ELT))) -(((-742 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-792))) (-15 -1748 (|#1| |#1| (-792))) (-15 -1380 (|#1| |#1| (-792))) (-15 -2097 ((-112) |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -1748 (|#1| |#1| (-949))) (-15 -1380 (|#1| |#1| (-949)))) (-743)) (T -742)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-792))) (-15 -1748 (|#1| |#1| (-792))) (-15 -1380 (|#1| |#1| (-792))) (-15 -2097 ((-112) |#1|)) (-15 ** (|#1| |#1| (-949))) (-15 -1748 (|#1| |#1| (-949))) (-15 -1380 (|#1| |#1| (-949)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1488 (((-3 $ "failed") $) 18 T ELT)) (-1380 (($ $ (-949)) 16 T ELT) (($ $ (-792)) 23 T ELT)) (-4281 (((-3 $ "failed") $) 20 T ELT)) (-2097 (((-112) $) 24 T ELT)) (-3258 (((-3 $ "failed") $) 19 T ELT)) (-1748 (($ $ (-949)) 15 T ELT) (($ $ (-792)) 22 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2378 (($) 25 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 21 T ELT)) (* (($ $ $) 17 T ELT))) -(((-743) (-141)) (T -743)) -((-2378 (*1 *1) (-4 *1 (-743))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-743)) (-5 *2 (-112)))) (-1380 (*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) (-1748 (*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) (-4281 (*1 *1 *1) (|partial| -4 *1 (-743))) (-3258 (*1 *1 *1) (|partial| -4 *1 (-743))) (-1488 (*1 *1 *1) (|partial| -4 *1 (-743)))) -(-13 (-741) (-10 -8 (-15 (-2378) ($) -1528) (-15 -2097 ((-112) $)) (-15 -1380 ($ $ (-792))) (-15 -1748 ($ $ (-792))) (-15 ** ($ $ (-792))) (-15 -4281 ((-3 $ "failed") $)) (-15 -3258 ((-3 $ "failed") $)) (-15 -1488 ((-3 $ "failed") $)))) -(((-102) . T) ((-631 (-885)) . T) ((-741) . T) ((-1130) . T) ((-1247) . T)) -((-2221 (((-792)) 39 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 26 T ELT)) (-3514 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-2511 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-420 |#3|)) 49 T ELT)) (-4281 (((-3 $ "failed") $) 69 T ELT)) (-2060 (($) 43 T ELT)) (-2755 ((|#2| $) 21 T ELT)) (-2846 (($) 18 T ELT)) (-2030 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-1935 (((-710 |#2|) (-1297 $) (-1 |#2| |#2|)) 64 T ELT)) (-3341 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-3400 ((|#3| $) 36 T ELT)) (-2225 (((-1297 $)) 33 T ELT))) -(((-744 |#1| |#2| |#3|) (-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2060 (|#1|)) (-15 -2221 ((-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1935 ((-710 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -2511 ((-3 |#1| "failed") (-420 |#3|))) (-15 -3341 (|#1| |#3|)) (-15 -2511 (|#1| |#3|)) (-15 -2846 (|#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3341 (|#3| |#1|)) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -2225 ((-1297 |#1|))) (-15 -3400 (|#3| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|))) (-745 |#2| |#3|) (-174) (-1273 |#2|)) (T -744)) -((-2221 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-792)) (-5 *1 (-744 *3 *4 *5)) (-4 *3 (-745 *4 *5))))) -(-10 -8 (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2060 (|#1|)) (-15 -2221 ((-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1935 ((-710 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -2511 ((-3 |#1| "failed") (-420 |#3|))) (-15 -3341 (|#1| |#3|)) (-15 -2511 (|#1| |#3|)) (-15 -2846 (|#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3341 (|#3| |#1|)) (-15 -3341 (|#1| (-1297 |#2|))) (-15 -3341 ((-1297 |#2|) |#1|)) (-15 -2225 ((-1297 |#1|))) (-15 -3400 (|#3| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -4281 ((-3 |#1| "failed") |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 105 (|has| |#1| (-375)) ELT)) (-3913 (($ $) 106 (|has| |#1| (-375)) ELT)) (-4244 (((-112) $) 108 (|has| |#1| (-375)) ELT)) (-2716 (((-710 |#1|) (-1297 $)) 53 T ELT) (((-710 |#1|)) 68 T ELT)) (-1880 ((|#1| $) 59 T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) 158 (|has| |#1| (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 125 (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) 126 (|has| |#1| (-375)) ELT)) (-3397 (((-112) $ $) 116 (|has| |#1| (-375)) ELT)) (-2221 (((-792)) 99 (|has| |#1| (-380)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3514 (((-577) $) 184 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 182 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 181 T ELT)) (-1912 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)) ELT)) (-3152 (($ $ $) 120 (|has| |#1| (-375)) ELT)) (-3449 (((-710 |#1|) $ (-1297 $)) 60 T ELT) (((-710 |#1|) $) 66 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 177 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 176 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 175 T ELT) (((-710 |#1|) (-710 $)) 174 T ELT)) (-2511 (($ |#2|) 169 T ELT) (((-3 $ "failed") (-420 |#2|)) 166 (|has| |#1| (-375)) ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-949)) 61 T ELT)) (-2060 (($) 102 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) 119 (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 114 (|has| |#1| (-375)) ELT)) (-3619 (($) 160 (|has| |#1| (-361)) ELT)) (-3390 (((-112) $) 161 (|has| |#1| (-361)) ELT)) (-2202 (($ $ (-792)) 152 (|has| |#1| (-361)) ELT) (($ $) 151 (|has| |#1| (-361)) ELT)) (-1632 (((-112) $) 127 (|has| |#1| (-375)) ELT)) (-3890 (((-949) $) 163 (|has| |#1| (-361)) ELT) (((-854 (-949)) $) 149 (|has| |#1| (-361)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-2755 ((|#1| $) 58 T ELT)) (-3651 (((-3 $ "failed") $) 153 (|has| |#1| (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 123 (|has| |#1| (-375)) ELT)) (-4067 ((|#2| $) 51 (|has| |#1| (-375)) ELT)) (-2553 (((-949) $) 101 (|has| |#1| (-380)) ELT)) (-2500 ((|#2| $) 167 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 179 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 178 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-710 |#1|) (-1297 $)) 172 T ELT)) (-2388 (($ (-665 $)) 112 (|has| |#1| (-375)) ELT) (($ $ $) 111 (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 128 (|has| |#1| (-375)) ELT)) (-2199 (($) 154 (|has| |#1| (-361)) CONST)) (-2085 (($ (-949)) 100 (|has| |#1| (-380)) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2846 (($) 171 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 113 (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) 110 (|has| |#1| (-375)) ELT) (($ $ $) 109 (|has| |#1| (-375)) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) 157 (|has| |#1| (-361)) ELT)) (-2799 (((-431 $) $) 124 (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 121 (|has| |#1| (-375)) ELT)) (-3200 (((-3 $ "failed") $ $) 104 (|has| |#1| (-375)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 115 (|has| |#1| (-375)) ELT)) (-2442 (((-792) $) 117 (|has| |#1| (-375)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 118 (|has| |#1| (-375)) ELT)) (-1611 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2723 (((-792) $) 162 (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) 150 (|has| |#1| (-361)) ELT)) (-2030 (($ $ (-792)) 147 (-2229 (-2319 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) 145 (-2229 (-2319 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 141 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206) (-792)) 140 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206))) 139 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206)) 137 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) 135 (|has| |#1| (-375)) ELT)) (-1935 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)) ELT)) (-1773 ((|#2|) 170 T ELT)) (-1494 (($) 159 (|has| |#1| (-361)) ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-710 |#1|) (-1297 $)) 72 T ELT)) (-3341 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) ((|#2| $) 186 T ELT) (($ |#2|) 168 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 156 (|has| |#1| (-361)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ $) 103 (|has| |#1| (-375)) ELT) (($ (-420 (-577))) 98 (-2229 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2580 (($ $) 155 (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) 50 (|has| |#1| (-146)) ELT)) (-3400 ((|#2| $) 52 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2225 (((-1297 $)) 74 T ELT)) (-1370 (((-112) $ $) 107 (|has| |#1| (-375)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-792)) 148 (-2229 (-2319 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) 146 (-2229 (-2319 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 144 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206) (-792)) 143 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206))) 142 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1206)) 138 (-2319 (|has| |#1| (-928 (-1206))) (|has| |#1| (-375))) ELT) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) 133 (|has| |#1| (-375)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 132 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 129 (|has| |#1| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-420 (-577)) $) 131 (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-375)) ELT))) -(((-745 |#1| |#2|) (-141) (-174) (-1273 |t#1|)) (T -745)) -((-2846 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-745 *2 *3)) (-4 *3 (-1273 *2)))) (-1773 (*1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) (-2511 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) (-3341 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) (-2511 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-375)) (-4 *3 (-174)) (-4 *1 (-745 *3 *4)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-4 *1 (-745 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1273 *5)) (-5 *2 (-710 *5))))) -(-13 (-422 |t#1| |t#2|) (-174) (-632 |t#2|) (-424 |t#1|) (-389 |t#1|) (-10 -8 (-15 -2846 ($)) (-15 -1773 (|t#2|)) (-15 -2511 ($ |t#2|)) (-15 -3341 ($ |t#2|)) (-15 -2500 (|t#2| $)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-375)) (-6 (-233 |t#1|)) (-15 -2511 ((-3 $ "failed") (-420 |t#2|))) (-15 -1935 ((-710 |t#1|) (-1297 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-102) . T) ((-111 #0# #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2229 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) . T) ((-632 |#2|) . T) ((-235 $) -2229 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-233 |#1|) |has| |#1| (-375)) ((-239) -2229 (|has| |#1| (-361)) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-238) -2229 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-273 |#1|) |has| |#1| (-375)) ((-249) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-301) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-318) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-375) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2229 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-569) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-667 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-661 |#1|) . T) ((-661 $) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-738 |#1|) . T) ((-738 $) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))))) ((-926 (-1206)) -12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -2229 (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-926 (-1206))))) ((-948) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) -2229 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-361)) ((-1247) . T) ((-1251) -2229 (|has| |#1| (-361)) (|has| |#1| (-375)))) -((-2762 (($) 11 T ELT)) (-4281 (((-3 $ "failed") $) 14 T ELT)) (-2097 (((-112) $) 10 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 20 T ELT))) -(((-746 |#1|) (-10 -8 (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 -2097 ((-112) |#1|)) (-15 -2762 (|#1|)) (-15 ** (|#1| |#1| (-949)))) (-747)) (T -746)) -NIL -(-10 -8 (-15 -4281 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-792))) (-15 -2097 ((-112) |#1|)) (-15 -2762 (|#1|)) (-15 ** (|#1| |#1| (-949)))) -((-3211 (((-112) $ $) 7 T ELT)) (-2762 (($) 19 T CONST)) (-4281 (((-3 $ "failed") $) 16 T ELT)) (-2097 (((-112) $) 18 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2378 (($) 20 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT)) (* (($ $ $) 15 T ELT))) -(((-747) (-141)) (T -747)) -((-2378 (*1 *1) (-4 *1 (-747))) (-2762 (*1 *1) (-4 *1 (-747))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-747)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-747)) (-5 *2 (-792)))) (-4281 (*1 *1 *1) (|partial| -4 *1 (-747)))) -(-13 (-1142) (-10 -8 (-15 (-2378) ($) -1528) (-15 -2762 ($) -1528) (-15 -2097 ((-112) $)) (-15 ** ($ $ (-792))) (-15 -4281 ((-3 $ "failed") $)))) -(((-102) . T) ((-631 (-885)) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-1923 (((-2 (|:| -3084 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-2574 (((-2 (|:| -3084 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2298 ((|#2| (-420 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-2622 (((-2 (|:| |poly| |#2|) (|:| -3084 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-748 |#1| |#2|) (-10 -7 (-15 -2574 ((-2 (|:| -3084 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1923 ((-2 (|:| -3084 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2298 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -2622 ((-2 (|:| |poly| |#2|) (|:| -3084 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1273 |#1|)) (T -748)) -((-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3084 (-420 *6)) (|:| |special| (-420 *6)))) (-5 *1 (-748 *5 *6)) (-5 *3 (-420 *6)))) (-2298 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-748 *5 *2)) (-4 *5 (-375)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3084 (-431 *3)) (|:| |special| (-431 *3)))) (-5 *1 (-748 *5 *3)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3084 *3) (|:| |special| *3))) (-5 *1 (-748 *5 *3))))) -(-10 -7 (-15 -2574 ((-2 (|:| -3084 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1923 ((-2 (|:| -3084 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2298 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -2622 ((-2 (|:| |poly| |#2|) (|:| -3084 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) -((-3767 ((|#7| (-665 |#5|) |#6|) NIL T ELT)) (-3609 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-749 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3609 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3767 (|#7| (-665 |#5|) |#6|))) (-870) (-814) (-814) (-1079) (-1079) (-977 |#4| |#2| |#1|) (-977 |#5| |#3| |#1|)) (T -749)) -((-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *9)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *8 (-1079)) (-4 *2 (-977 *9 *7 *5)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) (-4 *4 (-977 *8 *6 *5)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1079)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) (-4 *2 (-977 *9 *7 *5)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) (-4 *4 (-977 *8 *6 *5))))) -(-10 -7 (-15 -3609 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3767 (|#7| (-665 |#5|) |#6|))) -((-3609 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-750 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3609 (|#7| (-1 |#2| |#1|) |#6|))) (-870) (-870) (-814) (-814) (-1079) (-977 |#5| |#3| |#1|) (-977 |#5| |#4| |#2|)) (T -750)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-870)) (-4 *6 (-870)) (-4 *7 (-814)) (-4 *9 (-1079)) (-4 *2 (-977 *9 *8 *6)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-814)) (-4 *4 (-977 *9 *7 *5))))) -(-10 -7 (-15 -3609 (|#7| (-1 |#2| |#1|) |#6|))) -((-2799 (((-431 |#4|) |#4|) 42 T ELT))) -(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 ((-431 |#4|) |#4|))) (-814) (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206))))) (-318) (-977 (-980 |#3|) |#1| |#2|)) (T -751)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206)))))) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-977 (-980 *6) *4 *5))))) -(-10 -7 (-15 -2799 ((-431 |#4|) |#4|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-887 |#1|)) $) NIL T ELT)) (-4419 (((-1202 $) $ (-887 |#1|)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#2| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-887 |#1|))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#2| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-887 |#1|) $) NIL T ELT)) (-3760 (($ $ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4313 (($ $ |#2| (-544 (-887 |#1|)) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-887 |#1|) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2935 (($ (-1202 |#2|) (-887 |#1|)) NIL T ELT) (($ (-1202 $) (-887 |#1|)) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-544 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-887 |#1|)) NIL T ELT)) (-3569 (((-544 (-887 |#1|)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-4309 (($ (-1 (-544 (-887 |#1|)) (-544 (-887 |#1|))) $) NIL T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2505 (((-3 (-887 |#1|) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#2| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-887 |#1|)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#2| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-887 |#1|) |#2|) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 |#2|)) NIL T ELT) (($ $ (-887 |#1|) $) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 $)) NIL T ELT)) (-1611 (($ $ (-887 |#1|)) NIL (|has| |#2| (-174)) ELT)) (-2030 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-2776 (((-544 (-887 |#1|)) $) NIL T ELT) (((-792) $ (-887 |#1|)) NIL T ELT) (((-665 (-792)) $ (-665 (-887 |#1|))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-887 |#1|) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-887 |#1|) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2091 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-887 |#1|)) NIL (|has| |#2| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-887 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-569)) ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-544 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 (-887 |#1|)) (-665 (-792))) NIL T ELT) (($ $ (-887 |#1|) (-792)) NIL T ELT) (($ $ (-665 (-887 |#1|))) NIL T ELT) (($ $ (-887 |#1|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-752 |#1| |#2|) (-977 |#2| (-544 (-887 |#1|)) (-887 |#1|)) (-665 (-1206)) (-1079)) (T -752)) -NIL -(-977 |#2| (-544 (-887 |#1|)) (-887 |#1|)) -((-3974 (((-2 (|:| -1658 (-980 |#3|)) (|:| -1994 (-980 |#3|))) |#4|) 14 T ELT)) (-3027 ((|#4| |#4| |#2|) 33 T ELT)) (-2051 ((|#4| (-420 (-980 |#3|)) |#2|) 64 T ELT)) (-3203 ((|#4| (-1202 (-980 |#3|)) |#2|) 77 T ELT)) (-2145 ((|#4| (-1202 |#4|) |#2|) 51 T ELT)) (-3470 ((|#4| |#4| |#2|) 54 T ELT)) (-2799 (((-431 |#4|) |#4|) 40 T ELT))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-2 (|:| -1658 (-980 |#3|)) (|:| -1994 (-980 |#3|))) |#4|)) (-15 -3470 (|#4| |#4| |#2|)) (-15 -2145 (|#4| (-1202 |#4|) |#2|)) (-15 -3027 (|#4| |#4| |#2|)) (-15 -3203 (|#4| (-1202 (-980 |#3|)) |#2|)) (-15 -2051 (|#4| (-420 (-980 |#3|)) |#2|)) (-15 -2799 ((-431 |#4|) |#4|))) (-814) (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)))) (-569) (-977 (-420 (-980 |#3|)) |#1| |#2|)) (T -753)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *6 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-977 (-420 (-980 *6)) *4 *5)))) (-2051 (*1 *2 *3 *4) (-12 (-4 *6 (-569)) (-4 *2 (-977 *3 *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) (-5 *3 (-420 (-980 *6))) (-4 *5 (-814)) (-4 *4 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))))) (-3203 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 (-980 *6))) (-4 *6 (-569)) (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) (-4 *5 (-814)) (-4 *4 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))))) (-3027 (*1 *2 *2 *3) (-12 (-4 *4 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *5 (-569)) (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-1202 *2)) (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) (-4 *5 (-814)) (-4 *4 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *6 (-569)))) (-3470 (*1 *2 *2 *3) (-12 (-4 *4 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *5 (-569)) (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *6 (-569)) (-5 *2 (-2 (|:| -1658 (-980 *6)) (|:| -1994 (-980 *6)))) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-977 (-420 (-980 *6)) *4 *5))))) -(-10 -7 (-15 -3974 ((-2 (|:| -1658 (-980 |#3|)) (|:| -1994 (-980 |#3|))) |#4|)) (-15 -3470 (|#4| |#4| |#2|)) (-15 -2145 (|#4| (-1202 |#4|) |#2|)) (-15 -3027 (|#4| |#4| |#2|)) (-15 -3203 (|#4| (-1202 (-980 |#3|)) |#2|)) (-15 -2051 (|#4| (-420 (-980 |#3|)) |#2|)) (-15 -2799 ((-431 |#4|) |#4|))) -((-2799 (((-431 |#4|) |#4|) 54 T ELT))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 ((-431 |#4|) |#4|))) (-814) (-870) (-13 (-318) (-148)) (-977 (-420 |#3|) |#1| |#2|)) (T -754)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-977 (-420 *6) *4 *5))))) -(-10 -7 (-15 -2799 ((-431 |#4|) |#4|))) -((-3609 (((-756 |#2| |#3|) (-1 |#2| |#1|) (-756 |#1| |#3|)) 18 T ELT))) -(((-755 |#1| |#2| |#3|) (-10 -7 (-15 -3609 ((-756 |#2| |#3|) (-1 |#2| |#1|) (-756 |#1| |#3|)))) (-1079) (-1079) (-747)) (T -755)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5 *7)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *7 (-747)) (-5 *2 (-756 *6 *7)) (-5 *1 (-755 *5 *6 *7))))) -(-10 -7 (-15 -3609 ((-756 |#2| |#3|) (-1 |#2| |#1|) (-756 |#1| |#3|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 36 T ELT)) (-2480 (((-665 (-2 (|:| -2671 |#1|) (|:| -1475 |#2|))) $) 37 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2221 (((-792)) 22 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) 76 T ELT) (((-3 |#1| "failed") $) 79 T ELT)) (-3514 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3134 (($ $) 102 (|has| |#2| (-870)) ELT)) (-4281 (((-3 $ "failed") $) 85 T ELT)) (-2060 (($) 48 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) 70 T ELT)) (-1387 (((-665 $) $) 52 T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| |#2|) 17 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2553 (((-949) $) 43 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-3095 ((|#2| $) 101 (|has| |#2| (-870)) ELT)) (-3109 ((|#1| $) 100 (|has| |#2| (-870)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) 35 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 99 T ELT) (($ (-577)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-665 (-2 (|:| -2671 |#1|) (|:| -1475 |#2|)))) 11 T ELT)) (-2929 (((-665 |#1|) $) 54 T ELT)) (-2778 ((|#1| $ |#2|) 115 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 12 T CONST)) (-2378 (($) 44 T CONST)) (-2383 (((-112) $ $) 105 T ELT)) (-2483 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 33 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 66 T ELT) (($ $ $) 118 T ELT) (($ |#1| $) 63 (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-756 |#1| |#2|) (-13 (-1079) (-1068 |#2|) (-1068 |#1|) (-10 -8 (-15 -2925 ($ |#1| |#2|)) (-15 -2778 (|#1| $ |#2|)) (-15 -2410 ($ (-665 (-2 (|:| -2671 |#1|) (|:| -1475 |#2|))))) (-15 -2480 ((-665 (-2 (|:| -2671 |#1|) (|:| -1475 |#2|))) $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (-15 -2338 ((-112) $)) (-15 -2929 ((-665 |#1|) $)) (-15 -1387 ((-665 $) $)) (-15 -3641 ((-792) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-870)) (PROGN (-15 -3095 (|#2| $)) (-15 -3109 (|#1| $)) (-15 -3134 ($ $))) |%noBranch|))) (-1079) (-747)) (T -756)) -((-2925 (*1 *1 *2 *3) (-12 (-5 *1 (-756 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-747)))) (-2778 (*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-747)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -2671 *3) (|:| -1475 *4)))) (-4 *3 (-1079)) (-4 *4 (-747)) (-5 *1 (-756 *3 *4)))) (-2480 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -2671 *3) (|:| -1475 *4)))) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-756 *3 *4)) (-4 *4 (-747)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-665 (-756 *3 *4))) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) (-3095 (*1 *2 *1) (-12 (-4 *2 (-747)) (-4 *2 (-870)) (-5 *1 (-756 *3 *2)) (-4 *3 (-1079)))) (-3109 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) (-4 *3 (-747)))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) (-4 *2 (-1079)) (-4 *3 (-747))))) -(-13 (-1079) (-1068 |#2|) (-1068 |#1|) (-10 -8 (-15 -2925 ($ |#1| |#2|)) (-15 -2778 (|#1| $ |#2|)) (-15 -2410 ($ (-665 (-2 (|:| -2671 |#1|) (|:| -1475 |#2|))))) (-15 -2480 ((-665 (-2 (|:| -2671 |#1|) (|:| -1475 |#2|))) $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (-15 -2338 ((-112) $)) (-15 -2929 ((-665 |#1|) $)) (-15 -1387 ((-665 $) $)) (-15 -3641 ((-792) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-870)) (PROGN (-15 -3095 (|#2| $)) (-15 -3109 (|#1| $)) (-15 -3134 ($ $))) |%noBranch|))) -((-3211 (((-112) $ $) 20 T ELT)) (-1339 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-2729 (($ $ $) 73 T ELT)) (-2171 (((-112) $ $) 74 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-1753 (($ (-665 |#1|)) 69 T ELT) (($) 68 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3237 (($ $) 63 T ELT)) (-3860 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3283 (((-112) $ $) 65 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 T ELT)) (-3959 (($ $ $) 70 T ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT) (($ |#1| $ (-792)) 64 T ELT)) (-4312 (((-1150) $) 22 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-1913 (((-665 (-2 (|:| -2753 |#1|) (|:| -4323 (-792)))) $) 62 T ELT)) (-2964 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 51 T ELT)) (-2410 (((-885) $) 18 T ELT)) (-2868 (($ (-665 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2525 (((-112) $ $) 21 T ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 T ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-757 |#1|) (-141) (-1130)) (T -757)) -NIL -(-13 (-716 |t#1|) (-1128 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-716 |#1|) . T) ((-1128 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1339 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 92 T ELT)) (-2729 (($ $ $) 96 T ELT)) (-2171 (((-112) $ $) 104 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-1753 (($ (-665 |#1|)) 26 T ELT) (($) 17 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3237 (($ $) 85 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) 70 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT) (($ |#1| $ (-577)) 75 T ELT) (($ (-1 (-112) |#1|) $ (-577)) 78 T ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (($ |#1| $ (-577)) 80 T ELT) (($ (-1 (-112) |#1|) $ (-577)) 81 T ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 32 (|has| $ (-6 -4499)) ELT)) (-3283 (((-112) $ $) 103 T ELT)) (-3024 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-665 |#1|)) 23 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) 38 T ELT)) (-2318 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3959 (($ $ $) 94 T ELT)) (-3398 ((|#1| $) 62 T ELT)) (-3795 (($ |#1| $) 63 T ELT) (($ |#1| $ (-792)) 86 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3127 ((|#1| $) 61 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 56 T ELT)) (-3414 (($) 14 T ELT)) (-1913 (((-665 (-2 (|:| -2753 |#1|) (|:| -4323 (-792)))) $) 55 T ELT)) (-2964 (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-2427 (($) 16 T ELT) (($ (-665 |#1|)) 25 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 68 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 79 T ELT)) (-3341 (((-549) $) 36 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 22 T ELT)) (-2410 (((-885) $) 49 T ELT)) (-2868 (($ (-665 |#1|)) 27 T ELT) (($) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3236 (($ (-665 |#1|)) 24 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 100 T ELT)) (-3224 (((-792) $) 67 (|has| $ (-6 -4499)) ELT))) -(((-758 |#1|) (-13 (-757 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3024 ($)) (-15 -3024 ($ |#1|)) (-15 -3024 ($ (-665 |#1|))) (-15 -4138 ((-665 |#1|) $)) (-15 -2736 ($ |#1| $ (-577))) (-15 -2736 ($ (-1 (-112) |#1|) $ (-577))) (-15 -1991 ($ |#1| $ (-577))) (-15 -1991 ($ (-1 (-112) |#1|) $ (-577))))) (-1130)) (T -758)) -((-3024 (*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-3024 (*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-758 *3)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1130)))) (-2736 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-2736 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) (-5 *1 (-758 *4)))) (-1991 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) (-1991 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) (-5 *1 (-758 *4))))) -(-13 (-757 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3024 ($)) (-15 -3024 ($ |#1|)) (-15 -3024 ($ (-665 |#1|))) (-15 -4138 ((-665 |#1|) $)) (-15 -2736 ($ |#1| $ (-577))) (-15 -2736 ($ (-1 (-112) |#1|) $ (-577))) (-15 -1991 ($ |#1| $ (-577))) (-15 -1991 ($ (-1 (-112) |#1|) $ (-577))))) -((-3043 (((-1302) (-1188)) 8 T ELT))) -(((-759) (-10 -7 (-15 -3043 ((-1302) (-1188))))) (T -759)) -((-3043 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-759))))) -(-10 -7 (-15 -3043 ((-1302) (-1188)))) -((-2972 (((-665 |#1|) (-665 |#1|) (-665 |#1|)) 15 T ELT))) -(((-760 |#1|) (-10 -7 (-15 -2972 ((-665 |#1|) (-665 |#1|) (-665 |#1|)))) (-870)) (T -760)) -((-2972 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-760 *3))))) -(-10 -7 (-15 -2972 ((-665 |#1|) (-665 |#1|) (-665 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 |#2|) $) 149 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 142 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 141 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 139 (|has| |#1| (-569)) ELT)) (-1501 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2809 (($ $) 80 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1477 (($ $) 97 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1527 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 83 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) 18 T CONST)) (-3134 (($ $) 133 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1768 (((-980 |#1|) $ (-792)) 111 T ELT) (((-980 |#1|) $ (-792) (-792)) 110 T ELT)) (-2741 (((-112) $) 150 T ELT)) (-2549 (($) 108 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-792) $ |#2|) 113 T ELT) (((-792) $ |#2| (-792)) 112 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 79 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2338 (((-112) $) 131 T ELT)) (-2925 (($ $ (-665 |#2|) (-665 (-544 |#2|))) 148 T ELT) (($ $ |#2| (-544 |#2|)) 147 T ELT) (($ |#1| (-544 |#2|)) 132 T ELT) (($ $ |#2| (-792)) 115 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 114 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 130 T ELT)) (-3863 (($ $) 105 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) 128 T ELT)) (-3109 ((|#1| $) 127 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3491 (($ $ |#2|) 109 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4013 (($ $ (-792)) 116 T ELT)) (-3200 (((-3 $ "failed") $ $) 143 (|has| |#1| (-569)) ELT)) (-3585 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (($ $ |#2| $) 124 T ELT) (($ $ (-665 |#2|) (-665 $)) 123 T ELT) (($ $ (-665 (-305 $))) 122 T ELT) (($ $ (-305 $)) 121 T ELT) (($ $ $ $) 120 T ELT) (($ $ (-665 $) (-665 $)) 119 T ELT)) (-2030 (($ $ (-665 |#2|) (-665 (-792))) 44 T ELT) (($ $ |#2| (-792)) 43 T ELT) (($ $ (-665 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-2776 (((-544 |#2|) $) 129 T ELT)) (-1540 (($ $) 95 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 84 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 85 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 93 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 86 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 151 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 146 (|has| |#1| (-174)) ELT) (($ $) 144 (|has| |#1| (-569)) ELT) (($ (-420 (-577))) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2778 ((|#1| $ (-544 |#2|)) 134 T ELT) (($ $ |#2| (-792)) 118 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 117 T ELT)) (-2580 (((-3 $ "failed") $) 145 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1575 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) 140 (|has| |#1| (-569)) ELT)) (-1551 (($ $) 103 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 91 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3501 (($ $) 101 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 89 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 99 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 87 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-665 |#2|) (-665 (-792))) 47 T ELT) (($ $ |#2| (-792)) 46 T ELT) (($ $ (-665 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 135 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ $) 107 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 78 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 138 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 126 T ELT) (($ $ |#1|) 125 T ELT))) -(((-761 |#1| |#2|) (-141) (-1079) (-870)) (T -761)) -((-2778 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) (-2778 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-761 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-870)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) (-4 *2 (-870)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-3890 (*1 *2 *1 *3) (-12 (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *2 (-792)))) (-3890 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-792)) (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)))) (-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) (-5 *2 (-980 *4)))) (-1768 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) (-4 *5 (-870)) (-5 *2 (-980 *4)))) (-3491 (*1 *1 *1 *2) (-12 (-4 *1 (-761 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)) (-4 *3 (-38 (-420 (-577))))))) -(-13 (-926 |t#2|) (-1003 |t#1| (-544 |t#2|) |t#2|) (-527 |t#2| $) (-320 $) (-10 -8 (-15 -2778 ($ $ |t#2| (-792))) (-15 -2778 ($ $ (-665 |t#2|) (-665 (-792)))) (-15 -4013 ($ $ (-792))) (-15 -2925 ($ $ |t#2| (-792))) (-15 -2925 ($ $ (-665 |t#2|) (-665 (-792)))) (-15 -3890 ((-792) $ |t#2|)) (-15 -3890 ((-792) $ |t#2| (-792))) (-15 -1768 ((-980 |t#1|) $ (-792))) (-15 -1768 ((-980 |t#1|) $ (-792) (-792))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $ |t#2|)) (-6 (-1032)) (-6 (-1232))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-544 |#2|)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-301) |has| |#1| (-569)) ((-320 $) . T) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 |#2| $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-667 #1#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #1#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-920 $ |#2|) . T) ((-926 |#2|) . T) ((-928 |#2|) . T) ((-1003 |#1| #0# |#2|) . T) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T)) -((-2799 (((-431 (-1202 |#4|)) (-1202 |#4|)) 30 T ELT) (((-431 |#4|) |#4|) 26 T ELT))) -(((-762 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 ((-431 |#4|) |#4|)) (-15 -2799 ((-431 (-1202 |#4|)) (-1202 |#4|)))) (-870) (-814) (-13 (-318) (-148)) (-977 |#3| |#2| |#1|)) (T -762)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) -(-10 -7 (-15 -2799 ((-431 |#4|) |#4|)) (-15 -2799 ((-431 (-1202 |#4|)) (-1202 |#4|)))) -((-3694 (((-431 |#4|) |#4| |#2|) 140 T ELT)) (-4065 (((-431 |#4|) |#4|) NIL T ELT)) (-4240 (((-431 (-1202 |#4|)) (-1202 |#4|)) 127 T ELT) (((-431 |#4|) |#4|) 52 T ELT)) (-3656 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-665 (-2 (|:| -2799 (-1202 |#4|)) (|:| -2182 (-577)))))) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|))) 81 T ELT)) (-2509 (((-1202 |#3|) (-1202 |#3|) (-577)) 166 T ELT)) (-4144 (((-665 (-792)) (-1202 |#4|) (-665 |#2|) (-792)) 75 T ELT)) (-2500 (((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-1202 |#3|) (-1202 |#3|) |#4| (-665 |#2|) (-665 (-792)) (-665 |#3|)) 79 T ELT)) (-3275 (((-2 (|:| |upol| (-1202 |#3|)) (|:| |Lval| (-665 |#3|)) (|:| |Lfact| (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577))))) (|:| |ctpol| |#3|)) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|))) 27 T ELT)) (-3693 (((-2 (|:| -1524 (-1202 |#4|)) (|:| |polval| (-1202 |#3|))) (-1202 |#4|) (-1202 |#3|) (-577)) 72 T ELT)) (-2966 (((-577) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577))))) 162 T ELT)) (-3721 ((|#4| (-577) (-431 |#4|)) 73 T ELT)) (-1899 (((-112) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577)))) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577))))) NIL T ELT))) -(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4240 ((-431 |#4|) |#4|)) (-15 -4240 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -4065 ((-431 |#4|) |#4|)) (-15 -2966 ((-577) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577)))))) (-15 -3694 ((-431 |#4|) |#4| |#2|)) (-15 -3693 ((-2 (|:| -1524 (-1202 |#4|)) (|:| |polval| (-1202 |#3|))) (-1202 |#4|) (-1202 |#3|) (-577))) (-15 -3656 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-665 (-2 (|:| -2799 (-1202 |#4|)) (|:| -2182 (-577)))))) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -3275 ((-2 (|:| |upol| (-1202 |#3|)) (|:| |Lval| (-665 |#3|)) (|:| |Lfact| (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577))))) (|:| |ctpol| |#3|)) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -3721 (|#4| (-577) (-431 |#4|))) (-15 -1899 ((-112) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577)))) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577)))))) (-15 -2500 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-1202 |#3|) (-1202 |#3|) |#4| (-665 |#2|) (-665 (-792)) (-665 |#3|))) (-15 -4144 ((-665 (-792)) (-1202 |#4|) (-665 |#2|) (-792))) (-15 -2509 ((-1202 |#3|) (-1202 |#3|) (-577)))) (-814) (-870) (-318) (-977 |#3| |#1| |#2|)) (T -763)) -((-2509 (*1 *2 *2 *3) (-12 (-5 *2 (-1202 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-4144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-4 *7 (-870)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-4 *8 (-318)) (-5 *2 (-665 (-792))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *5 (-792)))) (-2500 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1202 *11)) (-5 *6 (-665 *10)) (-5 *7 (-665 (-792))) (-5 *8 (-665 *11)) (-4 *10 (-870)) (-4 *11 (-318)) (-4 *9 (-814)) (-4 *5 (-977 *11 *9 *10)) (-5 *2 (-665 (-1202 *5))) (-5 *1 (-763 *9 *10 *11 *5)) (-5 *3 (-1202 *5)))) (-1899 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-2 (|:| -2799 (-1202 *6)) (|:| -2182 (-577))))) (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-3721 (*1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-977 *7 *5 *6)) (-5 *1 (-763 *5 *6 *7 *2)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-318)))) (-3275 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) (-4 *7 (-870)) (-4 *8 (-318)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 (-2 (|:| |upol| (-1202 *8)) (|:| |Lval| (-665 *8)) (|:| |Lfact| (-665 (-2 (|:| -2799 (-1202 *8)) (|:| -2182 (-577))))) (|:| |ctpol| *8))) (-5 *1 (-763 *6 *7 *8 *9)))) (-3656 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) (-4 *7 (-870)) (-4 *8 (-318)) (-4 *6 (-814)) (-4 *9 (-977 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-665 (-2 (|:| -2799 (-1202 *9)) (|:| -2182 (-577))))))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9)))) (-3693 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-577)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-318)) (-4 *9 (-977 *8 *6 *7)) (-5 *2 (-2 (|:| -1524 (-1202 *9)) (|:| |polval| (-1202 *8)))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9)) (-5 *4 (-1202 *8)))) (-3694 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-763 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -2799 (-1202 *6)) (|:| -2182 (-577))))) (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-4065 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5)))) (-4240 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-4240 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5))))) -(-10 -7 (-15 -4240 ((-431 |#4|) |#4|)) (-15 -4240 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -4065 ((-431 |#4|) |#4|)) (-15 -2966 ((-577) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577)))))) (-15 -3694 ((-431 |#4|) |#4| |#2|)) (-15 -3693 ((-2 (|:| -1524 (-1202 |#4|)) (|:| |polval| (-1202 |#3|))) (-1202 |#4|) (-1202 |#3|) (-577))) (-15 -3656 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-665 (-2 (|:| -2799 (-1202 |#4|)) (|:| -2182 (-577)))))) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -3275 ((-2 (|:| |upol| (-1202 |#3|)) (|:| |Lval| (-665 |#3|)) (|:| |Lfact| (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577))))) (|:| |ctpol| |#3|)) (-1202 |#4|) (-665 |#2|) (-665 (-665 |#3|)))) (-15 -3721 (|#4| (-577) (-431 |#4|))) (-15 -1899 ((-112) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577)))) (-665 (-2 (|:| -2799 (-1202 |#3|)) (|:| -2182 (-577)))))) (-15 -2500 ((-3 (-665 (-1202 |#4|)) "failed") (-1202 |#4|) (-1202 |#3|) (-1202 |#3|) |#4| (-665 |#2|) (-665 (-792)) (-665 |#3|))) (-15 -4144 ((-665 (-792)) (-1202 |#4|) (-665 |#2|) (-792))) (-15 -2509 ((-1202 |#3|) (-1202 |#3|) (-577)))) -((-3328 (($ $ (-949)) 17 T ELT))) -(((-764 |#1| |#2|) (-10 -8 (-15 -3328 (|#1| |#1| (-949)))) (-765 |#2|) (-174)) (T -764)) -NIL -(-10 -8 (-15 -3328 (|#1| |#1| (-949)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-1380 (($ $ (-949)) 31 T ELT)) (-3328 (($ $ (-949)) 38 T ELT)) (-1748 (($ $ (-949)) 32 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4365 (($ $ $) 28 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3899 (($ $ $ $) 29 T ELT)) (-1416 (($ $ $) 27 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) -(((-765 |#1|) (-141) (-174)) (T -765)) -((-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-765 *3)) (-4 *3 (-174))))) -(-13 (-782) (-738 |t#1|) (-10 -8 (-15 -3328 ($ $ (-949))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-741) . T) ((-782) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-2567 (((-1065) (-710 (-228)) (-577) (-112) (-577)) 26 T ELT)) (-4471 (((-1065) (-710 (-228)) (-577) (-112) (-577)) 25 T ELT))) -(((-766) (-10 -7 (-15 -4471 ((-1065) (-710 (-228)) (-577) (-112) (-577))) (-15 -2567 ((-1065) (-710 (-228)) (-577) (-112) (-577))))) (T -766)) -((-2567 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-766)))) (-4471 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-766))))) -(-10 -7 (-15 -4471 ((-1065) (-710 (-228)) (-577) (-112) (-577))) (-15 -2567 ((-1065) (-710 (-228)) (-577) (-112) (-577)))) -((-3852 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2234 (((-1065) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-1860 (((-1065) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) 32 T ELT))) -(((-767) (-10 -7 (-15 -1860 ((-1065) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2234 ((-1065) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -3852 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN))))))) (T -767)) -((-3852 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-2234 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1065)) (-5 *1 (-767)))) (-1860 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) (-5 *2 (-1065)) (-5 *1 (-767))))) -(-10 -7 (-15 -1860 ((-1065) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2234 ((-1065) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -3852 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))))) -((-3594 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 34 T ELT)) (-2592 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 33 T ELT)) (-3876 (((-1065) (-577) (-710 (-228)) (-577)) 32 T ELT)) (-3433 (((-1065) (-577) (-710 (-228)) (-577)) 31 T ELT)) (-2246 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 30 T ELT)) (-3522 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 29 T ELT)) (-3810 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577)) 28 T ELT)) (-2926 (((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577)) 27 T ELT)) (-2216 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 24 T ELT)) (-4296 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577)) 23 T ELT)) (-3804 (((-1065) (-577) (-710 (-228)) (-577)) 22 T ELT)) (-3938 (((-1065) (-577) (-710 (-228)) (-577)) 21 T ELT))) -(((-768) (-10 -7 (-15 -3938 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -3804 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -4296 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2216 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2926 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3810 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3522 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2246 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3433 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -3876 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -2592 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -3594 ((-1065) (-577) (-577) (-710 (-228)) (-577))))) (T -768)) -((-3594 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2592 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3876 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3433 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2246 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3522 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3810 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2926 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-2216 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-4296 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3804 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768)))) (-3938 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-768))))) -(-10 -7 (-15 -3938 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -3804 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -4296 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2216 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2926 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3810 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3522 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2246 ((-1065) (-577) (-577) (-1188) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3433 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -3876 ((-1065) (-577) (-710 (-228)) (-577))) (-15 -2592 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -3594 ((-1065) (-577) (-577) (-710 (-228)) (-577)))) -((-2008 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 52 T ELT)) (-1625 (((-1065) (-710 (-228)) (-710 (-228)) (-577) (-577)) 51 T ELT)) (-4033 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 50 T ELT)) (-2507 (((-1065) (-228) (-228) (-577) (-577) (-577) (-577)) 46 T ELT)) (-2271 (((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 45 T ELT)) (-2275 (((-1065) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 44 T ELT)) (-2438 (((-1065) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 43 T ELT)) (-2263 (((-1065) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 42 T ELT)) (-3943 (((-1065) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) 38 T ELT)) (-2725 (((-1065) (-228) (-228) (-577) (-710 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) 37 T ELT)) (-2054 (((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) 33 T ELT)) (-3162 (((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) 32 T ELT))) -(((-769) (-10 -7 (-15 -3162 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2054 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2725 ((-1065) (-228) (-228) (-577) (-710 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -3943 ((-1065) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2263 ((-1065) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2438 ((-1065) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2275 ((-1065) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2271 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2507 ((-1065) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -4033 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -1625 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-577))) (-15 -2008 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))))) (T -769)) -((-2008 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-1625 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-4033 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2271 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2275 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2438 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2263 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-3943 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2725 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-769)))) (-2054 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) (-5 *2 (-1065)) (-5 *1 (-769)))) (-3162 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) (-5 *2 (-1065)) (-5 *1 (-769))))) -(-10 -7 (-15 -3162 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2054 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2725 ((-1065) (-228) (-228) (-577) (-710 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -3943 ((-1065) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154))))) (-15 -2263 ((-1065) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2438 ((-1065) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2275 ((-1065) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2271 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2507 ((-1065) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -4033 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -1625 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-577))) (-15 -2008 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-228) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))))) -((-3469 (((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76 T ELT)) (-3652 (((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401)) 69 T ELT) (((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) 68 T ELT)) (-4367 (((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) 57 T ELT)) (-3698 (((-1065) (-710 (-228)) (-710 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 50 T ELT)) (-2727 (((-1065) (-228) (-577) (-577) (-1188) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 49 T ELT)) (-2012 (((-1065) (-228) (-577) (-577) (-228) (-1188) (-228) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 45 T ELT)) (-3393 (((-1065) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 42 T ELT)) (-4226 (((-1065) (-228) (-577) (-577) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 38 T ELT))) -(((-770) (-10 -7 (-15 -4226 ((-1065) (-228) (-577) (-577) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3393 ((-1065) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -2012 ((-1065) (-228) (-577) (-577) (-228) (-1188) (-228) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -2727 ((-1065) (-228) (-577) (-577) (-1188) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3698 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -4367 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -3652 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -3652 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -3469 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -770)) -((-3469 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3652 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-401)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3652 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1065)) (-5 *1 (-770)))) (-4367 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3698 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1065)) (-5 *1 (-770)))) (-2727 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-2012 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-3393 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770)))) (-4226 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) -(-10 -7 (-15 -4226 ((-1065) (-228) (-577) (-577) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3393 ((-1065) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -2012 ((-1065) (-228) (-577) (-577) (-228) (-1188) (-228) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -2727 ((-1065) (-228) (-577) (-577) (-1188) (-577) (-228) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3698 ((-1065) (-710 (-228)) (-710 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -4367 ((-1065) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -3652 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -3652 ((-1065) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -3469 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2452 (((-1065) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-696 (-228)) (-577)) 46 T ELT)) (-2497 (((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1188) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) 41 T ELT)) (-2933 (((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 23 T ELT))) -(((-771) (-10 -7 (-15 -2933 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2497 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1188) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -2452 ((-1065) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-696 (-228)) (-577))))) (T -771)) -((-2452 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-696 (-228))) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2497 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1065)) (-5 *1 (-771)))) (-2933 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-771))))) -(-10 -7 (-15 -2933 ((-1065) (-577) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2497 ((-1065) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1188) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -2452 ((-1065) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-696 (-228)) (-577)))) -((-1839 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-710 (-228)) (-228) (-228) (-577)) 35 T ELT)) (-4102 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-228) (-228) (-577)) 34 T ELT)) (-4109 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-710 (-228)) (-228) (-228) (-577)) 33 T ELT)) (-4358 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 29 T ELT)) (-3554 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 28 T ELT)) (-1602 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577)) 27 T ELT)) (-4311 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577)) 24 T ELT)) (-1356 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577)) 23 T ELT)) (-1690 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577)) 22 T ELT)) (-3034 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)) 21 T ELT))) -(((-772) (-10 -7 (-15 -3034 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -1690 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1356 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -4311 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -1602 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577))) (-15 -3554 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4358 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4109 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-710 (-228)) (-228) (-228) (-577))) (-15 -4102 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -1839 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-710 (-228)) (-228) (-228) (-577))))) (T -772)) -((-1839 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-4102 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-4109 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-4358 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-3554 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-1602 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-772)))) (-4311 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-1356 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-1690 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772)))) (-3034 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-772))))) -(-10 -7 (-15 -3034 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -1690 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1356 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -4311 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -1602 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-228) (-577))) (-15 -3554 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4358 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4109 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-710 (-228)) (-228) (-228) (-577))) (-15 -4102 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -1839 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-710 (-228)) (-228) (-228) (-577)))) -((-3032 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)) 45 T ELT)) (-2152 (((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-577)) 44 T ELT)) (-1657 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)) 43 T ELT)) (-1850 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 42 T ELT)) (-2295 (((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577)) 41 T ELT)) (-1492 (((-1065) (-1188) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577)) 40 T ELT)) (-2370 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577) (-577) (-577) (-228) (-710 (-228)) (-577)) 39 T ELT)) (-3907 (((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577))) 38 T ELT)) (-3785 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577)) 35 T ELT)) (-4132 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577)) 34 T ELT)) (-1865 (((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577)) 33 T ELT)) (-4293 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 32 T ELT)) (-3768 (((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577)) 31 T ELT)) (-3457 (((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-577)) 30 T ELT)) (-2524 (((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-577) (-577) (-577)) 29 T ELT)) (-3083 (((-1065) (-577) (-577) (-577) (-228) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-577)) (-577) (-577) (-577)) 28 T ELT)) (-4170 (((-1065) (-577) (-710 (-228)) (-228) (-577)) 24 T ELT)) (-4022 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 21 T ELT))) -(((-773) (-10 -7 (-15 -4022 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4170 ((-1065) (-577) (-710 (-228)) (-228) (-577))) (-15 -3083 ((-1065) (-577) (-577) (-577) (-228) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-577)) (-577) (-577) (-577))) (-15 -2524 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -3457 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -3768 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577))) (-15 -4293 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1865 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577))) (-15 -4132 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577))) (-15 -3785 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3907 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)))) (-15 -2370 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577) (-577) (-577) (-228) (-710 (-228)) (-577))) (-15 -1492 ((-1065) (-1188) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -2295 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1850 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1657 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -2152 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3032 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))))) (T -773)) -((-3032 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2152 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1657 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1850 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2295 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1492 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2370 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-3907 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-3785 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-4132 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-1865 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-4293 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773)))) (-3768 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-3457 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-2524 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-3083 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-4170 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) (-5 *2 (-1065)) (-5 *1 (-773)))) (-4022 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-773))))) -(-10 -7 (-15 -4022 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4170 ((-1065) (-577) (-710 (-228)) (-228) (-577))) (-15 -3083 ((-1065) (-577) (-577) (-577) (-228) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-577)) (-577) (-577) (-577))) (-15 -2524 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -3457 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -3768 ((-1065) (-577) (-228) (-228) (-710 (-228)) (-577) (-577) (-228) (-577))) (-15 -4293 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1865 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577))) (-15 -4132 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577))) (-15 -3785 ((-1065) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3907 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)))) (-15 -2370 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577) (-577) (-577) (-228) (-710 (-228)) (-577))) (-15 -1492 ((-1065) (-1188) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -2295 ((-1065) (-1188) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1850 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1657 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577))) (-15 -2152 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3032 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577) (-710 (-228)) (-710 (-228)) (-577) (-577) (-577)))) -((-1949 (((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-577) (-710 (-228)) (-577)) 64 T ELT)) (-3481 (((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 63 T ELT)) (-3036 (((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-112) (-112) (-577) (-577) (-710 (-228)) (-710 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-4388 (((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-577) (-577) (-710 (-228)) (-577)) 52 T ELT)) (-3586 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-3009 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) 47 T ELT)) (-3789 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-4096 (((-1065) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 39 T ELT))) -(((-774) (-10 -7 (-15 -4096 ((-1065) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -3789 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -3009 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -3586 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -4388 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-577) (-577) (-710 (-228)) (-577))) (-15 -3036 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-112) (-112) (-577) (-577) (-710 (-228)) (-710 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -3481 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -1949 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-577) (-710 (-228)) (-577))))) (T -774)) -((-1949 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3481 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-710 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3036 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-710 (-228))) (-5 *6 (-112)) (-5 *7 (-710 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-4388 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3586 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3009 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-3789 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1065)) (-5 *1 (-774)))) (-4096 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774))))) -(-10 -7 (-15 -4096 ((-1065) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -3789 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -3009 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -3586 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -4388 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-577) (-577) (-710 (-228)) (-577))) (-15 -3036 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-112) (-112) (-112) (-577) (-577) (-710 (-228)) (-710 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -3481 ((-1065) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -1949 ((-1065) (-577) (-577) (-577) (-228) (-710 (-228)) (-577) (-710 (-228)) (-577)))) -((-2466 (((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)) 47 T ELT)) (-3659 (((-1065) (-1188) (-1188) (-577) (-577) (-710 (-171 (-228))) (-577) (-710 (-171 (-228))) (-577) (-577) (-710 (-171 (-228))) (-577)) 46 T ELT)) (-1660 (((-1065) (-577) (-577) (-577) (-710 (-171 (-228))) (-577)) 45 T ELT)) (-4427 (((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 40 T ELT)) (-2021 (((-1065) (-1188) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)) (-577)) 39 T ELT)) (-1635 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-577)) 36 T ELT)) (-4020 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577)) 35 T ELT)) (-1969 (((-1065) (-577) (-577) (-577) (-577) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-228) (-228) (-577)) 34 T ELT)) (-4069 (((-1065) (-577) (-577) (-577) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-112) (-228) (-112) (-710 (-577)) (-710 (-228)) (-577)) 33 T ELT)) (-1992 (((-1065) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-577)) 32 T ELT))) -(((-775) (-10 -7 (-15 -1992 ((-1065) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-577))) (-15 -4069 ((-1065) (-577) (-577) (-577) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-112) (-228) (-112) (-710 (-577)) (-710 (-228)) (-577))) (-15 -1969 ((-1065) (-577) (-577) (-577) (-577) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-228) (-228) (-577))) (-15 -4020 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577))) (-15 -1635 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -2021 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)) (-577))) (-15 -4427 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1660 ((-1065) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -3659 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-171 (-228))) (-577) (-710 (-171 (-228))) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -2466 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577))))) (T -775)) -((-2466 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-3659 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-1660 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-4427 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-2021 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-1635 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-775)))) (-4020 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-1969 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-665 (-112))) (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-4069 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-710 (-577))) (-5 *5 (-112)) (-5 *7 (-710 (-228))) (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-775)))) (-1992 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-665 (-112))) (-5 *7 (-710 (-228))) (-5 *8 (-710 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) (-5 *2 (-1065)) (-5 *1 (-775))))) -(-10 -7 (-15 -1992 ((-1065) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-577))) (-15 -4069 ((-1065) (-577) (-577) (-577) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-710 (-577)) (-112) (-228) (-112) (-710 (-577)) (-710 (-228)) (-577))) (-15 -1969 ((-1065) (-577) (-577) (-577) (-577) (-665 (-112)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-228) (-228) (-577))) (-15 -4020 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577))) (-15 -1635 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -2021 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)) (-577))) (-15 -4427 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1660 ((-1065) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -3659 ((-1065) (-1188) (-1188) (-577) (-577) (-710 (-171 (-228))) (-577) (-710 (-171 (-228))) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -2466 ((-1065) (-1188) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)))) -((-2651 (((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)) 79 T ELT)) (-2654 (((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577)) 68 T ELT)) (-2293 (((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401)) 56 T ELT) (((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-1814 (((-1065) (-577) (-577) (-577) (-228) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577)) 37 T ELT)) (-3428 (((-1065) (-577) (-577) (-228) (-228) (-577) (-577) (-710 (-228)) (-577)) 33 T ELT)) (-1981 (((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577) (-577)) 30 T ELT)) (-2571 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 29 T ELT)) (-4304 (((-1065) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 28 T ELT)) (-1784 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 27 T ELT)) (-4189 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577)) 26 T ELT)) (-2122 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 25 T ELT)) (-2718 (((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 24 T ELT)) (-3172 (((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577)) 23 T ELT)) (-2198 (((-1065) (-710 (-228)) (-577) (-577) (-577) (-577)) 22 T ELT)) (-2461 (((-1065) (-577) (-577) (-710 (-228)) (-577)) 21 T ELT))) -(((-776) (-10 -7 (-15 -2461 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -2198 ((-1065) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -3172 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2718 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2122 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -4189 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -1784 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4304 ((-1065) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2571 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1981 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -3428 ((-1065) (-577) (-577) (-228) (-228) (-577) (-577) (-710 (-228)) (-577))) (-15 -1814 ((-1065) (-577) (-577) (-577) (-228) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2293 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -2293 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -2654 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2651 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577))))) (T -776)) -((-2651 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2654 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2293 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2293 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-1814 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-3428 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-1981 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2571 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-4304 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-1784 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-4189 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2122 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2718 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-3172 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2198 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-776)))) (-2461 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-776))))) -(-10 -7 (-15 -2461 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -2198 ((-1065) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -3172 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2718 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2122 ((-1065) (-577) (-577) (-710 (-228)) (-577))) (-15 -4189 ((-1065) (-577) (-577) (-577) (-577) (-710 (-228)) (-577))) (-15 -1784 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4304 ((-1065) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2571 ((-1065) (-577) (-577) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -1981 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -3428 ((-1065) (-577) (-577) (-228) (-228) (-577) (-577) (-710 (-228)) (-577))) (-15 -1814 ((-1065) (-577) (-577) (-577) (-228) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2293 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -2293 ((-1065) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -2654 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -2651 ((-1065) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-710 (-171 (-228))) (-710 (-171 (-228))) (-577)))) -((-2474 (((-1065) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-4110 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577)) 60 T ELT)) (-2042 (((-1065) (-577) (-710 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-4305 (((-1065) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577)) 37 T ELT)) (-3538 (((-1065) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-577)) 36 T ELT)) (-2914 (((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577)) 33 T ELT)) (-2876 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228))) 32 T ELT)) (-3493 (((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577)) 28 T ELT)) (-2284 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577)) 27 T ELT)) (-2504 (((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577)) 26 T ELT)) (-3761 (((-1065) (-577) (-710 (-171 (-228))) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-577)) 22 T ELT))) -(((-777) (-10 -7 (-15 -3761 ((-1065) (-577) (-710 (-171 (-228))) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -2504 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -2284 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -3493 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577))) (-15 -2876 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)))) (-15 -2914 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3538 ((-1065) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4305 ((-1065) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -2042 ((-1065) (-577) (-710 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -4110 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -2474 ((-1065) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD))))))) (T -777)) -((-2474 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-4110 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2042 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-4305 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-3538 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2914 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2876 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-3493 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2284 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-2504 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-777)))) (-3761 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) (-5 *1 (-777))))) -(-10 -7 (-15 -3761 ((-1065) (-577) (-710 (-171 (-228))) (-577) (-577) (-577) (-577) (-710 (-171 (-228))) (-577))) (-15 -2504 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -2284 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-577))) (-15 -3493 ((-1065) (-710 (-228)) (-577) (-710 (-228)) (-577) (-577) (-577))) (-15 -2876 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-577)) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)))) (-15 -2914 ((-1065) (-577) (-577) (-710 (-228)) (-710 (-228)) (-710 (-228)) (-577))) (-15 -3538 ((-1065) (-577) (-577) (-577) (-228) (-577) (-710 (-228)) (-710 (-228)) (-577))) (-15 -4305 ((-1065) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-577)) (-710 (-228)) (-710 (-577)) (-710 (-577)) (-710 (-228)) (-710 (-228)) (-710 (-577)) (-577))) (-15 -2042 ((-1065) (-577) (-710 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -4110 ((-1065) (-577) (-710 (-228)) (-577) (-710 (-228)) (-710 (-577)) (-577) (-710 (-228)) (-577) (-577) (-577) (-577))) (-15 -2474 ((-1065) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-710 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))))) -((-2400 (((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-577) (-710 (-228))) 29 T ELT)) (-4359 (((-1065) (-1188) (-577) (-577) (-710 (-228))) 28 T ELT)) (-2692 (((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-228))) 27 T ELT)) (-3800 (((-1065) (-577) (-577) (-577) (-710 (-228))) 21 T ELT))) -(((-778) (-10 -7 (-15 -3800 ((-1065) (-577) (-577) (-577) (-710 (-228)))) (-15 -2692 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-228)))) (-15 -4359 ((-1065) (-1188) (-577) (-577) (-710 (-228)))) (-15 -2400 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-577) (-710 (-228)))))) (T -778)) -((-2400 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-778)))) (-4359 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-778)))) (-2692 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-778)))) (-3800 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) (-5 *1 (-778))))) -(-10 -7 (-15 -3800 ((-1065) (-577) (-577) (-577) (-710 (-228)))) (-15 -2692 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-710 (-577)) (-577) (-710 (-228)))) (-15 -4359 ((-1065) (-1188) (-577) (-577) (-710 (-228)))) (-15 -2400 ((-1065) (-1188) (-577) (-577) (-710 (-228)) (-577) (-577) (-710 (-228))))) -((-3104 (((-1065) (-228) (-228) (-228) (-228) (-577)) 62 T ELT)) (-3336 (((-1065) (-228) (-228) (-228) (-577)) 61 T ELT)) (-3500 (((-1065) (-228) (-228) (-228) (-577)) 60 T ELT)) (-2309 (((-1065) (-228) (-228) (-577)) 59 T ELT)) (-2326 (((-1065) (-228) (-577)) 58 T ELT)) (-4273 (((-1065) (-228) (-577)) 57 T ELT)) (-3365 (((-1065) (-228) (-577)) 56 T ELT)) (-3834 (((-1065) (-228) (-577)) 55 T ELT)) (-2365 (((-1065) (-228) (-577)) 54 T ELT)) (-2601 (((-1065) (-228) (-577)) 53 T ELT)) (-2683 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 52 T ELT)) (-1512 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 51 T ELT)) (-3790 (((-1065) (-228) (-577)) 50 T ELT)) (-1905 (((-1065) (-228) (-577)) 49 T ELT)) (-3280 (((-1065) (-228) (-577)) 48 T ELT)) (-1384 (((-1065) (-228) (-577)) 47 T ELT)) (-4299 (((-1065) (-577) (-228) (-171 (-228)) (-577) (-1188) (-577)) 46 T ELT)) (-2031 (((-1065) (-1188) (-171 (-228)) (-1188) (-577)) 45 T ELT)) (-4196 (((-1065) (-1188) (-171 (-228)) (-1188) (-577)) 44 T ELT)) (-3266 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 43 T ELT)) (-2788 (((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577)) 42 T ELT)) (-2128 (((-1065) (-228) (-577)) 39 T ELT)) (-3779 (((-1065) (-228) (-577)) 38 T ELT)) (-2765 (((-1065) (-228) (-577)) 37 T ELT)) (-4181 (((-1065) (-228) (-577)) 36 T ELT)) (-2679 (((-1065) (-228) (-577)) 35 T ELT)) (-2652 (((-1065) (-228) (-577)) 34 T ELT)) (-1858 (((-1065) (-228) (-577)) 33 T ELT)) (-2175 (((-1065) (-228) (-577)) 32 T ELT)) (-1376 (((-1065) (-228) (-577)) 31 T ELT)) (-3199 (((-1065) (-228) (-577)) 30 T ELT)) (-1914 (((-1065) (-228) (-228) (-228) (-577)) 29 T ELT)) (-2168 (((-1065) (-228) (-577)) 28 T ELT)) (-2877 (((-1065) (-228) (-577)) 27 T ELT)) (-2377 (((-1065) (-228) (-577)) 26 T ELT)) (-3556 (((-1065) (-228) (-577)) 25 T ELT)) (-3655 (((-1065) (-228) (-577)) 24 T ELT)) (-4191 (((-1065) (-171 (-228)) (-577)) 21 T ELT))) -(((-779) (-10 -7 (-15 -4191 ((-1065) (-171 (-228)) (-577))) (-15 -3655 ((-1065) (-228) (-577))) (-15 -3556 ((-1065) (-228) (-577))) (-15 -2377 ((-1065) (-228) (-577))) (-15 -2877 ((-1065) (-228) (-577))) (-15 -2168 ((-1065) (-228) (-577))) (-15 -1914 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3199 ((-1065) (-228) (-577))) (-15 -1376 ((-1065) (-228) (-577))) (-15 -2175 ((-1065) (-228) (-577))) (-15 -1858 ((-1065) (-228) (-577))) (-15 -2652 ((-1065) (-228) (-577))) (-15 -2679 ((-1065) (-228) (-577))) (-15 -4181 ((-1065) (-228) (-577))) (-15 -2765 ((-1065) (-228) (-577))) (-15 -3779 ((-1065) (-228) (-577))) (-15 -2128 ((-1065) (-228) (-577))) (-15 -2788 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -3266 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -4196 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -2031 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -4299 ((-1065) (-577) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -1384 ((-1065) (-228) (-577))) (-15 -3280 ((-1065) (-228) (-577))) (-15 -1905 ((-1065) (-228) (-577))) (-15 -3790 ((-1065) (-228) (-577))) (-15 -1512 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2683 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2601 ((-1065) (-228) (-577))) (-15 -2365 ((-1065) (-228) (-577))) (-15 -3834 ((-1065) (-228) (-577))) (-15 -3365 ((-1065) (-228) (-577))) (-15 -4273 ((-1065) (-228) (-577))) (-15 -2326 ((-1065) (-228) (-577))) (-15 -2309 ((-1065) (-228) (-228) (-577))) (-15 -3500 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3336 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3104 ((-1065) (-228) (-228) (-228) (-228) (-577))))) (T -779)) -((-3104 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3336 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3500 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2309 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3834 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2601 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2683 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1512 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1384 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-4299 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1188)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2031 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-4196 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3266 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2788 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1376 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-1914 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-2377 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-3655 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779)))) (-4191 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(-10 -7 (-15 -4191 ((-1065) (-171 (-228)) (-577))) (-15 -3655 ((-1065) (-228) (-577))) (-15 -3556 ((-1065) (-228) (-577))) (-15 -2377 ((-1065) (-228) (-577))) (-15 -2877 ((-1065) (-228) (-577))) (-15 -2168 ((-1065) (-228) (-577))) (-15 -1914 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3199 ((-1065) (-228) (-577))) (-15 -1376 ((-1065) (-228) (-577))) (-15 -2175 ((-1065) (-228) (-577))) (-15 -1858 ((-1065) (-228) (-577))) (-15 -2652 ((-1065) (-228) (-577))) (-15 -2679 ((-1065) (-228) (-577))) (-15 -4181 ((-1065) (-228) (-577))) (-15 -2765 ((-1065) (-228) (-577))) (-15 -3779 ((-1065) (-228) (-577))) (-15 -2128 ((-1065) (-228) (-577))) (-15 -2788 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -3266 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -4196 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -2031 ((-1065) (-1188) (-171 (-228)) (-1188) (-577))) (-15 -4299 ((-1065) (-577) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -1384 ((-1065) (-228) (-577))) (-15 -3280 ((-1065) (-228) (-577))) (-15 -1905 ((-1065) (-228) (-577))) (-15 -3790 ((-1065) (-228) (-577))) (-15 -1512 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2683 ((-1065) (-228) (-171 (-228)) (-577) (-1188) (-577))) (-15 -2601 ((-1065) (-228) (-577))) (-15 -2365 ((-1065) (-228) (-577))) (-15 -3834 ((-1065) (-228) (-577))) (-15 -3365 ((-1065) (-228) (-577))) (-15 -4273 ((-1065) (-228) (-577))) (-15 -2326 ((-1065) (-228) (-577))) (-15 -2309 ((-1065) (-228) (-228) (-577))) (-15 -3500 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3336 ((-1065) (-228) (-228) (-228) (-577))) (-15 -3104 ((-1065) (-228) (-228) (-228) (-228) (-577)))) -((-2899 (((-1302)) 20 T ELT)) (-2294 (((-1188)) 34 T ELT)) (-3517 (((-1188)) 33 T ELT)) (-1539 (((-1134) (-1206) (-710 (-577))) 47 T ELT) (((-1134) (-1206) (-710 (-228))) 43 T ELT)) (-1580 (((-112)) 19 T ELT)) (-2448 (((-1188) (-1188)) 37 T ELT))) -(((-780) (-10 -7 (-15 -3517 ((-1188))) (-15 -2294 ((-1188))) (-15 -2448 ((-1188) (-1188))) (-15 -1539 ((-1134) (-1206) (-710 (-228)))) (-15 -1539 ((-1134) (-1206) (-710 (-577)))) (-15 -1580 ((-112))) (-15 -2899 ((-1302))))) (T -780)) -((-2899 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-780)))) (-1580 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-780)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-577))) (-5 *2 (-1134)) (-5 *1 (-780)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-228))) (-5 *2 (-1134)) (-5 *1 (-780)))) (-2448 (*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780)))) (-2294 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780)))) (-3517 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) -(-10 -7 (-15 -3517 ((-1188))) (-15 -2294 ((-1188))) (-15 -2448 ((-1188) (-1188))) (-15 -1539 ((-1134) (-1206) (-710 (-228)))) (-15 -1539 ((-1134) (-1206) (-710 (-577)))) (-15 -1580 ((-112))) (-15 -2899 ((-1302)))) -((-4365 (($ $ $) 10 T ELT)) (-3899 (($ $ $ $) 9 T ELT)) (-1416 (($ $ $) 12 T ELT))) -(((-781 |#1|) (-10 -8 (-15 -1416 (|#1| |#1| |#1|)) (-15 -4365 (|#1| |#1| |#1|)) (-15 -3899 (|#1| |#1| |#1| |#1|))) (-782)) (T -781)) -NIL -(-10 -8 (-15 -1416 (|#1| |#1| |#1|)) (-15 -4365 (|#1| |#1| |#1|)) (-15 -3899 (|#1| |#1| |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-1380 (($ $ (-949)) 31 T ELT)) (-1748 (($ $ (-949)) 32 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4365 (($ $ $) 28 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3899 (($ $ $ $) 29 T ELT)) (-1416 (($ $ $) 27 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT))) -(((-782) (-141)) (T -782)) -((-3899 (*1 *1 *1 *1 *1) (-4 *1 (-782))) (-4365 (*1 *1 *1 *1) (-4 *1 (-782))) (-1416 (*1 *1 *1 *1) (-4 *1 (-782)))) -(-13 (-21) (-741) (-10 -8 (-15 -3899 ($ $ $ $)) (-15 -4365 ($ $ $)) (-15 -1416 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-741) . T) ((-1130) . T) ((-1247) . T)) -((-2410 (((-885) $) NIL T ELT) (($ (-577)) 10 T ELT))) -(((-783 |#1|) (-10 -8 (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-784)) (T -783)) -NIL -(-10 -8 (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-1488 (((-3 $ "failed") $) 43 T ELT)) (-1380 (($ $ (-949)) 31 T ELT) (($ $ (-792)) 38 T ELT)) (-4281 (((-3 $ "failed") $) 41 T ELT)) (-2097 (((-112) $) 37 T ELT)) (-3258 (((-3 $ "failed") $) 42 T ELT)) (-1748 (($ $ (-949)) 32 T ELT) (($ $ (-792)) 39 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4365 (($ $ $) 28 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 34 T ELT)) (-3234 (((-792)) 35 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-3899 (($ $ $ $) 29 T ELT)) (-1416 (($ $ $) 27 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 36 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 33 T ELT) (($ $ (-792)) 40 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 30 T ELT))) -(((-784) (-141)) (T -784)) -((-3234 (*1 *2) (-12 (-4 *1 (-784)) (-5 *2 (-792)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-784))))) -(-13 (-782) (-743) (-10 -8 (-15 -3234 ((-792)) -1528) (-15 -2410 ($ (-577))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-741) . T) ((-743) . T) ((-782) . T) ((-1130) . T) ((-1247) . T)) -((-3572 (((-665 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 |#1|)))))) (-710 (-171 (-420 (-577)))) |#1|) 33 T ELT)) (-2049 (((-665 (-171 |#1|)) (-710 (-171 (-420 (-577)))) |#1|) 23 T ELT)) (-3400 (((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))) (-1206)) 20 T ELT) (((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577))))) 19 T ELT))) -(((-785 |#1|) (-10 -7 (-15 -3400 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))))) (-15 -3400 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))) (-1206))) (-15 -2049 ((-665 (-171 |#1|)) (-710 (-171 (-420 (-577)))) |#1|)) (-15 -3572 ((-665 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 |#1|)))))) (-710 (-171 (-420 (-577)))) |#1|))) (-13 (-375) (-869))) (T -785)) -((-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-665 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 *4))))))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869))))) (-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-665 (-171 *4))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *4 (-1206)) (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *5)) (-4 *5 (-13 (-375) (-869))))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869)))))) -(-10 -7 (-15 -3400 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))))) (-15 -3400 ((-980 (-171 (-420 (-577)))) (-710 (-171 (-420 (-577)))) (-1206))) (-15 -2049 ((-665 (-171 |#1|)) (-710 (-171 (-420 (-577)))) |#1|)) (-15 -3572 ((-665 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 (-171 |#1|)))))) (-710 (-171 (-420 (-577)))) |#1|))) -((-2758 (((-176 (-577)) |#1|) 27 T ELT))) -(((-786 |#1|) (-10 -7 (-15 -2758 ((-176 (-577)) |#1|))) (-417)) (T -786)) -((-2758 (*1 *2 *3) (-12 (-5 *2 (-176 (-577))) (-5 *1 (-786 *3)) (-4 *3 (-417))))) -(-10 -7 (-15 -2758 ((-176 (-577)) |#1|))) -((-1640 ((|#1| |#1| |#1|) 28 T ELT)) (-2455 ((|#1| |#1| |#1|) 27 T ELT)) (-2449 ((|#1| |#1| |#1|) 38 T ELT)) (-1874 ((|#1| |#1| |#1|) 34 T ELT)) (-2018 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2747 (((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|) 26 T ELT))) -(((-787 |#1| |#2|) (-10 -7 (-15 -2747 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -1640 (|#1| |#1| |#1|)) (-15 -2018 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2449 (|#1| |#1| |#1|))) (-729 |#2|) (-375)) (T -787)) -((-2449 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-1874 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-2018 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-1640 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-2455 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) (-2747 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-787 *3 *4)) (-4 *3 (-729 *4))))) -(-10 -7 (-15 -2747 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -1640 (|#1| |#1| |#1|)) (-15 -2018 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2449 (|#1| |#1| |#1|))) -((-4334 (((-712 (-1255)) $ (-1255)) 26 T ELT)) (-1346 (((-712 (-562)) $ (-562)) 25 T ELT)) (-1838 (((-792) $ (-129)) 27 T ELT)) (-1671 (((-712 (-130)) $ (-130)) 24 T ELT)) (-1355 (((-712 (-1255)) $) 12 T ELT)) (-3928 (((-712 (-1253)) $) 8 T ELT)) (-4400 (((-712 (-1252)) $) 10 T ELT)) (-3212 (((-712 (-562)) $) 13 T ELT)) (-3210 (((-712 (-560)) $) 9 T ELT)) (-1831 (((-712 (-559)) $) 11 T ELT)) (-4029 (((-792) $ (-129)) 7 T ELT)) (-2906 (((-712 (-130)) $) 14 T ELT)) (-4042 (((-112) $) 31 T ELT)) (-1765 (((-712 $) |#1| (-982)) 32 T ELT)) (-2996 (($ $) 6 T ELT))) -(((-788 |#1|) (-141) (-1130)) (T -788)) -((-1765 (*1 *2 *3 *4) (-12 (-5 *4 (-982)) (-4 *3 (-1130)) (-5 *2 (-712 *1)) (-4 *1 (-788 *3)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(-13 (-589) (-10 -8 (-15 -1765 ((-712 $) |t#1| (-982))) (-15 -4042 ((-112) $)))) -(((-175) . T) ((-540) . T) ((-589) . T) ((-883) . T)) -((-4175 (((-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))) (-577)) 71 T ELT)) (-2544 (((-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577))))) 69 T ELT)) (-1611 (((-577)) 85 T ELT))) -(((-789 |#1| |#2|) (-10 -7 (-15 -1611 ((-577))) (-15 -2544 ((-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))))) (-15 -4175 ((-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))) (-577)))) (-1273 (-577)) (-422 (-577) |#1|)) (T -789)) -((-4175 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-789 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2544 (*1 *2) (-12 (-4 *3 (-1273 (-577))) (-5 *2 (-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577))))) (-5 *1 (-789 *3 *4)) (-4 *4 (-422 (-577) *3)))) (-1611 (*1 *2) (-12 (-4 *3 (-1273 *2)) (-5 *2 (-577)) (-5 *1 (-789 *3 *4)) (-4 *4 (-422 *2 *3))))) -(-10 -7 (-15 -1611 ((-577))) (-15 -2544 ((-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))))) (-15 -4175 ((-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-710 (-577)))) (-577)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3514 (((-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $) 21 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 13 T ELT) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-790) (-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2410 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2410 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -3514 ((-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $))))) (T -790)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-790)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-790)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-790)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-790))))) -(-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2410 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2410 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -3514 ((-3 (|:| |nia| (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $)))) -((-4261 (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))) 18 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206))) 17 T ELT)) (-3766 (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))) 20 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206))) 19 T ELT))) -(((-791 |#1|) (-10 -7 (-15 -4261 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -4261 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))))) (-569)) (T -791)) -((-3766 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) (-4261 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5))))) -(-10 -7 (-15 -4261 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -4261 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-980 |#1|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1658 (($ $ $) 10 T ELT)) (-3262 (((-3 $ "failed") $ $) 15 T ELT)) (-1886 (($ $ (-577)) 11 T ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($ $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 6 T CONST)) (-2378 (($) NIL T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-792) (-13 (-814) (-747) (-10 -8 (-15 -3164 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2420 ($ $ $)) (-15 -4384 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -3200 ((-3 $ "failed") $ $)) (-15 -1886 ($ $ (-577))) (-15 -2060 ($ $)) (-6 (-4501 "*"))))) (T -792)) -((-3164 (*1 *1 *1 *1) (-5 *1 (-792))) (-3152 (*1 *1 *1 *1) (-5 *1 (-792))) (-2420 (*1 *1 *1 *1) (-5 *1 (-792))) (-4384 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1636 (-792)) (|:| -4369 (-792)))) (-5 *1 (-792)))) (-3200 (*1 *1 *1 *1) (|partial| -5 *1 (-792))) (-1886 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-792)))) (-2060 (*1 *1 *1) (-5 *1 (-792)))) -(-13 (-814) (-747) (-10 -8 (-15 -3164 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2420 ($ $ $)) (-15 -4384 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -3200 ((-3 $ "failed") $ $)) (-15 -1886 ($ $ (-577))) (-15 -2060 ($ $)) (-6 (-4501 "*")))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-1794 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-3244 (((-666 |#1|) $) NIL T ELT)) (-4300 (((-112) |#1| $) NIL T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4030 (((-666 |#1|) $) NIL T ELT)) (-3023 (((-112) |#1| $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-564 |#1| |#2| |#3|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) (-1131) (-1131) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500)))) (T -564)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) +((-1402 (((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) (-1 (-1203 |#2|) (-1203 |#2|))) 50 T ELT))) +(((-565 |#1| |#2|) (-10 -7 (-15 -1402 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) (-1 (-1203 |#2|) (-1203 |#2|))))) (-570) (-13 (-27) (-444 |#1|))) (T -565)) +((-1402 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-631 *3)) (-5 *5 (-1 (-1203 *3) (-1203 *3))) (-4 *3 (-13 (-27) (-444 *6))) (-4 *6 (-570)) (-5 *2 (-600 *3)) (-5 *1 (-565 *6 *3))))) +(-10 -7 (-15 -1402 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) (-1 (-1203 |#2|) (-1203 |#2|))))) +((-3027 (((-600 |#5|) |#5| (-1 |#3| |#3|)) 216 T ELT)) (-3268 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212 T ELT)) (-2207 (((-600 |#5|) |#5| (-1 |#3| |#3|)) 220 T ELT))) +(((-566 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2207 ((-600 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3027 ((-600 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3268 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-570) (-1069 (-578))) (-13 (-27) (-444 |#1|)) (-1274 |#2|) (-1274 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -566)) +((-3268 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-27) (-444 *4))) (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *7 (-1274 (-421 *6))) (-5 *1 (-566 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-3027 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1274 *6)) (-4 *6 (-13 (-27) (-444 *5))) (-4 *5 (-13 (-570) (-1069 (-578)))) (-4 *8 (-1274 (-421 *7))) (-5 *2 (-600 *3)) (-5 *1 (-566 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1274 *6)) (-4 *6 (-13 (-27) (-444 *5))) (-4 *5 (-13 (-570) (-1069 (-578)))) (-4 *8 (-1274 (-421 *7))) (-5 *2 (-600 *3)) (-5 *1 (-566 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) +(-10 -7 (-15 -2207 ((-600 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3027 ((-600 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3268 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-4011 (((-112) (-578) (-578)) 12 T ELT)) (-2471 (((-578) (-578)) 7 T ELT)) (-3314 (((-578) (-578) (-578)) 10 T ELT))) +(((-567) (-10 -7 (-15 -2471 ((-578) (-578))) (-15 -3314 ((-578) (-578) (-578))) (-15 -4011 ((-112) (-578) (-578))))) (T -567)) +((-4011 (*1 *2 *3 *3) (-12 (-5 *3 (-578)) (-5 *2 (-112)) (-5 *1 (-567)))) (-3314 (*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-567)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-567))))) +(-10 -7 (-15 -2471 ((-578) (-578))) (-15 -3314 ((-578) (-578) (-578))) (-15 -4011 ((-112) (-578) (-578)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3689 ((|#1| $) 68 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-1502 (($ $) 98 T ELT)) (-1372 (($ $) 81 T ELT)) (-2424 ((|#1| $) 69 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2811 (($ $) 80 T ELT)) (-1478 (($ $) 97 T ELT)) (-1349 (($ $) 82 T ELT)) (-1528 (($ $) 96 T ELT)) (-1392 (($ $) 83 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 76 T ELT)) (-3516 (((-578) $) 77 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3717 (($ |#1| |#1|) 73 T ELT)) (-3789 (((-112) $) 67 T ELT)) (-2551 (($) 108 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 79 T ELT)) (-1721 (((-112) $) 66 T ELT)) (-1345 (($ $ $) 109 T ELT)) (-3667 (($ $ $) 110 T ELT)) (-3864 (($ $) 105 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2119 (($ |#1| |#1|) 74 T ELT) (($ |#1|) 72 T ELT) (($ (-421 (-578))) 71 T ELT)) (-2662 ((|#1| $) 70 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3587 (($ $) 106 T ELT)) (-1541 (($ $) 95 T ELT)) (-1403 (($ $) 84 T ELT)) (-1515 (($ $) 94 T ELT)) (-1382 (($ $) 85 T ELT)) (-1489 (($ $) 93 T ELT)) (-1361 (($ $) 86 T ELT)) (-3003 (((-112) $ |#1|) 65 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-578)) 75 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-1576 (($ $) 104 T ELT)) (-1436 (($ $) 92 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-1552 (($ $) 103 T ELT)) (-1414 (($ $) 91 T ELT)) (-1598 (($ $) 102 T ELT)) (-1456 (($ $) 90 T ELT)) (-3502 (($ $) 101 T ELT)) (-1467 (($ $) 89 T ELT)) (-1587 (($ $) 100 T ELT)) (-1447 (($ $) 88 T ELT)) (-1564 (($ $) 99 T ELT)) (-1424 (($ $) 87 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2441 (((-112) $ $) 111 T ELT)) (-2416 (((-112) $ $) 113 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 112 T ELT)) (-2404 (((-112) $ $) 114 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ $) 107 T ELT) (($ $ (-421 (-578))) 78 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-568 |#1|) (-142) (-13 (-418) (-1233))) (T -568)) +((-2119 (*1 *1 *2 *2) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) (-3717 (*1 *1 *2 *2) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) (-2119 (*1 *1 *2) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) (-2119 (*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-4 *1 (-568 *3)) (-4 *3 (-13 (-418) (-1233))))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-568 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-112)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-568 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-112)))) (-3003 (*1 *2 *1 *3) (-12 (-4 *1 (-568 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-112))))) +(-13 (-466) (-871) (-1233) (-1033) (-1069 (-578)) (-10 -8 (-6 -3909) (-15 -2119 ($ |t#1| |t#1|)) (-15 -3717 ($ |t#1| |t#1|)) (-15 -2119 ($ |t#1|)) (-15 -2119 ($ (-421 (-578)))) (-15 -2662 (|t#1| $)) (-15 -2424 (|t#1| $)) (-15 -3689 (|t#1| $)) (-15 -3789 ((-112) $)) (-15 -1721 ((-112) $)) (-15 -3003 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-296) . T) ((-302) . T) ((-466) . T) ((-507) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-871) . T) ((-874) . T) ((-1033) . T) ((-1069 (-578)) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1233) . T) ((-1236) . T) ((-1248) . T)) +((-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 9 T ELT)) (-2987 (($ $) 11 T ELT)) (-3087 (((-112) $) 20 T ELT)) (-3493 (((-3 $ "failed") $) 16 T ELT)) (-3138 (((-112) $ $) 22 T ELT))) +(((-569 |#1|) (-10 -8 (-15 -3087 ((-112) |#1|)) (-15 -3138 ((-112) |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3355 ((-2 (|:| -1430 |#1|) (|:| -4487 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|))) (-570)) (T -569)) +NIL +(-10 -8 (-15 -3087 ((-112) |#1|)) (-15 -3138 ((-112) |#1| |#1|)) (-15 -2987 (|#1| |#1|)) (-15 -3355 ((-2 (|:| -1430 |#1|) (|:| -4487 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-570) (-142)) (T -570)) +((-3202 (*1 *1 *1 *1) (|partial| -4 *1 (-570))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1430 *1) (|:| -4487 *1) (|:| |associate| *1))) (-4 *1 (-570)))) (-2987 (*1 *1 *1) (-4 *1 (-570))) (-3138 (*1 *2 *1 *1) (-12 (-4 *1 (-570)) (-5 *2 (-112)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-570)) (-5 *2 (-112))))) +(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -3202 ((-3 $ "failed") $ $)) (-15 -3355 ((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $)) (-15 -2987 ($ $)) (-15 -3138 ((-112) $ $)) (-15 -3087 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-1716 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-666 |#2|)) 38 T ELT)) (-4448 (((-600 |#2|) |#2| (-1207)) 63 T ELT)) (-2746 (((-3 |#2| "failed") |#2| (-1207)) 156 T ELT)) (-2387 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-631 |#2|) (-666 (-631 |#2|))) 159 T ELT)) (-2675 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|) 41 T ELT))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2675 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|)) (-15 -1716 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-666 |#2|))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1207))) (-15 -4448 ((-600 |#2|) |#2| (-1207))) (-15 -2387 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-631 |#2|) (-666 (-631 |#2|))))) (-13 (-466) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|))) (T -571)) +((-2387 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-666 (-631 *3))) (-5 *5 (-631 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *7))) (-4 *7 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-571 *7 *3)))) (-4448 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-600 *3)) (-5 *1 (-571 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-2746 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-571 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))))) (-1716 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-666 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *3)))) (-2675 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5)))))) +(-10 -7 (-15 -2675 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|)) (-15 -1716 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-666 |#2|))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1207))) (-15 -4448 ((-600 |#2|) |#2| (-1207))) (-15 -2387 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-631 |#2|) (-666 (-631 |#2|))))) +((-3034 (((-432 |#1|) |#1|) 19 T ELT)) (-2800 (((-432 |#1|) |#1|) 34 T ELT)) (-4450 (((-3 |#1| "failed") |#1|) 49 T ELT)) (-1473 (((-432 |#1|) |#1|) 60 T ELT))) +(((-572 |#1|) (-10 -7 (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -1473 ((-432 |#1|) |#1|)) (-15 -4450 ((-3 |#1| "failed") |#1|))) (-559)) (T -572)) +((-4450 (*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-559)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-572 *3)) (-4 *3 (-559)))) (-3034 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-572 *3)) (-4 *3 (-559)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-572 *3)) (-4 *3 (-559))))) +(-10 -7 (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -1473 ((-432 |#1|) |#1|)) (-15 -4450 ((-3 |#1| "failed") |#1|))) +((-3369 (($) 9 T ELT)) (-2231 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-3244 (((-666 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-4328 (($ (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28 T ELT)) (-1384 (($ (-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26 T ELT)) (-2754 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-4322 (((-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36 T ELT)) (-4175 (((-1303)) 11 T ELT))) +(((-573) (-10 -8 (-15 -3369 ($)) (-15 -4175 ((-1303))) (-15 -3244 ((-666 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -1384 ($ (-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4328 ($ (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2231 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4322 ((-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2754 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -573)) +((-2754 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-573)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-573)))) (-2231 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-573)))) (-4328 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-573)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-573)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-573)))) (-4175 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-573)))) (-3369 (*1 *1) (-5 *1 (-573)))) +(-10 -8 (-15 -3369 ($)) (-15 -4175 ((-1303))) (-15 -3244 ((-666 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -1384 ($ (-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4328 ($ (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2231 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4322 ((-666 (-2 (|:| -3173 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2754 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-4420 (((-1203 (-421 (-1203 |#2|))) |#2| (-631 |#2|) (-631 |#2|) (-1203 |#2|)) 35 T ELT)) (-3065 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|) |#2| (-1203 |#2|)) 115 T ELT)) (-3148 (((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|))) 85 T ELT) (((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) |#2| (-1203 |#2|)) 55 T ELT)) (-2837 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2| (-631 |#2|) |#2| (-421 (-1203 |#2|))) 92 T ELT) (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2| |#2| (-1203 |#2|)) 114 T ELT)) (-1656 (((-3 |#2| "failed") |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-631 |#2|) |#2| (-421 (-1203 |#2|))) 110 T ELT) (((-3 |#2| "failed") |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1203 |#2|)) 116 T ELT)) (-3422 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|))) 133 (|has| |#3| (-678 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) |#2| (-1203 |#2|)) 132 (|has| |#3| (-678 |#2|)) ELT)) (-2936 ((|#2| (-1203 (-421 (-1203 |#2|))) (-631 |#2|) |#2|) 53 T ELT)) (-2501 (((-1203 (-421 (-1203 |#2|))) (-1203 |#2|) (-631 |#2|)) 34 T ELT))) +(((-574 |#1| |#2| |#3|) (-10 -7 (-15 -3148 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) |#2| (-1203 |#2|))) (-15 -3148 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2837 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2| |#2| (-1203 |#2|))) (-15 -2837 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2| (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -3065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|) |#2| (-1203 |#2|))) (-15 -3065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -1656 ((-3 |#2| "failed") |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1203 |#2|))) (-15 -1656 ((-3 |#2| "failed") |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -4420 ((-1203 (-421 (-1203 |#2|))) |#2| (-631 |#2|) (-631 |#2|) (-1203 |#2|))) (-15 -2936 (|#2| (-1203 (-421 (-1203 |#2|))) (-631 |#2|) |#2|)) (-15 -2501 ((-1203 (-421 (-1203 |#2|))) (-1203 |#2|) (-631 |#2|))) (IF (|has| |#3| (-678 |#2|)) (PROGN (-15 -3422 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) |#2| (-1203 |#2|))) (-15 -3422 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|))))) |%noBranch|)) (-13 (-466) (-1069 (-578)) (-149) (-660 (-578))) (-13 (-444 |#1|) (-27) (-1233)) (-1131)) (T -574)) +((-3422 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-631 *4)) (-5 *6 (-421 (-1203 *4))) (-4 *4 (-13 (-444 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) (-3422 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-631 *4)) (-5 *6 (-1203 *4)) (-4 *4 (-13 (-444 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-631 *6)) (-4 *6 (-13 (-444 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-1203 (-421 (-1203 *6)))) (-5 *1 (-574 *5 *6 *7)) (-5 *3 (-1203 *6)) (-4 *7 (-1131)))) (-2936 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1203 (-421 (-1203 *2)))) (-5 *4 (-631 *2)) (-4 *2 (-13 (-444 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *1 (-574 *5 *2 *6)) (-4 *6 (-1131)))) (-4420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-1203 (-421 (-1203 *3)))) (-5 *1 (-574 *6 *3 *7)) (-5 *5 (-1203 *3)) (-4 *7 (-1131)))) (-1656 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-631 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-421 (-1203 *2))) (-4 *2 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *1 (-574 *6 *2 *7)) (-4 *7 (-1131)))) (-1656 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-631 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-1203 *2)) (-4 *2 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *1 (-574 *6 *2 *7)) (-4 *7 (-1131)))) (-3065 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-666 *3)) (-5 *6 (-421 (-1203 *3))) (-4 *3 (-13 (-444 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *7 *3 *8)) (-4 *8 (-1131)))) (-3065 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-666 *3)) (-5 *6 (-1203 *3)) (-4 *3 (-13 (-444 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *7 *3 *8)) (-4 *8 (-1131)))) (-2837 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-421 (-1203 *3))) (-4 *3 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131)))) (-2837 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-1203 *3)) (-4 *3 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131)))) (-3148 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-631 *3)) (-5 *5 (-421 (-1203 *3))) (-4 *3 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-600 *3)) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131)))) (-3148 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-631 *3)) (-5 *5 (-1203 *3)) (-4 *3 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-600 *3)) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131))))) +(-10 -7 (-15 -3148 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) |#2| (-1203 |#2|))) (-15 -3148 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -2837 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2| |#2| (-1203 |#2|))) (-15 -2837 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2| (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -3065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|) |#2| (-1203 |#2|))) (-15 -3065 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -1656 ((-3 |#2| "failed") |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1203 |#2|))) (-15 -1656 ((-3 |#2| "failed") |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-631 |#2|) |#2| (-421 (-1203 |#2|)))) (-15 -4420 ((-1203 (-421 (-1203 |#2|))) |#2| (-631 |#2|) (-631 |#2|) (-1203 |#2|))) (-15 -2936 (|#2| (-1203 (-421 (-1203 |#2|))) (-631 |#2|) |#2|)) (-15 -2501 ((-1203 (-421 (-1203 |#2|))) (-1203 |#2|) (-631 |#2|))) (IF (|has| |#3| (-678 |#2|)) (PROGN (-15 -3422 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) |#2| (-1203 |#2|))) (-15 -3422 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) (-631 |#2|) |#2| (-421 (-1203 |#2|))))) |%noBranch|)) +((-2008 (((-578) (-578) (-793)) 85 T ELT)) (-3640 (((-578) (-578)) 83 T ELT)) (-2609 (((-578) (-578)) 81 T ELT)) (-2680 (((-578) (-578)) 87 T ELT)) (-2010 (((-578) (-578) (-578)) 65 T ELT)) (-3773 (((-578) (-578) (-578)) 62 T ELT)) (-3521 (((-421 (-578)) (-578)) 30 T ELT)) (-3103 (((-578) (-578)) 34 T ELT)) (-3256 (((-578) (-578)) 74 T ELT)) (-4387 (((-578) (-578)) 46 T ELT)) (-3006 (((-666 (-578)) (-578)) 80 T ELT)) (-3081 (((-578) (-578) (-578) (-578) (-578)) 58 T ELT)) (-3957 (((-421 (-578)) (-578)) 55 T ELT))) +(((-575) (-10 -7 (-15 -3957 ((-421 (-578)) (-578))) (-15 -3081 ((-578) (-578) (-578) (-578) (-578))) (-15 -3006 ((-666 (-578)) (-578))) (-15 -4387 ((-578) (-578))) (-15 -3256 ((-578) (-578))) (-15 -3103 ((-578) (-578))) (-15 -3521 ((-421 (-578)) (-578))) (-15 -3773 ((-578) (-578) (-578))) (-15 -2010 ((-578) (-578) (-578))) (-15 -2680 ((-578) (-578))) (-15 -2609 ((-578) (-578))) (-15 -3640 ((-578) (-578))) (-15 -2008 ((-578) (-578) (-793))))) (T -575)) +((-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-578)) (-5 *3 (-793)) (-5 *1 (-575)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-2680 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-2010 (*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-3773 (*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-3521 (*1 *2 *3) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-575)) (-5 *3 (-578)))) (-3103 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-3256 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-575)) (-5 *3 (-578)))) (-3081 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) (-3957 (*1 *2 *3) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-575)) (-5 *3 (-578))))) +(-10 -7 (-15 -3957 ((-421 (-578)) (-578))) (-15 -3081 ((-578) (-578) (-578) (-578) (-578))) (-15 -3006 ((-666 (-578)) (-578))) (-15 -4387 ((-578) (-578))) (-15 -3256 ((-578) (-578))) (-15 -3103 ((-578) (-578))) (-15 -3521 ((-421 (-578)) (-578))) (-15 -3773 ((-578) (-578) (-578))) (-15 -2010 ((-578) (-578) (-578))) (-15 -2680 ((-578) (-578))) (-15 -2609 ((-578) (-578))) (-15 -3640 ((-578) (-578))) (-15 -2008 ((-578) (-578) (-793)))) +((-3122 (((-2 (|:| |answer| |#4|) (|:| -2049 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-576 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3122 ((-2 (|:| |answer| |#4|) (|:| -2049 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -576)) +((-3122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) (-4 *7 (-1274 (-421 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2049 *3))) (-5 *1 (-576 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))) +(-10 -7 (-15 -3122 ((-2 (|:| |answer| |#4|) (|:| -2049 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3122 (((-2 (|:| |answer| (-421 |#2|)) (|:| -2049 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-577 |#1| |#2|) (-10 -7 (-15 -3122 ((-2 (|:| |answer| (-421 |#2|)) (|:| -2049 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1274 |#1|)) (T -577)) +((-3122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-421 *6)) (|:| -2049 (-421 *6)) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-421 *6))))) +(-10 -7 (-15 -3122 ((-2 (|:| |answer| (-421 |#2|)) (|:| -2049 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 29 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 95 T ELT)) (-2987 (($ $) 96 T ELT)) (-3087 (((-112) $) NIL T ELT)) (-1452 (($ $ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3267 (($ $ $ $) 49 T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL T ELT)) (-1887 (($ $ $) 90 T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL T ELT)) (-3154 (($ $ $) 50 T ELT)) (-2242 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 75 T ELT) (((-711 (-578)) (-711 $)) 71 T ELT)) (-3493 (((-3 $ "failed") $) 92 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-1474 (((-112) $) NIL T ELT)) (-3805 (((-421 (-578)) $) NIL T ELT)) (-2062 (($) 77 T ELT) (($ $) 78 T ELT)) (-3166 (($ $ $) 89 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3092 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) 68 T ELT)) (-3789 (((-112) $) NIL T ELT)) (-2492 (($ $ $) NIL T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL T ELT)) (-4382 (((-112) $) 31 T ELT)) (-2382 (((-112) $) 84 T ELT)) (-2204 (((-3 $ "failed") $) NIL T ELT)) (-1721 (((-112) $) 7 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2931 (($ $ $ $) 51 T ELT)) (-1345 (($ $ $) 86 T ELT)) (-3667 (($ $ $) 85 T ELT)) (-3695 (($ $) NIL T ELT)) (-3492 (($ $) 46 T ELT)) (-3908 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) 67 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-1354 (($ $) 35 T ELT)) (-4313 (((-1151) $) 39 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 127 T ELT)) (-2421 (($ $ $) 93 T ELT) (($ (-666 $)) NIL T ELT)) (-2454 (($ $) NIL T ELT)) (-2800 (((-432 $) $) 113 T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) 111 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3873 (((-112) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 88 T ELT)) (-2031 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1687 (($ $) 37 T ELT)) (-3979 (($ $) 33 T ELT)) (-3343 (((-578) $) 45 T ELT) (((-550) $) 60 T ELT) (((-917 (-578)) $) NIL T ELT) (((-392) $) 54 T ELT) (((-229) $) 57 T ELT) (((-1189) $) 62 T ELT)) (-2411 (((-886) $) 43 T ELT) (($ (-578)) 44 T ELT) (($ $) NIL T ELT) (($ (-578)) 44 T ELT)) (-3753 (((-793)) NIL T CONST)) (-3953 (((-112) $ $) NIL T ELT)) (-2776 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (($) 32 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3559 (($ $ $ $) 48 T ELT)) (-2628 (($ $) 76 T ELT)) (-2368 (($) 27 T CONST)) (-2379 (($) 30 T CONST)) (-3859 (((-1189) $) 23 T ELT) (((-1189) $ (-112)) 24 T ELT) (((-1303) (-844) $) 25 T ELT) (((-1303) (-844) $ (-112)) 26 T ELT)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2441 (((-112) $ $) 47 T ELT)) (-2416 (((-112) $ $) 79 T ELT)) (-2384 (((-112) $ $) 28 T ELT)) (-2429 (((-112) $ $) 80 T ELT)) (-2404 (((-112) $ $) 40 T ELT)) (-2484 (($ $) 13 T ELT) (($ $ $) 36 T ELT)) (-2472 (($ $ $) 34 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 83 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 82 T ELT) (($ $ $) 81 T ELT) (($ (-578) $) 82 T ELT))) +(((-578) (-13 (-559) (-633 (-1189)) (-850) (-10 -7 (-6 -4487) (-6 -4492) (-6 -4488) (-6 -4482)))) (T -578)) +NIL +(-13 (-559) (-633 (-1189)) (-850) (-10 -7 (-6 -4487) (-6 -4492) (-6 -4488) (-6 -4482))) +((-4374 (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))) (-791) (-1094)) 116 T ELT) (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))) (-791)) 118 T ELT)) (-4371 (((-3 (-1066) "failed") (-328 (-392)) (-1123 (-865 (-392))) (-1207)) 195 T ELT) (((-3 (-1066) "failed") (-328 (-392)) (-1123 (-865 (-392))) (-1189)) 194 T ELT) (((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392) (-392) (-1094)) 199 T ELT) (((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392) (-392)) 200 T ELT) (((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392)) 201 T ELT) (((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392))))) 202 T ELT) (((-1066) (-328 (-392)) (-1125 (-865 (-392)))) 190 T ELT) (((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392)) 189 T ELT) (((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392) (-392)) 185 T ELT) (((-1066) (-791)) 177 T ELT) (((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392) (-392) (-1094)) 184 T ELT))) +(((-579) (-10 -7 (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392) (-392) (-1094))) (-15 -4371 ((-1066) (-791))) (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392) (-392) (-1094))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))) (-791))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))) (-791) (-1094))) (-15 -4371 ((-3 (-1066) "failed") (-328 (-392)) (-1123 (-865 (-392))) (-1189))) (-15 -4371 ((-3 (-1066) "failed") (-328 (-392)) (-1123 (-865 (-392))) (-1207))))) (T -579)) +((-4371 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-328 (-392))) (-5 *4 (-1123 (-865 (-392)))) (-5 *5 (-1207)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-328 (-392))) (-5 *4 (-1123 (-865 (-392)))) (-5 *5 (-1189)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066)))) (-5 *1 (-579)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066)))) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) (-5 *5 (-392)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4371 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) (-5 *5 (-392)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579))))) +(-10 -7 (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392) (-392) (-1094))) (-15 -4371 ((-1066) (-791))) (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-1125 (-865 (-392))))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392) (-392))) (-15 -4371 ((-1066) (-328 (-392)) (-666 (-1125 (-865 (-392)))) (-392) (-392) (-1094))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))) (-791))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066))) (-791) (-1094))) (-15 -4371 ((-3 (-1066) "failed") (-328 (-392)) (-1123 (-865 (-392))) (-1189))) (-15 -4371 ((-3 (-1066) "failed") (-328 (-392)) (-1123 (-865 (-392))) (-1207)))) +((-2138 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|)) 195 T ELT)) (-2682 (((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|)) 97 T ELT)) (-2303 (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2|) 191 T ELT)) (-3814 (((-3 |#2| "failed") |#2| |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207))) 200 T ELT)) (-1479 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) (-1207)) 209 (|has| |#3| (-678 |#2|)) ELT))) +(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -2682 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|))) (-15 -2303 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2|)) (-15 -2138 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|))) (-15 -3814 ((-3 |#2| "failed") |#2| |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)))) (IF (|has| |#3| (-678 |#2|)) (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) (-1207))) |%noBranch|)) (-13 (-466) (-1069 (-578)) (-149) (-660 (-578))) (-13 (-444 |#1|) (-27) (-1233)) (-1131)) (T -580)) +((-1479 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-631 *4)) (-5 *6 (-1207)) (-4 *4 (-13 (-444 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) (-3814 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-631 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-4 *2 (-13 (-444 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1131)))) (-2138 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-666 *3)) (-4 *3 (-13 (-444 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1131)))) (-2303 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-444 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1131)))) (-2682 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-444 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 (-600 *3)) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1131))))) +(-10 -7 (-15 -2682 ((-600 |#2|) |#2| (-631 |#2|) (-631 |#2|))) (-15 -2303 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-631 |#2|) (-631 |#2|) |#2|)) (-15 -2138 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-631 |#2|) (-631 |#2|) (-666 |#2|))) (-15 -3814 ((-3 |#2| "failed") |#2| |#2| |#2| (-631 |#2|) (-631 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)))) (IF (|has| |#3| (-678 |#2|)) (-15 -1479 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3198 (-666 |#2|))) |#3| |#2| (-631 |#2|) (-631 |#2|) (-1207))) |%noBranch|)) +((-3744 (((-2 (|:| -2612 |#2|) (|:| |nconst| |#2|)) |#2| (-1207)) 64 T ELT)) (-4459 (((-3 |#2| "failed") |#2| (-1207) (-865 |#2|) (-865 |#2|)) 175 (-12 (|has| |#2| (-1170)) (|has| |#1| (-633 (-917 (-578)))) (|has| |#1| (-911 (-578)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 154 (-12 (|has| |#2| (-648)) (|has| |#1| (-633 (-917 (-578)))) (|has| |#1| (-911 (-578)))) ELT)) (-3460 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 156 (-12 (|has| |#2| (-648)) (|has| |#1| (-633 (-917 (-578)))) (|has| |#1| (-911 (-578)))) ELT))) +(((-581 |#1| |#2|) (-10 -7 (-15 -3744 ((-2 (|:| -2612 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-633 (-917 (-578)))) (IF (|has| |#1| (-911 (-578))) (PROGN (IF (|has| |#2| (-648)) (PROGN (-15 -3460 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -4459 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1170)) (-15 -4459 ((-3 |#2| "failed") |#2| (-1207) (-865 |#2|) (-865 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1069 (-578)) (-466) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|))) (T -581)) +((-4459 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-865 *2)) (-4 *2 (-1170)) (-4 *2 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-633 (-917 (-578)))) (-4 *5 (-911 (-578))) (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) (-5 *1 (-581 *5 *2)))) (-4459 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-917 (-578)))) (-4 *5 (-911 (-578))) (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-648)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-3460 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-917 (-578)))) (-4 *5 (-911 (-578))) (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-648)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-3744 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) (-5 *2 (-2 (|:| -2612 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5)))))) +(-10 -7 (-15 -3744 ((-2 (|:| -2612 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-633 (-917 (-578)))) (IF (|has| |#1| (-911 (-578))) (PROGN (IF (|has| |#2| (-648)) (PROGN (-15 -3460 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -4459 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1170)) (-15 -4459 ((-3 |#2| "failed") |#2| (-1207) (-865 |#2|) (-865 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3644 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-666 (-421 |#2|))) 41 T ELT)) (-4371 (((-600 (-421 |#2|)) (-421 |#2|)) 28 T ELT)) (-3125 (((-3 (-421 |#2|) "failed") (-421 |#2|)) 17 T ELT)) (-2950 (((-3 (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|)) 48 T ELT))) +(((-582 |#1| |#2|) (-10 -7 (-15 -4371 ((-600 (-421 |#2|)) (-421 |#2|))) (-15 -3125 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -2950 ((-3 (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -3644 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-666 (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-578))) (-1274 |#1|)) (T -582)) +((-3644 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-666 (-421 *6))) (-5 *3 (-421 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *5 *6)))) (-2950 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| -3579 (-421 *5)) (|:| |coeff| (-421 *5)))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))) (-3125 (*1 *2 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-13 (-376) (-149) (-1069 (-578)))) (-5 *1 (-582 *3 *4)))) (-4371 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) (-4 *5 (-1274 *4)) (-5 *2 (-600 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5))))) +(-10 -7 (-15 -4371 ((-600 (-421 |#2|)) (-421 |#2|))) (-15 -3125 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -2950 ((-3 (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -3644 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-666 (-421 |#2|))))) +((-3490 (((-3 (-578) "failed") |#1|) 14 T ELT)) (-2794 (((-112) |#1|) 13 T ELT)) (-2088 (((-578) |#1|) 9 T ELT))) +(((-583 |#1|) (-10 -7 (-15 -2088 ((-578) |#1|)) (-15 -2794 ((-112) |#1|)) (-15 -3490 ((-3 (-578) "failed") |#1|))) (-1069 (-578))) (T -583)) +((-3490 (*1 *2 *3) (|partial| -12 (-5 *2 (-578)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-1069 (-578))))) (-2088 (*1 *2 *3) (-12 (-5 *2 (-578)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2))))) +(-10 -7 (-15 -2088 ((-578) |#1|)) (-15 -2794 ((-112) |#1|)) (-15 -3490 ((-3 (-578) "failed") |#1|))) +((-2226 (((-3 (-2 (|:| |mainpart| (-421 (-981 |#1|))) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 (-981 |#1|))) (|:| |logand| (-421 (-981 |#1|))))))) "failed") (-421 (-981 |#1|)) (-1207) (-666 (-421 (-981 |#1|)))) 48 T ELT)) (-2578 (((-600 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-1207)) 28 T ELT)) (-4109 (((-3 (-421 (-981 |#1|)) "failed") (-421 (-981 |#1|)) (-1207)) 23 T ELT)) (-1916 (((-3 (-2 (|:| -3579 (-421 (-981 |#1|))) (|:| |coeff| (-421 (-981 |#1|)))) "failed") (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|))) 35 T ELT))) +(((-584 |#1|) (-10 -7 (-15 -2578 ((-600 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-1207))) (-15 -4109 ((-3 (-421 (-981 |#1|)) "failed") (-421 (-981 |#1|)) (-1207))) (-15 -2226 ((-3 (-2 (|:| |mainpart| (-421 (-981 |#1|))) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 (-981 |#1|))) (|:| |logand| (-421 (-981 |#1|))))))) "failed") (-421 (-981 |#1|)) (-1207) (-666 (-421 (-981 |#1|))))) (-15 -1916 ((-3 (-2 (|:| -3579 (-421 (-981 |#1|))) (|:| |coeff| (-421 (-981 |#1|)))) "failed") (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|))))) (-13 (-570) (-1069 (-578)) (-149))) (T -584)) +((-1916 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)) (-149))) (-5 *2 (-2 (|:| -3579 (-421 (-981 *5))) (|:| |coeff| (-421 (-981 *5))))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-981 *5))))) (-2226 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-666 (-421 (-981 *6)))) (-5 *3 (-421 (-981 *6))) (-4 *6 (-13 (-570) (-1069 (-578)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6)))) (-4109 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-421 (-981 *4))) (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)) (-149))) (-5 *1 (-584 *4)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)) (-149))) (-5 *2 (-600 (-421 (-981 *5)))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-981 *5)))))) +(-10 -7 (-15 -2578 ((-600 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-1207))) (-15 -4109 ((-3 (-421 (-981 |#1|)) "failed") (-421 (-981 |#1|)) (-1207))) (-15 -2226 ((-3 (-2 (|:| |mainpart| (-421 (-981 |#1|))) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 (-981 |#1|))) (|:| |logand| (-421 (-981 |#1|))))))) "failed") (-421 (-981 |#1|)) (-1207) (-666 (-421 (-981 |#1|))))) (-15 -1916 ((-3 (-2 (|:| -3579 (-421 (-981 |#1|))) (|:| |coeff| (-421 (-981 |#1|)))) "failed") (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|))))) +((-3213 (((-112) $ $) 75 T ELT)) (-3623 (((-112) $) 48 T ELT)) (-3689 ((|#1| $) 39 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) 79 T ELT)) (-1502 (($ $) 139 T ELT)) (-1372 (($ $) 118 T ELT)) (-2424 ((|#1| $) 37 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $) NIL T ELT)) (-1478 (($ $) 141 T ELT)) (-1349 (($ $) 114 T ELT)) (-1528 (($ $) 143 T ELT)) (-1392 (($ $) 122 T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) 93 T ELT)) (-3516 (((-578) $) 95 T ELT)) (-3493 (((-3 $ "failed") $) 78 T ELT)) (-3717 (($ |#1| |#1|) 35 T ELT)) (-3789 (((-112) $) 44 T ELT)) (-2551 (($) 104 T ELT)) (-4382 (((-112) $) 55 T ELT)) (-2812 (($ $ (-578)) NIL T ELT)) (-1721 (((-112) $) 45 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3864 (($ $) 106 T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2119 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-421 (-578))) 92 T ELT)) (-2662 ((|#1| $) 36 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) 81 T ELT) (($ (-666 $)) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) 80 T ELT)) (-3587 (($ $) 108 T ELT)) (-1541 (($ $) 147 T ELT)) (-1403 (($ $) 120 T ELT)) (-1515 (($ $) 149 T ELT)) (-1382 (($ $) 124 T ELT)) (-1489 (($ $) 145 T ELT)) (-1361 (($ $) 116 T ELT)) (-3003 (((-112) $ |#1|) 42 T ELT)) (-2411 (((-886) $) 100 T ELT) (($ (-578)) 83 T ELT) (($ $) NIL T ELT) (($ (-578)) 83 T ELT)) (-3753 (((-793)) 102 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) 161 T ELT)) (-1436 (($ $) 130 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-1552 (($ $) 159 T ELT)) (-1414 (($ $) 126 T ELT)) (-1598 (($ $) 157 T ELT)) (-1456 (($ $) 137 T ELT)) (-3502 (($ $) 155 T ELT)) (-1467 (($ $) 135 T ELT)) (-1587 (($ $) 153 T ELT)) (-1447 (($ $) 132 T ELT)) (-1564 (($ $) 151 T ELT)) (-1424 (($ $) 128 T ELT)) (-2368 (($) 30 T CONST)) (-2379 (($) 10 T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 49 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 47 T ELT)) (-2484 (($ $) 53 T ELT) (($ $ $) 54 T ELT)) (-2472 (($ $ $) 52 T ELT)) (** (($ $ (-950)) 71 T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) 110 T ELT) (($ $ (-421 (-578))) 163 T ELT)) (* (($ (-950) $) 66 T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 65 T ELT) (($ $ $) 61 T ELT))) +(((-585 |#1|) (-568 |#1|) (-13 (-418) (-1233))) (T -585)) +NIL +(-568 |#1|) +((-3273 (((-3 (-666 (-1203 (-578))) "failed") (-666 (-1203 (-578))) (-1203 (-578))) 27 T ELT))) +(((-586) (-10 -7 (-15 -3273 ((-3 (-666 (-1203 (-578))) "failed") (-666 (-1203 (-578))) (-1203 (-578)))))) (T -586)) +((-3273 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 (-1203 (-578)))) (-5 *3 (-1203 (-578))) (-5 *1 (-586))))) +(-10 -7 (-15 -3273 ((-3 (-666 (-1203 (-578))) "failed") (-666 (-1203 (-578))) (-1203 (-578))))) +((-1643 (((-666 (-631 |#2|)) (-666 (-631 |#2|)) (-1207)) 19 T ELT)) (-4384 (((-666 (-631 |#2|)) (-666 |#2|) (-1207)) 23 T ELT)) (-1340 (((-666 (-631 |#2|)) (-666 (-631 |#2|)) (-666 (-631 |#2|))) 11 T ELT)) (-1989 ((|#2| |#2| (-1207)) 59 (|has| |#1| (-570)) ELT)) (-2342 ((|#2| |#2| (-1207)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-466))) ELT)) (-1749 (((-631 |#2|) (-631 |#2|) (-666 (-631 |#2|)) (-1207)) 25 T ELT)) (-2020 (((-631 |#2|) (-666 (-631 |#2|))) 24 T ELT)) (-2354 (((-600 |#2|) |#2| (-1207) (-1 (-600 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-648)) (|has| |#2| (-1069 (-1207))) (|has| |#1| (-633 (-917 (-578)))) (|has| |#1| (-466)) (|has| |#1| (-911 (-578)))) ELT))) +(((-587 |#1| |#2|) (-10 -7 (-15 -1643 ((-666 (-631 |#2|)) (-666 (-631 |#2|)) (-1207))) (-15 -2020 ((-631 |#2|) (-666 (-631 |#2|)))) (-15 -1749 ((-631 |#2|) (-631 |#2|) (-666 (-631 |#2|)) (-1207))) (-15 -1340 ((-666 (-631 |#2|)) (-666 (-631 |#2|)) (-666 (-631 |#2|)))) (-15 -4384 ((-666 (-631 |#2|)) (-666 |#2|) (-1207))) (IF (|has| |#1| (-570)) (-15 -1989 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -2342 (|#2| |#2| (-1207))) (IF (|has| |#1| (-633 (-917 (-578)))) (IF (|has| |#1| (-911 (-578))) (IF (|has| |#2| (-648)) (IF (|has| |#2| (-1069 (-1207))) (-15 -2354 ((-600 |#2|) |#2| (-1207) (-1 (-600 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1131) (-444 |#1|)) (T -587)) +((-2354 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-600 *3) *3 (-1207))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1207))) (-4 *3 (-296)) (-4 *3 (-648)) (-4 *3 (-1069 *4)) (-4 *3 (-444 *7)) (-5 *4 (-1207)) (-4 *7 (-633 (-917 (-578)))) (-4 *7 (-466)) (-4 *7 (-911 (-578))) (-4 *7 (-1131)) (-5 *2 (-600 *3)) (-5 *1 (-587 *7 *3)))) (-2342 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-466)) (-4 *4 (-1131)) (-5 *1 (-587 *4 *2)) (-4 *2 (-296)) (-4 *2 (-444 *4)))) (-1989 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-4 *4 (-1131)) (-5 *1 (-587 *4 *2)) (-4 *2 (-444 *4)))) (-4384 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6)) (-5 *4 (-1207)) (-4 *6 (-444 *5)) (-4 *5 (-1131)) (-5 *2 (-666 (-631 *6))) (-5 *1 (-587 *5 *6)))) (-1340 (*1 *2 *2 *2) (-12 (-5 *2 (-666 (-631 *4))) (-4 *4 (-444 *3)) (-4 *3 (-1131)) (-5 *1 (-587 *3 *4)))) (-1749 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-666 (-631 *6))) (-5 *4 (-1207)) (-5 *2 (-631 *6)) (-4 *6 (-444 *5)) (-4 *5 (-1131)) (-5 *1 (-587 *5 *6)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-666 (-631 *5))) (-4 *4 (-1131)) (-5 *2 (-631 *5)) (-5 *1 (-587 *4 *5)) (-4 *5 (-444 *4)))) (-1643 (*1 *2 *2 *3) (-12 (-5 *2 (-666 (-631 *5))) (-5 *3 (-1207)) (-4 *5 (-444 *4)) (-4 *4 (-1131)) (-5 *1 (-587 *4 *5))))) +(-10 -7 (-15 -1643 ((-666 (-631 |#2|)) (-666 (-631 |#2|)) (-1207))) (-15 -2020 ((-631 |#2|) (-666 (-631 |#2|)))) (-15 -1749 ((-631 |#2|) (-631 |#2|) (-666 (-631 |#2|)) (-1207))) (-15 -1340 ((-666 (-631 |#2|)) (-666 (-631 |#2|)) (-666 (-631 |#2|)))) (-15 -4384 ((-666 (-631 |#2|)) (-666 |#2|) (-1207))) (IF (|has| |#1| (-570)) (-15 -1989 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -2342 (|#2| |#2| (-1207))) (IF (|has| |#1| (-633 (-917 (-578)))) (IF (|has| |#1| (-911 (-578))) (IF (|has| |#2| (-648)) (IF (|has| |#2| (-1069 (-1207))) (-15 -2354 ((-600 |#2|) |#2| (-1207) (-1 (-600 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1937 (((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-666 |#1|) "failed") (-578) |#1| |#1|)) 199 T ELT)) (-2728 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-666 (-421 |#2|))) 174 T ELT)) (-4419 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-666 (-421 |#2|))) 171 T ELT)) (-3642 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162 T ELT)) (-3677 (((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185 T ELT)) (-3536 (((-3 (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|)) 202 T ELT)) (-2462 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|)) 205 T ELT)) (-4437 (((-2 (|:| |ir| (-600 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2725 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2567 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|) (-666 (-421 |#2|))) 178 T ELT)) (-2490 (((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|)) 166 T ELT)) (-3799 (((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|)) 189 T ELT)) (-2592 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|) (-421 |#2|)) 210 T ELT))) +(((-588 |#1| |#2|) (-10 -7 (-15 -3677 ((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3799 ((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|))) (-15 -1937 ((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-666 |#1|) "failed") (-578) |#1| |#1|))) (-15 -2462 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|))) (-15 -2592 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|) (-421 |#2|))) (-15 -2728 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-666 (-421 |#2|)))) (-15 -2567 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|) (-666 (-421 |#2|)))) (-15 -3536 ((-3 (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -4419 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-666 (-421 |#2|)))) (-15 -3642 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2490 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|))) (-15 -4437 ((-2 (|:| |ir| (-600 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2725 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1274 |#1|)) (T -588)) +((-2725 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-588 *5 *3)))) (-4437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-600 (-421 *6))) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-2490 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3868 *4) (|:| |sol?| (-112))) (-578) *4)) (-4 *4 (-376)) (-4 *5 (-1274 *4)) (-5 *1 (-588 *4 *5)))) (-3642 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1274 *4)))) (-4419 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-666 (-421 *7))) (-4 *7 (-1274 *6)) (-5 *3 (-421 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-588 *6 *7)))) (-3536 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3579 (-421 *6)) (|:| |coeff| (-421 *6)))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-2567 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3868 *7) (|:| |sol?| (-112))) (-578) *7)) (-5 *6 (-666 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1274 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-2728 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3579 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-666 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1274 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-2592 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3868 *6) (|:| |sol?| (-112))) (-578) *6)) (-4 *6 (-376)) (-4 *7 (-1274 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -3579 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2462 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-376)) (-4 *7 (-1274 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -3579 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-1937 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-666 *6) "failed") (-578) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1274 *6)) (-5 *2 (-2 (|:| |answer| (-600 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-3799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3868 *6) (|:| |sol?| (-112))) (-578) *6)) (-4 *6 (-376)) (-4 *7 (-1274 *6)) (-5 *2 (-2 (|:| |answer| (-600 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-3677 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-376)) (-4 *7 (-1274 *6)) (-5 *2 (-2 (|:| |answer| (-600 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) +(-10 -7 (-15 -3677 ((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3799 ((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|))) (-15 -1937 ((-2 (|:| |answer| (-600 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-666 |#1|) "failed") (-578) |#1| |#1|))) (-15 -2462 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|))) (-15 -2592 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|) (-421 |#2|))) (-15 -2728 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-666 (-421 |#2|)))) (-15 -2567 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|) (-666 (-421 |#2|)))) (-15 -3536 ((-3 (-2 (|:| -3579 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -4419 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-666 (-421 |#2|)))) (-15 -3642 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2490 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3868 |#1|) (|:| |sol?| (-112))) (-578) |#1|))) (-15 -4437 ((-2 (|:| |ir| (-600 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2725 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2607 (((-3 |#2| "failed") |#2| (-1207) (-1207)) 10 T ELT))) +(((-589 |#1| |#2|) (-10 -7 (-15 -2607 ((-3 |#2| "failed") |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-988) (-1170) (-29 |#1|))) (T -589)) +((-2607 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1233) (-988) (-1170) (-29 *4)))))) +(-10 -7 (-15 -2607 ((-3 |#2| "failed") |#2| (-1207) (-1207)))) +((-2740 (((-713 (-1256)) $ (-1256)) 26 T ELT)) (-2625 (((-713 (-563)) $ (-563)) 25 T ELT)) (-3709 (((-793) $ (-130)) 27 T ELT)) (-2558 (((-713 (-131)) $ (-131)) 24 T ELT)) (-2690 (((-713 (-1256)) $) 12 T ELT)) (-3143 (((-713 (-1254)) $) 8 T ELT)) (-2168 (((-713 (-1253)) $) 10 T ELT)) (-3520 (((-713 (-563)) $) 13 T ELT)) (-3506 (((-713 (-561)) $) 9 T ELT)) (-3629 (((-713 (-560)) $) 11 T ELT)) (-1665 (((-793) $ (-130)) 7 T ELT)) (-3578 (((-713 (-131)) $) 14 T ELT)) (-3250 (($ $) 6 T ELT))) +(((-590) (-142)) (T -590)) +NIL +(-13 (-541) (-884)) +(((-176) . T) ((-541) . T) ((-884) . T)) +((-2740 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-2625 (((-713 (-563)) $ (-563)) NIL T ELT)) (-3709 (((-793) $ (-130)) NIL T ELT)) (-2558 (((-713 (-131)) $ (-131)) NIL T ELT)) (-2690 (((-713 (-1256)) $) NIL T ELT)) (-3143 (((-713 (-1254)) $) NIL T ELT)) (-2168 (((-713 (-1253)) $) NIL T ELT)) (-3520 (((-713 (-563)) $) NIL T ELT)) (-3506 (((-713 (-561)) $) NIL T ELT)) (-3629 (((-713 (-560)) $) NIL T ELT)) (-1665 (((-793) $ (-130)) NIL T ELT)) (-3578 (((-713 (-131)) $) NIL T ELT)) (-2485 (((-112) $) NIL T ELT)) (-1753 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-2411 (((-886) $) NIL T ELT)) (-3250 (($ $) NIL T ELT))) +(((-591) (-13 (-590) (-632 (-886)) (-10 -8 (-15 -1753 ($ (-402))) (-15 -1753 ($ (-1189))) (-15 -2485 ((-112) $))))) (T -591)) +((-1753 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591)))) (-1753 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591))))) +(-13 (-590) (-632 (-886)) (-10 -8 (-15 -1753 ($ (-402))) (-15 -1753 ($ (-1189))) (-15 -2485 ((-112) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2143 (($) 7 T CONST)) (-2617 (((-1189) $) NIL T ELT)) (-1698 (($) 6 T CONST)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 15 T ELT)) (-1415 (($) 9 T CONST)) (-1750 (($) 8 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 11 T ELT))) +(((-592) (-13 (-1131) (-10 -8 (-15 -1698 ($) -1529) (-15 -2143 ($) -1529) (-15 -1750 ($) -1529) (-15 -1415 ($) -1529)))) (T -592)) +((-1698 (*1 *1) (-5 *1 (-592))) (-2143 (*1 *1) (-5 *1 (-592))) (-1750 (*1 *1) (-5 *1 (-592))) (-1415 (*1 *1) (-5 *1 (-592)))) +(-13 (-1131) (-10 -8 (-15 -1698 ($) -1529) (-15 -2143 ($) -1529) (-15 -1750 ($) -1529) (-15 -1415 ($) -1529))) +((-3213 (((-112) $ $) NIL T ELT)) (-1787 (((-713 $) (-505)) 21 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4161 (($ (-1189)) 14 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 33 T ELT)) (-1859 (((-216 4 (-131)) $) 24 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 26 T ELT))) +(((-593) (-13 (-1131) (-10 -8 (-15 -4161 ($ (-1189))) (-15 -1859 ((-216 4 (-131)) $)) (-15 -1787 ((-713 $) (-505)))))) (T -593)) +((-4161 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-593)))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-131))) (-5 *1 (-593)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593))))) +(-13 (-1131) (-10 -8 (-15 -4161 ($ (-1189))) (-15 -1859 ((-216 4 (-131)) $)) (-15 -1787 ((-713 $) (-505))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $ (-578)) 75 T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2647 (($ (-1203 (-578)) (-578)) 81 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 66 T ELT)) (-2369 (($ $) 43 T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-4059 (((-793) $) 16 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2703 (((-578)) 37 T ELT)) (-3186 (((-578) $) 41 T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2704 (($ $ (-578)) 24 T ELT)) (-3202 (((-3 $ "failed") $ $) 71 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) 17 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 72 T ELT)) (-3472 (((-1188 (-578)) $) 19 T ELT)) (-2117 (($ $) 26 T ELT)) (-2411 (((-886) $) 102 T ELT) (($ (-578)) 61 T ELT) (($ $) NIL T ELT)) (-3753 (((-793)) 15 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3909 (((-578) $ (-578)) 46 T ELT)) (-2368 (($) 44 T CONST)) (-2379 (($) 21 T CONST)) (-2384 (((-112) $ $) 52 T ELT)) (-2484 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-2472 (($ $ $) 59 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 62 T ELT) (($ $ $) 63 T ELT))) +(((-594 |#1| |#2|) (-893 |#1|) (-578) (-112)) (T -594)) +NIL +(-893 |#1|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 30 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 (($ $ (-950)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 59 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 $ "failed") $) 95 T ELT)) (-3516 (($ $) 94 T ELT)) (-3095 (($ (-1298 $)) 93 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 44 T ELT)) (-2062 (($) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) 61 T ELT)) (-2681 (((-112) $) NIL T ELT)) (-2953 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) 49 (|has| $ (-381)) ELT)) (-2488 (((-112) $) NIL (|has| $ (-381)) ELT)) (-1550 (($ $ (-950)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 $) $ (-950)) NIL (|has| $ (-381)) ELT) (((-1203 $) $) 104 T ELT)) (-3193 (((-950) $) 67 T ELT)) (-3994 (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-3606 (((-3 (-1203 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-3207 (($ $ (-1203 $)) NIL (|has| $ (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-2087 (($ (-950)) 60 T ELT)) (-2323 (((-112) $) 87 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) 28 (|has| $ (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 54 T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-950)) 86 T ELT) (((-855 (-950))) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3683 (((-950) $) 85 T ELT) (((-855 (-950)) $) NIL T ELT)) (-4269 (((-1203 $)) 102 T ELT)) (-3430 (($) 66 T ELT)) (-4062 (($) 50 (|has| $ (-381)) ELT)) (-1453 (((-711 $) (-1298 $)) NIL T ELT) (((-1298 $) $) 91 T ELT)) (-3343 (((-578) $) 40 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) 42 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL T ELT) (($ $) 105 T ELT)) (-3753 (((-793)) 51 T CONST)) (-2876 (((-112) $ $) 107 T ELT)) (-3198 (((-1298 $) (-950)) 97 T ELT) (((-1298 $)) 96 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) 31 T CONST)) (-2379 (($) 27 T CONST)) (-1536 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 34 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-595 |#1|) (-13 (-362) (-341 $) (-633 (-578))) (-950)) (T -595)) +NIL +(-13 (-362) (-341 $) (-633 (-578))) +((-1491 (((-1303) (-1189)) 10 T ELT))) +(((-596) (-10 -7 (-15 -1491 ((-1303) (-1189))))) (T -596)) +((-1491 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-596))))) +(-10 -7 (-15 -1491 ((-1303) (-1189)))) +((-3427 (((-600 |#2|) (-600 |#2|)) 42 T ELT)) (-4199 (((-666 |#2|) (-600 |#2|)) 44 T ELT)) (-4288 ((|#2| (-600 |#2|)) 50 T ELT))) +(((-597 |#1| |#2|) (-10 -7 (-15 -3427 ((-600 |#2|) (-600 |#2|))) (-15 -4199 ((-666 |#2|) (-600 |#2|))) (-15 -4288 (|#2| (-600 |#2|)))) (-13 (-466) (-1069 (-578)) (-660 (-578))) (-13 (-29 |#1|) (-1233))) (T -597)) +((-4288 (*1 *2 *3) (-12 (-5 *3 (-600 *2)) (-4 *2 (-13 (-29 *4) (-1233))) (-5 *1 (-597 *4 *2)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-600 *5)) (-4 *5 (-13 (-29 *4) (-1233))) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-666 *5)) (-5 *1 (-597 *4 *5)))) (-3427 (*1 *2 *2) (-12 (-5 *2 (-600 *4)) (-4 *4 (-13 (-29 *3) (-1233))) (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-597 *3 *4))))) +(-10 -7 (-15 -3427 ((-600 |#2|) (-600 |#2|))) (-15 -4199 ((-666 |#2|) (-600 |#2|))) (-15 -4288 (|#2| (-600 |#2|)))) +((-3611 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-600 |#2|) (-1 |#2| |#1|) (-600 |#1|)) 30 T ELT))) +(((-598 |#1| |#2|) (-10 -7 (-15 -3611 ((-600 |#2|) (-1 |#2| |#1|) (-600 |#1|))) (-15 -3611 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3611 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3611 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-376) (-376)) (T -598)) +((-3611 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-598 *5 *6)))) (-3611 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-598 *5 *2)))) (-3611 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3579 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -3579 *6) (|:| |coeff| *6))) (-5 *1 (-598 *5 *6)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-600 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-600 *6)) (-5 *1 (-598 *5 *6))))) +(-10 -7 (-15 -3611 ((-600 |#2|) (-1 |#2| |#1|) (-600 |#1|))) (-15 -3611 ((-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3579 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3611 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3611 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3546 (($ (-520) (-611)) 14 T ELT)) (-4225 (($ (-520) (-611) $) 16 T ELT)) (-2218 (($ (-520) (-611)) 15 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-1212)) 7 T ELT) (((-1212) $) 6 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-599) (-13 (-1131) (-504 (-1212)) (-10 -8 (-15 -3546 ($ (-520) (-611))) (-15 -2218 ($ (-520) (-611))) (-15 -4225 ($ (-520) (-611) $))))) (T -599)) +((-3546 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-599)))) (-2218 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-599)))) (-4225 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-599))))) +(-13 (-1131) (-504 (-1212)) (-10 -8 (-15 -3546 ($ (-520) (-611))) (-15 -2218 ($ (-520) (-611))) (-15 -4225 ($ (-520) (-611) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 76 T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-3579 ((|#1| $) 30 T ELT)) (-4309 (((-666 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-4279 (($ |#1| (-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) (-666 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2049 (((-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) $) 31 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3025 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1207)) 49 (|has| |#1| (-1069 (-1207))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2784 (((-112) $) 35 T ELT)) (-2031 ((|#1| $ (-1 |#1| |#1|)) 88 T ELT) ((|#1| $ (-1207)) 89 (|has| |#1| (-927 (-1207))) ELT)) (-2411 (((-886) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 18 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 85 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 16 T ELT) (($ (-421 (-578)) $) 41 T ELT) (($ $ (-421 (-578))) NIL T ELT))) +(((-600 |#1|) (-13 (-739 (-421 (-578))) (-1069 |#1|) (-10 -8 (-15 -4279 ($ |#1| (-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) (-666 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3579 (|#1| $)) (-15 -2049 ((-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) $)) (-15 -4309 ((-666 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2784 ((-112) $)) (-15 -3025 ($ |#1| |#1|)) (-15 -2031 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-927 (-1207))) (-15 -2031 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1069 (-1207))) (-15 -3025 ($ |#1| (-1207))) |%noBranch|))) (-376)) (T -600)) +((-4279 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 *2)) (|:| |logand| (-1203 *2))))) (-5 *4 (-666 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-600 *2)))) (-3579 (*1 *2 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-376)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 *3)) (|:| |logand| (-1203 *3))))) (-5 *1 (-600 *3)) (-4 *3 (-376)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-600 *3)) (-4 *3 (-376)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-376)))) (-3025 (*1 *1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-376)))) (-2031 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-600 *2)) (-4 *2 (-376)))) (-2031 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-927 *3)) (-5 *1 (-600 *2)) (-5 *3 (-1207)))) (-3025 (*1 *1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *1 (-600 *2)) (-4 *2 (-1069 *3)) (-4 *2 (-376))))) +(-13 (-739 (-421 (-578))) (-1069 |#1|) (-10 -8 (-15 -4279 ($ |#1| (-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) (-666 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3579 (|#1| $)) (-15 -2049 ((-666 (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 |#1|)) (|:| |logand| (-1203 |#1|)))) $)) (-15 -4309 ((-666 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2784 ((-112) $)) (-15 -3025 ($ |#1| |#1|)) (-15 -2031 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-927 (-1207))) (-15 -2031 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1069 (-1207))) (-15 -3025 ($ |#1| (-1207))) |%noBranch|))) +((-1678 (((-112) |#1|) 16 T ELT)) (-1812 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3415 (((-2 (|:| -3648 |#1|) (|:| -2764 (-793))) |#1|) 38 T ELT) (((-3 |#1| "failed") |#1| (-793)) 18 T ELT)) (-1790 (((-112) |#1| (-793)) 19 T ELT)) (-1784 ((|#1| |#1|) 42 T ELT)) (-4423 ((|#1| |#1| (-793)) 45 T ELT))) +(((-601 |#1|) (-10 -7 (-15 -1790 ((-112) |#1| (-793))) (-15 -3415 ((-3 |#1| "failed") |#1| (-793))) (-15 -3415 ((-2 (|:| -3648 |#1|) (|:| -2764 (-793))) |#1|)) (-15 -4423 (|#1| |#1| (-793))) (-15 -1678 ((-112) |#1|)) (-15 -1812 ((-3 |#1| "failed") |#1|)) (-15 -1784 (|#1| |#1|))) (-559)) (T -601)) +((-1784 (*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-1812 (*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-1678 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-4423 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-3415 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3648 *3) (|:| -2764 (-793)))) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-3415 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-1790 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-559))))) +(-10 -7 (-15 -1790 ((-112) |#1| (-793))) (-15 -3415 ((-3 |#1| "failed") |#1| (-793))) (-15 -3415 ((-2 (|:| -3648 |#1|) (|:| -2764 (-793))) |#1|)) (-15 -4423 (|#1| |#1| (-793))) (-15 -1678 ((-112) |#1|)) (-15 -1812 ((-3 |#1| "failed") |#1|)) (-15 -1784 (|#1| |#1|))) +((-3833 (((-1203 |#1|) (-950)) 44 T ELT))) +(((-602 |#1|) (-10 -7 (-15 -3833 ((-1203 |#1|) (-950)))) (-362)) (T -602)) +((-3833 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-602 *4)) (-4 *4 (-362))))) +(-10 -7 (-15 -3833 ((-1203 |#1|) (-950)))) +((-3427 (((-600 (-421 (-981 |#1|))) (-600 (-421 (-981 |#1|)))) 27 T ELT)) (-4371 (((-3 (-328 |#1|) (-666 (-328 |#1|))) (-421 (-981 |#1|)) (-1207)) 34 (|has| |#1| (-149)) ELT)) (-4199 (((-666 (-328 |#1|)) (-600 (-421 (-981 |#1|)))) 19 T ELT)) (-2520 (((-328 |#1|) (-421 (-981 |#1|)) (-1207)) 32 (|has| |#1| (-149)) ELT)) (-4288 (((-328 |#1|) (-600 (-421 (-981 |#1|)))) 21 T ELT))) +(((-603 |#1|) (-10 -7 (-15 -3427 ((-600 (-421 (-981 |#1|))) (-600 (-421 (-981 |#1|))))) (-15 -4199 ((-666 (-328 |#1|)) (-600 (-421 (-981 |#1|))))) (-15 -4288 ((-328 |#1|) (-600 (-421 (-981 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4371 ((-3 (-328 |#1|) (-666 (-328 |#1|))) (-421 (-981 |#1|)) (-1207))) (-15 -2520 ((-328 |#1|) (-421 (-981 |#1|)) (-1207)))) |%noBranch|)) (-13 (-466) (-1069 (-578)) (-660 (-578)))) (T -603)) +((-2520 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-328 *5)) (-5 *1 (-603 *5)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (-328 *5) (-666 (-328 *5)))) (-5 *1 (-603 *5)))) (-4288 (*1 *2 *3) (-12 (-5 *3 (-600 (-421 (-981 *4)))) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-328 *4)) (-5 *1 (-603 *4)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-600 (-421 (-981 *4)))) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-666 (-328 *4))) (-5 *1 (-603 *4)))) (-3427 (*1 *2 *2) (-12 (-5 *2 (-600 (-421 (-981 *3)))) (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-603 *3))))) +(-10 -7 (-15 -3427 ((-600 (-421 (-981 |#1|))) (-600 (-421 (-981 |#1|))))) (-15 -4199 ((-666 (-328 |#1|)) (-600 (-421 (-981 |#1|))))) (-15 -4288 ((-328 |#1|) (-600 (-421 (-981 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4371 ((-3 (-328 |#1|) (-666 (-328 |#1|))) (-421 (-981 |#1|)) (-1207))) (-15 -2520 ((-328 |#1|) (-421 (-981 |#1|)) (-1207)))) |%noBranch|)) +((-2917 (((-666 (-711 (-578))) (-666 (-950)) (-666 (-934 (-578)))) 78 T ELT) (((-666 (-711 (-578))) (-666 (-950))) 79 T ELT) (((-711 (-578)) (-666 (-950)) (-934 (-578))) 72 T ELT)) (-4136 (((-793) (-666 (-950))) 69 T ELT))) +(((-604) (-10 -7 (-15 -4136 ((-793) (-666 (-950)))) (-15 -2917 ((-711 (-578)) (-666 (-950)) (-934 (-578)))) (-15 -2917 ((-666 (-711 (-578))) (-666 (-950)))) (-15 -2917 ((-666 (-711 (-578))) (-666 (-950)) (-666 (-934 (-578))))))) (T -604)) +((-2917 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-950))) (-5 *4 (-666 (-934 (-578)))) (-5 *2 (-666 (-711 (-578)))) (-5 *1 (-604)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-666 (-950))) (-5 *2 (-666 (-711 (-578)))) (-5 *1 (-604)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-950))) (-5 *4 (-934 (-578))) (-5 *2 (-711 (-578))) (-5 *1 (-604)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-666 (-950))) (-5 *2 (-793)) (-5 *1 (-604))))) +(-10 -7 (-15 -4136 ((-793) (-666 (-950)))) (-15 -2917 ((-711 (-578)) (-666 (-950)) (-934 (-578)))) (-15 -2917 ((-666 (-711 (-578))) (-666 (-950)))) (-15 -2917 ((-666 (-711 (-578))) (-666 (-950)) (-666 (-934 (-578)))))) +((-1877 (((-666 |#5|) |#5| (-112)) 100 T ELT)) (-4474 (((-112) |#5| (-666 |#5|)) 34 T ELT))) +(((-605 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1877 ((-666 |#5|) |#5| (-112))) (-15 -4474 ((-112) |#5| (-666 |#5|)))) (-13 (-319) (-149)) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3| |#4|)) (T -605)) +((-4474 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *3)) (-4 *3 (-1140 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-605 *5 *6 *7 *8 *3)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-666 *3)) (-5 *1 (-605 *5 *6 *7 *8 *3)) (-4 *3 (-1140 *5 *6 *7 *8))))) +(-10 -7 (-15 -1877 ((-666 |#5|) |#5| (-112))) (-15 -4474 ((-112) |#5| (-666 |#5|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3666 (((-1166) $) 11 T ELT)) (-3655 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-606) (-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $))))) (T -606)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606))))) +(-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $)))) +((-3213 (((-112) $ $) NIL (|has| (-146) (-102)) ELT)) (-3482 (($ $) 38 T ELT)) (-2959 (($ $) NIL T ELT)) (-1477 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3591 (((-112) $ $) 67 T ELT)) (-3566 (((-112) $ $ (-578)) 62 T ELT)) (-3427 (((-666 $) $ (-146)) 75 T ELT) (((-666 $) $ (-143)) 76 T ELT)) (-2442 (((-112) (-1 (-112) (-146) (-146)) $) NIL T ELT) (((-112) $) NIL (|has| (-146) (-871)) ELT)) (-4101 (($ (-1 (-112) (-146) (-146)) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| (-146) (-871))) ELT)) (-2042 (($ (-1 (-112) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 (((-146) $ (-578) (-146)) 59 (|has| $ (-6 -4501)) ELT) (((-146) $ (-1265 (-578)) (-146)) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-2448 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-1383 (($ $ (-1265 (-578)) $) 57 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-2737 (($ (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT) (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4500)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 (((-146) $ (-578) (-146)) NIL (|has| $ (-6 -4501)) ELT)) (-3382 (((-146) $ (-578)) NIL T ELT)) (-3615 (((-112) $ $) 88 T ELT)) (-3887 (((-578) (-1 (-112) (-146)) $) NIL T ELT) (((-578) (-146) $) NIL (|has| (-146) (-1131)) ELT) (((-578) (-146) $ (-578)) 64 (|has| (-146) (-1131)) ELT) (((-578) $ $ (-578)) 63 T ELT) (((-578) (-143) $ (-578)) 66 T ELT)) (-2729 (((-666 (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) (-146)) 9 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 32 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3176 (($ (-1 (-112) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-1441 (((-666 (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-2316 (((-578) $) 47 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-4037 (((-112) $ $ (-146)) 89 T ELT)) (-4464 (((-793) $ $ (-146)) 86 T ELT)) (-3439 (($ (-1 (-146) (-146)) $) 37 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3054 (($ $) 41 T ELT)) (-2283 (($ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2458 (($ $ (-146)) 77 T ELT) (($ $ (-143)) 78 T ELT)) (-2617 (((-1189) $) 43 (|has| (-146) (-1131)) ELT)) (-4273 (($ (-146) $ (-578)) NIL T ELT) (($ $ $ (-578)) 27 T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) 85 (|has| (-146) (-1131)) ELT)) (-4189 (((-146) $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 (-146) "failed") (-1 (-112) (-146)) $) NIL T ELT)) (-4291 (($ $ (-146)) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-306 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-666 (-146)) (-666 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-4322 (((-666 (-146)) $) NIL T ELT)) (-4186 (((-112) $) 15 T ELT)) (-1696 (($) 12 T ELT)) (-2436 (((-146) $ (-578) (-146)) NIL T ELT) (((-146) $ (-578)) 68 T ELT) (($ $ (-1265 (-578))) 25 T ELT) (($ $ $) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-3751 (($ $ $ (-578)) 81 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 20 T ELT)) (-3343 (((-550) $) NIL (|has| (-146) (-633 (-550))) ELT)) (-2423 (($ (-666 (-146))) NIL T ELT)) (-3703 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-666 $)) 82 T ELT)) (-2411 (($ (-146)) NIL T ELT) (((-886) $) 31 (|has| (-146) (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| (-146) (-102)) ELT)) (-3673 (((-112) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-146) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-146) (-871)) ELT)) (-2384 (((-112) $ $) 17 (|has| (-146) (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| (-146) (-871)) ELT)) (-2404 (((-112) $ $) 18 (|has| (-146) (-871)) ELT)) (-3226 (((-793) $) 16 (|has| $ (-6 -4500)) ELT))) +(((-607 |#1|) (-1175) (-578)) (T -607)) +NIL +(-1175) +((-1955 (((-2 (|:| |num| |#4|) (|:| |den| (-578))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-578))) |#4| |#2| (-1125 |#4|)) 32 T ELT))) +(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1955 ((-2 (|:| |num| |#4|) (|:| |den| (-578))) |#4| |#2| (-1125 |#4|))) (-15 -1955 ((-2 (|:| |num| |#4|) (|:| |den| (-578))) |#4| |#2|))) (-815) (-871) (-570) (-978 |#3| |#1| |#2|)) (T -608)) +((-1955 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-570)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-578)))) (-5 *1 (-608 *5 *4 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) (-1955 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1125 *3)) (-4 *3 (-978 *7 *6 *4)) (-4 *6 (-815)) (-4 *4 (-871)) (-4 *7 (-570)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-578)))) (-5 *1 (-608 *6 *4 *7 *3))))) +(-10 -7 (-15 -1955 ((-2 (|:| |num| |#4|) (|:| |den| (-578))) |#4| |#2| (-1125 |#4|))) (-15 -1955 ((-2 (|:| |num| |#4|) (|:| |den| (-578))) |#4| |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 71 T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-578)) 58 T ELT) (($ $ (-578) (-578)) 59 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $) 65 T ELT)) (-2172 (($ $) 109 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2074 (((-886) (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) (-1057 (-865 (-578))) (-1207) |#1| (-421 (-578))) 241 T ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|)))) 36 T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-4059 (((-578) $) 63 T ELT) (((-578) $ (-578)) 64 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-4196 (($ $ (-950)) 83 T ELT)) (-3939 (($ (-1 |#1| (-578)) $) 80 T ELT)) (-1796 (((-112) $) 26 T ELT)) (-2925 (($ |#1| (-578)) 22 T ELT) (($ $ (-1113) (-578)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-578))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3253 (($ (-1057 (-865 (-578))) (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|)))) 13 T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4371 (($ $) 161 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2723 (((-3 $ "failed") $ $ (-112)) 108 T ELT)) (-1759 (($ $ $) 116 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3952 (((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $) 15 T ELT)) (-2901 (((-1057 (-865 (-578))) $) 14 T ELT)) (-2704 (($ $ (-578)) 47 T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-578)))) ELT)) (-2436 ((|#1| $ (-578)) 62 T ELT) (($ $ $) NIL (|has| (-578) (-1143)) ELT)) (-2031 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT)) (-3683 (((-578) $) NIL T ELT)) (-2117 (($ $) 48 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) 29 T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-3708 ((|#1| $ (-578)) 61 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 39 T CONST)) (-4369 ((|#1| $) NIL T ELT)) (-4219 (($ $) 198 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3780 (($ $) 169 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3824 (($ $) 202 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2451 (($ $) 174 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3685 (($ $) 201 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4234 (($ $) 173 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2380 (($ $ (-421 (-578))) 177 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2715 (($ $ |#1|) 157 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3475 (($ $) 204 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1397 (($ $) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2085 (($ $) 203 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4476 (($ $) 175 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1411 (($ $) 199 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3889 (($ $) 171 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1619 (($ $) 200 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3113 (($ $) 172 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3328 (($ $) 209 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1913 (($ $) 185 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4071 (($ $) 206 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4274 (($ $) 181 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3365 (($ $) 213 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1772 (($ $) 189 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1648 (($ $) 215 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4312 (($ $) 191 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2718 (($ $) 211 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3261 (($ $) 187 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3467 (($ $) 208 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3469 (($ $) 183 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-3909 ((|#1| $ (-578)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-2368 (($) 30 T CONST)) (-2379 (($) 40 T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT)) (-2384 (((-112) $ $) 73 T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-2472 (($ $ $) 88 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 111 T ELT)) (* (($ (-950) $) 98 T ELT) (($ (-793) $) 96 T ELT) (($ (-578) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-609 |#1|) (-13 (-1276 |#1| (-578)) (-10 -8 (-15 -3253 ($ (-1057 (-865 (-578))) (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))))) (-15 -2901 ((-1057 (-865 (-578))) $)) (-15 -3952 ((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $)) (-15 -4449 ($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))))) (-15 -1796 ((-112) $)) (-15 -3939 ($ (-1 |#1| (-578)) $)) (-15 -2723 ((-3 $ "failed") $ $ (-112))) (-15 -2172 ($ $)) (-15 -1759 ($ $ $)) (-15 -2074 ((-886) (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) (-1057 (-865 (-578))) (-1207) |#1| (-421 (-578)))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $)) (-15 -2715 ($ $ |#1|)) (-15 -2380 ($ $ (-421 (-578)))) (-15 -1397 ($ $)) (-15 -3475 ($ $)) (-15 -2451 ($ $)) (-15 -3113 ($ $)) (-15 -3780 ($ $)) (-15 -3889 ($ $)) (-15 -4234 ($ $)) (-15 -4476 ($ $)) (-15 -4274 ($ $)) (-15 -3469 ($ $)) (-15 -1913 ($ $)) (-15 -3261 ($ $)) (-15 -1772 ($ $)) (-15 -4312 ($ $)) (-15 -3824 ($ $)) (-15 -1619 ($ $)) (-15 -4219 ($ $)) (-15 -1411 ($ $)) (-15 -3685 ($ $)) (-15 -2085 ($ $)) (-15 -4071 ($ $)) (-15 -3467 ($ $)) (-15 -3328 ($ $)) (-15 -2718 ($ $)) (-15 -3365 ($ $)) (-15 -1648 ($ $))) |%noBranch|))) (-1080)) (T -609)) +((-1796 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-3253 (*1 *1 *2 *3) (-12 (-5 *2 (-1057 (-865 (-578)))) (-5 *3 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *4)))) (-4 *4 (-1080)) (-5 *1 (-609 *4)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-1057 (-865 (-578)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-4449 (*1 *1 *2) (-12 (-5 *2 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *3)))) (-4 *3 (-1080)) (-5 *1 (-609 *3)))) (-3939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-578))) (-4 *3 (-1080)) (-5 *1 (-609 *3)))) (-2723 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))) (-1759 (*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))) (-2074 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *6)))) (-5 *4 (-1057 (-865 (-578)))) (-5 *5 (-1207)) (-5 *7 (-421 (-578))) (-4 *6 (-1080)) (-5 *2 (-886)) (-5 *1 (-609 *6)))) (-4371 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-2715 (*1 *1 *1 *2) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-2380 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1080)))) (-1397 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3475 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-2451 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3113 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3780 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3889 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-4234 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-4476 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-4274 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3469 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3261 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-1772 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-4312 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3824 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-1619 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-4219 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-1411 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3685 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-2085 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-4071 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3467 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3328 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-3365 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(-13 (-1276 |#1| (-578)) (-10 -8 (-15 -3253 ($ (-1057 (-865 (-578))) (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))))) (-15 -2901 ((-1057 (-865 (-578))) $)) (-15 -3952 ((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $)) (-15 -4449 ($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))))) (-15 -1796 ((-112) $)) (-15 -3939 ($ (-1 |#1| (-578)) $)) (-15 -2723 ((-3 $ "failed") $ $ (-112))) (-15 -2172 ($ $)) (-15 -1759 ($ $ $)) (-15 -2074 ((-886) (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) (-1057 (-865 (-578))) (-1207) |#1| (-421 (-578)))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $)) (-15 -2715 ($ $ |#1|)) (-15 -2380 ($ $ (-421 (-578)))) (-15 -1397 ($ $)) (-15 -3475 ($ $)) (-15 -2451 ($ $)) (-15 -3113 ($ $)) (-15 -3780 ($ $)) (-15 -3889 ($ $)) (-15 -4234 ($ $)) (-15 -4476 ($ $)) (-15 -4274 ($ $)) (-15 -3469 ($ $)) (-15 -1913 ($ $)) (-15 -3261 ($ $)) (-15 -1772 ($ $)) (-15 -4312 ($ $)) (-15 -3824 ($ $)) (-15 -1619 ($ $)) (-15 -4219 ($ $)) (-15 -1411 ($ $)) (-15 -3685 ($ $)) (-15 -2085 ($ $)) (-15 -4071 ($ $)) (-15 -3467 ($ $)) (-15 -3328 ($ $)) (-15 -2718 ($ $)) (-15 -3365 ($ $)) (-15 -1648 ($ $))) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 63 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-4449 (($ (-1188 |#1|)) 9 T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) 44 T ELT)) (-1401 (((-112) $) 56 T ELT)) (-4059 (((-793) $) 61 T ELT) (((-793) $ (-793)) 60 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) 46 (|has| |#1| (-570)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-1188 |#1|) $) 25 T ELT)) (-3753 (((-793)) 55 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) 10 T CONST)) (-2379 (($) 14 T CONST)) (-2384 (((-112) $ $) 24 T ELT)) (-2484 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-2472 (($ $ $) 27 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 53 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-578)) 38 T ELT))) +(((-610 |#1|) (-13 (-1080) (-111 |#1| |#1|) (-10 -8 (-15 -3839 ((-1188 |#1|) $)) (-15 -4449 ($ (-1188 |#1|))) (-15 -1401 ((-112) $)) (-15 -4059 ((-793) $)) (-15 -4059 ((-793) $ (-793))) (-15 * ($ $ (-578))) (IF (|has| |#1| (-570)) (-6 (-570)) |%noBranch|))) (-1080)) (T -610)) +((-3839 (*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-4449 (*1 *1 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-610 *3)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-4059 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))) +(-13 (-1080) (-111 |#1| |#1|) (-10 -8 (-15 -3839 ((-1188 |#1|) $)) (-15 -4449 ($ (-1188 |#1|))) (-15 -1401 ((-112) $)) (-15 -4059 ((-793) $)) (-15 -4059 ((-793) $ (-793))) (-15 * ($ $ (-578))) (IF (|has| |#1| (-570)) (-6 (-570)) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1914 (($) 8 T CONST)) (-4245 (($) 7 T CONST)) (-2791 (($ $ (-666 $)) 16 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2942 (($) 6 T CONST)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-1212)) 15 T ELT) (((-1212) $) 10 T ELT)) (-2667 (($) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-611) (-13 (-1131) (-504 (-1212)) (-10 -8 (-15 -2942 ($) -1529) (-15 -4245 ($) -1529) (-15 -1914 ($) -1529) (-15 -2667 ($) -1529) (-15 -2791 ($ $ (-666 $)))))) (T -611)) +((-2942 (*1 *1) (-5 *1 (-611))) (-4245 (*1 *1) (-5 *1 (-611))) (-1914 (*1 *1) (-5 *1 (-611))) (-2667 (*1 *1) (-5 *1 (-611))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-611))) (-5 *1 (-611))))) +(-13 (-1131) (-504 (-1212)) (-10 -8 (-15 -2942 ($) -1529) (-15 -4245 ($) -1529) (-15 -1914 ($) -1529) (-15 -2667 ($) -1529) (-15 -2791 ($ $ (-666 $))))) +((-3611 (((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)) 15 T ELT))) +(((-612 |#1| |#2|) (-10 -7 (-15 -3611 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)))) (-1248) (-1248)) (T -612)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6))))) +(-10 -7 (-15 -3611 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)))) +((-3611 (((-1188 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1188 |#2|)) 20 T ELT) (((-1188 |#3|) (-1 |#3| |#1| |#2|) (-1188 |#1|) (-615 |#2|)) 19 T ELT) (((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|)) 18 T ELT))) +(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -3611 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -3611 ((-1188 |#3|) (-1 |#3| |#1| |#2|) (-1188 |#1|) (-615 |#2|))) (-15 -3611 ((-1188 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1188 |#2|)))) (-1248) (-1248) (-1248)) (T -613)) +((-3611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1188 *7)) (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-1188 *8)) (-5 *1 (-613 *6 *7 *8)))) (-3611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1188 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-1188 *8)) (-5 *1 (-613 *6 *7 *8)))) (-3611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-615 *8)) (-5 *1 (-613 *6 *7 *8))))) +(-10 -7 (-15 -3611 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -3611 ((-1188 |#3|) (-1 |#3| |#1| |#2|) (-1188 |#1|) (-615 |#2|))) (-15 -3611 ((-1188 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1188 |#2|)))) +((-3356 ((|#3| |#3| (-666 (-631 |#3|)) (-666 (-1207))) 57 T ELT)) (-1535 (((-172 |#2|) |#3|) 122 T ELT)) (-3812 ((|#3| (-172 |#2|)) 46 T ELT)) (-1376 ((|#2| |#3|) 21 T ELT)) (-3071 ((|#3| |#2|) 35 T ELT))) +(((-614 |#1| |#2| |#3|) (-10 -7 (-15 -3812 (|#3| (-172 |#2|))) (-15 -1376 (|#2| |#3|)) (-15 -3071 (|#3| |#2|)) (-15 -1535 ((-172 |#2|) |#3|)) (-15 -3356 (|#3| |#3| (-666 (-631 |#3|)) (-666 (-1207))))) (-570) (-13 (-444 |#1|) (-1033) (-1233)) (-13 (-444 (-172 |#1|)) (-1033) (-1233))) (T -614)) +((-3356 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-666 (-631 *2))) (-5 *4 (-666 (-1207))) (-4 *2 (-13 (-444 (-172 *5)) (-1033) (-1233))) (-4 *5 (-570)) (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-444 *5) (-1033) (-1233))))) (-1535 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-172 *5)) (-5 *1 (-614 *4 *5 *3)) (-4 *5 (-13 (-444 *4) (-1033) (-1233))) (-4 *3 (-13 (-444 (-172 *4)) (-1033) (-1233))))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *2 (-13 (-444 (-172 *4)) (-1033) (-1233))) (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-444 *4) (-1033) (-1233))))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *2 (-13 (-444 *4) (-1033) (-1233))) (-5 *1 (-614 *4 *2 *3)) (-4 *3 (-13 (-444 (-172 *4)) (-1033) (-1233))))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-172 *5)) (-4 *5 (-13 (-444 *4) (-1033) (-1233))) (-4 *4 (-570)) (-4 *2 (-13 (-444 (-172 *4)) (-1033) (-1233))) (-5 *1 (-614 *4 *5 *2))))) +(-10 -7 (-15 -3812 (|#3| (-172 |#2|))) (-15 -1376 (|#2| |#3|)) (-15 -3071 (|#3| |#2|)) (-15 -1535 ((-172 |#2|) |#3|)) (-15 -3356 (|#3| |#3| (-666 (-631 |#3|)) (-666 (-1207))))) +((-4233 (($ (-1 (-112) |#1|) $) 17 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4169 (($ (-1 |#1| |#1|) |#1|) 9 T ELT)) (-4211 (($ (-1 (-112) |#1|) $) 13 T ELT)) (-4222 (($ (-1 (-112) |#1|) $) 15 T ELT)) (-2423 (((-1188 |#1|) $) 18 T ELT)) (-2411 (((-886) $) NIL T ELT))) +(((-615 |#1|) (-13 (-632 (-886)) (-10 -8 (-15 -3611 ($ (-1 |#1| |#1|) $)) (-15 -4211 ($ (-1 (-112) |#1|) $)) (-15 -4222 ($ (-1 (-112) |#1|) $)) (-15 -4233 ($ (-1 (-112) |#1|) $)) (-15 -4169 ($ (-1 |#1| |#1|) |#1|)) (-15 -2423 ((-1188 |#1|) $)))) (-1248)) (T -615)) +((-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) (-4211 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) (-4233 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) (-4169 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1248))))) +(-13 (-632 (-886)) (-10 -8 (-15 -3611 ($ (-1 |#1| |#1|) $)) (-15 -4211 ($ (-1 (-112) |#1|) $)) (-15 -4222 ($ (-1 (-112) |#1|) $)) (-15 -4233 ($ (-1 (-112) |#1|) $)) (-15 -4169 ($ (-1 |#1| |#1|) |#1|)) (-15 -2423 ((-1188 |#1|) $)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1526 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2360 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1664 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3492 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1406 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4431 (($ $ $) NIL (|has| |#1| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) NIL T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2484 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-578) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-616 |#1| |#2|) (-1296 |#1|) (-1248) (-578)) (T -616)) +NIL +(-1296 |#1|) +((-1794 (((-1303) $ |#2| |#2|) 35 T ELT)) (-4314 ((|#2| $) 23 T ELT)) (-2316 ((|#2| $) 21 T ELT)) (-3439 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3611 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4189 ((|#3| $) 26 T ELT)) (-4291 (($ $ |#3|) 33 T ELT)) (-4179 (((-112) |#3| $) 17 T ELT)) (-4322 (((-666 |#3|) $) 15 T ELT)) (-2436 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-617 |#1| |#2| |#3|) (-10 -8 (-15 -1794 ((-1303) |#1| |#2| |#2|)) (-15 -4291 (|#1| |#1| |#3|)) (-15 -4189 (|#3| |#1|)) (-15 -4314 (|#2| |#1|)) (-15 -2316 (|#2| |#1|)) (-15 -4179 ((-112) |#3| |#1|)) (-15 -4322 ((-666 |#3|) |#1|)) (-15 -2436 (|#3| |#1| |#2|)) (-15 -2436 (|#3| |#1| |#2| |#3|)) (-15 -3439 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3611 (|#1| (-1 |#3| |#3|) |#1|))) (-618 |#2| |#3|) (-1131) (-1248)) (T -617)) +NIL +(-10 -8 (-15 -1794 ((-1303) |#1| |#2| |#2|)) (-15 -4291 (|#1| |#1| |#3|)) (-15 -4189 (|#3| |#1|)) (-15 -4314 (|#2| |#1|)) (-15 -2316 (|#2| |#1|)) (-15 -4179 ((-112) |#3| |#1|)) (-15 -4322 ((-666 |#3|) |#1|)) (-15 -2436 (|#3| |#1| |#2|)) (-15 -2436 (|#3| |#1| |#2| |#3|)) (-15 -3439 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3611 (|#1| (-1 |#3| |#3|) |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#2| (-102)) ELT)) (-1794 (((-1303) $ |#1| |#1|) 41 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4501)) ELT)) (-3534 (($) 7 T CONST)) (-3450 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) 52 T ELT)) (-2729 (((-666 |#2|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 ((|#1| $) 44 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#2|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 ((|#1| $) 45 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#2| (-1131)) ELT)) (-4030 (((-666 |#1|) $) 47 T ELT)) (-3023 (((-112) |#1| $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| |#2| (-1131)) ELT)) (-4189 ((|#2| $) 43 (|has| |#1| (-871)) ELT)) (-4291 (($ $ |#2|) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) 27 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#2| $ |#1| |#2|) 51 T ELT) ((|#2| $ |#1|) 50 T ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) 29 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#2| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#2| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#2| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-618 |#1| |#2|) (-142) (-1131) (-1248)) (T -618)) +((-4322 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1248)) (-5 *2 (-666 *4)))) (-3023 (*1 *2 *3 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1248)) (-5 *2 (-112)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1248)) (-5 *2 (-666 *3)))) (-4179 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1131)) (-4 *3 (-1248)) (-4 *3 (-1131)) (-5 *2 (-112)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1131)) (-4 *2 (-871)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1131)) (-4 *2 (-871)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1131)) (-4 *3 (-871)) (-4 *2 (-1248)))) (-4291 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-618 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1248)))) (-1794 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1248)) (-5 *2 (-1303))))) +(-13 (-503 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -4322 ((-666 |t#2|) $)) (-15 -3023 ((-112) |t#1| $)) (-15 -4030 ((-666 |t#1|) $)) (IF (|has| |t#2| (-1131)) (IF (|has| $ (-6 -4500)) (-15 -4179 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-15 -2316 (|t#1| $)) (-15 -4314 (|t#1| $)) (-15 -4189 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4501)) (PROGN (-15 -4291 ($ $ |t#2|)) (-15 -1794 ((-1303) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#2| (-1131)) (|has| |#2| (-102))) ((-632 (-886)) -2230 (|has| |#2| (-1131)) (|has| |#2| (-632 (-886)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-1131) |has| |#2| (-1131)) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1247) $) 14 T ELT) (($ (-666 (-1247))) 13 T ELT)) (-1621 (((-666 (-1247)) $) 10 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-619) (-13 (-1114) (-632 (-1247)) (-10 -8 (-15 -2411 ($ (-666 (-1247)))) (-15 -1621 ((-666 (-1247)) $))))) (T -619)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-619)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-619))))) +(-13 (-1114) (-632 (-1247)) (-10 -8 (-15 -2411 ($ (-666 (-1247)))) (-15 -1621 ((-666 (-1247)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-1430 (((-3 $ "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2564 (((-1298 (-711 |#1|))) NIL (|has| |#2| (-431 |#1|)) ELT) (((-1298 (-711 |#1|)) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3411 (((-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3534 (($) NIL T CONST)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2341 (((-3 $ "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-3676 (((-711 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2615 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3567 (((-711 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) $ (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3373 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-1332 (((-1203 (-981 |#1|))) NIL (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-376))) ELT)) (-1640 (($ $ (-950)) NIL T ELT)) (-3875 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3214 (((-1203 |#1|) $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2898 ((|#1|) NIL (|has| |#2| (-431 |#1|)) ELT) ((|#1| (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2294 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3929 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3095 (($ (-1298 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (($ (-1298 |#1|) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3493 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-1875 (((-950)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1351 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3398 (($ $ (-950)) NIL T ELT)) (-3585 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1419 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3354 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2170 (((-3 $ "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-3881 (((-711 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1597 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2630 (((-711 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) $ (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3988 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2972 (((-1203 (-981 |#1|))) NIL (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-376))) ELT)) (-4051 (($ $ (-950)) NIL T ELT)) (-2994 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2040 (((-1203 |#1|) $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-3949 ((|#1|) NIL (|has| |#2| (-431 |#1|)) ELT) ((|#1| (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4284 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2465 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2205 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1808 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4465 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2589 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2436 ((|#1| $ (-578)) NIL (|has| |#2| (-431 |#1|)) ELT)) (-1453 (((-711 |#1|) (-1298 $)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-1298 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) (-1298 $) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1298 |#1|) $ (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3343 (($ (-1298 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-1298 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT)) (-4104 (((-666 (-981 |#1|))) NIL (|has| |#2| (-431 |#1|)) ELT) (((-666 (-981 |#1|)) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1863 (($ $ $) NIL T ELT)) (-3588 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2411 (((-886) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL (|has| |#2| (-431 |#1|)) ELT)) (-2839 (((-666 (-1298 |#1|))) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2851 (($ $ $ $) NIL T ELT)) (-2553 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4178 (($ (-711 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT)) (-3021 (($ $ $) NIL T ELT)) (-3167 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3762 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4427 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2368 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) 24 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) 19 T ELT) (($ |#1| $) NIL T ELT))) +(((-620 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -2411 ($ |#2|)) (IF (|has| |#2| (-431 |#1|)) (-6 (-431 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -620)) +((-2411 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3))))) +(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -2411 ($ |#2|)) (IF (|has| |#2| (-431 |#1|)) (-6 (-431 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-131)) 6 T ELT) (((-131) $) 7 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-621) (-13 (-1131) (-504 (-131)))) (T -621)) +NIL +(-13 (-1131) (-504 (-131))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1637 (($) 12 T CONST)) (-4074 (($) 10 T CONST)) (-3561 (($) 13 T CONST)) (-4297 (($) 11 T CONST)) (-3861 (($) 14 T CONST)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-622) (-13 (-1131) (-683) (-10 -8 (-15 -4074 ($) -1529) (-15 -4297 ($) -1529) (-15 -1637 ($) -1529) (-15 -3561 ($) -1529) (-15 -3861 ($) -1529)))) (T -622)) +((-4074 (*1 *1) (-5 *1 (-622))) (-4297 (*1 *1) (-5 *1 (-622))) (-1637 (*1 *1) (-5 *1 (-622))) (-3561 (*1 *1) (-5 *1 (-622))) (-3861 (*1 *1) (-5 *1 (-622)))) +(-13 (-1131) (-683) (-10 -8 (-15 -4074 ($) -1529) (-15 -4297 ($) -1529) (-15 -1637 ($) -1529) (-15 -3561 ($) -1529) (-15 -3861 ($) -1529))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3276 (($) 11 T CONST)) (-1412 (($) 17 T CONST)) (-3367 (($) 21 T CONST)) (-4217 (($) 19 T CONST)) (-1448 (($) 14 T CONST)) (-1985 (($) 20 T CONST)) (-3062 (($) 12 T CONST)) (-4380 (($) 13 T CONST)) (-3771 (($) 18 T CONST)) (-3726 (($) 15 T CONST)) (-4049 (($) 16 T CONST)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (((-131) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-623) (-13 (-1131) (-632 (-131)) (-10 -8 (-15 -3276 ($) -1529) (-15 -3062 ($) -1529) (-15 -4380 ($) -1529) (-15 -1448 ($) -1529) (-15 -3726 ($) -1529) (-15 -4049 ($) -1529) (-15 -1412 ($) -1529) (-15 -3771 ($) -1529) (-15 -4217 ($) -1529) (-15 -1985 ($) -1529) (-15 -3367 ($) -1529)))) (T -623)) +((-3276 (*1 *1) (-5 *1 (-623))) (-3062 (*1 *1) (-5 *1 (-623))) (-4380 (*1 *1) (-5 *1 (-623))) (-1448 (*1 *1) (-5 *1 (-623))) (-3726 (*1 *1) (-5 *1 (-623))) (-4049 (*1 *1) (-5 *1 (-623))) (-1412 (*1 *1) (-5 *1 (-623))) (-3771 (*1 *1) (-5 *1 (-623))) (-4217 (*1 *1) (-5 *1 (-623))) (-1985 (*1 *1) (-5 *1 (-623))) (-3367 (*1 *1) (-5 *1 (-623)))) +(-13 (-1131) (-632 (-131)) (-10 -8 (-15 -3276 ($) -1529) (-15 -3062 ($) -1529) (-15 -4380 ($) -1529) (-15 -1448 ($) -1529) (-15 -3726 ($) -1529) (-15 -4049 ($) -1529) (-15 -1412 ($) -1529) (-15 -3771 ($) -1529) (-15 -4217 ($) -1529) (-15 -1985 ($) -1529) (-15 -3367 ($) -1529))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3759 (($) 15 T CONST)) (-1418 (($) 16 T CONST)) (-3114 (($) 13 T CONST)) (-4074 (($) 10 T CONST)) (-3638 (($) 12 T CONST)) (-3099 (($) 11 T CONST)) (-4297 (($) 14 T CONST)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-624) (-13 (-1131) (-683) (-10 -8 (-15 -4074 ($) -1529) (-15 -3099 ($) -1529) (-15 -3638 ($) -1529) (-15 -3114 ($) -1529) (-15 -4297 ($) -1529) (-15 -3759 ($) -1529) (-15 -1418 ($) -1529)))) (T -624)) +((-4074 (*1 *1) (-5 *1 (-624))) (-3099 (*1 *1) (-5 *1 (-624))) (-3638 (*1 *1) (-5 *1 (-624))) (-3114 (*1 *1) (-5 *1 (-624))) (-4297 (*1 *1) (-5 *1 (-624))) (-3759 (*1 *1) (-5 *1 (-624))) (-1418 (*1 *1) (-5 *1 (-624)))) +(-13 (-1131) (-683) (-10 -8 (-15 -4074 ($) -1529) (-15 -3099 ($) -1529) (-15 -3638 ($) -1529) (-15 -3114 ($) -1529) (-15 -4297 ($) -1529) (-15 -3759 ($) -1529) (-15 -1418 ($) -1529))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3560 (($) 15 T CONST)) (-3220 (($) 18 T CONST)) (-3114 (($) 13 T CONST)) (-4074 (($) 10 T CONST)) (-3638 (($) 12 T CONST)) (-3099 (($) 11 T CONST)) (-2938 (($) 16 T CONST)) (-4297 (($) 14 T CONST)) (-3861 (($) 17 T CONST)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-625) (-13 (-1131) (-683) (-10 -8 (-15 -4074 ($) -1529) (-15 -3099 ($) -1529) (-15 -3638 ($) -1529) (-15 -3114 ($) -1529) (-15 -4297 ($) -1529) (-15 -3560 ($) -1529) (-15 -2938 ($) -1529) (-15 -3861 ($) -1529) (-15 -3220 ($) -1529)))) (T -625)) +((-4074 (*1 *1) (-5 *1 (-625))) (-3099 (*1 *1) (-5 *1 (-625))) (-3638 (*1 *1) (-5 *1 (-625))) (-3114 (*1 *1) (-5 *1 (-625))) (-4297 (*1 *1) (-5 *1 (-625))) (-3560 (*1 *1) (-5 *1 (-625))) (-2938 (*1 *1) (-5 *1 (-625))) (-3861 (*1 *1) (-5 *1 (-625))) (-3220 (*1 *1) (-5 *1 (-625)))) +(-13 (-1131) (-683) (-10 -8 (-15 -4074 ($) -1529) (-15 -3099 ($) -1529) (-15 -3638 ($) -1529) (-15 -3114 ($) -1529) (-15 -4297 ($) -1529) (-15 -3560 ($) -1529) (-15 -2938 ($) -1529) (-15 -3861 ($) -1529) (-15 -3220 ($) -1529))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 19 T ELT) (($ (-621)) 12 T ELT) (((-621) $) 11 T ELT) (($ (-131)) NIL T ELT) (((-131) $) 14 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-626) (-13 (-1131) (-504 (-621)) (-504 (-131)))) (T -626)) +NIL +(-13 (-1131) (-504 (-621)) (-504 (-131))) +((-3213 (((-112) $ $) NIL T ELT)) (-2070 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) 39 T ELT)) (-3736 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1794 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-1189) |#1|) 49 T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#1| "failed") (-1189) $) 52 T ELT)) (-3534 (($) NIL T CONST)) (-4089 (($ $ (-1189)) 25 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT)) (-2631 (((-3 |#1| "failed") (-1189) $) 53 T ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2737 (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT)) (-2512 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT)) (-2464 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) 38 T ELT)) (-3450 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-1189)) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4330 (($ $) 54 T ELT)) (-2259 (($ (-402)) 23 T ELT) (($ (-402) (-1189)) 22 T ELT)) (-4107 (((-402) $) 40 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (((-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT)) (-2316 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3244 (((-666 (-1189)) $) 45 T ELT)) (-4300 (((-112) (-1189) $) NIL T ELT)) (-2882 (((-1189) $) 41 T ELT)) (-2743 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL T ELT)) (-4030 (((-666 (-1189)) $) NIL T ELT)) (-3023 (((-112) (-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 ((|#1| $) NIL (|has| (-1189) (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) "failed") (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ $ (-666 (-306 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 43 T ELT)) (-2436 ((|#1| $ (-1189) |#1|) NIL T ELT) ((|#1| $ (-1189)) 48 T ELT)) (-1338 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (((-793) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (((-793) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT)) (-2411 (((-886) $) 21 T ELT)) (-3250 (($ $) 26 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3764 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 20 T ELT)) (-3226 (((-793) $) 47 (|has| $ (-6 -4500)) ELT))) +(((-627 |#1|) (-13 (-377 (-402) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4500) (-15 -4330 ($ $)))) (-1131)) (T -627)) +((-4330 (*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1131))))) +(-13 (-377 (-402) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4500) (-15 -4330 ($ $)))) +((-1624 (((-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) $) 16 T ELT)) (-3244 (((-666 |#2|) $) 20 T ELT)) (-4300 (((-112) |#2| $) 12 T ELT))) +(((-628 |#1| |#2| |#3|) (-10 -8 (-15 -3244 ((-666 |#2|) |#1|)) (-15 -4300 ((-112) |#2| |#1|)) (-15 -1624 ((-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|))) (-629 |#2| |#3|) (-1131) (-1131)) (T -628)) +NIL +(-10 -8 (-15 -3244 ((-666 |#2|) |#1|)) (-15 -4300 ((-112) |#2| |#1|)) (-15 -1624 ((-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|))) +((-3213 (((-112) $ $) 20 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 56 (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3534 (($) 7 T CONST)) (-3776 (($ $) 59 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 47 (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 57 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 54 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 53 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-3244 (((-666 |#1|) $) 64 T ELT)) (-4300 (((-112) |#1| $) 65 T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 40 T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 41 T ELT)) (-4313 (((-1151) $) 22 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 52 T ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 42 T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) 27 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 26 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 25 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 24 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 49 T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 51 T ELT)) (-2411 (((-886) $) 18 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 43 T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-629 |#1| |#2|) (-142) (-1131) (-1131)) (T -629)) +((-4300 (*1 *2 *3 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-112)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-5 *2 (-666 *3)))) (-2631 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-3257 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(-13 (-233 (-2 (|:| -3173 |t#1|) (|:| -2754 |t#2|))) (-10 -8 (-15 -4300 ((-112) |t#1| $)) (-15 -3244 ((-666 |t#1|) $)) (-15 -2631 ((-3 |t#2| "failed") |t#1| $)) (-15 -3257 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) ((-102) -2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ((-632 (-886)) -2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886)))) ((-153 #0#) . T) ((-633 (-550)) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ((-233 #0#) . T) ((-242 #0#) . T) ((-321 #0#) -12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ((-503 #0#) . T) ((-528 #0# #0#) -12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ((-1131) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) ((-1248) . T)) +((-3852 (((-631 |#2|) |#1|) 17 T ELT)) (-1836 (((-3 |#1| "failed") (-631 |#2|)) 21 T ELT))) +(((-630 |#1| |#2|) (-10 -7 (-15 -3852 ((-631 |#2|) |#1|)) (-15 -1836 ((-3 |#1| "failed") (-631 |#2|)))) (-1131) (-1131)) (T -630)) +((-1836 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) (-5 *1 (-630 *2 *4)))) (-3852 (*1 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *1 (-630 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +(-10 -7 (-15 -3852 ((-631 |#2|) |#1|)) (-15 -1836 ((-3 |#1| "failed") (-631 |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-1642 (((-3 (-1207) "failed") $) 46 T ELT)) (-2552 (((-1303) $ (-793)) 22 T ELT)) (-3887 (((-793) $) 20 T ELT)) (-4397 (((-116) $) 9 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2594 (($ (-116) (-666 |#1|) (-793)) 32 T ELT) (($ (-1207)) 33 T ELT)) (-1413 (((-112) $ (-116)) 15 T ELT) (((-112) $ (-1207)) 13 T ELT)) (-1737 (((-793) $) 17 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3343 (((-917 (-578)) $) 95 (|has| |#1| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) 102 (|has| |#1| (-633 (-917 (-392)))) ELT) (((-550) $) 88 (|has| |#1| (-633 (-550))) ELT)) (-2411 (((-886) $) 72 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3461 (((-666 |#1|) $) 19 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 51 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 53 T ELT))) +(((-631 |#1|) (-13 (-134) (-871) (-909 |#1|) (-10 -8 (-15 -4397 ((-116) $)) (-15 -3461 ((-666 |#1|) $)) (-15 -1737 ((-793) $)) (-15 -2594 ($ (-116) (-666 |#1|) (-793))) (-15 -2594 ($ (-1207))) (-15 -1642 ((-3 (-1207) "failed") $)) (-15 -1413 ((-112) $ (-116))) (-15 -1413 ((-112) $ (-1207))) (IF (|has| |#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|))) (-1131)) (T -631)) +((-4397 (*1 *2 *1) (-12 (-5 *2 (-116)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) (-2594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-116)) (-5 *3 (-666 *5)) (-5 *4 (-793)) (-4 *5 (-1131)) (-5 *1 (-631 *5)))) (-2594 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) (-1642 (*1 *2 *1) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-116)) (-5 *2 (-112)) (-5 *1 (-631 *4)) (-4 *4 (-1131)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-112)) (-5 *1 (-631 *4)) (-4 *4 (-1131))))) +(-13 (-134) (-871) (-909 |#1|) (-10 -8 (-15 -4397 ((-116) $)) (-15 -3461 ((-666 |#1|) $)) (-15 -1737 ((-793) $)) (-15 -2594 ($ (-116) (-666 |#1|) (-793))) (-15 -2594 ($ (-1207))) (-15 -1642 ((-3 (-1207) "failed") $)) (-15 -1413 ((-112) $ (-116))) (-15 -1413 ((-112) $ (-1207))) (IF (|has| |#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|))) +((-2411 ((|#1| $) 6 T ELT))) +(((-632 |#1|) (-142) (-1248)) (T -632)) +((-2411 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1248))))) +(-13 (-10 -8 (-15 -2411 (|t#1| $)))) +((-3343 ((|#1| $) 6 T ELT))) +(((-633 |#1|) (-142) (-1248)) (T -633)) +((-3343 (*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1248))))) +(-13 (-10 -8 (-15 -3343 (|t#1| $)))) +((-1745 (((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-432 |#2|) |#2|)) 15 T ELT) (((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 16 T ELT))) +(((-634 |#1| |#2|) (-10 -7 (-15 -1745 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -1745 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-432 |#2|) |#2|)))) (-13 (-149) (-27) (-1069 (-578)) (-1069 (-421 (-578)))) (-1274 |#1|)) (T -634)) +((-1745 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-149) (-27) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-1203 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6)))) (-1745 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) (-5 *2 (-1203 (-421 *5))) (-5 *1 (-634 *4 *5)) (-5 *3 (-421 *5))))) +(-10 -7 (-15 -1745 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -1745 ((-3 (-1203 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-432 |#2|) |#2|)))) +((-2411 (($ |#1|) 6 T ELT))) +(((-635 |#1|) (-142) (-1248)) (T -635)) +((-2411 (*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1248))))) +(-13 (-10 -8 (-15 -2411 ($ |t#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-3865 (($) 14 T CONST)) (-4303 (($) 15 T CONST)) (-2332 (($ $ $) 29 T ELT)) (-2309 (($ $) 27 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3326 (($ $ $) 30 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2435 (($) 11 T CONST)) (-3051 (($ $ $) 31 T ELT)) (-2411 (((-886) $) 35 T ELT)) (-2355 (((-112) $ (|[\|\|]| -2435)) 24 T ELT) (((-112) $ (|[\|\|]| -3865)) 26 T ELT) (((-112) $ (|[\|\|]| -4303)) 21 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2320 (($ $ $) 28 T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2384 (((-112) $ $) 18 T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-636) (-13 (-998) (-10 -8 (-15 -3865 ($) -1529) (-15 -2355 ((-112) $ (|[\|\|]| -2435))) (-15 -2355 ((-112) $ (|[\|\|]| -3865))) (-15 -2355 ((-112) $ (|[\|\|]| -4303)))))) (T -636)) +((-3865 (*1 *1) (-5 *1 (-636))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2435)) (-5 *2 (-112)) (-5 *1 (-636)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3865)) (-5 *2 (-112)) (-5 *1 (-636)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4303)) (-5 *2 (-112)) (-5 *1 (-636))))) +(-13 (-998) (-10 -8 (-15 -3865 ($) -1529) (-15 -2355 ((-112) $ (|[\|\|]| -2435))) (-15 -2355 ((-112) $ (|[\|\|]| -3865))) (-15 -2355 ((-112) $ (|[\|\|]| -4303))))) +((-3343 (($ |#1|) 6 T ELT))) +(((-637 |#1|) (-142) (-1248)) (T -637)) +((-3343 (*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1248))))) +(-13 (-10 -8 (-15 -3343 ($ |t#1|)))) +((-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-638 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-639 |#2|) (-1080)) (T -638)) +NIL +(-10 -8 (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 41 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#1| $) 42 T ELT))) +(((-639 |#1|) (-142) (-1080)) (T -639)) +((-2411 (*1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1080))))) +(-13 (-1080) (-670 |t#1|) (-10 -8 (-15 -2411 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| |#1| (-870)) ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2519 ((|#1| $) 13 T ELT)) (-1721 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2530 ((|#3| $) 15 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3753 (((-793)) 20 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| |#1| (-870)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) 12 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2495 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-640 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (-15 -2495 ($ $ |#3|)) (-15 -2495 ($ |#1| |#3|)) (-15 -2519 (|#1| $)) (-15 -2530 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -640)) +((-2495 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-2495 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-640 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-2519 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-640 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-2530 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (-15 -2495 ($ $ |#3|)) (-15 -2495 ($ |#1| |#3|)) (-15 -2519 (|#1| $)) (-15 -2530 (|#3| $)))) +((-3850 ((|#2| |#2| (-1207) (-1207)) 16 T ELT))) +(((-641 |#1| |#2|) (-10 -7 (-15 -3850 (|#2| |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-988) (-29 |#1|))) (T -641)) +((-3850 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1233) (-988) (-29 *4)))))) +(-10 -7 (-15 -3850 (|#2| |#2| (-1207) (-1207)))) +((-3213 (((-112) $ $) 64 T ELT)) (-3623 (((-112) $) 58 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3195 ((|#1| $) 55 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-4299 (((-2 (|:| -3495 $) (|:| -4190 (-421 |#2|))) (-421 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 99 T ELT) (((-3 |#2| "failed") $) 95 T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) 27 T ELT)) (-3493 (((-3 $ "failed") $) 88 T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-4059 (((-578) $) 22 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) 40 T ELT)) (-2925 (($ |#1| (-578)) 24 T ELT)) (-3110 ((|#1| $) 57 T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3202 (((-3 $ "failed") $ $) 93 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1449 (((-793) $) 115 (|has| |#1| (-376)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3683 (((-578) $) 38 T ELT)) (-3343 (((-421 |#2|) $) 47 T ELT)) (-2411 (((-886) $) 69 T ELT) (($ (-578)) 35 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3708 ((|#1| $ (-578)) 72 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) 9 T CONST)) (-2379 (($) 14 T CONST)) (-1676 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) 21 T ELT)) (-2484 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 90 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-642 |#1| |#2|) (-13 (-234 |#2|) (-570) (-633 (-421 |#2|)) (-425 |#1|) (-1069 |#2|) (-10 -8 (-15 -1796 ((-112) $)) (-15 -3683 ((-578) $)) (-15 -4059 ((-578) $)) (-15 -3136 ($ $)) (-15 -3110 (|#1| $)) (-15 -3195 (|#1| $)) (-15 -3708 (|#1| $ (-578))) (-15 -2925 ($ |#1| (-578))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4299 ((-2 (|:| -3495 $) (|:| -4190 (-421 |#2|))) (-421 |#2|)))) |%noBranch|))) (-570) (-1274 |#1|)) (T -642)) +((-1796 (*1 *2 *1) (-12 (-4 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1274 *3)))) (-3683 (*1 *2 *1) (-12 (-4 *3 (-570)) (-5 *2 (-578)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1274 *3)))) (-4059 (*1 *2 *1) (-12 (-4 *3 (-570)) (-5 *2 (-578)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1274 *3)))) (-3136 (*1 *1 *1) (-12 (-4 *2 (-570)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1274 *2)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-570)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1274 *2)))) (-3195 (*1 *2 *1) (-12 (-4 *2 (-570)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1274 *2)))) (-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *2 (-570)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1274 *2)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-4 *2 (-570)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1274 *2)))) (-4299 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-570)) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| -3495 (-642 *4 *5)) (|:| -4190 (-421 *5)))) (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5))))) +(-13 (-234 |#2|) (-570) (-633 (-421 |#2|)) (-425 |#1|) (-1069 |#2|) (-10 -8 (-15 -1796 ((-112) $)) (-15 -3683 ((-578) $)) (-15 -4059 ((-578) $)) (-15 -3136 ($ $)) (-15 -3110 (|#1| $)) (-15 -3195 (|#1| $)) (-15 -3708 (|#1| $ (-578))) (-15 -2925 ($ |#1| (-578))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4299 ((-2 (|:| -3495 $) (|:| -4190 (-421 |#2|))) (-421 |#2|)))) |%noBranch|))) +((-3997 (((-666 |#6|) (-666 |#4|) (-112)) 54 T ELT)) (-1973 ((|#6| |#6|) 48 T ELT))) +(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1973 (|#6| |#6|)) (-15 -3997 ((-666 |#6|) (-666 |#4|) (-112)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (T -643)) +((-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 *10)) (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *10 (-1140 *5 *6 *7 *8)))) (-1973 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-643 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *2 (-1140 *3 *4 *5 *6))))) +(-10 -7 (-15 -1973 (|#6| |#6|)) (-15 -3997 ((-666 |#6|) (-666 |#4|) (-112)))) +((-1356 (((-112) |#3| (-793) (-666 |#3|)) 29 T ELT)) (-4210 (((-3 (-2 (|:| |polfac| (-666 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-666 (-1203 |#3|)))) "failed") |#3| (-666 (-1203 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2636 (-666 (-2 (|:| |irr| |#4|) (|:| -3935 (-578)))))) (-666 |#3|) (-666 |#1|) (-666 |#3|)) 69 T ELT))) +(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1356 ((-112) |#3| (-793) (-666 |#3|))) (-15 -4210 ((-3 (-2 (|:| |polfac| (-666 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-666 (-1203 |#3|)))) "failed") |#3| (-666 (-1203 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2636 (-666 (-2 (|:| |irr| |#4|) (|:| -3935 (-578)))))) (-666 |#3|) (-666 |#1|) (-666 |#3|)))) (-871) (-815) (-319) (-978 |#3| |#2| |#1|)) (T -644)) +((-4210 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2636 (-666 (-2 (|:| |irr| *10) (|:| -3935 (-578))))))) (-5 *6 (-666 *3)) (-5 *7 (-666 *8)) (-4 *8 (-871)) (-4 *3 (-319)) (-4 *10 (-978 *3 *9 *8)) (-4 *9 (-815)) (-5 *2 (-2 (|:| |polfac| (-666 *10)) (|:| |correct| *3) (|:| |corrfact| (-666 (-1203 *3))))) (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-666 (-1203 *3))))) (-1356 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-793)) (-5 *5 (-666 *3)) (-4 *3 (-319)) (-4 *6 (-871)) (-4 *7 (-815)) (-5 *2 (-112)) (-5 *1 (-644 *6 *7 *3 *8)) (-4 *8 (-978 *3 *7 *6))))) +(-10 -7 (-15 -1356 ((-112) |#3| (-793) (-666 |#3|))) (-15 -4210 ((-3 (-2 (|:| |polfac| (-666 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-666 (-1203 |#3|)))) "failed") |#3| (-666 (-1203 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2636 (-666 (-2 (|:| |irr| |#4|) (|:| -3935 (-578)))))) (-666 |#3|) (-666 |#1|) (-666 |#3|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3666 (((-1166) $) 11 T ELT)) (-3655 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-645) (-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $))))) (T -645)) +((-3655 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645))))) +(-13 (-1114) (-10 -8 (-15 -3655 ((-1166) $)) (-15 -3666 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4418 (((-666 |#1|) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2779 (($ $) 77 T ELT)) (-3864 (((-686 |#1| |#2|) $) 60 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 81 T ELT)) (-3477 (((-666 (-306 |#2|)) $ $) 42 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3587 (($ (-686 |#1| |#2|)) 56 T ELT)) (-1433 (($ $ $) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-2411 (((-886) $) 66 T ELT) (((-1313 |#1| |#2|) $) NIL T ELT) (((-1318 |#1| |#2|) $) 74 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 61 T CONST)) (-4060 (((-666 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-1623 (((-666 (-686 |#1| |#2|)) (-666 |#1|)) 73 T ELT)) (-1829 (((-666 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-2384 (((-112) $ $) 62 T ELT)) (-2495 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-646 |#1| |#2| |#3|) (-13 (-487) (-10 -8 (-15 -3587 ($ (-686 |#1| |#2|))) (-15 -3864 ((-686 |#1| |#2|) $)) (-15 -1829 ((-666 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $)) (-15 -2411 ((-1313 |#1| |#2|) $)) (-15 -2411 ((-1318 |#1| |#2|) $)) (-15 -2779 ($ $)) (-15 -4418 ((-666 |#1|) $)) (-15 -1623 ((-666 (-686 |#1| |#2|)) (-666 |#1|))) (-15 -4060 ((-666 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -3477 ((-666 (-306 |#2|)) $ $)))) (-871) (-13 (-175) (-739 (-421 (-578)))) (-950)) (T -646)) +((-3587 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-950)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |k| (-918 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) (-2779 (*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-13 (-175) (-739 (-421 (-578))))) (-14 *4 (-950)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-871)) (-5 *2 (-666 (-686 *4 *5))) (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-578))))) (-14 *6 (-950)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |k| (-694 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) (-3477 (*1 *2 *1 *1) (-12 (-5 *2 (-666 (-306 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950))))) +(-13 (-487) (-10 -8 (-15 -3587 ($ (-686 |#1| |#2|))) (-15 -3864 ((-686 |#1| |#2|) $)) (-15 -1829 ((-666 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $)) (-15 -2411 ((-1313 |#1| |#2|) $)) (-15 -2411 ((-1318 |#1| |#2|) $)) (-15 -2779 ($ $)) (-15 -4418 ((-666 |#1|) $)) (-15 -1623 ((-666 (-686 |#1| |#2|)) (-666 |#1|))) (-15 -4060 ((-666 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -3477 ((-666 (-306 |#2|)) $ $)))) +((-3997 (((-666 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-666 (-802 |#1| (-888 |#2|))) (-112)) 103 T ELT) (((-666 (-1077 |#1| |#2|)) (-666 (-802 |#1| (-888 |#2|))) (-112)) 77 T ELT)) (-1461 (((-112) (-666 (-802 |#1| (-888 |#2|)))) 26 T ELT)) (-1688 (((-666 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-666 (-802 |#1| (-888 |#2|))) (-112)) 102 T ELT)) (-3015 (((-666 (-1077 |#1| |#2|)) (-666 (-802 |#1| (-888 |#2|))) (-112)) 76 T ELT)) (-3660 (((-666 (-802 |#1| (-888 |#2|))) (-666 (-802 |#1| (-888 |#2|)))) 30 T ELT)) (-4058 (((-3 (-666 (-802 |#1| (-888 |#2|))) "failed") (-666 (-802 |#1| (-888 |#2|)))) 29 T ELT))) +(((-647 |#1| |#2|) (-10 -7 (-15 -1461 ((-112) (-666 (-802 |#1| (-888 |#2|))))) (-15 -4058 ((-3 (-666 (-802 |#1| (-888 |#2|))) "failed") (-666 (-802 |#1| (-888 |#2|))))) (-15 -3660 ((-666 (-802 |#1| (-888 |#2|))) (-666 (-802 |#1| (-888 |#2|))))) (-15 -3015 ((-666 (-1077 |#1| |#2|)) (-666 (-802 |#1| (-888 |#2|))) (-112))) (-15 -1688 ((-666 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-666 (-802 |#1| (-888 |#2|))) (-112))) (-15 -3997 ((-666 (-1077 |#1| |#2|)) (-666 (-802 |#1| (-888 |#2|))) (-112))) (-15 -3997 ((-666 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-666 (-802 |#1| (-888 |#2|))) (-112)))) (-466) (-666 (-1207))) (T -647)) +((-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) (-5 *1 (-647 *5 *6)))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1077 *5 *6))) (-5 *1 (-647 *5 *6)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) (-5 *1 (-647 *5 *6)))) (-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1077 *5 *6))) (-5 *1 (-647 *5 *6)))) (-3660 (*1 *2 *2) (-12 (-5 *2 (-666 (-802 *3 (-888 *4)))) (-4 *3 (-466)) (-14 *4 (-666 (-1207))) (-5 *1 (-647 *3 *4)))) (-4058 (*1 *2 *2) (|partial| -12 (-5 *2 (-666 (-802 *3 (-888 *4)))) (-4 *3 (-466)) (-14 *4 (-666 (-1207))) (-5 *1 (-647 *3 *4)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-666 (-802 *4 (-888 *5)))) (-4 *4 (-466)) (-14 *5 (-666 (-1207))) (-5 *2 (-112)) (-5 *1 (-647 *4 *5))))) +(-10 -7 (-15 -1461 ((-112) (-666 (-802 |#1| (-888 |#2|))))) (-15 -4058 ((-3 (-666 (-802 |#1| (-888 |#2|))) "failed") (-666 (-802 |#1| (-888 |#2|))))) (-15 -3660 ((-666 (-802 |#1| (-888 |#2|))) (-666 (-802 |#1| (-888 |#2|))))) (-15 -3015 ((-666 (-1077 |#1| |#2|)) (-666 (-802 |#1| (-888 |#2|))) (-112))) (-15 -1688 ((-666 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-666 (-802 |#1| (-888 |#2|))) (-112))) (-15 -3997 ((-666 (-1077 |#1| |#2|)) (-666 (-802 |#1| (-888 |#2|))) (-112))) (-15 -3997 ((-666 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-666 (-802 |#1| (-888 |#2|))) (-112)))) +((-1502 (($ $) 38 T ELT)) (-1372 (($ $) 21 T ELT)) (-1478 (($ $) 37 T ELT)) (-1349 (($ $) 22 T ELT)) (-1528 (($ $) 36 T ELT)) (-1392 (($ $) 23 T ELT)) (-2551 (($) 48 T ELT)) (-3864 (($ $) 45 T ELT)) (-3943 (($ $) 17 T ELT)) (-3025 (($ $ (-1123 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT)) (-3587 (($ $) 46 T ELT)) (-4452 (($ $) 15 T ELT)) (-1337 (($ $) 16 T ELT)) (-1541 (($ $) 35 T ELT)) (-1403 (($ $) 24 T ELT)) (-1515 (($ $) 34 T ELT)) (-1382 (($ $) 25 T ELT)) (-1489 (($ $) 33 T ELT)) (-1361 (($ $) 26 T ELT)) (-1576 (($ $) 44 T ELT)) (-1436 (($ $) 32 T ELT)) (-1552 (($ $) 43 T ELT)) (-1414 (($ $) 31 T ELT)) (-1598 (($ $) 42 T ELT)) (-1456 (($ $) 30 T ELT)) (-3502 (($ $) 41 T ELT)) (-1467 (($ $) 29 T ELT)) (-1587 (($ $) 40 T ELT)) (-1447 (($ $) 28 T ELT)) (-1564 (($ $) 39 T ELT)) (-1424 (($ $) 27 T ELT)) (-3678 (($ $) 19 T ELT)) (-3607 (($ $) 20 T ELT)) (-1593 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-648) (-142)) (T -648)) +((-3607 (*1 *1 *1) (-4 *1 (-648))) (-3678 (*1 *1 *1) (-4 *1 (-648))) (-1593 (*1 *1 *1) (-4 *1 (-648))) (-3943 (*1 *1 *1) (-4 *1 (-648))) (-1337 (*1 *1 *1) (-4 *1 (-648))) (-4452 (*1 *1 *1) (-4 *1 (-648)))) +(-13 (-988) (-1233) (-10 -8 (-15 -3607 ($ $)) (-15 -3678 ($ $)) (-15 -1593 ($ $)) (-15 -3943 ($ $)) (-15 -1337 ($ $)) (-15 -4452 ($ $)))) +(((-35) . T) ((-95) . T) ((-296) . T) ((-507) . T) ((-988) . T) ((-1233) . T) ((-1236) . T)) +((-4397 (((-116) (-116)) 88 T ELT)) (-3943 ((|#2| |#2|) 28 T ELT)) (-3025 ((|#2| |#2| (-1123 |#2|)) 84 T ELT) ((|#2| |#2| (-1207)) 50 T ELT)) (-4452 ((|#2| |#2|) 27 T ELT)) (-1337 ((|#2| |#2|) 29 T ELT)) (-3619 (((-112) (-116)) 33 T ELT)) (-3678 ((|#2| |#2|) 24 T ELT)) (-3607 ((|#2| |#2|) 26 T ELT)) (-1593 ((|#2| |#2|) 25 T ELT))) +(((-649 |#1| |#2|) (-10 -7 (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -3607 (|#2| |#2|)) (-15 -3678 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -4452 (|#2| |#2|)) (-15 -1337 (|#2| |#2|)) (-15 -3025 (|#2| |#2| (-1207))) (-15 -3025 (|#2| |#2| (-1123 |#2|)))) (-570) (-13 (-444 |#1|) (-1033) (-1233))) (T -649)) +((-3025 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-444 *4) (-1033) (-1233))) (-4 *4 (-570)) (-5 *1 (-649 *4 *2)))) (-3025 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-649 *4 *2)) (-4 *2 (-13 (-444 *4) (-1033) (-1233))))) (-1337 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033) (-1233))))) (-4452 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033) (-1233))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033) (-1233))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033) (-1233))))) (-3678 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033) (-1233))))) (-3607 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) (-4 *2 (-13 (-444 *3) (-1033) (-1233))))) (-4397 (*1 *2 *2) (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-649 *3 *4)) (-4 *4 (-13 (-444 *3) (-1033) (-1233))))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-649 *4 *5)) (-4 *5 (-13 (-444 *4) (-1033) (-1233)))))) +(-10 -7 (-15 -3619 ((-112) (-116))) (-15 -4397 ((-116) (-116))) (-15 -3607 (|#2| |#2|)) (-15 -3678 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -4452 (|#2| |#2|)) (-15 -1337 (|#2| |#2|)) (-15 -3025 (|#2| |#2| (-1207))) (-15 -3025 (|#2| |#2| (-1123 |#2|)))) +((-3405 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 63 T ELT)) (-2543 (((-666 (-255 |#1| |#2|)) (-666 (-495 |#1| |#2|))) 89 T ELT)) (-3424 (((-495 |#1| |#2|) (-666 (-495 |#1| |#2|)) (-888 |#1|)) 91 T ELT) (((-495 |#1| |#2|) (-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|)) (-888 |#1|)) 90 T ELT)) (-2180 (((-2 (|:| |gblist| (-666 (-255 |#1| |#2|))) (|:| |gvlist| (-666 (-578)))) (-666 (-495 |#1| |#2|))) 134 T ELT)) (-3435 (((-666 (-495 |#1| |#2|)) (-888 |#1|) (-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|))) 104 T ELT)) (-2372 (((-2 (|:| |glbase| (-666 (-255 |#1| |#2|))) (|:| |glval| (-666 (-578)))) (-666 (-255 |#1| |#2|))) 145 T ELT)) (-3722 (((-1298 |#2|) (-495 |#1| |#2|) (-666 (-495 |#1| |#2|))) 68 T ELT)) (-4461 (((-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|))) 47 T ELT)) (-3950 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-666 (-255 |#1| |#2|))) 60 T ELT)) (-2816 (((-255 |#1| |#2|) (-666 |#2|) (-255 |#1| |#2|) (-666 (-255 |#1| |#2|))) 112 T ELT))) +(((-650 |#1| |#2|) (-10 -7 (-15 -2180 ((-2 (|:| |gblist| (-666 (-255 |#1| |#2|))) (|:| |gvlist| (-666 (-578)))) (-666 (-495 |#1| |#2|)))) (-15 -2372 ((-2 (|:| |glbase| (-666 (-255 |#1| |#2|))) (|:| |glval| (-666 (-578)))) (-666 (-255 |#1| |#2|)))) (-15 -2543 ((-666 (-255 |#1| |#2|)) (-666 (-495 |#1| |#2|)))) (-15 -3424 ((-495 |#1| |#2|) (-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -3424 ((-495 |#1| |#2|) (-666 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -4461 ((-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|)))) (-15 -3722 ((-1298 |#2|) (-495 |#1| |#2|) (-666 (-495 |#1| |#2|)))) (-15 -2816 ((-255 |#1| |#2|) (-666 |#2|) (-255 |#1| |#2|) (-666 (-255 |#1| |#2|)))) (-15 -3435 ((-666 (-495 |#1| |#2|)) (-888 |#1|) (-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|)))) (-15 -3950 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-666 (-255 |#1| |#2|)))) (-15 -3405 ((-495 |#1| |#2|) (-255 |#1| |#2|)))) (-666 (-1207)) (-466)) (T -650)) +((-3405 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5)))) (-3950 (*1 *2 *2 *3) (-12 (-5 *3 (-666 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-3435 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-666 (-495 *4 *5))) (-5 *3 (-888 *4)) (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-2816 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 (-255 *5 *6))) (-4 *6 (-466)) (-5 *2 (-255 *5 *6)) (-14 *5 (-666 (-1207))) (-5 *1 (-650 *5 *6)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-495 *5 *6))) (-5 *3 (-495 *5 *6)) (-14 *5 (-666 (-1207))) (-4 *6 (-466)) (-5 *2 (-1298 *6)) (-5 *1 (-650 *5 *6)))) (-4461 (*1 *2 *2) (-12 (-5 *2 (-666 (-495 *3 *4))) (-14 *3 (-666 (-1207))) (-4 *4 (-466)) (-5 *1 (-650 *3 *4)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-495 *5 *6))) (-5 *4 (-888 *5)) (-14 *5 (-666 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-3424 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-666 (-495 *5 *6))) (-5 *4 (-888 *5)) (-14 *5 (-666 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-666 (-495 *4 *5))) (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *2 (-666 (-255 *4 *5))) (-5 *1 (-650 *4 *5)))) (-2372 (*1 *2 *3) (-12 (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |glbase| (-666 (-255 *4 *5))) (|:| |glval| (-666 (-578))))) (-5 *1 (-650 *4 *5)) (-5 *3 (-666 (-255 *4 *5))))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-666 (-495 *4 *5))) (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |gblist| (-666 (-255 *4 *5))) (|:| |gvlist| (-666 (-578))))) (-5 *1 (-650 *4 *5))))) +(-10 -7 (-15 -2180 ((-2 (|:| |gblist| (-666 (-255 |#1| |#2|))) (|:| |gvlist| (-666 (-578)))) (-666 (-495 |#1| |#2|)))) (-15 -2372 ((-2 (|:| |glbase| (-666 (-255 |#1| |#2|))) (|:| |glval| (-666 (-578)))) (-666 (-255 |#1| |#2|)))) (-15 -2543 ((-666 (-255 |#1| |#2|)) (-666 (-495 |#1| |#2|)))) (-15 -3424 ((-495 |#1| |#2|) (-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -3424 ((-495 |#1| |#2|) (-666 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -4461 ((-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|)))) (-15 -3722 ((-1298 |#2|) (-495 |#1| |#2|) (-666 (-495 |#1| |#2|)))) (-15 -2816 ((-255 |#1| |#2|) (-666 |#2|) (-255 |#1| |#2|) (-666 (-255 |#1| |#2|)))) (-15 -3435 ((-666 (-495 |#1| |#2|)) (-888 |#1|) (-666 (-495 |#1| |#2|)) (-666 (-495 |#1| |#2|)))) (-15 -3950 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-666 (-255 |#1| |#2|)))) (-15 -3405 ((-495 |#1| |#2|) (-255 |#1| |#2|)))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) NIL T ELT)) (-1794 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 (((-52) $ (-1189) (-52)) 16 T ELT) (((-52) $ (-1207) (-52)) 17 T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 (-52) "failed") (-1189) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 (-52) "failed") (-1189) $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $ (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (((-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $ (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 (((-52) $ (-1189) (-52)) NIL (|has| $ (-6 -4501)) ELT)) (-3382 (((-52) $ (-1189)) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-4330 (($ $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT)) (-2316 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-1710 (($ (-402)) 9 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-52) (-1131)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT)) (-3244 (((-666 (-1189)) $) NIL T ELT)) (-4300 (((-112) (-1189) $) NIL T ELT)) (-2743 (((-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) $) NIL T ELT)) (-4030 (((-666 (-1189)) $) NIL T ELT)) (-3023 (((-112) (-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-52) (-1131)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT)) (-4189 (((-52) $) NIL (|has| (-1189) (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) "failed") (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL T ELT)) (-4291 (($ $ (-52)) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-666 (-52)) (-666 (-52))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-306 (-52))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-666 (-306 (-52)))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT)) (-4322 (((-666 (-52)) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 (((-52) $ (-1189)) 14 T ELT) (((-52) $ (-1189) (-52)) NIL T ELT) (((-52) $ (-1207)) 15 T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-1131))) ELT) (((-793) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT) (((-793) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-52) (-632 (-886))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 (-52))) (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-651) (-13 (-1224 (-1189) (-52)) (-298 (-1207) (-52)) (-10 -8 (-15 -1710 ($ (-402))) (-15 -4330 ($ $)) (-15 -2590 ((-52) $ (-1207) (-52)))))) (T -651)) +((-1710 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651)))) (-4330 (*1 *1 *1) (-5 *1 (-651))) (-2590 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1207)) (-5 *1 (-651))))) +(-13 (-1224 (-1189) (-52)) (-298 (-1207) (-52)) (-10 -8 (-15 -1710 ($ (-402))) (-15 -4330 ($ $)) (-15 -2590 ((-52) $ (-1207) (-52))))) +((-2495 (($ $ |#2|) 10 T ELT))) +(((-652 |#1| |#2|) (-10 -8 (-15 -2495 (|#1| |#1| |#2|))) (-653 |#2|) (-175)) (T -652)) +NIL +(-10 -8 (-15 -2495 (|#1| |#1| |#2|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2423 (($ $ $) 34 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 33 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-653 |#1|) (-142) (-175)) (T -653)) +((-2423 (*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-175)))) (-2495 (*1 *1 *1 *2) (-12 (-4 *1 (-653 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(-13 (-739 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2423 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -2495 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-1430 (((-3 $ "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2564 (((-1298 (-711 |#1|))) NIL (|has| |#2| (-431 |#1|)) ELT) (((-1298 (-711 |#1|)) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3411 (((-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3534 (($) NIL T CONST)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2341 (((-3 $ "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-3676 (((-711 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2615 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3567 (((-711 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) $ (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3373 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-1332 (((-1203 (-981 |#1|))) NIL (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-376))) ELT)) (-1640 (($ $ (-950)) NIL T ELT)) (-3875 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3214 (((-1203 |#1|) $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2898 ((|#1|) NIL (|has| |#2| (-431 |#1|)) ELT) ((|#1| (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2294 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3929 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3095 (($ (-1298 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (($ (-1298 |#1|) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3493 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-1875 (((-950)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1351 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3398 (($ $ (-950)) NIL T ELT)) (-3585 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1419 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3354 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2170 (((-3 $ "failed")) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-3881 (((-711 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1597 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2630 (((-711 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) $ (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3988 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2972 (((-1203 (-981 |#1|))) NIL (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-376))) ELT)) (-4051 (($ $ (-950)) NIL T ELT)) (-2994 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2040 (((-1203 |#1|) $) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-3949 ((|#1|) NIL (|has| |#2| (-431 |#1|)) ELT) ((|#1| (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4284 (((-1203 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2465 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2205 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1808 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4465 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2589 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2436 ((|#1| $ (-578)) NIL (|has| |#2| (-431 |#1|)) ELT)) (-1453 (((-711 |#1|) (-1298 $)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-1298 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT) (((-711 |#1|) (-1298 $) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1298 |#1|) $ (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3343 (($ (-1298 |#1|)) NIL (|has| |#2| (-431 |#1|)) ELT) (((-1298 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT)) (-4104 (((-666 (-981 |#1|))) NIL (|has| |#2| (-431 |#1|)) ELT) (((-666 (-981 |#1|)) (-1298 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1863 (($ $ $) NIL T ELT)) (-3588 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2411 (((-886) $) NIL T ELT) ((|#2| $) 12 T ELT) (($ |#2|) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL (|has| |#2| (-431 |#1|)) ELT)) (-2839 (((-666 (-1298 |#1|))) NIL (-2230 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) ELT)) (-2851 (($ $ $ $) NIL T ELT)) (-2553 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4178 (($ (-711 |#1|) $) NIL (|has| |#2| (-431 |#1|)) ELT)) (-3021 (($ $ $) NIL T ELT)) (-3167 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3762 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4427 (((-112)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) 20 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 11 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-654 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -2411 ($ |#2|)) (IF (|has| |#2| (-431 |#1|)) (-6 (-431 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -654)) +((-2411 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-654 *3 *2)) (-4 *2 (-766 *3))))) +(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -2411 ($ |#2|)) (IF (|has| |#2| (-431 |#1|)) (-6 (-431 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) +((-1671 (((-3 (-865 |#2|) "failed") |#2| (-306 |#2|) (-1189)) 106 T ELT) (((-3 (-865 |#2|) (-2 (|:| |leftHandLimit| (-3 (-865 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-865 |#2|) "failed"))) "failed") |#2| (-306 (-865 |#2|))) 131 T ELT)) (-3643 (((-3 (-855 |#2|) "failed") |#2| (-306 (-855 |#2|))) 136 T ELT))) +(((-655 |#1| |#2|) (-10 -7 (-15 -1671 ((-3 (-865 |#2|) (-2 (|:| |leftHandLimit| (-3 (-865 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-865 |#2|) "failed"))) "failed") |#2| (-306 (-865 |#2|)))) (-15 -3643 ((-3 (-855 |#2|) "failed") |#2| (-306 (-855 |#2|)))) (-15 -1671 ((-3 (-865 |#2|) "failed") |#2| (-306 |#2|) (-1189)))) (-13 (-466) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|))) (T -655)) +((-1671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-306 *3)) (-5 *5 (-1189)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-865 *3)) (-5 *1 (-655 *6 *3)))) (-3643 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-306 (-855 *3))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-855 *3)) (-5 *1 (-655 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) (-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-306 (-865 *3))) (-4 *3 (-13 (-27) (-1233) (-444 *5))) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-3 (-865 *3) (-2 (|:| |leftHandLimit| (-3 (-865 *3) "failed")) (|:| |rightHandLimit| (-3 (-865 *3) "failed"))) "failed")) (-5 *1 (-655 *5 *3))))) +(-10 -7 (-15 -1671 ((-3 (-865 |#2|) (-2 (|:| |leftHandLimit| (-3 (-865 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-865 |#2|) "failed"))) "failed") |#2| (-306 (-865 |#2|)))) (-15 -3643 ((-3 (-855 |#2|) "failed") |#2| (-306 (-855 |#2|)))) (-15 -1671 ((-3 (-865 |#2|) "failed") |#2| (-306 |#2|) (-1189)))) +((-1671 (((-3 (-865 (-421 (-981 |#1|))) "failed") (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))) (-1189)) 86 T ELT) (((-3 (-865 (-421 (-981 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed"))) "failed") (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|)))) 20 T ELT) (((-3 (-865 (-421 (-981 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed"))) "failed") (-421 (-981 |#1|)) (-306 (-865 (-981 |#1|)))) 35 T ELT)) (-3643 (((-855 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|)))) 23 T ELT) (((-855 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-306 (-855 (-981 |#1|)))) 43 T ELT))) +(((-656 |#1|) (-10 -7 (-15 -1671 ((-3 (-865 (-421 (-981 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed"))) "failed") (-421 (-981 |#1|)) (-306 (-865 (-981 |#1|))))) (-15 -1671 ((-3 (-865 (-421 (-981 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed"))) "failed") (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))))) (-15 -3643 ((-855 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-306 (-855 (-981 |#1|))))) (-15 -3643 ((-855 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))))) (-15 -1671 ((-3 (-865 (-421 (-981 |#1|))) "failed") (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))) (-1189)))) (-466)) (T -656)) +((-1671 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-306 (-421 (-981 *6)))) (-5 *5 (-1189)) (-5 *3 (-421 (-981 *6))) (-4 *6 (-466)) (-5 *2 (-865 *3)) (-5 *1 (-656 *6)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-306 (-421 (-981 *5)))) (-5 *3 (-421 (-981 *5))) (-4 *5 (-466)) (-5 *2 (-855 *3)) (-5 *1 (-656 *5)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *4 (-306 (-855 (-981 *5)))) (-4 *5 (-466)) (-5 *2 (-855 (-421 (-981 *5)))) (-5 *1 (-656 *5)) (-5 *3 (-421 (-981 *5))))) (-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-306 (-421 (-981 *5)))) (-5 *3 (-421 (-981 *5))) (-4 *5 (-466)) (-5 *2 (-3 (-865 *3) (-2 (|:| |leftHandLimit| (-3 (-865 *3) "failed")) (|:| |rightHandLimit| (-3 (-865 *3) "failed"))) "failed")) (-5 *1 (-656 *5)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-306 (-865 (-981 *5)))) (-4 *5 (-466)) (-5 *2 (-3 (-865 (-421 (-981 *5))) (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 *5))) "failed")) (|:| |rightHandLimit| (-3 (-865 (-421 (-981 *5))) "failed"))) "failed")) (-5 *1 (-656 *5)) (-5 *3 (-421 (-981 *5)))))) +(-10 -7 (-15 -1671 ((-3 (-865 (-421 (-981 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed"))) "failed") (-421 (-981 |#1|)) (-306 (-865 (-981 |#1|))))) (-15 -1671 ((-3 (-865 (-421 (-981 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-865 (-421 (-981 |#1|))) "failed"))) "failed") (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))))) (-15 -3643 ((-855 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-306 (-855 (-981 |#1|))))) (-15 -3643 ((-855 (-421 (-981 |#1|))) (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))))) (-15 -1671 ((-3 (-865 (-421 (-981 |#1|))) "failed") (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))) (-1189)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) 11 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3445 (($ (-218 |#1|)) 12 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-888 |#1|)) 7 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-657 |#1|) (-13 (-866) (-635 (-888 |#1|)) (-10 -8 (-15 -3445 ($ (-218 |#1|))))) (-666 (-1207))) (T -657)) +((-3445 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-666 (-1207))) (-5 *1 (-657 *3))))) +(-13 (-866) (-635 (-888 |#1|)) (-10 -8 (-15 -3445 ($ (-218 |#1|))))) +((-1725 (((-3 (-1298 (-421 |#1|)) "failed") (-1298 |#2|) |#2|) 64 (-2309 (|has| |#1| (-376))) ELT) (((-3 (-1298 |#1|) "failed") (-1298 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-2221 (((-112) (-1298 |#2|)) 33 T ELT)) (-2683 (((-3 (-1298 |#1|) "failed") (-1298 |#2|)) 40 T ELT))) +(((-658 |#1| |#2|) (-10 -7 (-15 -2221 ((-112) (-1298 |#2|))) (-15 -2683 ((-3 (-1298 |#1|) "failed") (-1298 |#2|))) (IF (|has| |#1| (-376)) (-15 -1725 ((-3 (-1298 |#1|) "failed") (-1298 |#2|) |#2|)) (-15 -1725 ((-3 (-1298 (-421 |#1|)) "failed") (-1298 |#2|) |#2|)))) (-570) (-13 (-1080) (-660 |#1|))) (T -658)) +((-1725 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 *5))) (-2309 (-4 *5 (-376))) (-4 *5 (-570)) (-5 *2 (-1298 (-421 *5))) (-5 *1 (-658 *5 *4)))) (-1725 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 *5))) (-4 *5 (-376)) (-4 *5 (-570)) (-5 *2 (-1298 *5)) (-5 *1 (-658 *5 *4)))) (-2683 (*1 *2 *3) (|partial| -12 (-5 *3 (-1298 *5)) (-4 *5 (-13 (-1080) (-660 *4))) (-4 *4 (-570)) (-5 *2 (-1298 *4)) (-5 *1 (-658 *4 *5)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-1298 *5)) (-4 *5 (-13 (-1080) (-660 *4))) (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-658 *4 *5))))) +(-10 -7 (-15 -2221 ((-112) (-1298 |#2|))) (-15 -2683 ((-3 (-1298 |#1|) "failed") (-1298 |#2|))) (IF (|has| |#1| (-376)) (-15 -1725 ((-3 (-1298 |#1|) "failed") (-1298 |#2|) |#2|)) (-15 -1725 ((-3 (-1298 (-421 |#1|)) "failed") (-1298 |#2|) |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3761 (((-666 (-897 (-657 |#2|) |#1|)) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-2925 (($ |#1| (-657 |#2|)) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2012 (($ (-666 |#1|)) 25 T ELT)) (-4263 (((-657 |#2|) $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4425 (((-136)) 16 T ELT)) (-1453 (((-1298 |#1|) $) 44 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-657 |#2|)) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 20 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 17 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-659 |#1| |#2|) (-13 (-1305 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -2012 ($ (-666 |#1|))) (-15 -1453 ((-1298 |#1|) $)))) (-376) (-666 (-1207))) (T -659)) +((-2012 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) (-14 *4 (-666 (-1207))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-1298 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) (-14 *4 (-666 (-1207)))))) +(-13 (-1305 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -2012 ($ (-666 |#1|))) (-15 -1453 ((-1298 |#1|) $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2242 (((-711 |#1|) (-711 $)) 30 T ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 29 T ELT)) (-3908 (((-711 |#1|) (-1298 $)) 32 T ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 31 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT))) +(((-660 |#1|) (-142) (-1080)) (T -660)) +((-3908 (*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-711 *4)))) (-3908 (*1 *2 *3 *1) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| -2547 (-711 *4)) (|:| |vec| (-1298 *4)))))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-711 *4)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *1)) (-5 *4 (-1298 *1)) (-4 *1 (-660 *5)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2547 (-711 *5)) (|:| |vec| (-1298 *5))))))) +(-13 (-670 |t#1|) (-10 -8 (-15 -3908 ((-711 |t#1|) (-1298 $))) (-15 -3908 ((-2 (|:| -2547 (-711 |t#1|)) (|:| |vec| (-1298 |t#1|))) (-1298 $) $)) (-15 -2242 ((-711 |t#1|) (-711 $))) (-15 -2242 ((-2 (|:| -2547 (-711 |t#1|)) (|:| |vec| (-1298 |t#1|))) (-711 $) (-1298 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2128 (($ (-666 |#1|)) 23 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 ((|#1| $ (-659 |#1| |#2|)) 46 T ELT)) (-4425 (((-136)) 13 T ELT)) (-1453 (((-1298 |#1|) $) 42 T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 18 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 14 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-661 |#1| |#2|) (-13 (-1305 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -2128 ($ (-666 |#1|))) (-15 -1453 ((-1298 |#1|) $)))) (-376) (-666 (-1207))) (T -661)) +((-2128 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4)) (-14 *4 (-666 (-1207))))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-1298 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376)) (-14 *4 (-666 (-1207)))))) +(-13 (-1305 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -2128 ($ (-666 |#1|))) (-15 -1453 ((-1298 |#1|) $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT) (($ $ |#1|) 17 T ELT))) +(((-662 |#1|) (-142) (-1143)) (T -662)) +NIL +(-13 (-668 |t#1|) (-1082 |t#1|)) +(((-102) . T) ((-632 (-886)) . T) ((-668 |#1|) . T) ((-1082 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-4464 ((|#2| (-666 |#1|) (-666 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-666 |#1|) (-666 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|) |#2|) 17 T ELT) ((|#2| (-666 |#1|) (-666 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|)) 12 T ELT))) +(((-663 |#1| |#2|) (-10 -7 (-15 -4464 ((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|))) (-15 -4464 (|#2| (-666 |#1|) (-666 |#2|) |#1|)) (-15 -4464 ((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|) |#2|)) (-15 -4464 (|#2| (-666 |#1|) (-666 |#2|) |#1| |#2|)) (-15 -4464 ((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|) (-1 |#2| |#1|))) (-15 -4464 (|#2| (-666 |#1|) (-666 |#2|) |#1| (-1 |#2| |#1|)))) (-1131) (-1248)) (T -663)) +((-4464 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1131)) (-4 *2 (-1248)) (-5 *1 (-663 *5 *2)))) (-4464 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-666 *5)) (-5 *4 (-666 *6)) (-4 *5 (-1131)) (-4 *6 (-1248)) (-5 *1 (-663 *5 *6)))) (-4464 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *2)) (-4 *5 (-1131)) (-4 *2 (-1248)) (-5 *1 (-663 *5 *2)))) (-4464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 *5)) (-4 *6 (-1131)) (-4 *5 (-1248)) (-5 *2 (-1 *5 *6)) (-5 *1 (-663 *6 *5)))) (-4464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *2)) (-4 *5 (-1131)) (-4 *2 (-1248)) (-5 *1 (-663 *5 *2)))) (-4464 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *6)) (-4 *5 (-1131)) (-4 *6 (-1248)) (-5 *2 (-1 *6 *5)) (-5 *1 (-663 *5 *6))))) +(-10 -7 (-15 -4464 ((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|))) (-15 -4464 (|#2| (-666 |#1|) (-666 |#2|) |#1|)) (-15 -4464 ((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|) |#2|)) (-15 -4464 (|#2| (-666 |#1|) (-666 |#2|) |#1| |#2|)) (-15 -4464 ((-1 |#2| |#1|) (-666 |#1|) (-666 |#2|) (-1 |#2| |#1|))) (-15 -4464 (|#2| (-666 |#1|) (-666 |#2|) |#1| (-1 |#2| |#1|)))) +((-4315 (((-666 |#2|) (-1 |#2| |#1| |#2|) (-666 |#1|) |#2|) 16 T ELT)) (-2512 ((|#2| (-1 |#2| |#1| |#2|) (-666 |#1|) |#2|) 18 T ELT)) (-3611 (((-666 |#2|) (-1 |#2| |#1|) (-666 |#1|)) 13 T ELT))) +(((-664 |#1| |#2|) (-10 -7 (-15 -4315 ((-666 |#2|) (-1 |#2| |#1| |#2|) (-666 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-666 |#1|) |#2|)) (-15 -3611 ((-666 |#2|) (-1 |#2| |#1|) (-666 |#1|)))) (-1248) (-1248)) (T -664)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-666 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-666 *6)) (-5 *1 (-664 *5 *6)))) (-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-666 *5)) (-4 *5 (-1248)) (-4 *2 (-1248)) (-5 *1 (-664 *5 *2)))) (-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-666 *6)) (-4 *6 (-1248)) (-4 *5 (-1248)) (-5 *2 (-666 *5)) (-5 *1 (-664 *6 *5))))) +(-10 -7 (-15 -4315 ((-666 |#2|) (-1 |#2| |#1| |#2|) (-666 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-666 |#1|) |#2|)) (-15 -3611 ((-666 |#2|) (-1 |#2| |#1|) (-666 |#1|)))) +((-3611 (((-666 |#3|) (-1 |#3| |#1| |#2|) (-666 |#1|) (-666 |#2|)) 21 T ELT))) +(((-665 |#1| |#2| |#3|) (-10 -7 (-15 -3611 ((-666 |#3|) (-1 |#3| |#1| |#2|) (-666 |#1|) (-666 |#2|)))) (-1248) (-1248) (-1248)) (T -665)) +((-3611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-666 *6)) (-5 *5 (-666 *7)) (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-666 *8)) (-5 *1 (-665 *6 *7 *8))))) +(-10 -7 (-15 -3611 ((-666 |#3|) (-1 |#3| |#1| |#2|) (-666 |#1|) (-666 |#2|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) NIL T ELT)) (-3933 ((|#1| $) NIL T ELT)) (-3841 (($ $) NIL T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) $) NIL (|has| |#1| (-871)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-4101 (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-2042 (($ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) NIL (|has| $ (-6 -4501)) ELT)) (-2466 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-2583 (($ $ $) 37 (|has| |#1| (-1131)) ELT)) (-2973 (($ $ $) 41 (|has| |#1| (-1131)) ELT)) (-1767 (($ $ $) 44 (|has| |#1| (-1131)) ELT)) (-1589 (($ (-1 (-112) |#1|) $) NIL T ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3920 ((|#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-4198 (($ $) 23 T ELT) (($ $ (-793)) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-1131)) ELT)) (-3776 (($ $) 36 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) NIL (|has| |#1| (-1131)) ELT) (($ (-1 (-112) |#1|) $) NIL T ELT)) (-2737 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-2149 (((-112) $) NIL T ELT)) (-3887 (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) (-1 (-112) |#1|) $) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2297 (((-112) $) 11 T ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3874 (($) 9 T CONST)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1957 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-3176 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2606 (($ |#1|) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4328 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4273 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 20 T ELT) (($ $ (-793)) NIL T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1583 (((-112) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) 39 T ELT)) (-1696 (($) 38 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT) ((|#1| $ (-578)) 42 T ELT) ((|#1| $ (-578) |#1|) NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-3022 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-1705 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4076 (($ $) NIL T ELT)) (-4436 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) NIL T ELT)) (-3931 (($ $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) 53 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) NIL T ELT)) (-1798 (($ |#1| $) 12 T ELT)) (-3342 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3703 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-666 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2409 (($ $ $) 13 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3859 (((-1189) $) 31 (|has| |#1| (-850)) ELT) (((-1189) $ (-112)) 32 (|has| |#1| (-850)) ELT) (((-1303) (-844) $) 33 (|has| |#1| (-850)) ELT) (((-1303) (-844) $ (-112)) 34 (|has| |#1| (-850)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-666 |#1|) (-13 (-688 |#1|) (-10 -8 (-15 -3874 ($) -1529) (-15 -2297 ((-112) $)) (-15 -1798 ($ |#1| $)) (-15 -2409 ($ $ $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -2583 ($ $ $)) (-15 -2973 ($ $ $)) (-15 -1767 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1248)) (T -666)) +((-3874 (*1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1248)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-1248)))) (-1798 (*1 *1 *2 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1248)))) (-2409 (*1 *1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1248)))) (-2583 (*1 *1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-1248)))) (-2973 (*1 *1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-1248)))) (-1767 (*1 *1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-1248))))) +(-13 (-688 |#1|) (-10 -8 (-15 -3874 ($) -1529) (-15 -2297 ((-112) $)) (-15 -1798 ($ |#1| $)) (-15 -2409 ($ $ $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -2583 ($ $ $)) (-15 -2973 ($ $ $)) (-15 -1767 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 11 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-667 |#1|) (-13 (-1114) (-632 |#1|)) (-1131)) (T -667)) +NIL +(-13 (-1114) (-632 |#1|)) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT))) +(((-668 |#1|) (-142) (-1143)) (T -668)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1143))))) +(-13 (-1131) (-10 -8 (-15 * ($ |t#1| $)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1999 (($ |#1| |#1| $) 43 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-3777 (($ $) 45 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) 56 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 9 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 37 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 47 T ELT)) (-4328 (($ |#1| $) 29 T ELT) (($ |#1| $ (-793)) 42 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-1994 ((|#1| $) 50 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 23 T ELT)) (-1696 (($) 28 T ELT)) (-3554 (((-112) $) 54 T ELT)) (-3109 (((-666 (-2 (|:| -2754 |#1|) (|:| -4324 (-793)))) $) 67 T ELT)) (-1338 (($) 26 T ELT) (($ (-666 |#1|)) 19 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 63 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 20 T ELT)) (-3343 (((-550) $) 34 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) NIL T ELT)) (-2411 (((-886) $) 14 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 24 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 69 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 17 (|has| $ (-6 -4500)) ELT))) +(((-669 |#1|) (-13 (-717 |#1|) (-10 -8 (-6 -4500) (-15 -3554 ((-112) $)) (-15 -1999 ($ |#1| |#1| $)))) (-1131)) (T -669)) +((-3554 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-669 *3)) (-4 *3 (-1131)))) (-1999 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1131))))) +(-13 (-717 |#1|) (-10 -8 (-6 -4500) (-15 -3554 ((-112) $)) (-15 -1999 ($ |#1| |#1| $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT))) +(((-670 |#1|) (-142) (-1089)) (T -670)) +NIL +(-13 (-21) (-668 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793) $) 17 T ELT)) (-1381 (($ $ |#1|) 69 T ELT)) (-1464 (($ $) 39 T ELT)) (-1540 (($ $) 37 T ELT)) (-2818 (((-3 |#1| "failed") $) 61 T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-1400 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-2135 (((-886) $ (-1 (-886) (-886) (-886)) (-1 (-886) (-886) (-886)) (-578)) 56 T ELT)) (-2181 ((|#1| $ (-578)) 35 T ELT)) (-2006 ((|#2| $ (-578)) 34 T ELT)) (-1416 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3795 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-1509 (($) 11 T ELT)) (-3990 (($ |#1| |#2|) 24 T ELT)) (-3680 (($ (-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|)))) 25 T ELT)) (-1498 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|))) $) 14 T ELT)) (-2292 (($ |#1| $) 71 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4399 (((-112) $ $) 76 T ELT)) (-2411 (((-886) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 27 T ELT))) +(((-671 |#1| |#2| |#3|) (-13 (-1131) (-1069 |#1|) (-10 -8 (-15 -2135 ((-886) $ (-1 (-886) (-886) (-886)) (-1 (-886) (-886) (-886)) (-578))) (-15 -1498 ((-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|))) $)) (-15 -3990 ($ |#1| |#2|)) (-15 -3680 ($ (-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|))))) (-15 -2006 (|#2| $ (-578))) (-15 -2181 (|#1| $ (-578))) (-15 -1540 ($ $)) (-15 -1464 ($ $)) (-15 -2222 ((-793) $)) (-15 -1509 ($)) (-15 -1381 ($ $ |#1|)) (-15 -2292 ($ |#1| $)) (-15 -1400 ($ |#1| |#2| $)) (-15 -1400 ($ $ $)) (-15 -4399 ((-112) $ $)) (-15 -3795 ($ (-1 |#2| |#2|) $)) (-15 -1416 ($ (-1 |#1| |#1|) $)))) (-1131) (-23) |#2|) (T -671)) +((-2135 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-886) (-886) (-886))) (-5 *4 (-578)) (-5 *2 (-886)) (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1131)) (-4 *6 (-23)) (-14 *7 *6))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 *4)))) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) (-3990 (*1 *1 *2 *3) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 *4)))) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)))) (-2006 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5)) (-4 *4 (-1131)) (-14 *5 *2))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *2 (-1131)) (-5 *1 (-671 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-1464 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) (-1509 (*1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-1381 (*1 *1 *1 *2) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *1 *2 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-1400 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-1400 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) (-4399 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) (-3795 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-671 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1131) (-1069 |#1|) (-10 -8 (-15 -2135 ((-886) $ (-1 (-886) (-886) (-886)) (-1 (-886) (-886) (-886)) (-578))) (-15 -1498 ((-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|))) $)) (-15 -3990 ($ |#1| |#2|)) (-15 -3680 ($ (-666 (-2 (|:| |gen| |#1|) (|:| -3587 |#2|))))) (-15 -2006 (|#2| $ (-578))) (-15 -2181 (|#1| $ (-578))) (-15 -1540 ($ $)) (-15 -1464 ($ $)) (-15 -2222 ((-793) $)) (-15 -1509 ($)) (-15 -1381 ($ $ |#1|)) (-15 -2292 ($ |#1| $)) (-15 -1400 ($ |#1| |#2| $)) (-15 -1400 ($ $ $)) (-15 -4399 ((-112) $ $)) (-15 -3795 ($ (-1 |#2| |#2|) $)) (-15 -1416 ($ (-1 |#1| |#1|) $)))) +((-2316 (((-578) $) 31 T ELT)) (-4273 (($ |#2| $ (-578)) 27 T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) 12 T ELT)) (-3023 (((-112) (-578) $) 18 T ELT)) (-3703 (($ $ |#2|) 24 T ELT) (($ |#2| $) 25 T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT))) +(((-672 |#1| |#2|) (-10 -8 (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -3703 (|#1| (-666 |#1|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2316 ((-578) |#1|)) (-15 -4030 ((-666 (-578)) |#1|)) (-15 -3023 ((-112) (-578) |#1|))) (-673 |#2|) (-1248)) (T -672)) +NIL +(-10 -8 (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -3703 (|#1| (-666 |#1|))) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#2|)) (-15 -2316 ((-578) |#1|)) (-15 -4030 ((-666 (-578)) |#1|)) (-15 -3023 ((-112) (-578) |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#1| $ (-578) |#1|) 53 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 60 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3776 (($ $) 80 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#1| $) 79 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 52 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) 70 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) 62 T ELT) (($ $ $ (-578)) 61 T ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 43 (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-4291 (($ $ |#1|) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) |#1|) 51 T ELT) ((|#1| $ (-578)) 50 T ELT) (($ $ (-1265 (-578))) 71 T ELT)) (-1705 (($ $ (-578)) 64 T ELT) (($ $ (-1265 (-578))) 63 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 81 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 72 T ELT)) (-3703 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-666 $)) 66 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-673 |#1|) (-142) (-1248)) (T -673)) +((-3749 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) (-3703 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1248)))) (-3703 (*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1248)))) (-3703 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1248)))) (-3703 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) (-3611 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) (-1705 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) (-1705 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 (-578))) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) (-4273 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-673 *2)) (-4 *2 (-1248)))) (-4273 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) (-2590 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1265 (-578))) (|has| *1 (-6 -4501)) (-4 *1 (-673 *2)) (-4 *2 (-1248))))) +(-13 (-618 (-578) |t#1|) (-153 |t#1|) (-298 (-1265 (-578)) $) (-10 -8 (-15 -3749 ($ (-793) |t#1|)) (-15 -3703 ($ $ |t#1|)) (-15 -3703 ($ |t#1| $)) (-15 -3703 ($ $ $)) (-15 -3703 ($ (-666 $))) (-15 -3611 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1705 ($ $ (-578))) (-15 -1705 ($ $ (-1265 (-578)))) (-15 -4273 ($ |t#1| $ (-578))) (-15 -4273 ($ $ $ (-578))) (IF (|has| $ (-6 -4501)) (-15 -2590 (|t#1| $ (-1265 (-578)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-2096 (((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-666 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) "failed") |#3| |#2| (-1207)) 44 T ELT))) +(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -2096 ((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -2096 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-666 |#2|)))) (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149)) (-13 (-29 |#1|) (-1233) (-988)) (-678 |#2|)) (T -674)) +((-2096 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-666 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *1 (-674 *6 *2 *3)) (-4 *3 (-678 *2)))) (-2096 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-988))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3198 (-666 *4)))) (-5 *1 (-674 *6 *4 *3)) (-4 *3 (-678 *4))))) +(-10 -7 (-15 -2096 ((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -2096 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-666 |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2397 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3242 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1860 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1408 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2400 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2632 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3391 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1520 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1947 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) NIL T ELT)) (-3557 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-4260 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-3937 (((-793) $) NIL T ELT)) (-2237 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1519 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1465 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-2436 ((|#1| $ |#1|) NIL T ELT)) (-1799 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3683 (((-793) $) NIL T ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) NIL T ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-4178 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3902 (($ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-675 |#1|) (-678 |#1|) (-240)) (T -675)) +NIL +(-678 |#1|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2397 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3242 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1860 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1408 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2400 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2632 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3391 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1520 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1947 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) NIL T ELT)) (-3557 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-4260 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-3937 (((-793) $) NIL T ELT)) (-2237 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1519 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1465 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-2436 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-1799 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3683 (((-793) $) NIL T ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) NIL T ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-4178 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3902 (($ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-676 |#1| |#2|) (-13 (-678 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-670 |#1|) (-10 -8 (-15 -2031 ($ $))))) (T -676)) +NIL +(-13 (-678 |#1|) (-298 |#2| |#2|)) +((-2397 (($ $) 29 T ELT)) (-3902 (($ $) 27 T ELT)) (-1676 (($) 13 T ELT))) +(((-677 |#1| |#2|) (-10 -8 (-15 -2397 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -1676 (|#1|))) (-678 |#2|) (-1080)) (T -677)) +NIL +(-10 -8 (-15 -2397 (|#1| |#1|)) (-15 -3902 (|#1| |#1|)) (-15 -1676 (|#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2397 (($ $) 87 (|has| |#1| (-376)) ELT)) (-3242 (($ $ $) 89 (|has| |#1| (-376)) ELT)) (-1860 (($ $ (-793)) 88 (|has| |#1| (-376)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-1408 (($ $ $) 50 (|has| |#1| (-376)) ELT)) (-2400 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2632 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-3391 (($ $ $) 48 (|has| |#1| (-376)) ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 47 (|has| |#1| (-376)) ELT)) (-1520 (((-3 $ "failed") $ $) 49 (|has| |#1| (-376)) ELT)) (-1947 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2818 (((-3 (-578) "failed") $) 80 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 77 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3516 (((-578) $) 79 (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) 76 (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 75 T ELT)) (-3136 (($ $) 69 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2111 (($ $) 60 (|has| |#1| (-466)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-2925 (($ |#1| (-793)) 67 T ELT)) (-3557 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 62 (|has| |#1| (-570)) ELT)) (-4260 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 (|has| |#1| (-570)) ELT)) (-3937 (((-793) $) 71 T ELT)) (-2237 (($ $ $) 57 (|has| |#1| (-376)) ELT)) (-3512 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-1519 (($ $ $) 46 (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 54 (|has| |#1| (-376)) ELT)) (-1724 (((-3 $ "failed") $ $) 56 (|has| |#1| (-376)) ELT)) (-1465 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3110 ((|#1| $) 70 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-570)) ELT)) (-2436 ((|#1| $ |#1|) 92 T ELT)) (-1799 (($ $ $) 86 (|has| |#1| (-376)) ELT)) (-3683 (((-793) $) 72 T ELT)) (-4325 ((|#1| $) 61 (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 78 (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) 73 T ELT)) (-3839 (((-666 |#1|) $) 66 T ELT)) (-3708 ((|#1| $ (-793)) 68 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-4178 ((|#1| $ |#1| |#1|) 65 T ELT)) (-3902 (($ $) 90 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($) 91 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) +(((-678 |#1|) (-142) (-1080)) (T -678)) +((-1676 (*1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)))) (-3902 (*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)))) (-3242 (*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1860 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-678 *3)) (-4 *3 (-1080)) (-4 *3 (-376)))) (-2397 (*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1799 (*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(-13 (-876 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -1676 ($)) (-15 -3902 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -3242 ($ $ $)) (-15 -1860 ($ $ (-793))) (-15 -2397 ($ $)) (-15 -1799 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 #0=(-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-298 |#1| |#1|) . T) ((-425 |#1|) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1069 #0#) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-876 |#1|) . T)) +((-3661 (((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|))) 85 (|has| |#1| (-27)) ELT)) (-2800 (((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|))) 84 (|has| |#1| (-27)) ELT) (((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|)) 19 T ELT))) +(((-679 |#1| |#2|) (-10 -7 (-15 -2800 ((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2800 ((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|)))) (-15 -3661 ((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578)))) (-1274 |#1|)) (T -679)) +((-3661 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) (-5 *2 (-666 (-675 (-421 *5)))) (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-421 *5))))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) (-5 *2 (-666 (-675 (-421 *5)))) (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-421 *5))))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-666 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-5 *2 (-666 (-675 (-421 *6)))) (-5 *1 (-679 *5 *6)) (-5 *3 (-675 (-421 *6)))))) +(-10 -7 (-15 -2800 ((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2800 ((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|)))) (-15 -3661 ((-666 (-675 (-421 |#2|))) (-675 (-421 |#2|))))) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2397 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3242 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-1860 (($ $ (-793)) 31 (|has| |#1| (-376)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1408 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2400 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2632 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3391 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1520 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1947 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) NIL T ELT)) (-3557 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-4260 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-3937 (((-793) $) NIL T ELT)) (-2237 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1519 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1465 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-2436 ((|#1| $ |#1|) 24 T ELT)) (-1799 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-3683 (((-793) $) NIL T ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) NIL T ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-4178 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3902 (($ $) NIL T ELT)) (-2368 (($) 21 T CONST)) (-2379 (($) 8 T CONST)) (-1676 (($) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-680 |#1| |#2|) (-678 |#1|) (-1080) (-1 |#1| |#1|)) (T -680)) +NIL +(-678 |#1|) +((-3242 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-1860 ((|#2| |#2| (-793) (-1 |#1| |#1|)) 45 T ELT)) (-1799 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-681 |#1| |#2|) (-10 -7 (-15 -3242 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1860 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -1799 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-678 |#1|)) (T -681)) +((-1799 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-681 *4 *2)) (-4 *2 (-678 *4)))) (-1860 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-681 *5 *2)) (-4 *2 (-678 *5)))) (-3242 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-681 *4 *2)) (-4 *2 (-678 *4))))) +(-10 -7 (-15 -3242 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1860 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -1799 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3287 (($ $ $) 9 T ELT))) +(((-682 |#1|) (-10 -8 (-15 -3287 (|#1| |#1| |#1|))) (-683)) (T -682)) +NIL +(-10 -8 (-15 -3287 (|#1| |#1| |#1|))) +((-3237 (($ $) 8 T ELT)) (-3287 (($ $ $) 6 T ELT)) (-3274 (($ $ $) 7 T ELT))) +(((-683) (-142)) (T -683)) +((-3237 (*1 *1 *1) (-4 *1 (-683))) (-3274 (*1 *1 *1 *1) (-4 *1 (-683))) (-3287 (*1 *1 *1 *1) (-4 *1 (-683)))) +(-13 (-1248) (-10 -8 (-15 -3237 ($ $)) (-15 -3274 ($ $ $)) (-15 -3287 ($ $ $)))) +(((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 15 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2519 ((|#1| $) 23 T ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-813)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-813)) ELT)) (-2617 (((-1189) $) 48 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2530 ((|#3| $) 24 T ELT)) (-2411 (((-886) $) 43 T ELT)) (-2876 (((-112) $ $) 22 T ELT)) (-2368 (($) 10 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-813)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-813)) ELT)) (-2384 (((-112) $ $) 20 T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-813)) ELT)) (-2404 (((-112) $ $) 26 (|has| |#1| (-813)) ELT)) (-2495 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-2484 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 29 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-684 |#1| |#2| |#3|) (-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) (-15 -2495 ($ $ |#3|)) (-15 -2495 ($ |#1| |#3|)) (-15 -2519 (|#1| $)) (-15 -2530 (|#3| $)))) (-739 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -684)) +((-2495 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-684 *3 *4 *2)) (-4 *3 (-739 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-2495 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-684 *2 *4 *3)) (-4 *2 (-739 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-2519 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-684 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-2530 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-684 *3 *4 *2)) (-4 *3 (-739 *4))))) +(-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) (-15 -2495 ($ $ |#3|)) (-15 -2495 ($ |#1| |#3|)) (-15 -2519 (|#1| $)) (-15 -2530 (|#3| $)))) +((-2554 (((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|)) 33 T ELT))) +(((-685 |#1|) (-10 -7 (-15 -2554 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|)))) (-938)) (T -685)) +((-2554 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 (-1203 *4))) (-5 *3 (-1203 *4)) (-4 *4 (-938)) (-5 *1 (-685 *4))))) +(-10 -7 (-15 -2554 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4418 (((-666 |#1|) $) 84 T ELT)) (-1898 (($ $ (-793)) 94 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3564 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 50 T ELT)) (-2818 (((-3 (-694 |#1|) "failed") $) NIL T ELT)) (-3516 (((-694 |#1|) $) NIL T ELT)) (-3136 (($ $) 93 T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-1476 (($ (-694 |#1|) |#2|) 70 T ELT)) (-2779 (($ $) 89 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3718 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 49 T ELT)) (-2658 (((-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3097 (((-694 |#1|) $) NIL T ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3364 (($ $ |#1| $) 32 T ELT) (($ $ (-666 |#1|) (-666 $)) 34 T ELT)) (-3683 (((-793) $) 91 T ELT)) (-2423 (($ $ $) 20 T ELT) (($ (-694 |#1|) (-694 |#1|)) 79 T ELT) (($ (-694 |#1|) $) 77 T ELT) (($ $ (-694 |#1|)) 78 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1313 |#1| |#2|) $) 60 T ELT) (((-1322 |#1| |#2|) $) 43 T ELT) (($ (-694 |#1|)) 27 T ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-694 |#1|)) NIL T ELT)) (-2672 ((|#2| (-1322 |#1| |#2|) $) 45 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 23 T CONST)) (-1829 (((-666 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2293 (((-3 $ "failed") (-1313 |#1| |#2|)) 62 T ELT)) (-3556 (($ (-694 |#1|)) 14 T ELT)) (-2384 (((-112) $ $) 46 T ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 31 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-694 |#1|)) NIL T ELT))) +(((-686 |#1| |#2|) (-13 (-387 |#1| |#2|) (-395 |#2| (-694 |#1|)) (-10 -8 (-15 -2293 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -2423 ($ (-694 |#1|) (-694 |#1|))) (-15 -2423 ($ (-694 |#1|) $)) (-15 -2423 ($ $ (-694 |#1|))))) (-871) (-175)) (T -686)) +((-2293 (*1 *1 *2) (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *1 (-686 *3 *4)))) (-2423 (*1 *1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-2423 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175))))) +(-13 (-387 |#1| |#2|) (-395 |#2| (-694 |#1|)) (-10 -8 (-15 -2293 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -2423 ($ (-694 |#1|) (-694 |#1|))) (-15 -2423 ($ (-694 |#1|) $)) (-15 -2423 ($ $ (-694 |#1|))))) +((-2442 (((-112) $) NIL T ELT) (((-112) (-1 (-112) |#2| |#2|) $) 59 T ELT)) (-4101 (($ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $) 12 T ELT)) (-1589 (($ (-1 (-112) |#2|) $) 29 T ELT)) (-1464 (($ $) 65 T ELT)) (-3777 (($ $) 74 T ELT)) (-2631 (($ |#2| $) NIL T ELT) (($ (-1 (-112) |#2|) $) 43 T ELT)) (-2512 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3887 (((-578) |#2| $ (-578)) 71 T ELT) (((-578) |#2| $) NIL T ELT) (((-578) (-1 (-112) |#2|) $) 54 T ELT)) (-3749 (($ (-793) |#2|) 63 T ELT)) (-1957 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 31 T ELT)) (-3176 (($ $ $) NIL T ELT) (($ (-1 (-112) |#2| |#2|) $ $) 24 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-2606 (($ |#2|) 15 T ELT)) (-4328 (($ $ $ (-578)) 42 T ELT) (($ |#2| $ (-578)) 40 T ELT)) (-3668 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53 T ELT)) (-3022 (($ $ (-1265 (-578))) 51 T ELT) (($ $ (-578)) 44 T ELT)) (-3751 (($ $ $ (-578)) 70 T ELT)) (-3979 (($ $) 68 T ELT)) (-2404 (((-112) $ $) 76 T ELT))) +(((-687 |#1| |#2|) (-10 -8 (-15 -2606 (|#1| |#2|)) (-15 -3022 (|#1| |#1| (-578))) (-15 -3022 (|#1| |#1| (-1265 (-578)))) (-15 -2631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4328 (|#1| |#2| |#1| (-578))) (-15 -4328 (|#1| |#1| |#1| (-578))) (-15 -1957 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1589 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| |#2| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -1957 (|#1| |#1| |#1|)) (-15 -3176 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2442 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3887 ((-578) (-1 (-112) |#2|) |#1|)) (-15 -3887 ((-578) |#2| |#1|)) (-15 -3887 ((-578) |#2| |#1| (-578))) (-15 -3176 (|#1| |#1| |#1|)) (-15 -2442 ((-112) |#1|)) (-15 -3751 (|#1| |#1| |#1| (-578))) (-15 -1464 (|#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -2404 ((-112) |#1| |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3749 (|#1| (-793) |#2|)) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3979 (|#1| |#1|))) (-688 |#2|) (-1248)) (T -687)) +NIL +(-10 -8 (-15 -2606 (|#1| |#2|)) (-15 -3022 (|#1| |#1| (-578))) (-15 -3022 (|#1| |#1| (-1265 (-578)))) (-15 -2631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4328 (|#1| |#2| |#1| (-578))) (-15 -4328 (|#1| |#1| |#1| (-578))) (-15 -1957 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1589 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| |#2| |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -1957 (|#1| |#1| |#1|)) (-15 -3176 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2442 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3887 ((-578) (-1 (-112) |#2|) |#1|)) (-15 -3887 ((-578) |#2| |#1|)) (-15 -3887 ((-578) |#2| |#1| (-578))) (-15 -3176 (|#1| |#1| |#1|)) (-15 -2442 ((-112) |#1|)) (-15 -3751 (|#1| |#1| |#1| (-578))) (-15 -1464 (|#1| |#1|)) (-15 -4101 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4101 (|#1| |#1|)) (-15 -2404 ((-112) |#1| |#1|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2512 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3668 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3749 (|#1| (-793) |#2|)) (-15 -3611 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3979 (|#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-3933 ((|#1| $) 66 T ELT)) (-3841 (($ $) 68 T ELT)) (-1794 (((-1303) $ (-578) (-578)) 99 (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) 53 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) $) 144 (|has| |#1| (-871)) ELT) (((-112) (-1 (-112) |#1| |#1|) $) 138 T ELT)) (-4101 (($ $) 148 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4501))) ELT) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4501)) ELT)) (-2042 (($ $) 143 (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $) 137 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 57 (|has| $ (-6 -4501)) ELT)) (-2466 ((|#1| $ |#1|) 55 (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) 59 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 119 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-578) |#1|) 88 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-1589 (($ (-1 (-112) |#1|) $) 131 T ELT)) (-4233 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4500)) ELT)) (-3920 ((|#1| $) 67 T ELT)) (-3534 (($) 7 T CONST)) (-1464 (($ $) 146 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 136 T ELT)) (-4198 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3777 (($ $) 133 (|has| |#1| (-1131)) ELT)) (-3776 (($ $) 101 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ |#1| $) 132 (|has| |#1| (-1131)) ELT) (($ (-1 (-112) |#1|) $) 127 T ELT)) (-2737 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4500)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3450 ((|#1| $ (-578) |#1|) 87 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 89 T ELT)) (-2149 (((-112) $) 85 T ELT)) (-3887 (((-578) |#1| $ (-578)) 141 (|has| |#1| (-1131)) ELT) (((-578) |#1| $) 140 (|has| |#1| (-1131)) ELT) (((-578) (-1 (-112) |#1|) $) 139 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-3749 (($ (-793) |#1|) 111 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 97 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 154 (|has| |#1| (-871)) ELT)) (-1957 (($ $ $) 134 (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 130 T ELT)) (-3176 (($ $ $) 142 (|has| |#1| (-871)) ELT) (($ (-1 (-112) |#1| |#1|) $ $) 135 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 96 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 153 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-2606 (($ |#1|) 124 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-4328 (($ $ $ (-578)) 129 T ELT) (($ |#1| $ (-578)) 128 T ELT)) (-4273 (($ $ $ (-578)) 118 T ELT) (($ |#1| $ (-578)) 117 T ELT)) (-4030 (((-666 (-578)) $) 94 T ELT)) (-3023 (((-112) (-578) $) 93 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-4291 (($ $ |#1|) 98 (|has| $ (-6 -4501)) ELT)) (-1583 (((-112) $) 86 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 92 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1265 (-578))) 110 T ELT) ((|#1| $ (-578)) 91 T ELT) ((|#1| $ (-578) |#1|) 90 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-3022 (($ $ (-1265 (-578))) 126 T ELT) (($ $ (-578)) 125 T ELT)) (-1705 (($ $ (-1265 (-578))) 116 T ELT) (($ $ (-578)) 115 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4076 (($ $) 63 T ELT)) (-4436 (($ $) 60 (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) 64 T ELT)) (-3931 (($ $) 65 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3751 (($ $ $ (-578)) 145 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 100 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 109 T ELT)) (-3342 (($ $ $) 62 T ELT) (($ $ |#1|) 61 T ELT)) (-3703 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-666 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) 152 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 150 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) 151 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 149 (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-688 |#1|) (-142) (-1248)) (T -688)) +((-2606 (*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1248))))) +(-13 (-1180 |t#1|) (-386 |t#1|) (-294 |t#1|) (-10 -8 (-15 -2606 ($ |t#1|)))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-294 |#1|) . T) ((-386 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1041 |#1|) . T) ((-1131) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871))) ((-1180 |#1|) . T) ((-1248) . T) ((-1286 |#1|) . T)) +((-2096 (((-666 (-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|))))) (-666 (-666 |#1|)) (-666 (-1298 |#1|))) 22 T ELT) (((-666 (-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|))))) (-711 |#1|) (-666 (-1298 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-666 (-666 |#1|)) (-1298 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-711 |#1|) (-1298 |#1|)) 14 T ELT)) (-1875 (((-793) (-711 |#1|) (-1298 |#1|)) 30 T ELT)) (-1742 (((-3 (-1298 |#1|) "failed") (-711 |#1|) (-1298 |#1|)) 24 T ELT)) (-3739 (((-112) (-711 |#1|) (-1298 |#1|)) 27 T ELT))) +(((-689 |#1|) (-10 -7 (-15 -2096 ((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-711 |#1|) (-1298 |#1|))) (-15 -2096 ((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-666 (-666 |#1|)) (-1298 |#1|))) (-15 -2096 ((-666 (-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|))))) (-711 |#1|) (-666 (-1298 |#1|)))) (-15 -2096 ((-666 (-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|))))) (-666 (-666 |#1|)) (-666 (-1298 |#1|)))) (-15 -1742 ((-3 (-1298 |#1|) "failed") (-711 |#1|) (-1298 |#1|))) (-15 -3739 ((-112) (-711 |#1|) (-1298 |#1|))) (-15 -1875 ((-793) (-711 |#1|) (-1298 |#1|)))) (-376)) (T -689)) +((-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1298 *5)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-689 *5)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1298 *5)) (-4 *5 (-376)) (-5 *2 (-112)) (-5 *1 (-689 *5)))) (-1742 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1298 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *1 (-689 *4)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-666 *5))) (-4 *5 (-376)) (-5 *2 (-666 (-2 (|:| |particular| (-3 (-1298 *5) "failed")) (|:| -3198 (-666 (-1298 *5)))))) (-5 *1 (-689 *5)) (-5 *4 (-666 (-1298 *5))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-666 (-2 (|:| |particular| (-3 (-1298 *5) "failed")) (|:| -3198 (-666 (-1298 *5)))))) (-5 *1 (-689 *5)) (-5 *4 (-666 (-1298 *5))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-666 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1298 *5) "failed")) (|:| -3198 (-666 (-1298 *5))))) (-5 *1 (-689 *5)) (-5 *4 (-1298 *5)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1298 *5) "failed")) (|:| -3198 (-666 (-1298 *5))))) (-5 *1 (-689 *5)) (-5 *4 (-1298 *5))))) +(-10 -7 (-15 -2096 ((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-711 |#1|) (-1298 |#1|))) (-15 -2096 ((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-666 (-666 |#1|)) (-1298 |#1|))) (-15 -2096 ((-666 (-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|))))) (-711 |#1|) (-666 (-1298 |#1|)))) (-15 -2096 ((-666 (-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|))))) (-666 (-666 |#1|)) (-666 (-1298 |#1|)))) (-15 -1742 ((-3 (-1298 |#1|) "failed") (-711 |#1|) (-1298 |#1|))) (-15 -3739 ((-112) (-711 |#1|) (-1298 |#1|))) (-15 -1875 ((-793) (-711 |#1|) (-1298 |#1|)))) +((-2096 (((-666 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|)))) |#4| (-666 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|))) |#4| |#3|) 60 T ELT)) (-1875 (((-793) |#4| |#3|) 18 T ELT)) (-1742 (((-3 |#3| "failed") |#4| |#3|) 21 T ELT)) (-3739 (((-112) |#4| |#3|) 14 T ELT))) +(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2096 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|))) |#4| |#3|)) (-15 -2096 ((-666 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|)))) |#4| (-666 |#3|))) (-15 -1742 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3739 ((-112) |#4| |#3|)) (-15 -1875 ((-793) |#4| |#3|))) (-376) (-13 (-386 |#1|) (-10 -7 (-6 -4501))) (-13 (-386 |#1|) (-10 -7 (-6 -4501))) (-709 |#1| |#2| |#3|)) (T -690)) +((-1875 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-5 *2 (-793)) (-5 *1 (-690 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4)))) (-3739 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-5 *2 (-112)) (-5 *1 (-690 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4)))) (-1742 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-386 *4) (-10 -7 (-6 -4501)))) (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501)))) (-5 *1 (-690 *4 *5 *2 *3)) (-4 *3 (-709 *4 *5 *2)))) (-2096 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-4 *7 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-5 *2 (-666 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3198 (-666 *7))))) (-5 *1 (-690 *5 *6 *7 *3)) (-5 *4 (-666 *7)) (-4 *3 (-709 *5 *6 *7)))) (-2096 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-690 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4))))) +(-10 -7 (-15 -2096 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|))) |#4| |#3|)) (-15 -2096 ((-666 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|)))) |#4| (-666 |#3|))) (-15 -1742 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3739 ((-112) |#4| |#3|)) (-15 -1875 ((-793) |#4| |#3|))) +((-2286 (((-2 (|:| |particular| (-3 (-1298 (-421 |#4|)) "failed")) (|:| -3198 (-666 (-1298 (-421 |#4|))))) (-666 |#4|) (-666 |#3|)) 51 T ELT))) +(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2286 ((-2 (|:| |particular| (-3 (-1298 (-421 |#4|)) "failed")) (|:| -3198 (-666 (-1298 (-421 |#4|))))) (-666 |#4|) (-666 |#3|)))) (-570) (-815) (-871) (-978 |#1| |#2| |#3|)) (T -691)) +((-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *7)) (-4 *7 (-871)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |particular| (-3 (-1298 (-421 *8)) "failed")) (|:| -3198 (-666 (-1298 (-421 *8)))))) (-5 *1 (-691 *5 *6 *7 *8))))) +(-10 -7 (-15 -2286 ((-2 (|:| |particular| (-3 (-1298 (-421 |#4|)) "failed")) (|:| -3198 (-666 (-1298 (-421 |#4|))))) (-666 |#4|) (-666 |#3|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-1430 (((-3 $ "failed")) NIL (|has| |#2| (-570)) ELT)) (-1881 ((|#2| $) NIL T ELT)) (-2648 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2564 (((-1298 (-711 |#2|))) NIL T ELT) (((-1298 (-711 |#2|)) (-1298 $)) NIL T ELT)) (-2214 (((-112) $) NIL T ELT)) (-3411 (((-1298 $)) 42 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2921 (($ |#2|) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1612 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3978 (((-247 |#1| |#2|) $ (-578)) NIL T ELT)) (-4115 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (|has| |#2| (-570)) ELT)) (-2341 (((-3 $ "failed")) NIL (|has| |#2| (-570)) ELT)) (-3676 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-2615 ((|#2| $) NIL T ELT)) (-3567 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1298 $)) NIL T ELT)) (-3373 (((-3 $ "failed") $) NIL (|has| |#2| (-570)) ELT)) (-1332 (((-1203 (-981 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-1640 (($ $ (-950)) NIL T ELT)) (-3875 ((|#2| $) NIL T ELT)) (-3214 (((-1203 |#2|) $) NIL (|has| |#2| (-570)) ELT)) (-2898 ((|#2|) NIL T ELT) ((|#2| (-1298 $)) NIL T ELT)) (-2294 (((-1203 |#2|) $) NIL T ELT)) (-3929 (((-112)) NIL T ELT)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) ((|#2| $) NIL T ELT)) (-3095 (($ (-1298 |#2|)) NIL T ELT) (($ (-1298 |#2|) (-1298 $)) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1875 (((-793) $) NIL (|has| |#2| (-570)) ELT) (((-950)) 43 T ELT)) (-3382 ((|#2| $ (-578) (-578)) NIL T ELT)) (-1351 (((-112)) NIL T ELT)) (-3398 (($ $ (-950)) NIL T ELT)) (-2729 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3199 (((-793) $) NIL (|has| |#2| (-570)) ELT)) (-4342 (((-666 (-247 |#1| |#2|)) $) NIL (|has| |#2| (-570)) ELT)) (-3068 (((-793) $) NIL T ELT)) (-3585 (((-112)) NIL T ELT)) (-3082 (((-793) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-3627 ((|#2| $) NIL (|has| |#2| (-6 (-4502 "*"))) ELT)) (-1850 (((-578) $) NIL T ELT)) (-3156 (((-578) $) NIL T ELT)) (-1441 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-1694 (((-578) $) NIL T ELT)) (-2915 (((-578) $) NIL T ELT)) (-1869 (($ (-666 (-666 |#2|))) NIL T ELT)) (-3439 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3692 (((-666 (-666 |#2|)) $) NIL T ELT)) (-1419 (((-112)) NIL T ELT)) (-3354 (((-112)) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2620 (((-3 (-2 (|:| |particular| $) (|:| -3198 (-666 $))) "failed")) NIL (|has| |#2| (-570)) ELT)) (-2170 (((-3 $ "failed")) NIL (|has| |#2| (-570)) ELT)) (-3881 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-2630 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1298 $)) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-3988 (((-3 $ "failed") $) NIL (|has| |#2| (-570)) ELT)) (-2972 (((-1203 (-981 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-4051 (($ $ (-950)) NIL T ELT)) (-2994 ((|#2| $) NIL T ELT)) (-2040 (((-1203 |#2|) $) NIL (|has| |#2| (-570)) ELT)) (-3949 ((|#2|) NIL T ELT) ((|#2| (-1298 $)) NIL T ELT)) (-4284 (((-1203 |#2|) $) NIL T ELT)) (-2465 (((-112)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2205 (((-112)) NIL T ELT)) (-1808 (((-112)) NIL T ELT)) (-4465 (((-112)) NIL T ELT)) (-3335 (((-3 $ "failed") $) NIL (|has| |#2| (-376)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2589 (((-112)) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ (-578) (-578) |#2|) NIL T ELT) ((|#2| $ (-578) (-578)) 28 T ELT) ((|#2| $ (-578)) NIL T ELT)) (-2031 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-4042 ((|#2| $) NIL T ELT)) (-3266 (($ (-666 |#2|)) NIL T ELT)) (-4415 (((-112) $) NIL T ELT)) (-4370 (((-247 |#1| |#2|) $) NIL T ELT)) (-2598 ((|#2| $) NIL (|has| |#2| (-6 (-4502 "*"))) ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-1453 (((-711 |#2|) (-1298 $)) NIL T ELT) (((-1298 |#2|) $) NIL T ELT) (((-711 |#2|) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 |#2|) $ (-1298 $)) 31 T ELT)) (-3343 (($ (-1298 |#2|)) NIL T ELT) (((-1298 |#2|) $) NIL T ELT)) (-4104 (((-666 (-981 |#2|))) NIL T ELT) (((-666 (-981 |#2|)) (-1298 $)) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-3588 (((-112)) NIL T ELT)) (-4240 (((-247 |#1| |#2|) $ (-578)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) 41 T ELT)) (-2839 (((-666 (-1298 |#2|))) NIL (|has| |#2| (-570)) ELT)) (-2851 (($ $ $ $) NIL T ELT)) (-2553 (((-112)) NIL T ELT)) (-4178 (($ (-711 |#2|) $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) NIL T ELT)) (-3021 (($ $ $) NIL T ELT)) (-3167 (((-112)) NIL T ELT)) (-3762 (((-112)) NIL T ELT)) (-4427 (((-112)) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-247 |#1| |#2|) $ (-247 |#1| |#2|)) NIL T ELT) (((-247 |#1| |#2|) (-247 |#1| |#2|) $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-692 |#1| |#2|) (-13 (-1154 |#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) (-632 (-711 |#2|)) (-431 |#2|)) (-950) (-175)) (T -692)) +NIL +(-13 (-1154 |#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) (-632 (-711 |#2|)) (-431 |#2|)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1890 (((-666 (-1166)) $) 10 T ELT)) (-2411 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-693) (-13 (-1114) (-10 -8 (-15 -1890 ((-666 (-1166)) $))))) (T -693)) +((-1890 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-693))))) +(-13 (-1114) (-10 -8 (-15 -1890 ((-666 (-1166)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4418 (((-666 |#1|) $) NIL T ELT)) (-3868 (($ $) 62 T ELT)) (-1622 (((-112) $) NIL T ELT)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-4249 (((-3 $ "failed") (-841 |#1|)) 27 T ELT)) (-2161 (((-112) (-841 |#1|)) 17 T ELT)) (-1986 (($ (-841 |#1|)) 28 T ELT)) (-3390 (((-112) $ $) 36 T ELT)) (-3492 (((-950) $) 43 T ELT)) (-3855 (($ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2800 (((-666 $) (-841 |#1|)) 19 T ELT)) (-2411 (((-886) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-841 |#1|) $) 47 T ELT) (((-699 |#1|) $) 52 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3840 (((-59 (-666 $)) (-666 |#1|) (-950)) 67 T ELT)) (-2687 (((-666 $) (-666 |#1|) (-950)) 70 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 63 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 46 T ELT))) +(((-694 |#1|) (-13 (-871) (-1069 |#1|) (-10 -8 (-15 -1622 ((-112) $)) (-15 -3855 ($ $)) (-15 -3868 ($ $)) (-15 -3492 ((-950) $)) (-15 -3390 ((-112) $ $)) (-15 -2411 ((-841 |#1|) $)) (-15 -2411 ((-699 |#1|) $)) (-15 -2800 ((-666 $) (-841 |#1|))) (-15 -2161 ((-112) (-841 |#1|))) (-15 -1986 ($ (-841 |#1|))) (-15 -4249 ((-3 $ "failed") (-841 |#1|))) (-15 -4418 ((-666 |#1|) $)) (-15 -3840 ((-59 (-666 $)) (-666 |#1|) (-950))) (-15 -2687 ((-666 $) (-666 |#1|) (-950))))) (-871)) (T -694)) +((-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) (-3868 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-3390 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-666 (-694 *4))) (-5 *1 (-694 *4)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-112)) (-5 *1 (-694 *4)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))) (-4249 (*1 *1 *2) (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *5)) (-5 *4 (-950)) (-4 *5 (-871)) (-5 *2 (-59 (-666 (-694 *5)))) (-5 *1 (-694 *5)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *5)) (-5 *4 (-950)) (-4 *5 (-871)) (-5 *2 (-666 (-694 *5))) (-5 *1 (-694 *5))))) +(-13 (-871) (-1069 |#1|) (-10 -8 (-15 -1622 ((-112) $)) (-15 -3855 ($ $)) (-15 -3868 ($ $)) (-15 -3492 ((-950) $)) (-15 -3390 ((-112) $ $)) (-15 -2411 ((-841 |#1|) $)) (-15 -2411 ((-699 |#1|) $)) (-15 -2800 ((-666 $) (-841 |#1|))) (-15 -2161 ((-112) (-841 |#1|))) (-15 -1986 ($ (-841 |#1|))) (-15 -4249 ((-3 $ "failed") (-841 |#1|))) (-15 -4418 ((-666 |#1|) $)) (-15 -3840 ((-59 (-666 $)) (-666 |#1|) (-950))) (-15 -2687 ((-666 $) (-666 |#1|) (-950))))) +((-4120 ((|#2| $) 100 T ELT)) (-3841 (($ $) 121 T ELT)) (-1628 (((-112) $ (-793)) 35 T ELT)) (-4198 (($ $) 109 T ELT) (($ $ (-793)) 112 T ELT)) (-2149 (((-112) $) 122 T ELT)) (-3528 (((-666 $) $) 96 T ELT)) (-2989 (((-112) $ $) 92 T ELT)) (-2363 (((-112) $ (-793)) 33 T ELT)) (-4314 (((-578) $) 66 T ELT)) (-2316 (((-578) $) 65 T ELT)) (-1719 (((-112) $ (-793)) 31 T ELT)) (-3821 (((-112) $) 98 T ELT)) (-2757 ((|#2| $) 113 T ELT) (($ $ (-793)) 117 T ELT)) (-4273 (($ $ $ (-578)) 83 T ELT) (($ |#2| $ (-578)) 82 T ELT)) (-4030 (((-666 (-578)) $) 64 T ELT)) (-3023 (((-112) (-578) $) 59 T ELT)) (-4189 ((|#2| $) NIL T ELT) (($ $ (-793)) 108 T ELT)) (-2704 (($ $ (-578)) 125 T ELT)) (-1583 (((-112) $) 124 T ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 42 T ELT)) (-4322 (((-666 |#2|) $) 46 T ELT)) (-2436 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1265 (-578))) 79 T ELT) ((|#2| $ (-578)) 57 T ELT) ((|#2| $ (-578) |#2|) 58 T ELT)) (-1842 (((-578) $ $) 91 T ELT)) (-1705 (($ $ (-1265 (-578))) 78 T ELT) (($ $ (-578)) 72 T ELT)) (-1368 (((-112) $) 87 T ELT)) (-4076 (($ $) 105 T ELT)) (-3618 (((-793) $) 104 T ELT)) (-3931 (($ $) 103 T ELT)) (-2423 (($ (-666 |#2|)) 53 T ELT)) (-2117 (($ $) 126 T ELT)) (-4435 (((-666 $) $) 90 T ELT)) (-1849 (((-112) $ $) 89 T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 41 T ELT)) (-2384 (((-112) $ $) 20 T ELT)) (-3226 (((-793) $) 39 T ELT))) +(((-695 |#1| |#2|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -2704 (|#1| |#1| (-578))) (-15 -2149 ((-112) |#1|)) (-15 -1583 ((-112) |#1|)) (-15 -2436 (|#2| |#1| (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578))) (-15 -4322 ((-666 |#2|) |#1|)) (-15 -3023 ((-112) (-578) |#1|)) (-15 -4030 ((-666 (-578)) |#1|)) (-15 -2316 ((-578) |#1|)) (-15 -4314 ((-578) |#1|)) (-15 -2423 (|#1| (-666 |#2|))) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -1705 (|#1| |#1| (-578))) (-15 -1705 (|#1| |#1| (-1265 (-578)))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4076 (|#1| |#1|)) (-15 -3618 ((-793) |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2757 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "last")) (-15 -2757 (|#2| |#1|)) (-15 -4198 (|#1| |#1| (-793))) (-15 -2436 (|#1| |#1| "rest")) (-15 -4198 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "first")) (-15 -4189 (|#2| |#1|)) (-15 -2989 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -1842 ((-578) |#1| |#1|)) (-15 -1368 ((-112) |#1|)) (-15 -2436 (|#2| |#1| "value")) (-15 -4120 (|#2| |#1|)) (-15 -3821 ((-112) |#1|)) (-15 -3528 ((-666 |#1|) |#1|)) (-15 -4435 ((-666 |#1|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793)))) (-696 |#2|) (-1248)) (T -695)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -2704 (|#1| |#1| (-578))) (-15 -2149 ((-112) |#1|)) (-15 -1583 ((-112) |#1|)) (-15 -2436 (|#2| |#1| (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578))) (-15 -4322 ((-666 |#2|) |#1|)) (-15 -3023 ((-112) (-578) |#1|)) (-15 -4030 ((-666 (-578)) |#1|)) (-15 -2316 ((-578) |#1|)) (-15 -4314 ((-578) |#1|)) (-15 -2423 (|#1| (-666 |#2|))) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -1705 (|#1| |#1| (-578))) (-15 -1705 (|#1| |#1| (-1265 (-578)))) (-15 -4273 (|#1| |#2| |#1| (-578))) (-15 -4273 (|#1| |#1| |#1| (-578))) (-15 -4076 (|#1| |#1|)) (-15 -3618 ((-793) |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2757 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "last")) (-15 -2757 (|#2| |#1|)) (-15 -4198 (|#1| |#1| (-793))) (-15 -2436 (|#1| |#1| "rest")) (-15 -4198 (|#1| |#1|)) (-15 -4189 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "first")) (-15 -4189 (|#2| |#1|)) (-15 -2989 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -1842 ((-578) |#1| |#1|)) (-15 -1368 ((-112) |#1|)) (-15 -2436 (|#2| |#1| "value")) (-15 -4120 (|#2| |#1|)) (-15 -3821 ((-112) |#1|)) (-15 -3528 ((-666 |#1|) |#1|)) (-15 -4435 ((-666 |#1|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793)))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-3933 ((|#1| $) 66 T ELT)) (-3841 (($ $) 68 T ELT)) (-1794 (((-1303) $ (-578) (-578)) 99 (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) 53 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 57 (|has| $ (-6 -4501)) ELT)) (-2466 ((|#1| $ |#1|) 55 (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) 59 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 119 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-578) |#1|) 88 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 104 T ELT)) (-3920 ((|#1| $) 67 T ELT)) (-3534 (($) 7 T CONST)) (-2182 (($ $) 126 T ELT)) (-4198 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3776 (($ $) 101 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#1| $) 102 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 105 T ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3450 ((|#1| $ (-578) |#1|) 87 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 89 T ELT)) (-2149 (((-112) $) 85 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-1522 (((-793) $) 125 T ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-3749 (($ (-793) |#1|) 111 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 97 (|has| (-578) (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 96 (|has| (-578) (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-3172 (($ $) 128 T ELT)) (-2652 (((-112) $) 129 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-4273 (($ $ $ (-578)) 118 T ELT) (($ |#1| $ (-578)) 117 T ELT)) (-4030 (((-666 (-578)) $) 94 T ELT)) (-3023 (((-112) (-578) $) 93 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-2570 ((|#1| $) 127 T ELT)) (-4189 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-4291 (($ $ |#1|) 98 (|has| $ (-6 -4501)) ELT)) (-2704 (($ $ (-578)) 124 T ELT)) (-1583 (((-112) $) 86 T ELT)) (-4311 (((-112) $) 130 T ELT)) (-1909 (((-112) $) 131 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 92 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1265 (-578))) 110 T ELT) ((|#1| $ (-578)) 91 T ELT) ((|#1| $ (-578) |#1|) 90 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-1705 (($ $ (-1265 (-578))) 116 T ELT) (($ $ (-578)) 115 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4076 (($ $) 63 T ELT)) (-4436 (($ $) 60 (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) 64 T ELT)) (-3931 (($ $) 65 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 100 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 109 T ELT)) (-3342 (($ $ $) 62 (|has| $ (-6 -4501)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4501)) ELT)) (-3703 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-666 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-2117 (($ $) 123 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-696 |#1|) (-142) (-1248)) (T -696)) +((-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1248)))) (-4233 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1248)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248)))) (-2182 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-793)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-696 *3)) (-4 *3 (-1248)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248))))) +(-13 (-1180 |t#1|) (-10 -8 (-15 -2737 ($ (-1 (-112) |t#1|) $)) (-15 -4233 ($ (-1 (-112) |t#1|) $)) (-15 -1909 ((-112) $)) (-15 -4311 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -3172 ($ $)) (-15 -2570 (|t#1| $)) (-15 -2182 ($ $)) (-15 -1522 ((-793) $)) (-15 -2704 ($ $ (-578))) (-15 -2117 ($ $)))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-1041 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1180 |#1|) . T) ((-1248) . T) ((-1286 |#1|) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2939 (($ (-793) (-793) (-793)) 53 (|has| |#1| (-1080)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2734 ((|#1| $ (-793) (-793) (-793) |#1|) 47 T ELT)) (-3534 (($) NIL T CONST)) (-1400 (($ $ $) 57 (|has| |#1| (-1080)) ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3251 (((-1298 (-793)) $) 12 T ELT)) (-1990 (($ (-1207) $ $) 34 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3835 (($ (-793)) 55 (|has| |#1| (-1080)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-793) (-793) (-793)) 44 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2423 (($ (-666 (-666 (-666 |#1|)))) 67 T ELT)) (-2411 (($ (-987 (-987 (-987 |#1|)))) 23 T ELT) (((-987 (-987 (-987 |#1|))) $) 19 T ELT) (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-697 |#1|) (-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1080)) (PROGN (-15 -2939 ($ (-793) (-793) (-793))) (-15 -3835 ($ (-793))) (-15 -1400 ($ $ $))) |%noBranch|) (-15 -2423 ($ (-666 (-666 (-666 |#1|))))) (-15 -2436 (|#1| $ (-793) (-793) (-793))) (-15 -2734 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -2411 ($ (-987 (-987 (-987 |#1|))))) (-15 -2411 ((-987 (-987 (-987 |#1|))) $)) (-15 -1990 ($ (-1207) $ $)) (-15 -3251 ((-1298 (-793)) $)))) (-1131)) (T -697)) +((-2939 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) (-4 *3 (-1131)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) (-4 *3 (-1131)))) (-1400 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-1080)) (-4 *2 (-1131)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-666 *3)))) (-4 *3 (-1131)) (-5 *1 (-697 *3)))) (-2436 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1131)))) (-2734 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1131)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-4 *3 (-1131)) (-5 *1 (-697 *3)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-1131)))) (-1990 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-697 *3)) (-4 *3 (-1131)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-1298 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1131))))) +(-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1080)) (PROGN (-15 -2939 ($ (-793) (-793) (-793))) (-15 -3835 ($ (-793))) (-15 -1400 ($ $ $))) |%noBranch|) (-15 -2423 ($ (-666 (-666 (-666 |#1|))))) (-15 -2436 (|#1| $ (-793) (-793) (-793))) (-15 -2734 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -2411 ($ (-987 (-987 (-987 |#1|))))) (-15 -2411 ((-987 (-987 (-987 |#1|))) $)) (-15 -1990 ($ (-1207) $ $)) (-15 -3251 ((-1298 (-793)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2045 (((-497) $) 10 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-1166) $) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-698) (-13 (-1114) (-10 -8 (-15 -2045 ((-497) $)) (-15 -4117 ((-1166) $))))) (T -698)) +((-2045 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-698))))) +(-13 (-1114) (-10 -8 (-15 -2045 ((-497) $)) (-15 -4117 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4418 (((-666 |#1|) $) 15 T ELT)) (-3868 (($ $) 19 T ELT)) (-1622 (((-112) $) 20 T ELT)) (-2818 (((-3 |#1| "failed") $) 23 T ELT)) (-3516 ((|#1| $) 21 T ELT)) (-4198 (($ $) 37 T ELT)) (-2779 (($ $) 25 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3390 (((-112) $ $) 47 T ELT)) (-3492 (((-950) $) 40 T ELT)) (-3855 (($ $) 18 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 ((|#1| $) 36 T ELT)) (-2411 (((-886) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-841 |#1|) $) 28 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 13 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-699 |#1|) (-13 (-871) (-1069 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2411 ((-841 |#1|) $)) (-15 -4189 (|#1| $)) (-15 -3855 ($ $)) (-15 -3492 ((-950) $)) (-15 -3390 ((-112) $ $)) (-15 -2779 ($ $)) (-15 -4198 ($ $)) (-15 -1622 ((-112) $)) (-15 -3868 ($ $)) (-15 -4418 ((-666 |#1|) $)))) (-871)) (T -699)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-4189 (*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-3855 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-3390 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-2779 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-3868 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871))))) +(-13 (-871) (-1069 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2411 ((-841 |#1|) $)) (-15 -4189 (|#1| $)) (-15 -3855 ($ $)) (-15 -3492 ((-950) $)) (-15 -3390 ((-112) $ $)) (-15 -2779 ($ $)) (-15 -4198 ($ $)) (-15 -1622 ((-112) $)) (-15 -3868 ($ $)) (-15 -4418 ((-666 |#1|) $)))) +((-1660 ((|#1| (-1 |#1| (-793) |#1|) (-793) |#1|) 11 T ELT)) (-3518 ((|#1| (-1 |#1| |#1|) (-793) |#1|) 9 T ELT))) +(((-700 |#1|) (-10 -7 (-15 -3518 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -1660 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|))) (-1131)) (T -700)) +((-1660 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1131)) (-5 *1 (-700 *2)))) (-3518 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1131)) (-5 *1 (-700 *2))))) +(-10 -7 (-15 -3518 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -1660 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|))) +((-4432 ((|#2| |#1| |#2|) 9 T ELT)) (-4421 ((|#1| |#1| |#2|) 8 T ELT))) +(((-701 |#1| |#2|) (-10 -7 (-15 -4421 (|#1| |#1| |#2|)) (-15 -4432 (|#2| |#1| |#2|))) (-1131) (-1131)) (T -701)) +((-4432 (*1 *2 *3 *2) (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-4421 (*1 *2 *2 *3) (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(-10 -7 (-15 -4421 (|#1| |#1| |#2|)) (-15 -4432 (|#2| |#1| |#2|))) +((-2038 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -2038 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1131) (-1131) (-1131)) (T -702)) +((-2038 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-702 *5 *6 *2))))) +(-10 -7 (-15 -2038 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1893 (((-1247) $) 21 T ELT)) (-1846 (((-666 (-1247)) $) 19 T ELT)) (-4009 (($ (-666 (-1247)) (-1247)) 14 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 29 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1247) $) 22 T ELT) (($ (-1149)) 10 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-703) (-13 (-1114) (-632 (-1247)) (-10 -8 (-15 -2411 ($ (-1149))) (-15 -4009 ($ (-666 (-1247)) (-1247))) (-15 -1846 ((-666 (-1247)) $)) (-15 -1893 ((-1247) $))))) (T -703)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-703)))) (-4009 (*1 *1 *2 *3) (-12 (-5 *2 (-666 (-1247))) (-5 *3 (-1247)) (-5 *1 (-703)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-703)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-703))))) +(-13 (-1114) (-632 (-1247)) (-10 -8 (-15 -2411 ($ (-1149))) (-15 -4009 ($ (-666 (-1247)) (-1247))) (-15 -1846 ((-666 (-1247)) $)) (-15 -1893 ((-1247) $)))) +((-1660 (((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)) 26 T ELT)) (-2988 (((-1 |#1|) |#1|) 8 T ELT)) (-3310 ((|#1| |#1|) 19 T ELT)) (-2375 (((-666 |#1|) (-1 (-666 |#1|) (-666 |#1|)) (-578)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-2411 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-793)) 23 T ELT))) +(((-704 |#1|) (-10 -7 (-15 -2988 ((-1 |#1|) |#1|)) (-15 -2411 ((-1 |#1|) |#1|)) (-15 -2375 (|#1| (-1 |#1| |#1|))) (-15 -2375 ((-666 |#1|) (-1 (-666 |#1|) (-666 |#1|)) (-578))) (-15 -3310 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -1660 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)))) (-1131)) (T -704)) +((-1660 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1131)) (-5 *1 (-704 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *4 (-1131)) (-5 *1 (-704 *4)))) (-3310 (*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1131)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-666 *5) (-666 *5))) (-5 *4 (-578)) (-5 *2 (-666 *5)) (-5 *1 (-704 *5)) (-4 *5 (-1131)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1131)))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1131)))) (-2988 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1131))))) +(-10 -7 (-15 -2988 ((-1 |#1|) |#1|)) (-15 -2411 ((-1 |#1|) |#1|)) (-15 -2375 (|#1| (-1 |#1| |#1|))) (-15 -2375 ((-666 |#1|) (-1 (-666 |#1|) (-666 |#1|)) (-578))) (-15 -3310 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -1660 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)))) +((-1649 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-3040 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-1529 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2612 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-705 |#1| |#2|) (-10 -7 (-15 -2612 ((-1 |#2| |#1|) |#2|)) (-15 -3040 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1529 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1649 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1131) (-1131)) (T -705)) +((-1649 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)) (-4 *4 (-1131)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-5 *2 (-1 *5)) (-5 *1 (-705 *4 *5)))) (-2612 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1131)) (-4 *3 (-1131))))) +(-10 -7 (-15 -2612 ((-1 |#2| |#1|) |#2|)) (-15 -3040 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1529 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1649 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2440 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-4177 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-3451 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-1824 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-4390 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -4177 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3451 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1824 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4390 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2440 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1131) (-1131) (-1131)) (T -706)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-1 *7 *5)) (-5 *1 (-706 *5 *6 *7)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1131)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *5 (-1131)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)))) (-4177 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1131)) (-4 *4 (-1131)) (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6))))) +(-10 -7 (-15 -4177 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3451 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1824 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4390 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2440 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2512 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3611 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-707 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3611 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3611 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2512 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1080) (-386 |#1|) (-386 |#1|) (-709 |#1| |#2| |#3|) (-1080) (-386 |#5|) (-386 |#5|) (-709 |#5| |#6| |#7|)) (T -707)) +((-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1080)) (-4 *2 (-1080)) (-4 *6 (-386 *5)) (-4 *7 (-386 *5)) (-4 *8 (-386 *2)) (-4 *9 (-386 *2)) (-5 *1 (-707 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-709 *5 *6 *7)) (-4 *10 (-709 *2 *8 *9)))) (-3611 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-386 *5)) (-4 *7 (-386 *5)) (-4 *2 (-709 *8 *9 *10)) (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-709 *5 *6 *7)) (-4 *9 (-386 *8)) (-4 *10 (-386 *8)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-386 *5)) (-4 *7 (-386 *5)) (-4 *2 (-709 *8 *9 *10)) (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-709 *5 *6 *7)) (-4 *9 (-386 *8)) (-4 *10 (-386 *8))))) +(-10 -7 (-15 -3611 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3611 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2512 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-1526 (($ (-793) (-793)) 42 T ELT)) (-3216 (($ $ $) 73 T ELT)) (-1921 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-2648 (((-112) $) 36 T ELT)) (-1923 (($ $ (-578) (-578)) 84 T ELT)) (-2701 (($ $ (-578) (-578)) 85 T ELT)) (-1839 (($ $ (-578) (-578) (-578) (-578)) 90 T ELT)) (-3368 (($ $) 71 T ELT)) (-2214 (((-112) $) 15 T ELT)) (-3962 (($ $ (-578) (-578) $) 91 T ELT)) (-2590 ((|#2| $ (-578) (-578) |#2|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578)) $) 89 T ELT)) (-2921 (($ (-793) |#2|) 55 T ELT)) (-1869 (($ (-666 (-666 |#2|))) 51 T ELT) (($ (-793) (-793) (-1 |#2| (-578) (-578))) 53 T ELT)) (-3692 (((-666 (-666 |#2|)) $) 80 T ELT)) (-1499 (($ $ $) 72 T ELT)) (-3202 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-2436 ((|#2| $ (-578) (-578)) NIL T ELT) ((|#2| $ (-578) (-578) |#2|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578))) 88 T ELT)) (-3266 (($ (-666 |#2|)) 56 T ELT) (($ (-666 $)) 58 T ELT)) (-4415 (((-112) $) 28 T ELT)) (-2411 (($ |#4|) 63 T ELT) (((-886) $) NIL T ELT)) (-1828 (((-112) $) 38 T ELT)) (-2495 (($ $ |#2|) 124 T ELT)) (-2484 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-2472 (($ $ $) 93 T ELT)) (** (($ $ (-793)) 111 T ELT) (($ $ (-578)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-578) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2411 ((-886) |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -2495 (|#1| |#1| |#2|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| (-578) (-578) |#1|)) (-15 -1839 (|#1| |#1| (-578) (-578) (-578) (-578))) (-15 -2701 (|#1| |#1| (-578) (-578))) (-15 -1923 (|#1| |#1| (-578) (-578))) (-15 -2590 (|#1| |#1| (-666 (-578)) (-666 (-578)) |#1|)) (-15 -2436 (|#1| |#1| (-666 (-578)) (-666 (-578)))) (-15 -3692 ((-666 (-666 |#2|)) |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1499 (|#1| |#1| |#1|)) (-15 -3368 (|#1| |#1|)) (-15 -1921 (|#1| |#1|)) (-15 -1921 (|#1| |#3|)) (-15 -2411 (|#1| |#4|)) (-15 -3266 (|#1| (-666 |#1|))) (-15 -3266 (|#1| (-666 |#2|))) (-15 -2921 (|#1| (-793) |#2|)) (-15 -1869 (|#1| (-793) (-793) (-1 |#2| (-578) (-578)))) (-15 -1869 (|#1| (-666 (-666 |#2|)))) (-15 -1526 (|#1| (-793) (-793))) (-15 -1828 ((-112) |#1|)) (-15 -2648 ((-112) |#1|)) (-15 -4415 ((-112) |#1|)) (-15 -2214 ((-112) |#1|)) (-15 -2590 (|#2| |#1| (-578) (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) (-578)))) (-709 |#2| |#3| |#4|) (-1080) (-386 |#2|) (-386 |#2|)) (T -708)) +NIL +(-10 -8 (-15 -2411 ((-886) |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -2495 (|#1| |#1| |#2|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| (-578) (-578) |#1|)) (-15 -1839 (|#1| |#1| (-578) (-578) (-578) (-578))) (-15 -2701 (|#1| |#1| (-578) (-578))) (-15 -1923 (|#1| |#1| (-578) (-578))) (-15 -2590 (|#1| |#1| (-666 (-578)) (-666 (-578)) |#1|)) (-15 -2436 (|#1| |#1| (-666 (-578)) (-666 (-578)))) (-15 -3692 ((-666 (-666 |#2|)) |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1499 (|#1| |#1| |#1|)) (-15 -3368 (|#1| |#1|)) (-15 -1921 (|#1| |#1|)) (-15 -1921 (|#1| |#3|)) (-15 -2411 (|#1| |#4|)) (-15 -3266 (|#1| (-666 |#1|))) (-15 -3266 (|#1| (-666 |#2|))) (-15 -2921 (|#1| (-793) |#2|)) (-15 -1869 (|#1| (-793) (-793) (-1 |#2| (-578) (-578)))) (-15 -1869 (|#1| (-666 (-666 |#2|)))) (-15 -1526 (|#1| (-793) (-793))) (-15 -1828 ((-112) |#1|)) (-15 -2648 ((-112) |#1|)) (-15 -4415 ((-112) |#1|)) (-15 -2214 ((-112) |#1|)) (-15 -2590 (|#2| |#1| (-578) (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) (-578)))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1526 (($ (-793) (-793)) 99 T ELT)) (-3216 (($ $ $) 88 T ELT)) (-1921 (($ |#2|) 92 T ELT) (($ $) 91 T ELT)) (-2648 (((-112) $) 101 T ELT)) (-1923 (($ $ (-578) (-578)) 84 T ELT)) (-2701 (($ $ (-578) (-578)) 83 T ELT)) (-1839 (($ $ (-578) (-578) (-578) (-578)) 82 T ELT)) (-3368 (($ $) 90 T ELT)) (-2214 (((-112) $) 103 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-3962 (($ $ (-578) (-578) $) 81 T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) 45 T ELT) (($ $ (-666 (-578)) (-666 (-578)) $) 85 T ELT)) (-3869 (($ $ (-578) |#2|) 43 T ELT)) (-3697 (($ $ (-578) |#3|) 42 T ELT)) (-2921 (($ (-793) |#1|) 96 T ELT)) (-3534 (($) 7 T CONST)) (-1612 (($ $) 68 (|has| |#1| (-319)) ELT)) (-3978 ((|#2| $ (-578)) 47 T ELT)) (-1875 (((-793) $) 67 (|has| |#1| (-570)) ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) 44 T ELT)) (-3382 ((|#1| $ (-578) (-578)) 49 T ELT)) (-2729 (((-666 |#1|) $) 31 T ELT)) (-3199 (((-793) $) 66 (|has| |#1| (-570)) ELT)) (-4342 (((-666 |#3|) $) 65 (|has| |#1| (-570)) ELT)) (-3068 (((-793) $) 52 T ELT)) (-3749 (($ (-793) (-793) |#1|) 58 T ELT)) (-3082 (((-793) $) 51 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-3627 ((|#1| $) 63 (|has| |#1| (-6 (-4502 "*"))) ELT)) (-1850 (((-578) $) 56 T ELT)) (-3156 (((-578) $) 54 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-1694 (((-578) $) 55 T ELT)) (-2915 (((-578) $) 53 T ELT)) (-1869 (($ (-666 (-666 |#1|))) 98 T ELT) (($ (-793) (-793) (-1 |#1| (-578) (-578))) 97 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-3692 (((-666 (-666 |#1|)) $) 87 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-3335 (((-3 $ "failed") $) 62 (|has| |#1| (-376)) ELT)) (-1499 (($ $ $) 89 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) 57 T ELT)) (-3202 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) (-578)) 50 T ELT) ((|#1| $ (-578) (-578) |#1|) 48 T ELT) (($ $ (-666 (-578)) (-666 (-578))) 86 T ELT)) (-3266 (($ (-666 |#1|)) 95 T ELT) (($ (-666 $)) 94 T ELT)) (-4415 (((-112) $) 102 T ELT)) (-2598 ((|#1| $) 64 (|has| |#1| (-6 (-4502 "*"))) ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-4240 ((|#3| $ (-578)) 46 T ELT)) (-2411 (($ |#3|) 93 T ELT) (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) 100 T ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2495 (($ $ |#1|) 69 (|has| |#1| (-376)) ELT)) (-2484 (($ $ $) 79 T ELT) (($ $) 78 T ELT)) (-2472 (($ $ $) 80 T ELT)) (** (($ $ (-793)) 71 T ELT) (($ $ (-578)) 61 (|has| |#1| (-376)) ELT)) (* (($ $ $) 77 T ELT) (($ |#1| $) 76 T ELT) (($ $ |#1|) 75 T ELT) (($ (-578) $) 74 T ELT) ((|#3| $ |#3|) 73 T ELT) ((|#2| |#2| $) 72 T ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-709 |#1| |#2| |#3|) (-142) (-1080) (-386 |t#1|) (-386 |t#1|)) (T -709)) +((-2214 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-112)))) (-4415 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-112)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-112)))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-112)))) (-1526 (*1 *1 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-1869 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-578) (-578))) (-4 *4 (-1080)) (-4 *1 (-709 *4 *5 *6)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)))) (-2921 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-2411 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *2)) (-4 *4 (-386 *3)) (-4 *2 (-386 *3)))) (-1921 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *1 (-709 *3 *2 *4)) (-4 *2 (-386 *3)) (-4 *4 (-386 *3)))) (-1921 (*1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (-3368 (*1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (-1499 (*1 *1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-666 (-666 *3))))) (-2436 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-666 (-578))) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-2590 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-666 (-578))) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-1923 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-2701 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-1839 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-3962 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-2472 (*1 *1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-709 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *2 (-386 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-709 *3 *2 *4)) (-4 *3 (-1080)) (-4 *2 (-386 *3)) (-4 *4 (-386 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) (-3202 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (-4 *2 (-570)))) (-2495 (*1 *1 *1 *2) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (-4 *2 (-376)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (-4 *2 (-319)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-4 *3 (-570)) (-5 *2 (-793)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-4 *3 (-570)) (-5 *2 (-793)))) (-4342 (*1 *2 *1) (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-4 *3 (-570)) (-5 *2 (-666 *5)))) (-2598 (*1 *2 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080)))) (-3335 (*1 *1 *1) (|partial| -12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-4 *3 (-376))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4501) (-6 -4500) (-15 -2214 ((-112) $)) (-15 -4415 ((-112) $)) (-15 -2648 ((-112) $)) (-15 -1828 ((-112) $)) (-15 -1526 ($ (-793) (-793))) (-15 -1869 ($ (-666 (-666 |t#1|)))) (-15 -1869 ($ (-793) (-793) (-1 |t#1| (-578) (-578)))) (-15 -2921 ($ (-793) |t#1|)) (-15 -3266 ($ (-666 |t#1|))) (-15 -3266 ($ (-666 $))) (-15 -2411 ($ |t#3|)) (-15 -1921 ($ |t#2|)) (-15 -1921 ($ $)) (-15 -3368 ($ $)) (-15 -1499 ($ $ $)) (-15 -3216 ($ $ $)) (-15 -3692 ((-666 (-666 |t#1|)) $)) (-15 -2436 ($ $ (-666 (-578)) (-666 (-578)))) (-15 -2590 ($ $ (-666 (-578)) (-666 (-578)) $)) (-15 -1923 ($ $ (-578) (-578))) (-15 -2701 ($ $ (-578) (-578))) (-15 -1839 ($ $ (-578) (-578) (-578) (-578))) (-15 -3962 ($ $ (-578) (-578) $)) (-15 -2472 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -2484 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-578) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-793))) (IF (|has| |t#1| (-570)) (-15 -3202 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2495 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -1612 ($ $)) |%noBranch|) (IF (|has| |t#1| (-570)) (PROGN (-15 -1875 ((-793) $)) (-15 -3199 ((-793) $)) (-15 -4342 ((-666 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4502 "*"))) (PROGN (-15 -2598 (|t#1| $)) (-15 -3627 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -3335 ((-3 $ "failed") $)) (-15 ** ($ $ (-578)))) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-57 |#1| |#2| |#3|) . T) ((-1248) . T)) +((-1612 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-1875 (((-793) |#4|) 120 (|has| |#1| (-570)) ELT)) (-3199 (((-793) |#4|) 96 (|has| |#1| (-570)) ELT)) (-4342 (((-666 |#3|) |#4|) 103 (|has| |#1| (-570)) ELT)) (-2023 (((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|) 135 (|has| |#1| (-319)) ELT)) (-3627 ((|#1| |#4|) 52 T ELT)) (-4040 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-570)) ELT)) (-3335 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-376)) ELT)) (-4466 ((|#4| |#4|) 88 (|has| |#1| (-570)) ELT)) (-3063 ((|#4| |#4| |#1| (-578) (-578)) 60 T ELT)) (-4158 ((|#4| |#4| (-578) (-578)) 55 T ELT)) (-1730 ((|#4| |#4| |#1| (-578) (-578)) 65 T ELT)) (-2598 ((|#1| |#4|) 98 T ELT)) (-3902 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-570)) ELT))) +(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2598 (|#1| |#4|)) (-15 -3627 (|#1| |#4|)) (-15 -4158 (|#4| |#4| (-578) (-578))) (-15 -3063 (|#4| |#4| |#1| (-578) (-578))) (-15 -1730 (|#4| |#4| |#1| (-578) (-578))) (IF (|has| |#1| (-570)) (PROGN (-15 -1875 ((-793) |#4|)) (-15 -3199 ((-793) |#4|)) (-15 -4342 ((-666 |#3|) |#4|)) (-15 -4466 (|#4| |#4|)) (-15 -4040 ((-3 |#4| "failed") |#4|)) (-15 -3902 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -1612 (|#4| |#4|)) (-15 -2023 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -3335 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-175) (-386 |#1|) (-386 |#1|) (-709 |#1| |#2| |#3|)) (T -710)) +((-3335 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-2023 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-710 *3 *4 *5 *6)) (-4 *6 (-709 *3 *4 *5)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-3902 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-4040 (*1 *2 *2) (|partial| -12 (-4 *3 (-570)) (-4 *3 (-175)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-4466 (*1 *2 *2) (-12 (-4 *3 (-570)) (-4 *3 (-175)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-4342 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-666 *6)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-3199 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-1875 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-1730 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-578)) (-4 *3 (-175)) (-4 *5 (-386 *3)) (-4 *6 (-386 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-709 *3 *5 *6)))) (-3063 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-578)) (-4 *3 (-175)) (-4 *5 (-386 *3)) (-4 *6 (-386 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-709 *3 *5 *6)))) (-4158 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-578)) (-4 *4 (-175)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *1 (-710 *4 *5 *6 *2)) (-4 *2 (-709 *4 *5 *6)))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-709 *2 *4 *5)))) (-2598 (*1 *2 *3) (-12 (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-709 *2 *4 *5))))) +(-10 -7 (-15 -2598 (|#1| |#4|)) (-15 -3627 (|#1| |#4|)) (-15 -4158 (|#4| |#4| (-578) (-578))) (-15 -3063 (|#4| |#4| |#1| (-578) (-578))) (-15 -1730 (|#4| |#4| |#1| (-578) (-578))) (IF (|has| |#1| (-570)) (PROGN (-15 -1875 ((-793) |#4|)) (-15 -3199 ((-793) |#4|)) (-15 -4342 ((-666 |#3|) |#4|)) (-15 -4466 (|#4| |#4|)) (-15 -4040 ((-3 |#4| "failed") |#4|)) (-15 -3902 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -1612 (|#4| |#4|)) (-15 -2023 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -3335 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1526 (($ (-793) (-793)) 64 T ELT)) (-3216 (($ $ $) NIL T ELT)) (-1921 (($ (-1298 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-2648 (((-112) $) NIL T ELT)) (-1923 (($ $ (-578) (-578)) 22 T ELT)) (-2701 (($ $ (-578) (-578)) NIL T ELT)) (-1839 (($ $ (-578) (-578) (-578) (-578)) NIL T ELT)) (-3368 (($ $) NIL T ELT)) (-2214 (((-112) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3962 (($ $ (-578) (-578) $) NIL T ELT)) (-2590 ((|#1| $ (-578) (-578) |#1|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578)) $) NIL T ELT)) (-3869 (($ $ (-578) (-1298 |#1|)) NIL T ELT)) (-3697 (($ $ (-578) (-1298 |#1|)) NIL T ELT)) (-2921 (($ (-793) |#1|) 37 T ELT)) (-3534 (($) NIL T CONST)) (-1612 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3978 (((-1298 |#1|) $ (-578)) NIL T ELT)) (-1875 (((-793) $) 48 (|has| |#1| (-570)) ELT)) (-3450 ((|#1| $ (-578) (-578) |#1|) 69 T ELT)) (-3382 ((|#1| $ (-578) (-578)) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL T ELT)) (-3199 (((-793) $) 50 (|has| |#1| (-570)) ELT)) (-4342 (((-666 (-1298 |#1|)) $) 53 (|has| |#1| (-570)) ELT)) (-3068 (((-793) $) 32 T ELT)) (-3749 (($ (-793) (-793) |#1|) 28 T ELT)) (-3082 (((-793) $) 33 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-3627 ((|#1| $) 44 (|has| |#1| (-6 (-4502 "*"))) ELT)) (-1850 (((-578) $) 10 T ELT)) (-3156 (((-578) $) 11 T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-1694 (((-578) $) 14 T ELT)) (-2915 (((-578) $) 65 T ELT)) (-1869 (($ (-666 (-666 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-578) (-578))) NIL T ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3692 (((-666 (-666 |#1|)) $) 76 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-3335 (((-3 $ "failed") $) 60 (|has| |#1| (-376)) ELT)) (-1499 (($ $ $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4291 (($ $ |#1|) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) (-578)) NIL T ELT) ((|#1| $ (-578) (-578) |#1|) NIL T ELT) (($ $ (-666 (-578)) (-666 (-578))) NIL T ELT)) (-3266 (($ (-666 |#1|)) NIL T ELT) (($ (-666 $)) NIL T ELT) (($ (-1298 |#1|)) 70 T ELT)) (-4415 (((-112) $) NIL T ELT)) (-2598 ((|#1| $) 42 (|has| |#1| (-6 (-4502 "*"))) ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) 80 (|has| |#1| (-633 (-550))) ELT)) (-4240 (((-1298 |#1|) $ (-578)) NIL T ELT)) (-2411 (($ (-1298 |#1|)) NIL T ELT) (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) NIL T ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) 38 T ELT) (($ $ (-578)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-578) $) NIL T ELT) (((-1298 |#1|) $ (-1298 |#1|)) NIL T ELT) (((-1298 |#1|) (-1298 |#1|) $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-711 |#1|) (-13 (-709 |#1| (-1298 |#1|) (-1298 |#1|)) (-10 -8 (-15 -3266 ($ (-1298 |#1|))) (IF (|has| |#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -3335 ((-3 $ "failed") $)) |%noBranch|))) (-1080)) (T -711)) +((-3335 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1080)))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1080)) (-5 *1 (-711 *3))))) +(-13 (-709 |#1| (-1298 |#1|) (-1298 |#1|)) (-10 -8 (-15 -3266 ($ (-1298 |#1|))) (IF (|has| |#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -3335 ((-3 $ "failed") $)) |%noBranch|))) +((-1720 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 37 T ELT)) (-2848 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 32 T ELT)) (-2102 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793)) 43 T ELT)) (-1820 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 25 T ELT)) (-3370 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 29 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 27 T ELT)) (-4070 (((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|)) 31 T ELT)) (-1813 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 23 T ELT)) (** (((-711 |#1|) (-711 |#1|) (-793)) 46 T ELT))) +(((-712 |#1|) (-10 -7 (-15 -1813 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1820 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3370 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3370 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -4070 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -2848 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1720 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2102 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793)))) (-1080)) (T -712)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-712 *4)))) (-2102 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-712 *4)))) (-1720 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-2848 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-4070 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-3370 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-3370 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-1820 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))) +(-10 -7 (-15 -1813 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1820 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3370 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3370 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -4070 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -2848 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1720 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2102 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793)))) +((-2818 (((-3 |#1| "failed") $) 18 T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-4151 (($) 7 T CONST)) (-2273 (($ |#1|) 8 T ELT)) (-2411 (($ |#1|) 16 T ELT) (((-886) $) 23 T ELT)) (-2355 (((-112) $ (|[\|\|]| |#1|)) 14 T ELT) (((-112) $ (|[\|\|]| -4151)) 11 T ELT)) (-4032 ((|#1| $) 15 T ELT))) +(((-713 |#1|) (-13 (-1293) (-1069 |#1|) (-632 (-886)) (-10 -8 (-15 -2273 ($ |#1|)) (-15 -2355 ((-112) $ (|[\|\|]| |#1|))) (-15 -2355 ((-112) $ (|[\|\|]| -4151))) (-15 -4032 (|#1| $)) (-15 -4151 ($) -1529))) (-632 (-886))) (T -713)) +((-2273 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-886))))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-886))) (-5 *2 (-112)) (-5 *1 (-713 *4)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4151)) (-5 *2 (-112)) (-5 *1 (-713 *4)) (-4 *4 (-632 (-886))))) (-4032 (*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-886))))) (-4151 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-886)))))) +(-13 (-1293) (-1069 |#1|) (-632 (-886)) (-10 -8 (-15 -2273 ($ |#1|)) (-15 -2355 ((-112) $ (|[\|\|]| |#1|))) (-15 -2355 ((-112) $ (|[\|\|]| -4151))) (-15 -4032 (|#1| $)) (-15 -4151 ($) -1529))) +((-1954 ((|#2| |#2| |#4|) 29 T ELT)) (-4116 (((-711 |#2|) |#3| |#4|) 35 T ELT)) (-2860 (((-711 |#2|) |#2| |#4|) 34 T ELT)) (-4103 (((-1298 |#2|) |#2| |#4|) 16 T ELT)) (-3563 ((|#2| |#3| |#4|) 28 T ELT)) (-1861 (((-711 |#2|) |#3| |#4| (-793) (-793)) 47 T ELT)) (-4317 (((-711 |#2|) |#2| |#4| (-793)) 46 T ELT))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4103 ((-1298 |#2|) |#2| |#4|)) (-15 -3563 (|#2| |#3| |#4|)) (-15 -1954 (|#2| |#2| |#4|)) (-15 -2860 ((-711 |#2|) |#2| |#4|)) (-15 -4317 ((-711 |#2|) |#2| |#4| (-793))) (-15 -4116 ((-711 |#2|) |#3| |#4|)) (-15 -1861 ((-711 |#2|) |#3| |#4| (-793) (-793)))) (-1131) (-927 |#1|) (-386 |#2|) (-13 (-386 |#1|) (-10 -7 (-6 -4500)))) (T -714)) +((-1861 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1131)) (-4 *7 (-927 *6)) (-5 *2 (-711 *7)) (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-386 *7)) (-4 *4 (-13 (-386 *6) (-10 -7 (-6 -4500)))))) (-4116 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *6 (-927 *5)) (-5 *2 (-711 *6)) (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-386 *6)) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500)))))) (-4317 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1131)) (-4 *3 (-927 *6)) (-5 *2 (-711 *3)) (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-386 *3)) (-4 *4 (-13 (-386 *6) (-10 -7 (-6 -4500)))))) (-2860 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *3 (-927 *5)) (-5 *2 (-711 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-386 *3)) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500)))))) (-1954 (*1 *2 *2 *3) (-12 (-4 *4 (-1131)) (-4 *2 (-927 *4)) (-5 *1 (-714 *4 *2 *5 *3)) (-4 *5 (-386 *2)) (-4 *3 (-13 (-386 *4) (-10 -7 (-6 -4500)))))) (-3563 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *2 (-927 *5)) (-5 *1 (-714 *5 *2 *3 *4)) (-4 *3 (-386 *2)) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500)))))) (-4103 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *3 (-927 *5)) (-5 *2 (-1298 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-386 *3)) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500))))))) +(-10 -7 (-15 -4103 ((-1298 |#2|) |#2| |#4|)) (-15 -3563 (|#2| |#3| |#4|)) (-15 -1954 (|#2| |#2| |#4|)) (-15 -2860 ((-711 |#2|) |#2| |#4|)) (-15 -4317 ((-711 |#2|) |#2| |#4| (-793))) (-15 -4116 ((-711 |#2|) |#3| |#4|)) (-15 -1861 ((-711 |#2|) |#3| |#4| (-793) (-793)))) +((-1420 (((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)) 20 T ELT)) (-3621 ((|#1| (-711 |#2|)) 9 T ELT)) (-1992 (((-711 |#1|) (-711 |#2|)) 18 T ELT))) +(((-715 |#1| |#2|) (-10 -7 (-15 -3621 (|#1| (-711 |#2|))) (-15 -1992 ((-711 |#1|) (-711 |#2|))) (-15 -1420 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)))) (-570) (-1023 |#1|)) (T -715)) +((-1420 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-570)) (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4))) (-5 *1 (-715 *4 *5)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-570)) (-5 *2 (-711 *4)) (-5 *1 (-715 *4 *5)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-1023 *2)) (-4 *2 (-570)) (-5 *1 (-715 *2 *4))))) +(-10 -7 (-15 -3621 (|#1| (-711 |#2|))) (-15 -1992 ((-711 |#1|) (-711 |#2|))) (-15 -1420 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4306 (((-711 (-721))) NIL T ELT) (((-711 (-721)) (-1298 $)) NIL T ELT)) (-1881 (((-721) $) NIL T ELT)) (-1502 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1372 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| (-721) (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) ELT)) (-1457 (($ $) NIL (-2230 (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) (|has| (-721) (-376))) ELT)) (-3034 (((-432 $) $) NIL (-2230 (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) (|has| (-721) (-376))) ELT)) (-2811 (($ $) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) ELT)) (-2732 (((-112) $ $) NIL (|has| (-721) (-319)) ELT)) (-2222 (((-793)) NIL (|has| (-721) (-381)) ELT)) (-1478 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1349 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1528 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1392 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-721) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-721) (-1069 (-421 (-578)))) ELT)) (-3516 (((-578) $) NIL T ELT) (((-721) $) NIL T ELT) (((-421 (-578)) $) NIL (|has| (-721) (-1069 (-421 (-578)))) ELT)) (-3095 (($ (-1298 (-721))) NIL T ELT) (($ (-1298 (-721)) (-1298 $)) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-721) (-362)) ELT)) (-3154 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-2009 (((-711 (-721)) $) NIL T ELT) (((-711 (-721)) $ (-1298 $)) NIL T ELT)) (-2242 (((-711 (-721)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-721))) (|:| |vec| (-1298 (-721)))) (-711 $) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-721) (-660 (-578))) ELT) (((-711 (-578)) (-711 $)) NIL (|has| (-721) (-660 (-578))) ELT)) (-2512 (((-3 $ "failed") (-421 (-1203 (-721)))) NIL (|has| (-721) (-376)) ELT) (($ (-1203 (-721))) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2823 (((-721) $) 29 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL (|has| (-721) (-559)) ELT)) (-1474 (((-112) $) NIL (|has| (-721) (-559)) ELT)) (-3805 (((-421 (-578)) $) NIL (|has| (-721) (-559)) ELT)) (-1875 (((-950)) NIL T ELT)) (-2062 (($) NIL (|has| (-721) (-381)) ELT)) (-3166 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| (-721) (-319)) ELT)) (-3146 (($) NIL (|has| (-721) (-362)) ELT)) (-2681 (((-112) $) NIL (|has| (-721) (-362)) ELT)) (-2953 (($ $) NIL (|has| (-721) (-362)) ELT) (($ $ (-793)) NIL (|has| (-721) (-362)) ELT)) (-2159 (((-112) $) NIL (-2230 (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) (|has| (-721) (-376))) ELT)) (-4152 (((-2 (|:| |r| (-721)) (|:| |phi| (-721))) $) NIL (-12 (|has| (-721) (-1091)) (|has| (-721) (-1233))) ELT)) (-2551 (($) NIL (|has| (-721) (-1233)) ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-721) (-911 (-392))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-721) (-911 (-578))) ELT)) (-4059 (((-855 (-950)) $) NIL (|has| (-721) (-362)) ELT) (((-950) $) NIL (|has| (-721) (-362)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT)) (-1550 (((-721) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-721) (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| (-721) (-319)) ELT)) (-1993 (((-1203 (-721)) $) NIL (|has| (-721) (-376)) ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3611 (($ (-1 (-721) (-721)) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| (-721) (-381)) ELT)) (-3864 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2501 (((-1203 (-721)) $) NIL T ELT)) (-3908 (((-711 (-721)) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-721))) (|:| |vec| (-1298 (-721)))) (-1298 $) $) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-721) (-660 (-578))) ELT) (((-711 (-578)) (-1298 $)) NIL (|has| (-721) (-660 (-578))) ELT)) (-2389 (($ (-666 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| (-721) (-376)) ELT)) (-2199 (($) NIL (|has| (-721) (-362)) CONST)) (-2087 (($ (-950)) NIL (|has| (-721) (-381)) ELT)) (-4221 (($) NIL T ELT)) (-2834 (((-721) $) 31 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| (-721) (-319)) ELT)) (-2421 (($ (-666 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| (-721) (-362)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) ELT)) (-2800 (((-432 $) $) NIL (-2230 (-12 (|has| (-721) (-319)) (|has| (-721) (-938))) (|has| (-721) (-376))) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-721) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ (-721)) NIL (|has| (-721) (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| (-721) (-319)) ELT)) (-3587 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3364 (($ $ (-1207) (-721)) NIL (|has| (-721) (-528 (-1207) (-721))) ELT) (($ $ (-666 (-1207)) (-666 (-721))) NIL (|has| (-721) (-528 (-1207) (-721))) ELT) (($ $ (-666 (-306 (-721)))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-306 (-721))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-721) (-721)) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-666 (-721)) (-666 (-721))) NIL (|has| (-721) (-321 (-721))) ELT)) (-1449 (((-793) $) NIL (|has| (-721) (-319)) ELT)) (-2436 (($ $ (-721)) NIL (|has| (-721) (-298 (-721) (-721))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-3232 (((-721)) NIL T ELT) (((-721) (-1298 $)) NIL T ELT)) (-4375 (((-3 (-793) "failed") $ $) NIL (|has| (-721) (-362)) ELT) (((-793) $) NIL (|has| (-721) (-362)) ELT)) (-2031 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-2230 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-3345 (((-711 (-721)) (-1298 $) (-1 (-721) (-721))) NIL (|has| (-721) (-376)) ELT)) (-4269 (((-1203 (-721))) NIL T ELT)) (-1541 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1403 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3430 (($) NIL (|has| (-721) (-362)) ELT)) (-1515 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1382 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1489 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1361 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1453 (((-711 (-721)) (-1298 $)) NIL T ELT) (((-1298 (-721)) $) NIL T ELT) (((-711 (-721)) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 (-721)) $ (-1298 $)) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-721) (-633 (-550))) ELT) (((-172 (-229)) $) NIL (|has| (-721) (-1053)) ELT) (((-172 (-392)) $) NIL (|has| (-721) (-1053)) ELT) (((-917 (-392)) $) NIL (|has| (-721) (-633 (-917 (-392)))) ELT) (((-917 (-578)) $) NIL (|has| (-721) (-633 (-917 (-578)))) ELT) (($ (-1203 (-721))) NIL T ELT) (((-1203 (-721)) $) NIL T ELT) (($ (-1298 (-721))) NIL T ELT) (((-1298 (-721)) $) NIL T ELT)) (-1433 (($ $) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-2230 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-938))) (|has| (-721) (-362))) ELT)) (-3921 (($ (-721) (-721)) 12 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-721)) NIL T ELT) (($ (-172 (-392))) 13 T ELT) (($ (-172 (-578))) 19 T ELT) (($ (-172 (-721))) 28 T ELT) (($ (-172 (-723))) 25 T ELT) (((-172 (-392)) $) 33 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| (-721) (-1069 (-421 (-578)))) (|has| (-721) (-376))) ELT)) (-2213 (($ $) NIL (|has| (-721) (-362)) ELT) (((-3 $ "failed") $) NIL (-2230 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-938))) (|has| (-721) (-147))) ELT)) (-1566 (((-1203 (-721)) $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT)) (-1576 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1436 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-1552 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1414 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1598 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1456 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3461 (((-721) $) NIL (|has| (-721) (-1233)) ELT)) (-3502 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1467 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1587 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1447 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1564 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1424 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2628 (($ $) NIL (|has| (-721) (-1091)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-2230 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL (|has| (-721) (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| (-721) (-1233)) ELT) (($ $ (-421 (-578))) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT) (($ $ (-578)) NIL (|has| (-721) (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-721) $) NIL T ELT) (($ $ (-721)) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| (-721) (-376)) ELT) (($ $ (-421 (-578))) NIL (|has| (-721) (-376)) ELT))) +(((-716) (-13 (-401) (-168 (-721)) (-10 -8 (-15 -2411 ($ (-172 (-392)))) (-15 -2411 ($ (-172 (-578)))) (-15 -2411 ($ (-172 (-721)))) (-15 -2411 ($ (-172 (-723)))) (-15 -2411 ((-172 (-392)) $))))) (T -716)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-172 (-392))) (-5 *1 (-716)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-172 (-578))) (-5 *1 (-716)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-172 (-721))) (-5 *1 (-716)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-172 (-723))) (-5 *1 (-716)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-172 (-392))) (-5 *1 (-716))))) +(-13 (-401) (-168 (-721)) (-10 -8 (-15 -2411 ($ (-172 (-392)))) (-15 -2411 ($ (-172 (-578)))) (-15 -2411 ($ (-172 (-721)))) (-15 -2411 ($ (-172 (-723)))) (-15 -2411 ((-172 (-392)) $)))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3777 (($ $) 63 T ELT)) (-3776 (($ $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ |#1| $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-3109 (((-666 (-2 (|:| -2754 |#1|) (|:| -4324 (-793)))) $) 62 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 |#1|)) 49 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 51 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-717 |#1|) (-142) (-1131)) (T -717)) +((-4328 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-717 *2)) (-4 *2 (-1131)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1131)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1131)) (-5 *2 (-666 (-2 (|:| -2754 *3) (|:| -4324 (-793)))))))) +(-13 (-242 |t#1|) (-10 -8 (-15 -4328 ($ |t#1| $ (-793))) (-15 -3777 ($ $)) (-15 -3109 ((-666 (-2 (|:| -2754 |t#1|) (|:| -4324 (-793)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3182 (((-666 |#1|) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))) (-578)) 65 T ELT)) (-3877 ((|#1| |#1| (-578)) 62 T ELT)) (-2421 ((|#1| |#1| |#1| (-578)) 46 T ELT)) (-2800 (((-666 |#1|) |#1| (-578)) 49 T ELT)) (-2203 ((|#1| |#1| (-578) |#1| (-578)) 40 T ELT)) (-4364 (((-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))) |#1| (-578)) 61 T ELT))) +(((-718 |#1|) (-10 -7 (-15 -2421 (|#1| |#1| |#1| (-578))) (-15 -3877 (|#1| |#1| (-578))) (-15 -2800 ((-666 |#1|) |#1| (-578))) (-15 -4364 ((-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))) |#1| (-578))) (-15 -3182 ((-666 |#1|) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))) (-578))) (-15 -2203 (|#1| |#1| (-578) |#1| (-578)))) (-1274 (-578))) (T -718)) +((-2203 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-718 *2)) (-4 *2 (-1274 *3)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-2 (|:| -2800 *5) (|:| -3683 (-578))))) (-5 *4 (-578)) (-4 *5 (-1274 *4)) (-5 *2 (-666 *5)) (-5 *1 (-718 *5)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *4 (-578)) (-5 *2 (-666 (-2 (|:| -2800 *3) (|:| -3683 *4)))) (-5 *1 (-718 *3)) (-4 *3 (-1274 *4)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-578)) (-5 *2 (-666 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1274 *4)))) (-3877 (*1 *2 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-718 *2)) (-4 *2 (-1274 *3)))) (-2421 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-718 *2)) (-4 *2 (-1274 *3))))) +(-10 -7 (-15 -2421 (|#1| |#1| |#1| (-578))) (-15 -3877 (|#1| |#1| (-578))) (-15 -2800 ((-666 |#1|) |#1| (-578))) (-15 -4364 ((-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))) |#1| (-578))) (-15 -3182 ((-666 |#1|) (-666 (-2 (|:| -2800 |#1|) (|:| -3683 (-578)))) (-578))) (-15 -2203 (|#1| |#1| (-578) |#1| (-578)))) +((-2413 (((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-3782 (((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-666 (-272))) 53 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-666 (-272))) 55 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1125 (-229)) (-1125 (-229)) (-666 (-272))) 57 T ELT)) (-1377 (((-1164 (-229)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-666 (-272))) NIL T ELT)) (-1657 (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1125 (-229)) (-1125 (-229)) (-666 (-272))) 58 T ELT))) +(((-719) (-10 -7 (-15 -3782 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -3782 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -3782 ((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -1657 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -1377 ((-1164 (-229)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -2413 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -719)) +((-2413 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *1 (-719)))) (-1377 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1125 (-229))) (-5 *6 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-1657 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) (-5 *5 (-1125 (-229))) (-5 *6 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-3782 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-229))) (-5 *5 (-666 (-272))) (-5 *1 (-719)))) (-3782 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-229))) (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-3782 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) (-5 *5 (-1125 (-229))) (-5 *6 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-719))))) +(-10 -7 (-15 -3782 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -3782 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -3782 ((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -1657 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1125 (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -1377 ((-1164 (-229)) (-328 (-578)) (-328 (-578)) (-328 (-578)) (-1 (-229) (-229)) (-1125 (-229)) (-666 (-272)))) (-15 -2413 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))))) +((-2800 (((-432 (-1203 |#4|)) (-1203 |#4|)) 86 T ELT) (((-432 |#4|) |#4|) 266 T ELT))) +(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-432 |#4|) |#4|)) (-15 -2800 ((-432 (-1203 |#4|)) (-1203 |#4|)))) (-871) (-815) (-362) (-978 |#3| |#2| |#1|)) (T -720)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-362)) (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-432 (-1203 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-362)) (-5 *2 (-432 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) +(-10 -7 (-15 -2800 ((-432 |#4|) |#4|)) (-15 -2800 ((-432 (-1203 |#4|)) (-1203 |#4|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 97 T ELT)) (-2873 (((-578) $) 34 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-2140 (($ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2811 (($ $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2753 (($ $) NIL T ELT)) (-2818 (((-3 (-578) "failed") $) 85 T ELT) (((-3 (-421 (-578)) "failed") $) 28 T ELT) (((-3 (-392) "failed") $) 82 T ELT)) (-3516 (((-578) $) 87 T ELT) (((-421 (-578)) $) 79 T ELT) (((-392) $) 80 T ELT)) (-3154 (($ $ $) 109 T ELT)) (-3493 (((-3 $ "failed") $) 100 T ELT)) (-3166 (($ $ $) 108 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3133 (((-950)) 89 T ELT) (((-950) (-950)) 88 T ELT)) (-3789 (((-112) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL T ELT)) (-4059 (((-578) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL T ELT)) (-1550 (($ $) NIL T ELT)) (-1721 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3145 (((-578) (-578)) 94 T ELT) (((-578)) 95 T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL (-12 (-2309 (|has| $ (-6 -4483))) (-2309 (|has| $ (-6 -4491)))) ELT)) (-3444 (((-578) (-578)) 92 T ELT) (((-578)) 93 T ELT)) (-3667 (($ $ $) NIL T ELT) (($) NIL (-12 (-2309 (|has| $ (-6 -4483))) (-2309 (|has| $ (-6 -4491)))) ELT)) (-3033 (((-578) $) 17 T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 104 T ELT)) (-1744 (((-950) (-578)) NIL (|has| $ (-6 -4491)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL T ELT)) (-3575 (($ $) NIL T ELT)) (-3243 (($ (-578) (-578)) NIL T ELT) (($ (-578) (-578) (-950)) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) 105 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2764 (((-578) $) 24 T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 107 T ELT)) (-3472 (((-950)) NIL T ELT) (((-950) (-950)) NIL (|has| $ (-6 -4491)) ELT)) (-2066 (((-950) (-578)) NIL (|has| $ (-6 -4491)) ELT)) (-3343 (((-392) $) NIL T ELT) (((-229) $) NIL T ELT) (((-917 (-392)) $) NIL T ELT)) (-2411 (((-886) $) 63 T ELT) (($ (-578)) 75 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 78 T ELT) (($ (-578)) 75 T ELT) (($ (-421 (-578))) 78 T ELT) (($ (-392)) 72 T ELT) (((-392) $) 61 T ELT) (($ (-723)) 66 T ELT)) (-3753 (((-793)) 119 T CONST)) (-3399 (($ (-578) (-578) (-950)) 54 T ELT)) (-1585 (($ $) NIL T ELT)) (-4068 (((-950)) NIL T ELT) (((-950) (-950)) NIL (|has| $ (-6 -4491)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (((-950)) 91 T ELT) (((-950) (-950)) 90 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL T ELT)) (-2368 (($) 37 T CONST)) (-2379 (($) 18 T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 96 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 118 T ELT)) (-2495 (($ $ $) 77 T ELT)) (-2484 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-2472 (($ $ $) 114 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT) (($ $ (-421 (-578))) 103 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-721) (-13 (-418) (-401) (-376) (-1069 (-392)) (-1069 (-421 (-578))) (-149) (-10 -8 (-15 -3133 ((-950) (-950))) (-15 -3133 ((-950))) (-15 -3648 ((-950) (-950))) (-15 -3444 ((-578) (-578))) (-15 -3444 ((-578))) (-15 -3145 ((-578) (-578))) (-15 -3145 ((-578))) (-15 -2411 ((-392) $)) (-15 -2411 ($ (-723))) (-15 -3033 ((-578) $)) (-15 -2764 ((-578) $)) (-15 -3399 ($ (-578) (-578) (-950)))))) (T -721)) +((-2764 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) (-3133 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-721)))) (-3133 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-721)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-721)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) (-3444 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) (-3145 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) (-3145 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-392)) (-5 *1 (-721)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721)))) (-3399 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-578)) (-5 *3 (-950)) (-5 *1 (-721))))) +(-13 (-418) (-401) (-376) (-1069 (-392)) (-1069 (-421 (-578))) (-149) (-10 -8 (-15 -3133 ((-950) (-950))) (-15 -3133 ((-950))) (-15 -3648 ((-950) (-950))) (-15 -3444 ((-578) (-578))) (-15 -3444 ((-578))) (-15 -3145 ((-578) (-578))) (-15 -3145 ((-578))) (-15 -2411 ((-392) $)) (-15 -2411 ($ (-723))) (-15 -3033 ((-578) $)) (-15 -2764 ((-578) $)) (-15 -3399 ($ (-578) (-578) (-950))))) +((-3191 (((-711 |#1|) (-711 |#1|) |#1| |#1|) 85 T ELT)) (-1612 (((-711 |#1|) (-711 |#1|) |#1|) 66 T ELT)) (-2030 (((-711 |#1|) (-711 |#1|) |#1|) 86 T ELT)) (-3152 (((-711 |#1|) (-711 |#1|)) 67 T ELT)) (-2023 (((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|) 84 T ELT))) +(((-722 |#1|) (-10 -7 (-15 -3152 ((-711 |#1|) (-711 |#1|))) (-15 -1612 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2030 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -3191 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -2023 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|))) (-319)) (T -722)) +((-2023 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-722 *3)) (-4 *3 (-319)))) (-3191 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2030 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-3152 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) +(-10 -7 (-15 -3152 ((-711 |#1|) (-711 |#1|))) (-15 -1612 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2030 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -3191 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -2023 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-1452 (($ $ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3267 (($ $ $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL T ELT)) (-1887 (($ $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) 31 T ELT)) (-3516 (((-578) $) 29 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-1474 (((-112) $) NIL T ELT)) (-3805 (((-421 (-578)) $) NIL T ELT)) (-2062 (($ $) NIL T ELT) (($) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3092 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-3789 (((-112) $) NIL T ELT)) (-2492 (($ $ $) NIL T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2382 (((-112) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL T ELT)) (-1721 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2931 (($ $ $ $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-1693 (((-950) (-950)) 10 T ELT) (((-950)) 9 T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3695 (($ $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT)) (-2389 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-1354 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2454 (($ $) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3873 (((-112) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-1687 (($ $) NIL T ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-229) $) NIL T ELT) (((-392) $) NIL T ELT) (((-917 (-578)) $) NIL T ELT) (((-550) $) NIL T ELT) (((-578) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) 28 T ELT) (($ $) NIL T ELT) (($ (-578)) 28 T ELT) (((-328 $) (-328 (-578))) 18 T ELT)) (-3753 (((-793)) NIL T CONST)) (-3953 (((-112) $ $) NIL T ELT)) (-2776 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (($) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3559 (($ $ $ $) NIL T ELT)) (-2628 (($ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-723) (-13 (-401) (-559) (-10 -8 (-15 -1693 ((-950) (-950))) (-15 -1693 ((-950))) (-15 -2411 ((-328 $) (-328 (-578))))))) (T -723)) +((-1693 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-723)))) (-1693 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-723)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-328 (-578))) (-5 *2 (-328 (-723))) (-5 *1 (-723))))) +(-13 (-401) (-559) (-10 -8 (-15 -1693 ((-950) (-950))) (-15 -1693 ((-950))) (-15 -2411 ((-328 $) (-328 (-578)))))) +((-1450 (((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)) 19 T ELT)) (-4218 (((-1 |#4| |#2| |#3|) (-1207)) 12 T ELT))) +(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4218 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -1450 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)))) (-633 (-550)) (-1248) (-1248) (-1248)) (T -724)) +((-1450 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7)) (-4 *3 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248)) (-4 *7 (-1248)))) (-4218 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *4 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248)) (-4 *7 (-1248))))) +(-10 -7 (-15 -4218 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -1450 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)))) +((-1375 (((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1207)) 48 T ELT))) +(((-725 |#1|) (-10 -7 (-15 -1375 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -1375 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)))) (-633 (-550))) (T -725)) +((-1375 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-550))))) (-1375 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-550)))))) +(-10 -7 (-15 -1375 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -1375 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)))) +((-2265 (((-1207) |#1| (-1207) (-666 (-1207))) 10 T ELT) (((-1207) |#1| (-1207) (-1207) (-1207)) 13 T ELT) (((-1207) |#1| (-1207) (-1207)) 12 T ELT) (((-1207) |#1| (-1207)) 11 T ELT))) +(((-726 |#1|) (-10 -7 (-15 -2265 ((-1207) |#1| (-1207))) (-15 -2265 ((-1207) |#1| (-1207) (-1207))) (-15 -2265 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -2265 ((-1207) |#1| (-1207) (-666 (-1207))))) (-633 (-550))) (T -726)) +((-2265 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-666 (-1207))) (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-550))))) (-2265 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-550))))) (-2265 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-550))))) (-2265 (*1 *2 *3 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-550)))))) +(-10 -7 (-15 -2265 ((-1207) |#1| (-1207))) (-15 -2265 ((-1207) |#1| (-1207) (-1207))) (-15 -2265 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -2265 ((-1207) |#1| (-1207) (-666 (-1207))))) +((-4293 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-727 |#1| |#2|) (-10 -7 (-15 -4293 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1248) (-1248)) (T -727)) +((-4293 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-727 *3 *4)) (-4 *3 (-1248)) (-4 *4 (-1248))))) +(-10 -7 (-15 -4293 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3212 (((-1 |#3| |#2|) (-1207)) 11 T ELT)) (-1450 (((-1 |#3| |#2|) |#1| (-1207)) 21 T ELT))) +(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -3212 ((-1 |#3| |#2|) (-1207))) (-15 -1450 ((-1 |#3| |#2|) |#1| (-1207)))) (-633 (-550)) (-1248) (-1248)) (T -728)) +((-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6)) (-4 *3 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6)) (-4 *4 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248))))) +(-10 -7 (-15 -3212 ((-1 |#3| |#2|) (-1207))) (-15 -1450 ((-1 |#3| |#2|) |#1| (-1207)))) +((-4304 (((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 (-1203 |#4|)) (-666 |#3|) (-666 |#4|) (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| |#4|)))) (-666 (-793)) (-1298 (-666 (-1203 |#3|))) |#3|) 92 T ELT)) (-2306 (((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 (-1203 |#3|)) (-666 |#3|) (-666 |#4|) (-666 (-793)) |#3|) 110 T ELT)) (-1421 (((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 |#3|) (-666 (-793)) (-666 (-1203 |#4|)) (-1298 (-666 (-1203 |#3|))) |#3|) 47 T ELT))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1421 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 |#3|) (-666 (-793)) (-666 (-1203 |#4|)) (-1298 (-666 (-1203 |#3|))) |#3|)) (-15 -2306 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 (-1203 |#3|)) (-666 |#3|) (-666 |#4|) (-666 (-793)) |#3|)) (-15 -4304 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 (-1203 |#4|)) (-666 |#3|) (-666 |#4|) (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| |#4|)))) (-666 (-793)) (-1298 (-666 (-1203 |#3|))) |#3|))) (-815) (-871) (-319) (-978 |#3| |#1| |#2|)) (T -729)) +((-4304 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-666 (-1203 *13))) (-5 *3 (-1203 *13)) (-5 *4 (-666 *12)) (-5 *5 (-666 *10)) (-5 *6 (-666 *13)) (-5 *7 (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| *13))))) (-5 *8 (-666 (-793))) (-5 *9 (-1298 (-666 (-1203 *10)))) (-4 *12 (-871)) (-4 *10 (-319)) (-4 *13 (-978 *10 *11 *12)) (-4 *11 (-815)) (-5 *1 (-729 *11 *12 *10 *13)))) (-2306 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-666 *11)) (-5 *5 (-666 (-1203 *9))) (-5 *6 (-666 *9)) (-5 *7 (-666 *12)) (-5 *8 (-666 (-793))) (-4 *11 (-871)) (-4 *9 (-319)) (-4 *12 (-978 *9 *10 *11)) (-4 *10 (-815)) (-5 *2 (-666 (-1203 *12))) (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1203 *12)))) (-1421 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-666 (-1203 *11))) (-5 *3 (-1203 *11)) (-5 *4 (-666 *10)) (-5 *5 (-666 *8)) (-5 *6 (-666 (-793))) (-5 *7 (-1298 (-666 (-1203 *8)))) (-4 *10 (-871)) (-4 *8 (-319)) (-4 *11 (-978 *8 *9 *10)) (-4 *9 (-815)) (-5 *1 (-729 *9 *10 *8 *11))))) +(-10 -7 (-15 -1421 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 |#3|) (-666 (-793)) (-666 (-1203 |#4|)) (-1298 (-666 (-1203 |#3|))) |#3|)) (-15 -2306 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 (-1203 |#3|)) (-666 |#3|) (-666 |#4|) (-666 (-793)) |#3|)) (-15 -4304 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-666 |#2|) (-666 (-1203 |#4|)) (-666 |#3|) (-666 |#4|) (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| |#4|)))) (-666 (-793)) (-1298 (-666 (-1203 |#3|))) |#3|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3136 (($ $) 48 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2925 (($ |#1| (-793)) 46 T ELT)) (-3937 (((-793) $) 50 T ELT)) (-3110 ((|#1| $) 49 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3683 (((-793) $) 51 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT)) (-3708 ((|#1| $ (-793)) 47 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT))) +(((-730 |#1|) (-142) (-1080)) (T -730)) +((-3683 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080))))) +(-13 (-1080) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3683 ((-793) $)) (-15 -3937 ((-793) $)) (-15 -3110 (|t#1| $)) (-15 -3136 ($ $)) (-15 -3708 (|t#1| $ (-793))) (-15 -2925 ($ |t#1| (-793))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3611 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-731 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3611 (|#6| (-1 |#4| |#1|) |#3|))) (-570) (-1274 |#1|) (-1274 (-421 |#2|)) (-570) (-1274 |#4|) (-1274 (-421 |#5|))) (T -731)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-570)) (-4 *7 (-570)) (-4 *6 (-1274 *5)) (-4 *2 (-1274 (-421 *8))) (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1274 (-421 *6))) (-4 *8 (-1274 *7))))) +(-10 -7 (-15 -3611 (|#6| (-1 |#4| |#1|) |#3|))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4278 (((-1189) (-886)) 38 T ELT)) (-1647 (((-1303) (-1189)) 31 T ELT)) (-2548 (((-1189) (-886)) 28 T ELT)) (-3592 (((-1189) (-886)) 29 T ELT)) (-2411 (((-886) $) NIL T ELT) (((-1189) (-886)) 27 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-732) (-13 (-1131) (-10 -7 (-15 -2411 ((-1189) (-886))) (-15 -2548 ((-1189) (-886))) (-15 -3592 ((-1189) (-886))) (-15 -4278 ((-1189) (-886))) (-15 -1647 ((-1303) (-1189)))))) (T -732)) +((-2411 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-732))))) +(-13 (-1131) (-10 -7 (-15 -2411 ((-1189) (-886))) (-15 -2548 ((-1189) (-886))) (-15 -3592 ((-1189) (-886))) (-15 -4278 ((-1189) (-886))) (-15 -1647 ((-1303) (-1189))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) NIL T ELT)) (-2512 (($ |#1| |#2|) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2703 ((|#2| $) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3338 (((-3 $ "failed") $ $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-733 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2411 (|#1| $)) (-15 -2512 ($ |#1| |#2|)) (-15 -3338 ((-3 $ "failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -733)) +((-2703 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2411 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2512 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3338 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-376) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2411 (|#1| $)) (-15 -2512 ($ |#1| |#2|)) (-15 -3338 ((-3 $ "failed") $ $)))) +((-3213 (((-112) $ $) 87 T ELT)) (-3623 (((-112) $) 36 T ELT)) (-2981 (((-1298 |#1|) $ (-793)) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-1868 (($ (-1203 |#1|)) NIL T ELT)) (-4420 (((-1203 $) $ (-1113)) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-1113))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3594 (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-2222 (((-793)) 54 (|has| |#1| (-381)) ELT)) (-3734 (($ $ (-793)) NIL T ELT)) (-3794 (($ $ (-793)) NIL T ELT)) (-3531 ((|#2| |#2|) 50 T ELT)) (-4299 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-1113) $) NIL T ELT)) (-2035 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) 40 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2512 (($ |#2|) 48 T ELT)) (-3493 (((-3 $ "failed") $) 97 T ELT)) (-2062 (($) 58 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4467 (($ $ $) NIL T ELT)) (-4407 (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-3580 (((-2 (|:| -2672 |#1|) (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-3935 (((-987 $)) 89 T ELT)) (-2535 (($ $ |#1| (-793) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1113) (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1113) (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4059 (((-793) $ $) NIL (|has| |#1| (-570)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-1183)) ELT)) (-2936 (($ (-1203 |#1|) (-1113)) NIL T ELT) (($ (-1203 $) (-1113)) NIL T ELT)) (-4196 (($ $ (-793)) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) 85 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2703 ((|#2|) 51 T ELT)) (-3937 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-2500 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1781 (((-1203 |#1|) $) NIL T ELT)) (-4006 (((-3 (-1113) "failed") $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#1| (-381)) ELT)) (-2501 ((|#2| $) 47 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) 34 T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2599 (((-2 (|:| -2196 $) (|:| -1886 $)) $ (-793)) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-1113)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2199 (($) NIL (|has| |#1| (-1183)) CONST)) (-2087 (($ (-950)) NIL (|has| |#1| (-381)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3828 (($ $) 88 (|has| |#1| (-362)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-666 (-1113)) (-666 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-666 (-1113)) (-666 $)) NIL T ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-570)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-570)) ELT)) (-3293 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-3232 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3683 (((-793) $) 38 T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-1113) (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2610 (((-987 $)) 42 T ELT)) (-1825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-570)) ELT)) (-2411 (((-886) $) 68 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1113)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) 70 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) 25 T CONST)) (-1387 (((-1298 |#1|) $) 83 T ELT)) (-4050 (($ (-1298 |#1|)) 57 T ELT)) (-2379 (($) 8 T CONST)) (-1676 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2260 (((-1298 |#1|) $) NIL T ELT)) (-2384 (((-112) $ $) 76 T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 39 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 92 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) +(((-734 |#1| |#2|) (-13 (-1274 |#1|) (-635 |#2|) (-10 -8 (-15 -3531 (|#2| |#2|)) (-15 -2703 (|#2|)) (-15 -2512 ($ |#2|)) (-15 -2501 (|#2| $)) (-15 -1387 ((-1298 |#1|) $)) (-15 -4050 ($ (-1298 |#1|))) (-15 -2260 ((-1298 |#1|) $)) (-15 -3935 ((-987 $))) (-15 -2610 ((-987 $))) (IF (|has| |#1| (-362)) (-15 -3828 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1080) (-1274 |#1|)) (T -734)) +((-3531 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1274 *3)))) (-2703 (*1 *2) (-12 (-4 *2 (-1274 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) (-2512 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1274 *3)))) (-2501 (*1 *2 *1) (-12 (-4 *2 (-1274 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) (-1387 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-1298 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1274 *3)))) (-4050 (*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1080)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1274 *3)))) (-2260 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-1298 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1274 *3)))) (-3935 (*1 *2) (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1274 *3)))) (-2610 (*1 *2) (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1274 *3)))) (-3828 (*1 *1 *1) (-12 (-4 *2 (-362)) (-4 *2 (-1080)) (-5 *1 (-734 *2 *3)) (-4 *3 (-1274 *2))))) +(-13 (-1274 |#1|) (-635 |#2|) (-10 -8 (-15 -3531 (|#2| |#2|)) (-15 -2703 (|#2|)) (-15 -2512 ($ |#2|)) (-15 -2501 (|#2| $)) (-15 -1387 ((-1298 |#1|) $)) (-15 -4050 ($ (-1298 |#1|))) (-15 -2260 ((-1298 |#1|) $)) (-15 -3935 ((-987 $))) (-15 -2610 ((-987 $))) (IF (|has| |#1| (-362)) (-15 -3828 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 ((|#1| $) 13 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2764 ((|#2| $) 12 T ELT)) (-2423 (($ |#1| |#2|) 16 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-2 (|:| -2087 |#1|) (|:| -2764 |#2|))) 15 T ELT) (((-2 (|:| -2087 |#1|) (|:| -2764 |#2|)) $) 14 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 11 T ELT))) +(((-735 |#1| |#2| |#3|) (-13 (-871) (-504 (-2 (|:| -2087 |#1|) (|:| -2764 |#2|))) (-10 -8 (-15 -2764 (|#2| $)) (-15 -2087 (|#1| $)) (-15 -2423 ($ |#1| |#2|)))) (-871) (-1131) (-1 (-112) (-2 (|:| -2087 |#1|) (|:| -2764 |#2|)) (-2 (|:| -2087 |#1|) (|:| -2764 |#2|)))) (T -735)) +((-2764 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-871)) (-14 *4 (-1 (-112) (-2 (|:| -2087 *3) (|:| -2764 *2)) (-2 (|:| -2087 *3) (|:| -2764 *2)))))) (-2087 (*1 *2 *1) (-12 (-4 *2 (-871)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1131)) (-14 *4 (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *3)) (-2 (|:| -2087 *2) (|:| -2764 *3)))))) (-2423 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-1131)) (-14 *4 (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *3)) (-2 (|:| -2087 *2) (|:| -2764 *3))))))) +(-13 (-871) (-504 (-2 (|:| -2087 |#1|) (|:| -2764 |#2|))) (-10 -8 (-15 -2764 (|#2| $)) (-15 -2087 (|#1| $)) (-15 -2423 ($ |#1| |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 66 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 102 T ELT) (((-3 (-116) "failed") $) 108 T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-116) $) 39 T ELT)) (-3493 (((-3 $ "failed") $) 103 T ELT)) (-3318 ((|#2| (-116) |#2|) 93 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1670 (($ |#1| (-374 (-116))) 14 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4444 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-1423 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-2436 ((|#2| $ |#2|) 33 T ELT)) (-1896 ((|#1| |#1|) 118 (|has| |#1| (-175)) ELT)) (-2411 (((-886) $) 73 T ELT) (($ (-578)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-116)) 23 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 37 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3902 (($ $) 112 (|has| |#1| (-175)) ELT) (($ $ $) 116 (|has| |#1| (-175)) ELT)) (-2368 (($) 21 T CONST)) (-2379 (($) 9 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 83 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-116) (-578)) NIL T ELT) (($ $ (-578)) 64 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 111 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 109 (|has| |#1| (-175)) ELT) (($ $ |#1|) 110 (|has| |#1| (-175)) ELT))) +(((-736 |#1| |#2|) (-13 (-1080) (-1069 |#1|) (-1069 (-116)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3902 ($ $)) (-15 -3902 ($ $ $)) (-15 -1896 (|#1| |#1|))) |%noBranch|) (-15 -1423 ($ $ (-1 |#2| |#2|))) (-15 -4444 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-116) (-578))) (-15 ** ($ $ (-578))) (-15 -3318 (|#2| (-116) |#2|)) (-15 -1670 ($ |#1| (-374 (-116)))))) (-1080) (-670 |#1|)) (T -736)) +((-3902 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-3902 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-1896 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)))) (-4444 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-578)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *5)) (-4 *5 (-670 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)) (-4 *4 (-670 *3)))) (-3318 (*1 *2 *3 *2) (-12 (-5 *3 (-116)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *2)) (-4 *2 (-670 *4)))) (-1670 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-116))) (-4 *2 (-1080)) (-5 *1 (-736 *2 *4)) (-4 *4 (-670 *2))))) +(-13 (-1080) (-1069 |#1|) (-1069 (-116)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3902 ($ $)) (-15 -3902 ($ $ $)) (-15 -1896 (|#1| |#1|))) |%noBranch|) (-15 -1423 ($ $ (-1 |#2| |#2|))) (-15 -4444 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-116) (-578))) (-15 ** ($ $ (-578))) (-15 -3318 (|#2| (-116) |#2|)) (-15 -1670 ($ |#1| (-374 (-116)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 33 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2512 (($ |#1| |#2|) 25 T ELT)) (-3493 (((-3 $ "failed") $) 51 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2703 ((|#2| $) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 52 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3338 (((-3 $ "failed") $ $) 50 T ELT)) (-2411 (((-886) $) 24 T ELT) (($ (-578)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3753 (((-793)) 28 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 16 T CONST)) (-2379 (($) 30 T CONST)) (-2384 (((-112) $ $) 41 T ELT)) (-2484 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-2472 (($ $ $) 43 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-737 |#1| |#2| |#3| |#4| |#5|) (-13 (-1080) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2411 (|#1| $)) (-15 -2512 ($ |#1| |#2|)) (-15 -3338 ((-3 $ "failed") $ $)) (-15 -3493 ((-3 $ "failed") $)) (-15 -3057 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -737)) +((-3493 (*1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2703 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2411 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2512 (*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3338 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1080) (-10 -8 (-15 -2703 (|#2| $)) (-15 -2411 (|#1| $)) (-15 -2512 ($ |#1| |#2|)) (-15 -3338 ((-3 $ "failed") $ $)) (-15 -3493 ((-3 $ "failed") $)) (-15 -3057 ($ $)))) +((* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-738 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) (-739 |#2|) (-175)) (T -738)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-739 |#1|) (-142) (-175)) (T -739)) +NIL +(-13 (-111 |t#1| |t#1|) (-662 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-1887 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3803 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2820 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 16 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3364 ((|#1| $ |#1|) 24 T ELT) (((-855 |#1|) $ (-855 |#1|)) 32 T ELT)) (-1433 (($ $ $) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-2411 (((-886) $) 39 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 9 T CONST)) (-2384 (((-112) $ $) 48 T ELT)) (-2495 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-740 |#1|) (-13 (-487) (-10 -8 (-15 -2820 ($ |#1| |#1| |#1| |#1|)) (-15 -1887 ($ |#1|)) (-15 -3803 ($ |#1|)) (-15 -3493 ($)) (-15 -1887 ($ $ |#1|)) (-15 -3803 ($ $ |#1|)) (-15 -3493 ($ $)) (-15 -3364 (|#1| $ |#1|)) (-15 -3364 ((-855 |#1|) $ (-855 |#1|))))) (-376)) (T -740)) +((-2820 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-1887 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3803 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3493 (*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-1887 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3493 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3364 (*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-3364 (*1 *2 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3))))) +(-13 (-487) (-10 -8 (-15 -2820 ($ |#1| |#1| |#1| |#1|)) (-15 -1887 ($ |#1|)) (-15 -3803 ($ |#1|)) (-15 -3493 ($)) (-15 -1887 ($ $ |#1|)) (-15 -3803 ($ $ |#1|)) (-15 -3493 ($ $)) (-15 -3364 (|#1| $ |#1|)) (-15 -3364 ((-855 |#1|) $ (-855 |#1|))))) +((-1640 (($ $ (-950)) 19 T ELT)) (-4051 (($ $ (-950)) 20 T ELT)) (** (($ $ (-950)) 10 T ELT))) +(((-741 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-950))) (-15 -4051 (|#1| |#1| (-950))) (-15 -1640 (|#1| |#1| (-950)))) (-742)) (T -741)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-950))) (-15 -4051 (|#1| |#1| (-950))) (-15 -1640 (|#1| |#1| (-950)))) +((-3213 (((-112) $ $) 7 T ELT)) (-1640 (($ $ (-950)) 16 T ELT)) (-4051 (($ $ (-950)) 15 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (** (($ $ (-950)) 14 T ELT)) (* (($ $ $) 17 T ELT))) +(((-742) (-142)) (T -742)) +((* (*1 *1 *1 *1) (-4 *1 (-742))) (-1640 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-950)))) (-4051 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-950)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-950))))) +(-13 (-1131) (-10 -8 (-15 * ($ $ $)) (-15 -1640 ($ $ (-950))) (-15 -4051 ($ $ (-950))) (-15 ** ($ $ (-950))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-1640 (($ $ (-950)) NIL T ELT) (($ $ (-793)) 18 T ELT)) (-4382 (((-112) $) 10 T ELT)) (-4051 (($ $ (-950)) NIL T ELT) (($ $ (-793)) 19 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 16 T ELT))) +(((-743 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -4051 (|#1| |#1| (-793))) (-15 -1640 (|#1| |#1| (-793))) (-15 -4382 ((-112) |#1|)) (-15 ** (|#1| |#1| (-950))) (-15 -4051 (|#1| |#1| (-950))) (-15 -1640 (|#1| |#1| (-950)))) (-744)) (T -743)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -4051 (|#1| |#1| (-793))) (-15 -1640 (|#1| |#1| (-793))) (-15 -4382 ((-112) |#1|)) (-15 ** (|#1| |#1| (-950))) (-15 -4051 (|#1| |#1| (-950))) (-15 -1640 (|#1| |#1| (-950)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3373 (((-3 $ "failed") $) 18 T ELT)) (-1640 (($ $ (-950)) 16 T ELT) (($ $ (-793)) 23 T ELT)) (-3493 (((-3 $ "failed") $) 20 T ELT)) (-4382 (((-112) $) 24 T ELT)) (-3988 (((-3 $ "failed") $) 19 T ELT)) (-4051 (($ $ (-950)) 15 T ELT) (($ $ (-793)) 22 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2379 (($) 25 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (** (($ $ (-950)) 14 T ELT) (($ $ (-793)) 21 T ELT)) (* (($ $ $) 17 T ELT))) +(((-744) (-142)) (T -744)) +((-2379 (*1 *1) (-4 *1 (-744))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-112)))) (-1640 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-4051 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-3493 (*1 *1 *1) (|partial| -4 *1 (-744))) (-3988 (*1 *1 *1) (|partial| -4 *1 (-744))) (-3373 (*1 *1 *1) (|partial| -4 *1 (-744)))) +(-13 (-742) (-10 -8 (-15 (-2379) ($) -1529) (-15 -4382 ((-112) $)) (-15 -1640 ($ $ (-793))) (-15 -4051 ($ $ (-793))) (-15 ** ($ $ (-793))) (-15 -3493 ((-3 $ "failed") $)) (-15 -3988 ((-3 $ "failed") $)) (-15 -3373 ((-3 $ "failed") $)))) +(((-102) . T) ((-632 (-886)) . T) ((-742) . T) ((-1131) . T) ((-1248) . T)) +((-2222 (((-793)) 39 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 26 T ELT)) (-3516 (((-578) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-2512 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) 49 T ELT)) (-3493 (((-3 $ "failed") $) 69 T ELT)) (-2062 (($) 43 T ELT)) (-1550 ((|#2| $) 21 T ELT)) (-2847 (($) 18 T ELT)) (-2031 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3345 (((-711 |#2|) (-1298 $) (-1 |#2| |#2|)) 64 T ELT)) (-3343 (((-1298 |#2|) $) NIL T ELT) (($ (-1298 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-1566 ((|#3| $) 36 T ELT)) (-3198 (((-1298 $)) 33 T ELT))) +(((-745 |#1| |#2| |#3|) (-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2062 (|#1|)) (-15 -2222 ((-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3345 ((-711 |#2|) (-1298 |#1|) (-1 |#2| |#2|))) (-15 -2512 ((-3 |#1| "failed") (-421 |#3|))) (-15 -3343 (|#1| |#3|)) (-15 -2512 (|#1| |#3|)) (-15 -2847 (|#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -3198 ((-1298 |#1|))) (-15 -1566 (|#3| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|))) (-746 |#2| |#3|) (-175) (-1274 |#2|)) (T -745)) +((-2222 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-793)) (-5 *1 (-745 *3 *4 *5)) (-4 *3 (-746 *4 *5))))) +(-10 -8 (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2062 (|#1|)) (-15 -2222 ((-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3345 ((-711 |#2|) (-1298 |#1|) (-1 |#2| |#2|))) (-15 -2512 ((-3 |#1| "failed") (-421 |#3|))) (-15 -3343 (|#1| |#3|)) (-15 -2512 (|#1| |#3|)) (-15 -2847 (|#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3343 (|#1| (-1298 |#2|))) (-15 -3343 ((-1298 |#2|) |#1|)) (-15 -3198 ((-1298 |#1|))) (-15 -1566 (|#3| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 105 (|has| |#1| (-376)) ELT)) (-2987 (($ $) 106 (|has| |#1| (-376)) ELT)) (-3087 (((-112) $) 108 (|has| |#1| (-376)) ELT)) (-4306 (((-711 |#1|) (-1298 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-1881 ((|#1| $) 59 T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) 158 (|has| |#1| (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 125 (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) 126 (|has| |#1| (-376)) ELT)) (-2732 (((-112) $ $) 116 (|has| |#1| (-376)) ELT)) (-2222 (((-793)) 99 (|has| |#1| (-381)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 185 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 183 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3516 (((-578) $) 184 (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) 182 (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 181 T ELT)) (-3095 (($ (-1298 |#1|) (-1298 $)) 55 T ELT) (($ (-1298 |#1|)) 71 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-362)) ELT)) (-3154 (($ $ $) 120 (|has| |#1| (-376)) ELT)) (-2009 (((-711 |#1|) $ (-1298 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 177 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 176 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 175 T ELT) (((-711 |#1|) (-711 $)) 174 T ELT)) (-2512 (($ |#2|) 169 T ELT) (((-3 $ "failed") (-421 |#2|)) 166 (|has| |#1| (-376)) ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-950)) 61 T ELT)) (-2062 (($) 102 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) 119 (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 114 (|has| |#1| (-376)) ELT)) (-3146 (($) 160 (|has| |#1| (-362)) ELT)) (-2681 (((-112) $) 161 (|has| |#1| (-362)) ELT)) (-2953 (($ $ (-793)) 152 (|has| |#1| (-362)) ELT) (($ $) 151 (|has| |#1| (-362)) ELT)) (-2159 (((-112) $) 127 (|has| |#1| (-376)) ELT)) (-4059 (((-950) $) 163 (|has| |#1| (-362)) ELT) (((-855 (-950)) $) 149 (|has| |#1| (-362)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-1550 ((|#1| $) 58 T ELT)) (-2204 (((-3 $ "failed") $) 153 (|has| |#1| (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 123 (|has| |#1| (-376)) ELT)) (-1993 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-3193 (((-950) $) 101 (|has| |#1| (-381)) ELT)) (-2501 ((|#2| $) 167 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 179 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 178 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 173 T ELT) (((-711 |#1|) (-1298 $)) 172 T ELT)) (-2389 (($ (-666 $)) 112 (|has| |#1| (-376)) ELT) (($ $ $) 111 (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 128 (|has| |#1| (-376)) ELT)) (-2199 (($) 154 (|has| |#1| (-362)) CONST)) (-2087 (($ (-950)) 100 (|has| |#1| (-381)) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2847 (($) 171 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 113 (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) 110 (|has| |#1| (-376)) ELT) (($ $ $) 109 (|has| |#1| (-376)) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) 157 (|has| |#1| (-362)) ELT)) (-2800 (((-432 $) $) 124 (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 121 (|has| |#1| (-376)) ELT)) (-3202 (((-3 $ "failed") $ $) 104 (|has| |#1| (-376)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 115 (|has| |#1| (-376)) ELT)) (-1449 (((-793) $) 117 (|has| |#1| (-376)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 118 (|has| |#1| (-376)) ELT)) (-3232 ((|#1| (-1298 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-4375 (((-793) $) 162 (|has| |#1| (-362)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| |#1| (-362)) ELT)) (-2031 (($ $ (-793)) 147 (-2230 (-2320 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $) 145 (-2230 (-2320 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 141 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-793)) 140 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1207))) 139 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 137 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 135 (|has| |#1| (-376)) ELT)) (-3345 (((-711 |#1|) (-1298 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-376)) ELT)) (-4269 ((|#2|) 170 T ELT)) (-3430 (($) 159 (|has| |#1| (-362)) ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 57 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) 56 T ELT) (((-1298 |#1|) $) 73 T ELT) (((-711 |#1|) (-1298 $)) 72 T ELT)) (-3343 (((-1298 |#1|) $) 70 T ELT) (($ (-1298 |#1|)) 69 T ELT) ((|#2| $) 186 T ELT) (($ |#2|) 168 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 156 (|has| |#1| (-362)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 44 T ELT) (($ $) 103 (|has| |#1| (-376)) ELT) (($ (-421 (-578))) 98 (-2230 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-2213 (($ $) 155 (|has| |#1| (-362)) ELT) (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-1566 ((|#2| $) 52 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3198 (((-1298 $)) 74 T ELT)) (-3138 (((-112) $ $) 107 (|has| |#1| (-376)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-793)) 148 (-2230 (-2320 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $) 146 (-2230 (-2320 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 144 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-793)) 143 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1207))) 142 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 138 (-2320 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 133 (|has| |#1| (-376)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 132 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 129 (|has| |#1| (-376)) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-421 (-578)) $) 131 (|has| |#1| (-376)) ELT) (($ $ (-421 (-578))) 130 (|has| |#1| (-376)) ELT))) +(((-746 |#1| |#2|) (-142) (-175) (-1274 |t#1|)) (T -746)) +((-2847 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1274 *2)))) (-4269 (*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1274 *3)))) (-2512 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1274 *3)))) (-3343 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1274 *3)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1274 *3)))) (-2512 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-746 *3 *4)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-1298 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-746 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1274 *5)) (-5 *2 (-711 *5))))) +(-13 (-423 |t#1| |t#2|) (-175) (-633 |t#2|) (-425 |t#1|) (-390 |t#1|) (-10 -8 (-15 -2847 ($)) (-15 -4269 (|t#2|)) (-15 -2512 ($ |t#2|)) (-15 -3343 ($ |t#2|)) (-15 -2501 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -2512 ((-3 $ "failed") (-421 |t#2|))) (-15 -3345 ((-711 |t#1|) (-1298 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-102) . T) ((-111 #0# #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2230 (|has| |#1| (-362)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-362)) (|has| |#1| (-376))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 $) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-632 (-886)) . T) ((-175) . T) ((-633 |#2|) . T) ((-236 $) -2230 (|has| |#1| (-362)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -2230 (|has| |#1| (-362)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -2230 (|has| |#1| (-362)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-302) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-319) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-376) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-416) |has| |#1| (-362)) ((-381) -2230 (|has| |#1| (-381)) (|has| |#1| (-362))) ((-362) |has| |#1| (-362)) ((-383 |#1| |#2|) . T) ((-423 |#1| |#2|) . T) ((-390 |#1|) . T) ((-425 |#1|) . T) ((-466) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-570) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-668 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-670 #1=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-660 #1#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))))) ((-927 (-1207)) -12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -2230 (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))))) ((-949) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1082 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) -2230 (|has| |#1| (-362)) (|has| |#1| (-376))) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) |has| |#1| (-362)) ((-1248) . T) ((-1252) -2230 (|has| |#1| (-362)) (|has| |#1| (-376)))) +((-3534 (($) 11 T ELT)) (-3493 (((-3 $ "failed") $) 14 T ELT)) (-4382 (((-112) $) 10 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 20 T ELT))) +(((-747 |#1|) (-10 -8 (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -4382 ((-112) |#1|)) (-15 -3534 (|#1|)) (-15 ** (|#1| |#1| (-950)))) (-748)) (T -747)) +NIL +(-10 -8 (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -4382 ((-112) |#1|)) (-15 -3534 (|#1|)) (-15 ** (|#1| |#1| (-950)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3534 (($) 19 T CONST)) (-3493 (((-3 $ "failed") $) 16 T ELT)) (-4382 (((-112) $) 18 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2379 (($) 20 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (** (($ $ (-950)) 14 T ELT) (($ $ (-793)) 17 T ELT)) (* (($ $ $) 15 T ELT))) +(((-748) (-142)) (T -748)) +((-2379 (*1 *1) (-4 *1 (-748))) (-3534 (*1 *1) (-4 *1 (-748))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-793)))) (-3493 (*1 *1 *1) (|partial| -4 *1 (-748)))) +(-13 (-1143) (-10 -8 (-15 (-2379) ($) -1529) (-15 -3534 ($) -1529) (-15 -4382 ((-112) $)) (-15 ** ($ $ (-793))) (-15 -3493 ((-3 $ "failed") $)))) +(((-102) . T) ((-632 (-886)) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3227 (((-2 (|:| -3086 (-432 |#2|)) (|:| |special| (-432 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3427 (((-2 (|:| -3086 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2638 ((|#2| (-421 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-2623 (((-2 (|:| |poly| |#2|) (|:| -3086 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-749 |#1| |#2|) (-10 -7 (-15 -3427 ((-2 (|:| -3086 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3227 ((-2 (|:| -3086 (-432 |#2|)) (|:| |special| (-432 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2638 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -2623 ((-2 (|:| |poly| |#2|) (|:| -3086 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1274 |#1|)) (T -749)) +((-2623 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3086 (-421 *6)) (|:| |special| (-421 *6)))) (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1274 *5)) (-5 *1 (-749 *5 *2)) (-4 *5 (-376)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3086 (-432 *3)) (|:| |special| (-432 *3)))) (-5 *1 (-749 *5 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3086 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3))))) +(-10 -7 (-15 -3427 ((-2 (|:| -3086 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3227 ((-2 (|:| -3086 (-432 |#2|)) (|:| |special| (-432 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2638 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -2623 ((-2 (|:| |poly| |#2|) (|:| -3086 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)))) +((-3768 ((|#7| (-666 |#5|) |#6|) NIL T ELT)) (-3611 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-750 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3611 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3768 (|#7| (-666 |#5|) |#6|))) (-871) (-815) (-815) (-1080) (-1080) (-978 |#4| |#2| |#1|) (-978 |#5| |#3| |#1|)) (T -750)) +((-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *9)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *8 (-1080)) (-4 *2 (-978 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-978 *8 *6 *5)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1080)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *2 (-978 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-978 *8 *6 *5))))) +(-10 -7 (-15 -3611 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3768 (|#7| (-666 |#5|) |#6|))) +((-3611 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-751 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3611 (|#7| (-1 |#2| |#1|) |#6|))) (-871) (-871) (-815) (-815) (-1080) (-978 |#5| |#3| |#1|) (-978 |#5| |#4| |#2|)) (T -751)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-871)) (-4 *6 (-871)) (-4 *7 (-815)) (-4 *9 (-1080)) (-4 *2 (-978 *9 *8 *6)) (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815)) (-4 *4 (-978 *9 *7 *5))))) +(-10 -7 (-15 -3611 (|#7| (-1 |#2| |#1|) |#6|))) +((-2800 (((-432 |#4|) |#4|) 42 T ELT))) +(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-432 |#4|) |#4|))) (-815) (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207))))) (-319) (-978 (-981 |#3|) |#1| |#2|)) (T -752)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207)))))) (-4 *6 (-319)) (-5 *2 (-432 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-978 (-981 *6) *4 *5))))) +(-10 -7 (-15 -2800 ((-432 |#4|) |#4|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-888 |#1|)) $) NIL T ELT)) (-4420 (((-1203 $) $ (-888 |#1|)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#2| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#2| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#2| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-888 |#1|))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#2| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2035 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#2| (-938)) ELT)) (-2535 (($ $ |#2| (-545 (-888 |#1|)) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-392))) (|has| |#2| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-578))) (|has| |#2| (-911 (-578)))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2936 (($ (-1203 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1203 $) (-888 |#1|)) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-545 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3937 (((-545 (-888 |#1|)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) NIL T ELT)) (-2500 (($ (-1 (-545 (-888 |#1|)) (-545 (-888 |#1|))) $) NIL T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4006 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#2| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#2| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 $)) NIL T ELT)) (-3232 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2031 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3683 (((-545 (-888 |#1|)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-666 (-793)) $ (-666 (-888 |#1|))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-888 |#1|) (-633 (-550))) (|has| |#2| (-633 (-550)))) ELT)) (-4325 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-570)) ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-545 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#2| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 (-888 |#1|)) (-666 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-666 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-753 |#1| |#2|) (-978 |#2| (-545 (-888 |#1|)) (-888 |#1|)) (-666 (-1207)) (-1080)) (T -753)) +NIL +(-978 |#2| (-545 (-888 |#1|)) (-888 |#1|)) +((-2324 (((-2 (|:| -2424 (-981 |#3|)) (|:| -2662 (-981 |#3|))) |#4|) 14 T ELT)) (-2272 ((|#4| |#4| |#2|) 33 T ELT)) (-2013 ((|#4| (-421 (-981 |#3|)) |#2|) 64 T ELT)) (-3431 ((|#4| (-1203 (-981 |#3|)) |#2|) 77 T ELT)) (-3670 ((|#4| (-1203 |#4|) |#2|) 51 T ELT)) (-4167 ((|#4| |#4| |#2|) 54 T ELT)) (-2800 (((-432 |#4|) |#4|) 40 T ELT))) +(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2324 ((-2 (|:| -2424 (-981 |#3|)) (|:| -2662 (-981 |#3|))) |#4|)) (-15 -4167 (|#4| |#4| |#2|)) (-15 -3670 (|#4| (-1203 |#4|) |#2|)) (-15 -2272 (|#4| |#4| |#2|)) (-15 -3431 (|#4| (-1203 (-981 |#3|)) |#2|)) (-15 -2013 (|#4| (-421 (-981 |#3|)) |#2|)) (-15 -2800 ((-432 |#4|) |#4|))) (-815) (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)))) (-570) (-978 (-421 (-981 |#3|)) |#1| |#2|)) (T -754)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *6 (-570)) (-5 *2 (-432 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-978 (-421 (-981 *6)) *4 *5)))) (-2013 (*1 *2 *3 *4) (-12 (-4 *6 (-570)) (-4 *2 (-978 *3 *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-5 *3 (-421 (-981 *6))) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 (-981 *6))) (-4 *6 (-570)) (-4 *2 (-978 (-421 (-981 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))))) (-2272 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *5 (-570)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-978 (-421 (-981 *5)) *4 *3)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-1203 *2)) (-4 *2 (-978 (-421 (-981 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *6 (-570)))) (-4167 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *5 (-570)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-978 (-421 (-981 *5)) *4 *3)))) (-2324 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *6 (-570)) (-5 *2 (-2 (|:| -2424 (-981 *6)) (|:| -2662 (-981 *6)))) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-978 (-421 (-981 *6)) *4 *5))))) +(-10 -7 (-15 -2324 ((-2 (|:| -2424 (-981 |#3|)) (|:| -2662 (-981 |#3|))) |#4|)) (-15 -4167 (|#4| |#4| |#2|)) (-15 -3670 (|#4| (-1203 |#4|) |#2|)) (-15 -2272 (|#4| |#4| |#2|)) (-15 -3431 (|#4| (-1203 (-981 |#3|)) |#2|)) (-15 -2013 (|#4| (-421 (-981 |#3|)) |#2|)) (-15 -2800 ((-432 |#4|) |#4|))) +((-2800 (((-432 |#4|) |#4|) 54 T ELT))) +(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-432 |#4|) |#4|))) (-815) (-871) (-13 (-319) (-149)) (-978 (-421 |#3|) |#1| |#2|)) (T -755)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-432 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-978 (-421 *6) *4 *5))))) +(-10 -7 (-15 -2800 ((-432 |#4|) |#4|))) +((-3611 (((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)) 18 T ELT))) +(((-756 |#1| |#2| |#3|) (-10 -7 (-15 -3611 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)))) (-1080) (-1080) (-748)) (T -756)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *7 (-748)) (-5 *2 (-757 *6 *7)) (-5 *1 (-756 *5 *6 *7))))) +(-10 -7 (-15 -3611 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 36 T ELT)) (-3761 (((-666 (-2 (|:| -2672 |#1|) (|:| -1476 |#2|))) $) 37 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2222 (((-793)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) 76 T ELT) (((-3 |#1| "failed") $) 79 T ELT)) (-3516 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3136 (($ $) 102 (|has| |#2| (-871)) ELT)) (-3493 (((-3 $ "failed") $) 85 T ELT)) (-2062 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) 70 T ELT)) (-2613 (((-666 $) $) 52 T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| |#2|) 17 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-3193 (((-950) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3097 ((|#2| $) 101 (|has| |#2| (-871)) ELT)) (-3110 ((|#1| $) 100 (|has| |#2| (-871)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 99 T ELT) (($ (-578)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-666 (-2 (|:| -2672 |#1|) (|:| -1476 |#2|)))) 11 T ELT)) (-3839 (((-666 |#1|) $) 54 T ELT)) (-3708 ((|#1| $ |#2|) 115 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 12 T CONST)) (-2379 (($) 44 T CONST)) (-2384 (((-112) $ $) 105 T ELT)) (-2484 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 33 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 66 T ELT) (($ $ $) 118 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-757 |#1| |#2|) (-13 (-1080) (-1069 |#2|) (-1069 |#1|) (-10 -8 (-15 -2925 ($ |#1| |#2|)) (-15 -3708 (|#1| $ |#2|)) (-15 -2411 ($ (-666 (-2 (|:| -2672 |#1|) (|:| -1476 |#2|))))) (-15 -3761 ((-666 (-2 (|:| -2672 |#1|) (|:| -1476 |#2|))) $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (-15 -1796 ((-112) $)) (-15 -3839 ((-666 |#1|) $)) (-15 -2613 ((-666 $) $)) (-15 -3380 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-871)) (PROGN (-15 -3097 (|#2| $)) (-15 -3110 (|#1| $)) (-15 -3136 ($ $))) |%noBranch|))) (-1080) (-748)) (T -757)) +((-2925 (*1 *1 *2 *3) (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-748)))) (-3708 (*1 *2 *1 *3) (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| -2672 *3) (|:| -1476 *4)))) (-4 *3 (-1080)) (-4 *4 (-748)) (-5 *1 (-757 *3 *4)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| -2672 *3) (|:| -1476 *4)))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-757 *3 *4)) (-4 *4 (-748)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-666 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3097 (*1 *2 *1) (-12 (-4 *2 (-748)) (-4 *2 (-871)) (-5 *1 (-757 *3 *2)) (-4 *3 (-1080)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *3 (-748)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *2 (-1080)) (-4 *3 (-748))))) +(-13 (-1080) (-1069 |#2|) (-1069 |#1|) (-10 -8 (-15 -2925 ($ |#1| |#2|)) (-15 -3708 (|#1| $ |#2|)) (-15 -2411 ($ (-666 (-2 (|:| -2672 |#1|) (|:| -1476 |#2|))))) (-15 -3761 ((-666 (-2 (|:| -2672 |#1|) (|:| -1476 |#2|))) $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (-15 -1796 ((-112) $)) (-15 -3839 ((-666 |#1|) $)) (-15 -2613 ((-666 $) $)) (-15 -3380 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-871)) (PROGN (-15 -3097 (|#2| $)) (-15 -3110 (|#1| $)) (-15 -3136 ($ $))) |%noBranch|))) +((-3213 (((-112) $ $) 20 T ELT)) (-1340 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-4430 (($ $ $) 73 T ELT)) (-3954 (((-112) $ $) 74 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-1754 (($ (-666 |#1|)) 69 T ELT) (($) 68 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3777 (($ $) 63 T ELT)) (-3776 (($ $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ |#1| $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2930 (((-112) $ $) 65 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 T ELT)) (-3457 (($ $ $) 70 T ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-4313 (((-1151) $) 22 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-3109 (((-666 (-2 (|:| -2754 |#1|) (|:| -4324 (-793)))) $) 62 T ELT)) (-2867 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 |#1|)) 49 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 51 T ELT)) (-2411 (((-886) $) 18 T ELT)) (-2869 (($ (-666 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2876 (((-112) $ $) 21 T ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 T ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-758 |#1|) (-142) (-1131)) (T -758)) +NIL +(-13 (-717 |t#1|) (-1129 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-886)) . T) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-717 |#1|) . T) ((-1129 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-1340 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 92 T ELT)) (-4430 (($ $ $) 96 T ELT)) (-3954 (((-112) $ $) 104 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-1754 (($ (-666 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-3777 (($ $) 85 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) 70 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4500)) ELT) (($ |#1| $ (-578)) 75 T ELT) (($ (-1 (-112) |#1|) $ (-578)) 78 T ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ |#1| $ (-578)) 80 T ELT) (($ (-1 (-112) |#1|) $ (-578)) 81 T ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 32 (|has| $ (-6 -4500)) ELT)) (-2930 (((-112) $ $) 103 T ELT)) (-2243 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-666 |#1|)) 23 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) 38 T ELT)) (-1624 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3457 (($ $ $) 94 T ELT)) (-2743 ((|#1| $) 62 T ELT)) (-4328 (($ |#1| $) 63 T ELT) (($ |#1| $ (-793)) 86 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-1994 ((|#1| $) 61 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 56 T ELT)) (-1696 (($) 14 T ELT)) (-3109 (((-666 (-2 (|:| -2754 |#1|) (|:| -4324 (-793)))) $) 55 T ELT)) (-2867 (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-1338 (($) 16 T ELT) (($ (-666 |#1|)) 25 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 68 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 79 T ELT)) (-3343 (((-550) $) 36 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 22 T ELT)) (-2411 (((-886) $) 49 T ELT)) (-2869 (($ (-666 |#1|)) 27 T ELT) (($) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3764 (($ (-666 |#1|)) 24 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 100 T ELT)) (-3226 (((-793) $) 67 (|has| $ (-6 -4500)) ELT))) +(((-759 |#1|) (-13 (-758 |#1|) (-10 -8 (-6 -4500) (-6 -4501) (-15 -2243 ($)) (-15 -2243 ($ |#1|)) (-15 -2243 ($ (-666 |#1|))) (-15 -1441 ((-666 |#1|) $)) (-15 -2737 ($ |#1| $ (-578))) (-15 -2737 ($ (-1 (-112) |#1|) $ (-578))) (-15 -2631 ($ |#1| $ (-578))) (-15 -2631 ($ (-1 (-112) |#1|) $ (-578))))) (-1131)) (T -759)) +((-2243 (*1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1131)))) (-2243 (*1 *1 *2) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1131)))) (-2243 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-759 *3)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-759 *3)) (-4 *3 (-1131)))) (-2737 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *1 (-759 *2)) (-4 *2 (-1131)))) (-2737 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-578)) (-4 *4 (-1131)) (-5 *1 (-759 *4)))) (-2631 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *1 (-759 *2)) (-4 *2 (-1131)))) (-2631 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-578)) (-4 *4 (-1131)) (-5 *1 (-759 *4))))) +(-13 (-758 |#1|) (-10 -8 (-6 -4500) (-6 -4501) (-15 -2243 ($)) (-15 -2243 ($ |#1|)) (-15 -2243 ($ (-666 |#1|))) (-15 -1441 ((-666 |#1|) $)) (-15 -2737 ($ |#1| $ (-578))) (-15 -2737 ($ (-1 (-112) |#1|) $ (-578))) (-15 -2631 ($ |#1| $ (-578))) (-15 -2631 ($ (-1 (-112) |#1|) $ (-578))))) +((-3046 (((-1303) (-1189)) 8 T ELT))) +(((-760) (-10 -7 (-15 -3046 ((-1303) (-1189))))) (T -760)) +((-3046 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-760))))) +(-10 -7 (-15 -3046 ((-1303) (-1189)))) +((-2958 (((-666 |#1|) (-666 |#1|) (-666 |#1|)) 15 T ELT))) +(((-761 |#1|) (-10 -7 (-15 -2958 ((-666 |#1|) (-666 |#1|) (-666 |#1|)))) (-871)) (T -761)) +((-2958 (*1 *2 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-761 *3))))) +(-10 -7 (-15 -2958 ((-666 |#1|) (-666 |#1|) (-666 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 |#2|) $) 149 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 142 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 141 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 139 (|has| |#1| (-570)) ELT)) (-1502 (($ $) 98 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 81 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2811 (($ $) 80 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1478 (($ $) 97 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 82 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1528 (($ $) 96 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 83 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) 18 T CONST)) (-3136 (($ $) 133 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1769 (((-981 |#1|) $ (-793)) 111 T ELT) (((-981 |#1|) $ (-793) (-793)) 110 T ELT)) (-1401 (((-112) $) 150 T ELT)) (-2551 (($) 108 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-793) $ |#2|) 113 T ELT) (((-793) $ |#2| (-793)) 112 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 79 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1796 (((-112) $) 131 T ELT)) (-2925 (($ $ (-666 |#2|) (-666 (-545 |#2|))) 148 T ELT) (($ $ |#2| (-545 |#2|)) 147 T ELT) (($ |#1| (-545 |#2|)) 132 T ELT) (($ $ |#2| (-793)) 115 T ELT) (($ $ (-666 |#2|) (-666 (-793))) 114 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 130 T ELT)) (-3864 (($ $) 105 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) 128 T ELT)) (-3110 ((|#1| $) 127 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4371 (($ $ |#2|) 109 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2704 (($ $ (-793)) 116 T ELT)) (-3202 (((-3 $ "failed") $ $) 143 (|has| |#1| (-570)) ELT)) (-3587 (($ $) 106 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (($ $ |#2| $) 124 T ELT) (($ $ (-666 |#2|) (-666 $)) 123 T ELT) (($ $ (-666 (-306 $))) 122 T ELT) (($ $ (-306 $)) 121 T ELT) (($ $ $ $) 120 T ELT) (($ $ (-666 $) (-666 $)) 119 T ELT)) (-2031 (($ $ (-666 |#2|) (-666 (-793))) 44 T ELT) (($ $ |#2| (-793)) 43 T ELT) (($ $ (-666 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3683 (((-545 |#2|) $) 129 T ELT)) (-1541 (($ $) 95 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 84 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 94 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 85 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 93 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 86 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 151 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 146 (|has| |#1| (-175)) ELT) (($ $) 144 (|has| |#1| (-570)) ELT) (($ (-421 (-578))) 136 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3708 ((|#1| $ (-545 |#2|)) 134 T ELT) (($ $ |#2| (-793)) 118 T ELT) (($ $ (-666 |#2|) (-666 (-793))) 117 T ELT)) (-2213 (((-3 $ "failed") $) 145 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-1576 (($ $) 104 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 92 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) 140 (|has| |#1| (-570)) ELT)) (-1552 (($ $) 103 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 91 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 102 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 90 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3502 (($ $) 101 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 89 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 100 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 88 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 99 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 87 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-666 |#2|) (-666 (-793))) 47 T ELT) (($ $ |#2| (-793)) 46 T ELT) (($ $ (-666 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 135 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ $) 107 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 78 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 138 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) 137 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 126 T ELT) (($ $ |#1|) 125 T ELT))) +(((-762 |#1| |#2|) (-142) (-1080) (-871)) (T -762)) +((-3708 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) (-4 *2 (-871)))) (-3708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *5)) (-5 *3 (-666 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-871)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) (-4 *2 (-871)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *5)) (-5 *3 (-666 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-4059 (*1 *2 *1 *3) (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *2 (-793)))) (-4059 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871)))) (-1769 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)) (-5 *2 (-981 *4)))) (-1769 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)) (-5 *2 (-981 *4)))) (-4371 (*1 *1 *1 *2) (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871)) (-4 *3 (-38 (-421 (-578))))))) +(-13 (-927 |t#2|) (-1004 |t#1| (-545 |t#2|) |t#2|) (-528 |t#2| $) (-321 $) (-10 -8 (-15 -3708 ($ $ |t#2| (-793))) (-15 -3708 ($ $ (-666 |t#2|) (-666 (-793)))) (-15 -2704 ($ $ (-793))) (-15 -2925 ($ $ |t#2| (-793))) (-15 -2925 ($ $ (-666 |t#2|) (-666 (-793)))) (-15 -4059 ((-793) $ |t#2|)) (-15 -4059 ((-793) $ |t#2| (-793))) (-15 -1769 ((-981 |t#1|) $ (-793))) (-15 -1769 ((-981 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $ |t#2|)) (-6 (-1033)) (-6 (-1233))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-545 |#2|)) . T) ((-25) . T) ((-38 #1=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-570)) ((-35) |has| |#1| (-38 (-421 (-578)))) ((-95) |has| |#1| (-38 (-421 (-578)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-570)) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-421 (-578)))) ((-302) |has| |#1| (-570)) ((-321 $) . T) ((-507) |has| |#1| (-38 (-421 (-578)))) ((-528 |#2| $) . T) ((-528 $ $) . T) ((-570) |has| |#1| (-570)) ((-668 #1#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-578)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-570)) ((-739 #1#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-570)) ((-748) . T) ((-921 $ |#2|) . T) ((-927 |#2|) . T) ((-929 |#2|) . T) ((-1004 |#1| #0# |#2|) . T) ((-1033) |has| |#1| (-38 (-421 (-578)))) ((-1082 #1#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-421 (-578)))) ((-1236) |has| |#1| (-38 (-421 (-578)))) ((-1248) . T)) +((-2800 (((-432 (-1203 |#4|)) (-1203 |#4|)) 30 T ELT) (((-432 |#4|) |#4|) 26 T ELT))) +(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-432 |#4|) |#4|)) (-15 -2800 ((-432 (-1203 |#4|)) (-1203 |#4|)))) (-871) (-815) (-13 (-319) (-149)) (-978 |#3| |#2| |#1|)) (T -763)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-432 (-1203 *7))) (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-432 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) +(-10 -7 (-15 -2800 ((-432 |#4|) |#4|)) (-15 -2800 ((-432 (-1203 |#4|)) (-1203 |#4|)))) +((-2622 (((-432 |#4|) |#4| |#2|) 140 T ELT)) (-1975 (((-432 |#4|) |#4|) NIL T ELT)) (-3034 (((-432 (-1203 |#4|)) (-1203 |#4|)) 127 T ELT) (((-432 |#4|) |#4|) 52 T ELT)) (-2244 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-666 (-2 (|:| -2800 (-1203 |#4|)) (|:| -2764 (-578)))))) (-1203 |#4|) (-666 |#2|) (-666 (-666 |#3|))) 81 T ELT)) (-4034 (((-1203 |#3|) (-1203 |#3|) (-578)) 166 T ELT)) (-1507 (((-666 (-793)) (-1203 |#4|) (-666 |#2|) (-793)) 75 T ELT)) (-2501 (((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-1203 |#3|) (-1203 |#3|) |#4| (-666 |#2|) (-666 (-793)) (-666 |#3|)) 79 T ELT)) (-2850 (((-2 (|:| |upol| (-1203 |#3|)) (|:| |Lval| (-666 |#3|)) (|:| |Lfact| (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578))))) (|:| |ctpol| |#3|)) (-1203 |#4|) (-666 |#2|) (-666 (-666 |#3|))) 27 T ELT)) (-2611 (((-2 (|:| -3714 (-1203 |#4|)) (|:| |polval| (-1203 |#3|))) (-1203 |#4|) (-1203 |#3|) (-578)) 72 T ELT)) (-2888 (((-578) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578))))) 162 T ELT)) (-1702 ((|#4| (-578) (-432 |#4|)) 73 T ELT)) (-2947 (((-112) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578)))) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578))))) NIL T ELT))) +(((-764 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3034 ((-432 |#4|) |#4|)) (-15 -3034 ((-432 (-1203 |#4|)) (-1203 |#4|))) (-15 -1975 ((-432 |#4|) |#4|)) (-15 -2888 ((-578) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578)))))) (-15 -2622 ((-432 |#4|) |#4| |#2|)) (-15 -2611 ((-2 (|:| -3714 (-1203 |#4|)) (|:| |polval| (-1203 |#3|))) (-1203 |#4|) (-1203 |#3|) (-578))) (-15 -2244 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-666 (-2 (|:| -2800 (-1203 |#4|)) (|:| -2764 (-578)))))) (-1203 |#4|) (-666 |#2|) (-666 (-666 |#3|)))) (-15 -2850 ((-2 (|:| |upol| (-1203 |#3|)) (|:| |Lval| (-666 |#3|)) (|:| |Lfact| (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578))))) (|:| |ctpol| |#3|)) (-1203 |#4|) (-666 |#2|) (-666 (-666 |#3|)))) (-15 -1702 (|#4| (-578) (-432 |#4|))) (-15 -2947 ((-112) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578)))) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578)))))) (-15 -2501 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-1203 |#3|) (-1203 |#3|) |#4| (-666 |#2|) (-666 (-793)) (-666 |#3|))) (-15 -1507 ((-666 (-793)) (-1203 |#4|) (-666 |#2|) (-793))) (-15 -4034 ((-1203 |#3|) (-1203 |#3|) (-578)))) (-815) (-871) (-319) (-978 |#3| |#1| |#2|)) (T -764)) +((-4034 (*1 *2 *2 *3) (-12 (-5 *2 (-1203 *6)) (-5 *3 (-578)) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-1507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1203 *9)) (-5 *4 (-666 *7)) (-4 *7 (-871)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) (-5 *2 (-666 (-793))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793)))) (-2501 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1203 *11)) (-5 *6 (-666 *10)) (-5 *7 (-666 (-793))) (-5 *8 (-666 *11)) (-4 *10 (-871)) (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-978 *11 *9 *10)) (-5 *2 (-666 (-1203 *5))) (-5 *1 (-764 *9 *10 *11 *5)) (-5 *3 (-1203 *5)))) (-2947 (*1 *2 *3 *3) (-12 (-5 *3 (-666 (-2 (|:| -2800 (-1203 *6)) (|:| -2764 (-578))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-1702 (*1 *2 *3 *4) (-12 (-5 *3 (-578)) (-5 *4 (-432 *2)) (-4 *2 (-978 *7 *5 *6)) (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-319)))) (-2850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1203 *9)) (-5 *4 (-666 *7)) (-5 *5 (-666 (-666 *8))) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |upol| (-1203 *8)) (|:| |Lval| (-666 *8)) (|:| |Lfact| (-666 (-2 (|:| -2800 (-1203 *8)) (|:| -2764 (-578))))) (|:| |ctpol| *8))) (-5 *1 (-764 *6 *7 *8 *9)))) (-2244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-666 *7)) (-5 *5 (-666 (-666 *8))) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-978 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-666 (-2 (|:| -2800 (-1203 *9)) (|:| -2764 (-578))))))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9)))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-578)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-978 *8 *6 *7)) (-5 *2 (-2 (|:| -3714 (-1203 *9)) (|:| |polval| (-1203 *8)))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9)) (-5 *4 (-1203 *8)))) (-2622 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-319)) (-5 *2 (-432 *3)) (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -2800 (-1203 *6)) (|:| -2764 (-578))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-578)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-1975 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-432 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-432 (-1203 *7))) (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-432 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5))))) +(-10 -7 (-15 -3034 ((-432 |#4|) |#4|)) (-15 -3034 ((-432 (-1203 |#4|)) (-1203 |#4|))) (-15 -1975 ((-432 |#4|) |#4|)) (-15 -2888 ((-578) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578)))))) (-15 -2622 ((-432 |#4|) |#4| |#2|)) (-15 -2611 ((-2 (|:| -3714 (-1203 |#4|)) (|:| |polval| (-1203 |#3|))) (-1203 |#4|) (-1203 |#3|) (-578))) (-15 -2244 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-666 (-2 (|:| -2800 (-1203 |#4|)) (|:| -2764 (-578)))))) (-1203 |#4|) (-666 |#2|) (-666 (-666 |#3|)))) (-15 -2850 ((-2 (|:| |upol| (-1203 |#3|)) (|:| |Lval| (-666 |#3|)) (|:| |Lfact| (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578))))) (|:| |ctpol| |#3|)) (-1203 |#4|) (-666 |#2|) (-666 (-666 |#3|)))) (-15 -1702 (|#4| (-578) (-432 |#4|))) (-15 -2947 ((-112) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578)))) (-666 (-2 (|:| -2800 (-1203 |#3|)) (|:| -2764 (-578)))))) (-15 -2501 ((-3 (-666 (-1203 |#4|)) "failed") (-1203 |#4|) (-1203 |#3|) (-1203 |#3|) |#4| (-666 |#2|) (-666 (-793)) (-666 |#3|))) (-15 -1507 ((-666 (-793)) (-1203 |#4|) (-666 |#2|) (-793))) (-15 -4034 ((-1203 |#3|) (-1203 |#3|) (-578)))) +((-3398 (($ $ (-950)) 17 T ELT))) +(((-765 |#1| |#2|) (-10 -8 (-15 -3398 (|#1| |#1| (-950)))) (-766 |#2|) (-175)) (T -765)) +NIL +(-10 -8 (-15 -3398 (|#1| |#1| (-950)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-1640 (($ $ (-950)) 31 T ELT)) (-3398 (($ $ (-950)) 38 T ELT)) (-4051 (($ $ (-950)) 32 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1863 (($ $ $) 28 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2851 (($ $ $ $) 29 T ELT)) (-3021 (($ $ $) 27 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 33 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT))) +(((-766 |#1|) (-142) (-175)) (T -766)) +((-3398 (*1 *1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-766 *3)) (-4 *3 (-175))))) +(-13 (-783) (-739 |t#1|) (-10 -8 (-15 -3398 ($ $ (-950))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-783) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3346 (((-1066) (-711 (-229)) (-578) (-112) (-578)) 26 T ELT)) (-1608 (((-1066) (-711 (-229)) (-578) (-112) (-578)) 25 T ELT))) +(((-767) (-10 -7 (-15 -1608 ((-1066) (-711 (-229)) (-578) (-112) (-578))) (-15 -3346 ((-1066) (-711 (-229)) (-578) (-112) (-578))))) (T -767)) +((-3346 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-112)) (-5 *2 (-1066)) (-5 *1 (-767)))) (-1608 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-112)) (-5 *2 (-1066)) (-5 *1 (-767))))) +(-10 -7 (-15 -1608 ((-1066) (-711 (-229)) (-578) (-112) (-578))) (-15 -3346 ((-1066) (-711 (-229)) (-578) (-112) (-578)))) +((-3696 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-3283 (((-1066) (-578) (-578) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-3910 (((-1066) (-229) (-229) (-229) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) 32 T ELT))) +(((-768) (-10 -7 (-15 -3910 ((-1066) (-229) (-229) (-229) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -3283 ((-1066) (-578) (-578) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -3696 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -768)) +((-3696 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1066)) (-5 *1 (-768)))) (-3283 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1066)) (-5 *1 (-768)))) (-3910 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) (-5 *2 (-1066)) (-5 *1 (-768))))) +(-10 -7 (-15 -3910 ((-1066) (-229) (-229) (-229) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -3283 ((-1066) (-578) (-578) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -3696 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))))) +((-2866 (((-1066) (-578) (-578) (-711 (-229)) (-578)) 34 T ELT)) (-2317 (((-1066) (-578) (-578) (-711 (-229)) (-578)) 33 T ELT)) (-3917 (((-1066) (-578) (-711 (-229)) (-578)) 32 T ELT)) (-1864 (((-1066) (-578) (-711 (-229)) (-578)) 31 T ELT)) (-3409 (((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 30 T ELT)) (-1493 (((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 29 T ELT)) (-1334 (((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-578)) 28 T ELT)) (-3802 (((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-578)) 27 T ELT)) (-3115 (((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578)) 24 T ELT)) (-2366 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578)) 23 T ELT)) (-4413 (((-1066) (-578) (-711 (-229)) (-578)) 22 T ELT)) (-3236 (((-1066) (-578) (-711 (-229)) (-578)) 21 T ELT))) +(((-769) (-10 -7 (-15 -3236 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -4413 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -2366 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3115 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3802 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1334 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1493 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3409 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1864 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -3917 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -2317 ((-1066) (-578) (-578) (-711 (-229)) (-578))) (-15 -2866 ((-1066) (-578) (-578) (-711 (-229)) (-578))))) (T -769)) +((-2866 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2317 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3917 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1864 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3409 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1493 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1334 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3802 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3115 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2366 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-4413 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3236 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769))))) +(-10 -7 (-15 -3236 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -4413 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -2366 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3115 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3802 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1334 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1493 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3409 ((-1066) (-578) (-578) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1864 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -3917 ((-1066) (-578) (-711 (-229)) (-578))) (-15 -2317 ((-1066) (-578) (-578) (-711 (-229)) (-578))) (-15 -2866 ((-1066) (-578) (-578) (-711 (-229)) (-578)))) +((-1614 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-229) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN)))) 52 T ELT)) (-2098 (((-1066) (-711 (-229)) (-711 (-229)) (-578) (-578)) 51 T ELT)) (-1686 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN)))) 50 T ELT)) (-4015 (((-1066) (-229) (-229) (-578) (-578) (-578) (-578)) 46 T ELT)) (-2371 (((-1066) (-229) (-229) (-578) (-229) (-578) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) 45 T ELT)) (-2401 (((-1066) (-229) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) 44 T ELT)) (-1417 (((-1066) (-229) (-229) (-229) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) 43 T ELT)) (-2289 (((-1066) (-229) (-229) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) 42 T ELT)) (-3270 (((-1066) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) 38 T ELT)) (-4395 (((-1066) (-229) (-229) (-578) (-711 (-229)) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) 37 T ELT)) (-2043 (((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) 33 T ELT)) (-4275 (((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) 32 T ELT))) +(((-770) (-10 -7 (-15 -4275 ((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -2043 ((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -4395 ((-1066) (-229) (-229) (-578) (-711 (-229)) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -3270 ((-1066) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -2289 ((-1066) (-229) (-229) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -1417 ((-1066) (-229) (-229) (-229) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -2401 ((-1066) (-229) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -2371 ((-1066) (-229) (-229) (-578) (-229) (-578) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -4015 ((-1066) (-229) (-229) (-578) (-578) (-578) (-578))) (-15 -1686 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN))))) (-15 -2098 ((-1066) (-711 (-229)) (-711 (-229)) (-578) (-578))) (-15 -1614 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-229) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN))))))) (T -770)) +((-1614 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2098 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-1686 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-4015 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2371 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2401 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-1417 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2289 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3270 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-4395 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2043 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-4275 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) (-5 *2 (-1066)) (-5 *1 (-770))))) +(-10 -7 (-15 -4275 ((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -2043 ((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -4395 ((-1066) (-229) (-229) (-578) (-711 (-229)) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -3270 ((-1066) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155))))) (-15 -2289 ((-1066) (-229) (-229) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -1417 ((-1066) (-229) (-229) (-229) (-229) (-578) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -2401 ((-1066) (-229) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -2371 ((-1066) (-229) (-229) (-578) (-229) (-578) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G))))) (-15 -4015 ((-1066) (-229) (-229) (-578) (-578) (-578) (-578))) (-15 -1686 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-229) (-578) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN))))) (-15 -2098 ((-1066) (-711 (-229)) (-711 (-229)) (-578) (-578))) (-15 -1614 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-229) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN)))))) +((-4159 (((-1066) (-578) (-578) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76 T ELT)) (-2212 (((-1066) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1066) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL)))) 68 T ELT)) (-1874 (((-1066) (-229) (-229) (-578) (-229) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNG)))) 57 T ELT)) (-2665 (((-1066) (-711 (-229)) (-711 (-229)) (-578) (-229) (-229) (-229) (-578) (-578) (-578) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) 50 T ELT)) (-4417 (((-1066) (-229) (-578) (-578) (-1189) (-578) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) 49 T ELT)) (-1658 (((-1066) (-229) (-578) (-578) (-229) (-1189) (-229) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) 45 T ELT)) (-2702 (((-1066) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) 42 T ELT)) (-2892 (((-1066) (-229) (-578) (-578) (-578) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) 38 T ELT))) +(((-771) (-10 -7 (-15 -2892 ((-1066) (-229) (-578) (-578) (-578) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT))))) (-15 -2702 ((-1066) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))))) (-15 -1658 ((-1066) (-229) (-578) (-578) (-229) (-1189) (-229) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT))))) (-15 -4417 ((-1066) (-229) (-578) (-578) (-1189) (-578) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT))))) (-15 -2665 ((-1066) (-711 (-229)) (-711 (-229)) (-578) (-229) (-229) (-229) (-578) (-578) (-578) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))))) (-15 -1874 ((-1066) (-229) (-229) (-578) (-229) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNG))))) (-15 -2212 ((-1066) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL))))) (-15 -2212 ((-1066) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL))) (-402) (-402))) (-15 -4159 ((-1066) (-578) (-578) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -771)) +((-4159 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2212 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2212 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1874 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2665 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1066)) (-5 *1 (-771)))) (-4417 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-578)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1658 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-578)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2702 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2892 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771))))) +(-10 -7 (-15 -2892 ((-1066) (-229) (-578) (-578) (-578) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT))))) (-15 -2702 ((-1066) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))))) (-15 -1658 ((-1066) (-229) (-578) (-578) (-229) (-1189) (-229) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT))))) (-15 -4417 ((-1066) (-229) (-578) (-578) (-1189) (-578) (-229) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT))))) (-15 -2665 ((-1066) (-711 (-229)) (-711 (-229)) (-578) (-229) (-229) (-229) (-578) (-578) (-578) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN))))) (-15 -1874 ((-1066) (-229) (-229) (-578) (-229) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNG))))) (-15 -2212 ((-1066) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL))))) (-15 -2212 ((-1066) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL))) (-402) (-402))) (-15 -4159 ((-1066) (-578) (-578) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3481 (((-1066) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-697 (-229)) (-578)) 46 T ELT)) (-3925 (((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-1189) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 BNDY)))) 41 T ELT)) (-3885 (((-1066) (-578) (-578) (-578) (-578) (-229) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 23 T ELT))) +(((-772) (-10 -7 (-15 -3885 ((-1066) (-578) (-578) (-578) (-578) (-229) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3925 ((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-1189) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 BNDY))))) (-15 -3481 ((-1066) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-697 (-229)) (-578))))) (T -772)) +((-3481 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-772)))) (-3925 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-1189)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1066)) (-5 *1 (-772)))) (-3885 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-772))))) +(-10 -7 (-15 -3885 ((-1066) (-578) (-578) (-578) (-578) (-229) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3925 ((-1066) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-1189) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 BNDY))))) (-15 -3481 ((-1066) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-697 (-229)) (-578)))) +((-3720 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-578)) 35 T ELT)) (-4262 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-229) (-229) (-578)) 34 T ELT)) (-4323 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-711 (-229)) (-229) (-229) (-578)) 33 T ELT)) (-1792 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 29 T ELT)) (-3772 (((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 28 T ELT)) (-3126 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578)) 27 T ELT)) (-2524 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-578)) 24 T ELT)) (-2699 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-578)) 23 T ELT)) (-1530 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578)) 22 T ELT)) (-2325 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578)) 21 T ELT))) +(((-773) (-10 -7 (-15 -2325 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578))) (-15 -1530 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2699 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -2524 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -3126 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578))) (-15 -3772 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1792 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -4323 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-711 (-229)) (-229) (-229) (-578))) (-15 -4262 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-229) (-229) (-578))) (-15 -3720 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-578))))) (T -773)) +((-3720 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4262 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4323 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *6 (-229)) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-1792 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-3772 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-3126 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2524 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2699 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-1530 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2325 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773))))) +(-10 -7 (-15 -2325 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578))) (-15 -1530 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2699 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -2524 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -3126 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-578))) (-15 -3772 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1792 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -4323 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-711 (-229)) (-229) (-229) (-578))) (-15 -4262 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-229) (-229) (-578))) (-15 -3720 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-578)))) +((-2304 (((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578)) 45 T ELT)) (-3752 (((-1066) (-578) (-578) (-578) (-229) (-711 (-229)) (-711 (-229)) (-578)) 44 T ELT)) (-2412 (((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578)) 43 T ELT)) (-3825 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 42 T ELT)) (-2627 (((-1066) (-1189) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578)) 41 T ELT)) (-3408 (((-1066) (-1189) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578)) 40 T ELT)) (-2051 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578) (-578) (-578) (-229) (-711 (-229)) (-578)) 39 T ELT)) (-2932 (((-1066) (-1189) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-578))) 38 T ELT)) (-4226 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578)) 35 T ELT)) (-1386 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578)) 34 T ELT)) (-3969 (((-1066) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578)) 33 T ELT)) (-2330 (((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 32 T ELT)) (-2103 (((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-229) (-578)) 31 T ELT)) (-2079 (((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-578)) 30 T ELT)) (-2868 (((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-578) (-578) (-578)) 29 T ELT)) (-1582 (((-1066) (-578) (-578) (-578) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578) (-711 (-578)) (-578) (-578) (-578)) 28 T ELT)) (-3690 (((-1066) (-578) (-711 (-229)) (-229) (-578)) 24 T ELT)) (-2787 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 21 T ELT))) +(((-774) (-10 -7 (-15 -2787 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3690 ((-1066) (-578) (-711 (-229)) (-229) (-578))) (-15 -1582 ((-1066) (-578) (-578) (-578) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578) (-711 (-578)) (-578) (-578) (-578))) (-15 -2868 ((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-578) (-578) (-578))) (-15 -2079 ((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-578))) (-15 -2103 ((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-229) (-578))) (-15 -2330 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3969 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578))) (-15 -1386 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578))) (-15 -4226 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2932 ((-1066) (-1189) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-578)))) (-15 -2051 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578) (-578) (-578) (-229) (-711 (-229)) (-578))) (-15 -3408 ((-1066) (-1189) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578))) (-15 -2627 ((-1066) (-1189) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3825 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2412 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578))) (-15 -3752 ((-1066) (-578) (-578) (-578) (-229) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2304 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578))))) (T -774)) +((-2304 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3752 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2412 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3825 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2627 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3408 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-578))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2051 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *6 (-229)) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2932 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-578))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-4226 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1386 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3969 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2330 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2103 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2079 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2868 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1582 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-578))) (-5 *3 (-578)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3690 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2787 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774))))) +(-10 -7 (-15 -2787 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3690 ((-1066) (-578) (-711 (-229)) (-229) (-578))) (-15 -1582 ((-1066) (-578) (-578) (-578) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578) (-711 (-578)) (-578) (-578) (-578))) (-15 -2868 ((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-578) (-578) (-578))) (-15 -2079 ((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-229) (-578) (-578) (-578))) (-15 -2103 ((-1066) (-578) (-229) (-229) (-711 (-229)) (-578) (-578) (-229) (-578))) (-15 -2330 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3969 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578))) (-15 -1386 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578))) (-15 -4226 ((-1066) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2932 ((-1066) (-1189) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-578)))) (-15 -2051 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578) (-578) (-578) (-229) (-711 (-229)) (-578))) (-15 -3408 ((-1066) (-1189) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578))) (-15 -2627 ((-1066) (-1189) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3825 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2412 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578))) (-15 -3752 ((-1066) (-578) (-578) (-578) (-229) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2304 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578) (-711 (-229)) (-711 (-229)) (-578) (-578) (-578)))) +((-2211 (((-1066) (-578) (-578) (-578) (-229) (-711 (-229)) (-578) (-711 (-229)) (-578)) 64 T ELT)) (-4280 (((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-112) (-229) (-578) (-229) (-229) (-112) (-229) (-229) (-229) (-229) (-112) (-578) (-578) (-578) (-578) (-578) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-578)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN)))) 63 T ELT)) (-2350 (((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-112) (-112) (-112) (-578) (-578) (-711 (-229)) (-711 (-578)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-2057 (((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-112) (-578) (-578) (-711 (-229)) (-578)) 52 T ELT)) (-4087 (((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-2121 (((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-63 LSFUN2)))) 47 T ELT)) (-4265 (((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-4197 (((-1066) (-578) (-229) (-229) (-578) (-229) (-112) (-229) (-229) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN)))) 39 T ELT))) +(((-775) (-10 -7 (-15 -4197 ((-1066) (-578) (-229) (-229) (-578) (-229) (-112) (-229) (-229) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN))))) (-15 -4265 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2121 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-63 LSFUN2))))) (-15 -4087 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2057 ((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-112) (-578) (-578) (-711 (-229)) (-578))) (-15 -2350 ((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-112) (-112) (-112) (-578) (-578) (-711 (-229)) (-711 (-578)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -4280 ((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-112) (-229) (-578) (-229) (-229) (-112) (-229) (-229) (-229) (-229) (-112) (-578) (-578) (-578) (-578) (-578) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-578)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN))))) (-15 -2211 ((-1066) (-578) (-578) (-578) (-229) (-711 (-229)) (-578) (-711 (-229)) (-578))))) (T -775)) +((-2211 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-4280 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-112)) (-5 *6 (-229)) (-5 *7 (-711 (-578))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-2350 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-112)) (-5 *7 (-711 (-578))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-578)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-2057 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-112)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-4087 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-2121 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-4265 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-4197 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-578)) (-5 *5 (-112)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775))))) +(-10 -7 (-15 -4197 ((-1066) (-578) (-229) (-229) (-578) (-229) (-112) (-229) (-229) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN))))) (-15 -4265 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2121 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-63 LSFUN2))))) (-15 -4087 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2057 ((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-112) (-578) (-578) (-711 (-229)) (-578))) (-15 -2350 ((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-112) (-112) (-112) (-578) (-578) (-711 (-229)) (-711 (-578)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -4280 ((-1066) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-578) (-112) (-229) (-578) (-229) (-229) (-112) (-229) (-229) (-229) (-229) (-112) (-578) (-578) (-578) (-578) (-578) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-578) (-711 (-578)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN))))) (-15 -2211 ((-1066) (-578) (-578) (-578) (-229) (-711 (-229)) (-578) (-711 (-229)) (-578)))) +((-3632 (((-1066) (-1189) (-578) (-578) (-578) (-578) (-711 (-172 (-229))) (-711 (-172 (-229))) (-578)) 47 T ELT)) (-2274 (((-1066) (-1189) (-1189) (-578) (-578) (-711 (-172 (-229))) (-578) (-711 (-172 (-229))) (-578) (-578) (-711 (-172 (-229))) (-578)) 46 T ELT)) (-2447 (((-1066) (-578) (-578) (-578) (-711 (-172 (-229))) (-578)) 45 T ELT)) (-4338 (((-1066) (-1189) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578)) 40 T ELT)) (-1746 (((-1066) (-1189) (-1189) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-711 (-229)) (-578)) 39 T ELT)) (-2186 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-578)) 36 T ELT)) (-2766 (((-1066) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578)) 35 T ELT)) (-2386 (((-1066) (-578) (-578) (-578) (-578) (-666 (-112)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-229) (-229) (-578)) 34 T ELT)) (-2011 (((-1066) (-578) (-578) (-578) (-711 (-578)) (-711 (-578)) (-711 (-578)) (-711 (-578)) (-112) (-229) (-112) (-711 (-578)) (-711 (-229)) (-578)) 33 T ELT)) (-2640 (((-1066) (-578) (-578) (-578) (-578) (-229) (-112) (-112) (-666 (-112)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-578)) 32 T ELT))) +(((-776) (-10 -7 (-15 -2640 ((-1066) (-578) (-578) (-578) (-578) (-229) (-112) (-112) (-666 (-112)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-578))) (-15 -2011 ((-1066) (-578) (-578) (-578) (-711 (-578)) (-711 (-578)) (-711 (-578)) (-711 (-578)) (-112) (-229) (-112) (-711 (-578)) (-711 (-229)) (-578))) (-15 -2386 ((-1066) (-578) (-578) (-578) (-578) (-666 (-112)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-229) (-229) (-578))) (-15 -2766 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578))) (-15 -2186 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-578))) (-15 -1746 ((-1066) (-1189) (-1189) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-711 (-229)) (-578))) (-15 -4338 ((-1066) (-1189) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2447 ((-1066) (-578) (-578) (-578) (-711 (-172 (-229))) (-578))) (-15 -2274 ((-1066) (-1189) (-1189) (-578) (-578) (-711 (-172 (-229))) (-578) (-711 (-172 (-229))) (-578) (-578) (-711 (-172 (-229))) (-578))) (-15 -3632 ((-1066) (-1189) (-578) (-578) (-578) (-578) (-711 (-172 (-229))) (-711 (-172 (-229))) (-578))))) (T -776)) +((-3632 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-172 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2274 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-172 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2447 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-172 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-4338 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-1746 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2186 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2766 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2386 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-666 (-112))) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-578))) (-5 *7 (-229)) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2011 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-711 (-578))) (-5 *5 (-112)) (-5 *7 (-711 (-229))) (-5 *3 (-578)) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2640 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-666 (-112))) (-5 *7 (-711 (-229))) (-5 *8 (-711 (-578))) (-5 *3 (-578)) (-5 *4 (-229)) (-5 *5 (-112)) (-5 *2 (-1066)) (-5 *1 (-776))))) +(-10 -7 (-15 -2640 ((-1066) (-578) (-578) (-578) (-578) (-229) (-112) (-112) (-666 (-112)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-578))) (-15 -2011 ((-1066) (-578) (-578) (-578) (-711 (-578)) (-711 (-578)) (-711 (-578)) (-711 (-578)) (-112) (-229) (-112) (-711 (-578)) (-711 (-229)) (-578))) (-15 -2386 ((-1066) (-578) (-578) (-578) (-578) (-666 (-112)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-229) (-229) (-578))) (-15 -2766 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578))) (-15 -2186 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-578))) (-15 -1746 ((-1066) (-1189) (-1189) (-578) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-711 (-229)) (-578))) (-15 -4338 ((-1066) (-1189) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2447 ((-1066) (-578) (-578) (-578) (-711 (-172 (-229))) (-578))) (-15 -2274 ((-1066) (-1189) (-1189) (-578) (-578) (-711 (-172 (-229))) (-578) (-711 (-172 (-229))) (-578) (-578) (-711 (-172 (-229))) (-578))) (-15 -3632 ((-1066) (-1189) (-578) (-578) (-578) (-578) (-711 (-172 (-229))) (-711 (-172 (-229))) (-578)))) +((-1734 (((-1066) (-578) (-578) (-578) (-578) (-578) (-112) (-578) (-112) (-578) (-711 (-172 (-229))) (-711 (-172 (-229))) (-578)) 79 T ELT)) (-1768 (((-1066) (-578) (-578) (-578) (-578) (-578) (-112) (-578) (-112) (-578) (-711 (-229)) (-711 (-229)) (-578)) 68 T ELT)) (-2604 (((-1066) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1066) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-3436 (((-1066) (-578) (-578) (-578) (-229) (-112) (-578) (-711 (-229)) (-711 (-229)) (-578)) 37 T ELT)) (-1814 (((-1066) (-578) (-578) (-229) (-229) (-578) (-578) (-711 (-229)) (-578)) 33 T ELT)) (-2521 (((-1066) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-578) (-578) (-578)) 30 T ELT)) (-3393 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578)) 29 T ELT)) (-2446 (((-1066) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578)) 28 T ELT)) (-4358 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578)) 27 T ELT)) (-3867 (((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578)) 26 T ELT)) (-1485 (((-1066) (-578) (-578) (-711 (-229)) (-578)) 25 T ELT)) (-4327 (((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578)) 24 T ELT)) (-4343 (((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578)) 23 T ELT)) (-2918 (((-1066) (-711 (-229)) (-578) (-578) (-578) (-578)) 22 T ELT)) (-3570 (((-1066) (-578) (-578) (-711 (-229)) (-578)) 21 T ELT))) +(((-777) (-10 -7 (-15 -3570 ((-1066) (-578) (-578) (-711 (-229)) (-578))) (-15 -2918 ((-1066) (-711 (-229)) (-578) (-578) (-578) (-578))) (-15 -4343 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -4327 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1485 ((-1066) (-578) (-578) (-711 (-229)) (-578))) (-15 -3867 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578))) (-15 -4358 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2446 ((-1066) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3393 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2521 ((-1066) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-578) (-578) (-578))) (-15 -1814 ((-1066) (-578) (-578) (-229) (-229) (-578) (-578) (-711 (-229)) (-578))) (-15 -3436 ((-1066) (-578) (-578) (-578) (-229) (-112) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2604 ((-1066) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2604 ((-1066) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -1768 ((-1066) (-578) (-578) (-578) (-578) (-578) (-112) (-578) (-112) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1734 ((-1066) (-578) (-578) (-578) (-578) (-578) (-112) (-578) (-112) (-578) (-711 (-172 (-229))) (-711 (-172 (-229))) (-578))))) (T -777)) +((-1734 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-112)) (-5 *5 (-711 (-172 (-229)))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1768 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *4 (-112)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2604 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2604 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3436 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-578)) (-5 *5 (-112)) (-5 *6 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1814 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2521 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3393 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2446 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4358 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3867 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1485 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4327 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4343 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2918 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3570 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777))))) +(-10 -7 (-15 -3570 ((-1066) (-578) (-578) (-711 (-229)) (-578))) (-15 -2918 ((-1066) (-711 (-229)) (-578) (-578) (-578) (-578))) (-15 -4343 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -4327 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1485 ((-1066) (-578) (-578) (-711 (-229)) (-578))) (-15 -3867 ((-1066) (-578) (-578) (-578) (-578) (-711 (-229)) (-578))) (-15 -4358 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2446 ((-1066) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3393 ((-1066) (-578) (-578) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2521 ((-1066) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-578) (-578) (-578))) (-15 -1814 ((-1066) (-578) (-578) (-229) (-229) (-578) (-578) (-711 (-229)) (-578))) (-15 -3436 ((-1066) (-578) (-578) (-578) (-229) (-112) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2604 ((-1066) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2604 ((-1066) (-578) (-578) (-229) (-578) (-578) (-578) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -1768 ((-1066) (-578) (-578) (-578) (-578) (-578) (-112) (-578) (-112) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -1734 ((-1066) (-578) (-578) (-578) (-578) (-578) (-112) (-578) (-112) (-578) (-711 (-172 (-229))) (-711 (-172 (-229))) (-578)))) +((-3701 (((-1066) (-578) (-578) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-4333 (((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-578)) (-578) (-711 (-229)) (-578) (-578) (-578) (-578)) 60 T ELT)) (-1935 (((-1066) (-578) (-711 (-229)) (-112) (-229) (-578) (-578) (-578) (-578) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-2456 (((-1066) (-578) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578) (-711 (-578)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578)) 37 T ELT)) (-3596 (((-1066) (-578) (-578) (-578) (-229) (-578) (-711 (-229)) (-711 (-229)) (-578)) 36 T ELT)) (-3674 (((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578)) 33 T ELT)) (-3388 (((-1066) (-578) (-711 (-229)) (-578) (-711 (-578)) (-711 (-578)) (-578) (-711 (-578)) (-711 (-229))) 32 T ELT)) (-4391 (((-1066) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-578)) 28 T ELT)) (-2505 (((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578)) 27 T ELT)) (-3995 (((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578)) 26 T ELT)) (-2044 (((-1066) (-578) (-711 (-172 (-229))) (-578) (-578) (-578) (-578) (-711 (-172 (-229))) (-578)) 22 T ELT))) +(((-778) (-10 -7 (-15 -2044 ((-1066) (-578) (-711 (-172 (-229))) (-578) (-578) (-578) (-578) (-711 (-172 (-229))) (-578))) (-15 -3995 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -2505 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -4391 ((-1066) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-578))) (-15 -3388 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-578)) (-711 (-578)) (-578) (-711 (-578)) (-711 (-229)))) (-15 -3674 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3596 ((-1066) (-578) (-578) (-578) (-229) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2456 ((-1066) (-578) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578) (-711 (-578)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578))) (-15 -1935 ((-1066) (-578) (-711 (-229)) (-112) (-229) (-578) (-578) (-578) (-578) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -4333 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-578)) (-578) (-711 (-229)) (-578) (-578) (-578) (-578))) (-15 -3701 ((-1066) (-578) (-578) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -778)) +((-3701 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-4333 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-1935 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-112)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2456 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3596 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3674 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3388 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-4391 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2505 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3995 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2044 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-172 (-229)))) (-5 *2 (-1066)) (-5 *1 (-778))))) +(-10 -7 (-15 -2044 ((-1066) (-578) (-711 (-172 (-229))) (-578) (-578) (-578) (-578) (-711 (-172 (-229))) (-578))) (-15 -3995 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -2505 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-578))) (-15 -4391 ((-1066) (-711 (-229)) (-578) (-711 (-229)) (-578) (-578) (-578))) (-15 -3388 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-578)) (-711 (-578)) (-578) (-711 (-578)) (-711 (-229)))) (-15 -3674 ((-1066) (-578) (-578) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-578))) (-15 -3596 ((-1066) (-578) (-578) (-578) (-229) (-578) (-711 (-229)) (-711 (-229)) (-578))) (-15 -2456 ((-1066) (-578) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578) (-711 (-578)) (-711 (-229)) (-711 (-578)) (-711 (-578)) (-711 (-229)) (-711 (-229)) (-711 (-578)) (-578))) (-15 -1935 ((-1066) (-578) (-711 (-229)) (-112) (-229) (-578) (-578) (-578) (-578) (-229) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -4333 ((-1066) (-578) (-711 (-229)) (-578) (-711 (-229)) (-711 (-578)) (-578) (-711 (-229)) (-578) (-578) (-578) (-578))) (-15 -3701 ((-1066) (-578) (-578) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-711 (-229)) (-578) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))))) +((-4270 (((-1066) (-1189) (-578) (-578) (-711 (-229)) (-578) (-578) (-711 (-229))) 29 T ELT)) (-1803 (((-1066) (-1189) (-578) (-578) (-711 (-229))) 28 T ELT)) (-2104 (((-1066) (-1189) (-578) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578) (-711 (-229))) 27 T ELT)) (-4376 (((-1066) (-578) (-578) (-578) (-711 (-229))) 21 T ELT))) +(((-779) (-10 -7 (-15 -4376 ((-1066) (-578) (-578) (-578) (-711 (-229)))) (-15 -2104 ((-1066) (-1189) (-578) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578) (-711 (-229)))) (-15 -1803 ((-1066) (-1189) (-578) (-578) (-711 (-229)))) (-15 -4270 ((-1066) (-1189) (-578) (-578) (-711 (-229)) (-578) (-578) (-711 (-229)))))) (T -779)) +((-4270 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))) (-1803 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))) (-2104 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-578))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-779)))) (-4376 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779))))) +(-10 -7 (-15 -4376 ((-1066) (-578) (-578) (-578) (-711 (-229)))) (-15 -2104 ((-1066) (-1189) (-578) (-578) (-711 (-229)) (-578) (-711 (-578)) (-578) (-711 (-229)))) (-15 -1803 ((-1066) (-1189) (-578) (-578) (-711 (-229)))) (-15 -4270 ((-1066) (-1189) (-578) (-578) (-711 (-229)) (-578) (-578) (-711 (-229))))) +((-1778 (((-1066) (-229) (-229) (-229) (-229) (-578)) 62 T ELT)) (-2197 (((-1066) (-229) (-229) (-229) (-578)) 61 T ELT)) (-4457 (((-1066) (-229) (-229) (-229) (-578)) 60 T ELT)) (-2733 (((-1066) (-229) (-229) (-578)) 59 T ELT)) (-1695 (((-1066) (-229) (-578)) 58 T ELT)) (-3406 (((-1066) (-229) (-578)) 57 T ELT)) (-2460 (((-1066) (-229) (-578)) 56 T ELT)) (-3508 (((-1066) (-229) (-578)) 55 T ELT)) (-2019 (((-1066) (-229) (-578)) 54 T ELT)) (-2408 (((-1066) (-229) (-578)) 53 T ELT)) (-2014 (((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578)) 52 T ELT)) (-3586 (((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578)) 51 T ELT)) (-4276 (((-1066) (-229) (-578)) 50 T ELT)) (-3001 (((-1066) (-229) (-578)) 49 T ELT)) (-2895 (((-1066) (-229) (-578)) 48 T ELT)) (-1632 (((-1066) (-229) (-578)) 47 T ELT)) (-2399 (((-1066) (-578) (-229) (-172 (-229)) (-578) (-1189) (-578)) 46 T ELT)) (-1837 (((-1066) (-1189) (-172 (-229)) (-1189) (-578)) 45 T ELT)) (-3951 (((-1066) (-1189) (-172 (-229)) (-1189) (-578)) 44 T ELT)) (-2765 (((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578)) 43 T ELT)) (-3810 (((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578)) 42 T ELT)) (-3485 (((-1066) (-229) (-578)) 39 T ELT)) (-4162 (((-1066) (-229) (-578)) 38 T ELT)) (-3565 (((-1066) (-229) (-578)) 37 T ELT)) (-3806 (((-1066) (-229) (-578)) 36 T ELT)) (-1979 (((-1066) (-229) (-578)) 35 T ELT)) (-1747 (((-1066) (-229) (-578)) 34 T ELT)) (-3886 (((-1066) (-229) (-578)) 33 T ELT)) (-3999 (((-1066) (-229) (-578)) 32 T ELT)) (-2281 (((-1066) (-229) (-578)) 31 T ELT)) (-1463 (((-1066) (-229) (-578)) 30 T ELT)) (-3121 (((-1066) (-229) (-229) (-229) (-578)) 29 T ELT)) (-3918 (((-1066) (-229) (-578)) 28 T ELT)) (-3401 (((-1066) (-229) (-578)) 27 T ELT)) (-2108 (((-1066) (-229) (-578)) 26 T ELT)) (-3793 (((-1066) (-229) (-578)) 25 T ELT)) (-2235 (((-1066) (-229) (-578)) 24 T ELT)) (-3890 (((-1066) (-172 (-229)) (-578)) 21 T ELT))) +(((-780) (-10 -7 (-15 -3890 ((-1066) (-172 (-229)) (-578))) (-15 -2235 ((-1066) (-229) (-578))) (-15 -3793 ((-1066) (-229) (-578))) (-15 -2108 ((-1066) (-229) (-578))) (-15 -3401 ((-1066) (-229) (-578))) (-15 -3918 ((-1066) (-229) (-578))) (-15 -3121 ((-1066) (-229) (-229) (-229) (-578))) (-15 -1463 ((-1066) (-229) (-578))) (-15 -2281 ((-1066) (-229) (-578))) (-15 -3999 ((-1066) (-229) (-578))) (-15 -3886 ((-1066) (-229) (-578))) (-15 -1747 ((-1066) (-229) (-578))) (-15 -1979 ((-1066) (-229) (-578))) (-15 -3806 ((-1066) (-229) (-578))) (-15 -3565 ((-1066) (-229) (-578))) (-15 -4162 ((-1066) (-229) (-578))) (-15 -3485 ((-1066) (-229) (-578))) (-15 -3810 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -2765 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -3951 ((-1066) (-1189) (-172 (-229)) (-1189) (-578))) (-15 -1837 ((-1066) (-1189) (-172 (-229)) (-1189) (-578))) (-15 -2399 ((-1066) (-578) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -1632 ((-1066) (-229) (-578))) (-15 -2895 ((-1066) (-229) (-578))) (-15 -3001 ((-1066) (-229) (-578))) (-15 -4276 ((-1066) (-229) (-578))) (-15 -3586 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -2014 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -2408 ((-1066) (-229) (-578))) (-15 -2019 ((-1066) (-229) (-578))) (-15 -3508 ((-1066) (-229) (-578))) (-15 -2460 ((-1066) (-229) (-578))) (-15 -3406 ((-1066) (-229) (-578))) (-15 -1695 ((-1066) (-229) (-578))) (-15 -2733 ((-1066) (-229) (-229) (-578))) (-15 -4457 ((-1066) (-229) (-229) (-229) (-578))) (-15 -2197 ((-1066) (-229) (-229) (-229) (-578))) (-15 -1778 ((-1066) (-229) (-229) (-229) (-229) (-578))))) (T -780)) +((-1778 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2197 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4457 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2733 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2019 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2014 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3586 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2399 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-578)) (-5 *5 (-172 (-229))) (-5 *6 (-1189)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1837 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3951 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2765 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3810 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1463 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3121 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-172 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(-10 -7 (-15 -3890 ((-1066) (-172 (-229)) (-578))) (-15 -2235 ((-1066) (-229) (-578))) (-15 -3793 ((-1066) (-229) (-578))) (-15 -2108 ((-1066) (-229) (-578))) (-15 -3401 ((-1066) (-229) (-578))) (-15 -3918 ((-1066) (-229) (-578))) (-15 -3121 ((-1066) (-229) (-229) (-229) (-578))) (-15 -1463 ((-1066) (-229) (-578))) (-15 -2281 ((-1066) (-229) (-578))) (-15 -3999 ((-1066) (-229) (-578))) (-15 -3886 ((-1066) (-229) (-578))) (-15 -1747 ((-1066) (-229) (-578))) (-15 -1979 ((-1066) (-229) (-578))) (-15 -3806 ((-1066) (-229) (-578))) (-15 -3565 ((-1066) (-229) (-578))) (-15 -4162 ((-1066) (-229) (-578))) (-15 -3485 ((-1066) (-229) (-578))) (-15 -3810 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -2765 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -3951 ((-1066) (-1189) (-172 (-229)) (-1189) (-578))) (-15 -1837 ((-1066) (-1189) (-172 (-229)) (-1189) (-578))) (-15 -2399 ((-1066) (-578) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -1632 ((-1066) (-229) (-578))) (-15 -2895 ((-1066) (-229) (-578))) (-15 -3001 ((-1066) (-229) (-578))) (-15 -4276 ((-1066) (-229) (-578))) (-15 -3586 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -2014 ((-1066) (-229) (-172 (-229)) (-578) (-1189) (-578))) (-15 -2408 ((-1066) (-229) (-578))) (-15 -2019 ((-1066) (-229) (-578))) (-15 -3508 ((-1066) (-229) (-578))) (-15 -2460 ((-1066) (-229) (-578))) (-15 -3406 ((-1066) (-229) (-578))) (-15 -1695 ((-1066) (-229) (-578))) (-15 -2733 ((-1066) (-229) (-229) (-578))) (-15 -4457 ((-1066) (-229) (-229) (-229) (-578))) (-15 -2197 ((-1066) (-229) (-229) (-229) (-578))) (-15 -1778 ((-1066) (-229) (-229) (-229) (-229) (-578)))) +((-3510 (((-1303)) 20 T ELT)) (-2616 (((-1189)) 34 T ELT)) (-1440 (((-1189)) 33 T ELT)) (-3832 (((-1135) (-1207) (-711 (-578))) 47 T ELT) (((-1135) (-1207) (-711 (-229))) 43 T ELT)) (-1581 (((-112)) 19 T ELT)) (-1505 (((-1189) (-1189)) 37 T ELT))) +(((-781) (-10 -7 (-15 -1440 ((-1189))) (-15 -2616 ((-1189))) (-15 -1505 ((-1189) (-1189))) (-15 -3832 ((-1135) (-1207) (-711 (-229)))) (-15 -3832 ((-1135) (-1207) (-711 (-578)))) (-15 -1581 ((-112))) (-15 -3510 ((-1303))))) (T -781)) +((-3510 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-781)))) (-1581 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-781)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-578))) (-5 *2 (-1135)) (-5 *1 (-781)))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-229))) (-5 *2 (-1135)) (-5 *1 (-781)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))) (-2616 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))) (-1440 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781))))) +(-10 -7 (-15 -1440 ((-1189))) (-15 -2616 ((-1189))) (-15 -1505 ((-1189) (-1189))) (-15 -3832 ((-1135) (-1207) (-711 (-229)))) (-15 -3832 ((-1135) (-1207) (-711 (-578)))) (-15 -1581 ((-112))) (-15 -3510 ((-1303)))) +((-1863 (($ $ $) 10 T ELT)) (-2851 (($ $ $ $) 9 T ELT)) (-3021 (($ $ $) 12 T ELT))) +(((-782 |#1|) (-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -1863 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1| |#1|))) (-783)) (T -782)) +NIL +(-10 -8 (-15 -3021 (|#1| |#1| |#1|)) (-15 -1863 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-1640 (($ $ (-950)) 31 T ELT)) (-4051 (($ $ (-950)) 32 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1863 (($ $ $) 28 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2851 (($ $ $ $) 29 T ELT)) (-3021 (($ $ $) 27 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 33 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 30 T ELT))) +(((-783) (-142)) (T -783)) +((-2851 (*1 *1 *1 *1 *1) (-4 *1 (-783))) (-1863 (*1 *1 *1 *1) (-4 *1 (-783))) (-3021 (*1 *1 *1 *1) (-4 *1 (-783)))) +(-13 (-21) (-742) (-10 -8 (-15 -2851 ($ $ $ $)) (-15 -1863 ($ $ $)) (-15 -3021 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-742) . T) ((-1131) . T) ((-1248) . T)) +((-2411 (((-886) $) NIL T ELT) (($ (-578)) 10 T ELT))) +(((-784 |#1|) (-10 -8 (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-785)) (T -784)) +NIL +(-10 -8 (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3373 (((-3 $ "failed") $) 43 T ELT)) (-1640 (($ $ (-950)) 31 T ELT) (($ $ (-793)) 38 T ELT)) (-3493 (((-3 $ "failed") $) 41 T ELT)) (-4382 (((-112) $) 37 T ELT)) (-3988 (((-3 $ "failed") $) 42 T ELT)) (-4051 (($ $ (-950)) 32 T ELT) (($ $ (-793)) 39 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1863 (($ $ $) 28 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 34 T ELT)) (-3753 (((-793)) 35 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2851 (($ $ $ $) 29 T ELT)) (-3021 (($ $ $) 27 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 36 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 33 T ELT) (($ $ (-793)) 40 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 30 T ELT))) +(((-785) (-142)) (T -785)) +((-3753 (*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-785))))) +(-13 (-783) (-744) (-10 -8 (-15 -3753 ((-793)) -1529) (-15 -2411 ($ (-578))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-742) . T) ((-744) . T) ((-783) . T) ((-1131) . T) ((-1248) . T)) +((-3971 (((-666 (-2 (|:| |outval| (-172 |#1|)) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 (-172 |#1|)))))) (-711 (-172 (-421 (-578)))) |#1|) 33 T ELT)) (-1995 (((-666 (-172 |#1|)) (-711 (-172 (-421 (-578)))) |#1|) 23 T ELT)) (-1566 (((-981 (-172 (-421 (-578)))) (-711 (-172 (-421 (-578)))) (-1207)) 20 T ELT) (((-981 (-172 (-421 (-578)))) (-711 (-172 (-421 (-578))))) 19 T ELT))) +(((-786 |#1|) (-10 -7 (-15 -1566 ((-981 (-172 (-421 (-578)))) (-711 (-172 (-421 (-578)))))) (-15 -1566 ((-981 (-172 (-421 (-578)))) (-711 (-172 (-421 (-578)))) (-1207))) (-15 -1995 ((-666 (-172 |#1|)) (-711 (-172 (-421 (-578)))) |#1|)) (-15 -3971 ((-666 (-2 (|:| |outval| (-172 |#1|)) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 (-172 |#1|)))))) (-711 (-172 (-421 (-578)))) |#1|))) (-13 (-376) (-870))) (T -786)) +((-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-172 (-421 (-578))))) (-5 *2 (-666 (-2 (|:| |outval| (-172 *4)) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 (-172 *4))))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-172 (-421 (-578))))) (-5 *2 (-666 (-172 *4))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-172 (-421 (-578))))) (-5 *4 (-1207)) (-5 *2 (-981 (-172 (-421 (-578))))) (-5 *1 (-786 *5)) (-4 *5 (-13 (-376) (-870))))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-711 (-172 (-421 (-578))))) (-5 *2 (-981 (-172 (-421 (-578))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870)))))) +(-10 -7 (-15 -1566 ((-981 (-172 (-421 (-578)))) (-711 (-172 (-421 (-578)))))) (-15 -1566 ((-981 (-172 (-421 (-578)))) (-711 (-172 (-421 (-578)))) (-1207))) (-15 -1995 ((-666 (-172 |#1|)) (-711 (-172 (-421 (-578)))) |#1|)) (-15 -3971 ((-666 (-2 (|:| |outval| (-172 |#1|)) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 (-172 |#1|)))))) (-711 (-172 (-421 (-578)))) |#1|))) +((-1562 (((-177 (-578)) |#1|) 27 T ELT))) +(((-787 |#1|) (-10 -7 (-15 -1562 ((-177 (-578)) |#1|))) (-418)) (T -787)) +((-1562 (*1 *2 *3) (-12 (-5 *2 (-177 (-578))) (-5 *1 (-787 *3)) (-4 *3 (-418))))) +(-10 -7 (-15 -1562 ((-177 (-578)) |#1|))) +((-2237 ((|#1| |#1| |#1|) 28 T ELT)) (-3512 ((|#1| |#1| |#1|) 27 T ELT)) (-1519 ((|#1| |#1| |#1|) 38 T ELT)) (-2736 ((|#1| |#1| |#1|) 34 T ELT)) (-1724 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-1465 (((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|) 26 T ELT))) +(((-788 |#1| |#2|) (-10 -7 (-15 -1465 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|))) (-730 |#2|) (-376)) (T -788)) +((-1519 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-2736 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-1724 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-2237 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3512 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-1465 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4))))) +(-10 -7 (-15 -1465 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1|)) (-15 -1519 (|#1| |#1| |#1|))) +((-2740 (((-713 (-1256)) $ (-1256)) 26 T ELT)) (-2625 (((-713 (-563)) $ (-563)) 25 T ELT)) (-3709 (((-793) $ (-130)) 27 T ELT)) (-2558 (((-713 (-131)) $ (-131)) 24 T ELT)) (-2690 (((-713 (-1256)) $) 12 T ELT)) (-3143 (((-713 (-1254)) $) 8 T ELT)) (-2168 (((-713 (-1253)) $) 10 T ELT)) (-3520 (((-713 (-563)) $) 13 T ELT)) (-3506 (((-713 (-561)) $) 9 T ELT)) (-3629 (((-713 (-560)) $) 11 T ELT)) (-1665 (((-793) $ (-130)) 7 T ELT)) (-3578 (((-713 (-131)) $) 14 T ELT)) (-1775 (((-112) $) 31 T ELT)) (-4194 (((-713 $) |#1| (-983)) 32 T ELT)) (-3250 (($ $) 6 T ELT))) +(((-789 |#1|) (-142) (-1131)) (T -789)) +((-4194 (*1 *2 *3 *4) (-12 (-5 *4 (-983)) (-4 *3 (-1131)) (-5 *2 (-713 *1)) (-4 *1 (-789 *3)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-789 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))) +(-13 (-590) (-10 -8 (-15 -4194 ((-713 $) |t#1| (-983))) (-15 -1775 ((-112) $)))) +(((-176) . T) ((-541) . T) ((-590) . T) ((-884) . T)) +((-3748 (((-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) (|:| |basisInv| (-711 (-578)))) (-578)) 71 T ELT)) (-3098 (((-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) (|:| |basisInv| (-711 (-578))))) 69 T ELT)) (-3232 (((-578)) 85 T ELT))) +(((-790 |#1| |#2|) (-10 -7 (-15 -3232 ((-578))) (-15 -3098 ((-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) (|:| |basisInv| (-711 (-578)))))) (-15 -3748 ((-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) (|:| |basisInv| (-711 (-578)))) (-578)))) (-1274 (-578)) (-423 (-578) |#1|)) (T -790)) +((-3748 (*1 *2 *3) (-12 (-5 *3 (-578)) (-4 *4 (-1274 *3)) (-5 *2 (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-790 *4 *5)) (-4 *5 (-423 *3 *4)))) (-3098 (*1 *2) (-12 (-4 *3 (-1274 (-578))) (-5 *2 (-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) (|:| |basisInv| (-711 (-578))))) (-5 *1 (-790 *3 *4)) (-4 *4 (-423 (-578) *3)))) (-3232 (*1 *2) (-12 (-4 *3 (-1274 *2)) (-5 *2 (-578)) (-5 *1 (-790 *3 *4)) (-4 *4 (-423 *2 *3))))) +(-10 -7 (-15 -3232 ((-578))) (-15 -3098 ((-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) (|:| |basisInv| (-711 (-578)))))) (-15 -3748 ((-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) (|:| |basisInv| (-711 (-578)))) (-578)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3516 (((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-791) (-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2411 ($ (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2411 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3516 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -791)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791))))) +(-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2411 ($ (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2411 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3516 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $)))) +((-3279 (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|))) 18 T ELT) (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)) (-666 (-1207))) 17 T ELT)) (-2096 (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|))) 20 T ELT) (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)) (-666 (-1207))) 19 T ELT))) +(((-792 |#1|) (-10 -7 (-15 -3279 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -3279 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|))))) (-570)) (T -792)) +((-2096 (*1 *2 *3) (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) (-5 *1 (-792 *4)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-666 (-1207))) (-4 *5 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) (-5 *1 (-792 *5)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) (-5 *1 (-792 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-666 (-1207))) (-4 *5 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) (-5 *1 (-792 *5))))) +(-10 -7 (-15 -3279 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -3279 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-981 |#1|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2424 (($ $ $) 10 T ELT)) (-4028 (((-3 $ "failed") $ $) 15 T ELT)) (-1887 (($ $ (-578)) 11 T ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($ $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 6 T CONST)) (-2379 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-793) (-13 (-815) (-748) (-10 -8 (-15 -3166 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -2421 ($ $ $)) (-15 -2036 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -3202 ((-3 $ "failed") $ $)) (-15 -1887 ($ $ (-578))) (-15 -2062 ($ $)) (-6 (-4502 "*"))))) (T -793)) +((-3166 (*1 *1 *1 *1) (-5 *1 (-793))) (-3154 (*1 *1 *1 *1) (-5 *1 (-793))) (-2421 (*1 *1 *1 *1) (-5 *1 (-793))) (-2036 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2196 (-793)) (|:| -1886 (-793)))) (-5 *1 (-793)))) (-3202 (*1 *1 *1 *1) (|partial| -5 *1 (-793))) (-1887 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-793)))) (-2062 (*1 *1 *1) (-5 *1 (-793)))) +(-13 (-815) (-748) (-10 -8 (-15 -3166 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -2421 ($ $ $)) (-15 -2036 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -3202 ((-3 $ "failed") $ $)) (-15 -1887 ($ $ (-578))) (-15 -2062 ($ $)) (-6 (-4502 "*")))) ((|Integer|) (|%not| (|%ilt| |#1| 0))) -((-3766 (((-3 |#2| "failed") |#2| |#2| (-115) (-1206)) 37 T ELT))) -(((-793 |#1| |#2|) (-10 -7 (-15 -3766 ((-3 |#2| "failed") |#2| |#2| (-115) (-1206)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987))) (T -793)) -((-3766 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-793 *5 *2)) (-4 *2 (-13 (-29 *5) (-1232) (-987)))))) -(-10 -7 (-15 -3766 ((-3 |#2| "failed") |#2| |#2| (-115) (-1206)))) -((-2410 (((-795) |#1|) 8 T ELT))) -(((-794 |#1|) (-10 -7 (-15 -2410 ((-795) |#1|))) (-1247)) (T -794)) -((-2410 (*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-794 *3)) (-4 *3 (-1247))))) -(-10 -7 (-15 -2410 ((-795) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 7 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 9 T ELT))) -(((-795) (-1130)) (T -795)) -NIL -(-1130) -((-2755 ((|#2| |#4|) 35 T ELT))) -(((-796 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2755 (|#2| |#4|))) (-465) (-1273 |#1|) (-745 |#1| |#2|) (-1273 |#3|)) (T -796)) -((-2755 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-745 *4 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-796 *4 *2 *5 *3)) (-4 *3 (-1273 *5))))) -(-10 -7 (-15 -2755 (|#2| |#4|))) -((-4281 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-3431 (((-1302) (-1188) (-1188) |#4| |#5|) 33 T ELT)) (-4072 ((|#4| |#4| |#5|) 74 T ELT)) (-3310 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|) 79 T ELT)) (-3781 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|) 16 T ELT))) -(((-797 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4281 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4072 (|#4| |#4| |#5|)) (-15 -3310 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -3431 ((-1302) (-1188) (-1188) |#4| |#5|)) (-15 -3781 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -797)) -((-3781 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1188)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *4 (-1095 *6 *7 *8)) (-5 *2 (-1302)) (-5 *1 (-797 *6 *7 *8 *4 *5)) (-4 *5 (-1101 *6 *7 *8 *4)))) (-3310 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-4072 (*1 *2 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *2 (-1095 *4 *5 *6)) (-5 *1 (-797 *4 *5 *6 *2 *3)) (-4 *3 (-1101 *4 *5 *6 *2)))) (-4281 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(-10 -7 (-15 -4281 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4072 (|#4| |#4| |#5|)) (-15 -3310 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -3431 ((-1302) (-1188) (-1188) |#4| |#5|)) (-15 -3781 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|))) -((-2817 (((-3 (-1202 (-1202 |#1|)) "failed") |#4|) 51 T ELT)) (-3740 (((-665 |#4|) |#4|) 22 T ELT)) (-3077 ((|#4| |#4|) 17 T ELT))) -(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3740 ((-665 |#4|) |#4|)) (-15 -2817 ((-3 (-1202 (-1202 |#1|)) "failed") |#4|)) (-15 -3077 (|#4| |#4|))) (-361) (-340 |#1|) (-1273 |#2|) (-1273 |#3|) (-949)) (T -798)) -((-3077 (*1 *2 *2) (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1273 *4)) (-5 *1 (-798 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-949)))) (-2817 (*1 *2 *3) (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-1202 (-1202 *4))) (-5 *1 (-798 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-949)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-665 *3)) (-5 *1 (-798 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-949))))) -(-10 -7 (-15 -3740 ((-665 |#4|) |#4|)) (-15 -2817 ((-3 (-1202 (-1202 |#1|)) "failed") |#4|)) (-15 -3077 (|#4| |#4|))) -((-3644 (((-2 (|:| |deter| (-665 (-1202 |#5|))) (|:| |dterm| (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-665 |#1|)) (|:| |nlead| (-665 |#5|))) (-1202 |#5|) (-665 |#1|) (-665 |#5|)) 72 T ELT)) (-1896 (((-665 (-792)) |#1|) 20 T ELT))) -(((-799 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3644 ((-2 (|:| |deter| (-665 (-1202 |#5|))) (|:| |dterm| (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-665 |#1|)) (|:| |nlead| (-665 |#5|))) (-1202 |#5|) (-665 |#1|) (-665 |#5|))) (-15 -1896 ((-665 (-792)) |#1|))) (-1273 |#4|) (-814) (-870) (-318) (-977 |#4| |#2| |#3|)) (T -799)) -((-1896 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-665 (-792))) (-5 *1 (-799 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *6)) (-4 *7 (-977 *6 *4 *5)))) (-3644 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1273 *9)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-318)) (-4 *10 (-977 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-665 (-1202 *10))) (|:| |dterm| (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| *10))))) (|:| |nfacts| (-665 *6)) (|:| |nlead| (-665 *10)))) (-5 *1 (-799 *6 *7 *8 *9 *10)) (-5 *3 (-1202 *10)) (-5 *4 (-665 *6)) (-5 *5 (-665 *10))))) -(-10 -7 (-15 -3644 ((-2 (|:| |deter| (-665 (-1202 |#5|))) (|:| |dterm| (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-665 |#1|)) (|:| |nlead| (-665 |#5|))) (-1202 |#5|) (-665 |#1|) (-665 |#5|))) (-15 -1896 ((-665 (-792)) |#1|))) -((-1871 (((-665 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#1|))))) (-710 (-420 (-577))) |#1|) 31 T ELT)) (-2878 (((-665 |#1|) (-710 (-420 (-577))) |#1|) 21 T ELT)) (-3400 (((-980 (-420 (-577))) (-710 (-420 (-577))) (-1206)) 18 T ELT) (((-980 (-420 (-577))) (-710 (-420 (-577)))) 17 T ELT))) -(((-800 |#1|) (-10 -7 (-15 -3400 ((-980 (-420 (-577))) (-710 (-420 (-577))))) (-15 -3400 ((-980 (-420 (-577))) (-710 (-420 (-577))) (-1206))) (-15 -2878 ((-665 |#1|) (-710 (-420 (-577))) |#1|)) (-15 -1871 ((-665 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#1|))))) (-710 (-420 (-577))) |#1|))) (-13 (-375) (-869))) (T -800)) -((-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-665 (-2 (|:| |outval| *4) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 *4)))))) (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869))))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *4 (-1206)) (-5 *2 (-980 (-420 (-577)))) (-5 *1 (-800 *5)) (-4 *5 (-13 (-375) (-869))))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-980 (-420 (-577)))) (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869)))))) -(-10 -7 (-15 -3400 ((-980 (-420 (-577))) (-710 (-420 (-577))))) (-15 -3400 ((-980 (-420 (-577))) (-710 (-420 (-577))) (-1206))) (-15 -2878 ((-665 |#1|) (-710 (-420 (-577))) |#1|)) (-15 -1871 ((-665 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-665 (-710 |#1|))))) (-710 (-420 (-577))) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 36 T ELT)) (-2948 (((-665 |#2|) $) NIL T ELT)) (-4419 (((-1202 $) $ |#2|) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 |#2|)) NIL T ELT)) (-3840 (($ $) 30 T ELT)) (-2867 (((-112) $ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2907 (($ $ $) 110 (|has| |#1| (-569)) ELT)) (-2055 (((-665 $) $ $) 123 (|has| |#1| (-569)) ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 $ "failed") (-980 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206)))) ELT) (((-3 $ "failed") (-980 (-577))) NIL (-2229 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))))) ELT) (((-3 $ "failed") (-980 |#1|)) NIL (-2229 (-12 (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-38 (-420 (-577))))) (-2308 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-38 (-420 (-577))))) (-2308 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-1022 (-577)))))) ELT) (((-3 (-1155 |#1| |#2|) "failed") $) 21 T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) ((|#2| $) NIL T ELT) (($ (-980 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206)))) ELT) (($ (-980 (-577))) NIL (-2229 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))))) ELT) (($ (-980 |#1|)) NIL (-2229 (-12 (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-38 (-420 (-577))))) (-2308 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-38 (-420 (-577))))) (-2308 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-1022 (-577)))))) ELT) (((-1155 |#1| |#2|) $) NIL T ELT)) (-3760 (($ $ $ |#2|) NIL (|has| |#1| (-174)) ELT) (($ $ $) 121 (|has| |#1| (-569)) ELT)) (-3134 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4002 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3352 (((-112) $) NIL T ELT)) (-3536 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 81 T ELT)) (-2399 (($ $) 136 (|has| |#1| (-465)) ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-1772 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3096 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3788 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3551 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-4313 (($ $ |#1| (-544 |#2|) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-2097 (((-112) $) 57 T ELT)) (-3641 (((-792) $) NIL T ELT)) (-4424 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-2187 (($ $ $ $ $) 107 (|has| |#1| (-569)) ELT)) (-1669 ((|#2| $) 22 T ELT)) (-2935 (($ (-1202 |#1|) |#2|) NIL T ELT) (($ (-1202 $) |#2|) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) 38 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-2814 (($ $ $) 63 T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |#2|) NIL T ELT)) (-3784 (((-112) $) NIL T ELT)) (-3569 (((-544 |#2|) $) NIL T ELT) (((-792) $ |#2|) NIL T ELT) (((-665 (-792)) $ (-665 |#2|)) NIL T ELT)) (-1702 (((-792) $) 23 T ELT)) (-4309 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2505 (((-3 |#2| "failed") $) NIL T ELT)) (-3671 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3973 (($ $) NIL (|has| |#1| (-465)) ELT)) (-2800 (((-665 $) $) NIL T ELT)) (-2300 (($ $) 39 T ELT)) (-2147 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3149 (((-665 $) $) 43 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-2923 (($ $) 41 T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4443 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4327 (-792))) $ $) 96 T ELT)) (-3430 (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $) 78 T ELT) (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $ |#2|) NIL T ELT)) (-1573 (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $) NIL T ELT) (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $ |#2|) NIL T ELT)) (-1521 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3786 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2212 (($ $ $) 125 (|has| |#1| (-569)) ELT)) (-2477 (((-665 $) $) 32 T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| |#2|) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-2982 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-1502 (($ $ $) NIL T ELT)) (-2199 (($ $) 24 T ELT)) (-2220 (((-112) $ $) NIL T ELT)) (-2624 (((-112) $ $) NIL T ELT) (((-112) $ (-665 $)) NIL T ELT)) (-4058 (($ $ $) NIL T ELT)) (-3133 (($ $) 26 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2665 (((-2 (|:| -2420 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-569)) ELT)) (-1723 (((-2 (|:| -2420 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-569)) ELT)) (-3069 (((-112) $) 56 T ELT)) (-3081 ((|#1| $) 58 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 ((|#1| |#1| $) 133 (|has| |#1| (-465)) ELT) (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-1442 (((-2 (|:| -2420 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-569)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-569)) ELT)) (-3339 (($ $ |#1|) 129 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4030 (($ $ |#1|) 128 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-665 |#2|) (-665 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-665 |#2|) (-665 $)) NIL T ELT)) (-1611 (($ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2776 (((-544 |#2|) $) NIL T ELT) (((-792) $ |#2|) 45 T ELT) (((-665 (-792)) $ (-665 |#2|)) NIL T ELT)) (-2940 (($ $) NIL T ELT)) (-2616 (($ $) 35 T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT) (($ (-980 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206)))) ELT) (($ (-980 (-577))) NIL (-2229 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-632 (-1206))) (-2308 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-632 (-1206))))) ELT) (($ (-980 |#1|)) NIL (|has| |#2| (-632 (-1206))) ELT) (((-1188) $) NIL (-12 (|has| |#1| (-1068 (-577))) (|has| |#2| (-632 (-1206)))) ELT) (((-980 |#1|) $) NIL (|has| |#2| (-632 (-1206))) ELT)) (-2091 ((|#1| $) 132 (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-980 |#1|) $) NIL (|has| |#2| (-632 (-1206))) ELT) (((-1155 |#1| |#2|) $) 18 T ELT) (($ (-1155 |#1| |#2|)) 19 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) 47 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) 13 T CONST)) (-3819 (((-3 (-112) "failed") $ $) NIL T ELT)) (-2378 (($) 37 T CONST)) (-3701 (($ $ $ $ (-792)) 105 (|has| |#1| (-569)) ELT)) (-1906 (($ $ $ (-792)) 104 (|has| |#1| (-569)) ELT)) (-1675 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-2471 (($ $ $) 85 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 70 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-801 |#1| |#2|) (-13 (-1095 |#1| (-544 |#2|) |#2|) (-631 (-1155 |#1| |#2|)) (-1068 (-1155 |#1| |#2|))) (-1079) (-870)) (T -801)) -NIL -(-13 (-1095 |#1| (-544 |#2|) |#2|) (-631 (-1155 |#1| |#2|)) (-1068 (-1155 |#1| |#2|))) -((-3609 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 13 T ELT))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3609 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) (-1079) (-1079)) (T -802)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6))))) -(-10 -7 (-15 -3609 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 12 T ELT)) (-2535 (((-1297 |#1|) $ (-792)) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-4052 (($ (-1202 |#1|)) NIL T ELT)) (-4419 (((-1202 $) $ (-1112)) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1878 (((-665 $) $ $) 54 (|has| |#1| (-569)) ELT)) (-2907 (($ $ $) 50 (|has| |#1| (-569)) ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2478 (($ $ (-792)) NIL T ELT)) (-2485 (($ $ (-792)) NIL T ELT)) (-1778 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT) (((-3 (-1202 |#1|) "failed") $) 10 T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-3760 (($ $ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) 58 (|has| |#1| (-174)) ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2425 (($ $ $) NIL T ELT)) (-4435 (($ $ $) 87 (|has| |#1| (-569)) ELT)) (-3536 (((-2 (|:| -2671 |#1|) (|:| -1636 $) (|:| -4369 $)) $ $) 86 (|has| |#1| (-569)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-792) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3890 (((-792) $ $) NIL (|has| |#1| (-569)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-2935 (($ (-1202 |#1|) (-1112)) NIL T ELT) (($ (-1202 $) (-1112)) NIL T ELT)) (-2393 (($ $ (-792)) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2814 (($ $ $) 27 T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-3569 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4309 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3728 (((-1202 |#1|) $) NIL T ELT)) (-2505 (((-3 (-1112) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-4443 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4327 (-792))) $ $) 37 T ELT)) (-2613 (($ $ $) 41 T ELT)) (-4026 (($ $ $) 47 T ELT)) (-3430 (((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $) 46 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2212 (($ $ $) 56 (|has| |#1| (-569)) ELT)) (-3691 (((-2 (|:| -1636 $) (|:| -4369 $)) $ (-792)) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-1112)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2199 (($) NIL (|has| |#1| (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-2665 (((-2 (|:| -2420 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-569)) ELT)) (-1723 (((-2 (|:| -2420 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-569)) ELT)) (-3796 (((-2 (|:| -3760 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-569)) ELT)) (-2368 (((-2 (|:| -3760 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-569)) ELT)) (-3069 (((-112) $) 13 T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2726 (($ $ (-792) |#1| $) 26 T ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-1442 (((-2 (|:| -2420 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-569)) ELT)) (-2340 (((-2 (|:| -3760 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-1616 (((-3 $ "failed") $ (-792)) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1611 (($ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2776 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2341 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1112)) NIL T ELT) (((-1202 |#1|) $) 7 T ELT) (($ (-1202 |#1|)) 8 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) 28 T CONST)) (-2378 (($) 32 T CONST)) (-1675 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-803 |#1|) (-13 (-1273 |#1|) (-631 (-1202 |#1|)) (-1068 (-1202 |#1|)) (-10 -8 (-15 -2726 ($ $ (-792) |#1| $)) (-15 -2814 ($ $ $)) (-15 -4443 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4327 (-792))) $ $)) (-15 -2613 ($ $ $)) (-15 -3430 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -4026 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -1878 ((-665 $) $ $)) (-15 -2212 ($ $ $)) (-15 -1442 ((-2 (|:| -2420 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1723 ((-2 (|:| -2420 $) (|:| |coef1| $)) $ $)) (-15 -2665 ((-2 (|:| -2420 $) (|:| |coef2| $)) $ $)) (-15 -2340 ((-2 (|:| -3760 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2368 ((-2 (|:| -3760 |#1|) (|:| |coef1| $)) $ $)) (-15 -3796 ((-2 (|:| -3760 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1079)) (T -803)) -((-2726 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-792)) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) (-2814 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) (-4443 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -4327 (-792)))) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) (-2613 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) (-3430 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2671 *3) (|:| |gap| (-792)) (|:| -1636 (-803 *3)) (|:| -4369 (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) (-4026 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) (-1878 (*1 *2 *1 *1) (-12 (-5 *2 (-665 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2212 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-569)) (-4 *2 (-1079)))) (-1442 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2420 (-803 *3)) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-1723 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2420 (-803 *3)) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2665 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2420 (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2340 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3760 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-2368 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3760 *3) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) (-3796 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3760 *3) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) -(-13 (-1273 |#1|) (-631 (-1202 |#1|)) (-1068 (-1202 |#1|)) (-10 -8 (-15 -2726 ($ $ (-792) |#1| $)) (-15 -2814 ($ $ $)) (-15 -4443 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4327 (-792))) $ $)) (-15 -2613 ($ $ $)) (-15 -3430 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -4026 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -1878 ((-665 $) $ $)) (-15 -2212 ($ $ $)) (-15 -1442 ((-2 (|:| -2420 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1723 ((-2 (|:| -2420 $) (|:| |coef1| $)) $ $)) (-15 -2665 ((-2 (|:| -2420 $) (|:| |coef2| $)) $ $)) (-15 -2340 ((-2 (|:| -3760 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2368 ((-2 (|:| -3760 |#1|) (|:| |coef1| $)) $ $)) (-15 -3796 ((-2 (|:| -3760 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3473 ((|#1| (-792) |#1|) 33 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4174 ((|#1| (-792) |#1|) 23 T ELT)) (-4035 ((|#1| (-792) |#1|) 35 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-804 |#1|) (-10 -7 (-15 -4174 (|#1| (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4035 (|#1| (-792) |#1|)) (-15 -3473 (|#1| (-792) |#1|))) |%noBranch|)) (-174)) (T -804)) -((-3473 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-4035 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-4174 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -4174 (|#1| (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4035 (|#1| (-792) |#1|)) (-15 -3473 (|#1| (-792) |#1|))) |%noBranch|)) -((-3211 (((-112) $ $) 7 T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-4202 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-2948 (((-665 |#3|) $) 34 T ELT)) (-3294 (((-112) $) 27 T ELT)) (-1567 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-1988 ((|#4| |#4| $) 93 T ELT)) (-4456 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| $) 127 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-2641 (((-112) $ (-792)) 45 T ELT)) (-4232 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2762 (($) 46 T CONST)) (-1760 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3514 (($ (-665 |#4|)) 36 T ELT)) (-4197 (((-3 $ "failed") $) 83 T ELT)) (-3415 ((|#4| |#4| $) 90 T ELT)) (-3860 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-2981 ((|#4| |#4| $) 88 T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) 106 T ELT)) (-3820 (((-112) |#4| $) 137 T ELT)) (-3389 (((-112) |#4| $) 134 T ELT)) (-1566 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2728 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1669 ((|#3| $) 35 T ELT)) (-1967 (((-112) $ (-792)) 44 T ELT)) (-4138 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2850 (((-665 |#3|) $) 33 T ELT)) (-2746 (((-112) |#3| $) 32 T ELT)) (-3417 (((-112) $ (-792)) 43 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2334 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-2212 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| |#4| $) 128 T ELT)) (-2756 (((-3 |#4| "failed") $) 84 T ELT)) (-2510 (((-665 $) |#4| $) 130 T ELT)) (-2173 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-4049 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3959 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-4213 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-2327 (((-665 |#4|) $) 108 T ELT)) (-2982 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1502 ((|#4| |#4| $) 91 T ELT)) (-2220 (((-112) $ $) 111 T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-4058 ((|#4| |#4| $) 92 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4188 (((-3 |#4| "failed") $) 85 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4013 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) 39 T ELT)) (-2392 (((-112) $) 42 T ELT)) (-3414 (($) 41 T ELT)) (-2776 (((-792) $) 107 T ELT)) (-4323 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 40 T ELT)) (-3341 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 61 T ELT)) (-1799 (($ $ |#3|) 29 T ELT)) (-3139 (($ $ |#3|) 31 T ELT)) (-3680 (($ $) 89 T ELT)) (-1600 (($ $ |#3|) 30 T ELT)) (-2410 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3050 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-1338 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) 82 T ELT)) (-2214 (((-112) |#4| $) 136 T ELT)) (-2306 (((-112) |#3| $) 81 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) -(((-805 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -805)) -NIL -(-13 (-1101 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) -((-4107 (((-3 (-391) "failed") (-327 |#1|) (-949)) 62 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-391) "failed") (-327 |#1|)) 54 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-391) "failed") (-420 (-980 |#1|)) (-949)) 41 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-420 (-980 |#1|))) 40 (|has| |#1| (-569)) ELT) (((-3 (-391) "failed") (-980 |#1|) (-949)) 31 (|has| |#1| (-1079)) ELT) (((-3 (-391) "failed") (-980 |#1|)) 30 (|has| |#1| (-1079)) ELT)) (-3976 (((-391) (-327 |#1|) (-949)) 99 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-391) (-327 |#1|)) 94 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-391) (-420 (-980 |#1|)) (-949)) 91 (|has| |#1| (-569)) ELT) (((-391) (-420 (-980 |#1|))) 90 (|has| |#1| (-569)) ELT) (((-391) (-980 |#1|) (-949)) 86 (|has| |#1| (-1079)) ELT) (((-391) (-980 |#1|)) 85 (|has| |#1| (-1079)) ELT) (((-391) |#1| (-949)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2604 (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-949)) 71 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|))) 70 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-327 |#1|) (-949)) 63 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-327 |#1|)) 61 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))) (-949)) 46 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|)))) 45 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)) (-949)) 39 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-420 (-980 |#1|))) 38 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) "failed") (-980 |#1|) (-949)) 28 (|has| |#1| (-1079)) ELT) (((-3 (-171 (-391)) "failed") (-980 |#1|)) 26 (|has| |#1| (-1079)) ELT) (((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)) (-949)) 18 (|has| |#1| (-174)) ELT) (((-3 (-171 (-391)) "failed") (-980 (-171 |#1|))) 15 (|has| |#1| (-174)) ELT)) (-4366 (((-171 (-391)) (-327 (-171 |#1|)) (-949)) 102 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-327 (-171 |#1|))) 101 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-327 |#1|) (-949)) 100 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-327 |#1|)) 98 (-12 (|has| |#1| (-569)) (|has| |#1| (-870))) ELT) (((-171 (-391)) (-420 (-980 (-171 |#1|))) (-949)) 93 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-980 (-171 |#1|)))) 92 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-980 |#1|)) (-949)) 89 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-420 (-980 |#1|))) 88 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-980 |#1|) (-949)) 84 (|has| |#1| (-1079)) ELT) (((-171 (-391)) (-980 |#1|)) 83 (|has| |#1| (-1079)) ELT) (((-171 (-391)) (-980 (-171 |#1|)) (-949)) 78 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-980 (-171 |#1|))) 77 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-171 |#1|) (-949)) 80 (|has| |#1| (-174)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-174)) ELT) (((-171 (-391)) |#1| (-949)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) -(((-806 |#1|) (-10 -7 (-15 -3976 ((-391) |#1|)) (-15 -3976 ((-391) |#1| (-949))) (-15 -4366 ((-171 (-391)) |#1|)) (-15 -4366 ((-171 (-391)) |#1| (-949))) (IF (|has| |#1| (-174)) (PROGN (-15 -4366 ((-171 (-391)) (-171 |#1|))) (-15 -4366 ((-171 (-391)) (-171 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-980 (-171 |#1|)))) (-15 -4366 ((-171 (-391)) (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -3976 ((-391) (-980 |#1|))) (-15 -3976 ((-391) (-980 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-980 |#1|))) (-15 -4366 ((-171 (-391)) (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -3976 ((-391) (-420 (-980 |#1|)))) (-15 -3976 ((-391) (-420 (-980 |#1|)) (-949))) (-15 -4366 ((-171 (-391)) (-420 (-980 |#1|)))) (-15 -4366 ((-171 (-391)) (-420 (-980 |#1|)) (-949))) (-15 -4366 ((-171 (-391)) (-420 (-980 (-171 |#1|))))) (-15 -4366 ((-171 (-391)) (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -3976 ((-391) (-327 |#1|))) (-15 -3976 ((-391) (-327 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-327 |#1|))) (-15 -4366 ((-171 (-391)) (-327 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -4366 ((-171 (-391)) (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -4107 ((-3 (-391) "failed") (-980 |#1|))) (-15 -4107 ((-3 (-391) "failed") (-980 |#1|) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 |#1|))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -4107 ((-3 (-391) "failed") (-420 (-980 |#1|)))) (-15 -4107 ((-3 (-391) "failed") (-420 (-980 |#1|)) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -4107 ((-3 (-391) "failed") (-327 |#1|))) (-15 -4107 ((-3 (-391) "failed") (-327 |#1|) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|)) (-632 (-391))) (T -806)) -((-2604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-2604 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-2604 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4107 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-4107 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-2604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-2604 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-2604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-2604 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4107 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-4107 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-2604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-2604 (*1 *2 *3) (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4107 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-4107 (*1 *2 *3) (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-2604 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-2604 (*1 *2 *3) (|partial| -12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-949)) (-4 *5 (-174)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) (-4 *3 (-632 (-391))))) (-4366 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) (-4 *3 (-632 (-391))))) (-3976 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-391)) (-5 *1 (-806 *3)) (-4 *3 (-632 *2)))) (-3976 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-806 *3)) (-4 *3 (-632 *2))))) -(-10 -7 (-15 -3976 ((-391) |#1|)) (-15 -3976 ((-391) |#1| (-949))) (-15 -4366 ((-171 (-391)) |#1|)) (-15 -4366 ((-171 (-391)) |#1| (-949))) (IF (|has| |#1| (-174)) (PROGN (-15 -4366 ((-171 (-391)) (-171 |#1|))) (-15 -4366 ((-171 (-391)) (-171 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-980 (-171 |#1|)))) (-15 -4366 ((-171 (-391)) (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -3976 ((-391) (-980 |#1|))) (-15 -3976 ((-391) (-980 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-980 |#1|))) (-15 -4366 ((-171 (-391)) (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -3976 ((-391) (-420 (-980 |#1|)))) (-15 -3976 ((-391) (-420 (-980 |#1|)) (-949))) (-15 -4366 ((-171 (-391)) (-420 (-980 |#1|)))) (-15 -4366 ((-171 (-391)) (-420 (-980 |#1|)) (-949))) (-15 -4366 ((-171 (-391)) (-420 (-980 (-171 |#1|))))) (-15 -4366 ((-171 (-391)) (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -3976 ((-391) (-327 |#1|))) (-15 -3976 ((-391) (-327 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-327 |#1|))) (-15 -4366 ((-171 (-391)) (-327 |#1|) (-949))) (-15 -4366 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -4366 ((-171 (-391)) (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 (-171 |#1|)) (-949)))) |%noBranch|) (IF (|has| |#1| (-1079)) (PROGN (-15 -4107 ((-3 (-391) "failed") (-980 |#1|))) (-15 -4107 ((-3 (-391) "failed") (-980 |#1|) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 |#1|))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-980 |#1|) (-949)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -4107 ((-3 (-391) "failed") (-420 (-980 |#1|)))) (-15 -4107 ((-3 (-391) "failed") (-420 (-980 |#1|)) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 |#1|)) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-420 (-980 (-171 |#1|))) (-949))) (IF (|has| |#1| (-870)) (PROGN (-15 -4107 ((-3 (-391) "failed") (-327 |#1|))) (-15 -4107 ((-3 (-391) "failed") (-327 |#1|) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-949))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -2604 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-949)))) |%noBranch|)) |%noBranch|)) -((-1734 (((-949) (-1188)) 89 T ELT)) (-2180 (((-3 (-391) "failed") (-1188)) 36 T ELT)) (-2919 (((-391) (-1188)) 34 T ELT)) (-2734 (((-949) (-1188)) 63 T ELT)) (-1911 (((-1188) (-949)) 73 T ELT)) (-2346 (((-1188) (-949)) 62 T ELT))) -(((-807) (-10 -7 (-15 -2346 ((-1188) (-949))) (-15 -2734 ((-949) (-1188))) (-15 -1911 ((-1188) (-949))) (-15 -1734 ((-949) (-1188))) (-15 -2919 ((-391) (-1188))) (-15 -2180 ((-3 (-391) "failed") (-1188))))) (T -807)) -((-2180 (*1 *2 *3) (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807))))) -(-10 -7 (-15 -2346 ((-1188) (-949))) (-15 -2734 ((-949) (-1188))) (-15 -1911 ((-1188) (-949))) (-15 -1734 ((-949) (-1188))) (-15 -2919 ((-391) (-1188))) (-15 -2180 ((-3 (-391) "failed") (-1188)))) -((-3211 (((-112) $ $) 7 T ELT)) (-2849 (((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 16 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065)) 14 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 17 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-808) (-141)) (T -808)) -((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-808)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065)))))) (-2849 (*1 *2 *3 *2) (-12 (-4 *1 (-808)) (-5 *2 (-1065)) (-5 *3 (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-808)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065)))))) (-2849 (*1 *2 *3 *2) (-12 (-4 *1 (-808)) (-5 *2 (-1065)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) -(-13 (-1130) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2849 ((-1065) (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) (|:| |extra| (-1065))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2849 ((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1065))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-2631 (((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 55 T ELT) (((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 52 T ELT)) (-1547 (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 61 T ELT)) (-3710 (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 50 T ELT)) (-1441 (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 63 T ELT) (((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))) 62 T ELT))) -(((-809) (-10 -7 (-15 -1441 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -1441 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -3710 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2631 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2631 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -1547 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))))) (T -809)) -((-1547 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-2631 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391)))) (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-2631 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391)))) (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-3710 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-1441 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809)))) (-1441 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) (-5 *1 (-809))))) -(-10 -7 (-15 -1441 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -1441 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -3710 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2631 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2631 ((-1302) (-1297 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391))) (-391) (-1297 (-391)) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -1547 ((-1302) (-1297 (-391)) (-577) (-391) (-391) (-577) (-1 (-1302) (-1297 (-391)) (-1297 (-391)) (-391))))) -((-2761 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 64 T ELT)) (-1759 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 40 T ELT)) (-2138 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 63 T ELT)) (-2010 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 38 T ELT)) (-2329 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 62 T ELT)) (-1794 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 24 T ELT)) (-4473 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 41 T ELT)) (-2767 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 39 T ELT)) (-3013 (((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 37 T ELT))) -(((-810) (-10 -7 (-15 -3013 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -2767 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4473 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1794 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2010 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -1759 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2329 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2138 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2761 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))))) (T -810)) -((-2761 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-2138 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-2329 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-1759 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-2010 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-1794 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-4473 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-2767 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577)))) (-3013 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-810)) (-5 *5 (-577))))) -(-10 -7 (-15 -3013 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -2767 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4473 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -1794 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2010 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -1759 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2329 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2138 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -2761 ((-2 (|:| -4119 (-391)) (|:| -3395 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)))) -((-4266 (((-1242 |#1|) |#1| (-228) (-577)) 69 T ELT))) -(((-811 |#1|) (-10 -7 (-15 -4266 ((-1242 |#1|) |#1| (-228) (-577)))) (-1004)) (T -811)) -((-4266 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1242 *3)) (-5 *1 (-811 *3)) (-4 *3 (-1004))))) -(-10 -7 (-15 -4266 ((-1242 |#1|) |#1| (-228) (-577)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 26 T ELT)) (-3262 (((-3 $ "failed") $ $) 28 T ELT)) (-2762 (($) 25 T CONST)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 24 T CONST)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (-2483 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2471 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT) (($ (-577) $) 30 T ELT))) -(((-812) (-141)) (T -812)) -NIL -(-13 (-816) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 26 T ELT)) (-2762 (($) 25 T CONST)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 24 T CONST)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (-2471 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT))) -(((-813) (-141)) (T -813)) -NIL -(-13 (-815) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-815) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 26 T ELT)) (-1658 (($ $ $) 29 T ELT)) (-3262 (((-3 $ "failed") $ $) 28 T ELT)) (-2762 (($) 25 T CONST)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 24 T CONST)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (-2471 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT))) -(((-814) (-141)) (T -814)) -((-1658 (*1 *1 *1 *1) (-4 *1 (-814)))) -(-13 (-816) (-10 -8 (-15 -1658 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (-2471 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT))) -(((-815) (-141)) (T -815)) -NIL -(-13 (-870) (-25)) -(((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 26 T ELT)) (-3262 (((-3 $ "failed") $ $) 28 T ELT)) (-2762 (($) 25 T CONST)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 24 T CONST)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (-2471 (($ $ $) 22 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT))) -(((-816) (-141)) (T -816)) -NIL -(-13 (-813) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-813) . T) ((-815) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-1516 (((-112) $) 42 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 45 T ELT)) (-3514 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 78 T ELT)) (-2748 (((-112) $) 72 T ELT)) (-3557 (((-420 (-577)) $) 76 T ELT)) (-2755 ((|#2| $) 26 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-3055 (($ $) 58 T ELT)) (-3341 (((-549) $) 67 T ELT)) (-2744 (($ $) 21 T ELT)) (-2410 (((-885) $) 53 T ELT) (($ (-577)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3234 (((-792)) 10 T ELT)) (-3385 ((|#2| $) 71 T ELT)) (-2383 (((-112) $ $) 30 T ELT)) (-2403 (((-112) $ $) 69 T ELT)) (-2483 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 31 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-817 |#1| |#2|) (-10 -8 (-15 -2403 ((-112) |#1| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-818 |#2|) (-174)) (T -817)) -((-3234 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4))))) -(-10 -8 (-15 -2403 ((-112) |#1| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -3055 (|#1| |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2221 (((-792)) 59 (|has| |#1| (-380)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 101 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3514 (((-577) $) 100 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 97 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 96 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2821 ((|#1| $) 85 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) 74 (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) 73 (|has| |#1| (-558)) ELT)) (-2060 (($) 62 (|has| |#1| (-380)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-3739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76 T ELT)) (-2755 ((|#1| $) 77 T ELT)) (-1344 (($ $ $) 63 (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) 64 (|has| |#1| (-870)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2553 (((-949) $) 61 (|has| |#1| (-380)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 71 (|has| |#1| (-375)) ELT)) (-2085 (($ (-949)) 60 (|has| |#1| (-380)) ELT)) (-3562 ((|#1| $) 82 T ELT)) (-1473 ((|#1| $) 83 T ELT)) (-2517 ((|#1| $) 84 T ELT)) (-3930 ((|#1| $) 78 T ELT)) (-3048 ((|#1| $) 79 T ELT)) (-3322 ((|#1| $) 80 T ELT)) (-3925 ((|#1| $) 81 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) 93 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 92 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 91 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 90 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 89 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 88 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2435 (($ $ |#1|) 94 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3341 (((-549) $) 69 (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $) 86 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 99 (|has| |#1| (-1068 (-420 (-577)))) ELT)) (-2580 (((-3 $ "failed") $) 70 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-3385 ((|#1| $) 75 (|has| |#1| (-1090)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2440 (((-112) $ $) 65 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 67 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 66 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 68 (|has| |#1| (-870)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-818 |#1|) (-141) (-174)) (T -818)) -((-2744 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3739 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-2751 (*1 *2 *1) (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-3055 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-350 |t#1|) (-10 -8 (-15 -2744 ($ $)) (-15 -2821 (|t#1| $)) (-15 -2517 (|t#1| $)) (-15 -1473 (|t#1| $)) (-15 -3562 (|t#1| $)) (-15 -3925 (|t#1| $)) (-15 -3322 (|t#1| $)) (-15 -3048 (|t#1| $)) (-15 -3930 (|t#1| $)) (-15 -2755 (|t#1| $)) (-15 -3739 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -3385 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -3055 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-380) |has| |#1| (-380)) ((-350 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-747) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3609 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#3| (-1 |#4| |#2|) |#1|))) (-818 |#2|) (-174) (-818 |#4|) (-174)) (T -819)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-818 *6)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *4 (-818 *5))))) -(-10 -7 (-15 -3609 (|#3| (-1 |#4| |#2|) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-1029 |#1|) "failed") $) 35 T ELT) (((-3 (-577) "failed") $) NIL (-2229 (|has| (-1029 |#1|) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-2229 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-3514 ((|#1| $) NIL T ELT) (((-1029 |#1|) $) 33 T ELT) (((-577) $) NIL (-2229 (|has| (-1029 |#1|) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT) (((-420 (-577)) $) NIL (-2229 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2821 ((|#1| $) 16 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-2060 (($) NIL (|has| |#1| (-380)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1029 |#1|) (-1029 |#1|)) 29 T ELT)) (-2755 ((|#1| $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2085 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-3562 ((|#1| $) 22 T ELT)) (-1473 ((|#1| $) 20 T ELT)) (-2517 ((|#1| $) 18 T ELT)) (-3930 ((|#1| $) 26 T ELT)) (-3048 ((|#1| $) 25 T ELT)) (-3322 ((|#1| $) 24 T ELT)) (-3925 ((|#1| $) 23 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2435 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1029 |#1|)) 30 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| (-1029 |#1|) (-1068 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-3385 ((|#1| $) NIL (|has| |#1| (-1090)) ELT)) (-2367 (($) 8 T CONST)) (-2378 (($) 12 T CONST)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-820 |#1|) (-13 (-818 |#1|) (-424 (-1029 |#1|)) (-10 -8 (-15 -3739 ($ (-1029 |#1|) (-1029 |#1|))))) (-174)) (T -820)) -((-3739 (*1 *1 *2 *2) (-12 (-5 *2 (-1029 *3)) (-4 *3 (-174)) (-5 *1 (-820 *3))))) -(-13 (-818 |#1|) (-424 (-1029 |#1|)) (-10 -8 (-15 -3739 ($ (-1029 |#1|) (-1029 |#1|))))) -((-3211 (((-112) $ $) 7 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2946 (((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 14 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-821) (-141)) (T -821)) -((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-821)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) (-2946 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1065))))) -(-13 (-1130) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2946 ((-1065) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-2690 (((-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#3| |#2| (-1206)) 19 T ELT))) -(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -2690 ((-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#3| |#2| (-1206)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987)) (-677 |#2|)) (T -822)) -((-2690 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1206)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1232) (-987))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2225 (-665 *4)))) (-5 *1 (-822 *6 *4 *3)) (-4 *3 (-677 *4))))) -(-10 -7 (-15 -2690 ((-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#3| |#2| (-1206)))) -((-3766 (((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-665 |#2|)) 28 T ELT) (((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#2| "failed") |#2| (-115) (-1206)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1206)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-665 |#2|) (-665 (-115)) (-1206)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-665 (-305 |#2|)) (-665 (-115)) (-1206)) 26 T ELT) (((-3 (-665 (-1297 |#2|)) "failed") (-710 |#2|) (-1206)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-710 |#2|) (-1297 |#2|) (-1206)) 35 T ELT))) -(((-823 |#1| |#2|) (-10 -7 (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-710 |#2|) (-1297 |#2|) (-1206))) (-15 -3766 ((-3 (-665 (-1297 |#2|)) "failed") (-710 |#2|) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-665 (-305 |#2|)) (-665 (-115)) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-665 |#2|) (-665 (-115)) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#2| "failed") |#2| (-115) (-1206))) (-15 -3766 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -3766 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-665 |#2|)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987))) (T -823)) -((-3766 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-665 *2)) (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-823 *6 *2)))) (-3766 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-665 *2)) (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-5 *1 (-823 *6 *2)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1206)) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2225 (-665 *3))) *3 "failed")) (-5 *1 (-823 *6 *3)) (-4 *3 (-13 (-29 *6) (-1232) (-987))))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2225 (-665 *7))) *7 "failed")) (-5 *1 (-823 *6 *7)))) (-3766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2225 (-665 (-1297 *7))))) (-5 *1 (-823 *6 *7)))) (-3766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2225 (-665 (-1297 *7))))) (-5 *1 (-823 *6 *7)))) (-3766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-710 *6)) (-5 *4 (-1206)) (-4 *6 (-13 (-29 *5) (-1232) (-987))) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-1297 *6))) (-5 *1 (-823 *5 *6)))) (-3766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-710 *7)) (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -2225 (-665 (-1297 *7))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1297 *7))))) -(-10 -7 (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-710 |#2|) (-1297 |#2|) (-1206))) (-15 -3766 ((-3 (-665 (-1297 |#2|)) "failed") (-710 |#2|) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-665 (-305 |#2|)) (-665 (-115)) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -2225 (-665 (-1297 |#2|)))) "failed") (-665 |#2|) (-665 (-115)) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1206))) (-15 -3766 ((-3 (-2 (|:| |particular| |#2|) (|:| -2225 (-665 |#2|))) |#2| "failed") |#2| (-115) (-1206))) (-15 -3766 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-665 |#2|))) (-15 -3766 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-665 |#2|)))) -((-4402 (($) 9 T ELT)) (-3313 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 30 T ELT)) (-3242 (((-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 27 T ELT)) (-3795 (($ (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-1634 (($ (-665 (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-1401 (((-1302)) 11 T ELT))) -(((-824) (-10 -8 (-15 -4402 ($)) (-15 -1401 ((-1302))) (-15 -3242 ((-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -1634 ($ (-665 (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -3795 ($ (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -3313 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -824)) -((-3313 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-824)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-824)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-824)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-824)))) (-1401 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-824)))) (-4402 (*1 *1) (-5 *1 (-824)))) -(-10 -8 (-15 -4402 ($)) (-15 -1401 ((-1302))) (-15 -3242 ((-665 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -1634 ($ (-665 (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -3795 ($ (-2 (|:| -3171 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -2753 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -3313 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) -((-3623 ((|#2| |#2| (-1206)) 17 T ELT)) (-4353 ((|#2| |#2| (-1206)) 56 T ELT)) (-3320 (((-1 |#2| |#2|) (-1206)) 11 T ELT))) -(((-825 |#1| |#2|) (-10 -7 (-15 -3623 (|#2| |#2| (-1206))) (-15 -4353 (|#2| |#2| (-1206))) (-15 -3320 ((-1 |#2| |#2|) (-1206)))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148)) (-13 (-29 |#1|) (-1232) (-987))) (T -825)) -((-3320 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-13 (-29 *4) (-1232) (-987))))) (-4353 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987))))) (-3623 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987)))))) -(-10 -7 (-15 -3623 (|#2| |#2| (-1206))) (-15 -4353 (|#2| |#2| (-1206))) (-15 -3320 ((-1 |#2| |#2|) (-1206)))) -((-3766 (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391) (-391)) 128 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391)) 129 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-665 (-391)) (-391)) 131 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-391)) 133 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-391)) 134 T ELT) (((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391))) 136 T ELT) (((-1065) (-829) (-1093)) 120 T ELT) (((-1065) (-829)) 121 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829) (-1093)) 80 T ELT) (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829)) 82 T ELT))) -(((-826) (-10 -7 (-15 -3766 ((-1065) (-829))) (-15 -3766 ((-1065) (-829) (-1093))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-665 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391) (-391))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829) (-1093))))) (T -826)) -((-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-826)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-826)))) (-3766 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-3766 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-3766 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-3766 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-3766 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-3766 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-826)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1065)) (-5 *1 (-826))))) -(-10 -7 (-15 -3766 ((-1065) (-829))) (-15 -3766 ((-1065) (-829) (-1093))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-665 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391))) (-15 -3766 ((-1065) (-1297 (-327 (-391))) (-391) (-391) (-665 (-391)) (-327 (-391)) (-665 (-391)) (-391) (-391))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-829) (-1093)))) -((-1971 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2225 (-665 |#4|))) (-674 |#4|) |#4|) 33 T ELT))) -(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1971 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2225 (-665 |#4|))) (-674 |#4|) |#4|))) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -827)) -((-1971 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *4)) (-4 *4 (-354 *5 *6 *7)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-827 *5 *6 *7 *4))))) -(-10 -7 (-15 -1971 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2225 (-665 |#4|))) (-674 |#4|) |#4|))) -((-2116 (((-2 (|:| -3503 |#3|) (|:| |rh| (-665 (-420 |#2|)))) |#4| (-665 (-420 |#2|))) 53 T ELT)) (-4215 (((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#4| |#2|) 62 T ELT) (((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#4|) 61 T ELT) (((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#3| |#2|) 20 T ELT) (((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#3|) 21 T ELT)) (-3573 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2534 ((|#2| |#3| (-665 (-420 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-420 |#2|)) 105 T ELT))) -(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2534 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -2534 (|#2| |#3| (-665 (-420 |#2|)))) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#3|)) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#3| |#2|)) (-15 -3573 (|#2| |#3| |#1|)) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#4|)) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#4| |#2|)) (-15 -3573 (|#2| |#4| |#1|)) (-15 -2116 ((-2 (|:| -3503 |#3|) (|:| |rh| (-665 (-420 |#2|)))) |#4| (-665 (-420 |#2|))))) (-13 (-375) (-148) (-1068 (-420 (-577)))) (-1273 |#1|) (-677 |#2|) (-677 (-420 |#2|))) (T -828)) -((-2116 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -3503 *7) (|:| |rh| (-665 (-420 *6))))) (-5 *1 (-828 *5 *6 *7 *3)) (-5 *4 (-665 (-420 *6))) (-4 *7 (-677 *6)) (-4 *3 (-677 (-420 *6))))) (-3573 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *5 *3)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-677 *2)) (-4 *3 (-677 (-420 *2))))) (-4215 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -4368 *4) (|:| -4017 *4)))) (-5 *1 (-828 *5 *4 *6 *3)) (-4 *6 (-677 *4)) (-4 *3 (-677 (-420 *4))))) (-4215 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -4368 *5) (|:| -4017 *5)))) (-5 *1 (-828 *4 *5 *6 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 (-420 *5))))) (-3573 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *5 (-677 (-420 *2))))) (-4215 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -4368 *4) (|:| -4017 *4)))) (-5 *1 (-828 *5 *4 *3 *6)) (-4 *3 (-677 *4)) (-4 *6 (-677 (-420 *4))))) (-4215 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -4368 *5) (|:| -4017 *5)))) (-5 *1 (-828 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-677 (-420 *5))))) (-2534 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-420 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-828 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *6 (-677 (-420 *2))))) (-2534 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-828 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *6 (-677 *4))))) -(-10 -7 (-15 -2534 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -2534 (|#2| |#3| (-665 (-420 |#2|)))) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#3|)) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#3| |#2|)) (-15 -3573 (|#2| |#3| |#1|)) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#4|)) (-15 -4215 ((-665 (-2 (|:| -4368 |#2|) (|:| -4017 |#2|))) |#4| |#2|)) (-15 -3573 (|#2| |#4| |#1|)) (-15 -2116 ((-2 (|:| -3503 |#3|) (|:| |rh| (-665 (-420 |#2|)))) |#4| (-665 (-420 |#2|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3514 (((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 15 T ELT) (($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-829) (-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3514 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $))))) (T -829)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-829)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-829))))) -(-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3514 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $)))) -((-2570 (((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -3503 |#3|))) |#3| (-1 (-665 |#2|) |#2| (-1202 |#2|)) (-1 (-431 |#2|) |#2|)) 154 T ELT)) (-3607 (((-665 (-2 (|:| |poly| |#2|) (|:| -3503 |#3|))) |#3| (-1 (-665 |#1|) |#2|)) 52 T ELT)) (-1431 (((-665 (-2 (|:| |deg| (-792)) (|:| -3503 |#2|))) |#3|) 122 T ELT)) (-2922 ((|#2| |#3|) 42 T ELT)) (-4335 (((-665 (-2 (|:| -1528 |#1|) (|:| -3503 |#3|))) |#3| (-1 (-665 |#1|) |#2|)) 99 T ELT)) (-4008 ((|#3| |#3| (-420 |#2|)) 72 T ELT) ((|#3| |#3| |#2|) 96 T ELT))) -(((-830 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2922 (|#2| |#3|)) (-15 -1431 ((-665 (-2 (|:| |deg| (-792)) (|:| -3503 |#2|))) |#3|)) (-15 -4335 ((-665 (-2 (|:| -1528 |#1|) (|:| -3503 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -3607 ((-665 (-2 (|:| |poly| |#2|) (|:| -3503 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -2570 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -3503 |#3|))) |#3| (-1 (-665 |#2|) |#2| (-1202 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -4008 (|#3| |#3| |#2|)) (-15 -4008 (|#3| |#3| (-420 |#2|)))) (-13 (-375) (-148) (-1068 (-420 (-577)))) (-1273 |#1|) (-677 |#2|) (-677 (-420 |#2|))) (T -830)) -((-4008 (*1 *2 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *1 (-830 *4 *5 *2 *6)) (-4 *2 (-677 *5)) (-4 *6 (-677 *3)))) (-4008 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-1273 *4)) (-5 *1 (-830 *4 *3 *2 *5)) (-4 *2 (-677 *3)) (-4 *5 (-677 (-420 *3))))) (-2570 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-665 *7) *7 (-1202 *7))) (-5 *5 (-1 (-431 *7) *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-5 *2 (-665 (-2 (|:| |frac| (-420 *7)) (|:| -3503 *3)))) (-5 *1 (-830 *6 *7 *3 *8)) (-4 *3 (-677 *7)) (-4 *8 (-677 (-420 *7))))) (-3607 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -3503 *3)))) (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) (-4 *7 (-677 (-420 *6))))) (-4335 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -1528 *5) (|:| -3503 *3)))) (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) (-4 *7 (-677 (-420 *6))))) (-1431 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -3503 *5)))) (-5 *1 (-830 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-677 (-420 *5))))) (-2922 (*1 *2 *3) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-830 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) (-4 *5 (-677 (-420 *2)))))) -(-10 -7 (-15 -2922 (|#2| |#3|)) (-15 -1431 ((-665 (-2 (|:| |deg| (-792)) (|:| -3503 |#2|))) |#3|)) (-15 -4335 ((-665 (-2 (|:| -1528 |#1|) (|:| -3503 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -3607 ((-665 (-2 (|:| |poly| |#2|) (|:| -3503 |#3|))) |#3| (-1 (-665 |#1|) |#2|))) (-15 -2570 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -3503 |#3|))) |#3| (-1 (-665 |#2|) |#2| (-1202 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -4008 (|#3| |#3| |#2|)) (-15 -4008 (|#3| |#3| (-420 |#2|)))) -((-3240 (((-2 (|:| -2225 (-665 (-420 |#2|))) (|:| -1670 (-710 |#1|))) (-675 |#2| (-420 |#2|)) (-665 (-420 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2225 (-665 (-420 |#2|)))) (-675 |#2| (-420 |#2|)) (-420 |#2|)) 145 T ELT) (((-2 (|:| -2225 (-665 (-420 |#2|))) (|:| -1670 (-710 |#1|))) (-674 (-420 |#2|)) (-665 (-420 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2225 (-665 (-420 |#2|)))) (-674 (-420 |#2|)) (-420 |#2|)) 138 T ELT)) (-3106 ((|#2| (-675 |#2| (-420 |#2|))) 87 T ELT) ((|#2| (-674 (-420 |#2|))) 90 T ELT))) -(((-831 |#1| |#2|) (-10 -7 (-15 -3240 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2225 (-665 (-420 |#2|)))) (-674 (-420 |#2|)) (-420 |#2|))) (-15 -3240 ((-2 (|:| -2225 (-665 (-420 |#2|))) (|:| -1670 (-710 |#1|))) (-674 (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -3240 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2225 (-665 (-420 |#2|)))) (-675 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -3240 ((-2 (|:| -2225 (-665 (-420 |#2|))) (|:| -1670 (-710 |#1|))) (-675 |#2| (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -3106 (|#2| (-674 (-420 |#2|)))) (-15 -3106 (|#2| (-675 |#2| (-420 |#2|))))) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -831)) -((-3106 (*1 *2 *3) (-12 (-5 *3 (-675 *2 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-674 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| -2225 (-665 (-420 *6))) (|:| -1670 (-710 *5)))) (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-831 *5 *6)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| -2225 (-665 (-420 *6))) (|:| -1670 (-710 *5)))) (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6))))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-831 *5 *6))))) -(-10 -7 (-15 -3240 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2225 (-665 (-420 |#2|)))) (-674 (-420 |#2|)) (-420 |#2|))) (-15 -3240 ((-2 (|:| -2225 (-665 (-420 |#2|))) (|:| -1670 (-710 |#1|))) (-674 (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -3240 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -2225 (-665 (-420 |#2|)))) (-675 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -3240 ((-2 (|:| -2225 (-665 (-420 |#2|))) (|:| -1670 (-710 |#1|))) (-675 |#2| (-420 |#2|)) (-665 (-420 |#2|)))) (-15 -3106 (|#2| (-674 (-420 |#2|)))) (-15 -3106 (|#2| (-675 |#2| (-420 |#2|))))) -((-2153 (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|) 49 T ELT))) -(((-832 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2153 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) (-375) (-677 |#1|) (-1273 |#1|) (-745 |#1| |#3|) (-677 |#4|)) (T -832)) -((-2153 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *7 (-1273 *5)) (-4 *4 (-745 *5 *7)) (-5 *2 (-2 (|:| -1670 (-710 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-832 *5 *6 *7 *4 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 *4))))) -(-10 -7 (-15 -2153 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) -((-2570 (((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -3503 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 47 T ELT)) (-2057 (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 38 T ELT) (((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 39 T ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 36 T ELT) (((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 37 T ELT)) (-3607 (((-665 (-2 (|:| |poly| |#2|) (|:| -3503 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|)) 96 T ELT))) -(((-833 |#1| |#2|) (-10 -7 (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2570 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -3503 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3607 ((-665 (-2 (|:| |poly| |#2|) (|:| -3503 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)))) (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))) (-1273 |#1|)) (T -833)) -((-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-675 *5 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-674 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) (-3607 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -3503 (-675 *6 (-420 *6)))))) (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6))))) (-2570 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-5 *2 (-665 (-2 (|:| |frac| (-420 *6)) (|:| -3503 (-675 *6 (-420 *6)))))) (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6))))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *7 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6))))) -(-10 -7 (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -2570 ((-665 (-2 (|:| |frac| (-420 |#2|)) (|:| -3503 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -3607 ((-665 (-2 (|:| |poly| |#2|) (|:| -3503 (-675 |#2| (-420 |#2|))))) (-675 |#2| (-420 |#2|)) (-1 (-665 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)))) (-15 -2057 ((-665 (-420 |#2|)) (-674 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)))) (-15 -2057 ((-665 (-420 |#2|)) (-675 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) -((-1688 (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) (-710 |#2|) (-1297 |#1|)) 110 T ELT) (((-2 (|:| A (-710 |#1|)) (|:| |eqs| (-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3503 |#2|) (|:| |rh| |#1|))))) (-710 |#1|) (-1297 |#1|)) 15 T ELT)) (-4261 (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-710 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2225 (-665 |#1|))) |#2| |#1|)) 116 T ELT)) (-3766 (((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2225 (-710 |#1|))) "failed") (-710 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2225 (-665 |#1|))) "failed") |#2| |#1|)) 54 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -1688 ((-2 (|:| A (-710 |#1|)) (|:| |eqs| (-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3503 |#2|) (|:| |rh| |#1|))))) (-710 |#1|) (-1297 |#1|))) (-15 -1688 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) (-710 |#2|) (-1297 |#1|))) (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2225 (-710 |#1|))) "failed") (-710 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2225 (-665 |#1|))) "failed") |#2| |#1|))) (-15 -4261 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-710 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2225 (-665 |#1|))) |#2| |#1|)))) (-375) (-677 |#1|)) (T -834)) -((-4261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2225 (-665 *6))) *7 *6)) (-4 *6 (-375)) (-4 *7 (-677 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *6) "failed")) (|:| -2225 (-665 (-1297 *6))))) (-5 *1 (-834 *6 *7)) (-5 *4 (-1297 *6)))) (-3766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2225 (-665 *6))) "failed") *7 *6)) (-4 *6 (-375)) (-4 *7 (-677 *6)) (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -2225 (-710 *6)))) (-5 *1 (-834 *6 *7)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *6)))) (-1688 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-677 *5)) (-5 *2 (-2 (|:| -1670 (-710 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *5)))) (-1688 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| A (-710 *5)) (|:| |eqs| (-665 (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5)) (|:| -3503 *6) (|:| |rh| *5)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *6 (-677 *5))))) -(-10 -7 (-15 -1688 ((-2 (|:| A (-710 |#1|)) (|:| |eqs| (-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3503 |#2|) (|:| |rh| |#1|))))) (-710 |#1|) (-1297 |#1|))) (-15 -1688 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#1|))) (-710 |#2|) (-1297 |#1|))) (-15 -3766 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -2225 (-710 |#1|))) "failed") (-710 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2225 (-665 |#1|))) "failed") |#2| |#1|))) (-15 -4261 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -2225 (-665 (-1297 |#1|)))) (-710 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2225 (-665 |#1|))) |#2| |#1|)))) -((-1604 (((-710 |#1|) (-665 |#1|) (-792)) 14 T ELT) (((-710 |#1|) (-665 |#1|)) 15 T ELT)) (-4308 (((-3 (-1297 |#1|) "failed") |#2| |#1| (-665 |#1|)) 39 T ELT)) (-3420 (((-3 |#1| "failed") |#2| |#1| (-665 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-835 |#1| |#2|) (-10 -7 (-15 -1604 ((-710 |#1|) (-665 |#1|))) (-15 -1604 ((-710 |#1|) (-665 |#1|) (-792))) (-15 -4308 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-665 |#1|))) (-15 -3420 ((-3 |#1| "failed") |#2| |#1| (-665 |#1|) (-1 |#1| |#1|)))) (-375) (-677 |#1|)) (T -835)) -((-3420 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-665 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) (-5 *1 (-835 *2 *3)) (-4 *3 (-677 *2)))) (-4308 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-1297 *4)) (-5 *1 (-835 *4 *3)) (-4 *3 (-677 *4)))) (-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-375)) (-5 *2 (-710 *5)) (-5 *1 (-835 *5 *6)) (-4 *6 (-677 *5)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-710 *4)) (-5 *1 (-835 *4 *5)) (-4 *5 (-677 *4))))) -(-10 -7 (-15 -1604 ((-710 |#1|) (-665 |#1|))) (-15 -1604 ((-710 |#1|) (-665 |#1|) (-792))) (-15 -4308 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-665 |#1|))) (-15 -3420 ((-3 |#1| "failed") |#2| |#1| (-665 |#1|) (-1 |#1| |#1|)))) -((-3211 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1516 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-1997 (($ (-949)) NIL (|has| |#2| (-1079)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1658 (($ $ $) NIL (|has| |#2| (-814)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#2| (-380)) ELT)) (-2589 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1130)) ELT)) (-3514 (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) ((|#2| $) NIL (|has| |#2| (-1130)) ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-710 $)) NIL (|has| |#2| (-1079)) ELT)) (-4281 (((-3 $ "failed") $) NIL (|has| |#2| (-1079)) ELT)) (-2060 (($) NIL (|has| |#2| (-380)) ELT)) (-3448 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ (-577)) NIL T ELT)) (-2728 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL (|has| |#2| (-1079)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4138 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3437 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#2| (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#2| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1079)) ELT) (((-710 |#2|) (-1297 $)) NIL (|has| |#2| (-1079)) ELT)) (-3384 (((-1188) $) NIL (|has| |#2| (-1130)) ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-2085 (($ (-949)) NIL (|has| |#2| (-380)) ELT)) (-4312 (((-1150) $) NIL (|has| |#2| (-1130)) ELT)) (-4188 ((|#2| $) NIL (|has| (-577) (-870)) ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ (-577) |#2|) NIL T ELT) ((|#2| $ (-577)) NIL T ELT)) (-3511 ((|#2| $ $) NIL (|has| |#2| (-1079)) ELT)) (-2840 (($ (-1297 |#2|)) NIL T ELT)) (-2419 (((-135)) NIL (|has| |#2| (-375)) ELT)) (-2030 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-1297 |#2|) $) NIL T ELT) (($ (-577)) NIL (-2229 (-12 (|has| |#2| (-1068 (-577))) (|has| |#2| (-1130))) (|has| |#2| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1068 (-420 (-577)))) (|has| |#2| (-1130))) ELT) (($ |#2|) NIL (|has| |#2| (-1130)) ELT) (((-885) $) NIL (|has| |#2| (-631 (-885))) ELT)) (-3234 (((-792)) NIL (|has| |#2| (-1079)) CONST)) (-2525 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2367 (($) NIL (|has| |#2| (-23)) CONST)) (-2378 (($) NIL (|has| |#2| (-1079)) CONST)) (-1675 (($ $ (-792)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#2| (-928 (-1206))) (|has| |#2| (-1079))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#2| (-1079)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2403 (((-112) $ $) 11 (|has| |#2| (-870)) ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2471 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#2| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#2| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1079)) ELT) (($ $ |#2|) NIL (|has| |#2| (-747)) ELT) (($ |#2| $) NIL (|has| |#2| (-747)) ELT) (($ (-577) $) NIL (|has| |#2| (-21)) ELT) (($ (-792) $) NIL (|has| |#2| (-23)) ELT) (($ (-949) $) NIL (|has| |#2| (-25)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-836 |#1| |#2| |#3|) (-244 |#1| |#2|) (-792) (-814) (-1 (-112) (-1297 |#2|) (-1297 |#2|))) (T -836)) -NIL -(-244 |#1| |#2|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3450 (((-665 (-792)) $) NIL T ELT) (((-665 (-792)) $ (-1206)) NIL T ELT)) (-1975 (((-792) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-2948 (((-665 (-839 (-1206))) $) NIL T ELT)) (-4419 (((-1202 $) $ (-839 (-1206))) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-839 (-1206)))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3138 (($ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-839 (-1206)) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 (-1155 |#1| (-1206)) "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-839 (-1206)) $) NIL T ELT) (((-1206) $) NIL T ELT) (((-1155 |#1| (-1206)) $) NIL T ELT)) (-3760 (($ $ $ (-839 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-839 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-544 (-839 (-1206))) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-839 (-1206)) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-839 (-1206)) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3890 (((-792) $ (-1206)) NIL T ELT) (((-792) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2935 (($ (-1202 |#1|) (-839 (-1206))) NIL T ELT) (($ (-1202 $) (-839 (-1206))) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-544 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-839 (-1206))) NIL T ELT)) (-3569 (((-544 (-839 (-1206))) $) NIL T ELT) (((-792) $ (-839 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-839 (-1206)))) NIL T ELT)) (-4309 (($ (-1 (-544 (-839 (-1206))) (-544 (-839 (-1206)))) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3727 (((-1 $ (-792)) (-1206)) NIL T ELT) (((-1 $ (-792)) $) NIL (|has| |#1| (-239)) ELT)) (-2505 (((-3 (-839 (-1206)) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2823 (((-839 (-1206)) $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3533 (((-112) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-839 (-1206))) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4347 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-839 (-1206)) |#1|) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 |#1|)) NIL T ELT) (($ $ (-839 (-1206)) $) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 $)) NIL T ELT) (($ $ (-1206) $) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 $)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-1611 (($ $ (-839 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-3667 (((-665 (-1206)) $) NIL T ELT)) (-2776 (((-544 (-839 (-1206))) $) NIL T ELT) (((-792) $ (-839 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-839 (-1206)))) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-839 (-1206)) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-839 (-1206)) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-839 (-1206)) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-839 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-839 (-1206))) NIL T ELT) (($ (-1206)) NIL T ELT) (($ (-1155 |#1| (-1206))) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-544 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 (-839 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-839 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-839 (-1206)))) NIL T ELT) (($ $ (-839 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-837 |#1|) (-13 (-261 |#1| (-1206) (-839 (-1206)) (-544 (-839 (-1206)))) (-1068 (-1155 |#1| (-1206)))) (-1079)) (T -837)) -NIL -(-13 (-261 |#1| (-1206) (-839 (-1206)) (-544 (-839 (-1206)))) (-1068 (-1155 |#1| (-1206)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-375)) ELT)) (-3913 (($ $) NIL (|has| |#2| (-375)) ELT)) (-4244 (((-112) $) NIL (|has| |#2| (-375)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#2| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#2| (-375)) ELT)) (-3397 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#2| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#2| (-375)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-2388 (($ (-665 $)) NIL (|has| |#2| (-375)) ELT) (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 20 (|has| |#2| (-375)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#2| (-375)) ELT) (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#2| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-2442 (((-792) $) NIL (|has| |#2| (-375)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-2030 (($ $) 13 T ELT) (($ $ (-792)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-375)) ELT) (($ $) NIL (|has| |#2| (-375)) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) 15 (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ $ (-577)) 18 (|has| |#2| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-375)) ELT))) -(((-838 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-503 |#2|) (-10 -7 (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|))) (-1130) (-926 |#1|) |#1|) (T -838)) -NIL -(-13 (-111 $ $) (-239) (-503 |#2|) (-10 -7 (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1975 (((-792) $) NIL T ELT)) (-3966 ((|#1| $) 10 T ELT)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-3890 (((-792) $) 11 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3727 (($ |#1| (-792)) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2030 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1675 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-839 |#1|) (-276 |#1|) (-870)) (T -839)) -NIL -(-276 |#1|) -((-3211 (((-112) $ $) NIL T ELT)) (-4417 (((-665 |#1|) $) 38 T ELT)) (-2221 (((-792) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3216 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-4197 (($ $) 42 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3412 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3017 ((|#1| $ (-577)) NIL T ELT)) (-3757 (((-792) $ (-577)) NIL T ELT)) (-2955 (($ $) 54 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3513 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4180 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3855 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-2887 (((-112) $ $) 51 T ELT)) (-3490 (((-792) $) 34 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1800 (($ $ $) NIL T ELT)) (-2226 (($ $ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 ((|#1| $) 41 T ELT)) (-1679 (((-665 (-2 (|:| |gen| |#1|) (|:| -3585 (-792)))) $) NIL T ELT)) (-4384 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-3188 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 20 T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 53 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ |#1| (-792)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-840 |#1|) (-13 (-398 |#1|) (-867) (-10 -8 (-15 -4188 (|#1| $)) (-15 -4197 ($ $)) (-15 -2955 ($ $)) (-15 -2887 ((-112) $ $)) (-15 -3855 ((-3 $ "failed") $ |#1|)) (-15 -3216 ((-3 $ "failed") $ |#1|)) (-15 -3188 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3490 ((-792) $)) (-15 -4417 ((-665 |#1|) $)))) (-870)) (T -840)) -((-4188 (*1 *2 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-4197 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-2955 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-2887 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) (-3855 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-3216 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) (-3188 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-840 *3)) (|:| |rm| (-840 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-870)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-840 *3)) (-4 *3 (-870))))) -(-13 (-398 |#1|) (-867) (-10 -8 (-15 -4188 (|#1| $)) (-15 -4197 ($ $)) (-15 -2955 ($ $)) (-15 -2887 ((-112) $ $)) (-15 -3855 ((-3 $ "failed") $ |#1|)) (-15 -3216 ((-3 $ "failed") $ |#1|)) (-15 -3188 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3490 ((-792) $)) (-15 -4417 ((-665 |#1|) $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4459 (((-577) $) 60 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2785 (((-112) $) 58 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-1434 (((-112) $) 59 T ELT)) (-1344 (($ $ $) 52 T ELT)) (-4167 (($ $ $) 53 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-3385 (($ $) 61 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2440 (((-112) $ $) 54 T ELT)) (-2415 (((-112) $ $) 56 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 55 T ELT)) (-2403 (((-112) $ $) 57 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-841) (-141)) (T -841)) -NIL -(-13 (-569) (-869)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3901 (($ (-1150)) 7 T ELT)) (-1555 (((-112) $ (-1188) (-1150)) 15 T ELT)) (-1780 (((-843) $) 12 T ELT)) (-4225 (((-843) $) 11 T ELT)) (-4173 (((-1302) $) 9 T ELT)) (-4113 (((-112) $ (-1150)) 16 T ELT))) -(((-842) (-10 -8 (-15 -3901 ($ (-1150))) (-15 -4173 ((-1302) $)) (-15 -4225 ((-843) $)) (-15 -1780 ((-843) $)) (-15 -1555 ((-112) $ (-1188) (-1150))) (-15 -4113 ((-112) $ (-1150))))) (T -842)) -((-4113 (*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-842)))) (-1555 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-1150)) (-5 *2 (-112)) (-5 *1 (-842)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-842)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-842))))) -(-10 -8 (-15 -3901 ($ (-1150))) (-15 -4173 ((-1302) $)) (-15 -4225 ((-843) $)) (-15 -1780 ((-843) $)) (-15 -1555 ((-112) $ (-1188) (-1150))) (-15 -4113 ((-112) $ (-1150)))) -((-2564 (((-1302) $ (-844)) 12 T ELT)) (-3245 (((-1302) $ (-1206)) 32 T ELT)) (-3529 (((-1302) $ (-1188) (-1188)) 34 T ELT)) (-1458 (((-1302) $ (-1188)) 33 T ELT)) (-3248 (((-1302) $) 19 T ELT)) (-3905 (((-1302) $ (-577)) 28 T ELT)) (-3148 (((-1302) $ (-228)) 30 T ELT)) (-3568 (((-1302) $) 18 T ELT)) (-3910 (((-1302) $) 26 T ELT)) (-2854 (((-1302) $) 25 T ELT)) (-3896 (((-1302) $) 23 T ELT)) (-3805 (((-1302) $) 24 T ELT)) (-2554 (((-1302) $) 22 T ELT)) (-4079 (((-1302) $) 21 T ELT)) (-4457 (((-1302) $) 20 T ELT)) (-3015 (((-1302) $) 16 T ELT)) (-2385 (((-1302) $) 17 T ELT)) (-3638 (((-1302) $) 15 T ELT)) (-4428 (((-1302) $) 14 T ELT)) (-2924 (((-1302) $) 13 T ELT)) (-2837 (($ (-1188) (-844)) 9 T ELT)) (-1607 (($ (-1188) (-1188) (-844)) 8 T ELT)) (-3178 (((-1206) $) 51 T ELT)) (-2380 (((-1206) $) 55 T ELT)) (-4322 (((-2 (|:| |cd| (-1188)) (|:| -4105 (-1188))) $) 54 T ELT)) (-2643 (((-1188) $) 52 T ELT)) (-2642 (((-1302) $) 41 T ELT)) (-2603 (((-577) $) 49 T ELT)) (-2798 (((-228) $) 50 T ELT)) (-3298 (((-1302) $) 40 T ELT)) (-1372 (((-1302) $) 48 T ELT)) (-1533 (((-1302) $) 47 T ELT)) (-3787 (((-1302) $) 45 T ELT)) (-2681 (((-1302) $) 46 T ELT)) (-1652 (((-1302) $) 44 T ELT)) (-1918 (((-1302) $) 43 T ELT)) (-2942 (((-1302) $) 42 T ELT)) (-3519 (((-1302) $) 38 T ELT)) (-3115 (((-1302) $) 39 T ELT)) (-3067 (((-1302) $) 37 T ELT)) (-1742 (((-1302) $) 36 T ELT)) (-3998 (((-1302) $) 35 T ELT)) (-2807 (((-1302) $) 11 T ELT))) -(((-843) (-10 -8 (-15 -1607 ($ (-1188) (-1188) (-844))) (-15 -2837 ($ (-1188) (-844))) (-15 -2807 ((-1302) $)) (-15 -2564 ((-1302) $ (-844))) (-15 -2924 ((-1302) $)) (-15 -4428 ((-1302) $)) (-15 -3638 ((-1302) $)) (-15 -3015 ((-1302) $)) (-15 -2385 ((-1302) $)) (-15 -3568 ((-1302) $)) (-15 -3248 ((-1302) $)) (-15 -4457 ((-1302) $)) (-15 -4079 ((-1302) $)) (-15 -2554 ((-1302) $)) (-15 -3896 ((-1302) $)) (-15 -3805 ((-1302) $)) (-15 -2854 ((-1302) $)) (-15 -3910 ((-1302) $)) (-15 -3905 ((-1302) $ (-577))) (-15 -3148 ((-1302) $ (-228))) (-15 -3245 ((-1302) $ (-1206))) (-15 -1458 ((-1302) $ (-1188))) (-15 -3529 ((-1302) $ (-1188) (-1188))) (-15 -3998 ((-1302) $)) (-15 -1742 ((-1302) $)) (-15 -3067 ((-1302) $)) (-15 -3519 ((-1302) $)) (-15 -3115 ((-1302) $)) (-15 -3298 ((-1302) $)) (-15 -2642 ((-1302) $)) (-15 -2942 ((-1302) $)) (-15 -1918 ((-1302) $)) (-15 -1652 ((-1302) $)) (-15 -3787 ((-1302) $)) (-15 -2681 ((-1302) $)) (-15 -1533 ((-1302) $)) (-15 -1372 ((-1302) $)) (-15 -2603 ((-577) $)) (-15 -2798 ((-228) $)) (-15 -3178 ((-1206) $)) (-15 -2643 ((-1188) $)) (-15 -4322 ((-2 (|:| |cd| (-1188)) (|:| -4105 (-1188))) $)) (-15 -2380 ((-1206) $)))) (T -843)) -((-2380 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1188)) (|:| -4105 (-1188)))) (-5 *1 (-843)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-843)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-843)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-843)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3529 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-1458 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-3245 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-4457 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-4428 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2564 (*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1302)) (-5 *1 (-843)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843)))) (-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843)))) (-1607 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843))))) -(-10 -8 (-15 -1607 ($ (-1188) (-1188) (-844))) (-15 -2837 ($ (-1188) (-844))) (-15 -2807 ((-1302) $)) (-15 -2564 ((-1302) $ (-844))) (-15 -2924 ((-1302) $)) (-15 -4428 ((-1302) $)) (-15 -3638 ((-1302) $)) (-15 -3015 ((-1302) $)) (-15 -2385 ((-1302) $)) (-15 -3568 ((-1302) $)) (-15 -3248 ((-1302) $)) (-15 -4457 ((-1302) $)) (-15 -4079 ((-1302) $)) (-15 -2554 ((-1302) $)) (-15 -3896 ((-1302) $)) (-15 -3805 ((-1302) $)) (-15 -2854 ((-1302) $)) (-15 -3910 ((-1302) $)) (-15 -3905 ((-1302) $ (-577))) (-15 -3148 ((-1302) $ (-228))) (-15 -3245 ((-1302) $ (-1206))) (-15 -1458 ((-1302) $ (-1188))) (-15 -3529 ((-1302) $ (-1188) (-1188))) (-15 -3998 ((-1302) $)) (-15 -1742 ((-1302) $)) (-15 -3067 ((-1302) $)) (-15 -3519 ((-1302) $)) (-15 -3115 ((-1302) $)) (-15 -3298 ((-1302) $)) (-15 -2642 ((-1302) $)) (-15 -2942 ((-1302) $)) (-15 -1918 ((-1302) $)) (-15 -1652 ((-1302) $)) (-15 -3787 ((-1302) $)) (-15 -2681 ((-1302) $)) (-15 -1533 ((-1302) $)) (-15 -1372 ((-1302) $)) (-15 -2603 ((-577) $)) (-15 -2798 ((-228) $)) (-15 -3178 ((-1206) $)) (-15 -2643 ((-1188) $)) (-15 -4322 ((-2 (|:| |cd| (-1188)) (|:| -4105 (-1188))) $)) (-15 -2380 ((-1206) $))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4283 (($) 16 T ELT)) (-3944 (($) 14 T ELT)) (-3571 (($) 17 T ELT)) (-2178 (($) 15 T ELT)) (-2383 (((-112) $ $) 9 T ELT))) -(((-844) (-13 (-1130) (-10 -8 (-15 -3944 ($)) (-15 -4283 ($)) (-15 -3571 ($)) (-15 -2178 ($))))) (T -844)) -((-3944 (*1 *1) (-5 *1 (-844))) (-4283 (*1 *1) (-5 *1 (-844))) (-3571 (*1 *1) (-5 *1 (-844))) (-2178 (*1 *1) (-5 *1 (-844)))) -(-13 (-1130) (-10 -8 (-15 -3944 ($)) (-15 -4283 ($)) (-15 -3571 ($)) (-15 -2178 ($)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 23 T ELT) (($ (-1206)) 19 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1884 (((-112) $) 10 T ELT)) (-3732 (((-112) $) 9 T ELT)) (-2043 (((-112) $) 11 T ELT)) (-2559 (((-112) $) 8 T ELT)) (-2383 (((-112) $ $) 21 T ELT))) -(((-845) (-13 (-1130) (-10 -8 (-15 -2410 ($ (-1206))) (-15 -2559 ((-112) $)) (-15 -3732 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -2043 ((-112) $))))) (T -845)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-845)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) -(-13 (-1130) (-10 -8 (-15 -2410 ($ (-1206))) (-15 -2559 ((-112) $)) (-15 -3732 ((-112) $)) (-15 -1884 ((-112) $)) (-15 -2043 ((-112) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4466 (($ (-845) (-665 (-1206))) 32 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3458 (((-845) $) 33 T ELT)) (-1345 (((-665 (-1206)) $) 34 T ELT)) (-2410 (((-885) $) 31 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-846) (-13 (-1130) (-10 -8 (-15 -3458 ((-845) $)) (-15 -1345 ((-665 (-1206)) $)) (-15 -4466 ($ (-845) (-665 (-1206))))))) (T -846)) -((-3458 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-846)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-846)))) (-4466 (*1 *1 *2 *3) (-12 (-5 *2 (-845)) (-5 *3 (-665 (-1206))) (-5 *1 (-846))))) -(-13 (-1130) (-10 -8 (-15 -3458 ((-845) $)) (-15 -1345 ((-665 (-1206)) $)) (-15 -4466 ($ (-845) (-665 (-1206)))))) -((-2792 (((-1302) (-843) (-327 |#1|) (-112)) 23 T ELT) (((-1302) (-843) (-327 |#1|)) 88 T ELT) (((-1188) (-327 |#1|) (-112)) 87 T ELT) (((-1188) (-327 |#1|)) 86 T ELT))) -(((-847 |#1|) (-10 -7 (-15 -2792 ((-1188) (-327 |#1|))) (-15 -2792 ((-1188) (-327 |#1|) (-112))) (-15 -2792 ((-1302) (-843) (-327 |#1|))) (-15 -2792 ((-1302) (-843) (-327 |#1|) (-112)))) (-13 (-849) (-1079))) (T -847)) -((-2792 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-843)) (-5 *4 (-327 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-849) (-1079))) (-5 *2 (-1302)) (-5 *1 (-847 *6)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-849) (-1079))) (-5 *2 (-1302)) (-5 *1 (-847 *5)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-1079))) (-5 *2 (-1188)) (-5 *1 (-847 *5)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-849) (-1079))) (-5 *2 (-1188)) (-5 *1 (-847 *4))))) -(-10 -7 (-15 -2792 ((-1188) (-327 |#1|))) (-15 -2792 ((-1188) (-327 |#1|) (-112))) (-15 -2792 ((-1302) (-843) (-327 |#1|))) (-15 -2792 ((-1302) (-843) (-327 |#1|) (-112)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1689 ((|#1| $) 10 T ELT)) (-4422 (($ |#1|) 9 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-792)) NIL T ELT)) (-3569 (((-792) $) NIL T ELT)) (-3109 ((|#2| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2030 (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-792)) NIL (|has| |#1| (-239)) ELT)) (-2776 (((-792) $) NIL T ELT)) (-2410 (((-885) $) 17 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-174)) ELT)) (-2778 ((|#2| $ (-792)) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-792)) NIL (|has| |#1| (-239)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-848 |#1| |#2|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4422 ($ |#1|)) (-15 -1689 (|#1| $)))) (-729 |#2|) (-1079)) (T -848)) -((-4422 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-848 *2 *3)) (-4 *2 (-729 *3)))) (-1689 (*1 *2 *1) (-12 (-4 *2 (-729 *3)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1079))))) -(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -4422 ($ |#1|)) (-15 -1689 (|#1| $)))) -((-2792 (((-1302) (-843) $ (-112)) 9 T ELT) (((-1302) (-843) $) 8 T ELT) (((-1188) $ (-112)) 7 T ELT) (((-1188) $) 6 T ELT))) -(((-849) (-141)) (T -849)) -((-2792 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *4 (-112)) (-5 *2 (-1302)))) (-2792 (*1 *2 *3 *1) (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *2 (-1302)))) (-2792 (*1 *2 *1 *3) (-12 (-4 *1 (-849)) (-5 *3 (-112)) (-5 *2 (-1188)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-1188))))) -(-13 (-10 -8 (-15 -2792 ((-1188) $)) (-15 -2792 ((-1188) $ (-112))) (-15 -2792 ((-1302) (-843) $)) (-15 -2792 ((-1302) (-843) $ (-112))))) -((-2411 (((-323) (-1188) (-1188)) 12 T ELT)) (-4263 (((-112) (-1188) (-1188)) 34 T ELT)) (-3160 (((-112) (-1188)) 33 T ELT)) (-4259 (((-52) (-1188)) 25 T ELT)) (-1766 (((-52) (-1188)) 23 T ELT)) (-4117 (((-52) (-843)) 17 T ELT)) (-2417 (((-665 (-1188)) (-1188)) 28 T ELT)) (-1581 (((-665 (-1188))) 27 T ELT))) -(((-850) (-10 -7 (-15 -4117 ((-52) (-843))) (-15 -1766 ((-52) (-1188))) (-15 -4259 ((-52) (-1188))) (-15 -1581 ((-665 (-1188)))) (-15 -2417 ((-665 (-1188)) (-1188))) (-15 -3160 ((-112) (-1188))) (-15 -4263 ((-112) (-1188) (-1188))) (-15 -2411 ((-323) (-1188) (-1188))))) (T -850)) -((-2411 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-850)))) (-4263 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850)))) (-2417 (*1 *2 *3) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850)) (-5 *3 (-1188)))) (-1581 (*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-52)) (-5 *1 (-850))))) -(-10 -7 (-15 -4117 ((-52) (-843))) (-15 -1766 ((-52) (-1188))) (-15 -4259 ((-52) (-1188))) (-15 -1581 ((-665 (-1188)))) (-15 -2417 ((-665 (-1188)) (-1188))) (-15 -3160 ((-112) (-1188))) (-15 -4263 ((-112) (-1188) (-1188))) (-15 -2411 ((-323) (-1188) (-1188)))) -((-3211 (((-112) $ $) 20 T ELT)) (-1339 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-2729 (($ $ $) 73 T ELT)) (-2171 (((-112) $ $) 74 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-1753 (($ (-665 |#1|)) 69 T ELT) (($) 68 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3237 (($ $) 63 T ELT)) (-3860 (($ $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ |#1| $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-3283 (((-112) $ $) 65 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-1344 ((|#1| $) 79 T ELT)) (-2044 (($ $ $) 82 T ELT)) (-2223 (($ $ $) 81 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4167 ((|#1| $) 80 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 T ELT)) (-3959 (($ $ $) 70 T ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT) (($ |#1| $ (-792)) 64 T ELT)) (-4312 (((-1150) $) 22 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-1913 (((-665 (-2 (|:| -2753 |#1|) (|:| -4323 (-792)))) $) 62 T ELT)) (-2964 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 |#1|)) 49 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 51 T ELT)) (-2410 (((-885) $) 18 T ELT)) (-2868 (($ (-665 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2525 (((-112) $ $) 21 T ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 T ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-851 |#1|) (-141) (-870)) (T -851)) -((-1344 (*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-870))))) -(-13 (-757 |t#1|) (-998 |t#1|) (-10 -8 (-15 -1344 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-716 |#1|) . T) ((-757 |#1|) . T) ((-998 |#1|) . T) ((-1128 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-4137 (((-1302) (-1150) (-1150)) 48 T ELT)) (-3960 (((-1302) (-842) (-52)) 45 T ELT)) (-1982 (((-52) (-842)) 16 T ELT))) -(((-852) (-10 -7 (-15 -1982 ((-52) (-842))) (-15 -3960 ((-1302) (-842) (-52))) (-15 -4137 ((-1302) (-1150) (-1150))))) (T -852)) -((-4137 (*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1302)) (-5 *1 (-852)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-52)) (-5 *2 (-1302)) (-5 *1 (-852)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-52)) (-5 *1 (-852))))) -(-10 -7 (-15 -1982 ((-52) (-842))) (-15 -3960 ((-1302) (-842) (-52))) (-15 -4137 ((-1302) (-1150) (-1150)))) -((-3609 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)) 12 T ELT) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 13 T ELT))) -(((-853 |#1| |#2|) (-10 -7 (-15 -3609 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -3609 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) (-1130) (-1130)) (T -853)) -((-3609 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-853 *5 *6)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6))))) -(-10 -7 (-15 -3609 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -3609 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4459 (((-577) $) NIL (|has| |#1| (-869)) ELT)) (-2762 (($) NIL (|has| |#1| (-21)) CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 15 T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 9 T ELT)) (-4281 (((-3 $ "failed") $) 42 (|has| |#1| (-869)) ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 52 (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) 46 (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) 49 (|has| |#1| (-558)) ELT)) (-2785 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-2097 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-1434 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2561 (($) 13 T ELT)) (-3811 (((-112) $) 12 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1468 (((-112) $) 11 T ELT)) (-2410 (((-885) $) 18 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 8 T ELT) (($ (-577)) NIL (-2229 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ELT)) (-3234 (((-792)) 36 (|has| |#1| (-869)) CONST)) (-2525 (((-112) $ $) 54 T ELT)) (-3385 (($ $) NIL (|has| |#1| (-869)) ELT)) (-2367 (($) 23 (|has| |#1| (-21)) CONST)) (-2378 (($) 33 (|has| |#1| (-869)) CONST)) (-2440 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2383 (((-112) $ $) 21 T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2403 (((-112) $ $) 45 (|has| |#1| (-869)) ELT)) (-2483 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-949)) NIL (|has| |#1| (-869)) ELT) (($ $ (-792)) NIL (|has| |#1| (-869)) ELT)) (* (($ $ $) 39 (|has| |#1| (-869)) ELT) (($ (-577) $) 27 (|has| |#1| (-21)) ELT) (($ (-792) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-21)) ELT))) -(((-854 |#1|) (-13 (-1130) (-424 |#1|) (-10 -8 (-15 -2561 ($)) (-15 -1468 ((-112) $)) (-15 -3811 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1130)) (T -854)) -((-2561 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1130)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-2751 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130))))) -(-13 (-1130) (-424 |#1|) (-10 -8 (-15 -2561 ($)) (-15 -1468 ((-112) $)) (-15 -3811 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) -((-4450 (((-112) $ |#2|) 14 T ELT)) (-2410 (((-885) $) 11 T ELT))) -(((-855 |#1| |#2|) (-10 -8 (-15 -4450 ((-112) |#1| |#2|)) (-15 -2410 ((-885) |#1|))) (-856 |#2|) (-1130)) (T -855)) -NIL -(-10 -8 (-15 -4450 ((-112) |#1| |#2|)) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-4105 ((|#1| $) 16 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4450 (((-112) $ |#1|) 14 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3089 (((-55) $) 15 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-856 |#1|) (-141) (-1130)) (T -856)) -((-4105 (*1 *2 *1) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1130)))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-55)))) (-4450 (*1 *2 *1 *3) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(-13 (-1130) (-10 -8 (-15 -4105 (|t#1| $)) (-15 -3089 ((-55) $)) (-15 -4450 ((-112) $ |t#1|)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-115) "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3947 ((|#1| (-115) |#1|) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3718 (($ |#1| (-373 (-115))) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3498 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-4452 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2435 ((|#1| $ |#1|) NIL T ELT)) (-3741 ((|#1| |#1|) NIL (|has| |#1| (-174)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1420 (($ $) NIL (|has| |#1| (-174)) ELT) (($ $ $) NIL (|has| |#1| (-174)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ (-115) (-577)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-857 |#1|) (-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1420 ($ $)) (-15 -1420 ($ $ $)) (-15 -3741 (|#1| |#1|))) |%noBranch|) (-15 -4452 ($ $ (-1 |#1| |#1|))) (-15 -3498 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -3947 (|#1| (-115) |#1|)) (-15 -3718 ($ |#1| (-373 (-115)))))) (-1079)) (T -857)) -((-1420 (*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-1420 (*1 *1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3741 (*1 *2 *2) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-4452 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-857 *4)) (-4 *4 (-1079)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-857 *3)) (-4 *3 (-1079)))) (-3947 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-857 *2)) (-4 *2 (-1079)))) (-3718 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-5 *1 (-857 *2)) (-4 *2 (-1079))))) -(-13 (-1079) (-1068 |#1|) (-1068 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -1420 ($ $)) (-15 -1420 ($ $ $)) (-15 -3741 (|#1| |#1|))) |%noBranch|) (-15 -4452 ($ $ (-1 |#1| |#1|))) (-15 -3498 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -3947 (|#1| (-115) |#1|)) (-15 -3718 ($ |#1| (-373 (-115)))))) -((-4142 (((-216 (-515)) (-1188)) 9 T ELT))) -(((-858) (-10 -7 (-15 -4142 ((-216 (-515)) (-1188))))) (T -858)) -((-4142 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-216 (-515))) (-5 *1 (-858))))) -(-10 -7 (-15 -4142 ((-216 (-515)) (-1188)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3383 (((-1148) $) 10 T ELT)) (-4105 (((-519) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4450 (((-112) $ (-519)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2422 (($ (-519) (-1148)) 8 T ELT)) (-2410 (((-885) $) 25 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3089 (((-55) $) 20 T ELT)) (-2383 (((-112) $ $) 12 T ELT))) -(((-859) (-13 (-856 (-519)) (-10 -8 (-15 -3383 ((-1148) $)) (-15 -2422 ($ (-519) (-1148)))))) (T -859)) -((-3383 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-859)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-859))))) -(-13 (-856 (-519)) (-10 -8 (-15 -3383 ((-1148) $)) (-15 -2422 ($ (-519) (-1148))))) -((-3211 (((-112) $ $) 7 T ELT)) (-2910 (((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 15 T ELT) (((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 14 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 17 T ELT) (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 16 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-860) (-141)) (T -860)) -((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-860)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) (-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-860)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) (-2910 (*1 *2 *3) (-12 (-4 *1 (-860)) (-5 *3 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) (-5 *2 (-1065)))) (-2910 (*1 *2 *3) (-12 (-4 *1 (-860)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *2 (-1065))))) -(-13 (-1130) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -2910 ((-1065) (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -2910 ((-1065) (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-2943 (((-1065) (-665 (-327 (-391))) (-665 (-391))) 166 T ELT) (((-1065) (-327 (-391)) (-665 (-391))) 164 T ELT) (((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-864 (-391)))) 162 T ELT) (((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-327 (-391))) (-665 (-864 (-391)))) 160 T ELT) (((-1065) (-862)) 125 T ELT) (((-1065) (-862) (-1093)) 124 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862) (-1093)) 85 T ELT) (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862)) 87 T ELT)) (-3769 (((-1065) (-665 (-327 (-391))) (-665 (-391))) 167 T ELT) (((-1065) (-862)) 150 T ELT))) -(((-861) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862) (-1093))) (-15 -2943 ((-1065) (-862) (-1093))) (-15 -2943 ((-1065) (-862))) (-15 -3769 ((-1065) (-862))) (-15 -2943 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-327 (-391))) (-665 (-864 (-391))))) (-15 -2943 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-864 (-391))))) (-15 -2943 ((-1065) (-327 (-391)) (-665 (-391)))) (-15 -2943 ((-1065) (-665 (-327 (-391))) (-665 (-391)))) (-15 -3769 ((-1065) (-665 (-327 (-391))) (-665 (-391)))))) (T -861)) -((-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-2943 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) (-5 *5 (-665 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-2943 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-665 (-391))) (-5 *5 (-665 (-864 (-391)))) (-5 *6 (-665 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) (-2943 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-861)))) (-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-861)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-861))))) -(-10 -7 (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-862) (-1093))) (-15 -2943 ((-1065) (-862) (-1093))) (-15 -2943 ((-1065) (-862))) (-15 -3769 ((-1065) (-862))) (-15 -2943 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-327 (-391))) (-665 (-864 (-391))))) (-15 -2943 ((-1065) (-327 (-391)) (-665 (-391)) (-665 (-864 (-391))) (-665 (-864 (-391))))) (-15 -2943 ((-1065) (-327 (-391)) (-665 (-391)))) (-15 -2943 ((-1065) (-665 (-327 (-391))) (-665 (-391)))) (-15 -3769 ((-1065) (-665 (-327 (-391))) (-665 (-391))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3514 (((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) $) 21 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))))) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-862) (-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -2410 ($ (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -2410 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))))) (-15 -3514 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) $))))) (T -862)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (-5 *1 (-862)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) (-5 *1 (-862)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))))) (-5 *1 (-862)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))))) (-5 *1 (-862))))) -(-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228))))))) (-15 -2410 ($ (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) (-15 -2410 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))))) (-15 -3514 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) (|:| |ub| (-665 (-864 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228)))))) $)))) -((-3609 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)) 13 T ELT) (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14 T ELT))) -(((-863 |#1| |#2|) (-10 -7 (-15 -3609 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -3609 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) (-1130) (-1130)) (T -863)) -((-3609 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-863 *5 *6)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6))))) -(-10 -7 (-15 -3609 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -3609 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-4329 (((-1150) $) 31 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4459 (((-577) $) NIL (|has| |#1| (-869)) ELT)) (-2762 (($) NIL (|has| |#1| (-21)) CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 18 T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 9 T ELT)) (-4281 (((-3 $ "failed") $) 58 (|has| |#1| (-869)) ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 65 (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) 60 (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) 63 (|has| |#1| (-558)) ELT)) (-2785 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3022 (($) 14 T ELT)) (-2097 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-1434 (((-112) $) NIL (|has| |#1| (-869)) ELT)) (-3037 (($) 16 T ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-869)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3811 (((-112) $) 12 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1468 (((-112) $) 11 T ELT)) (-2410 (((-885) $) 24 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 8 T ELT) (($ (-577)) NIL (-2229 (|has| |#1| (-869)) (|has| |#1| (-1068 (-577)))) ELT)) (-3234 (((-792)) 51 (|has| |#1| (-869)) CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#1| (-869)) ELT)) (-2367 (($) 37 (|has| |#1| (-21)) CONST)) (-2378 (($) 48 (|has| |#1| (-869)) CONST)) (-2440 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2383 (((-112) $ $) 35 T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-869)) ELT)) (-2403 (((-112) $ $) 59 (|has| |#1| (-869)) ELT)) (-2483 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 44 (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) 46 (|has| |#1| (-21)) ELT)) (** (($ $ (-949)) NIL (|has| |#1| (-869)) ELT) (($ $ (-792)) NIL (|has| |#1| (-869)) ELT)) (* (($ $ $) 55 (|has| |#1| (-869)) ELT) (($ (-577) $) 42 (|has| |#1| (-21)) ELT) (($ (-792) $) NIL (|has| |#1| (-21)) ELT) (($ (-949) $) NIL (|has| |#1| (-21)) ELT))) -(((-864 |#1|) (-13 (-1130) (-424 |#1|) (-10 -8 (-15 -3022 ($)) (-15 -3037 ($)) (-15 -1468 ((-112) $)) (-15 -3811 ((-112) $)) (-15 -4329 ((-1150) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1130)) (T -864)) -((-3022 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130)))) (-3037 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130)))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-864 *3)) (-4 *3 (-1130)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) (-2751 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130))))) -(-13 (-1130) (-424 |#1|) (-10 -8 (-15 -3022 ($)) (-15 -3037 ($)) (-15 -1468 ((-112) $)) (-15 -3811 ((-112) $)) (-15 -4329 ((-1150) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-869)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) -((-3211 (((-112) $ $) 7 T ELT)) (-2221 (((-792)) 24 T ELT)) (-2060 (($) 27 T ELT)) (-1344 (($ $ $) 20 T ELT) (($) 23 T CONST)) (-4167 (($ $ $) 19 T ELT) (($) 22 T CONST)) (-2553 (((-949) $) 26 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2085 (($ (-949)) 25 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT))) -(((-865) (-141)) (T -865)) -((-1344 (*1 *1) (-4 *1 (-865))) (-4167 (*1 *1) (-4 *1 (-865)))) -(-13 (-870) (-380) (-10 -8 (-15 -1344 ($) -1528) (-15 -4167 ($) -1528))) -(((-102) . T) ((-631 (-885)) . T) ((-380) . T) ((-870) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-3934 (((-112) (-1297 |#2|) (-1297 |#2|)) 19 T ELT)) (-3317 (((-112) (-1297 |#2|) (-1297 |#2|)) 20 T ELT)) (-3025 (((-112) (-1297 |#2|) (-1297 |#2|)) 16 T ELT))) -(((-866 |#1| |#2|) (-10 -7 (-15 -3025 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -3934 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -3317 ((-112) (-1297 |#2|) (-1297 |#2|)))) (-792) (-813)) (T -866)) -((-3317 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) (-5 *1 (-866 *4 *5)) (-14 *4 (-792)))) (-3934 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) (-5 *1 (-866 *4 *5)) (-14 *4 (-792)))) (-3025 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) -(-10 -7 (-15 -3025 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -3934 ((-112) (-1297 |#2|) (-1297 |#2|))) (-15 -3317 ((-112) (-1297 |#2|) (-1297 |#2|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-2762 (($) 25 T CONST)) (-4281 (((-3 $ "failed") $) 28 T ELT)) (-2097 (((-112) $) 26 T ELT)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2378 (($) 24 T CONST)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (** (($ $ (-949)) 23 T ELT) (($ $ (-792)) 27 T ELT)) (* (($ $ $) 22 T ELT))) -(((-867) (-141)) (T -867)) -NIL -(-13 (-880) (-747)) -(((-102) . T) ((-631 (-885)) . T) ((-747) . T) ((-880) . T) ((-870) . T) ((-873) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-4459 (((-577) $) 21 T ELT)) (-2785 (((-112) $) 10 T ELT)) (-1434 (((-112) $) 12 T ELT)) (-3385 (($ $) 23 T ELT))) -(((-868 |#1|) (-10 -8 (-15 -3385 (|#1| |#1|)) (-15 -4459 ((-577) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2785 ((-112) |#1|))) (-869)) (T -868)) -NIL -(-10 -8 (-15 -3385 (|#1| |#1|)) (-15 -4459 ((-577) |#1|)) (-15 -1434 ((-112) |#1|)) (-15 -2785 ((-112) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 26 T ELT)) (-3262 (((-3 $ "failed") $ $) 28 T ELT)) (-4459 (((-577) $) 38 T ELT)) (-2762 (($) 25 T CONST)) (-4281 (((-3 $ "failed") $) 43 T ELT)) (-2785 (((-112) $) 40 T ELT)) (-2097 (((-112) $) 45 T ELT)) (-1434 (((-112) $) 39 T ELT)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 47 T ELT)) (-3234 (((-792)) 48 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-3385 (($ $) 37 T ELT)) (-2367 (($) 24 T CONST)) (-2378 (($) 46 T CONST)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (-2483 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2471 (($ $ $) 22 T ELT)) (** (($ $ (-792)) 44 T ELT) (($ $ (-949)) 41 T ELT)) (* (($ (-949) $) 23 T ELT) (($ (-792) $) 27 T ELT) (($ (-577) $) 30 T ELT) (($ $ $) 42 T ELT))) -(((-869) (-141)) (T -869)) -((-2785 (*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) (-4459 (*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-577)))) (-3385 (*1 *1 *1) (-4 *1 (-869)))) -(-13 (-812) (-1079) (-747) (-10 -8 (-15 -2785 ((-112) $)) (-15 -1434 ((-112) $)) (-15 -4459 ((-577) $)) (-15 -3385 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-870) . T) ((-873) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT))) -(((-870) (-141)) (T -870)) -NIL -(-13 (-1130) (-873)) -(((-102) . T) ((-631 (-885)) . T) ((-873) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-2410 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-885) $) 15 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 12 T ELT))) -(((-871 |#1| |#2|) (-13 (-873) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|))) (-1247) (-1 (-112) |#1| |#1|)) (T -871)) -NIL -(-13 (-873) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|))) -((-1344 (($ $ $) 16 T ELT)) (-4167 (($ $ $) 15 T ELT)) (-2525 (((-112) $ $) 17 T ELT)) (-2440 (((-112) $ $) 12 T ELT)) (-2415 (((-112) $ $) 9 T ELT)) (-2383 (((-112) $ $) 14 T ELT)) (-2428 (((-112) $ $) 11 T ELT))) -(((-872 |#1|) (-10 -8 (-15 -1344 (|#1| |#1| |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2440 ((-112) |#1| |#1|)) (-15 -2428 ((-112) |#1| |#1|)) (-15 -2415 ((-112) |#1| |#1|)) (-15 -2525 ((-112) |#1| |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-873)) (T -872)) -NIL -(-10 -8 (-15 -1344 (|#1| |#1| |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2440 ((-112) |#1| |#1|)) (-15 -2428 ((-112) |#1| |#1|)) (-15 -2415 ((-112) |#1| |#1|)) (-15 -2525 ((-112) |#1| |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1344 (($ $ $) 9 T ELT)) (-4167 (($ $ $) 10 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2440 (((-112) $ $) 11 T ELT)) (-2415 (((-112) $ $) 13 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 12 T ELT)) (-2403 (((-112) $ $) 14 T ELT))) -(((-873) (-141)) (T -873)) -((-2403 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-2415 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-2428 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-2440 (*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) (-4167 (*1 *1 *1 *1) (-4 *1 (-873))) (-1344 (*1 *1 *1 *1) (-4 *1 (-873)))) -(-13 (-102) (-10 -8 (-15 -2403 ((-112) $ $)) (-15 -2415 ((-112) $ $)) (-15 -2428 ((-112) $ $)) (-15 -2440 ((-112) $ $)) (-15 -4167 ($ $ $)) (-15 -1344 ($ $ $)))) -(((-102) . T) ((-1247) . T)) -((-4135 (($ $ $) 49 T ELT)) (-1656 (($ $ $) 48 T ELT)) (-3695 (($ $ $) 46 T ELT)) (-1810 (($ $ $) 55 T ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 50 T ELT)) (-4145 (((-3 $ "failed") $ $) 53 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 29 T ELT)) (-3008 (($ $) 39 T ELT)) (-1640 (($ $ $) 43 T ELT)) (-2455 (($ $ $) 42 T ELT)) (-2449 (($ $ $) 51 T ELT)) (-1874 (($ $ $) 57 T ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 45 T ELT)) (-2018 (((-3 $ "failed") $ $) 52 T ELT)) (-3200 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-2091 ((|#2| $) 36 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#2|) 13 T ELT)) (-2929 (((-665 |#2|) $) 21 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-874 |#1| |#2|) (-10 -8 (-15 -2449 (|#1| |#1| |#1|)) (-15 -2740 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2846 |#1|)) |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4145 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -1656 (|#1| |#1| |#1|)) (-15 -3695 (|#1| |#1| |#1|)) (-15 -4460 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2846 |#1|)) |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2018 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1640 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2929 ((-665 |#2|) |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2410 ((-885) |#1|))) (-875 |#2|) (-1079)) (T -874)) -NIL -(-10 -8 (-15 -2449 (|#1| |#1| |#1|)) (-15 -2740 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2846 |#1|)) |#1| |#1|)) (-15 -1810 (|#1| |#1| |#1|)) (-15 -4145 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4135 (|#1| |#1| |#1|)) (-15 -1656 (|#1| |#1| |#1|)) (-15 -3695 (|#1| |#1| |#1|)) (-15 -4460 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2846 |#1|)) |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2018 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1640 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -3200 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2929 ((-665 |#2|) |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4135 (($ $ $) 50 (|has| |#1| (-375)) ELT)) (-1656 (($ $ $) 51 (|has| |#1| (-375)) ELT)) (-3695 (($ $ $) 53 (|has| |#1| (-375)) ELT)) (-1810 (($ $ $) 48 (|has| |#1| (-375)) ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 47 (|has| |#1| (-375)) ELT)) (-4145 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)) ELT)) (-2675 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 52 (|has| |#1| (-375)) ELT)) (-2817 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3514 (((-577) $) 79 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 76 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 75 T ELT)) (-3134 (($ $) 69 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3008 (($ $) 60 (|has| |#1| (-465)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-2925 (($ |#1| (-792)) 67 T ELT)) (-2903 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-3479 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 (|has| |#1| (-569)) ELT)) (-3569 (((-792) $) 71 T ELT)) (-1640 (($ $ $) 57 (|has| |#1| (-375)) ELT)) (-2455 (($ $ $) 58 (|has| |#1| (-375)) ELT)) (-2449 (($ $ $) 46 (|has| |#1| (-375)) ELT)) (-1874 (($ $ $) 55 (|has| |#1| (-375)) ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 54 (|has| |#1| (-375)) ELT)) (-2018 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)) ELT)) (-2747 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 59 (|has| |#1| (-375)) ELT)) (-3109 ((|#1| $) 70 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)) ELT)) (-2776 (((-792) $) 72 T ELT)) (-2091 ((|#1| $) 61 (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 78 (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) 73 T ELT)) (-2929 (((-665 |#1|) $) 66 T ELT)) (-2778 ((|#1| $ (-792)) 68 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-4177 ((|#1| $ |#1| |#1|) 65 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) -(((-875 |#1|) (-141) (-1079)) (T -875)) -((-2776 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-665 *3)))) (-4177 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) (-3200 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-3479 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) (-2903 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) (-2747 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) (-2455 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-1640 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2018 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-1874 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-4460 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2846 *1))) (-4 *1 (-875 *3)))) (-3695 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2675 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) (-1656 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-4135 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-4145 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-1810 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-2740 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2846 *1))) (-4 *1 (-875 *3)))) (-2449 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(-13 (-1079) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -2776 ((-792) $)) (-15 -3569 ((-792) $)) (-15 -3109 (|t#1| $)) (-15 -3134 ($ $)) (-15 -2778 (|t#1| $ (-792))) (-15 -2925 ($ |t#1| (-792))) (-15 -2929 ((-665 |t#1|) $)) (-15 -4177 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3200 ((-3 $ "failed") $ |t#1|)) (-15 -3479 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -2903 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -2091 (|t#1| $)) (-15 -3008 ($ $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -2747 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -2455 ($ $ $)) (-15 -1640 ($ $ $)) (-15 -2018 ((-3 $ "failed") $ $)) (-15 -1874 ($ $ $)) (-15 -4460 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $)) (-15 -3695 ($ $ $)) (-15 -2675 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -1656 ($ $ $)) (-15 -4135 ($ $ $)) (-15 -4145 ((-3 $ "failed") $ $)) (-15 -1810 ($ $ $)) (-15 -2740 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $)) (-15 -2449 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 #0=(-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-424 |#1|) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1068 #0#) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-1432 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2675 (((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-375)) ELT)) (-2903 (((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-569)) ELT)) (-3479 (((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-569)) ELT)) (-2747 (((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-375)) ELT)) (-4177 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-876 |#1| |#2|) (-10 -7 (-15 -1432 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4177 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -3479 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2903 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -2747 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2675 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1079) (-875 |#1|)) (T -876)) -((-2675 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-2747 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-2903 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-3479 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-875 *5)))) (-4177 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1079)) (-5 *1 (-876 *2 *3)) (-4 *3 (-875 *2)))) (-1432 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1079)) (-5 *1 (-876 *5 *2)) (-4 *2 (-875 *5))))) -(-10 -7 (-15 -1432 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4177 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -3479 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2903 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -2747 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2675 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4135 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1656 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3695 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1810 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2675 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 34 (|has| |#1| (-375)) ELT)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT)) (-3771 (((-885) $ (-885)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) NIL T ELT)) (-2903 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 30 (|has| |#1| (-569)) ELT)) (-3479 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 28 (|has| |#1| (-569)) ELT)) (-3569 (((-792) $) NIL T ELT)) (-1640 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2455 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2449 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1874 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2018 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2747 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 32 (|has| |#1| (-375)) ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2776 (((-792) $) NIL T ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (($ |#1|) NIL T ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-4177 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) 23 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 19 T ELT) (($ $ (-792)) 24 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-877 |#1| |#2| |#3|) (-13 (-875 |#1|) (-10 -8 (-15 -3771 ((-885) $ (-885))))) (-1079) (-99 |#1|) (-1 |#1| |#1|)) (T -877)) -((-3771 (*1 *2 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-877 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-875 |#1|) (-10 -8 (-15 -3771 ((-885) $ (-885))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4135 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1656 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3695 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1810 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2740 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-4145 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-2675 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#2| (-465)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-792)) 17 T ELT)) (-2903 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3479 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3569 (((-792) $) NIL T ELT)) (-1640 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2455 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2449 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-1874 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-4460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-2018 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)) ELT)) (-2747 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3109 ((|#2| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2776 (((-792) $) NIL T ELT)) (-2091 ((|#2| $) NIL (|has| |#2| (-465)) ELT)) (-2410 (((-885) $) 24 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (($ (-1293 |#1|)) 19 T ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-792)) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-4177 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) 13 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-878 |#1| |#2| |#3| |#4|) (-13 (-875 |#2|) (-634 (-1293 |#1|))) (-1206) (-1079) (-99 |#2|) (-1 |#2| |#2|)) (T -878)) -NIL -(-13 (-875 |#2|) (-634 (-1293 |#1|))) -((-3187 ((|#1| (-792) |#1|) 45 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2273 ((|#1| (-792) (-792) |#1|) 36 T ELT) ((|#1| (-792) |#1|) 24 T ELT)) (-1560 ((|#1| (-792) |#1|) 40 T ELT)) (-2063 ((|#1| (-792) |#1|) 38 T ELT)) (-1876 ((|#1| (-792) |#1|) 37 T ELT))) -(((-879 |#1|) (-10 -7 (-15 -1876 (|#1| (-792) |#1|)) (-15 -2063 (|#1| (-792) |#1|)) (-15 -1560 (|#1| (-792) |#1|)) (-15 -2273 (|#1| (-792) |#1|)) (-15 -2273 (|#1| (-792) (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3187 (|#1| (-792) |#1|)) |%noBranch|)) (-174)) (T -879)) -((-3187 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-2273 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-2273 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-1560 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-2063 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) (-1876 (*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -1876 (|#1| (-792) |#1|)) (-15 -2063 (|#1| (-792) |#1|)) (-15 -1560 (|#1| (-792) |#1|)) (-15 -2273 (|#1| (-792) |#1|)) (-15 -2273 (|#1| (-792) (-792) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3187 (|#1| (-792) |#1|)) |%noBranch|)) -((-3211 (((-112) $ $) 7 T ELT)) (-1344 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 19 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2440 (((-112) $ $) 18 T ELT)) (-2415 (((-112) $ $) 16 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 17 T ELT)) (-2403 (((-112) $ $) 15 T ELT)) (** (($ $ (-949)) 23 T ELT)) (* (($ $ $) 22 T ELT))) -(((-880) (-141)) (T -880)) -NIL -(-13 (-870) (-1142)) -(((-102) . T) ((-631 (-885)) . T) ((-870) . T) ((-873) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-4119 (((-577) $) 14 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-577)) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 9 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 11 T ELT))) -(((-881) (-13 (-870) (-10 -8 (-15 -2410 ($ (-577))) (-15 -4119 ((-577) $))))) (T -881)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-881)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-881))))) -(-13 (-870) (-10 -8 (-15 -2410 ($ (-577))) (-15 -4119 ((-577) $)))) -((-4334 (((-712 (-1255)) $ (-1255)) 15 T ELT)) (-1346 (((-712 (-562)) $ (-562)) 12 T ELT)) (-1838 (((-792) $ (-129)) 30 T ELT))) -(((-882 |#1|) (-10 -8 (-15 -1838 ((-792) |#1| (-129))) (-15 -4334 ((-712 (-1255)) |#1| (-1255))) (-15 -1346 ((-712 (-562)) |#1| (-562)))) (-883)) (T -882)) -NIL -(-10 -8 (-15 -1838 ((-792) |#1| (-129))) (-15 -4334 ((-712 (-1255)) |#1| (-1255))) (-15 -1346 ((-712 (-562)) |#1| (-562)))) -((-4334 (((-712 (-1255)) $ (-1255)) 8 T ELT)) (-1346 (((-712 (-562)) $ (-562)) 9 T ELT)) (-1838 (((-792) $ (-129)) 7 T ELT)) (-1671 (((-712 (-130)) $ (-130)) 10 T ELT)) (-2996 (($ $) 6 T ELT))) -(((-883) (-141)) (T -883)) -((-1671 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *2 (-712 (-130))) (-5 *3 (-130)))) (-1346 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *2 (-712 (-562))) (-5 *3 (-562)))) (-4334 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *2 (-712 (-1255))) (-5 *3 (-1255)))) (-1838 (*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *3 (-129)) (-5 *2 (-792))))) -(-13 (-175) (-10 -8 (-15 -1671 ((-712 (-130)) $ (-130))) (-15 -1346 ((-712 (-562)) $ (-562))) (-15 -4334 ((-712 (-1255)) $ (-1255))) (-15 -1838 ((-792) $ (-129))))) -(((-175) . T)) -((-4334 (((-712 (-1255)) $ (-1255)) NIL T ELT)) (-1346 (((-712 (-562)) $ (-562)) NIL T ELT)) (-1838 (((-792) $ (-129)) NIL T ELT)) (-1671 (((-712 (-130)) $ (-130)) 22 T ELT)) (-2648 (($ (-401)) 12 T ELT) (($ (-1188)) 14 T ELT)) (-1978 (((-112) $) 19 T ELT)) (-2410 (((-885) $) 26 T ELT)) (-2996 (($ $) 23 T ELT))) -(((-884) (-13 (-883) (-631 (-885)) (-10 -8 (-15 -2648 ($ (-401))) (-15 -2648 ($ (-1188))) (-15 -1978 ((-112) $))))) (T -884)) -((-2648 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-884)))) (-2648 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-884)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-884))))) -(-13 (-883) (-631 (-885)) (-10 -8 (-15 -2648 ($ (-401))) (-15 -2648 ($ (-1188))) (-15 -1978 ((-112) $)))) -((-3211 (((-112) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-1378 (($ $ $) 125 T ELT)) (-3688 (((-577) $) 31 T ELT) (((-577)) 36 T ELT)) (-2754 (($ (-577)) 53 T ELT)) (-3631 (($ $ $) 54 T ELT) (($ (-665 $)) 84 T ELT)) (-3466 (($ $ (-665 $)) 82 T ELT)) (-4383 (((-577) $) 34 T ELT)) (-2046 (($ $ $) 73 T ELT)) (-1954 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-4477 (((-577) $) 33 T ELT)) (-2079 (($ $ $) 72 T ELT)) (-1965 (($ $) 114 T ELT)) (-3446 (($ $ $) 129 T ELT)) (-3180 (($ (-665 $)) 61 T ELT)) (-3499 (($ $ (-665 $)) 79 T ELT)) (-3249 (($ (-577) (-577)) 55 T ELT)) (-2299 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3867 (($ $ (-577)) 43 T ELT) (($ $) 46 T ELT)) (-3152 (($ $ $) 97 T ELT)) (-4429 (($ $ $) 132 T ELT)) (-3165 (($ $) 115 T ELT)) (-3164 (($ $ $) 98 T ELT)) (-3801 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-1775 (((-1302) $) 10 T ELT)) (-1855 (($ $) 118 T ELT) (($ $ (-792)) 122 T ELT)) (-1788 (($ $ $) 75 T ELT)) (-3523 (($ $ $) 74 T ELT)) (-4081 (($ $ (-665 $)) 110 T ELT)) (-4063 (($ $ $) 113 T ELT)) (-3563 (($ (-665 $)) 59 T ELT)) (-3555 (($ $) 70 T ELT) (($ (-665 $)) 71 T ELT)) (-3704 (($ $ $) 123 T ELT)) (-4448 (($ $) 116 T ELT)) (-4406 (($ $ $) 128 T ELT)) (-3771 (($ (-577)) 21 T ELT) (($ (-1206)) 23 T ELT) (($ (-1188)) 30 T ELT) (($ (-228)) 25 T ELT)) (-2331 (($ $ $) 101 T ELT)) (-2308 (($ $) 102 T ELT)) (-1720 (((-1302) (-1188)) 15 T ELT)) (-2950 (($ (-1188)) 14 T ELT)) (-1868 (($ (-665 (-665 $))) 58 T ELT)) (-3854 (($ $ (-577)) 42 T ELT) (($ $) 45 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2674 (($ $ $) 131 T ELT)) (-3623 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3681 (((-112) $) 108 T ELT)) (-1834 (($ $ (-665 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2080 (($ (-577)) 39 T ELT)) (-1736 (((-577) $) 32 T ELT) (((-577)) 35 T ELT)) (-3239 (($ $ $) 40 T ELT) (($ (-665 $)) 83 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (($ $ $) 99 T ELT)) (-3414 (($) 13 T ELT)) (-2435 (($ $ (-665 $)) 109 T ELT)) (-3442 (((-1188) (-1188)) 8 T ELT)) (-3511 (($ $) 117 T ELT) (($ $ (-792)) 121 T ELT)) (-3188 (($ $ $) 96 T ELT)) (-2030 (($ $ (-792)) 139 T ELT)) (-1385 (($ (-665 $)) 60 T ELT)) (-2410 (((-885) $) 19 T ELT)) (-4368 (($ $ (-577)) 41 T ELT) (($ $) 44 T ELT)) (-2261 (($ $) 68 T ELT) (($ (-665 $)) 69 T ELT)) (-2868 (($ $) 66 T ELT) (($ (-665 $)) 67 T ELT)) (-2208 (($ $) 124 T ELT)) (-2703 (($ (-665 $)) 65 T ELT)) (-3267 (($ $ $) 105 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3170 (($ $ $) 130 T ELT)) (-2319 (($ $ $) 100 T ELT)) (-3933 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2440 (($ $ $) 89 T ELT)) (-2415 (($ $ $) 87 T ELT)) (-2383 (((-112) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2428 (($ $ $) 88 T ELT)) (-2403 (($ $ $) 86 T ELT)) (-2494 (($ $ $) 94 T ELT)) (-2483 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-2471 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-885) (-13 (-1130) (-10 -8 (-15 -1775 ((-1302) $)) (-15 -2950 ($ (-1188))) (-15 -1720 ((-1302) (-1188))) (-15 -3771 ($ (-577))) (-15 -3771 ($ (-1206))) (-15 -3771 ($ (-1188))) (-15 -3771 ($ (-228))) (-15 -3414 ($)) (-15 -3442 ((-1188) (-1188))) (-15 -3688 ((-577) $)) (-15 -1736 ((-577) $)) (-15 -3688 ((-577))) (-15 -1736 ((-577))) (-15 -4477 ((-577) $)) (-15 -4383 ((-577) $)) (-15 -2080 ($ (-577))) (-15 -2754 ($ (-577))) (-15 -3249 ($ (-577) (-577))) (-15 -3854 ($ $ (-577))) (-15 -3867 ($ $ (-577))) (-15 -4368 ($ $ (-577))) (-15 -3854 ($ $)) (-15 -3867 ($ $)) (-15 -4368 ($ $)) (-15 -3239 ($ $ $)) (-15 -3631 ($ $ $)) (-15 -3239 ($ (-665 $))) (-15 -3631 ($ (-665 $))) (-15 -4081 ($ $ (-665 $))) (-15 -1834 ($ $ (-665 $))) (-15 -1834 ($ $ $ $)) (-15 -4063 ($ $ $)) (-15 -3681 ((-112) $)) (-15 -2435 ($ $ (-665 $))) (-15 -1965 ($ $)) (-15 -2674 ($ $ $)) (-15 -2208 ($ $)) (-15 -1868 ($ (-665 (-665 $)))) (-15 -1378 ($ $ $)) (-15 -2299 ($ $)) (-15 -2299 ($ $ $)) (-15 -4406 ($ $ $)) (-15 -3446 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -4429 ($ $ $)) (-15 -2030 ($ $ (-792))) (-15 -3267 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -2046 ($ $ $)) (-15 -3523 ($ $ $)) (-15 -1788 ($ $ $)) (-15 -3499 ($ $ (-665 $))) (-15 -3466 ($ $ (-665 $))) (-15 -3165 ($ $)) (-15 -3511 ($ $)) (-15 -3511 ($ $ (-792))) (-15 -1855 ($ $)) (-15 -1855 ($ $ (-792))) (-15 -4448 ($ $)) (-15 -3704 ($ $ $)) (-15 -1954 ($ $)) (-15 -1954 ($ $ $)) (-15 -1954 ($ $ $ $)) (-15 -3801 ($ $)) (-15 -3801 ($ $ $)) (-15 -3801 ($ $ $ $)) (-15 -3623 ($ $)) (-15 -3623 ($ $ $)) (-15 -3623 ($ $ $ $)) (-15 -2868 ($ $)) (-15 -2868 ($ (-665 $))) (-15 -2261 ($ $)) (-15 -2261 ($ (-665 $))) (-15 -3555 ($ $)) (-15 -3555 ($ (-665 $))) (-15 -3563 ($ (-665 $))) (-15 -1385 ($ (-665 $))) (-15 -3180 ($ (-665 $))) (-15 -2703 ($ (-665 $))) (-15 -2383 ($ $ $)) (-15 -3211 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2428 ($ $ $)) (-15 -2440 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -2483 ($ $)) (-15 * ($ $ $)) (-15 -2494 ($ $ $)) (-15 ** ($ $ $)) (-15 -3188 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3200 ($ $ $)) (-15 -2319 ($ $ $)) (-15 -2331 ($ $ $)) (-15 -2308 ($ $)) (-15 -3933 ($ $ $)) (-15 -3933 ($ $))))) (T -885)) -((-1775 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-885)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-885)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-885)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) (-3771 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-885)))) (-3414 (*1 *1) (-5 *1 (-885))) (-3442 (*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3688 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-1736 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-4477 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-2080 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3249 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3867 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) (-3854 (*1 *1 *1) (-5 *1 (-885))) (-3867 (*1 *1 *1) (-5 *1 (-885))) (-4368 (*1 *1 *1) (-5 *1 (-885))) (-3239 (*1 *1 *1 *1) (-5 *1 (-885))) (-3631 (*1 *1 *1 *1) (-5 *1 (-885))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3631 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1834 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1834 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-4063 (*1 *1 *1 *1) (-5 *1 (-885))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1965 (*1 *1 *1) (-5 *1 (-885))) (-2674 (*1 *1 *1 *1) (-5 *1 (-885))) (-2208 (*1 *1 *1) (-5 *1 (-885))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-885)))) (-1378 (*1 *1 *1 *1) (-5 *1 (-885))) (-2299 (*1 *1 *1) (-5 *1 (-885))) (-2299 (*1 *1 *1 *1) (-5 *1 (-885))) (-4406 (*1 *1 *1 *1) (-5 *1 (-885))) (-3446 (*1 *1 *1 *1) (-5 *1 (-885))) (-3170 (*1 *1 *1 *1) (-5 *1 (-885))) (-4429 (*1 *1 *1 *1) (-5 *1 (-885))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) (-3267 (*1 *1 *1 *1) (-5 *1 (-885))) (-2079 (*1 *1 *1 *1) (-5 *1 (-885))) (-2046 (*1 *1 *1 *1) (-5 *1 (-885))) (-3523 (*1 *1 *1 *1) (-5 *1 (-885))) (-1788 (*1 *1 *1 *1) (-5 *1 (-885))) (-3499 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3466 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3165 (*1 *1 *1) (-5 *1 (-885))) (-3511 (*1 *1 *1) (-5 *1 (-885))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) (-1855 (*1 *1 *1) (-5 *1 (-885))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) (-4448 (*1 *1 *1) (-5 *1 (-885))) (-3704 (*1 *1 *1 *1) (-5 *1 (-885))) (-1954 (*1 *1 *1) (-5 *1 (-885))) (-1954 (*1 *1 *1 *1) (-5 *1 (-885))) (-1954 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-3801 (*1 *1 *1) (-5 *1 (-885))) (-3801 (*1 *1 *1 *1) (-5 *1 (-885))) (-3801 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-3623 (*1 *1 *1) (-5 *1 (-885))) (-3623 (*1 *1 *1 *1) (-5 *1 (-885))) (-3623 (*1 *1 *1 *1 *1) (-5 *1 (-885))) (-2868 (*1 *1 *1) (-5 *1 (-885))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-2261 (*1 *1 *1) (-5 *1 (-885))) (-2261 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3555 (*1 *1 *1) (-5 *1 (-885))) (-3555 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-3180 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) (-2383 (*1 *1 *1 *1) (-5 *1 (-885))) (-3211 (*1 *1 *1 *1) (-5 *1 (-885))) (-2403 (*1 *1 *1 *1) (-5 *1 (-885))) (-2415 (*1 *1 *1 *1) (-5 *1 (-885))) (-2428 (*1 *1 *1 *1) (-5 *1 (-885))) (-2440 (*1 *1 *1 *1) (-5 *1 (-885))) (-2471 (*1 *1 *1 *1) (-5 *1 (-885))) (-2483 (*1 *1 *1 *1) (-5 *1 (-885))) (-2483 (*1 *1 *1) (-5 *1 (-885))) (* (*1 *1 *1 *1) (-5 *1 (-885))) (-2494 (*1 *1 *1 *1) (-5 *1 (-885))) (** (*1 *1 *1 *1) (-5 *1 (-885))) (-3188 (*1 *1 *1 *1) (-5 *1 (-885))) (-3152 (*1 *1 *1 *1) (-5 *1 (-885))) (-3164 (*1 *1 *1 *1) (-5 *1 (-885))) (-3200 (*1 *1 *1 *1) (-5 *1 (-885))) (-2319 (*1 *1 *1 *1) (-5 *1 (-885))) (-2331 (*1 *1 *1 *1) (-5 *1 (-885))) (-2308 (*1 *1 *1) (-5 *1 (-885))) (-3933 (*1 *1 *1 *1) (-5 *1 (-885))) (-3933 (*1 *1 *1) (-5 *1 (-885)))) -(-13 (-1130) (-10 -8 (-15 -1775 ((-1302) $)) (-15 -2950 ($ (-1188))) (-15 -1720 ((-1302) (-1188))) (-15 -3771 ($ (-577))) (-15 -3771 ($ (-1206))) (-15 -3771 ($ (-1188))) (-15 -3771 ($ (-228))) (-15 -3414 ($)) (-15 -3442 ((-1188) (-1188))) (-15 -3688 ((-577) $)) (-15 -1736 ((-577) $)) (-15 -3688 ((-577))) (-15 -1736 ((-577))) (-15 -4477 ((-577) $)) (-15 -4383 ((-577) $)) (-15 -2080 ($ (-577))) (-15 -2754 ($ (-577))) (-15 -3249 ($ (-577) (-577))) (-15 -3854 ($ $ (-577))) (-15 -3867 ($ $ (-577))) (-15 -4368 ($ $ (-577))) (-15 -3854 ($ $)) (-15 -3867 ($ $)) (-15 -4368 ($ $)) (-15 -3239 ($ $ $)) (-15 -3631 ($ $ $)) (-15 -3239 ($ (-665 $))) (-15 -3631 ($ (-665 $))) (-15 -4081 ($ $ (-665 $))) (-15 -1834 ($ $ (-665 $))) (-15 -1834 ($ $ $ $)) (-15 -4063 ($ $ $)) (-15 -3681 ((-112) $)) (-15 -2435 ($ $ (-665 $))) (-15 -1965 ($ $)) (-15 -2674 ($ $ $)) (-15 -2208 ($ $)) (-15 -1868 ($ (-665 (-665 $)))) (-15 -1378 ($ $ $)) (-15 -2299 ($ $)) (-15 -2299 ($ $ $)) (-15 -4406 ($ $ $)) (-15 -3446 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -4429 ($ $ $)) (-15 -2030 ($ $ (-792))) (-15 -3267 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -2046 ($ $ $)) (-15 -3523 ($ $ $)) (-15 -1788 ($ $ $)) (-15 -3499 ($ $ (-665 $))) (-15 -3466 ($ $ (-665 $))) (-15 -3165 ($ $)) (-15 -3511 ($ $)) (-15 -3511 ($ $ (-792))) (-15 -1855 ($ $)) (-15 -1855 ($ $ (-792))) (-15 -4448 ($ $)) (-15 -3704 ($ $ $)) (-15 -1954 ($ $)) (-15 -1954 ($ $ $)) (-15 -1954 ($ $ $ $)) (-15 -3801 ($ $)) (-15 -3801 ($ $ $)) (-15 -3801 ($ $ $ $)) (-15 -3623 ($ $)) (-15 -3623 ($ $ $)) (-15 -3623 ($ $ $ $)) (-15 -2868 ($ $)) (-15 -2868 ($ (-665 $))) (-15 -2261 ($ $)) (-15 -2261 ($ (-665 $))) (-15 -3555 ($ $)) (-15 -3555 ($ (-665 $))) (-15 -3563 ($ (-665 $))) (-15 -1385 ($ (-665 $))) (-15 -3180 ($ (-665 $))) (-15 -2703 ($ (-665 $))) (-15 -2383 ($ $ $)) (-15 -3211 ($ $ $)) (-15 -2403 ($ $ $)) (-15 -2415 ($ $ $)) (-15 -2428 ($ $ $)) (-15 -2440 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -2483 ($ $)) (-15 * ($ $ $)) (-15 -2494 ($ $ $)) (-15 ** ($ $ $)) (-15 -3188 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3200 ($ $ $)) (-15 -2319 ($ $ $)) (-15 -2331 ($ $ $)) (-15 -2308 ($ $)) (-15 -3933 ($ $ $)) (-15 -3933 ($ $)))) -((-4133 (((-1302) (-665 (-52))) 23 T ELT)) (-2142 (((-1302) (-1188) (-885)) 13 T ELT) (((-1302) (-885)) 8 T ELT) (((-1302) (-1188)) 10 T ELT))) -(((-886) (-10 -7 (-15 -2142 ((-1302) (-1188))) (-15 -2142 ((-1302) (-885))) (-15 -2142 ((-1302) (-1188) (-885))) (-15 -4133 ((-1302) (-665 (-52)))))) (T -886)) -((-4133 (*1 *2 *3) (-12 (-5 *3 (-665 (-52))) (-5 *2 (-1302)) (-5 *1 (-886)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-886))))) -(-10 -7 (-15 -2142 ((-1302) (-1188))) (-15 -2142 ((-1302) (-885))) (-15 -2142 ((-1302) (-1188) (-885))) (-15 -4133 ((-1302) (-665 (-52))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3966 (((-3 $ "failed") (-1206)) 36 T ELT)) (-2221 (((-792)) 32 T ELT)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) 29 T ELT)) (-3384 (((-1188) $) 43 T ELT)) (-2085 (($ (-949)) 28 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3341 (((-1206) $) 13 T ELT) (((-549) $) 19 T ELT) (((-916 (-391)) $) 26 T ELT) (((-916 (-577)) $) 22 T ELT)) (-2410 (((-885) $) 16 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 40 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 38 T ELT))) -(((-887 |#1|) (-13 (-865) (-632 (-1206)) (-632 (-549)) (-632 (-916 (-391))) (-632 (-916 (-577))) (-10 -8 (-15 -3966 ((-3 $ "failed") (-1206))))) (-665 (-1206))) (T -887)) -((-3966 (*1 *1 *2) (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-887 *3)) (-14 *3 (-665 *2))))) -(-13 (-865) (-632 (-1206)) (-632 (-549)) (-632 (-916 (-391))) (-632 (-916 (-577))) (-10 -8 (-15 -3966 ((-3 $ "failed") (-1206))))) -((-3211 (((-112) $ $) NIL T ELT)) (-4105 (((-519) $) 9 T ELT)) (-4138 (((-665 (-452)) $) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 21 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 16 T ELT))) -(((-888) (-13 (-1130) (-10 -8 (-15 -4105 ((-519) $)) (-15 -4138 ((-665 (-452)) $))))) (T -888)) -((-4105 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-888)))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-665 (-452))) (-5 *1 (-888))))) -(-13 (-1130) (-10 -8 (-15 -4105 ((-519) $)) (-15 -4138 ((-665 (-452)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-980 |#1|)) NIL T ELT) (((-980 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT)) (-3234 (((-792)) NIL T CONST)) (-3323 (((-1302) (-792)) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-889 |#1| |#2| |#3| |#4|) (-13 (-1079) (-503 (-980 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2494 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3323 ((-1302) (-792))))) (-1079) (-665 (-1206)) (-665 (-792)) (-792)) (T -889)) -((-2494 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-889 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-792))) (-14 *5 (-792)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-889 *4 *5 *6 *7)) (-4 *4 (-1079)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 *3)) (-14 *7 *3)))) -(-13 (-1079) (-503 (-980 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2494 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3323 ((-1302) (-792))))) -((-1449 (((-3 (-176 |#3|) "failed") (-792) (-792) |#2| |#2|) 38 T ELT)) (-4324 (((-3 (-420 |#3|) "failed") (-792) (-792) |#2| |#2|) 29 T ELT))) -(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-3 (-420 |#3|) "failed") (-792) (-792) |#2| |#2|)) (-15 -1449 ((-3 (-176 |#3|) "failed") (-792) (-792) |#2| |#2|))) (-375) (-1288 |#1|) (-1273 |#1|)) (T -890)) -((-1449 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-176 *6)) (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5)))) (-4324 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-420 *6)) (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5))))) -(-10 -7 (-15 -4324 ((-3 (-420 |#3|) "failed") (-792) (-792) |#2| |#2|)) (-15 -1449 ((-3 (-176 |#3|) "failed") (-792) (-792) |#2| |#2|))) -((-4324 (((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) 28 T ELT))) -(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -4324 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (-15 -4324 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|)))) (-375) (-1206) |#1|) (T -891)) -((-4324 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) (-5 *1 (-891 *5 *6 *7)))) (-4324 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) (-5 *1 (-891 *5 *6 *7))))) -(-10 -7 (-15 -4324 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (-15 -4324 ((-3 (-420 (-1270 |#2| |#1|)) "failed") (-792) (-792) (-1289 |#1| |#2| |#3|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2809 (($ $ (-577)) 68 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2762 (($) 18 T CONST)) (-2299 (($ (-1202 (-577)) (-577)) 67 T ELT)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1653 (($ $) 70 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-3890 (((-792) $) 75 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2305 (((-577)) 72 T ELT)) (-2224 (((-577) $) 71 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-4013 (($ $ (-577)) 74 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-4279 (((-1187 (-577)) $) 76 T ELT)) (-1470 (($ $) 73 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-3908 (((-577) $ (-577)) 69 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-892 |#1|) (-141) (-577)) (T -892)) -((-4279 (*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-1187 (-577))))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-792)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-1470 (*1 *1 *1) (-4 *1 (-892 *2))) (-2305 (*1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-1653 (*1 *1 *1) (-4 *1 (-892 *2))) (-3908 (*1 *2 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-2809 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) (-2299 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *3 (-577)) (-4 *1 (-892 *4))))) -(-13 (-318) (-148) (-10 -8 (-15 -4279 ((-1187 (-577)) $)) (-15 -3890 ((-792) $)) (-15 -4013 ($ $ (-577))) (-15 -1470 ($ $)) (-15 -2305 ((-577))) (-15 -2224 ((-577) $)) (-15 -1653 ($ $)) (-15 -3908 ((-577) $ (-577))) (-15 -2809 ($ $ (-577))) (-15 -2299 ($ (-1202 (-577)) (-577))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $ (-577)) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2299 (($ (-1202 (-577)) (-577)) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1653 (($ $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3890 (((-792) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2305 (((-577)) NIL T ELT)) (-2224 (((-577) $) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-4013 (($ $ (-577)) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-4279 (((-1187 (-577)) $) NIL T ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3908 (((-577) $ (-577)) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-893 |#1|) (-892 |#1|) (-577)) (T -893)) -NIL -(-892 |#1|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-893 |#1|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-893 |#1|) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT)) (-3514 (((-893 |#1|) $) NIL T ELT) (((-1206) $) NIL (|has| (-893 |#1|) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-893 |#1|) (-1068 (-577))) ELT)) (-3931 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-893 |#1|)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-893 |#1|) (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-893 |#1|) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-893 |#1|) (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 (((-893 |#1|) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-893 |#1|) (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-3609 (($ (-1 (-893 |#1|) (-893 |#1|)) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-893 |#1|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-1297 $) $) NIL T ELT) (((-710 (-893 |#1|)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-893 |#1|) (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-893 |#1|) (-318)) ELT)) (-2136 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-893 |#1|) (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 (-893 |#1|)) (-665 (-893 |#1|))) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-893 |#1|) (-893 |#1|)) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-305 (-893 |#1|))) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-665 (-305 (-893 |#1|)))) NIL (|has| (-893 |#1|) (-320 (-893 |#1|))) ELT) (($ $ (-665 (-1206)) (-665 (-893 |#1|))) NIL (|has| (-893 |#1|) (-527 (-1206) (-893 |#1|))) ELT) (($ $ (-1206) (-893 |#1|)) NIL (|has| (-893 |#1|) (-527 (-1206) (-893 |#1|))) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ (-893 |#1|)) NIL (|has| (-893 |#1|) (-297 (-893 |#1|) (-893 |#1|))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-893 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-893 |#1|) (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 (((-893 |#1|) $) NIL T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| (-893 |#1|) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-893 |#1|) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-893 |#1|) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-893 |#1|) (-1052)) ELT) (((-228) $) NIL (|has| (-893 |#1|) (-1052)) ELT)) (-2758 (((-176 (-420 (-577))) $) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-893 |#1|) (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-893 |#1|)) NIL T ELT) (($ (-1206)) NIL (|has| (-893 |#1|) (-1068 (-1206))) ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-893 |#1|) (-937))) (|has| (-893 |#1|) (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3908 (((-420 (-577)) $ (-577)) NIL T ELT)) (-3385 (($ $) NIL (|has| (-893 |#1|) (-841)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-893 |#1|) (-928 (-1206))) ELT) (($ $) NIL (|has| (-893 |#1|) (-238)) ELT) (($ $ (-792)) NIL (|has| (-893 |#1|) (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-893 |#1|) (-870)) ELT)) (-2494 (($ $ $) NIL T ELT) (($ (-893 |#1|) (-893 |#1|)) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-893 |#1|) $) NIL T ELT) (($ $ (-893 |#1|)) NIL T ELT))) -(((-894 |#1|) (-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -3908 ((-420 (-577)) $ (-577))) (-15 -2758 ((-176 (-420 (-577))) $)) (-15 -3931 ($ $)) (-15 -3931 ($ (-577) $)))) (-577)) (T -894)) -((-3908 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-894 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-894 *3)) (-14 *3 (-577)))) (-3931 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-14 *2 (-577)))) (-3931 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-894 *3)) (-14 *3 *2)))) -(-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -3908 ((-420 (-577)) $ (-577))) (-15 -2758 ((-176 (-420 (-577))) $)) (-15 -3931 ($ $)) (-15 -3931 ($ (-577) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 ((|#2| $) NIL (|has| |#2| (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| |#2| (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (|has| |#2| (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT)) (-3514 ((|#2| $) NIL T ELT) (((-1206) $) NIL (|has| |#2| (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT)) (-3931 (($ $) 35 T ELT) (($ (-577) $) 38 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) 64 T ELT)) (-2060 (($) NIL (|has| |#2| (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) NIL (|has| |#2| (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| |#2| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| |#2| (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 ((|#2| $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| |#2| (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#2| (-870)) ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 60 T ELT)) (-2199 (($) NIL (|has| |#2| (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| |#2| (-318)) ELT)) (-2136 ((|#2| $) NIL (|has| |#2| (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 |#2|) (-665 |#2|)) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-665 (-305 |#2|))) NIL (|has| |#2| (-320 |#2|)) ELT) (($ $ (-665 (-1206)) (-665 |#2|)) NIL (|has| |#2| (-527 (-1206) |#2|)) ELT) (($ $ (-1206) |#2|) NIL (|has| |#2| (-527 (-1206) |#2|)) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ |#2|) NIL (|has| |#2| (-297 |#2| |#2|)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 ((|#2| $) NIL T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| |#2| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| |#2| (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| |#2| (-632 (-549))) ELT) (((-391) $) NIL (|has| |#2| (-1052)) ELT) (((-228) $) NIL (|has| |#2| (-1052)) ELT)) (-2758 (((-176 (-420 (-577))) $) 78 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-2410 (((-885) $) 106 T ELT) (($ (-577)) 20 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1206)) NIL (|has| |#2| (-1068 (-1206))) ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-1465 ((|#2| $) NIL (|has| |#2| (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3908 (((-420 (-577)) $ (-577)) 71 T ELT)) (-3385 (($ $) NIL (|has| |#2| (-841)) ELT)) (-2367 (($) 15 T CONST)) (-2378 (($) 17 T CONST)) (-1675 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2383 (((-112) $ $) 46 T ELT)) (-2428 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#2| (-870)) ELT)) (-2494 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-2483 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-2471 (($ $ $) 48 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) 61 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-895 |#1| |#2|) (-13 (-1022 |#2|) (-10 -8 (-15 -3908 ((-420 (-577)) $ (-577))) (-15 -2758 ((-176 (-420 (-577))) $)) (-15 -3931 ($ $)) (-15 -3931 ($ (-577) $)))) (-577) (-892 |#1|)) (T -895)) -((-3908 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-895 *4 *5)) (-5 *3 (-577)) (-4 *5 (-892 *4)))) (-2758 (*1 *2 *1) (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-895 *3 *4)) (-4 *4 (-892 *3)))) (-3931 (*1 *1 *1) (-12 (-14 *2 (-577)) (-5 *1 (-895 *2 *3)) (-4 *3 (-892 *2)))) (-3931 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-895 *3 *4)) (-4 *4 (-892 *3))))) -(-13 (-1022 |#2|) (-10 -8 (-15 -3908 ((-420 (-577)) $ (-577))) (-15 -2758 ((-176 (-420 (-577))) $)) (-15 -3931 ($ $)) (-15 -3931 ($ (-577) $)))) -((-3211 (((-112) $ $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-3919 ((|#2| $) 12 T ELT)) (-2113 (($ |#1| |#2|) 9 T ELT)) (-3384 (((-1188) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-4312 (((-1150) $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#1| $) 11 T ELT)) (-2422 (($ |#1| |#2|) 10 T ELT)) (-2410 (((-885) $) 18 (-2229 (-12 (|has| |#1| (-631 (-885))) (|has| |#2| (-631 (-885)))) (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130)))) ELT)) (-2525 (((-112) $ $) NIL (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT)) (-2383 (((-112) $ $) 23 (-12 (|has| |#1| (-1130)) (|has| |#2| (-1130))) ELT))) -(((-896 |#1| |#2|) (-13 (-1247) (-10 -8 (IF (|has| |#1| (-631 (-885))) (IF (|has| |#2| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1130)) (IF (|has| |#2| (-1130)) (-6 (-1130)) |%noBranch|) |%noBranch|) (-15 -2113 ($ |#1| |#2|)) (-15 -2422 ($ |#1| |#2|)) (-15 -4188 (|#1| $)) (-15 -3919 (|#2| $)))) (-1247) (-1247)) (T -896)) -((-2113 (*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-4188 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1247)))) (-3919 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1247))))) -(-13 (-1247) (-10 -8 (IF (|has| |#1| (-631 (-885))) (IF (|has| |#2| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1130)) (IF (|has| |#2| (-1130)) (-6 (-1130)) |%noBranch|) |%noBranch|) (-15 -2113 ($ |#1| |#2|)) (-15 -2422 ($ |#1| |#2|)) (-15 -4188 (|#1| $)) (-15 -3919 (|#2| $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3304 (((-577) $) 16 T ELT)) (-3270 (($ (-158)) 13 T ELT)) (-2009 (($ (-158)) 14 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2638 (((-158) $) 15 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3754 (($ (-158)) 11 T ELT)) (-2960 (($ (-158)) 10 T ELT)) (-2410 (((-885) $) 24 T ELT) (($ (-158)) 17 T ELT)) (-3337 (($ (-158)) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-897) (-13 (-1130) (-10 -8 (-15 -2960 ($ (-158))) (-15 -3754 ($ (-158))) (-15 -3337 ($ (-158))) (-15 -3270 ($ (-158))) (-15 -2009 ($ (-158))) (-15 -2638 ((-158) $)) (-15 -3304 ((-577) $)) (-15 -2410 ($ (-158)))))) (T -897)) -((-2960 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-3337 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-3270 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-897)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) -(-13 (-1130) (-10 -8 (-15 -2960 ($ (-158))) (-15 -3754 ($ (-158))) (-15 -3337 ($ (-158))) (-15 -3270 ($ (-158))) (-15 -2009 ($ (-158))) (-15 -2638 ((-158) $)) (-15 -3304 ((-577) $)) (-15 -2410 ($ (-158))))) -((-2410 (((-327 (-577)) (-420 (-980 (-48)))) 23 T ELT) (((-327 (-577)) (-980 (-48))) 18 T ELT))) -(((-898) (-10 -7 (-15 -2410 ((-327 (-577)) (-980 (-48)))) (-15 -2410 ((-327 (-577)) (-420 (-980 (-48))))))) (T -898)) -((-2410 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 (-48)))) (-5 *2 (-327 (-577))) (-5 *1 (-898)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-980 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-898))))) -(-10 -7 (-15 -2410 ((-327 (-577)) (-980 (-48)))) (-15 -2410 ((-327 (-577)) (-420 (-980 (-48)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 18 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2354 (((-112) $ (|[\|\|]| (-519))) 9 T ELT) (((-112) $ (|[\|\|]| (-1188))) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4031 (((-519) $) 10 T ELT) (((-1188) $) 14 T ELT)) (-2383 (((-112) $ $) 15 T ELT))) -(((-899) (-13 (-1113) (-1292) (-10 -8 (-15 -2354 ((-112) $ (|[\|\|]| (-519)))) (-15 -4031 ((-519) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1188)))) (-15 -4031 ((-1188) $))))) (T -899)) -((-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-899)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-899)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-899)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-899))))) -(-13 (-1113) (-1292) (-10 -8 (-15 -2354 ((-112) $ (|[\|\|]| (-519)))) (-15 -4031 ((-519) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1188)))) (-15 -4031 ((-1188) $)))) -((-3609 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 15 T ELT))) -(((-900 |#1| |#2|) (-10 -7 (-15 -3609 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1247) (-1247)) (T -900)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))) -(-10 -7 (-15 -3609 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) -((-4342 (($ |#1| |#1|) 8 T ELT)) (-4141 ((|#1| $ (-792)) 15 T ELT))) -(((-901 |#1|) (-10 -8 (-15 -4342 ($ |#1| |#1|)) (-15 -4141 (|#1| $ (-792)))) (-1247)) (T -901)) -((-4141 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-901 *2)) (-4 *2 (-1247)))) (-4342 (*1 *1 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1247))))) -(-10 -8 (-15 -4342 ($ |#1| |#1|)) (-15 -4141 (|#1| $ (-792)))) -((-3609 (((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)) 15 T ELT))) -(((-902 |#1| |#2|) (-10 -7 (-15 -3609 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) (-1247) (-1247)) (T -902)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6))))) -(-10 -7 (-15 -3609 ((-903 |#2|) (-1 |#2| |#1|) (-903 |#1|)))) -((-4342 (($ |#1| |#1| |#1|) 8 T ELT)) (-4141 ((|#1| $ (-792)) 15 T ELT))) -(((-903 |#1|) (-10 -8 (-15 -4342 ($ |#1| |#1| |#1|)) (-15 -4141 (|#1| $ (-792)))) (-1247)) (T -903)) -((-4141 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-903 *2)) (-4 *2 (-1247)))) (-4342 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1247))))) -(-10 -8 (-15 -4342 ($ |#1| |#1| |#1|)) (-15 -4141 (|#1| $ (-792)))) -((-2475 (((-665 (-1211)) (-1188)) 9 T ELT))) -(((-904) (-10 -7 (-15 -2475 ((-665 (-1211)) (-1188))))) (T -904)) -((-2475 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-904))))) -(-10 -7 (-15 -2475 ((-665 (-1211)) (-1188)))) -((-3609 (((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)) 15 T ELT))) -(((-905 |#1| |#2|) (-10 -7 (-15 -3609 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) (-1247) (-1247)) (T -905)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6))))) -(-10 -7 (-15 -3609 ((-906 |#2|) (-1 |#2| |#1|) (-906 |#1|)))) -((-3087 (($ |#1| |#1| |#1|) 8 T ELT)) (-4141 ((|#1| $ (-792)) 15 T ELT))) -(((-906 |#1|) (-10 -8 (-15 -3087 ($ |#1| |#1| |#1|)) (-15 -4141 (|#1| $ (-792)))) (-1247)) (T -906)) -((-4141 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-906 *2)) (-4 *2 (-1247)))) (-3087 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1247))))) -(-10 -8 (-15 -3087 ($ |#1| |#1| |#1|)) (-15 -4141 (|#1| $ (-792)))) -((-2930 (((-1187 (-665 (-577))) (-665 (-577)) (-1187 (-665 (-577)))) 41 T ELT)) (-3279 (((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577))) 31 T ELT)) (-3793 (((-1187 (-665 (-577))) (-665 (-577))) 53 T ELT) (((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577))) 50 T ELT)) (-1569 (((-1187 (-665 (-577))) (-577)) 55 T ELT)) (-3373 (((-1187 (-665 (-949))) (-1187 (-665 (-949)))) 22 T ELT)) (-2744 (((-665 (-949)) (-665 (-949))) 18 T ELT))) -(((-907) (-10 -7 (-15 -2744 ((-665 (-949)) (-665 (-949)))) (-15 -3373 ((-1187 (-665 (-949))) (-1187 (-665 (-949))))) (-15 -3279 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -2930 ((-1187 (-665 (-577))) (-665 (-577)) (-1187 (-665 (-577))))) (-15 -3793 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -3793 ((-1187 (-665 (-577))) (-665 (-577)))) (-15 -1569 ((-1187 (-665 (-577))) (-577))))) (T -907)) -((-1569 (*1 *2 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-577)))) (-3793 (*1 *2 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-665 (-577))))) (-3793 (*1 *2 *3 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-665 (-577))))) (-2930 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *3 (-665 (-577))) (-5 *1 (-907)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-665 (-577))))) (-3373 (*1 *2 *2) (-12 (-5 *2 (-1187 (-665 (-949)))) (-5 *1 (-907)))) (-2744 (*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-907))))) -(-10 -7 (-15 -2744 ((-665 (-949)) (-665 (-949)))) (-15 -3373 ((-1187 (-665 (-949))) (-1187 (-665 (-949))))) (-15 -3279 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -2930 ((-1187 (-665 (-577))) (-665 (-577)) (-1187 (-665 (-577))))) (-15 -3793 ((-1187 (-665 (-577))) (-665 (-577)) (-665 (-577)))) (-15 -3793 ((-1187 (-665 (-577))) (-665 (-577)))) (-15 -1569 ((-1187 (-665 (-577))) (-577)))) -((-3341 (((-916 (-391)) $) 9 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-916 (-577)) $) 8 (|has| |#1| (-632 (-916 (-577)))) ELT))) -(((-908 |#1|) (-141) (-1247)) (T -908)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-632 (-916 (-577)))) (-6 (-632 (-916 (-577)))) |%noBranch|) (IF (|has| |t#1| (-632 (-916 (-391)))) (-6 (-632 (-916 (-391)))) |%noBranch|))) -(((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3748 (($) 14 T ELT)) (-3206 (($ (-913 |#1| |#2|) (-913 |#1| |#3|)) 28 T ELT)) (-1950 (((-913 |#1| |#3|) $) 16 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1412 (((-112) $) 22 T ELT)) (-3848 (($) 19 T ELT)) (-2410 (((-885) $) 31 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3435 (((-913 |#1| |#2|) $) 15 T ELT)) (-2383 (((-112) $ $) 26 T ELT))) -(((-909 |#1| |#2| |#3|) (-13 (-1130) (-10 -8 (-15 -1412 ((-112) $)) (-15 -3848 ($)) (-15 -3748 ($)) (-15 -3206 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -3435 ((-913 |#1| |#2|) $)) (-15 -1950 ((-913 |#1| |#3|) $)))) (-1130) (-1130) (-687 |#2|)) (T -909)) -((-1412 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1130)) (-4 *5 (-687 *4)))) (-3848 (*1 *1) (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) (-4 *4 (-687 *3)))) (-3748 (*1 *1) (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) (-4 *4 (-687 *3)))) (-3206 (*1 *1 *2 *3) (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-687 *5)) (-5 *1 (-909 *4 *5 *6)))) (-3435 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *4)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1130)) (-4 *5 (-687 *4)))) (-1950 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *5)) (-5 *1 (-909 *3 *4 *5)) (-4 *3 (-1130)) (-4 *5 (-687 *4))))) -(-13 (-1130) (-10 -8 (-15 -1412 ((-112) $)) (-15 -3848 ($)) (-15 -3748 ($)) (-15 -3206 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -3435 ((-913 |#1| |#2|) $)) (-15 -1950 ((-913 |#1| |#3|) $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-2244 (((-913 |#1| $) $ (-916 |#1|) (-913 |#1| $)) 14 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-910 |#1|) (-141) (-1130)) (T -910)) -((-2244 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-916 *4)) (-4 *1 (-910 *4)) (-4 *4 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -2244 ((-913 |t#1| $) $ (-916 |t#1|) (-913 |t#1| $))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-4450 (((-112) (-665 |#2|) |#3|) 23 T ELT) (((-112) |#2| |#3|) 18 T ELT)) (-3597 (((-913 |#1| |#2|) |#2| |#3|) 45 (-12 (-2308 (|has| |#2| (-1068 (-1206)))) (-2308 (|has| |#2| (-1079)))) ELT) (((-665 (-305 (-980 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1079)) (-2308 (|has| |#2| (-1068 (-1206))))) ELT) (((-665 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1068 (-1206))) ELT) (((-909 |#1| |#2| (-665 |#2|)) (-665 |#2|) |#3|) 21 T ELT))) -(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -4450 ((-112) |#2| |#3|)) (-15 -4450 ((-112) (-665 |#2|) |#3|)) (-15 -3597 ((-909 |#1| |#2| (-665 |#2|)) (-665 |#2|) |#3|)) (IF (|has| |#2| (-1068 (-1206))) (-15 -3597 ((-665 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1079)) (-15 -3597 ((-665 (-305 (-980 |#2|))) |#2| |#3|)) (-15 -3597 ((-913 |#1| |#2|) |#2| |#3|))))) (-1130) (-910 |#1|) (-632 (-916 |#1|))) (T -911)) -((-3597 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-913 *5 *3)) (-5 *1 (-911 *5 *3 *4)) (-2308 (-4 *3 (-1068 (-1206)))) (-2308 (-4 *3 (-1079))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) (-3597 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 (-980 *3)))) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1079)) (-2308 (-4 *3 (-1068 (-1206)))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) (-3597 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 *3))) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1068 (-1206))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) (-3597 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *6 (-910 *5)) (-5 *2 (-909 *5 *6 (-665 *6))) (-5 *1 (-911 *5 *6 *4)) (-5 *3 (-665 *6)) (-4 *4 (-632 (-916 *5))))) (-4450 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-4 *6 (-910 *5)) (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-911 *5 *6 *4)) (-4 *4 (-632 (-916 *5))))) (-4450 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5)))))) -(-10 -7 (-15 -4450 ((-112) |#2| |#3|)) (-15 -4450 ((-112) (-665 |#2|) |#3|)) (-15 -3597 ((-909 |#1| |#2| (-665 |#2|)) (-665 |#2|) |#3|)) (IF (|has| |#2| (-1068 (-1206))) (-15 -3597 ((-665 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1079)) (-15 -3597 ((-665 (-305 (-980 |#2|))) |#2| |#3|)) (-15 -3597 ((-913 |#1| |#2|) |#2| |#3|))))) -((-3609 (((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)) 22 T ELT))) -(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -3609 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)))) (-1130) (-1130) (-1130)) (T -912)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-913 *5 *7)) (-5 *1 (-912 *5 *6 *7))))) -(-10 -7 (-15 -3609 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1339 (($ $ $) 40 T ELT)) (-2953 (((-3 (-112) "failed") $ (-916 |#1|)) 37 T ELT)) (-3748 (($) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1447 (($ (-916 |#1|) |#2| $) 20 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3561 (((-3 |#2| "failed") (-916 |#1|) $) 51 T ELT)) (-1412 (((-112) $) 15 T ELT)) (-3848 (($) 13 T ELT)) (-2879 (((-665 (-2 (|:| -3171 (-1206)) (|:| -2753 |#2|))) $) 25 T ELT)) (-2422 (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 |#2|)))) 23 T ELT)) (-2410 (((-885) $) 45 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2429 (($ (-916 |#1|) |#2| $ |#2|) 49 T ELT)) (-2114 (($ (-916 |#1|) |#2| $) 48 T ELT)) (-2383 (((-112) $ $) 42 T ELT))) -(((-913 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -1412 ((-112) $)) (-15 -3848 ($)) (-15 -3748 ($)) (-15 -1339 ($ $ $)) (-15 -3561 ((-3 |#2| "failed") (-916 |#1|) $)) (-15 -2114 ($ (-916 |#1|) |#2| $)) (-15 -1447 ($ (-916 |#1|) |#2| $)) (-15 -2429 ($ (-916 |#1|) |#2| $ |#2|)) (-15 -2879 ((-665 (-2 (|:| -3171 (-1206)) (|:| -2753 |#2|))) $)) (-15 -2422 ($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 |#2|))))) (-15 -2953 ((-3 (-112) "failed") $ (-916 |#1|))))) (-1130) (-1130)) (T -913)) -((-1412 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-3848 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3748 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-1339 (*1 *1 *1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3561 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) (-5 *1 (-913 *4 *2)))) (-2114 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1130)))) (-1447 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1130)))) (-2429 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1130)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 *4)))) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 *4)))) (-4 *4 (-1130)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)))) (-2953 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -1412 ((-112) $)) (-15 -3848 ($)) (-15 -3748 ($)) (-15 -1339 ($ $ $)) (-15 -3561 ((-3 |#2| "failed") (-916 |#1|) $)) (-15 -2114 ($ (-916 |#1|) |#2| $)) (-15 -1447 ($ (-916 |#1|) |#2| $)) (-15 -2429 ($ (-916 |#1|) |#2| $ |#2|)) (-15 -2879 ((-665 (-2 (|:| -3171 (-1206)) (|:| -2753 |#2|))) $)) (-15 -2422 ($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 |#2|))))) (-15 -2953 ((-3 (-112) "failed") $ (-916 |#1|))))) -((-2366 (((-916 |#1|) (-916 |#1|) (-665 (-1206)) (-1 (-112) (-665 |#2|))) 32 T ELT) (((-916 |#1|) (-916 |#1|) (-665 (-1 (-112) |#2|))) 46 T ELT) (((-916 |#1|) (-916 |#1|) (-1 (-112) |#2|)) 35 T ELT)) (-2953 (((-112) (-665 |#2|) (-916 |#1|)) 42 T ELT) (((-112) |#2| (-916 |#1|)) 36 T ELT)) (-2183 (((-1 (-112) |#2|) (-916 |#1|)) 16 T ELT)) (-1509 (((-665 |#2|) (-916 |#1|)) 24 T ELT)) (-3918 (((-916 |#1|) (-916 |#1|) |#2|) 20 T ELT))) -(((-914 |#1| |#2|) (-10 -7 (-15 -2366 ((-916 |#1|) (-916 |#1|) (-1 (-112) |#2|))) (-15 -2366 ((-916 |#1|) (-916 |#1|) (-665 (-1 (-112) |#2|)))) (-15 -2366 ((-916 |#1|) (-916 |#1|) (-665 (-1206)) (-1 (-112) (-665 |#2|)))) (-15 -2183 ((-1 (-112) |#2|) (-916 |#1|))) (-15 -2953 ((-112) |#2| (-916 |#1|))) (-15 -2953 ((-112) (-665 |#2|) (-916 |#1|))) (-15 -3918 ((-916 |#1|) (-916 |#1|) |#2|)) (-15 -1509 ((-665 |#2|) (-916 |#1|)))) (-1130) (-1247)) (T -914)) -((-1509 (*1 *2 *3) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-665 *5)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1247)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1247)))) (-2953 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *2 (-112)) (-5 *1 (-914 *5 *6)))) (-2953 (*1 *2 *3 *4) (-12 (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-914 *5 *3)) (-4 *3 (-1247)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1247)))) (-2366 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-916 *5)) (-5 *3 (-665 (-1206))) (-5 *4 (-1 (-112) (-665 *6))) (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *1 (-914 *5 *6)))) (-2366 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-5 *3 (-665 (-1 (-112) *5))) (-4 *4 (-1130)) (-4 *5 (-1247)) (-5 *1 (-914 *4 *5)))) (-2366 (*1 *2 *2 *3) (-12 (-5 *2 (-916 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1130)) (-4 *5 (-1247)) (-5 *1 (-914 *4 *5))))) -(-10 -7 (-15 -2366 ((-916 |#1|) (-916 |#1|) (-1 (-112) |#2|))) (-15 -2366 ((-916 |#1|) (-916 |#1|) (-665 (-1 (-112) |#2|)))) (-15 -2366 ((-916 |#1|) (-916 |#1|) (-665 (-1206)) (-1 (-112) (-665 |#2|)))) (-15 -2183 ((-1 (-112) |#2|) (-916 |#1|))) (-15 -2953 ((-112) |#2| (-916 |#1|))) (-15 -2953 ((-112) (-665 |#2|) (-916 |#1|))) (-15 -3918 ((-916 |#1|) (-916 |#1|) |#2|)) (-15 -1509 ((-665 |#2|) (-916 |#1|)))) -((-3609 (((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)) 19 T ELT))) -(((-915 |#1| |#2|) (-10 -7 (-15 -3609 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) (-1130) (-1130)) (T -915)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-916 *6)) (-5 *1 (-915 *5 *6))))) -(-10 -7 (-15 -3609 ((-916 |#2|) (-1 |#2| |#1|) (-916 |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3368 (($ $ (-665 (-52))) 74 T ELT)) (-2948 (((-665 $) $) 139 T ELT)) (-3705 (((-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52))) $) 30 T ELT)) (-1363 (((-112) $) 35 T ELT)) (-2759 (($ $ (-665 (-1206)) (-52)) 31 T ELT)) (-2062 (($ $ (-665 (-52))) 73 T ELT)) (-2817 (((-3 |#1| "failed") $) 71 T ELT) (((-3 (-1206) "failed") $) 164 T ELT)) (-3514 ((|#1| $) 68 T ELT) (((-1206) $) NIL T ELT)) (-2045 (($ $) 126 T ELT)) (-2232 (((-112) $) 55 T ELT)) (-4423 (((-665 (-52)) $) 50 T ELT)) (-3222 (($ (-1206) (-112) (-112) (-112)) 75 T ELT)) (-3123 (((-3 (-665 $) "failed") (-665 $)) 82 T ELT)) (-3407 (((-112) $) 58 T ELT)) (-2170 (((-112) $) 57 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) 41 T ELT)) (-1680 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-2200 (((-3 (-2 (|:| |val| $) (|:| -2182 $)) "failed") $) 97 T ELT)) (-3124 (((-3 (-665 $) "failed") $) 40 T ELT)) (-3578 (((-3 (-665 $) "failed") $ (-115)) 124 T ELT) (((-3 (-2 (|:| -4422 (-115)) (|:| |arg| (-665 $))) "failed") $) 107 T ELT)) (-3443 (((-3 (-665 $) "failed") $) 42 T ELT)) (-2315 (((-3 (-2 (|:| |val| $) (|:| -2182 (-792))) "failed") $) 45 T ELT)) (-3965 (((-112) $) 34 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3624 (((-112) $) 28 T ELT)) (-2496 (((-112) $) 52 T ELT)) (-1490 (((-665 (-52)) $) 130 T ELT)) (-2969 (((-112) $) 56 T ELT)) (-2435 (($ (-115) (-665 $)) 104 T ELT)) (-3300 (((-792) $) 33 T ELT)) (-3978 (($ $) 72 T ELT)) (-3341 (($ (-665 $)) 69 T ELT)) (-2995 (((-112) $) 32 T ELT)) (-2410 (((-885) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1206)) 76 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3918 (($ $ (-52)) 129 T ELT)) (-2367 (($) 103 T CONST)) (-2378 (($) 83 T CONST)) (-2383 (((-112) $ $) 93 T ELT)) (-2494 (($ $ $) 117 T ELT)) (-2471 (($ $ $) 121 T ELT)) (** (($ $ (-792)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-916 |#1|) (-13 (-1130) (-1068 |#1|) (-1068 (-1206)) (-10 -8 (-15 0 ($) -1528) (-15 1 ($) -1528) (-15 -3124 ((-3 (-665 $) "failed") $)) (-15 -1620 ((-3 (-665 $) "failed") $)) (-15 -3578 ((-3 (-665 $) "failed") $ (-115))) (-15 -3578 ((-3 (-2 (|:| -4422 (-115)) (|:| |arg| (-665 $))) "failed") $)) (-15 -2315 ((-3 (-2 (|:| |val| $) (|:| -2182 (-792))) "failed") $)) (-15 -1680 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3443 ((-3 (-665 $) "failed") $)) (-15 -2200 ((-3 (-2 (|:| |val| $) (|:| -2182 $)) "failed") $)) (-15 -2435 ($ (-115) (-665 $))) (-15 -2471 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ $)) (-15 -2494 ($ $ $)) (-15 -3300 ((-792) $)) (-15 -3341 ($ (-665 $))) (-15 -3978 ($ $)) (-15 -3965 ((-112) $)) (-15 -2232 ((-112) $)) (-15 -1363 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -2969 ((-112) $)) (-15 -2170 ((-112) $)) (-15 -3407 ((-112) $)) (-15 -2496 ((-112) $)) (-15 -4423 ((-665 (-52)) $)) (-15 -2062 ($ $ (-665 (-52)))) (-15 -3368 ($ $ (-665 (-52)))) (-15 -3222 ($ (-1206) (-112) (-112) (-112))) (-15 -2759 ($ $ (-665 (-1206)) (-52))) (-15 -3705 ((-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52))) $)) (-15 -3624 ((-112) $)) (-15 -2045 ($ $)) (-15 -3918 ($ $ (-52))) (-15 -1490 ((-665 (-52)) $)) (-15 -2948 ((-665 $) $)) (-15 -3123 ((-3 (-665 $) "failed") (-665 $))))) (-1130)) (T -916)) -((-2367 (*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-2378 (*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-3124 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1620 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3578 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-916 *4))) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-3578 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4422 (-115)) (|:| |arg| (-665 (-916 *3))))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2315 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2182 (-792)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1680 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-916 *3)) (|:| |den| (-916 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3443 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2200 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2182 (-916 *3)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2435 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 (-916 *4))) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-2471 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-2494 (*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3978 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-4423 (*1 *2 *1) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2062 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3222 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-112)) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-2759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-52)) (-5 *1 (-916 *4)) (-4 *4 (-1130)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52)))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2045 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) (-3123 (*1 *2 *2) (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(-13 (-1130) (-1068 |#1|) (-1068 (-1206)) (-10 -8 (-15 (-2367) ($) -1528) (-15 (-2378) ($) -1528) (-15 -3124 ((-3 (-665 $) "failed") $)) (-15 -1620 ((-3 (-665 $) "failed") $)) (-15 -3578 ((-3 (-665 $) "failed") $ (-115))) (-15 -3578 ((-3 (-2 (|:| -4422 (-115)) (|:| |arg| (-665 $))) "failed") $)) (-15 -2315 ((-3 (-2 (|:| |val| $) (|:| -2182 (-792))) "failed") $)) (-15 -1680 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3443 ((-3 (-665 $) "failed") $)) (-15 -2200 ((-3 (-2 (|:| |val| $) (|:| -2182 $)) "failed") $)) (-15 -2435 ($ (-115) (-665 $))) (-15 -2471 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792))) (-15 ** ($ $ $)) (-15 -2494 ($ $ $)) (-15 -3300 ((-792) $)) (-15 -3341 ($ (-665 $))) (-15 -3978 ($ $)) (-15 -3965 ((-112) $)) (-15 -2232 ((-112) $)) (-15 -1363 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -2969 ((-112) $)) (-15 -2170 ((-112) $)) (-15 -3407 ((-112) $)) (-15 -2496 ((-112) $)) (-15 -4423 ((-665 (-52)) $)) (-15 -2062 ($ $ (-665 (-52)))) (-15 -3368 ($ $ (-665 (-52)))) (-15 -3222 ($ (-1206) (-112) (-112) (-112))) (-15 -2759 ($ $ (-665 (-1206)) (-52))) (-15 -3705 ((-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52))) $)) (-15 -3624 ((-112) $)) (-15 -2045 ($ $)) (-15 -3918 ($ $ (-52))) (-15 -1490 ((-665 (-52)) $)) (-15 -2948 ((-665 $) $)) (-15 -3123 ((-3 (-665 $) "failed") (-665 $))))) -((-3211 (((-112) $ $) NIL T ELT)) (-4417 (((-665 |#1|) $) 19 T ELT)) (-1699 (((-112) $) 49 T ELT)) (-2817 (((-3 (-693 |#1|) "failed") $) 56 T ELT)) (-3514 (((-693 |#1|) $) 54 T ELT)) (-4197 (($ $) 23 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3490 (((-792) $) 61 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-693 |#1|) $) 21 T ELT)) (-2410 (((-885) $) 47 T ELT) (($ (-693 |#1|)) 26 T ELT) (((-840 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 9 T CONST)) (-2662 (((-665 (-693 |#1|)) $) 28 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 12 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 67 T ELT))) -(((-917 |#1|) (-13 (-870) (-1068 (-693 |#1|)) (-10 -8 (-15 1 ($) -1528) (-15 -2410 ((-840 |#1|) $)) (-15 -2410 ($ |#1|)) (-15 -4188 ((-693 |#1|) $)) (-15 -3490 ((-792) $)) (-15 -2662 ((-665 (-693 |#1|)) $)) (-15 -4197 ($ $)) (-15 -1699 ((-112) $)) (-15 -4417 ((-665 |#1|) $)))) (-870)) (T -917)) -((-2378 (*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-2410 (*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-665 (-693 *3))) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4197 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870))))) -(-13 (-870) (-1068 (-693 |#1|)) (-10 -8 (-15 (-2378) ($) -1528) (-15 -2410 ((-840 |#1|) $)) (-15 -2410 ($ |#1|)) (-15 -4188 ((-693 |#1|) $)) (-15 -3490 ((-792) $)) (-15 -2662 ((-665 (-693 |#1|)) $)) (-15 -4197 ($ $)) (-15 -1699 ((-112) $)) (-15 -4417 ((-665 |#1|) $)))) -((-3287 ((|#1| |#1| |#1|) 19 T ELT))) -(((-918 |#1| |#2|) (-10 -7 (-15 -3287 (|#1| |#1| |#1|))) (-1273 |#2|) (-1079)) (T -918)) -((-3287 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-918 *2 *3)) (-4 *2 (-1273 *3))))) -(-10 -7 (-15 -3287 (|#1| |#1| |#1|))) -((-1675 ((|#2| $ |#3|) 10 T ELT))) -(((-919 |#1| |#2| |#3|) (-10 -8 (-15 -1675 (|#2| |#1| |#3|))) (-920 |#2| |#3|) (-1247) (-1247)) (T -919)) -NIL -(-10 -8 (-15 -1675 (|#2| |#1| |#3|))) -((-2030 ((|#1| $ |#2|) 7 T ELT)) (-1675 ((|#1| $ |#2|) 6 T ELT))) -(((-920 |#1| |#2|) (-141) (-1247) (-1247)) (T -920)) -((-2030 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) (-1675 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247))))) -(-13 (-1247) (-10 -8 (-15 -2030 (|t#1| $ |t#2|)) (-15 -1675 (|t#1| $ |t#2|)))) -(((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 15 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3747 (((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 14 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-921) (-141)) (T -921)) -((-3175 (*1 *2 *3 *4) (-12 (-4 *1 (-921)) (-5 *3 (-1093)) (-5 *4 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) (-3747 (*1 *2 *3) (-12 (-4 *1 (-921)) (-5 *3 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *2 (-1065))))) -(-13 (-1130) (-10 -7 (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| |explanations| (-1188))) (-1093) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))) (-15 -3747 ((-1065) (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-4361 ((|#1| |#1| (-792)) 27 T ELT)) (-3259 (((-3 |#1| "failed") |#1| |#1|) 24 T ELT)) (-2622 (((-3 (-2 (|:| -3854 |#1|) (|:| -3867 |#1|)) "failed") |#1| (-792) (-792)) 30 T ELT) (((-665 |#1|) |#1|) 38 T ELT))) -(((-922 |#1| |#2|) (-10 -7 (-15 -2622 ((-665 |#1|) |#1|)) (-15 -2622 ((-3 (-2 (|:| -3854 |#1|) (|:| -3867 |#1|)) "failed") |#1| (-792) (-792))) (-15 -3259 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4361 (|#1| |#1| (-792)))) (-1273 |#2|) (-375)) (T -922)) -((-4361 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-5 *1 (-922 *2 *4)) (-4 *2 (-1273 *4)))) (-3259 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-922 *2 *3)) (-4 *2 (-1273 *3)))) (-2622 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-792)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3854 *3) (|:| -3867 *3))) (-5 *1 (-922 *3 *5)) (-4 *3 (-1273 *5)))) (-2622 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-922 *3 *4)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -2622 ((-665 |#1|) |#1|)) (-15 -2622 ((-3 (-2 (|:| -3854 |#1|) (|:| -3867 |#1|)) "failed") |#1| (-792) (-792))) (-15 -3259 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4361 (|#1| |#1| (-792)))) -((-3766 (((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188)) 104 T ELT) (((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188) (-228)) 100 T ELT) (((-1065) (-924) (-1093)) 92 T ELT) (((-1065) (-924)) 93 T ELT)) (-3175 (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924) (-1093)) 62 T ELT) (((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924)) 64 T ELT))) -(((-923) (-10 -7 (-15 -3766 ((-1065) (-924))) (-15 -3766 ((-1065) (-924) (-1093))) (-15 -3766 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188) (-228))) (-15 -3766 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924) (-1093))))) (T -923)) -((-3175 (*1 *2 *3 *4) (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-923)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188))))) (-5 *1 (-923)))) (-3766 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-3766 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) (-5 *8 (-228)) (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-923)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-1065)) (-5 *1 (-923))))) -(-10 -7 (-15 -3766 ((-1065) (-924))) (-15 -3766 ((-1065) (-924) (-1093))) (-15 -3766 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188) (-228))) (-15 -3766 ((-1065) (-391) (-391) (-391) (-391) (-792) (-792) (-665 (-327 (-391))) (-665 (-665 (-327 (-391)))) (-1188))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924))) (-15 -3175 ((-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) (|:| |explanations| (-665 (-1188)))) (-924) (-1093)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3514 (((-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))) $) 19 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 21 T ELT) (($ (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) 18 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-924) (-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))) (-15 -3514 ((-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))) $))))) (T -924)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *1 (-924)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228)))) (-5 *1 (-924))))) -(-13 (-1130) (-10 -8 (-15 -2410 ($ (-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))))) (-15 -3514 ((-2 (|:| |pde| (-665 (-327 (-228)))) (|:| |constraints| (-665 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-792)) (|:| |boundaryType| (-577)) (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) (|:| |tol| (-228))) $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2030 (($ $ (-665 |#2|) (-665 (-792))) 39 T ELT) (($ $ |#2| (-792)) 38 T ELT) (($ $ (-665 |#2|)) 37 T ELT) (($ $ |#2|) 35 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-1675 (($ $ (-665 |#2|) (-665 (-792))) 42 T ELT) (($ $ |#2| (-792)) 41 T ELT) (($ $ (-665 |#2|)) 40 T ELT) (($ $ |#2|) 36 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-925 |#1| |#2|) (-141) (-1079) (-1130)) (T -925)) -NIL -(-13 (-111 |t#1| |t#1|) (-928 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-738 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-920 $ |#2|) . T) ((-928 |#2|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2030 (($ $ (-665 |#1|) (-665 (-792))) 44 T ELT) (($ $ |#1| (-792)) 43 T ELT) (($ $ (-665 |#1|)) 42 T ELT) (($ $ |#1|) 40 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-665 |#1|) (-665 (-792))) 47 T ELT) (($ $ |#1| (-792)) 46 T ELT) (($ $ (-665 |#1|)) 45 T ELT) (($ $ |#1|) 41 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-926 |#1|) (-141) (-1130)) (T -926)) -NIL -(-13 (-1079) (-928 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-920 $ |#1|) . T) ((-928 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2030 (($ $ |#2|) NIL T ELT) (($ $ (-665 |#2|)) 10 T ELT) (($ $ |#2| (-792)) 12 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 15 T ELT)) (-1675 (($ $ |#2|) 16 T ELT) (($ $ (-665 |#2|)) 18 T ELT) (($ $ |#2| (-792)) 19 T ELT) (($ $ (-665 |#2|) (-665 (-792))) 21 T ELT))) -(((-927 |#1| |#2|) (-10 -8 (-15 -1675 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -1675 (|#1| |#1| |#2| (-792))) (-15 -1675 (|#1| |#1| (-665 |#2|))) (-15 -2030 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -2030 (|#1| |#1| |#2| (-792))) (-15 -2030 (|#1| |#1| (-665 |#2|))) (-15 -1675 (|#1| |#1| |#2|)) (-15 -2030 (|#1| |#1| |#2|))) (-928 |#2|) (-1130)) (T -927)) -NIL -(-10 -8 (-15 -1675 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -1675 (|#1| |#1| |#2| (-792))) (-15 -1675 (|#1| |#1| (-665 |#2|))) (-15 -2030 (|#1| |#1| (-665 |#2|) (-665 (-792)))) (-15 -2030 (|#1| |#1| |#2| (-792))) (-15 -2030 (|#1| |#1| (-665 |#2|))) (-15 -1675 (|#1| |#1| |#2|)) (-15 -2030 (|#1| |#1| |#2|))) -((-2030 (($ $ |#1|) 7 T ELT) (($ $ (-665 |#1|)) 15 T ELT) (($ $ |#1| (-792)) 14 T ELT) (($ $ (-665 |#1|) (-665 (-792))) 13 T ELT)) (-1675 (($ $ |#1|) 6 T ELT) (($ $ (-665 |#1|)) 12 T ELT) (($ $ |#1| (-792)) 11 T ELT) (($ $ (-665 |#1|) (-665 (-792))) 10 T ELT))) -(((-928 |#1|) (-141) (-1130)) (T -928)) -((-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) (-4 *4 (-1130)))) (-1675 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130)))) (-1675 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) (-1675 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) (-4 *4 (-1130))))) -(-13 (-920 $ |t#1|) (-10 -8 (-15 -2030 ($ $ (-665 |t#1|))) (-15 -2030 ($ $ |t#1| (-792))) (-15 -2030 ($ $ (-665 |t#1|) (-665 (-792)))) (-15 -1675 ($ $ (-665 |t#1|))) (-15 -1675 ($ $ |t#1| (-792))) (-15 -1675 ($ $ (-665 |t#1|) (-665 (-792)))))) -(((-920 $ |#1|) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 26 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3142 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-1916 (($ $ $) NIL (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4500)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-3867 (($ $) 25 T ELT)) (-1727 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3854 (($ $) 23 T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) 20 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2110 (((-112) $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-1233 |#1|) $) 9 T ELT) (((-885) $) 29 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-929 |#1|) (-13 (-120 |#1|) (-631 (-1233 |#1|)) (-10 -8 (-15 -1727 ($ |#1|)) (-15 -1727 ($ $ $)))) (-1130)) (T -929)) -((-1727 (*1 *1 *2) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130)))) (-1727 (*1 *1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130))))) -(-13 (-120 |#1|) (-631 (-1233 |#1|)) (-10 -8 (-15 -1727 ($ |#1|)) (-15 -1727 ($ $ $)))) -((-2735 ((|#2| (-1172 |#1| |#2|)) 48 T ELT))) -(((-930 |#1| |#2|) (-10 -7 (-15 -2735 (|#2| (-1172 |#1| |#2|)))) (-949) (-13 (-1079) (-10 -7 (-6 (-4501 "*"))))) (T -930)) -((-2735 (*1 *2 *3) (-12 (-5 *3 (-1172 *4 *2)) (-14 *4 (-949)) (-4 *2 (-13 (-1079) (-10 -7 (-6 (-4501 "*"))))) (-5 *1 (-930 *4 *2))))) -(-10 -7 (-15 -2735 (|#2| (-1172 |#1| |#2|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-4326 (((-1132 |#1|) $) 36 T ELT)) (-2762 (($) 19 T CONST)) (-4281 (((-3 $ "failed") $) 16 T ELT)) (-4004 (((-1132 |#1|) $ |#1|) 35 T ELT)) (-2097 (((-112) $) 18 T ELT)) (-1344 (($ $ $) 29 (-2229 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-4167 (($ $ $) 30 (-2229 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 25 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2435 ((|#1| $ |#1|) 39 T ELT)) (-4416 (($ (-665 (-665 |#1|))) 37 T ELT)) (-3689 (($ (-665 |#1|)) 38 T ELT)) (-2744 (($ $ $) 22 T ELT)) (-4365 (($ $ $) 21 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2378 (($) 20 T CONST)) (-2440 (((-112) $ $) 31 (-2229 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-2415 (((-112) $ $) 33 (-2229 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 32 (-2229 (|has| |#1| (-870)) (|has| |#1| (-380))) ELT)) (-2403 (((-112) $ $) 34 T ELT)) (-2494 (($ $ $) 24 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 17 T ELT) (($ $ (-577)) 23 T ELT)) (* (($ $ $) 15 T ELT))) -(((-931 |#1|) (-141) (-1130)) (T -931)) -((-3689 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-931 *3)))) (-4416 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-4 *1 (-931 *3)))) (-4326 (*1 *2 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) (-4004 (*1 *2 *1 *3) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) (-2403 (*1 *2 *1 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(-13 (-486) (-297 |t#1| |t#1|) (-10 -8 (-15 -3689 ($ (-665 |t#1|))) (-15 -4416 ($ (-665 (-665 |t#1|)))) (-15 -4326 ((-1132 |t#1|) $)) (-15 -4004 ((-1132 |t#1|) $ |t#1|)) (-15 -2403 ((-112) $ $)) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-380)) (-6 (-870)) |%noBranch|))) -(((-102) . T) ((-631 (-885)) . T) ((-297 |#1| |#1|) . T) ((-486) . T) ((-747) . T) ((-870) -2229 (|has| |#1| (-870)) (|has| |#1| (-380))) ((-873) -2229 (|has| |#1| (-870)) (|has| |#1| (-380))) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3951 (((-665 (-665 (-792))) $) 160 T ELT)) (-1844 (((-665 (-792)) (-933 |#1|) $) 188 T ELT)) (-1572 (((-665 (-792)) (-933 |#1|) $) 189 T ELT)) (-4326 (((-1132 |#1|) $) 152 T ELT)) (-2870 (((-665 (-933 |#1|)) $) 149 T ELT)) (-2060 (((-933 |#1|) $ (-577)) 154 T ELT) (((-933 |#1|) $) 155 T ELT)) (-2094 (($ (-665 (-933 |#1|))) 162 T ELT)) (-3890 (((-792) $) 156 T ELT)) (-2024 (((-1132 (-1132 |#1|)) $) 186 T ELT)) (-4004 (((-1132 |#1|) $ |#1|) 177 T ELT) (((-1132 (-1132 |#1|)) $ (-1132 |#1|)) 197 T ELT) (((-1132 (-665 |#1|)) $ (-665 |#1|)) 200 T ELT)) (-2318 (((-112) (-933 |#1|) $) 137 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2088 (((-1302) $) 142 T ELT) (((-1302) $ (-577) (-577)) 201 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1732 (((-665 (-933 |#1|)) $) 143 T ELT)) (-2435 (((-933 |#1|) $ (-792)) 150 T ELT)) (-2776 (((-792) $) 157 T ELT)) (-2410 (((-885) $) 174 T ELT) (((-665 (-933 |#1|)) $) 28 T ELT) (($ (-665 (-933 |#1|))) 161 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (((-665 |#1|) $) 159 T ELT)) (-2383 (((-112) $ $) 194 T ELT)) (-2428 (((-112) $ $) 192 T ELT)) (-2403 (((-112) $ $) 191 T ELT))) -(((-932 |#1|) (-13 (-1130) (-10 -8 (-15 -2410 ((-665 (-933 |#1|)) $)) (-15 -1732 ((-665 (-933 |#1|)) $)) (-15 -2435 ((-933 |#1|) $ (-792))) (-15 -2060 ((-933 |#1|) $ (-577))) (-15 -2060 ((-933 |#1|) $)) (-15 -3890 ((-792) $)) (-15 -2776 ((-792) $)) (-15 -3646 ((-665 |#1|) $)) (-15 -2870 ((-665 (-933 |#1|)) $)) (-15 -3951 ((-665 (-665 (-792))) $)) (-15 -2410 ($ (-665 (-933 |#1|)))) (-15 -2094 ($ (-665 (-933 |#1|)))) (-15 -4004 ((-1132 |#1|) $ |#1|)) (-15 -2024 ((-1132 (-1132 |#1|)) $)) (-15 -4004 ((-1132 (-1132 |#1|)) $ (-1132 |#1|))) (-15 -4004 ((-1132 (-665 |#1|)) $ (-665 |#1|))) (-15 -2318 ((-112) (-933 |#1|) $)) (-15 -1844 ((-665 (-792)) (-933 |#1|) $)) (-15 -1572 ((-665 (-792)) (-933 |#1|) $)) (-15 -4326 ((-1132 |#1|) $)) (-15 -2403 ((-112) $ $)) (-15 -2428 ((-112) $ $)) (-15 -2088 ((-1302) $)) (-15 -2088 ((-1302) $ (-577) (-577))))) (-1130)) (T -932)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) (-4 *4 (-1130)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) (-4 *4 (-1130)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-933 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-792)))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3)))) (-2094 (*1 *1 *2) (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3)))) (-4004 (*1 *2 *1 *3) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-1132 (-1132 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-4004 (*1 *2 *1 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-1132 *4))) (-5 *1 (-932 *4)) (-5 *3 (-1132 *4)))) (-4004 (*1 *2 *1 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-665 *4))) (-5 *1 (-932 *4)) (-5 *3 (-665 *4)))) (-2318 (*1 *2 *3 *1) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-932 *4)))) (-1844 (*1 *2 *3 *1) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) (-5 *1 (-932 *4)))) (-1572 (*1 *2 *3 *1) (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) (-5 *1 (-932 *4)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2403 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2428 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) (-2088 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-932 *4)) (-4 *4 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -2410 ((-665 (-933 |#1|)) $)) (-15 -1732 ((-665 (-933 |#1|)) $)) (-15 -2435 ((-933 |#1|) $ (-792))) (-15 -2060 ((-933 |#1|) $ (-577))) (-15 -2060 ((-933 |#1|) $)) (-15 -3890 ((-792) $)) (-15 -2776 ((-792) $)) (-15 -3646 ((-665 |#1|) $)) (-15 -2870 ((-665 (-933 |#1|)) $)) (-15 -3951 ((-665 (-665 (-792))) $)) (-15 -2410 ($ (-665 (-933 |#1|)))) (-15 -2094 ($ (-665 (-933 |#1|)))) (-15 -4004 ((-1132 |#1|) $ |#1|)) (-15 -2024 ((-1132 (-1132 |#1|)) $)) (-15 -4004 ((-1132 (-1132 |#1|)) $ (-1132 |#1|))) (-15 -4004 ((-1132 (-665 |#1|)) $ (-665 |#1|))) (-15 -2318 ((-112) (-933 |#1|) $)) (-15 -1844 ((-665 (-792)) (-933 |#1|) $)) (-15 -1572 ((-665 (-792)) (-933 |#1|) $)) (-15 -4326 ((-1132 |#1|) $)) (-15 -2403 ((-112) $ $)) (-15 -2428 ((-112) $ $)) (-15 -2088 ((-1302) $)) (-15 -2088 ((-1302) $ (-577) (-577))))) -((-3211 (((-112) $ $) NIL T ELT)) (-4326 (((-1132 |#1|) $) 60 T ELT)) (-2040 (((-665 $) (-665 $)) 103 T ELT)) (-4459 (((-577) $) 83 T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3890 (((-792) $) 80 T ELT)) (-4004 (((-1132 |#1|) $ |#1|) 70 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3356 (((-112) $) 88 T ELT)) (-1469 (((-792) $) 84 T ELT)) (-1344 (($ $ $) NIL (-2229 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-4167 (($ $ $) NIL (-2229 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-4268 (((-2 (|:| |preimage| (-665 |#1|)) (|:| |image| (-665 |#1|))) $) 55 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 130 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2947 (((-1132 |#1|) $) 136 (|has| |#1| (-380)) ELT)) (-2793 (((-112) $) 81 T ELT)) (-2435 ((|#1| $ |#1|) 68 T ELT)) (-2776 (((-792) $) 62 T ELT)) (-4416 (($ (-665 (-665 |#1|))) 118 T ELT)) (-4454 (((-1001) $) 74 T ELT)) (-3689 (($ (-665 |#1|)) 32 T ELT)) (-2744 (($ $ $) NIL T ELT)) (-4365 (($ $ $) NIL T ELT)) (-3971 (($ (-665 (-665 |#1|))) 57 T ELT)) (-4161 (($ (-665 (-665 |#1|))) 123 T ELT)) (-2770 (($ (-665 |#1|)) 132 T ELT)) (-2410 (((-885) $) 117 T ELT) (($ (-665 (-665 |#1|))) 91 T ELT) (($ (-665 |#1|)) 92 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) 24 T CONST)) (-2440 (((-112) $ $) NIL (-2229 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-2415 (((-112) $ $) NIL (-2229 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-2383 (((-112) $ $) 66 T ELT)) (-2428 (((-112) $ $) NIL (-2229 (|has| |#1| (-380)) (|has| |#1| (-870))) ELT)) (-2403 (((-112) $ $) 90 T ELT)) (-2494 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-933 |#1|) (-13 (-931 |#1|) (-10 -8 (-15 -4268 ((-2 (|:| |preimage| (-665 |#1|)) (|:| |image| (-665 |#1|))) $)) (-15 -3971 ($ (-665 (-665 |#1|)))) (-15 -2410 ($ (-665 (-665 |#1|)))) (-15 -2410 ($ (-665 |#1|))) (-15 -4161 ($ (-665 (-665 |#1|)))) (-15 -2776 ((-792) $)) (-15 -4454 ((-1001) $)) (-15 -3890 ((-792) $)) (-15 -1469 ((-792) $)) (-15 -4459 ((-577) $)) (-15 -2793 ((-112) $)) (-15 -3356 ((-112) $)) (-15 -2040 ((-665 $) (-665 $))) (IF (|has| |#1| (-380)) (-15 -2947 ((-1132 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -2770 ($ (-665 |#1|))) (IF (|has| |#1| (-380)) (-15 -2770 ($ (-665 |#1|))) |%noBranch|)))) (-1130)) (T -933)) -((-4268 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-665 *3)) (|:| |image| (-665 *3)))) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-4454 (*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-4459 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-933 *3)) (-4 *3 (-380)) (-4 *3 (-1130)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) -(-13 (-931 |#1|) (-10 -8 (-15 -4268 ((-2 (|:| |preimage| (-665 |#1|)) (|:| |image| (-665 |#1|))) $)) (-15 -3971 ($ (-665 (-665 |#1|)))) (-15 -2410 ($ (-665 (-665 |#1|)))) (-15 -2410 ($ (-665 |#1|))) (-15 -4161 ($ (-665 (-665 |#1|)))) (-15 -2776 ((-792) $)) (-15 -4454 ((-1001) $)) (-15 -3890 ((-792) $)) (-15 -1469 ((-792) $)) (-15 -4459 ((-577) $)) (-15 -2793 ((-112) $)) (-15 -3356 ((-112) $)) (-15 -2040 ((-665 $) (-665 $))) (IF (|has| |#1| (-380)) (-15 -2947 ((-1132 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -2770 ($ (-665 |#1|))) (IF (|has| |#1| (-380)) (-15 -2770 ($ (-665 |#1|))) |%noBranch|)))) -((-3423 (((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|)) 160 T ELT)) (-4300 ((|#1|) 97 T ELT)) (-1421 (((-431 (-1202 |#4|)) (-1202 |#4|)) 169 T ELT)) (-2337 (((-431 (-1202 |#4|)) (-665 |#3|) (-1202 |#4|)) 84 T ELT)) (-3202 (((-431 (-1202 |#4|)) (-1202 |#4|)) 179 T ELT)) (-3282 (((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|) |#3|) 113 T ELT))) -(((-934 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3423 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|))) (-15 -3202 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -1421 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -4300 (|#1|)) (-15 -3282 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|) |#3|)) (-15 -2337 ((-431 (-1202 |#4|)) (-665 |#3|) (-1202 |#4|)))) (-937) (-814) (-870) (-977 |#1| |#2| |#3|)) (T -934)) -((-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *7)) (-4 *7 (-870)) (-4 *5 (-937)) (-4 *6 (-814)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-431 (-1202 *8))) (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-1202 *8)))) (-3282 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) (-4 *7 (-977 *5 *6 *4)) (-4 *5 (-937)) (-4 *6 (-814)) (-4 *4 (-870)) (-5 *1 (-934 *5 *6 *4 *7)))) (-4300 (*1 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) (-5 *1 (-934 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) (-3423 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-934 *4 *5 *6 *7))))) -(-10 -7 (-15 -3423 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|))) (-15 -3202 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -1421 ((-431 (-1202 |#4|)) (-1202 |#4|))) (-15 -4300 (|#1|)) (-15 -3282 ((-3 (-665 (-1202 |#4|)) "failed") (-665 (-1202 |#4|)) (-1202 |#4|) |#3|)) (-15 -2337 ((-431 (-1202 |#4|)) (-665 |#3|) (-1202 |#4|)))) -((-3423 (((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|)) 39 T ELT)) (-4300 ((|#1|) 72 T ELT)) (-1421 (((-431 (-1202 |#2|)) (-1202 |#2|)) 121 T ELT)) (-2337 (((-431 (-1202 |#2|)) (-1202 |#2|)) 105 T ELT)) (-3202 (((-431 (-1202 |#2|)) (-1202 |#2|)) 132 T ELT))) -(((-935 |#1| |#2|) (-10 -7 (-15 -3423 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|))) (-15 -3202 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -1421 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -4300 (|#1|)) (-15 -2337 ((-431 (-1202 |#2|)) (-1202 |#2|)))) (-937) (-1273 |#1|)) (T -935)) -((-2337 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5)))) (-4300 (*1 *2) (-12 (-4 *2 (-937)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1273 *2)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5)))) (-3423 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-937)) (-5 *1 (-935 *4 *5))))) -(-10 -7 (-15 -3423 ((-3 (-665 (-1202 |#2|)) "failed") (-665 (-1202 |#2|)) (-1202 |#2|))) (-15 -3202 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -1421 ((-431 (-1202 |#2|)) (-1202 |#2|))) (-15 -4300 (|#1|)) (-15 -2337 ((-431 (-1202 |#2|)) (-1202 |#2|)))) -((-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 42 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 18 T ELT)) (-2580 (((-3 $ "failed") $) 36 T ELT))) -(((-936 |#1|) (-10 -8 (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) (-937)) (T -936)) -NIL -(-10 -8 (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 66 T ELT)) (-4456 (($ $) 57 T ELT)) (-4240 (((-431 $) $) 58 T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 63 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1632 (((-112) $) 59 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 64 T ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 65 T ELT)) (-2799 (((-431 $) $) 56 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 62 (|has| $ (-146)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-2580 (((-3 $ "failed") $) 61 (|has| $ (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-937) (-141)) (T -937)) -((-4373 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-937)))) (-3650 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1)))) (-4275 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1)))) (-2583 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1)))) (-1440 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-665 (-1202 *1))) (-5 *3 (-1202 *1)) (-4 *1 (-937)))) (-3601 (*1 *2 *3) (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-146)) (-4 *1 (-937)) (-5 *2 (-1297 *1)))) (-2580 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-937))))) -(-13 (-1251) (-10 -8 (-15 -3650 ((-431 (-1202 $)) (-1202 $))) (-15 -4275 ((-431 (-1202 $)) (-1202 $))) (-15 -2583 ((-431 (-1202 $)) (-1202 $))) (-15 -4373 ((-1202 $) (-1202 $) (-1202 $))) (-15 -1440 ((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $))) (IF (|has| $ (-146)) (PROGN (-15 -3601 ((-3 (-1297 $) "failed") (-710 $))) (-15 -2580 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-1518 (((-112) $) NIL T ELT)) (-2632 (((-792)) NIL T ELT)) (-1880 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 $ "failed") $) NIL T ELT)) (-3514 (($ $) NIL T ELT)) (-1912 (($ (-1297 $)) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-3619 (($) NIL T ELT)) (-3390 (((-112) $) NIL T ELT)) (-2202 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3890 (((-854 (-949)) $) NIL T ELT) (((-949) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2841 (($) NIL (|has| $ (-380)) ELT)) (-3679 (((-112) $) NIL (|has| $ (-380)) ELT)) (-2755 (($ $ (-949)) NIL (|has| $ (-380)) ELT) (($ $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-4067 (((-1202 $) $ (-949)) NIL (|has| $ (-380)) ELT) (((-1202 $) $) NIL T ELT)) (-2553 (((-949) $) NIL T ELT)) (-3574 (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-3539 (((-3 (-1202 $) "failed") $ $) NIL (|has| $ (-380)) ELT) (((-1202 $) $) NIL (|has| $ (-380)) ELT)) (-4254 (($ $ (-1202 $)) NIL (|has| $ (-380)) ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-2085 (($ (-949)) NIL T ELT)) (-2267 (((-112) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) NIL (|has| $ (-380)) ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-3204 (((-949)) NIL T ELT) (((-854 (-949))) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2723 (((-3 (-792) "failed") $ $) NIL T ELT) (((-792) $) NIL T ELT)) (-2419 (((-135)) NIL T ELT)) (-2030 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2776 (((-949) $) NIL T ELT) (((-854 (-949)) $) NIL T ELT)) (-1773 (((-1202 $)) NIL T ELT)) (-1494 (($) NIL T ELT)) (-2513 (($) NIL (|has| $ (-380)) ELT)) (-2119 (((-710 $) (-1297 $)) NIL T ELT) (((-1297 $) $) NIL T ELT)) (-3341 (((-577) $) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL T ELT) (($ $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $) (-949)) NIL T ELT) (((-1297 $)) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2306 (((-112) $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-3077 (($ $ (-792)) NIL (|has| $ (-380)) ELT) (($ $) NIL (|has| $ (-380)) ELT)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-938 |#1|) (-13 (-361) (-340 $) (-632 (-577))) (-949)) (T -938)) -NIL -(-13 (-361) (-340 $) (-632 (-577))) -((-3861 (((-3 (-2 (|:| -3890 (-792)) (|:| -2264 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-1700 (((-112) (-348 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3890 (((-3 (-792) "failed") (-348 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-939 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3890 ((-3 (-792) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -1700 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -3861 ((-3 (-2 (|:| -3890 (-792)) (|:| -2264 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) (-13 (-569) (-1068 (-577))) (-443 |#1|) (-1273 |#2|) (-1273 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -939)) -((-3861 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-2 (|:| -3890 (-792)) (|:| -2264 *8))) (-5 *1 (-939 *4 *5 *6 *7 *8)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) (-5 *1 (-939 *4 *5 *6 *7 *8)))) (-3890 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-792)) (-5 *1 (-939 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3890 ((-3 (-792) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -1700 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -3861 ((-3 (-2 (|:| -3890 (-792)) (|:| -2264 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) -((-3861 (((-3 (-2 (|:| -3890 (-792)) (|:| -2264 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 64 T ELT)) (-1700 (((-112) (-348 (-420 (-577)) |#1| |#2| |#3|)) 16 T ELT)) (-3890 (((-3 (-792) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 14 T ELT))) -(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -3890 ((-3 (-792) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -1700 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -3861 ((-3 (-2 (|:| -3890 (-792)) (|:| -2264 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) (-1273 (-420 (-577))) (-1273 (-420 |#1|)) (-354 (-420 (-577)) |#1| |#2|)) (T -940)) -((-3861 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-2 (|:| -3890 (-792)) (|:| -2264 *6))) (-5 *1 (-940 *4 *5 *6)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6)))) (-3890 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-792)) (-5 *1 (-940 *4 *5 *6))))) -(-10 -7 (-15 -3890 ((-3 (-792) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -1700 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -3861 ((-3 (-2 (|:| -3890 (-792)) (|:| -2264 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) -((-1500 ((|#2| |#2|) 26 T ELT)) (-1347 (((-577) (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) 15 T ELT)) (-1584 (((-949) (-577)) 38 T ELT)) (-3530 (((-577) |#2|) 45 T ELT)) (-4192 (((-577) |#2|) 21 T ELT) (((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|) 20 T ELT))) -(((-941 |#1| |#2|) (-10 -7 (-15 -1584 ((-949) (-577))) (-15 -4192 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -4192 ((-577) |#2|)) (-15 -1347 ((-577) (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -3530 ((-577) |#2|)) (-15 -1500 (|#2| |#2|))) (-1273 (-420 (-577))) (-1273 (-420 |#1|))) (T -941)) -((-1500 (*1 *2 *2) (-12 (-4 *3 (-1273 (-420 (-577)))) (-5 *1 (-941 *3 *2)) (-4 *2 (-1273 (-420 *3))))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1273 (-420 *4))))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-420 *4))))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1273 (-420 *4))))) (-4192 (*1 *2 *3) (-12 (-4 *3 (-1273 (-420 (-577)))) (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) (-5 *1 (-941 *3 *4)) (-4 *4 (-1273 (-420 *3))))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1273 (-420 *3))) (-5 *2 (-949)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-420 *4)))))) -(-10 -7 (-15 -1584 ((-949) (-577))) (-15 -4192 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -4192 ((-577) |#2|)) (-15 -1347 ((-577) (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -3530 ((-577) |#2|)) (-15 -1500 (|#2| |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 ((|#1| $) 100 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3152 (($ $ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 94 T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-1919 (($ |#1| (-431 |#1|)) 92 T ELT)) (-2363 (((-1202 |#1|) |#1| |#1|) 53 T ELT)) (-2816 (($ $) 61 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-1531 (((-577) $) 97 T ELT)) (-2381 (($ $ (-577)) 99 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3509 ((|#1| $) 96 T ELT)) (-3271 (((-431 |#1|) $) 95 T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) 93 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-3706 (($ $) 50 T ELT)) (-2410 (((-885) $) 124 T ELT) (($ (-577)) 73 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 41 T ELT) (((-420 |#1|) $) 78 T ELT) (($ (-420 (-431 |#1|))) 86 T ELT)) (-3234 (((-792)) 71 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) 26 T CONST)) (-2378 (($) 15 T CONST)) (-2383 (((-112) $ $) 87 T ELT)) (-2494 (($ $ $) NIL T ELT)) (-2483 (($ $) 108 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 49 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 110 T ELT) (($ $ $) 48 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ |#1| $) 109 T ELT) (($ $ |#1|) NIL T ELT))) -(((-942 |#1|) (-13 (-375) (-38 |#1|) (-10 -8 (-15 -2410 ((-420 |#1|) $)) (-15 -2410 ($ (-420 (-431 |#1|)))) (-15 -3706 ($ $)) (-15 -3271 ((-431 |#1|) $)) (-15 -3509 (|#1| $)) (-15 -2381 ($ $ (-577))) (-15 -1531 ((-577) $)) (-15 -2363 ((-1202 |#1|) |#1| |#1|)) (-15 -2816 ($ $)) (-15 -1919 ($ |#1| (-431 |#1|))) (-15 -3277 (|#1| $)))) (-318)) (T -942)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-942 *3)))) (-3706 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-3509 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) (-2381 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-2363 (*1 *2 *3 *3) (-12 (-5 *2 (-1202 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) (-2816 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) (-1919 (*1 *1 *2 *3) (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-942 *2)))) (-3277 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) -(-13 (-375) (-38 |#1|) (-10 -8 (-15 -2410 ((-420 |#1|) $)) (-15 -2410 ($ (-420 (-431 |#1|)))) (-15 -3706 ($ $)) (-15 -3271 ((-431 |#1|) $)) (-15 -3509 (|#1| $)) (-15 -2381 ($ $ (-577))) (-15 -1531 ((-577) $)) (-15 -2363 ((-1202 |#1|) |#1| |#1|)) (-15 -2816 ($ $)) (-15 -1919 ($ |#1| (-431 |#1|))) (-15 -3277 (|#1| $)))) -((-1919 (((-52) (-980 |#1|) (-431 (-980 |#1|)) (-1206)) 17 T ELT) (((-52) (-420 (-980 |#1|)) (-1206)) 18 T ELT))) -(((-943 |#1|) (-10 -7 (-15 -1919 ((-52) (-420 (-980 |#1|)) (-1206))) (-15 -1919 ((-52) (-980 |#1|) (-431 (-980 |#1|)) (-1206)))) (-13 (-318) (-148))) (T -943)) -((-1919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-431 (-980 *6))) (-5 *5 (-1206)) (-5 *3 (-980 *6)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *6)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *5))))) -(-10 -7 (-15 -1919 ((-52) (-420 (-980 |#1|)) (-1206))) (-15 -1919 ((-52) (-980 |#1|) (-431 (-980 |#1|)) (-1206)))) -((-4209 ((|#4| (-665 |#4|)) 147 T ELT) (((-1202 |#4|) (-1202 |#4|) (-1202 |#4|)) 84 T ELT) ((|#4| |#4| |#4|) 146 T ELT)) (-2420 (((-1202 |#4|) (-665 (-1202 |#4|))) 140 T ELT) (((-1202 |#4|) (-1202 |#4|) (-1202 |#4|)) 61 T ELT) ((|#4| (-665 |#4|)) 69 T ELT) ((|#4| |#4| |#4|) 107 T ELT))) -(((-944 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2420 (|#4| |#4| |#4|)) (-15 -2420 (|#4| (-665 |#4|))) (-15 -2420 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -2420 ((-1202 |#4|) (-665 (-1202 |#4|)))) (-15 -4209 (|#4| |#4| |#4|)) (-15 -4209 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -4209 (|#4| (-665 |#4|)))) (-814) (-870) (-318) (-977 |#3| |#1| |#2|)) (T -944)) -((-4209 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)))) (-4209 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) (-4209 (*1 *2 *2 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-665 (-1202 *7))) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-1202 *7)) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) (-2420 (*1 *2 *2 *2) (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)))) (-2420 (*1 *2 *2 *2) (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4))))) -(-10 -7 (-15 -2420 (|#4| |#4| |#4|)) (-15 -2420 (|#4| (-665 |#4|))) (-15 -2420 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -2420 ((-1202 |#4|) (-665 (-1202 |#4|)))) (-15 -4209 (|#4| |#4| |#4|)) (-15 -4209 ((-1202 |#4|) (-1202 |#4|) (-1202 |#4|))) (-15 -4209 (|#4| (-665 |#4|)))) -((-2191 (((-932 (-577)) (-1001)) 38 T ELT) (((-932 (-577)) (-665 (-577))) 34 T ELT)) (-2443 (((-932 (-577)) (-665 (-577))) 67 T ELT) (((-932 (-577)) (-949)) 68 T ELT)) (-2194 (((-932 (-577))) 39 T ELT)) (-2893 (((-932 (-577))) 53 T ELT) (((-932 (-577)) (-665 (-577))) 52 T ELT)) (-4337 (((-932 (-577))) 51 T ELT) (((-932 (-577)) (-665 (-577))) 50 T ELT)) (-2780 (((-932 (-577))) 49 T ELT) (((-932 (-577)) (-665 (-577))) 48 T ELT)) (-3869 (((-932 (-577))) 47 T ELT) (((-932 (-577)) (-665 (-577))) 46 T ELT)) (-2375 (((-932 (-577))) 45 T ELT) (((-932 (-577)) (-665 (-577))) 44 T ELT)) (-3783 (((-932 (-577))) 55 T ELT) (((-932 (-577)) (-665 (-577))) 54 T ELT)) (-1361 (((-932 (-577)) (-665 (-577))) 72 T ELT) (((-932 (-577)) (-949)) 74 T ELT)) (-3814 (((-932 (-577)) (-665 (-577))) 69 T ELT) (((-932 (-577)) (-949)) 70 T ELT)) (-3822 (((-932 (-577)) (-665 (-577))) 65 T ELT) (((-932 (-577)) (-949)) 66 T ELT)) (-3176 (((-932 (-577)) (-665 (-949))) 57 T ELT))) -(((-945) (-10 -7 (-15 -2443 ((-932 (-577)) (-949))) (-15 -2443 ((-932 (-577)) (-665 (-577)))) (-15 -3822 ((-932 (-577)) (-949))) (-15 -3822 ((-932 (-577)) (-665 (-577)))) (-15 -3176 ((-932 (-577)) (-665 (-949)))) (-15 -3814 ((-932 (-577)) (-949))) (-15 -3814 ((-932 (-577)) (-665 (-577)))) (-15 -1361 ((-932 (-577)) (-949))) (-15 -1361 ((-932 (-577)) (-665 (-577)))) (-15 -2375 ((-932 (-577)) (-665 (-577)))) (-15 -2375 ((-932 (-577)))) (-15 -3869 ((-932 (-577)) (-665 (-577)))) (-15 -3869 ((-932 (-577)))) (-15 -2780 ((-932 (-577)) (-665 (-577)))) (-15 -2780 ((-932 (-577)))) (-15 -4337 ((-932 (-577)) (-665 (-577)))) (-15 -4337 ((-932 (-577)))) (-15 -2893 ((-932 (-577)) (-665 (-577)))) (-15 -2893 ((-932 (-577)))) (-15 -3783 ((-932 (-577)) (-665 (-577)))) (-15 -3783 ((-932 (-577)))) (-15 -2194 ((-932 (-577)))) (-15 -2191 ((-932 (-577)) (-665 (-577)))) (-15 -2191 ((-932 (-577)) (-1001))))) (T -945)) -((-2191 (*1 *2 *3) (-12 (-5 *3 (-1001)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2194 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3783 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2893 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-4337 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-4337 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2780 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3869 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2375 (*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(-10 -7 (-15 -2443 ((-932 (-577)) (-949))) (-15 -2443 ((-932 (-577)) (-665 (-577)))) (-15 -3822 ((-932 (-577)) (-949))) (-15 -3822 ((-932 (-577)) (-665 (-577)))) (-15 -3176 ((-932 (-577)) (-665 (-949)))) (-15 -3814 ((-932 (-577)) (-949))) (-15 -3814 ((-932 (-577)) (-665 (-577)))) (-15 -1361 ((-932 (-577)) (-949))) (-15 -1361 ((-932 (-577)) (-665 (-577)))) (-15 -2375 ((-932 (-577)) (-665 (-577)))) (-15 -2375 ((-932 (-577)))) (-15 -3869 ((-932 (-577)) (-665 (-577)))) (-15 -3869 ((-932 (-577)))) (-15 -2780 ((-932 (-577)) (-665 (-577)))) (-15 -2780 ((-932 (-577)))) (-15 -4337 ((-932 (-577)) (-665 (-577)))) (-15 -4337 ((-932 (-577)))) (-15 -2893 ((-932 (-577)) (-665 (-577)))) (-15 -2893 ((-932 (-577)))) (-15 -3783 ((-932 (-577)) (-665 (-577)))) (-15 -3783 ((-932 (-577)))) (-15 -2194 ((-932 (-577)))) (-15 -2191 ((-932 (-577)) (-665 (-577)))) (-15 -2191 ((-932 (-577)) (-1001)))) -((-1706 (((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))) 14 T ELT)) (-4148 (((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))) 13 T ELT))) -(((-946 |#1|) (-10 -7 (-15 -4148 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -1706 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))))) (-465)) (T -946)) -((-1706 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) (-5 *1 (-946 *4)))) (-4148 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) (-5 *1 (-946 *4))))) -(-10 -7 (-15 -4148 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -1706 ((-665 (-980 |#1|)) (-665 (-980 |#1|)) (-665 (-1206))))) -((-2410 (((-327 |#1|) (-490)) 16 T ELT))) -(((-947 |#1|) (-10 -7 (-15 -2410 ((-327 |#1|) (-490)))) (-569)) (T -947)) -((-2410 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-947 *4)) (-4 *4 (-569))))) -(-10 -7 (-15 -2410 ((-327 |#1|) (-490)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-948) (-141)) (T -948)) -((-1426 (*1 *2 *3) (-12 (-4 *1 (-948)) (-5 *2 (-2 (|:| -2671 (-665 *1)) (|:| -2846 *1))) (-5 *3 (-665 *1)))) (-2576 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-948))))) -(-13 (-465) (-10 -8 (-15 -1426 ((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $))) (-15 -2576 ((-3 (-665 $) "failed") (-665 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2378 (($) NIL T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-949) (-13 (-815) (-747) (-10 -8 (-15 -2420 ($ $ $)) (-6 (-4501 "*"))))) (T -949)) -((-2420 (*1 *1 *1 *1) (-5 *1 (-949)))) -(-13 (-815) (-747) (-10 -8 (-15 -2420 ($ $ $)) (-6 (-4501 "*")))) +((-2096 (((-3 |#2| "failed") |#2| |#2| (-116) (-1207)) 37 T ELT))) +(((-794 |#1| |#2|) (-10 -7 (-15 -2096 ((-3 |#2| "failed") |#2| |#2| (-116) (-1207)))) (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149)) (-13 (-29 |#1|) (-1233) (-988))) (T -794)) +((-2096 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-116)) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *1 (-794 *5 *2)) (-4 *2 (-13 (-29 *5) (-1233) (-988)))))) +(-10 -7 (-15 -2096 ((-3 |#2| "failed") |#2| |#2| (-116) (-1207)))) +((-2411 (((-796) |#1|) 8 T ELT))) +(((-795 |#1|) (-10 -7 (-15 -2411 ((-796) |#1|))) (-1248)) (T -795)) +((-2411 (*1 *2 *3) (-12 (-5 *2 (-796)) (-5 *1 (-795 *3)) (-4 *3 (-1248))))) +(-10 -7 (-15 -2411 ((-796) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 7 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 9 T ELT))) +(((-796) (-1131)) (T -796)) +NIL +(-1131) +((-1550 ((|#2| |#4|) 35 T ELT))) +(((-797 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1550 (|#2| |#4|))) (-466) (-1274 |#1|) (-746 |#1| |#2|) (-1274 |#3|)) (T -797)) +((-1550 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1274 *5))))) +(-10 -7 (-15 -1550 (|#2| |#4|))) +((-3493 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-1843 (((-1303) (-1189) (-1189) |#4| |#5|) 33 T ELT)) (-2041 ((|#4| |#4| |#5|) 74 T ELT)) (-3210 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|) 79 T ELT)) (-4181 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|) 16 T ELT))) +(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3493 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2041 (|#4| |#4| |#5|)) (-15 -3210 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -1843 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -4181 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -798)) +((-4181 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1843 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1189)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *4 (-1096 *6 *7 *8)) (-5 *2 (-1303)) (-5 *1 (-798 *6 *7 *8 *4 *5)) (-4 *5 (-1102 *6 *7 *8 *4)))) (-3210 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2041 (*1 *2 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *2 (-1096 *4 *5 *6)) (-5 *1 (-798 *4 *5 *6 *2 *3)) (-4 *3 (-1102 *4 *5 *6 *2)))) (-3493 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(-10 -7 (-15 -3493 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2041 (|#4| |#4| |#5|)) (-15 -3210 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -1843 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -4181 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|))) +((-2818 (((-3 (-1203 (-1203 |#1|)) "failed") |#4|) 51 T ELT)) (-1884 (((-666 |#4|) |#4|) 22 T ELT)) (-1536 ((|#4| |#4|) 17 T ELT))) +(((-799 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1884 ((-666 |#4|) |#4|)) (-15 -2818 ((-3 (-1203 (-1203 |#1|)) "failed") |#4|)) (-15 -1536 (|#4| |#4|))) (-362) (-341 |#1|) (-1274 |#2|) (-1274 |#3|) (-950)) (T -799)) +((-1536 (*1 *2 *2) (-12 (-4 *3 (-362)) (-4 *4 (-341 *3)) (-4 *5 (-1274 *4)) (-5 *1 (-799 *3 *4 *5 *2 *6)) (-4 *2 (-1274 *5)) (-14 *6 (-950)))) (-2818 (*1 *2 *3) (|partial| -12 (-4 *4 (-362)) (-4 *5 (-341 *4)) (-4 *6 (-1274 *5)) (-5 *2 (-1203 (-1203 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1274 *6)) (-14 *7 (-950)))) (-1884 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *5 (-341 *4)) (-4 *6 (-1274 *5)) (-5 *2 (-666 *3)) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1274 *6)) (-14 *7 (-950))))) +(-10 -7 (-15 -1884 ((-666 |#4|) |#4|)) (-15 -2818 ((-3 (-1203 (-1203 |#1|)) "failed") |#4|)) (-15 -1536 (|#4| |#4|))) +((-3416 (((-2 (|:| |deter| (-666 (-1203 |#5|))) (|:| |dterm| (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-666 |#1|)) (|:| |nlead| (-666 |#5|))) (-1203 |#5|) (-666 |#1|) (-666 |#5|)) 72 T ELT)) (-2911 (((-666 (-793)) |#1|) 20 T ELT))) +(((-800 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3416 ((-2 (|:| |deter| (-666 (-1203 |#5|))) (|:| |dterm| (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-666 |#1|)) (|:| |nlead| (-666 |#5|))) (-1203 |#5|) (-666 |#1|) (-666 |#5|))) (-15 -2911 ((-666 (-793)) |#1|))) (-1274 |#4|) (-815) (-871) (-319) (-978 |#4| |#2| |#3|)) (T -800)) +((-2911 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-666 (-793))) (-5 *1 (-800 *3 *4 *5 *6 *7)) (-4 *3 (-1274 *6)) (-4 *7 (-978 *6 *4 *5)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1274 *9)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-319)) (-4 *10 (-978 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-666 (-1203 *10))) (|:| |dterm| (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| *10))))) (|:| |nfacts| (-666 *6)) (|:| |nlead| (-666 *10)))) (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1203 *10)) (-5 *4 (-666 *6)) (-5 *5 (-666 *10))))) +(-10 -7 (-15 -3416 ((-2 (|:| |deter| (-666 (-1203 |#5|))) (|:| |dterm| (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-666 |#1|)) (|:| |nlead| (-666 |#5|))) (-1203 |#5|) (-666 |#1|) (-666 |#5|))) (-15 -2911 ((-666 (-793)) |#1|))) +((-4013 (((-666 (-2 (|:| |outval| |#1|) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 |#1|))))) (-711 (-421 (-578))) |#1|) 31 T ELT)) (-3412 (((-666 |#1|) (-711 (-421 (-578))) |#1|) 21 T ELT)) (-1566 (((-981 (-421 (-578))) (-711 (-421 (-578))) (-1207)) 18 T ELT) (((-981 (-421 (-578))) (-711 (-421 (-578)))) 17 T ELT))) +(((-801 |#1|) (-10 -7 (-15 -1566 ((-981 (-421 (-578))) (-711 (-421 (-578))))) (-15 -1566 ((-981 (-421 (-578))) (-711 (-421 (-578))) (-1207))) (-15 -3412 ((-666 |#1|) (-711 (-421 (-578))) |#1|)) (-15 -4013 ((-666 (-2 (|:| |outval| |#1|) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 |#1|))))) (-711 (-421 (-578))) |#1|))) (-13 (-376) (-870))) (T -801)) +((-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-578)))) (-5 *2 (-666 (-2 (|:| |outval| *4) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 *4)))))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-578)))) (-5 *2 (-666 *4)) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))) (-1566 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-578)))) (-5 *4 (-1207)) (-5 *2 (-981 (-421 (-578)))) (-5 *1 (-801 *5)) (-4 *5 (-13 (-376) (-870))))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-578)))) (-5 *2 (-981 (-421 (-578)))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870)))))) +(-10 -7 (-15 -1566 ((-981 (-421 (-578))) (-711 (-421 (-578))))) (-15 -1566 ((-981 (-421 (-578))) (-711 (-421 (-578))) (-1207))) (-15 -3412 ((-666 |#1|) (-711 (-421 (-578))) |#1|)) (-15 -4013 ((-666 (-2 (|:| |outval| |#1|) (|:| |outmult| (-578)) (|:| |outvect| (-666 (-711 |#1|))))) (-711 (-421 (-578))) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 36 T ELT)) (-2949 (((-666 |#2|) $) NIL T ELT)) (-4420 (((-1203 $) $ |#2|) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 |#2|)) NIL T ELT)) (-3841 (($ $) 30 T ELT)) (-3296 (((-112) $ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3594 (($ $ $) 110 (|has| |#1| (-570)) ELT)) (-2054 (((-666 $) $ $) 123 (|has| |#1| (-570)) ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 $ "failed") (-981 (-421 (-578)))) NIL (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207)))) ELT) (((-3 $ "failed") (-981 (-578))) NIL (-2230 (-12 (|has| |#1| (-38 (-578))) (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-38 (-421 (-578)))))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207))))) ELT) (((-3 $ "failed") (-981 |#1|)) NIL (-2230 (-12 (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-38 (-421 (-578))))) (-2309 (|has| |#1| (-38 (-578))))) (-12 (|has| |#1| (-38 (-578))) (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-38 (-421 (-578))))) (-2309 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-1023 (-578)))))) ELT) (((-3 (-1156 |#1| |#2|) "failed") $) 21 T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) ((|#2| $) NIL T ELT) (($ (-981 (-421 (-578)))) NIL (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207)))) ELT) (($ (-981 (-578))) NIL (-2230 (-12 (|has| |#1| (-38 (-578))) (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-38 (-421 (-578)))))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207))))) ELT) (($ (-981 |#1|)) NIL (-2230 (-12 (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-38 (-421 (-578))))) (-2309 (|has| |#1| (-38 (-578))))) (-12 (|has| |#1| (-38 (-578))) (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-38 (-421 (-578))))) (-2309 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-1023 (-578)))))) ELT) (((-1156 |#1| |#2|) $) NIL T ELT)) (-2035 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-570)) ELT)) (-3136 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2582 (((-112) $ $) NIL T ELT) (((-112) $ (-666 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2334 (((-112) $) NIL T ELT)) (-3580 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 81 T ELT)) (-4261 (($ $) 136 (|has| |#1| (-466)) ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-4259 (($ $) NIL (|has| |#1| (-570)) ELT)) (-1700 (($ $) NIL (|has| |#1| (-570)) ELT)) (-4256 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3733 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-2535 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| |#1| (-911 (-392))) (|has| |#2| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| |#1| (-911 (-578))) (|has| |#2| (-911 (-578)))) ELT)) (-4382 (((-112) $) 57 T ELT)) (-3380 (((-793) $) NIL T ELT)) (-4308 (((-112) $ $) NIL T ELT) (((-112) $ (-666 $)) NIL T ELT)) (-2804 (($ $ $ $ $) 107 (|has| |#1| (-570)) ELT)) (-2537 ((|#2| $) 22 T ELT)) (-2936 (($ (-1203 |#1|) |#2|) NIL T ELT) (($ (-1203 $) |#2|) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 38 T ELT) (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT)) (-4067 (($ $ $) 63 T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |#2|) NIL T ELT)) (-4216 (((-112) $) NIL T ELT)) (-3937 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT) (((-666 (-793)) $ (-666 |#2|)) NIL T ELT)) (-1654 (((-793) $) 23 T ELT)) (-2500 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4006 (((-3 |#2| "failed") $) NIL T ELT)) (-2398 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2313 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3945 (((-666 $) $) NIL T ELT)) (-2659 (($ $) 39 T ELT)) (-3693 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4153 (((-666 $) $) 43 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3781 (($ $) 41 T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1348 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2666 (-793))) $ $) 96 T ELT)) (-1834 (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $) 78 T ELT) (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $ |#2|) NIL T ELT)) (-2826 (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $) NIL T ELT) (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $ |#2|) NIL T ELT)) (-3679 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-4237 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3064 (($ $ $) 125 (|has| |#1| (-570)) ELT)) (-3723 (((-666 $) $) 32 T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| |#2|) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-3084 (((-112) $ $) NIL T ELT) (((-112) $ (-666 $)) NIL T ELT)) (-3494 (($ $ $) NIL T ELT)) (-2199 (($ $) 24 T ELT)) (-3151 (((-112) $ $) NIL T ELT)) (-2643 (((-112) $ $) NIL T ELT) (((-112) $ (-666 $)) NIL T ELT)) (-1922 (($ $ $) NIL T ELT)) (-2045 (($ $) 26 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1862 (((-2 (|:| -2421 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-570)) ELT)) (-1853 (((-2 (|:| -2421 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-570)) ELT)) (-3067 (((-112) $) 56 T ELT)) (-3080 ((|#1| $) 58 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 ((|#1| |#1| $) 133 (|has| |#1| (-466)) ELT) (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3730 (((-2 (|:| -2421 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-570)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-570)) ELT)) (-2217 (($ $ |#1|) 129 (|has| |#1| (-570)) ELT) (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-1675 (($ $ |#1|) 128 (|has| |#1| (-570)) ELT) (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-666 |#2|) (-666 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-666 |#2|) (-666 $)) NIL T ELT)) (-3232 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3683 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) 45 T ELT) (((-666 (-793)) $ (-666 |#2|)) NIL T ELT)) (-3958 (($ $) NIL T ELT)) (-2565 (($ $) 35 T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| |#1| (-633 (-550))) (|has| |#2| (-633 (-550)))) ELT) (($ (-981 (-421 (-578)))) NIL (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207)))) ELT) (($ (-981 (-578))) NIL (-2230 (-12 (|has| |#1| (-38 (-578))) (|has| |#2| (-633 (-1207))) (-2309 (|has| |#1| (-38 (-421 (-578)))))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#2| (-633 (-1207))))) ELT) (($ (-981 |#1|)) NIL (|has| |#2| (-633 (-1207))) ELT) (((-1189) $) NIL (-12 (|has| |#1| (-1069 (-578))) (|has| |#2| (-633 (-1207)))) ELT) (((-981 |#1|) $) NIL (|has| |#2| (-633 (-1207))) ELT)) (-4325 ((|#1| $) 132 (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-981 |#1|) $) NIL (|has| |#2| (-633 (-1207))) ELT) (((-1156 |#1| |#2|) $) 18 T ELT) (($ (-1156 |#1| |#2|)) 19 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 47 T ELT) (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) 13 T CONST)) (-1422 (((-3 (-112) "failed") $ $) NIL T ELT)) (-2379 (($) 37 T CONST)) (-2696 (($ $ $ $ (-793)) 105 (|has| |#1| (-570)) ELT)) (-3016 (($ $ $ (-793)) 104 (|has| |#1| (-570)) ELT)) (-1676 (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-2472 (($ $ $) 85 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 70 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-802 |#1| |#2|) (-13 (-1096 |#1| (-545 |#2|) |#2|) (-632 (-1156 |#1| |#2|)) (-1069 (-1156 |#1| |#2|))) (-1080) (-871)) (T -802)) +NIL +(-13 (-1096 |#1| (-545 |#2|) |#2|) (-632 (-1156 |#1| |#2|)) (-1069 (-1156 |#1| |#2|))) +((-3611 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 13 T ELT))) +(((-803 |#1| |#2|) (-10 -7 (-15 -3611 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1080) (-1080)) (T -803)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6))))) +(-10 -7 (-15 -3611 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 12 T ELT)) (-2981 (((-1298 |#1|) $ (-793)) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-1868 (($ (-1203 |#1|)) NIL T ELT)) (-4420 (((-1203 $) $ (-1113)) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-1113))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2768 (((-666 $) $ $) 54 (|has| |#1| (-570)) ELT)) (-3594 (($ $ $) 50 (|has| |#1| (-570)) ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-3734 (($ $ (-793)) NIL T ELT)) (-3794 (($ $ (-793)) NIL T ELT)) (-4299 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-1113) "failed") $) NIL T ELT) (((-3 (-1203 |#1|) "failed") $) 10 T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-1113) $) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-2035 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4467 (($ $ $) NIL T ELT)) (-4407 (($ $ $) 87 (|has| |#1| (-570)) ELT)) (-3580 (((-2 (|:| -2672 |#1|) (|:| -2196 $) (|:| -1886 $)) $ $) 86 (|has| |#1| (-570)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-793) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1113) (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1113) (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4059 (((-793) $ $) NIL (|has| |#1| (-570)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-1183)) ELT)) (-2936 (($ (-1203 |#1|) (-1113)) NIL T ELT) (($ (-1203 $) (-1113)) NIL T ELT)) (-4196 (($ $ (-793)) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-4067 (($ $ $) 27 T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3937 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-2500 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1781 (((-1203 |#1|) $) NIL T ELT)) (-4006 (((-3 (-1113) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1348 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2666 (-793))) $ $) 37 T ELT)) (-2534 (($ $ $) 41 T ELT)) (-1636 (($ $ $) 47 T ELT)) (-1834 (((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $) 46 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3064 (($ $ $) 56 (|has| |#1| (-570)) ELT)) (-2599 (((-2 (|:| -2196 $) (|:| -1886 $)) $ (-793)) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-1113)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2199 (($) NIL (|has| |#1| (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1862 (((-2 (|:| -2421 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-570)) ELT)) (-1853 (((-2 (|:| -2421 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-570)) ELT)) (-4336 (((-2 (|:| -2035 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-570)) ELT)) (-2029 (((-2 (|:| -2035 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-570)) ELT)) (-3067 (((-112) $) 13 T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-4406 (($ $ (-793) |#1| $) 26 T ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3730 (((-2 (|:| -2421 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-570)) ELT)) (-1815 (((-2 (|:| -2035 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-570)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-666 (-1113)) (-666 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-666 (-1113)) (-666 $)) NIL T ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-570)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-570)) ELT)) (-3293 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3232 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3683 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-1113) (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-1825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-570)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1113)) NIL T ELT) (((-1203 |#1|) $) 7 T ELT) (($ (-1203 |#1|)) 8 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) 28 T CONST)) (-2379 (($) 32 T CONST)) (-1676 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-804 |#1|) (-13 (-1274 |#1|) (-632 (-1203 |#1|)) (-1069 (-1203 |#1|)) (-10 -8 (-15 -4406 ($ $ (-793) |#1| $)) (-15 -4067 ($ $ $)) (-15 -1348 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2666 (-793))) $ $)) (-15 -2534 ($ $ $)) (-15 -1834 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -1636 ($ $ $)) (IF (|has| |#1| (-570)) (PROGN (-15 -2768 ((-666 $) $ $)) (-15 -3064 ($ $ $)) (-15 -3730 ((-2 (|:| -2421 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1853 ((-2 (|:| -2421 $) (|:| |coef1| $)) $ $)) (-15 -1862 ((-2 (|:| -2421 $) (|:| |coef2| $)) $ $)) (-15 -1815 ((-2 (|:| -2035 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2029 ((-2 (|:| -2035 |#1|) (|:| |coef1| $)) $ $)) (-15 -4336 ((-2 (|:| -2035 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1080)) (T -804)) +((-4406 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-804 *3)) (-4 *3 (-1080)))) (-4067 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1080)))) (-1348 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-804 *3)) (|:| |polden| *3) (|:| -2666 (-793)))) (-5 *1 (-804 *3)) (-4 *3 (-1080)))) (-2534 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1080)))) (-1834 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2672 *3) (|:| |gap| (-793)) (|:| -2196 (-804 *3)) (|:| -1886 (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-1080)))) (-1636 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1080)))) (-2768 (*1 *2 *1 *1) (-12 (-5 *2 (-666 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) (-3064 (*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-570)) (-4 *2 (-1080)))) (-3730 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2421 (-804 *3)) (|:| |coef1| (-804 *3)) (|:| |coef2| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) (-1853 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2421 (-804 *3)) (|:| |coef1| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) (-1862 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2421 (-804 *3)) (|:| |coef2| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) (-1815 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2035 *3) (|:| |coef1| (-804 *3)) (|:| |coef2| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) (-2029 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2035 *3) (|:| |coef1| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) (-4336 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2035 *3) (|:| |coef2| (-804 *3)))) (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080))))) +(-13 (-1274 |#1|) (-632 (-1203 |#1|)) (-1069 (-1203 |#1|)) (-10 -8 (-15 -4406 ($ $ (-793) |#1| $)) (-15 -4067 ($ $ $)) (-15 -1348 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2666 (-793))) $ $)) (-15 -2534 ($ $ $)) (-15 -1834 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -1636 ($ $ $)) (IF (|has| |#1| (-570)) (PROGN (-15 -2768 ((-666 $) $ $)) (-15 -3064 ($ $ $)) (-15 -3730 ((-2 (|:| -2421 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1853 ((-2 (|:| -2421 $) (|:| |coef1| $)) $ $)) (-15 -1862 ((-2 (|:| -2421 $) (|:| |coef2| $)) $ $)) (-15 -1815 ((-2 (|:| -2035 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2029 ((-2 (|:| -2035 |#1|) (|:| |coef1| $)) $ $)) (-15 -4336 ((-2 (|:| -2035 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4195 ((|#1| (-793) |#1|) 33 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3735 ((|#1| (-793) |#1|) 23 T ELT)) (-1709 ((|#1| (-793) |#1|) 35 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-805 |#1|) (-10 -7 (-15 -3735 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -1709 (|#1| (-793) |#1|)) (-15 -4195 (|#1| (-793) |#1|))) |%noBranch|)) (-175)) (T -805)) +((-4195 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-175)))) (-1709 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-175)))) (-3735 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175))))) +(-10 -7 (-15 -3735 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -1709 (|#1| (-793) |#1|)) (-15 -4195 (|#1| (-793) |#1|))) |%noBranch|)) +((-3213 (((-112) $ $) 7 T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) 86 T ELT)) (-3997 (((-666 $) (-666 |#4|)) 87 T ELT) (((-666 $) (-666 |#4|) (-112)) 112 T ELT)) (-2949 (((-666 |#3|) $) 34 T ELT)) (-3039 (((-112) $) 27 T ELT)) (-2774 (((-112) $) 18 (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-2596 ((|#4| |#4| $) 93 T ELT)) (-1457 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| $) 127 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1628 (((-112) $ (-793)) 45 T ELT)) (-4233 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3534 (($) 46 T CONST)) (-4147 (((-112) $) 23 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) 25 (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) 24 (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) 26 (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) 19 (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) 20 (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) 37 T ELT)) (-3516 (($ (-666 |#4|)) 36 T ELT)) (-4198 (((-3 $ "failed") $) 83 T ELT)) (-1707 ((|#4| |#4| $) 90 T ELT)) (-3776 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3069 ((|#4| |#4| $) 88 T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) 106 T ELT)) (-1434 (((-112) |#4| $) 137 T ELT)) (-2669 (((-112) |#4| $) 134 T ELT)) (-2762 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2729 (((-666 |#4|) $) 53 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-2537 ((|#3| $) 35 T ELT)) (-2363 (((-112) $ (-793)) 44 T ELT)) (-1441 (((-666 |#4|) $) 54 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3117 (((-666 |#3|) $) 33 T ELT)) (-1455 (((-112) |#3| $) 32 T ELT)) (-1719 (((-112) $ (-793)) 43 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1763 (((-3 |#4| (-666 $)) |#4| |#4| $) 129 T ELT)) (-3064 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| |#4| $) 128 T ELT)) (-2757 (((-3 |#4| "failed") $) 84 T ELT)) (-4044 (((-666 $) |#4| $) 130 T ELT)) (-3976 (((-3 (-112) (-666 $)) |#4| $) 133 T ELT)) (-1835 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3457 (((-666 $) |#4| $) 126 T ELT) (((-666 $) (-666 |#4|) $) 125 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 124 T ELT) (((-666 $) |#4| (-666 $)) 123 T ELT)) (-4064 (($ |#4| $) 118 T ELT) (($ (-666 |#4|) $) 117 T ELT)) (-1708 (((-666 |#4|) $) 108 T ELT)) (-3084 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-3494 ((|#4| |#4| $) 91 T ELT)) (-3151 (((-112) $ $) 111 T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-1922 ((|#4| |#4| $) 92 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4189 (((-3 |#4| "failed") $) 85 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2704 (($ $ |#4|) 78 T ELT) (((-666 $) |#4| $) 116 T ELT) (((-666 $) |#4| (-666 $)) 115 T ELT) (((-666 $) (-666 |#4|) $) 114 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 113 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) 39 T ELT)) (-4186 (((-112) $) 42 T ELT)) (-1696 (($) 41 T ELT)) (-3683 (((-793) $) 107 T ELT)) (-4324 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 40 T ELT)) (-3343 (((-550) $) 70 (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 61 T ELT)) (-1339 (($ $ |#3|) 29 T ELT)) (-2093 (($ $ |#3|) 31 T ELT)) (-2499 (($ $) 89 T ELT)) (-3102 (($ $ |#3|) 30 T ELT)) (-2411 (((-886) $) 12 T ELT) (((-666 |#4|) $) 38 T ELT)) (-2474 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) 99 T ELT)) (-2557 (((-666 $) |#4| $) 122 T ELT) (((-666 $) |#4| (-666 $)) 121 T ELT) (((-666 $) (-666 |#4|) $) 120 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 119 T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) 82 T ELT)) (-3091 (((-112) |#4| $) 136 T ELT)) (-2714 (((-112) |#3| $) 81 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-793) $) 47 (|has| $ (-6 -4500)) ELT))) +(((-806 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -806)) +NIL +(-13 (-1102 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-632 (-666 |#4|)) . T) ((-632 (-886)) . T) ((-153 |#4|) . T) ((-633 (-550)) |has| |#4| (-633 (-550))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1241 |#1| |#2| |#3| |#4|) . T) ((-1248) . T)) +((-4302 (((-3 (-392) "failed") (-328 |#1|) (-950)) 62 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-3 (-392) "failed") (-328 |#1|)) 54 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-3 (-392) "failed") (-421 (-981 |#1|)) (-950)) 41 (|has| |#1| (-570)) ELT) (((-3 (-392) "failed") (-421 (-981 |#1|))) 40 (|has| |#1| (-570)) ELT) (((-3 (-392) "failed") (-981 |#1|) (-950)) 31 (|has| |#1| (-1080)) ELT) (((-3 (-392) "failed") (-981 |#1|)) 30 (|has| |#1| (-1080)) ELT)) (-3973 (((-392) (-328 |#1|) (-950)) 99 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-392) (-328 |#1|)) 94 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-392) (-421 (-981 |#1|)) (-950)) 91 (|has| |#1| (-570)) ELT) (((-392) (-421 (-981 |#1|))) 90 (|has| |#1| (-570)) ELT) (((-392) (-981 |#1|) (-950)) 86 (|has| |#1| (-1080)) ELT) (((-392) (-981 |#1|)) 85 (|has| |#1| (-1080)) ELT) (((-392) |#1| (-950)) 76 T ELT) (((-392) |#1|) 22 T ELT)) (-2445 (((-3 (-172 (-392)) "failed") (-328 (-172 |#1|)) (-950)) 71 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-3 (-172 (-392)) "failed") (-328 (-172 |#1|))) 70 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-3 (-172 (-392)) "failed") (-328 |#1|) (-950)) 63 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-3 (-172 (-392)) "failed") (-328 |#1|)) 61 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-3 (-172 (-392)) "failed") (-421 (-981 (-172 |#1|))) (-950)) 46 (|has| |#1| (-570)) ELT) (((-3 (-172 (-392)) "failed") (-421 (-981 (-172 |#1|)))) 45 (|has| |#1| (-570)) ELT) (((-3 (-172 (-392)) "failed") (-421 (-981 |#1|)) (-950)) 39 (|has| |#1| (-570)) ELT) (((-3 (-172 (-392)) "failed") (-421 (-981 |#1|))) 38 (|has| |#1| (-570)) ELT) (((-3 (-172 (-392)) "failed") (-981 |#1|) (-950)) 28 (|has| |#1| (-1080)) ELT) (((-3 (-172 (-392)) "failed") (-981 |#1|)) 26 (|has| |#1| (-1080)) ELT) (((-3 (-172 (-392)) "failed") (-981 (-172 |#1|)) (-950)) 18 (|has| |#1| (-175)) ELT) (((-3 (-172 (-392)) "failed") (-981 (-172 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-4366 (((-172 (-392)) (-328 (-172 |#1|)) (-950)) 102 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-172 (-392)) (-328 (-172 |#1|))) 101 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-172 (-392)) (-328 |#1|) (-950)) 100 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-172 (-392)) (-328 |#1|)) 98 (-12 (|has| |#1| (-570)) (|has| |#1| (-871))) ELT) (((-172 (-392)) (-421 (-981 (-172 |#1|))) (-950)) 93 (|has| |#1| (-570)) ELT) (((-172 (-392)) (-421 (-981 (-172 |#1|)))) 92 (|has| |#1| (-570)) ELT) (((-172 (-392)) (-421 (-981 |#1|)) (-950)) 89 (|has| |#1| (-570)) ELT) (((-172 (-392)) (-421 (-981 |#1|))) 88 (|has| |#1| (-570)) ELT) (((-172 (-392)) (-981 |#1|) (-950)) 84 (|has| |#1| (-1080)) ELT) (((-172 (-392)) (-981 |#1|)) 83 (|has| |#1| (-1080)) ELT) (((-172 (-392)) (-981 (-172 |#1|)) (-950)) 78 (|has| |#1| (-175)) ELT) (((-172 (-392)) (-981 (-172 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-172 (-392)) (-172 |#1|) (-950)) 80 (|has| |#1| (-175)) ELT) (((-172 (-392)) (-172 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-172 (-392)) |#1| (-950)) 27 T ELT) (((-172 (-392)) |#1|) 25 T ELT))) +(((-807 |#1|) (-10 -7 (-15 -3973 ((-392) |#1|)) (-15 -3973 ((-392) |#1| (-950))) (-15 -4366 ((-172 (-392)) |#1|)) (-15 -4366 ((-172 (-392)) |#1| (-950))) (IF (|has| |#1| (-175)) (PROGN (-15 -4366 ((-172 (-392)) (-172 |#1|))) (-15 -4366 ((-172 (-392)) (-172 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-981 (-172 |#1|)))) (-15 -4366 ((-172 (-392)) (-981 (-172 |#1|)) (-950)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -3973 ((-392) (-981 |#1|))) (-15 -3973 ((-392) (-981 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-981 |#1|))) (-15 -4366 ((-172 (-392)) (-981 |#1|) (-950)))) |%noBranch|) (IF (|has| |#1| (-570)) (PROGN (-15 -3973 ((-392) (-421 (-981 |#1|)))) (-15 -3973 ((-392) (-421 (-981 |#1|)) (-950))) (-15 -4366 ((-172 (-392)) (-421 (-981 |#1|)))) (-15 -4366 ((-172 (-392)) (-421 (-981 |#1|)) (-950))) (-15 -4366 ((-172 (-392)) (-421 (-981 (-172 |#1|))))) (-15 -4366 ((-172 (-392)) (-421 (-981 (-172 |#1|))) (-950))) (IF (|has| |#1| (-871)) (PROGN (-15 -3973 ((-392) (-328 |#1|))) (-15 -3973 ((-392) (-328 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-328 |#1|))) (-15 -4366 ((-172 (-392)) (-328 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-328 (-172 |#1|)))) (-15 -4366 ((-172 (-392)) (-328 (-172 |#1|)) (-950)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 (-172 |#1|)))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 (-172 |#1|)) (-950)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -4302 ((-3 (-392) "failed") (-981 |#1|))) (-15 -4302 ((-3 (-392) "failed") (-981 |#1|) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 |#1|))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 |#1|) (-950)))) |%noBranch|) (IF (|has| |#1| (-570)) (PROGN (-15 -4302 ((-3 (-392) "failed") (-421 (-981 |#1|)))) (-15 -4302 ((-3 (-392) "failed") (-421 (-981 |#1|)) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 |#1|)))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 |#1|)) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 (-172 |#1|))))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 (-172 |#1|))) (-950))) (IF (|has| |#1| (-871)) (PROGN (-15 -4302 ((-3 (-392) "failed") (-328 |#1|))) (-15 -4302 ((-3 (-392) "failed") (-328 |#1|) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 |#1|))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 |#1|) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 (-172 |#1|)))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 (-172 |#1|)) (-950)))) |%noBranch|)) |%noBranch|)) (-633 (-392))) (T -807)) +((-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-328 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-2445 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-172 *4))) (-4 *4 (-570)) (-4 *4 (-871)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-2445 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4302 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) (-4302 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) (-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-981 (-172 *5)))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-2445 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-981 (-172 *4)))) (-4 *4 (-570)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-2445 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4302 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) (-4302 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) (-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-2445 (*1 *2 *3) (|partial| -12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4302 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) (-4302 (*1 *2 *3) (|partial| -12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) (-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-981 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-175)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-2445 (*1 *2 *3) (|partial| -12 (-5 *3 (-981 (-172 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-328 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-328 (-172 *4))) (-4 *4 (-570)) (-4 *4 (-871)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 (-172 *5)))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-421 (-981 (-172 *4)))) (-4 *4 (-570)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-981 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-175)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-981 (-172 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-172 *5)) (-5 *4 (-950)) (-4 *5 (-175)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-172 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-5 *2 (-172 (-392))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-392))))) (-4366 (*1 *2 *3) (-12 (-5 *2 (-172 (-392))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-392))))) (-3973 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-5 *2 (-392)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))) (-3973 (*1 *2 *3) (-12 (-5 *2 (-392)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2))))) +(-10 -7 (-15 -3973 ((-392) |#1|)) (-15 -3973 ((-392) |#1| (-950))) (-15 -4366 ((-172 (-392)) |#1|)) (-15 -4366 ((-172 (-392)) |#1| (-950))) (IF (|has| |#1| (-175)) (PROGN (-15 -4366 ((-172 (-392)) (-172 |#1|))) (-15 -4366 ((-172 (-392)) (-172 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-981 (-172 |#1|)))) (-15 -4366 ((-172 (-392)) (-981 (-172 |#1|)) (-950)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -3973 ((-392) (-981 |#1|))) (-15 -3973 ((-392) (-981 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-981 |#1|))) (-15 -4366 ((-172 (-392)) (-981 |#1|) (-950)))) |%noBranch|) (IF (|has| |#1| (-570)) (PROGN (-15 -3973 ((-392) (-421 (-981 |#1|)))) (-15 -3973 ((-392) (-421 (-981 |#1|)) (-950))) (-15 -4366 ((-172 (-392)) (-421 (-981 |#1|)))) (-15 -4366 ((-172 (-392)) (-421 (-981 |#1|)) (-950))) (-15 -4366 ((-172 (-392)) (-421 (-981 (-172 |#1|))))) (-15 -4366 ((-172 (-392)) (-421 (-981 (-172 |#1|))) (-950))) (IF (|has| |#1| (-871)) (PROGN (-15 -3973 ((-392) (-328 |#1|))) (-15 -3973 ((-392) (-328 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-328 |#1|))) (-15 -4366 ((-172 (-392)) (-328 |#1|) (-950))) (-15 -4366 ((-172 (-392)) (-328 (-172 |#1|)))) (-15 -4366 ((-172 (-392)) (-328 (-172 |#1|)) (-950)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 (-172 |#1|)))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 (-172 |#1|)) (-950)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -4302 ((-3 (-392) "failed") (-981 |#1|))) (-15 -4302 ((-3 (-392) "failed") (-981 |#1|) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 |#1|))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-981 |#1|) (-950)))) |%noBranch|) (IF (|has| |#1| (-570)) (PROGN (-15 -4302 ((-3 (-392) "failed") (-421 (-981 |#1|)))) (-15 -4302 ((-3 (-392) "failed") (-421 (-981 |#1|)) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 |#1|)))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 |#1|)) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 (-172 |#1|))))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-421 (-981 (-172 |#1|))) (-950))) (IF (|has| |#1| (-871)) (PROGN (-15 -4302 ((-3 (-392) "failed") (-328 |#1|))) (-15 -4302 ((-3 (-392) "failed") (-328 |#1|) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 |#1|))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 |#1|) (-950))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 (-172 |#1|)))) (-15 -2445 ((-3 (-172 (-392)) "failed") (-328 (-172 |#1|)) (-950)))) |%noBranch|)) |%noBranch|)) +((-1962 (((-950) (-1189)) 89 T ELT)) (-4047 (((-3 (-392) "failed") (-1189)) 36 T ELT)) (-3732 (((-392) (-1189)) 34 T ELT)) (-1335 (((-950) (-1189)) 63 T ELT)) (-3083 (((-1189) (-950)) 73 T ELT)) (-1866 (((-1189) (-950)) 62 T ELT))) +(((-808) (-10 -7 (-15 -1866 ((-1189) (-950))) (-15 -1335 ((-950) (-1189))) (-15 -3083 ((-1189) (-950))) (-15 -1962 ((-950) (-1189))) (-15 -3732 ((-392) (-1189))) (-15 -4047 ((-3 (-392) "failed") (-1189))))) (T -808)) +((-4047 (*1 *2 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-808)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-808)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-950)) (-5 *1 (-808)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1189)) (-5 *1 (-808)))) (-1335 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-950)) (-5 *1 (-808)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1189)) (-5 *1 (-808))))) +(-10 -7 (-15 -1866 ((-1189) (-950))) (-15 -1335 ((-950) (-1189))) (-15 -3083 ((-1189) (-950))) (-15 -1962 ((-950) (-1189))) (-15 -3732 ((-392) (-1189))) (-15 -4047 ((-3 (-392) "failed") (-1189)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3105 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 16 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 14 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 15 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-809) (-142)) (T -809)) +((-4374 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066)))))) (-3105 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1066)) (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-4374 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066)))))) (-3105 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1066)) (-5 *3 (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) +(-13 (-1131) (-10 -7 (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3105 ((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3105 ((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-2716 (((-1303) (-1298 (-392)) (-578) (-392) (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392))) (-392) (-1298 (-392)) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392))) 55 T ELT) (((-1303) (-1298 (-392)) (-578) (-392) (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392))) (-392) (-1298 (-392)) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392))) 52 T ELT)) (-3904 (((-1303) (-1298 (-392)) (-578) (-392) (-392) (-578) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392))) 61 T ELT)) (-2781 (((-1303) (-1298 (-392)) (-578) (-392) (-392) (-392) (-392) (-578) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392))) 50 T ELT)) (-3719 (((-1303) (-1298 (-392)) (-578) (-392) (-392) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392))) 63 T ELT) (((-1303) (-1298 (-392)) (-578) (-392) (-392) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392))) 62 T ELT))) +(((-810) (-10 -7 (-15 -3719 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)))) (-15 -3719 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)))) (-15 -2781 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-392) (-392) (-578) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)))) (-15 -2716 ((-1303) (-1298 (-392)) (-578) (-392) (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392))) (-392) (-1298 (-392)) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)))) (-15 -2716 ((-1303) (-1298 (-392)) (-578) (-392) (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392))) (-392) (-1298 (-392)) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)))) (-15 -3904 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-578) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)))))) (T -810)) +((-3904 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2716 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-578)) (-5 *6 (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392)))) (-5 *7 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2716 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-578)) (-5 *6 (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392)))) (-5 *7 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2781 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-3719 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-3719 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) (-5 *1 (-810))))) +(-10 -7 (-15 -3719 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)))) (-15 -3719 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)))) (-15 -2781 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-392) (-392) (-578) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)))) (-15 -2716 ((-1303) (-1298 (-392)) (-578) (-392) (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392))) (-392) (-1298 (-392)) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)))) (-15 -2716 ((-1303) (-1298 (-392)) (-578) (-392) (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392))) (-392) (-1298 (-392)) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)) (-1298 (-392)))) (-15 -3904 ((-1303) (-1298 (-392)) (-578) (-392) (-392) (-578) (-1 (-1303) (-1298 (-392)) (-1298 (-392)) (-392))))) +((-3522 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578)) 64 T ELT)) (-4139 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578)) 40 T ELT)) (-3599 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578)) 63 T ELT)) (-1638 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578)) 38 T ELT)) (-1731 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578)) 62 T ELT)) (-4455 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578)) 24 T ELT)) (-1631 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578)) 41 T ELT)) (-3576 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578)) 39 T ELT)) (-2154 (((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578)) 37 T ELT))) +(((-811) (-10 -7 (-15 -2154 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578))) (-15 -3576 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578))) (-15 -1631 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578))) (-15 -4455 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -1638 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -4139 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -1731 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -3599 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -3522 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))))) (T -811)) +((-3522 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-3599 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-1731 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-4139 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-1638 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-4455 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-1631 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-3576 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578)))) (-2154 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) (|:| |success| (-112)))) (-5 *1 (-811)) (-5 *5 (-578))))) +(-10 -7 (-15 -2154 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578))) (-15 -3576 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578))) (-15 -1631 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578) (-578))) (-15 -4455 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -1638 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -4139 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -1731 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -3599 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578))) (-15 -3522 ((-2 (|:| -4120 (-392)) (|:| -3397 (-392)) (|:| |totalpts| (-578)) (|:| |success| (-112))) (-1 (-392) (-392)) (-392) (-392) (-392) (-392) (-578) (-578)))) +((-3337 (((-1243 |#1|) |#1| (-229) (-578)) 69 T ELT))) +(((-812 |#1|) (-10 -7 (-15 -3337 ((-1243 |#1|) |#1| (-229) (-578)))) (-1005)) (T -812)) +((-3337 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-578)) (-5 *2 (-1243 *3)) (-5 *1 (-812 *3)) (-4 *3 (-1005))))) +(-10 -7 (-15 -3337 ((-1243 |#1|) |#1| (-229) (-578)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 26 T ELT)) (-4028 (((-3 $ "failed") $ $) 28 T ELT)) (-3534 (($) 25 T CONST)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 24 T CONST)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (-2484 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2472 (($ $ $) 22 T ELT)) (* (($ (-950) $) 23 T ELT) (($ (-793) $) 27 T ELT) (($ (-578) $) 30 T ELT))) +(((-813) (-142)) (T -813)) +NIL +(-13 (-817) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-871) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 26 T ELT)) (-3534 (($) 25 T CONST)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 24 T CONST)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (-2472 (($ $ $) 22 T ELT)) (* (($ (-950) $) 23 T ELT) (($ (-793) $) 27 T ELT))) +(((-814) (-142)) (T -814)) +NIL +(-13 (-816) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-886)) . T) ((-816) . T) ((-871) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 26 T ELT)) (-2424 (($ $ $) 29 T ELT)) (-4028 (((-3 $ "failed") $ $) 28 T ELT)) (-3534 (($) 25 T CONST)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 24 T CONST)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (-2472 (($ $ $) 22 T ELT)) (* (($ (-950) $) 23 T ELT) (($ (-793) $) 27 T ELT))) +(((-815) (-142)) (T -815)) +((-2424 (*1 *1 *1 *1) (-4 *1 (-815)))) +(-13 (-817) (-10 -8 (-15 -2424 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-871) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (-2472 (($ $ $) 22 T ELT)) (* (($ (-950) $) 23 T ELT))) +(((-816) (-142)) (T -816)) +NIL +(-13 (-871) (-25)) +(((-25) . T) ((-102) . T) ((-632 (-886)) . T) ((-871) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 26 T ELT)) (-4028 (((-3 $ "failed") $ $) 28 T ELT)) (-3534 (($) 25 T CONST)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 24 T CONST)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (-2472 (($ $ $) 22 T ELT)) (* (($ (-950) $) 23 T ELT) (($ (-793) $) 27 T ELT))) +(((-817) (-142)) (T -817)) +NIL +(-13 (-814) (-133)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-814) . T) ((-816) . T) ((-871) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3623 (((-112) $) 42 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 45 T ELT)) (-3516 (((-578) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 78 T ELT)) (-1474 (((-112) $) 72 T ELT)) (-3805 (((-421 (-578)) $) 76 T ELT)) (-1550 ((|#2| $) 26 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-3057 (($ $) 58 T ELT)) (-3343 (((-550) $) 67 T ELT)) (-1433 (($ $) 21 T ELT)) (-2411 (((-886) $) 53 T ELT) (($ (-578)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-421 (-578))) NIL T ELT)) (-3753 (((-793)) 10 T ELT)) (-2628 ((|#2| $) 71 T ELT)) (-2384 (((-112) $ $) 30 T ELT)) (-2404 (((-112) $ $) 69 T ELT)) (-2484 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 31 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-818 |#1| |#2|) (-10 -8 (-15 -2404 ((-112) |#1| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -2628 (|#2| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-819 |#2|) (-175)) (T -818)) +((-3753 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-818 *3 *4)) (-4 *3 (-819 *4))))) +(-10 -8 (-15 -2404 ((-112) |#1| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -3057 (|#1| |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -2628 (|#2| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2222 (((-793)) 59 (|has| |#1| (-381)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 101 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 98 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3516 (((-578) $) 100 (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) 97 (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 96 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2823 ((|#1| $) 85 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 72 (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) 74 (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) 73 (|has| |#1| (-559)) ELT)) (-2062 (($) 62 (|has| |#1| (-381)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-1872 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76 T ELT)) (-1550 ((|#1| $) 77 T ELT)) (-1345 (($ $ $) 63 (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) 64 (|has| |#1| (-871)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-3193 (((-950) $) 61 (|has| |#1| (-381)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 71 (|has| |#1| (-376)) ELT)) (-2087 (($ (-950)) 60 (|has| |#1| (-381)) ELT)) (-3866 ((|#1| $) 82 T ELT)) (-2148 ((|#1| $) 83 T ELT)) (-2798 ((|#1| $) 84 T ELT)) (-3164 ((|#1| $) 78 T ELT)) (-2453 ((|#1| $) 79 T ELT)) (-3329 ((|#1| $) 80 T ELT)) (-3106 ((|#1| $) 81 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) 93 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 92 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) 91 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) 90 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) 89 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 88 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2436 (($ $ |#1|) 94 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3343 (((-550) $) 69 (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $) 86 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-578))) 99 (|has| |#1| (-1069 (-421 (-578)))) ELT)) (-2213 (((-3 $ "failed") $) 70 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2628 ((|#1| $) 75 (|has| |#1| (-1091)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2441 (((-112) $ $) 65 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 67 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 66 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 68 (|has| |#1| (-871)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-819 |#1|) (-142) (-175)) (T -819)) +((-1433 (*1 *1 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-1872 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-819 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-819 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-578))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-819 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-578))))) (-3057 (*1 *1 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(-13 (-38 |t#1|) (-425 |t#1|) (-351 |t#1|) (-10 -8 (-15 -1433 ($ $)) (-15 -2823 (|t#1| $)) (-15 -2798 (|t#1| $)) (-15 -2148 (|t#1| $)) (-15 -3866 (|t#1| $)) (-15 -3106 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -2453 (|t#1| $)) (-15 -3164 (|t#1| $)) (-15 -1550 (|t#1| $)) (-15 -1872 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2628 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -3057 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0=(-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-381) |has| |#1| (-381)) ((-351 |#1|) . T) ((-425 |#1|) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1069 #0#) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3611 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#3| (-1 |#4| |#2|) |#1|))) (-819 |#2|) (-175) (-819 |#4|) (-175)) (T -820)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-819 *6)) (-5 *1 (-820 *4 *5 *2 *6)) (-4 *4 (-819 *5))))) +(-10 -7 (-15 -3611 (|#3| (-1 |#4| |#2|) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-1030 |#1|) "failed") $) 35 T ELT) (((-3 (-578) "failed") $) NIL (-2230 (|has| (-1030 |#1|) (-1069 (-578))) (|has| |#1| (-1069 (-578)))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-2230 (|has| (-1030 |#1|) (-1069 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3516 ((|#1| $) NIL T ELT) (((-1030 |#1|) $) 33 T ELT) (((-578) $) NIL (-2230 (|has| (-1030 |#1|) (-1069 (-578))) (|has| |#1| (-1069 (-578)))) ELT) (((-421 (-578)) $) NIL (-2230 (|has| (-1030 |#1|) (-1069 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2823 ((|#1| $) 16 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) NIL (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) NIL (|has| |#1| (-559)) ELT)) (-2062 (($) NIL (|has| |#1| (-381)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-1872 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1030 |#1|) (-1030 |#1|)) 29 T ELT)) (-1550 ((|#1| $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#1| (-381)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2087 (($ (-950)) NIL (|has| |#1| (-381)) ELT)) (-3866 ((|#1| $) 22 T ELT)) (-2148 ((|#1| $) 20 T ELT)) (-2798 ((|#1| $) 18 T ELT)) (-3164 ((|#1| $) 26 T ELT)) (-2453 ((|#1| $) 25 T ELT)) (-3329 ((|#1| $) 24 T ELT)) (-3106 ((|#1| $) 23 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2436 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1030 |#1|)) 30 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| (-1030 |#1|) (-1069 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2628 ((|#1| $) NIL (|has| |#1| (-1091)) ELT)) (-2368 (($) 8 T CONST)) (-2379 (($) 12 T CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-821 |#1|) (-13 (-819 |#1|) (-425 (-1030 |#1|)) (-10 -8 (-15 -1872 ($ (-1030 |#1|) (-1030 |#1|))))) (-175)) (T -821)) +((-1872 (*1 *1 *2 *2) (-12 (-5 *2 (-1030 *3)) (-4 *3 (-175)) (-5 *1 (-821 *3))))) +(-13 (-819 |#1|) (-425 (-1030 |#1|)) (-10 -8 (-15 -1872 ($ (-1030 |#1|) (-1030 |#1|))))) +((-3213 (((-112) $ $) 7 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 15 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-4014 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 14 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-822) (-142)) (T -822)) +((-4374 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) (-4014 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1066))))) +(-13 (-1131) (-10 -7 (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4014 ((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-2086 (((-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#3| |#2| (-1207)) 19 T ELT))) +(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -2086 ((-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#3| |#2| (-1207)))) (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149)) (-13 (-29 |#1|) (-1233) (-988)) (-678 |#2|)) (T -823)) +((-2086 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-988))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3198 (-666 *4)))) (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-678 *4))))) +(-10 -7 (-15 -2086 ((-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#3| |#2| (-1207)))) +((-2096 (((-3 |#2| "failed") |#2| (-116) (-306 |#2|) (-666 |#2|)) 28 T ELT) (((-3 |#2| "failed") (-306 |#2|) (-116) (-306 |#2|) (-666 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#2| "failed") |#2| (-116) (-1207)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#2| "failed") (-306 |#2|) (-116) (-1207)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-666 |#2|) (-666 (-116)) (-1207)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-666 (-306 |#2|)) (-666 (-116)) (-1207)) 26 T ELT) (((-3 (-666 (-1298 |#2|)) "failed") (-711 |#2|) (-1207)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-711 |#2|) (-1298 |#2|) (-1207)) 35 T ELT))) +(((-824 |#1| |#2|) (-10 -7 (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-711 |#2|) (-1298 |#2|) (-1207))) (-15 -2096 ((-3 (-666 (-1298 |#2|)) "failed") (-711 |#2|) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-666 (-306 |#2|)) (-666 (-116)) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-666 |#2|) (-666 (-116)) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#2| "failed") (-306 |#2|) (-116) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#2| "failed") |#2| (-116) (-1207))) (-15 -2096 ((-3 |#2| "failed") (-306 |#2|) (-116) (-306 |#2|) (-666 |#2|))) (-15 -2096 ((-3 |#2| "failed") |#2| (-116) (-306 |#2|) (-666 |#2|)))) (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149)) (-13 (-29 |#1|) (-1233) (-988))) (T -824)) +((-2096 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-116)) (-5 *4 (-306 *2)) (-5 *5 (-666 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *1 (-824 *6 *2)))) (-2096 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-306 *2)) (-5 *4 (-116)) (-5 *5 (-666 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-5 *1 (-824 *6 *2)) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))))) (-2096 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-116)) (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3198 (-666 *3))) *3 "failed")) (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1233) (-988))))) (-2096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *7)) (-5 *4 (-116)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3198 (-666 *7))) *7 "failed")) (-5 *1 (-824 *6 *7)))) (-2096 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-666 *7)) (-5 *4 (-666 (-116))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-2 (|:| |particular| (-1298 *7)) (|:| -3198 (-666 (-1298 *7))))) (-5 *1 (-824 *6 *7)))) (-2096 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-666 (-306 *7))) (-5 *4 (-666 (-116))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-2 (|:| |particular| (-1298 *7)) (|:| -3198 (-666 (-1298 *7))))) (-5 *1 (-824 *6 *7)))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-711 *6)) (-5 *4 (-1207)) (-4 *6 (-13 (-29 *5) (-1233) (-988))) (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-666 (-1298 *6))) (-5 *1 (-824 *5 *6)))) (-2096 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-711 *7)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-2 (|:| |particular| (-1298 *7)) (|:| -3198 (-666 (-1298 *7))))) (-5 *1 (-824 *6 *7)) (-5 *4 (-1298 *7))))) +(-10 -7 (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-711 |#2|) (-1298 |#2|) (-1207))) (-15 -2096 ((-3 (-666 (-1298 |#2|)) "failed") (-711 |#2|) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-666 (-306 |#2|)) (-666 (-116)) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#2|)) (|:| -3198 (-666 (-1298 |#2|)))) "failed") (-666 |#2|) (-666 (-116)) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#2| "failed") (-306 |#2|) (-116) (-1207))) (-15 -2096 ((-3 (-2 (|:| |particular| |#2|) (|:| -3198 (-666 |#2|))) |#2| "failed") |#2| (-116) (-1207))) (-15 -2096 ((-3 |#2| "failed") (-306 |#2|) (-116) (-306 |#2|) (-666 |#2|))) (-15 -2096 ((-3 |#2| "failed") |#2| (-116) (-306 |#2|) (-666 |#2|)))) +((-2185 (($) 9 T ELT)) (-3247 (((-3 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-3244 (((-666 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-4328 (($ (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392)))))) 24 T ELT)) (-2176 (($ (-666 (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))))))) 22 T ELT)) (-3686 (((-1303)) 11 T ELT))) +(((-825) (-10 -8 (-15 -2185 ($)) (-15 -3686 ((-1303))) (-15 -3244 ((-666 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2176 ($ (-666 (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392)))))))) (-15 -4328 ($ (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))))))) (-15 -3247 ((-3 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -825)) +((-3247 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392)))) (-5 *1 (-825)))) (-4328 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392)))))) (-5 *1 (-825)))) (-2176 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))))))) (-5 *1 (-825)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-825)))) (-3686 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825)))) (-2185 (*1 *1) (-5 *1 (-825)))) +(-10 -8 (-15 -2185 ($)) (-15 -3686 ((-1303))) (-15 -3244 ((-666 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2176 ($ (-666 (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392)))))))) (-15 -4328 ($ (-2 (|:| -3173 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2754 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))))))) (-15 -3247 ((-3 (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) (|:| |expense| (-392)) (|:| |accuracy| (-392)) (|:| |intermediateResults| (-392))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) +((-3625 ((|#2| |#2| (-1207)) 17 T ELT)) (-1739 ((|#2| |#2| (-1207)) 56 T ELT)) (-3305 (((-1 |#2| |#2|) (-1207)) 11 T ELT))) +(((-826 |#1| |#2|) (-10 -7 (-15 -3625 (|#2| |#2| (-1207))) (-15 -1739 (|#2| |#2| (-1207))) (-15 -3305 ((-1 |#2| |#2|) (-1207)))) (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149)) (-13 (-29 |#1|) (-1233) (-988))) (T -826)) +((-3305 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-13 (-29 *4) (-1233) (-988))))) (-1739 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988))))) (-3625 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988)))))) +(-10 -7 (-15 -3625 (|#2| |#2| (-1207))) (-15 -1739 (|#2| |#2| (-1207))) (-15 -3305 ((-1 |#2| |#2|) (-1207)))) +((-2096 (((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-666 (-392)) (-392) (-392)) 128 T ELT) (((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-666 (-392)) (-392)) 129 T ELT) (((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-666 (-392)) (-392)) 131 T ELT) (((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-392)) 133 T ELT) (((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-392)) 134 T ELT) (((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392))) 136 T ELT) (((-1066) (-830) (-1094)) 120 T ELT) (((-1066) (-830)) 121 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-830) (-1094)) 80 T ELT) (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-830)) 82 T ELT))) +(((-827) (-10 -7 (-15 -2096 ((-1066) (-830))) (-15 -2096 ((-1066) (-830) (-1094))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-666 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-666 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-666 (-392)) (-392) (-392))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-830))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-830) (-1094))))) (T -827)) +((-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) (-5 *1 (-827)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) (-5 *1 (-827)))) (-2096 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1298 (-328 *4))) (-5 *5 (-666 (-392))) (-5 *6 (-328 (-392))) (-5 *4 (-392)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-2096 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1298 (-328 *4))) (-5 *5 (-666 (-392))) (-5 *6 (-328 (-392))) (-5 *4 (-392)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-2096 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1298 (-328 (-392)))) (-5 *4 (-392)) (-5 *5 (-666 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-2096 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1298 (-328 *4))) (-5 *5 (-666 (-392))) (-5 *6 (-328 (-392))) (-5 *4 (-392)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-2096 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1298 (-328 (-392)))) (-5 *4 (-392)) (-5 *5 (-666 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-2096 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1298 (-328 (-392)))) (-5 *4 (-392)) (-5 *5 (-666 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1066)) (-5 *1 (-827))))) +(-10 -7 (-15 -2096 ((-1066) (-830))) (-15 -2096 ((-1066) (-830) (-1094))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-666 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-666 (-392)) (-392))) (-15 -2096 ((-1066) (-1298 (-328 (-392))) (-392) (-392) (-666 (-392)) (-328 (-392)) (-666 (-392)) (-392) (-392))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-830))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-830) (-1094)))) +((-2405 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3198 (-666 |#4|))) (-675 |#4|) |#4|) 33 T ELT))) +(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2405 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3198 (-666 |#4|))) (-675 |#4|) |#4|))) (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578)))) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -828)) +((-2405 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-828 *5 *6 *7 *4))))) +(-10 -7 (-15 -2405 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3198 (-666 |#4|))) (-675 |#4|) |#4|))) +((-1420 (((-2 (|:| -3505 |#3|) (|:| |rh| (-666 (-421 |#2|)))) |#4| (-666 (-421 |#2|))) 53 T ELT)) (-4079 (((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#4| |#2|) 62 T ELT) (((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#4|) 61 T ELT) (((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#3| |#2|) 20 T ELT) (((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#3|) 21 T ELT)) (-3984 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2970 ((|#2| |#3| (-666 (-421 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-421 |#2|)) 105 T ELT))) +(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2970 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -2970 (|#2| |#3| (-666 (-421 |#2|)))) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#3|)) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#3| |#2|)) (-15 -3984 (|#2| |#3| |#1|)) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#4|)) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#4| |#2|)) (-15 -3984 (|#2| |#4| |#1|)) (-15 -1420 ((-2 (|:| -3505 |#3|) (|:| |rh| (-666 (-421 |#2|)))) |#4| (-666 (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-421 (-578)))) (-1274 |#1|) (-678 |#2|) (-678 (-421 |#2|))) (T -829)) +((-1420 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-5 *2 (-2 (|:| -3505 *7) (|:| |rh| (-666 (-421 *6))))) (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-666 (-421 *6))) (-4 *7 (-678 *6)) (-4 *3 (-678 (-421 *6))))) (-3984 (*1 *2 *3 *4) (-12 (-4 *2 (-1274 *4)) (-5 *1 (-829 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *5 (-678 *2)) (-4 *3 (-678 (-421 *2))))) (-4079 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *4 (-1274 *5)) (-5 *2 (-666 (-2 (|:| -4369 *4) (|:| -4018 *4)))) (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-678 *4)) (-4 *3 (-678 (-421 *4))))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) (-5 *2 (-666 (-2 (|:| -4369 *5) (|:| -4018 *5)))) (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 (-421 *5))))) (-3984 (*1 *2 *3 *4) (-12 (-4 *2 (-1274 *4)) (-5 *1 (-829 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-678 *2)) (-4 *5 (-678 (-421 *2))))) (-4079 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *4 (-1274 *5)) (-5 *2 (-666 (-2 (|:| -4369 *4) (|:| -4018 *4)))) (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-678 *4)) (-4 *6 (-678 (-421 *4))))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) (-5 *2 (-666 (-2 (|:| -4369 *5) (|:| -4018 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-421 *5))))) (-2970 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-421 *2))) (-4 *2 (-1274 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-678 *2)) (-4 *6 (-678 (-421 *2))))) (-2970 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1274 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-678 *2)) (-4 *6 (-678 *4))))) +(-10 -7 (-15 -2970 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -2970 (|#2| |#3| (-666 (-421 |#2|)))) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#3|)) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#3| |#2|)) (-15 -3984 (|#2| |#3| |#1|)) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#4|)) (-15 -4079 ((-666 (-2 (|:| -4369 |#2|) (|:| -4018 |#2|))) |#4| |#2|)) (-15 -3984 (|#2| |#4| |#1|)) (-15 -1420 ((-2 (|:| -3505 |#3|) (|:| |rh| (-666 (-421 |#2|)))) |#4| (-666 (-421 |#2|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3516 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-830) (-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3516 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -830)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830))))) +(-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3516 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $)))) +((-3381 (((-666 (-2 (|:| |frac| (-421 |#2|)) (|:| -3505 |#3|))) |#3| (-1 (-666 |#2|) |#2| (-1203 |#2|)) (-1 (-432 |#2|) |#2|)) 154 T ELT)) (-3017 (((-666 (-2 (|:| |poly| |#2|) (|:| -3505 |#3|))) |#3| (-1 (-666 |#1|) |#2|)) 52 T ELT)) (-1603 (((-666 (-2 (|:| |deg| (-793)) (|:| -3505 |#2|))) |#3|) 122 T ELT)) (-3769 ((|#2| |#3|) 42 T ELT)) (-2750 (((-666 (-2 (|:| -1529 |#1|) (|:| -3505 |#3|))) |#3| (-1 (-666 |#1|) |#2|)) 99 T ELT)) (-2649 ((|#3| |#3| (-421 |#2|)) 72 T ELT) ((|#3| |#3| |#2|) 96 T ELT))) +(((-831 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3769 (|#2| |#3|)) (-15 -1603 ((-666 (-2 (|:| |deg| (-793)) (|:| -3505 |#2|))) |#3|)) (-15 -2750 ((-666 (-2 (|:| -1529 |#1|) (|:| -3505 |#3|))) |#3| (-1 (-666 |#1|) |#2|))) (-15 -3017 ((-666 (-2 (|:| |poly| |#2|) (|:| -3505 |#3|))) |#3| (-1 (-666 |#1|) |#2|))) (-15 -3381 ((-666 (-2 (|:| |frac| (-421 |#2|)) (|:| -3505 |#3|))) |#3| (-1 (-666 |#2|) |#2| (-1203 |#2|)) (-1 (-432 |#2|) |#2|))) (-15 -2649 (|#3| |#3| |#2|)) (-15 -2649 (|#3| |#3| (-421 |#2|)))) (-13 (-376) (-149) (-1069 (-421 (-578)))) (-1274 |#1|) (-678 |#2|) (-678 (-421 |#2|))) (T -831)) +((-2649 (*1 *2 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-678 *5)) (-4 *6 (-678 *3)))) (-2649 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-1274 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-678 *3)) (-4 *5 (-678 (-421 *3))))) (-3381 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-666 *7) *7 (-1203 *7))) (-5 *5 (-1 (-432 *7) *7)) (-4 *7 (-1274 *6)) (-4 *6 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-5 *2 (-666 (-2 (|:| |frac| (-421 *7)) (|:| -3505 *3)))) (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-678 *7)) (-4 *8 (-678 (-421 *7))))) (-3017 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-666 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-5 *2 (-666 (-2 (|:| |poly| *6) (|:| -3505 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-421 *6))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-666 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-5 *2 (-666 (-2 (|:| -1529 *5) (|:| -3505 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-421 *6))))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) (-5 *2 (-666 (-2 (|:| |deg| (-793)) (|:| -3505 *5)))) (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-421 *5))))) (-3769 (*1 *2 *3) (-12 (-4 *2 (-1274 *4)) (-5 *1 (-831 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-678 *2)) (-4 *5 (-678 (-421 *2)))))) +(-10 -7 (-15 -3769 (|#2| |#3|)) (-15 -1603 ((-666 (-2 (|:| |deg| (-793)) (|:| -3505 |#2|))) |#3|)) (-15 -2750 ((-666 (-2 (|:| -1529 |#1|) (|:| -3505 |#3|))) |#3| (-1 (-666 |#1|) |#2|))) (-15 -3017 ((-666 (-2 (|:| |poly| |#2|) (|:| -3505 |#3|))) |#3| (-1 (-666 |#1|) |#2|))) (-15 -3381 ((-666 (-2 (|:| |frac| (-421 |#2|)) (|:| -3505 |#3|))) |#3| (-1 (-666 |#2|) |#2| (-1203 |#2|)) (-1 (-432 |#2|) |#2|))) (-15 -2649 (|#3| |#3| |#2|)) (-15 -2649 (|#3| |#3| (-421 |#2|)))) +((-3808 (((-2 (|:| -3198 (-666 (-421 |#2|))) (|:| -2547 (-711 |#1|))) (-676 |#2| (-421 |#2|)) (-666 (-421 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3198 (-666 (-421 |#2|)))) (-676 |#2| (-421 |#2|)) (-421 |#2|)) 145 T ELT) (((-2 (|:| -3198 (-666 (-421 |#2|))) (|:| -2547 (-711 |#1|))) (-675 (-421 |#2|)) (-666 (-421 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3198 (-666 (-421 |#2|)))) (-675 (-421 |#2|)) (-421 |#2|)) 138 T ELT)) (-1800 ((|#2| (-676 |#2| (-421 |#2|))) 87 T ELT) ((|#2| (-675 (-421 |#2|))) 90 T ELT))) +(((-832 |#1| |#2|) (-10 -7 (-15 -3808 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3198 (-666 (-421 |#2|)))) (-675 (-421 |#2|)) (-421 |#2|))) (-15 -3808 ((-2 (|:| -3198 (-666 (-421 |#2|))) (|:| -2547 (-711 |#1|))) (-675 (-421 |#2|)) (-666 (-421 |#2|)))) (-15 -3808 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3198 (-666 (-421 |#2|)))) (-676 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -3808 ((-2 (|:| -3198 (-666 (-421 |#2|))) (|:| -2547 (-711 |#1|))) (-676 |#2| (-421 |#2|)) (-666 (-421 |#2|)))) (-15 -1800 (|#2| (-675 (-421 |#2|)))) (-15 -1800 (|#2| (-676 |#2| (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578)))) (-1274 |#1|)) (T -832)) +((-1800 (*1 *2 *3) (-12 (-5 *3 (-676 *2 (-421 *2))) (-4 *2 (-1274 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-675 (-421 *2))) (-4 *2 (-1274 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-421 *6))) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-2 (|:| -3198 (-666 (-421 *6))) (|:| -2547 (-711 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-666 (-421 *6))))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-832 *5 *6)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-421 *6))) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-2 (|:| -3198 (-666 (-421 *6))) (|:| -2547 (-711 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-666 (-421 *6))))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-832 *5 *6))))) +(-10 -7 (-15 -3808 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3198 (-666 (-421 |#2|)))) (-675 (-421 |#2|)) (-421 |#2|))) (-15 -3808 ((-2 (|:| -3198 (-666 (-421 |#2|))) (|:| -2547 (-711 |#1|))) (-675 (-421 |#2|)) (-666 (-421 |#2|)))) (-15 -3808 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3198 (-666 (-421 |#2|)))) (-676 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -3808 ((-2 (|:| -3198 (-666 (-421 |#2|))) (|:| -2547 (-711 |#1|))) (-676 |#2| (-421 |#2|)) (-666 (-421 |#2|)))) (-15 -1800 (|#2| (-675 (-421 |#2|)))) (-15 -1800 (|#2| (-676 |#2| (-421 |#2|))))) +((-3765 (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#1|))) |#5| |#4|) 49 T ELT))) +(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3765 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#1|))) |#5| |#4|))) (-376) (-678 |#1|) (-1274 |#1|) (-746 |#1| |#3|) (-678 |#4|)) (T -833)) +((-3765 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1274 *5)) (-4 *4 (-746 *5 *7)) (-5 *2 (-2 (|:| -2547 (-711 *6)) (|:| |vec| (-1298 *5)))) (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 *4))))) +(-10 -7 (-15 -3765 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#1|))) |#5| |#4|))) +((-3381 (((-666 (-2 (|:| |frac| (-421 |#2|)) (|:| -3505 (-676 |#2| (-421 |#2|))))) (-676 |#2| (-421 |#2|)) (-1 (-432 |#2|) |#2|)) 47 T ELT)) (-2073 (((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-432 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-432 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-666 (-421 |#2|)) (-675 (-421 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|) (-1 (-432 |#2|) |#2|)) 38 T ELT) (((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|)) 39 T ELT) (((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|) (-1 (-432 |#2|) |#2|)) 36 T ELT) (((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|)) 37 T ELT)) (-3017 (((-666 (-2 (|:| |poly| |#2|) (|:| -3505 (-676 |#2| (-421 |#2|))))) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|)) 96 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|) (-1 (-432 |#2|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|) (-1 (-432 |#2|) |#2|))) (-15 -3381 ((-666 (-2 (|:| |frac| (-421 |#2|)) (|:| -3505 (-676 |#2| (-421 |#2|))))) (-676 |#2| (-421 |#2|)) (-1 (-432 |#2|) |#2|))) (-15 -3017 ((-666 (-2 (|:| |poly| |#2|) (|:| -3505 (-676 |#2| (-421 |#2|))))) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)))) (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-432 |#2|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-432 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578)))) (-1274 |#1|)) (T -834)) +((-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-421 *6))) (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-676 *5 (-421 *5))) (-4 *5 (-1274 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-666 (-421 *5))) (-5 *1 (-834 *4 *5)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-421 *6))) (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-675 (-421 *5))) (-4 *5 (-1274 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-666 (-421 *5))) (-5 *1 (-834 *4 *5)))) (-3017 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-666 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-5 *2 (-666 (-2 (|:| |poly| *6) (|:| -3505 (-676 *6 (-421 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-421 *6))))) (-3381 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 (-666 (-2 (|:| |frac| (-421 *6)) (|:| -3505 (-676 *6 (-421 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-421 *6))))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-676 *7 (-421 *7))) (-5 *4 (-1 (-666 *6) *7)) (-5 *5 (-1 (-432 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *7 (-1274 *6)) (-5 *2 (-666 (-421 *7))) (-5 *1 (-834 *6 *7)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-421 *6))) (-5 *4 (-1 (-666 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-2073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 (-421 *7))) (-5 *4 (-1 (-666 *6) *7)) (-5 *5 (-1 (-432 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *7 (-1274 *6)) (-5 *2 (-666 (-421 *7))) (-5 *1 (-834 *6 *7)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-421 *6))) (-5 *4 (-1 (-666 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6))))) +(-10 -7 (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-666 |#1|) |#2|) (-1 (-432 |#2|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|) (-1 (-432 |#2|) |#2|))) (-15 -3381 ((-666 (-2 (|:| |frac| (-421 |#2|)) (|:| -3505 (-676 |#2| (-421 |#2|))))) (-676 |#2| (-421 |#2|)) (-1 (-432 |#2|) |#2|))) (-15 -3017 ((-666 (-2 (|:| |poly| |#2|) (|:| -3505 (-676 |#2| (-421 |#2|))))) (-676 |#2| (-421 |#2|)) (-1 (-666 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)))) (-15 -2073 ((-666 (-421 |#2|)) (-675 (-421 |#2|)) (-1 (-432 |#2|) |#2|))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)))) (-15 -2073 ((-666 (-421 |#2|)) (-676 |#2| (-421 |#2|)) (-1 (-432 |#2|) |#2|)))) |%noBranch|)) +((-1503 (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#1|))) (-711 |#2|) (-1298 |#1|)) 110 T ELT) (((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-666 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1298 |#1|)) (|:| -3505 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1298 |#1|)) 15 T ELT)) (-3279 (((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-711 |#2|) (-1298 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3198 (-666 |#1|))) |#2| |#1|)) 116 T ELT)) (-2096 (((-3 (-2 (|:| |particular| (-1298 |#1|)) (|:| -3198 (-711 |#1|))) "failed") (-711 |#1|) (-1298 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3198 (-666 |#1|))) "failed") |#2| |#1|)) 54 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -1503 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-666 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1298 |#1|)) (|:| -3505 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1298 |#1|))) (-15 -1503 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#1|))) (-711 |#2|) (-1298 |#1|))) (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#1|)) (|:| -3198 (-711 |#1|))) "failed") (-711 |#1|) (-1298 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3198 (-666 |#1|))) "failed") |#2| |#1|))) (-15 -3279 ((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-711 |#2|) (-1298 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3198 (-666 |#1|))) |#2| |#1|)))) (-376) (-678 |#1|)) (T -835)) +((-3279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3198 (-666 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-678 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1298 *6) "failed")) (|:| -3198 (-666 (-1298 *6))))) (-5 *1 (-835 *6 *7)) (-5 *4 (-1298 *6)))) (-2096 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3198 (-666 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-678 *6)) (-5 *2 (-2 (|:| |particular| (-1298 *6)) (|:| -3198 (-711 *6)))) (-5 *1 (-835 *6 *7)) (-5 *3 (-711 *6)) (-5 *4 (-1298 *6)))) (-1503 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-678 *5)) (-5 *2 (-2 (|:| -2547 (-711 *6)) (|:| |vec| (-1298 *5)))) (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1298 *5)))) (-1503 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-711 *5)) (|:| |eqs| (-666 (-2 (|:| C (-711 *5)) (|:| |g| (-1298 *5)) (|:| -3505 *6) (|:| |rh| *5)))))) (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1298 *5)) (-4 *6 (-678 *5))))) +(-10 -7 (-15 -1503 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-666 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1298 |#1|)) (|:| -3505 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1298 |#1|))) (-15 -1503 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#1|))) (-711 |#2|) (-1298 |#1|))) (-15 -2096 ((-3 (-2 (|:| |particular| (-1298 |#1|)) (|:| -3198 (-711 |#1|))) "failed") (-711 |#1|) (-1298 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3198 (-666 |#1|))) "failed") |#2| |#1|))) (-15 -3279 ((-2 (|:| |particular| (-3 (-1298 |#1|) "failed")) (|:| -3198 (-666 (-1298 |#1|)))) (-711 |#2|) (-1298 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3198 (-666 |#1|))) |#2| |#1|)))) +((-3149 (((-711 |#1|) (-666 |#1|) (-793)) 14 T ELT) (((-711 |#1|) (-666 |#1|)) 15 T ELT)) (-2489 (((-3 (-1298 |#1|) "failed") |#2| |#1| (-666 |#1|)) 39 T ELT)) (-1742 (((-3 |#1| "failed") |#2| |#1| (-666 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-836 |#1| |#2|) (-10 -7 (-15 -3149 ((-711 |#1|) (-666 |#1|))) (-15 -3149 ((-711 |#1|) (-666 |#1|) (-793))) (-15 -2489 ((-3 (-1298 |#1|) "failed") |#2| |#1| (-666 |#1|))) (-15 -1742 ((-3 |#1| "failed") |#2| |#1| (-666 |#1|) (-1 |#1| |#1|)))) (-376) (-678 |#1|)) (T -836)) +((-1742 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-666 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-836 *2 *3)) (-4 *3 (-678 *2)))) (-2489 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-666 *4)) (-4 *4 (-376)) (-5 *2 (-1298 *4)) (-5 *1 (-836 *4 *3)) (-4 *3 (-678 *4)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *5)) (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-711 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-678 *5)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)) (-5 *1 (-836 *4 *5)) (-4 *5 (-678 *4))))) +(-10 -7 (-15 -3149 ((-711 |#1|) (-666 |#1|))) (-15 -3149 ((-711 |#1|) (-666 |#1|) (-793))) (-15 -2489 ((-3 (-1298 |#1|) "failed") |#2| |#1| (-666 |#1|))) (-15 -1742 ((-3 |#1| "failed") |#2| |#1| (-666 |#1|) (-1 |#1| |#1|)))) +((-3213 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3623 (((-112) $) NIL (|has| |#2| (-23)) ELT)) (-2695 (($ (-950)) NIL (|has| |#2| (-1080)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2424 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-2590 ((|#2| $ (-578) |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1131)) ELT)) (-3516 (((-578) $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) ELT) (((-421 (-578)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) ((|#2| $) NIL (|has| |#2| (-1131)) ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-3493 (((-3 $ "failed") $) NIL (|has| |#2| (-1080)) ELT)) (-2062 (($) NIL (|has| |#2| (-381)) ELT)) (-3450 ((|#2| $ (-578) |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ (-578)) NIL T ELT)) (-2729 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL (|has| |#2| (-1080)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-1441 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3439 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#2| (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1298 $)) NIL (|has| |#2| (-1080)) ELT)) (-2617 (((-1189) $) NIL (|has| |#2| (-1131)) ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-2087 (($ (-950)) NIL (|has| |#2| (-381)) ELT)) (-4313 (((-1151) $) NIL (|has| |#2| (-1131)) ELT)) (-4189 ((|#2| $) NIL (|has| (-578) (-871)) ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ (-578) |#2|) NIL T ELT) ((|#2| $ (-578)) NIL T ELT)) (-1406 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-2841 (($ (-1298 |#2|)) NIL T ELT)) (-4425 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-2031 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-1298 |#2|) $) NIL T ELT) (($ (-578)) NIL (-2230 (-12 (|has| |#2| (-1069 (-578))) (|has| |#2| (-1131))) (|has| |#2| (-1080))) ELT) (($ (-421 (-578))) NIL (-12 (|has| |#2| (-1069 (-421 (-578)))) (|has| |#2| (-1131))) ELT) (($ |#2|) NIL (|has| |#2| (-1131)) ELT) (((-886) $) NIL (|has| |#2| (-632 (-886))) ELT)) (-3753 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-2876 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2368 (($) NIL (|has| |#2| (-23)) CONST)) (-2379 (($) NIL (|has| |#2| (-1080)) CONST)) (-1676 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#2| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2404 (((-112) $ $) 11 (|has| |#2| (-871)) ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2472 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-950)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1080)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-578) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-950) $) NIL (|has| |#2| (-25)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-837 |#1| |#2| |#3|) (-245 |#1| |#2|) (-793) (-815) (-1 (-112) (-1298 |#2|) (-1298 |#2|))) (T -837)) +NIL +(-245 |#1| |#2|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2018 (((-666 (-793)) $) NIL T ELT) (((-666 (-793)) $ (-1207)) NIL T ELT)) (-2452 (((-793) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-2949 (((-666 (-840 (-1207))) $) NIL T ELT)) (-4420 (((-1203 $) $ (-840 (-1207))) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-840 (-1207)))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2082 (($ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-840 (-1207)) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-1156 |#1| (-1207)) "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-840 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1156 |#1| (-1207)) $) NIL T ELT)) (-2035 (($ $ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-545 (-840 (-1207))) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-840 (-1207)) (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-840 (-1207)) (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4059 (((-793) $ (-1207)) NIL T ELT) (((-793) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2936 (($ (-1203 |#1|) (-840 (-1207))) NIL T ELT) (($ (-1203 $) (-840 (-1207))) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-545 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-840 (-1207))) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-840 (-1207))) NIL T ELT)) (-3937 (((-545 (-840 (-1207))) $) NIL T ELT) (((-793) $ (-840 (-1207))) NIL T ELT) (((-666 (-793)) $ (-666 (-840 (-1207)))) NIL T ELT)) (-2500 (($ (-1 (-545 (-840 (-1207))) (-545 (-840 (-1207)))) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1765 (((-1 $ (-793)) (-1207)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-4006 (((-3 (-840 (-1207)) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2824 (((-840 (-1207)) $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3548 (((-112) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-840 (-1207))) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4348 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-840 (-1207)) |#1|) NIL T ELT) (($ $ (-666 (-840 (-1207))) (-666 |#1|)) NIL T ELT) (($ $ (-840 (-1207)) $) NIL T ELT) (($ $ (-666 (-840 (-1207))) (-666 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-666 (-1207)) (-666 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-3232 (($ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 (-840 (-1207))) (-666 (-793))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2352 (((-666 (-1207)) $) NIL T ELT)) (-3683 (((-545 (-840 (-1207))) $) NIL T ELT) (((-793) $ (-840 (-1207))) NIL T ELT) (((-666 (-793)) $ (-666 (-840 (-1207)))) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1156 |#1| (-1207))) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-545 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-840 (-1207))) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 (-840 (-1207))) (-666 (-793))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-838 |#1|) (-13 (-262 |#1| (-1207) (-840 (-1207)) (-545 (-840 (-1207)))) (-1069 (-1156 |#1| (-1207)))) (-1080)) (T -838)) +NIL +(-13 (-262 |#1| (-1207) (-840 (-1207)) (-545 (-840 (-1207)))) (-1069 (-1156 |#1| (-1207)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-2987 (($ $) NIL (|has| |#2| (-376)) ELT)) (-3087 (((-112) $) NIL (|has| |#2| (-376)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#2| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#2| (-376)) ELT)) (-2732 (((-112) $ $) NIL (|has| |#2| (-376)) ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#2| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#2| (-376)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#2| (-376)) ELT)) (-2389 (($ (-666 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 20 (|has| |#2| (-376)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#2| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#2| (-376)) ELT)) (-1449 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2031 (($ $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-421 (-578))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#2| (-376)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT) (($ $ (-578)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-421 (-578))) NIL (|has| |#2| (-376)) ELT))) +(((-839 |#1| |#2| |#3|) (-13 (-111 $ $) (-240) (-504 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) (-1131) (-927 |#1|) |#1|) (T -839)) +NIL +(-13 (-111 $ $) (-240) (-504 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-2452 (((-793) $) NIL T ELT)) (-3967 ((|#1| $) 10 T ELT)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-4059 (((-793) $) 11 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-1765 (($ |#1| (-793)) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2031 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1676 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-840 |#1|) (-277 |#1|) (-871)) (T -840)) +NIL +(-277 |#1|) +((-3213 (((-112) $ $) NIL T ELT)) (-4418 (((-666 |#1|) $) 38 T ELT)) (-2222 (((-793) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3564 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-4198 (($ $) 42 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1673 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2181 ((|#1| $ (-578)) NIL T ELT)) (-2006 (((-793) $ (-578)) NIL T ELT)) (-2779 (($ $) 54 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-1416 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3795 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3718 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-3390 (((-112) $ $) 51 T ELT)) (-3492 (((-793) $) 34 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1350 (($ $ $) NIL T ELT)) (-3209 (($ $ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 ((|#1| $) 41 T ELT)) (-2636 (((-666 (-2 (|:| |gen| |#1|) (|:| -3587 (-793)))) $) NIL T ELT)) (-2036 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-3190 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 20 T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 53 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-841 |#1|) (-13 (-399 |#1|) (-868) (-10 -8 (-15 -4189 (|#1| $)) (-15 -4198 ($ $)) (-15 -2779 ($ $)) (-15 -3390 ((-112) $ $)) (-15 -3718 ((-3 $ "failed") $ |#1|)) (-15 -3564 ((-3 $ "failed") $ |#1|)) (-15 -3190 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3492 ((-793) $)) (-15 -4418 ((-666 |#1|) $)))) (-871)) (T -841)) +((-4189 (*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-2779 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-3390 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-3718 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-3564 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-3190 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-841 *3)) (-4 *3 (-871))))) +(-13 (-399 |#1|) (-868) (-10 -8 (-15 -4189 (|#1| $)) (-15 -4198 ($ $)) (-15 -2779 ($ $)) (-15 -3390 ((-112) $ $)) (-15 -3718 ((-3 $ "failed") $ |#1|)) (-15 -3564 ((-3 $ "failed") $ |#1|)) (-15 -3190 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3492 ((-793) $)) (-15 -4418 ((-666 |#1|) $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1490 (((-578) $) 60 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3789 (((-112) $) 58 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1721 (((-112) $) 59 T ELT)) (-1345 (($ $ $) 52 T ELT)) (-3667 (($ $ $) 53 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2628 (($ $) 61 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2441 (((-112) $ $) 54 T ELT)) (-2416 (((-112) $ $) 56 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 55 T ELT)) (-2404 (((-112) $ $) 57 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-842) (-142)) (T -842)) +NIL +(-13 (-570) (-870)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-2875 (($ (-1151)) 7 T ELT)) (-3974 (((-112) $ (-1189) (-1151)) 15 T ELT)) (-4320 (((-844) $) 12 T ELT)) (-2881 (((-844) $) 11 T ELT)) (-3724 (((-1303) $) 9 T ELT)) (-4352 (((-112) $ (-1151)) 16 T ELT))) +(((-843) (-10 -8 (-15 -2875 ($ (-1151))) (-15 -3724 ((-1303) $)) (-15 -2881 ((-844) $)) (-15 -4320 ((-844) $)) (-15 -3974 ((-112) $ (-1189) (-1151))) (-15 -4352 ((-112) $ (-1151))))) (T -843)) +((-4352 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-843)))) (-3974 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1151)) (-5 *2 (-112)) (-5 *1 (-843)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-843)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-843)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-843)))) (-2875 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-843))))) +(-10 -8 (-15 -2875 ($ (-1151))) (-15 -3724 ((-1303) $)) (-15 -2881 ((-844) $)) (-15 -4320 ((-844) $)) (-15 -3974 ((-112) $ (-1189) (-1151))) (-15 -4352 ((-112) $ (-1151)))) +((-3312 (((-1303) $ (-845)) 12 T ELT)) (-3846 (((-1303) $ (-1207)) 32 T ELT)) (-3498 (((-1303) $ (-1189) (-1189)) 34 T ELT)) (-3272 (((-1303) $ (-1189)) 33 T ELT)) (-3882 (((-1303) $) 19 T ELT)) (-2910 (((-1303) $ (-578)) 28 T ELT)) (-4143 (((-1303) $ (-229)) 30 T ELT)) (-3926 (((-1303) $) 18 T ELT)) (-2955 (((-1303) $) 26 T ELT)) (-3153 (((-1303) $) 25 T ELT)) (-4111 (((-1303) $) 23 T ELT)) (-4429 (((-1303) $) 24 T ELT)) (-3205 (((-1303) $) 22 T ELT)) (-2109 (((-1303) $) 21 T ELT)) (-1466 (((-1303) $) 20 T ELT)) (-2173 (((-1303) $) 16 T ELT)) (-4131 (((-1303) $) 17 T ELT)) (-3347 (((-1303) $) 15 T ELT)) (-4347 (((-1303) $) 14 T ELT)) (-3791 (((-1303) $) 13 T ELT)) (-2976 (($ (-1189) (-845)) 9 T ELT)) (-3185 (($ (-1189) (-1189) (-845)) 8 T ELT)) (-4403 (((-1207) $) 51 T ELT)) (-2129 (((-1207) $) 55 T ELT)) (-2624 (((-2 (|:| |cd| (-1189)) (|:| -4107 (-1189))) $) 54 T ELT)) (-1650 (((-1189) $) 52 T ELT)) (-1641 (((-1303) $) 41 T ELT)) (-2433 (((-578) $) 49 T ELT)) (-3930 (((-229) $) 50 T ELT)) (-3090 (((-1303) $) 40 T ELT)) (-1690 (((-1303) $) 48 T ELT)) (-3775 (((-1303) $) 47 T ELT)) (-4246 (((-1303) $) 45 T ELT)) (-1997 (((-1303) $) 46 T ELT)) (-2356 (((-1303) $) 44 T ELT)) (-3168 (((-1303) $) 43 T ELT)) (-3981 (((-1303) $) 42 T ELT)) (-1458 (((-1303) $) 38 T ELT)) (-1882 (((-1303) $) 39 T ELT)) (-2641 (((-1303) $) 37 T ELT)) (-2027 (((-1303) $) 36 T ELT)) (-2540 (((-1303) $) 35 T ELT)) (-4012 (((-1303) $) 11 T ELT))) +(((-844) (-10 -8 (-15 -3185 ($ (-1189) (-1189) (-845))) (-15 -2976 ($ (-1189) (-845))) (-15 -4012 ((-1303) $)) (-15 -3312 ((-1303) $ (-845))) (-15 -3791 ((-1303) $)) (-15 -4347 ((-1303) $)) (-15 -3347 ((-1303) $)) (-15 -2173 ((-1303) $)) (-15 -4131 ((-1303) $)) (-15 -3926 ((-1303) $)) (-15 -3882 ((-1303) $)) (-15 -1466 ((-1303) $)) (-15 -2109 ((-1303) $)) (-15 -3205 ((-1303) $)) (-15 -4111 ((-1303) $)) (-15 -4429 ((-1303) $)) (-15 -3153 ((-1303) $)) (-15 -2955 ((-1303) $)) (-15 -2910 ((-1303) $ (-578))) (-15 -4143 ((-1303) $ (-229))) (-15 -3846 ((-1303) $ (-1207))) (-15 -3272 ((-1303) $ (-1189))) (-15 -3498 ((-1303) $ (-1189) (-1189))) (-15 -2540 ((-1303) $)) (-15 -2027 ((-1303) $)) (-15 -2641 ((-1303) $)) (-15 -1458 ((-1303) $)) (-15 -1882 ((-1303) $)) (-15 -3090 ((-1303) $)) (-15 -1641 ((-1303) $)) (-15 -3981 ((-1303) $)) (-15 -3168 ((-1303) $)) (-15 -2356 ((-1303) $)) (-15 -4246 ((-1303) $)) (-15 -1997 ((-1303) $)) (-15 -3775 ((-1303) $)) (-15 -1690 ((-1303) $)) (-15 -2433 ((-578) $)) (-15 -3930 ((-229) $)) (-15 -4403 ((-1207) $)) (-15 -1650 ((-1189) $)) (-15 -2624 ((-2 (|:| |cd| (-1189)) (|:| -4107 (-1189))) $)) (-15 -2129 ((-1207) $)))) (T -844)) +((-2129 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-844)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -4107 (-1189)))) (-5 *1 (-844)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-844)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-844)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-844)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-844)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2356 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3498 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-844)))) (-3272 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-844)))) (-3846 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-844)))) (-4143 (*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-844)))) (-2910 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-844)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-4429 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-4347 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3312 (*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1303)) (-5 *1 (-844)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-2976 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-845)) (-5 *1 (-844)))) (-3185 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-845)) (-5 *1 (-844))))) +(-10 -8 (-15 -3185 ($ (-1189) (-1189) (-845))) (-15 -2976 ($ (-1189) (-845))) (-15 -4012 ((-1303) $)) (-15 -3312 ((-1303) $ (-845))) (-15 -3791 ((-1303) $)) (-15 -4347 ((-1303) $)) (-15 -3347 ((-1303) $)) (-15 -2173 ((-1303) $)) (-15 -4131 ((-1303) $)) (-15 -3926 ((-1303) $)) (-15 -3882 ((-1303) $)) (-15 -1466 ((-1303) $)) (-15 -2109 ((-1303) $)) (-15 -3205 ((-1303) $)) (-15 -4111 ((-1303) $)) (-15 -4429 ((-1303) $)) (-15 -3153 ((-1303) $)) (-15 -2955 ((-1303) $)) (-15 -2910 ((-1303) $ (-578))) (-15 -4143 ((-1303) $ (-229))) (-15 -3846 ((-1303) $ (-1207))) (-15 -3272 ((-1303) $ (-1189))) (-15 -3498 ((-1303) $ (-1189) (-1189))) (-15 -2540 ((-1303) $)) (-15 -2027 ((-1303) $)) (-15 -2641 ((-1303) $)) (-15 -1458 ((-1303) $)) (-15 -1882 ((-1303) $)) (-15 -3090 ((-1303) $)) (-15 -1641 ((-1303) $)) (-15 -3981 ((-1303) $)) (-15 -3168 ((-1303) $)) (-15 -2356 ((-1303) $)) (-15 -4246 ((-1303) $)) (-15 -1997 ((-1303) $)) (-15 -3775 ((-1303) $)) (-15 -1690 ((-1303) $)) (-15 -2433 ((-578) $)) (-15 -3930 ((-229) $)) (-15 -4403 ((-1207) $)) (-15 -1650 ((-1189) $)) (-15 -2624 ((-2 (|:| |cd| (-1189)) (|:| -4107 (-1189))) $)) (-15 -2129 ((-1207) $))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3517 (($) 16 T ELT)) (-3284 (($) 14 T ELT)) (-3959 (($) 17 T ELT)) (-4029 (($) 15 T ELT)) (-2384 (((-112) $ $) 9 T ELT))) +(((-845) (-13 (-1131) (-10 -8 (-15 -3284 ($)) (-15 -3517 ($)) (-15 -3959 ($)) (-15 -4029 ($))))) (T -845)) +((-3284 (*1 *1) (-5 *1 (-845))) (-3517 (*1 *1) (-5 *1 (-845))) (-3959 (*1 *1) (-5 *1 (-845))) (-4029 (*1 *1) (-5 *1 (-845)))) +(-13 (-1131) (-10 -8 (-15 -3284 ($)) (-15 -3517 ($)) (-15 -3959 ($)) (-15 -4029 ($)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 23 T ELT) (($ (-1207)) 19 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2809 (((-112) $) 10 T ELT)) (-1821 (((-112) $) 9 T ELT)) (-1946 (((-112) $) 11 T ELT)) (-3264 (((-112) $) 8 T ELT)) (-2384 (((-112) $ $) 21 T ELT))) +(((-846) (-13 (-1131) (-10 -8 (-15 -2411 ($ (-1207))) (-15 -3264 ((-112) $)) (-15 -1821 ((-112) $)) (-15 -2809 ((-112) $)) (-15 -1946 ((-112) $))))) (T -846)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-846)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846)))) (-1821 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846))))) +(-13 (-1131) (-10 -8 (-15 -2411 ($ (-1207))) (-15 -3264 ((-112) $)) (-15 -1821 ((-112) $)) (-15 -2809 ((-112) $)) (-15 -1946 ((-112) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-1563 (($ (-846) (-666 (-1207))) 32 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2090 (((-846) $) 33 T ELT)) (-2614 (((-666 (-1207)) $) 34 T ELT)) (-2411 (((-886) $) 31 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-847) (-13 (-1131) (-10 -8 (-15 -2090 ((-846) $)) (-15 -2614 ((-666 (-1207)) $)) (-15 -1563 ($ (-846) (-666 (-1207))))))) (T -847)) +((-2090 (*1 *2 *1) (-12 (-5 *2 (-846)) (-5 *1 (-847)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-847)))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-846)) (-5 *3 (-666 (-1207))) (-5 *1 (-847))))) +(-13 (-1131) (-10 -8 (-15 -2090 ((-846) $)) (-15 -2614 ((-666 (-1207)) $)) (-15 -1563 ($ (-846) (-666 (-1207)))))) +((-3859 (((-1303) (-844) (-328 |#1|) (-112)) 23 T ELT) (((-1303) (-844) (-328 |#1|)) 88 T ELT) (((-1189) (-328 |#1|) (-112)) 87 T ELT) (((-1189) (-328 |#1|)) 86 T ELT))) +(((-848 |#1|) (-10 -7 (-15 -3859 ((-1189) (-328 |#1|))) (-15 -3859 ((-1189) (-328 |#1|) (-112))) (-15 -3859 ((-1303) (-844) (-328 |#1|))) (-15 -3859 ((-1303) (-844) (-328 |#1|) (-112)))) (-13 (-850) (-1080))) (T -848)) +((-3859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-844)) (-5 *4 (-328 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-850) (-1080))) (-5 *2 (-1303)) (-5 *1 (-848 *6)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-328 *5)) (-4 *5 (-13 (-850) (-1080))) (-5 *2 (-1303)) (-5 *1 (-848 *5)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *3 (-328 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-1080))) (-5 *2 (-1189)) (-5 *1 (-848 *5)))) (-3859 (*1 *2 *3) (-12 (-5 *3 (-328 *4)) (-4 *4 (-13 (-850) (-1080))) (-5 *2 (-1189)) (-5 *1 (-848 *4))))) +(-10 -7 (-15 -3859 ((-1189) (-328 |#1|))) (-15 -3859 ((-1189) (-328 |#1|) (-112))) (-15 -3859 ((-1303) (-844) (-328 |#1|))) (-15 -3859 ((-1303) (-844) (-328 |#1|) (-112)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1517 ((|#1| $) 10 T ELT)) (-4424 (($ |#1|) 9 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-793)) NIL T ELT)) (-3937 (((-793) $) NIL T ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2031 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-3683 (((-793) $) NIL T ELT)) (-2411 (((-886) $) 17 T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-3708 ((|#2| $ (-793)) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-849 |#1| |#2|) (-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -4424 ($ |#1|)) (-15 -1517 (|#1| $)))) (-730 |#2|) (-1080)) (T -849)) +((-4424 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-849 *2 *3)) (-4 *2 (-730 *3)))) (-1517 (*1 *2 *1) (-12 (-4 *2 (-730 *3)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1080))))) +(-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -4424 ($ |#1|)) (-15 -1517 (|#1| $)))) +((-3859 (((-1303) (-844) $ (-112)) 9 T ELT) (((-1303) (-844) $) 8 T ELT) (((-1189) $ (-112)) 7 T ELT) (((-1189) $) 6 T ELT))) +(((-850) (-142)) (T -850)) +((-3859 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-850)) (-5 *3 (-844)) (-5 *4 (-112)) (-5 *2 (-1303)))) (-3859 (*1 *2 *3 *1) (-12 (-4 *1 (-850)) (-5 *3 (-844)) (-5 *2 (-1303)))) (-3859 (*1 *2 *1 *3) (-12 (-4 *1 (-850)) (-5 *3 (-112)) (-5 *2 (-1189)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-1189))))) +(-13 (-10 -8 (-15 -3859 ((-1189) $)) (-15 -3859 ((-1189) $ (-112))) (-15 -3859 ((-1303) (-844) $)) (-15 -3859 ((-1303) (-844) $ (-112))))) +((-4350 (((-324) (-1189) (-1189)) 12 T ELT)) (-3303 (((-112) (-1189) (-1189)) 34 T ELT)) (-4254 (((-112) (-1189)) 33 T ELT)) (-3254 (((-52) (-1189)) 25 T ELT)) (-4207 (((-52) (-1189)) 23 T ELT)) (-4381 (((-52) (-844)) 17 T ELT)) (-4400 (((-666 (-1189)) (-1189)) 28 T ELT)) (-2894 (((-666 (-1189))) 27 T ELT))) +(((-851) (-10 -7 (-15 -4381 ((-52) (-844))) (-15 -4207 ((-52) (-1189))) (-15 -3254 ((-52) (-1189))) (-15 -2894 ((-666 (-1189)))) (-15 -4400 ((-666 (-1189)) (-1189))) (-15 -4254 ((-112) (-1189))) (-15 -3303 ((-112) (-1189) (-1189))) (-15 -4350 ((-324) (-1189) (-1189))))) (T -851)) +((-4350 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-324)) (-5 *1 (-851)))) (-3303 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-851)))) (-4254 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-851)))) (-4400 (*1 *2 *3) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189)))) (-2894 (*1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-851)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-52)) (-5 *1 (-851)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-52)) (-5 *1 (-851)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-52)) (-5 *1 (-851))))) +(-10 -7 (-15 -4381 ((-52) (-844))) (-15 -4207 ((-52) (-1189))) (-15 -3254 ((-52) (-1189))) (-15 -2894 ((-666 (-1189)))) (-15 -4400 ((-666 (-1189)) (-1189))) (-15 -4254 ((-112) (-1189))) (-15 -3303 ((-112) (-1189) (-1189))) (-15 -4350 ((-324) (-1189) (-1189)))) +((-3213 (((-112) $ $) 20 T ELT)) (-1340 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-4430 (($ $ $) 73 T ELT)) (-3954 (((-112) $ $) 74 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-1754 (($ (-666 |#1|)) 69 T ELT) (($) 68 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-3777 (($ $) 63 T ELT)) (-3776 (($ $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ |#1| $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2930 (((-112) $ $) 65 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1345 ((|#1| $) 79 T ELT)) (-1957 (($ $ $) 82 T ELT)) (-3176 (($ $ $) 81 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3667 ((|#1| $) 80 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 T ELT)) (-3457 (($ $ $) 70 T ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-4313 (((-1151) $) 22 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-3109 (((-666 (-2 (|:| -2754 |#1|) (|:| -4324 (-793)))) $) 62 T ELT)) (-2867 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 |#1|)) 49 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 51 T ELT)) (-2411 (((-886) $) 18 T ELT)) (-2869 (($ (-666 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2876 (((-112) $ $) 21 T ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 T ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-852 |#1|) (-142) (-871)) (T -852)) +((-1345 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-871))))) +(-13 (-758 |t#1|) (-999 |t#1|) (-10 -8 (-15 -1345 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-886)) . T) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-717 |#1|) . T) ((-758 |#1|) . T) ((-999 |#1|) . T) ((-1129 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-1429 (((-1303) (-1151) (-1151)) 48 T ELT)) (-3465 (((-1303) (-843) (-52)) 45 T ELT)) (-2531 (((-52) (-843)) 16 T ELT))) +(((-853) (-10 -7 (-15 -2531 ((-52) (-843))) (-15 -3465 ((-1303) (-843) (-52))) (-15 -1429 ((-1303) (-1151) (-1151))))) (T -853)) +((-1429 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-52)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-52)) (-5 *1 (-853))))) +(-10 -7 (-15 -2531 ((-52) (-843))) (-15 -3465 ((-1303) (-843) (-52))) (-15 -1429 ((-1303) (-1151) (-1151)))) +((-3611 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|)) 12 T ELT) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 13 T ELT))) +(((-854 |#1| |#2|) (-10 -7 (-15 -3611 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -3611 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|)))) (-1131) (-1131)) (T -854)) +((-3611 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *1 (-854 *5 *6)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) +(-10 -7 (-15 -3611 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -3611 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1490 (((-578) $) NIL (|has| |#1| (-870)) ELT)) (-3534 (($) NIL (|has| |#1| (-21)) CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 15 T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 9 T ELT)) (-3493 (((-3 $ "failed") $) 42 (|has| |#1| (-870)) ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 52 (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) 46 (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) 49 (|has| |#1| (-559)) ELT)) (-3789 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-4382 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1721 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2562 (($) 13 T ELT)) (-1346 (((-112) $) 12 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1760 (((-112) $) 11 T ELT)) (-2411 (((-886) $) 18 T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) 8 T ELT) (($ (-578)) NIL (-2230 (|has| |#1| (-870)) (|has| |#1| (-1069 (-578)))) ELT)) (-3753 (((-793)) 36 (|has| |#1| (-870)) CONST)) (-2876 (((-112) $ $) 54 T ELT)) (-2628 (($ $) NIL (|has| |#1| (-870)) ELT)) (-2368 (($) 23 (|has| |#1| (-21)) CONST)) (-2379 (($) 33 (|has| |#1| (-870)) CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2384 (((-112) $ $) 21 T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2404 (((-112) $ $) 45 (|has| |#1| (-870)) ELT)) (-2484 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-950)) NIL (|has| |#1| (-870)) ELT) (($ $ (-793)) NIL (|has| |#1| (-870)) ELT)) (* (($ $ $) 39 (|has| |#1| (-870)) ELT) (($ (-578) $) 27 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-950) $) NIL (|has| |#1| (-21)) ELT))) +(((-855 |#1|) (-13 (-1131) (-425 |#1|) (-10 -8 (-15 -2562 ($)) (-15 -1760 ((-112) $)) (-15 -1346 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|))) (-1131)) (T -855)) +((-2562 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1131)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1131)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1131)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-559)) (-4 *3 (-1131)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-855 *3)) (-4 *3 (-559)) (-4 *3 (-1131)))) (-1514 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-855 *3)) (-4 *3 (-559)) (-4 *3 (-1131))))) +(-13 (-1131) (-425 |#1|) (-10 -8 (-15 -2562 ($)) (-15 -1760 ((-112) $)) (-15 -1346 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|))) +((-1413 (((-112) $ |#2|) 14 T ELT)) (-2411 (((-886) $) 11 T ELT))) +(((-856 |#1| |#2|) (-10 -8 (-15 -1413 ((-112) |#1| |#2|)) (-15 -2411 ((-886) |#1|))) (-857 |#2|) (-1131)) (T -856)) +NIL +(-10 -8 (-15 -1413 ((-112) |#1| |#2|)) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-4107 ((|#1| $) 16 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1413 (((-112) $ |#1|) 14 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1639 (((-55) $) 15 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-857 |#1|) (-142) (-1131)) (T -857)) +((-4107 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1131)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1131)) (-5 *2 (-55)))) (-1413 (*1 *2 *1 *3) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))) +(-13 (-1131) (-10 -8 (-15 -4107 (|t#1| $)) (-15 -1639 ((-55) $)) (-15 -1413 ((-112) $ |t#1|)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-116) "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-116) $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3318 ((|#1| (-116) |#1|) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1670 (($ |#1| (-374 (-116))) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4444 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-1423 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2436 ((|#1| $ |#1|) NIL T ELT)) (-1896 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-116)) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3902 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-116) (-578)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-858 |#1|) (-13 (-1080) (-1069 |#1|) (-1069 (-116)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3902 ($ $)) (-15 -3902 ($ $ $)) (-15 -1896 (|#1| |#1|))) |%noBranch|) (-15 -1423 ($ $ (-1 |#1| |#1|))) (-15 -4444 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-116) (-578))) (-15 ** ($ $ (-578))) (-15 -3318 (|#1| (-116) |#1|)) (-15 -1670 ($ |#1| (-374 (-116)))))) (-1080)) (T -858)) +((-3902 (*1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-3902 (*1 *1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-1896 (*1 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-858 *3)))) (-4444 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-858 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-578)) (-5 *1 (-858 *4)) (-4 *4 (-1080)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-858 *3)) (-4 *3 (-1080)))) (-3318 (*1 *2 *3 *2) (-12 (-5 *3 (-116)) (-5 *1 (-858 *2)) (-4 *2 (-1080)))) (-1670 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-116))) (-5 *1 (-858 *2)) (-4 *2 (-1080))))) +(-13 (-1080) (-1069 |#1|) (-1069 (-116)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3902 ($ $)) (-15 -3902 ($ $ $)) (-15 -1896 (|#1| |#1|))) |%noBranch|) (-15 -1423 ($ $ (-1 |#1| |#1|))) (-15 -4444 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-116) (-578))) (-15 ** ($ $ (-578))) (-15 -3318 (|#1| (-116) |#1|)) (-15 -1670 ($ |#1| (-374 (-116)))))) +((-1484 (((-217 (-516)) (-1189)) 9 T ELT))) +(((-859) (-10 -7 (-15 -1484 ((-217 (-516)) (-1189))))) (T -859)) +((-1484 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-516))) (-5 *1 (-859))))) +(-10 -7 (-15 -1484 ((-217 (-516)) (-1189)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3385 (((-1149) $) 10 T ELT)) (-4107 (((-520) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1413 (((-112) $ (-520)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2423 (($ (-520) (-1149)) 8 T ELT)) (-2411 (((-886) $) 25 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1639 (((-55) $) 20 T ELT)) (-2384 (((-112) $ $) 12 T ELT))) +(((-860) (-13 (-857 (-520)) (-10 -8 (-15 -3385 ((-1149) $)) (-15 -2423 ($ (-520) (-1149)))))) (T -860)) +((-3385 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-860)))) (-2423 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1149)) (-5 *1 (-860))))) +(-13 (-857 (-520)) (-10 -8 (-15 -3385 ((-1149) $)) (-15 -2423 ($ (-520) (-1149))))) +((-3213 (((-112) $ $) 7 T ELT)) (-3630 (((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 15 T ELT) (((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 14 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 17 T ELT) (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 16 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-861) (-142)) (T -861)) +((-4374 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) (-4374 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) (-3630 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) (-5 *2 (-1066)))) (-3630 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (-5 *2 (-1066))))) +(-13 (-1131) (-10 -7 (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -3630 ((-1066) (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -3630 ((-1066) (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-2944 (((-1066) (-666 (-328 (-392))) (-666 (-392))) 166 T ELT) (((-1066) (-328 (-392)) (-666 (-392))) 164 T ELT) (((-1066) (-328 (-392)) (-666 (-392)) (-666 (-865 (-392))) (-666 (-865 (-392)))) 162 T ELT) (((-1066) (-328 (-392)) (-666 (-392)) (-666 (-865 (-392))) (-666 (-328 (-392))) (-666 (-865 (-392)))) 160 T ELT) (((-1066) (-863)) 125 T ELT) (((-1066) (-863) (-1094)) 124 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-863) (-1094)) 85 T ELT) (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-863)) 87 T ELT)) (-2112 (((-1066) (-666 (-328 (-392))) (-666 (-392))) 167 T ELT) (((-1066) (-863)) 150 T ELT))) +(((-862) (-10 -7 (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-863))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-863) (-1094))) (-15 -2944 ((-1066) (-863) (-1094))) (-15 -2944 ((-1066) (-863))) (-15 -2112 ((-1066) (-863))) (-15 -2944 ((-1066) (-328 (-392)) (-666 (-392)) (-666 (-865 (-392))) (-666 (-328 (-392))) (-666 (-865 (-392))))) (-15 -2944 ((-1066) (-328 (-392)) (-666 (-392)) (-666 (-865 (-392))) (-666 (-865 (-392))))) (-15 -2944 ((-1066) (-328 (-392)) (-666 (-392)))) (-15 -2944 ((-1066) (-666 (-328 (-392))) (-666 (-392)))) (-15 -2112 ((-1066) (-666 (-328 (-392))) (-666 (-392)))))) (T -862)) +((-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-328 (-392)))) (-5 *4 (-666 (-392))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-328 (-392)))) (-5 *4 (-666 (-392))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-392))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2944 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-392))) (-5 *5 (-666 (-865 (-392)))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2944 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-666 (-392))) (-5 *5 (-666 (-865 (-392)))) (-5 *6 (-666 (-328 (-392)))) (-5 *3 (-328 (-392))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) (-5 *1 (-862)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) (-5 *1 (-862))))) +(-10 -7 (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-863))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-863) (-1094))) (-15 -2944 ((-1066) (-863) (-1094))) (-15 -2944 ((-1066) (-863))) (-15 -2112 ((-1066) (-863))) (-15 -2944 ((-1066) (-328 (-392)) (-666 (-392)) (-666 (-865 (-392))) (-666 (-328 (-392))) (-666 (-865 (-392))))) (-15 -2944 ((-1066) (-328 (-392)) (-666 (-392)) (-666 (-865 (-392))) (-666 (-865 (-392))))) (-15 -2944 ((-1066) (-328 (-392)) (-666 (-392)))) (-15 -2944 ((-1066) (-666 (-328 (-392))) (-666 (-392)))) (-15 -2112 ((-1066) (-666 (-328 (-392))) (-666 (-392))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3516 (((-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) $) 21 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))))) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-863) (-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))))) (-15 -2411 ($ (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -2411 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))))) (-15 -3516 ((-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) $))))) (T -863)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (-5 *1 (-863)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) (-5 *1 (-863)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))))) (-5 *1 (-863)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))))) (-5 *1 (-863))))) +(-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229))))))) (-15 -2411 ($ (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) (-15 -2411 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))))) (-15 -3516 ((-3 (|:| |noa| (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229)))))) $)))) +((-3611 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|) (-865 |#2|) (-865 |#2|)) 13 T ELT) (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 14 T ELT))) +(((-864 |#1| |#2|) (-10 -7 (-15 -3611 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|))) (-15 -3611 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|) (-865 |#2|) (-865 |#2|)))) (-1131) (-1131)) (T -864)) +((-3611 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-865 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *1 (-864 *5 *6)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-865 *6)) (-5 *1 (-864 *5 *6))))) +(-10 -7 (-15 -3611 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|))) (-15 -3611 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|) (-865 |#2|) (-865 |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL (|has| |#1| (-21)) ELT)) (-2688 (((-1151) $) 31 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1490 (((-578) $) NIL (|has| |#1| (-870)) ELT)) (-3534 (($) NIL (|has| |#1| (-21)) CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 18 T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 9 T ELT)) (-3493 (((-3 $ "failed") $) 58 (|has| |#1| (-870)) ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 65 (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) 60 (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) 63 (|has| |#1| (-559)) ELT)) (-3789 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-3024 (($) 14 T ELT)) (-4382 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1721 (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-3038 (($) 16 T ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1346 (((-112) $) 12 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1760 (((-112) $) 11 T ELT)) (-2411 (((-886) $) 24 T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) 8 T ELT) (($ (-578)) NIL (-2230 (|has| |#1| (-870)) (|has| |#1| (-1069 (-578)))) ELT)) (-3753 (((-793)) 51 (|has| |#1| (-870)) CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| |#1| (-870)) ELT)) (-2368 (($) 37 (|has| |#1| (-21)) CONST)) (-2379 (($) 48 (|has| |#1| (-870)) CONST)) (-2441 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2384 (((-112) $ $) 35 T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2404 (((-112) $ $) 59 (|has| |#1| (-870)) ELT)) (-2484 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 44 (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) 46 (|has| |#1| (-21)) ELT)) (** (($ $ (-950)) NIL (|has| |#1| (-870)) ELT) (($ $ (-793)) NIL (|has| |#1| (-870)) ELT)) (* (($ $ $) 55 (|has| |#1| (-870)) ELT) (($ (-578) $) 42 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-950) $) NIL (|has| |#1| (-21)) ELT))) +(((-865 |#1|) (-13 (-1131) (-425 |#1|) (-10 -8 (-15 -3024 ($)) (-15 -3038 ($)) (-15 -1760 ((-112) $)) (-15 -1346 ((-112) $)) (-15 -2688 ((-1151) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|))) (-1131)) (T -865)) +((-3024 (*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1131)))) (-3038 (*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1131)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1131)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1131)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-865 *3)) (-4 *3 (-1131)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-559)) (-4 *3 (-1131)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-865 *3)) (-4 *3 (-559)) (-4 *3 (-1131)))) (-1514 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-865 *3)) (-4 *3 (-559)) (-4 *3 (-1131))))) +(-13 (-1131) (-425 |#1|) (-10 -8 (-15 -3024 ($)) (-15 -3038 ($)) (-15 -1760 ((-112) $)) (-15 -1346 ((-112) $)) (-15 -2688 ((-1151) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2222 (((-793)) 24 T ELT)) (-2062 (($) 27 T ELT)) (-1345 (($ $ $) 20 T ELT) (($) 23 T CONST)) (-3667 (($ $ $) 19 T ELT) (($) 22 T CONST)) (-3193 (((-950) $) 26 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2087 (($ (-950)) 25 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT))) +(((-866) (-142)) (T -866)) +((-1345 (*1 *1) (-4 *1 (-866))) (-3667 (*1 *1) (-4 *1 (-866)))) +(-13 (-871) (-381) (-10 -8 (-15 -1345 ($) -1529) (-15 -3667 ($) -1529))) +(((-102) . T) ((-632 (-886)) . T) ((-381) . T) ((-871) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3188 (((-112) (-1298 |#2|) (-1298 |#2|)) 19 T ELT)) (-3295 (((-112) (-1298 |#2|) (-1298 |#2|)) 20 T ELT)) (-2250 (((-112) (-1298 |#2|) (-1298 |#2|)) 16 T ELT))) +(((-867 |#1| |#2|) (-10 -7 (-15 -2250 ((-112) (-1298 |#2|) (-1298 |#2|))) (-15 -3188 ((-112) (-1298 |#2|) (-1298 |#2|))) (-15 -3295 ((-112) (-1298 |#2|) (-1298 |#2|)))) (-793) (-814)) (T -867)) +((-3295 (*1 *2 *3 *3) (-12 (-5 *3 (-1298 *5)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))) (-3188 (*1 *2 *3 *3) (-12 (-5 *3 (-1298 *5)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))) (-2250 (*1 *2 *3 *3) (-12 (-5 *3 (-1298 *5)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793))))) +(-10 -7 (-15 -2250 ((-112) (-1298 |#2|) (-1298 |#2|))) (-15 -3188 ((-112) (-1298 |#2|) (-1298 |#2|))) (-15 -3295 ((-112) (-1298 |#2|) (-1298 |#2|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3534 (($) 25 T CONST)) (-3493 (((-3 $ "failed") $) 28 T ELT)) (-4382 (((-112) $) 26 T ELT)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2379 (($) 24 T CONST)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (** (($ $ (-950)) 23 T ELT) (($ $ (-793)) 27 T ELT)) (* (($ $ $) 22 T ELT))) +(((-868) (-142)) (T -868)) +NIL +(-13 (-881) (-748)) +(((-102) . T) ((-632 (-886)) . T) ((-748) . T) ((-881) . T) ((-871) . T) ((-874) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-1490 (((-578) $) 21 T ELT)) (-3789 (((-112) $) 10 T ELT)) (-1721 (((-112) $) 12 T ELT)) (-2628 (($ $) 23 T ELT))) +(((-869 |#1|) (-10 -8 (-15 -2628 (|#1| |#1|)) (-15 -1490 ((-578) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3789 ((-112) |#1|))) (-870)) (T -869)) +NIL +(-10 -8 (-15 -2628 (|#1| |#1|)) (-15 -1490 ((-578) |#1|)) (-15 -1721 ((-112) |#1|)) (-15 -3789 ((-112) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 26 T ELT)) (-4028 (((-3 $ "failed") $ $) 28 T ELT)) (-1490 (((-578) $) 38 T ELT)) (-3534 (($) 25 T CONST)) (-3493 (((-3 $ "failed") $) 43 T ELT)) (-3789 (((-112) $) 40 T ELT)) (-4382 (((-112) $) 45 T ELT)) (-1721 (((-112) $) 39 T ELT)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 47 T ELT)) (-3753 (((-793)) 48 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2628 (($ $) 37 T ELT)) (-2368 (($) 24 T CONST)) (-2379 (($) 46 T CONST)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (-2484 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2472 (($ $ $) 22 T ELT)) (** (($ $ (-793)) 44 T ELT) (($ $ (-950)) 41 T ELT)) (* (($ (-950) $) 23 T ELT) (($ (-793) $) 27 T ELT) (($ (-578) $) 30 T ELT) (($ $ $) 42 T ELT))) +(((-870) (-142)) (T -870)) +((-3789 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-112)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-112)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-578)))) (-2628 (*1 *1 *1) (-4 *1 (-870)))) +(-13 (-813) (-1080) (-748) (-10 -8 (-15 -3789 ((-112) $)) (-15 -1721 ((-112) $)) (-15 -1490 ((-578) $)) (-15 -2628 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-871) . T) ((-874) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT))) +(((-871) (-142)) (T -871)) +NIL +(-13 (-1131) (-874)) +(((-102) . T) ((-632 (-886)) . T) ((-874) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2411 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-886) $) 15 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 12 T ELT))) +(((-872 |#1| |#2|) (-13 (-874) (-504 |#1|) (-10 -7 (IF (|has| |#1| (-632 (-886))) (-6 (-632 (-886))) |%noBranch|))) (-1248) (-1 (-112) |#1| |#1|)) (T -872)) +NIL +(-13 (-874) (-504 |#1|) (-10 -7 (IF (|has| |#1| (-632 (-886))) (-6 (-632 (-886))) |%noBranch|))) +((-1345 (($ $ $) 16 T ELT)) (-3667 (($ $ $) 15 T ELT)) (-2876 (((-112) $ $) 17 T ELT)) (-2441 (((-112) $ $) 12 T ELT)) (-2416 (((-112) $ $) 9 T ELT)) (-2384 (((-112) $ $) 14 T ELT)) (-2429 (((-112) $ $) 11 T ELT))) +(((-873 |#1|) (-10 -8 (-15 -1345 (|#1| |#1| |#1|)) (-15 -3667 (|#1| |#1| |#1|)) (-15 -2441 ((-112) |#1| |#1|)) (-15 -2429 ((-112) |#1| |#1|)) (-15 -2416 ((-112) |#1| |#1|)) (-15 -2876 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-874)) (T -873)) +NIL +(-10 -8 (-15 -1345 (|#1| |#1| |#1|)) (-15 -3667 (|#1| |#1| |#1|)) (-15 -2441 ((-112) |#1| |#1|)) (-15 -2429 ((-112) |#1| |#1|)) (-15 -2416 ((-112) |#1| |#1|)) (-15 -2876 ((-112) |#1| |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-1345 (($ $ $) 9 T ELT)) (-3667 (($ $ $) 10 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2441 (((-112) $ $) 11 T ELT)) (-2416 (((-112) $ $) 13 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 12 T ELT)) (-2404 (((-112) $ $) 14 T ELT))) +(((-874) (-142)) (T -874)) +((-2404 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) (-2416 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) (-2429 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) (-2441 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) (-3667 (*1 *1 *1 *1) (-4 *1 (-874))) (-1345 (*1 *1 *1 *1) (-4 *1 (-874)))) +(-13 (-102) (-10 -8 (-15 -2404 ((-112) $ $)) (-15 -2416 ((-112) $ $)) (-15 -2429 ((-112) $ $)) (-15 -2441 ((-112) $ $)) (-15 -3667 ($ $ $)) (-15 -1345 ($ $ $)))) +(((-102) . T) ((-1248) . T)) +((-1408 (($ $ $) 49 T ELT)) (-2400 (($ $ $) 48 T ELT)) (-2632 (($ $ $) 46 T ELT)) (-3391 (($ $ $) 55 T ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 50 T ELT)) (-1520 (((-3 $ "failed") $ $) 53 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 29 T ELT)) (-2111 (($ $) 39 T ELT)) (-2237 (($ $ $) 43 T ELT)) (-3512 (($ $ $) 42 T ELT)) (-1519 (($ $ $) 51 T ELT)) (-2736 (($ $ $) 57 T ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 45 T ELT)) (-1724 (((-3 $ "failed") $ $) 52 T ELT)) (-3202 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-4325 ((|#2| $) 36 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3839 (((-666 |#2|) $) 21 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-875 |#1| |#2|) (-10 -8 (-15 -1519 (|#1| |#1| |#1|)) (-15 -1390 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2847 |#1|)) |#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -1520 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1408 (|#1| |#1| |#1|)) (-15 -2400 (|#1| |#1| |#1|)) (-15 -2632 (|#1| |#1| |#1|)) (-15 -1501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2847 |#1|)) |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3839 ((-666 |#2|) |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2411 ((-886) |#1|))) (-876 |#2|) (-1080)) (T -875)) +NIL +(-10 -8 (-15 -1519 (|#1| |#1| |#1|)) (-15 -1390 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2847 |#1|)) |#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -1520 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1408 (|#1| |#1| |#1|)) (-15 -2400 (|#1| |#1| |#1|)) (-15 -2632 (|#1| |#1| |#1|)) (-15 -1501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2847 |#1|)) |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -3202 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3839 ((-666 |#2|) |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-1408 (($ $ $) 50 (|has| |#1| (-376)) ELT)) (-2400 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2632 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-3391 (($ $ $) 48 (|has| |#1| (-376)) ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 47 (|has| |#1| (-376)) ELT)) (-1520 (((-3 $ "failed") $ $) 49 (|has| |#1| (-376)) ELT)) (-1947 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2818 (((-3 (-578) "failed") $) 80 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 77 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3516 (((-578) $) 79 (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) 76 (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 75 T ELT)) (-3136 (($ $) 69 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2111 (($ $) 60 (|has| |#1| (-466)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-2925 (($ |#1| (-793)) 67 T ELT)) (-3557 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 62 (|has| |#1| (-570)) ELT)) (-4260 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 (|has| |#1| (-570)) ELT)) (-3937 (((-793) $) 71 T ELT)) (-2237 (($ $ $) 57 (|has| |#1| (-376)) ELT)) (-3512 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-1519 (($ $ $) 46 (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 54 (|has| |#1| (-376)) ELT)) (-1724 (((-3 $ "failed") $ $) 56 (|has| |#1| (-376)) ELT)) (-1465 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3110 ((|#1| $) 70 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-570)) ELT)) (-3683 (((-793) $) 72 T ELT)) (-4325 ((|#1| $) 61 (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 78 (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) 73 T ELT)) (-3839 (((-666 |#1|) $) 66 T ELT)) (-3708 ((|#1| $ (-793)) 68 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-4178 ((|#1| $ |#1| |#1|) 65 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT))) +(((-876 |#1|) (-142) (-1080)) (T -876)) +((-3683 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-2925 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-666 *3)))) (-4178 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-3202 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-570)))) (-4260 (*1 *2 *1 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) (-3557 (*1 *2 *1 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-2111 (*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-1465 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1724 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2736 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1501 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2847 *1))) (-4 *1 (-876 *3)))) (-2632 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1947 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) (-2400 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1408 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1520 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1390 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2847 *1))) (-4 *1 (-876 *3)))) (-1519 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(-13 (-1080) (-111 |t#1| |t#1|) (-425 |t#1|) (-10 -8 (-15 -3683 ((-793) $)) (-15 -3937 ((-793) $)) (-15 -3110 (|t#1| $)) (-15 -3136 ($ $)) (-15 -3708 (|t#1| $ (-793))) (-15 -2925 ($ |t#1| (-793))) (-15 -3839 ((-666 |t#1|) $)) (-15 -4178 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-570)) (PROGN (-15 -3202 ((-3 $ "failed") $ |t#1|)) (-15 -4260 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -3557 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -4325 (|t#1| $)) (-15 -2111 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -1465 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -3512 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -1724 ((-3 $ "failed") $ $)) (-15 -2736 ($ $ $)) (-15 -1501 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $)) (-15 -2632 ($ $ $)) (-15 -1947 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -2400 ($ $ $)) (-15 -1408 ($ $ $)) (-15 -1520 ((-3 $ "failed") $ $)) (-15 -3391 ($ $ $)) (-15 -1390 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $)) (-15 -1519 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 #0=(-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-425 |#1|) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1069 #0#) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-1432 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-1947 (((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-3557 (((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-570)) ELT)) (-4260 (((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-570)) ELT)) (-1465 (((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-4178 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-877 |#1| |#2|) (-10 -7 (-15 -1432 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4178 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-570)) (PROGN (-15 -4260 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3557 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1465 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1947 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1080) (-876 |#1|)) (T -877)) +((-1947 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-1465 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-3557 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-570)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-4260 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-570)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-4178 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1080)) (-5 *1 (-877 *2 *3)) (-4 *3 (-876 *2)))) (-1432 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1080)) (-5 *1 (-877 *5 *2)) (-4 *2 (-876 *5))))) +(-10 -7 (-15 -1432 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4178 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-570)) (PROGN (-15 -4260 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3557 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1465 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1947 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1408 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2400 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2632 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3391 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1520 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1947 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2135 (((-886) $ (-886)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) NIL T ELT)) (-3557 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 30 (|has| |#1| (-570)) ELT)) (-4260 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 28 (|has| |#1| (-570)) ELT)) (-3937 (((-793) $) NIL T ELT)) (-2237 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1519 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1465 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-3683 (((-793) $) NIL T ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (($ |#1|) NIL T ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-4178 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) 23 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) 19 T ELT) (($ $ (-793)) 24 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-878 |#1| |#2| |#3|) (-13 (-876 |#1|) (-10 -8 (-15 -2135 ((-886) $ (-886))))) (-1080) (-99 |#1|) (-1 |#1| |#1|)) (T -878)) +((-2135 (*1 *2 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-876 |#1|) (-10 -8 (-15 -2135 ((-886) $ (-886))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1408 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2400 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2632 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3391 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1390 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-1520 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-1947 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) ((|#2| $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#2| (-466)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-793)) 17 T ELT)) (-3557 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#2| (-570)) ELT)) (-4260 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#2| (-570)) ELT)) (-3937 (((-793) $) NIL T ELT)) (-2237 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3512 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1519 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-1465 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT)) (-3683 (((-793) $) NIL T ELT)) (-4325 ((|#2| $) NIL (|has| |#2| (-466)) ELT)) (-2411 (((-886) $) 24 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (($ |#2|) NIL T ELT) (($ (-1294 |#1|)) 19 T ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-793)) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-4178 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) 13 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-879 |#1| |#2| |#3| |#4|) (-13 (-876 |#2|) (-635 (-1294 |#1|))) (-1207) (-1080) (-99 |#2|) (-1 |#2| |#2|)) (T -879)) +NIL +(-13 (-876 |#2|) (-635 (-1294 |#1|))) +((-1357 ((|#1| (-793) |#1|) 45 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2392 ((|#1| (-793) (-793) |#1|) 36 T ELT) ((|#1| (-793) |#1|) 24 T ELT)) (-2711 ((|#1| (-793) |#1|) 40 T ELT)) (-4092 ((|#1| (-793) |#1|) 38 T ELT)) (-2747 ((|#1| (-793) |#1|) 37 T ELT))) +(((-880 |#1|) (-10 -7 (-15 -2747 (|#1| (-793) |#1|)) (-15 -4092 (|#1| (-793) |#1|)) (-15 -2711 (|#1| (-793) |#1|)) (-15 -2392 (|#1| (-793) |#1|)) (-15 -2392 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -1357 (|#1| (-793) |#1|)) |%noBranch|)) (-175)) (T -880)) +((-1357 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-175)))) (-2392 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-2392 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-2711 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-4092 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-2747 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))) +(-10 -7 (-15 -2747 (|#1| (-793) |#1|)) (-15 -4092 (|#1| (-793) |#1|)) (-15 -2711 (|#1| (-793) |#1|)) (-15 -2392 (|#1| (-793) |#1|)) (-15 -2392 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -1357 (|#1| (-793) |#1|)) |%noBranch|)) +((-3213 (((-112) $ $) 7 T ELT)) (-1345 (($ $ $) 20 T ELT)) (-3667 (($ $ $) 19 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2441 (((-112) $ $) 18 T ELT)) (-2416 (((-112) $ $) 16 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 17 T ELT)) (-2404 (((-112) $ $) 15 T ELT)) (** (($ $ (-950)) 23 T ELT)) (* (($ $ $) 22 T ELT))) +(((-881) (-142)) (T -881)) +NIL +(-13 (-871) (-1143)) +(((-102) . T) ((-632 (-886)) . T) ((-871) . T) ((-874) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-4120 (((-578) $) 14 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-578)) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 9 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 11 T ELT))) +(((-882) (-13 (-871) (-10 -8 (-15 -2411 ($ (-578))) (-15 -4120 ((-578) $))))) (T -882)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-882)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-882))))) +(-13 (-871) (-10 -8 (-15 -2411 ($ (-578))) (-15 -4120 ((-578) $)))) +((-2740 (((-713 (-1256)) $ (-1256)) 15 T ELT)) (-2625 (((-713 (-563)) $ (-563)) 12 T ELT)) (-3709 (((-793) $ (-130)) 30 T ELT))) +(((-883 |#1|) (-10 -8 (-15 -3709 ((-793) |#1| (-130))) (-15 -2740 ((-713 (-1256)) |#1| (-1256))) (-15 -2625 ((-713 (-563)) |#1| (-563)))) (-884)) (T -883)) +NIL +(-10 -8 (-15 -3709 ((-793) |#1| (-130))) (-15 -2740 ((-713 (-1256)) |#1| (-1256))) (-15 -2625 ((-713 (-563)) |#1| (-563)))) +((-2740 (((-713 (-1256)) $ (-1256)) 8 T ELT)) (-2625 (((-713 (-563)) $ (-563)) 9 T ELT)) (-3709 (((-793) $ (-130)) 7 T ELT)) (-2558 (((-713 (-131)) $ (-131)) 10 T ELT)) (-3250 (($ $) 6 T ELT))) +(((-884) (-142)) (T -884)) +((-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-713 (-131))) (-5 *3 (-131)))) (-2625 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-713 (-563))) (-5 *3 (-563)))) (-2740 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *2 (-713 (-1256))) (-5 *3 (-1256)))) (-3709 (*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *3 (-130)) (-5 *2 (-793))))) +(-13 (-176) (-10 -8 (-15 -2558 ((-713 (-131)) $ (-131))) (-15 -2625 ((-713 (-563)) $ (-563))) (-15 -2740 ((-713 (-1256)) $ (-1256))) (-15 -3709 ((-793) $ (-130))))) +(((-176) . T)) +((-2740 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-2625 (((-713 (-563)) $ (-563)) NIL T ELT)) (-3709 (((-793) $ (-130)) NIL T ELT)) (-2558 (((-713 (-131)) $ (-131)) 22 T ELT)) (-1703 (($ (-402)) 12 T ELT) (($ (-1189)) 14 T ELT)) (-2485 (((-112) $) 19 T ELT)) (-2411 (((-886) $) 26 T ELT)) (-3250 (($ $) 23 T ELT))) +(((-885) (-13 (-884) (-632 (-886)) (-10 -8 (-15 -1703 ($ (-402))) (-15 -1703 ($ (-1189))) (-15 -2485 ((-112) $))))) (T -885)) +((-1703 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-885)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-885)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885))))) +(-13 (-884) (-632 (-886)) (-10 -8 (-15 -1703 ($ (-402))) (-15 -1703 ($ (-1189))) (-15 -2485 ((-112) $)))) +((-3213 (((-112) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-4469 (($ $ $) 125 T ELT)) (-3689 (((-578) $) 31 T ELT) (((-578)) 36 T ELT)) (-1539 (($ (-578)) 53 T ELT)) (-3278 (($ $ $) 54 T ELT) (($ (-666 $)) 84 T ELT)) (-4132 (($ $ (-666 $)) 82 T ELT)) (-2026 (((-578) $) 34 T ELT)) (-2047 (($ $ $) 73 T ELT)) (-1955 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-3603 (((-578) $) 33 T ELT)) (-4223 (($ $ $) 72 T ELT)) (-1966 (($ $) 114 T ELT)) (-1991 (($ $ $) 129 T ELT)) (-4428 (($ (-666 $)) 61 T ELT)) (-3501 (($ $ (-666 $)) 79 T ELT)) (-3893 (($ (-578) (-578)) 55 T ELT)) (-2647 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3868 (($ $ (-578)) 43 T ELT) (($ $) 46 T ELT)) (-3154 (($ $ $) 97 T ELT)) (-4357 (($ $ $) 132 T ELT)) (-4294 (($ $) 115 T ELT)) (-3166 (($ $ $) 98 T ELT)) (-4385 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-1776 (((-1303) $) 10 T ELT)) (-3876 (($ $) 118 T ELT) (($ $ (-793)) 122 T ELT)) (-4389 (($ $ $) 75 T ELT)) (-1506 (($ $ $) 74 T ELT)) (-4082 (($ $ (-666 $)) 110 T ELT)) (-1965 (($ $ $) 113 T ELT)) (-3878 (($ (-666 $)) 59 T ELT)) (-3783 (($ $) 70 T ELT) (($ (-666 $)) 71 T ELT)) (-2717 (($ $ $) 123 T ELT)) (-1391 (($ $) 116 T ELT)) (-2225 (($ $ $) 128 T ELT)) (-2135 (($ (-578)) 21 T ELT) (($ (-1207)) 23 T ELT) (($ (-1189)) 30 T ELT) (($ (-229)) 25 T ELT)) (-2332 (($ $ $) 101 T ELT)) (-2309 (($ $) 102 T ELT)) (-1823 (((-1303) (-1189)) 15 T ELT)) (-2951 (($ (-1189)) 14 T ELT)) (-1869 (($ (-666 (-666 $))) 58 T ELT)) (-3855 (($ $ (-578)) 42 T ELT) (($ $) 45 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2676 (($ $ $) 131 T ELT)) (-3625 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3682 (((-112) $) 108 T ELT)) (-3664 (($ $ (-666 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-4235 (($ (-578)) 39 T ELT)) (-1737 (((-578) $) 32 T ELT) (((-578)) 35 T ELT)) (-3798 (($ $ $) 40 T ELT) (($ (-666 $)) 83 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (($ $ $) 99 T ELT)) (-1696 (($) 13 T ELT)) (-2436 (($ $ (-666 $)) 109 T ELT)) (-1953 (((-1189) (-1189)) 8 T ELT)) (-1406 (($ $) 117 T ELT) (($ $ (-793)) 121 T ELT)) (-3190 (($ $ $) 96 T ELT)) (-2031 (($ $ (-793)) 139 T ELT)) (-2819 (($ (-666 $)) 60 T ELT)) (-2411 (((-886) $) 19 T ELT)) (-4369 (($ $ (-578)) 41 T ELT) (($ $) 44 T ELT)) (-2268 (($ $) 68 T ELT) (($ (-666 $)) 69 T ELT)) (-2869 (($ $) 66 T ELT) (($ (-666 $)) 67 T ELT)) (-2209 (($ $) 124 T ELT)) (-4172 (($ (-666 $)) 65 T ELT)) (-2776 (($ $ $) 105 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4335 (($ $ $) 130 T ELT)) (-2320 (($ $ $) 100 T ELT)) (-3934 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2441 (($ $ $) 89 T ELT)) (-2416 (($ $ $) 87 T ELT)) (-2384 (((-112) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2429 (($ $ $) 88 T ELT)) (-2404 (($ $ $) 86 T ELT)) (-2495 (($ $ $) 94 T ELT)) (-2484 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-2472 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-886) (-13 (-1131) (-10 -8 (-15 -1776 ((-1303) $)) (-15 -2951 ($ (-1189))) (-15 -1823 ((-1303) (-1189))) (-15 -2135 ($ (-578))) (-15 -2135 ($ (-1207))) (-15 -2135 ($ (-1189))) (-15 -2135 ($ (-229))) (-15 -1696 ($)) (-15 -1953 ((-1189) (-1189))) (-15 -3689 ((-578) $)) (-15 -1737 ((-578) $)) (-15 -3689 ((-578))) (-15 -1737 ((-578))) (-15 -3603 ((-578) $)) (-15 -2026 ((-578) $)) (-15 -4235 ($ (-578))) (-15 -1539 ($ (-578))) (-15 -3893 ($ (-578) (-578))) (-15 -3855 ($ $ (-578))) (-15 -3868 ($ $ (-578))) (-15 -4369 ($ $ (-578))) (-15 -3855 ($ $)) (-15 -3868 ($ $)) (-15 -4369 ($ $)) (-15 -3798 ($ $ $)) (-15 -3278 ($ $ $)) (-15 -3798 ($ (-666 $))) (-15 -3278 ($ (-666 $))) (-15 -4082 ($ $ (-666 $))) (-15 -3664 ($ $ (-666 $))) (-15 -3664 ($ $ $ $)) (-15 -1965 ($ $ $)) (-15 -3682 ((-112) $)) (-15 -2436 ($ $ (-666 $))) (-15 -1966 ($ $)) (-15 -2676 ($ $ $)) (-15 -2209 ($ $)) (-15 -1869 ($ (-666 (-666 $)))) (-15 -4469 ($ $ $)) (-15 -2647 ($ $)) (-15 -2647 ($ $ $)) (-15 -2225 ($ $ $)) (-15 -1991 ($ $ $)) (-15 -4335 ($ $ $)) (-15 -4357 ($ $ $)) (-15 -2031 ($ $ (-793))) (-15 -2776 ($ $ $)) (-15 -4223 ($ $ $)) (-15 -2047 ($ $ $)) (-15 -1506 ($ $ $)) (-15 -4389 ($ $ $)) (-15 -3501 ($ $ (-666 $))) (-15 -4132 ($ $ (-666 $))) (-15 -4294 ($ $)) (-15 -1406 ($ $)) (-15 -1406 ($ $ (-793))) (-15 -3876 ($ $)) (-15 -3876 ($ $ (-793))) (-15 -1391 ($ $)) (-15 -2717 ($ $ $)) (-15 -1955 ($ $)) (-15 -1955 ($ $ $)) (-15 -1955 ($ $ $ $)) (-15 -4385 ($ $)) (-15 -4385 ($ $ $)) (-15 -4385 ($ $ $ $)) (-15 -3625 ($ $)) (-15 -3625 ($ $ $)) (-15 -3625 ($ $ $ $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-666 $))) (-15 -2268 ($ $)) (-15 -2268 ($ (-666 $))) (-15 -3783 ($ $)) (-15 -3783 ($ (-666 $))) (-15 -3878 ($ (-666 $))) (-15 -2819 ($ (-666 $))) (-15 -4428 ($ (-666 $))) (-15 -4172 ($ (-666 $))) (-15 -2384 ($ $ $)) (-15 -3213 ($ $ $)) (-15 -2404 ($ $ $)) (-15 -2416 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2472 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -2484 ($ $)) (-15 * ($ $ $)) (-15 -2495 ($ $ $)) (-15 ** ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -3166 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -2320 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -2309 ($ $)) (-15 -3934 ($ $ $)) (-15 -3934 ($ $))))) (T -886)) +((-1776 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-886)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-886)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-886)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-886)))) (-1696 (*1 *1) (-5 *1 (-886))) (-1953 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-3689 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-1737 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-4235 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-3893 (*1 *1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) (-3855 (*1 *1 *1) (-5 *1 (-886))) (-3868 (*1 *1 *1) (-5 *1 (-886))) (-4369 (*1 *1 *1) (-5 *1 (-886))) (-3798 (*1 *1 *1 *1) (-5 *1 (-886))) (-3278 (*1 *1 *1 *1) (-5 *1 (-886))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-3278 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-4082 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-3664 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-1965 (*1 *1 *1 *1) (-5 *1 (-886))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-1966 (*1 *1 *1) (-5 *1 (-886))) (-2676 (*1 *1 *1 *1) (-5 *1 (-886))) (-2209 (*1 *1 *1) (-5 *1 (-886))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-886)))) (-5 *1 (-886)))) (-4469 (*1 *1 *1 *1) (-5 *1 (-886))) (-2647 (*1 *1 *1) (-5 *1 (-886))) (-2647 (*1 *1 *1 *1) (-5 *1 (-886))) (-2225 (*1 *1 *1 *1) (-5 *1 (-886))) (-1991 (*1 *1 *1 *1) (-5 *1 (-886))) (-4335 (*1 *1 *1 *1) (-5 *1 (-886))) (-4357 (*1 *1 *1 *1) (-5 *1 (-886))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-886)))) (-2776 (*1 *1 *1 *1) (-5 *1 (-886))) (-4223 (*1 *1 *1 *1) (-5 *1 (-886))) (-2047 (*1 *1 *1 *1) (-5 *1 (-886))) (-1506 (*1 *1 *1 *1) (-5 *1 (-886))) (-4389 (*1 *1 *1 *1) (-5 *1 (-886))) (-3501 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-4294 (*1 *1 *1) (-5 *1 (-886))) (-1406 (*1 *1 *1) (-5 *1 (-886))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-886)))) (-3876 (*1 *1 *1) (-5 *1 (-886))) (-3876 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-886)))) (-1391 (*1 *1 *1) (-5 *1 (-886))) (-2717 (*1 *1 *1 *1) (-5 *1 (-886))) (-1955 (*1 *1 *1) (-5 *1 (-886))) (-1955 (*1 *1 *1 *1) (-5 *1 (-886))) (-1955 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-4385 (*1 *1 *1) (-5 *1 (-886))) (-4385 (*1 *1 *1 *1) (-5 *1 (-886))) (-4385 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-3625 (*1 *1 *1) (-5 *1 (-886))) (-3625 (*1 *1 *1 *1) (-5 *1 (-886))) (-3625 (*1 *1 *1 *1 *1) (-5 *1 (-886))) (-2869 (*1 *1 *1) (-5 *1 (-886))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-2268 (*1 *1 *1) (-5 *1 (-886))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-3783 (*1 *1 *1) (-5 *1 (-886))) (-3783 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-4428 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) (-2384 (*1 *1 *1 *1) (-5 *1 (-886))) (-3213 (*1 *1 *1 *1) (-5 *1 (-886))) (-2404 (*1 *1 *1 *1) (-5 *1 (-886))) (-2416 (*1 *1 *1 *1) (-5 *1 (-886))) (-2429 (*1 *1 *1 *1) (-5 *1 (-886))) (-2441 (*1 *1 *1 *1) (-5 *1 (-886))) (-2472 (*1 *1 *1 *1) (-5 *1 (-886))) (-2484 (*1 *1 *1 *1) (-5 *1 (-886))) (-2484 (*1 *1 *1) (-5 *1 (-886))) (* (*1 *1 *1 *1) (-5 *1 (-886))) (-2495 (*1 *1 *1 *1) (-5 *1 (-886))) (** (*1 *1 *1 *1) (-5 *1 (-886))) (-3190 (*1 *1 *1 *1) (-5 *1 (-886))) (-3154 (*1 *1 *1 *1) (-5 *1 (-886))) (-3166 (*1 *1 *1 *1) (-5 *1 (-886))) (-3202 (*1 *1 *1 *1) (-5 *1 (-886))) (-2320 (*1 *1 *1 *1) (-5 *1 (-886))) (-2332 (*1 *1 *1 *1) (-5 *1 (-886))) (-2309 (*1 *1 *1) (-5 *1 (-886))) (-3934 (*1 *1 *1 *1) (-5 *1 (-886))) (-3934 (*1 *1 *1) (-5 *1 (-886)))) +(-13 (-1131) (-10 -8 (-15 -1776 ((-1303) $)) (-15 -2951 ($ (-1189))) (-15 -1823 ((-1303) (-1189))) (-15 -2135 ($ (-578))) (-15 -2135 ($ (-1207))) (-15 -2135 ($ (-1189))) (-15 -2135 ($ (-229))) (-15 -1696 ($)) (-15 -1953 ((-1189) (-1189))) (-15 -3689 ((-578) $)) (-15 -1737 ((-578) $)) (-15 -3689 ((-578))) (-15 -1737 ((-578))) (-15 -3603 ((-578) $)) (-15 -2026 ((-578) $)) (-15 -4235 ($ (-578))) (-15 -1539 ($ (-578))) (-15 -3893 ($ (-578) (-578))) (-15 -3855 ($ $ (-578))) (-15 -3868 ($ $ (-578))) (-15 -4369 ($ $ (-578))) (-15 -3855 ($ $)) (-15 -3868 ($ $)) (-15 -4369 ($ $)) (-15 -3798 ($ $ $)) (-15 -3278 ($ $ $)) (-15 -3798 ($ (-666 $))) (-15 -3278 ($ (-666 $))) (-15 -4082 ($ $ (-666 $))) (-15 -3664 ($ $ (-666 $))) (-15 -3664 ($ $ $ $)) (-15 -1965 ($ $ $)) (-15 -3682 ((-112) $)) (-15 -2436 ($ $ (-666 $))) (-15 -1966 ($ $)) (-15 -2676 ($ $ $)) (-15 -2209 ($ $)) (-15 -1869 ($ (-666 (-666 $)))) (-15 -4469 ($ $ $)) (-15 -2647 ($ $)) (-15 -2647 ($ $ $)) (-15 -2225 ($ $ $)) (-15 -1991 ($ $ $)) (-15 -4335 ($ $ $)) (-15 -4357 ($ $ $)) (-15 -2031 ($ $ (-793))) (-15 -2776 ($ $ $)) (-15 -4223 ($ $ $)) (-15 -2047 ($ $ $)) (-15 -1506 ($ $ $)) (-15 -4389 ($ $ $)) (-15 -3501 ($ $ (-666 $))) (-15 -4132 ($ $ (-666 $))) (-15 -4294 ($ $)) (-15 -1406 ($ $)) (-15 -1406 ($ $ (-793))) (-15 -3876 ($ $)) (-15 -3876 ($ $ (-793))) (-15 -1391 ($ $)) (-15 -2717 ($ $ $)) (-15 -1955 ($ $)) (-15 -1955 ($ $ $)) (-15 -1955 ($ $ $ $)) (-15 -4385 ($ $)) (-15 -4385 ($ $ $)) (-15 -4385 ($ $ $ $)) (-15 -3625 ($ $)) (-15 -3625 ($ $ $)) (-15 -3625 ($ $ $ $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-666 $))) (-15 -2268 ($ $)) (-15 -2268 ($ (-666 $))) (-15 -3783 ($ $)) (-15 -3783 ($ (-666 $))) (-15 -3878 ($ (-666 $))) (-15 -2819 ($ (-666 $))) (-15 -4428 ($ (-666 $))) (-15 -4172 ($ (-666 $))) (-15 -2384 ($ $ $)) (-15 -3213 ($ $ $)) (-15 -2404 ($ $ $)) (-15 -2416 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2472 ($ $ $)) (-15 -2484 ($ $ $)) (-15 -2484 ($ $)) (-15 * ($ $ $)) (-15 -2495 ($ $ $)) (-15 ** ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -3166 ($ $ $)) (-15 -3202 ($ $ $)) (-15 -2320 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -2309 ($ $)) (-15 -3934 ($ $ $)) (-15 -3934 ($ $)))) +((-4134 (((-1303) (-666 (-52))) 23 T ELT)) (-2143 (((-1303) (-1189) (-886)) 13 T ELT) (((-1303) (-886)) 8 T ELT) (((-1303) (-1189)) 10 T ELT))) +(((-887) (-10 -7 (-15 -2143 ((-1303) (-1189))) (-15 -2143 ((-1303) (-886))) (-15 -2143 ((-1303) (-1189) (-886))) (-15 -4134 ((-1303) (-666 (-52)))))) (T -887)) +((-4134 (*1 *2 *3) (-12 (-5 *3 (-666 (-52))) (-5 *2 (-1303)) (-5 *1 (-887)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-887)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-887)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-887))))) +(-10 -7 (-15 -2143 ((-1303) (-1189))) (-15 -2143 ((-1303) (-886))) (-15 -2143 ((-1303) (-1189) (-886))) (-15 -4134 ((-1303) (-666 (-52))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3967 (((-3 $ "failed") (-1207)) 36 T ELT)) (-2222 (((-793)) 32 T ELT)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) 29 T ELT)) (-2617 (((-1189) $) 43 T ELT)) (-2087 (($ (-950)) 28 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3343 (((-1207) $) 13 T ELT) (((-550) $) 19 T ELT) (((-917 (-392)) $) 26 T ELT) (((-917 (-578)) $) 22 T ELT)) (-2411 (((-886) $) 16 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 40 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 38 T ELT))) +(((-888 |#1|) (-13 (-866) (-633 (-1207)) (-633 (-550)) (-633 (-917 (-392))) (-633 (-917 (-578))) (-10 -8 (-15 -3967 ((-3 $ "failed") (-1207))))) (-666 (-1207))) (T -888)) +((-3967 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-888 *3)) (-14 *3 (-666 *2))))) +(-13 (-866) (-633 (-1207)) (-633 (-550)) (-633 (-917 (-392))) (-633 (-917 (-578))) (-10 -8 (-15 -3967 ((-3 $ "failed") (-1207))))) +((-3213 (((-112) $ $) NIL T ELT)) (-4107 (((-520) $) 9 T ELT)) (-1441 (((-666 (-453)) $) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 21 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 16 T ELT))) +(((-889) (-13 (-1131) (-10 -8 (-15 -4107 ((-520) $)) (-15 -1441 ((-666 (-453)) $))))) (T -889)) +((-4107 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-889)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-666 (-453))) (-5 *1 (-889))))) +(-13 (-1131) (-10 -8 (-15 -4107 ((-520) $)) (-15 -1441 ((-666 (-453)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-981 |#1|)) NIL T ELT) (((-981 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3753 (((-793)) NIL T CONST)) (-3340 (((-1303) (-793)) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-890 |#1| |#2| |#3| |#4|) (-13 (-1080) (-504 (-981 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2495 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3340 ((-1303) (-793))))) (-1080) (-666 (-1207)) (-666 (-793)) (-793)) (T -890)) +((-2495 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-890 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1080)) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-793))) (-14 *5 (-793)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *4 (-1080)) (-14 *5 (-666 (-1207))) (-14 *6 (-666 *3)) (-14 *7 *3)))) +(-13 (-1080) (-504 (-981 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2495 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3340 ((-1303) (-793))))) +((-2713 (((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|) 38 T ELT)) (-2634 (((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|) 29 T ELT))) +(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -2634 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -2713 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|))) (-376) (-1289 |#1|) (-1274 |#1|)) (T -891)) +((-2713 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1289 *5)) (-4 *6 (-1274 *5)))) (-2634 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6)) (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1289 *5)) (-4 *6 (-1274 *5))))) +(-10 -7 (-15 -2634 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -2713 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|))) +((-2634 (((-3 (-421 (-1271 |#2| |#1|)) "failed") (-793) (-793) (-1290 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-421 (-1271 |#2| |#1|)) "failed") (-793) (-793) (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|)) 28 T ELT))) +(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -2634 ((-3 (-421 (-1271 |#2| |#1|)) "failed") (-793) (-793) (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|))) (-15 -2634 ((-3 (-421 (-1271 |#2| |#1|)) "failed") (-793) (-793) (-1290 |#1| |#2| |#3|)))) (-376) (-1207) |#1|) (T -892)) +((-2634 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1290 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1271 *6 *5))) (-5 *1 (-892 *5 *6 *7)))) (-2634 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1290 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1271 *6 *5))) (-5 *1 (-892 *5 *6 *7))))) +(-10 -7 (-15 -2634 ((-3 (-421 (-1271 |#2| |#1|)) "failed") (-793) (-793) (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|))) (-15 -2634 ((-3 (-421 (-1271 |#2| |#1|)) "failed") (-793) (-793) (-1290 |#1| |#2| |#3|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2811 (($ $ (-578)) 68 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-3534 (($) 18 T CONST)) (-2647 (($ (-1203 (-578)) (-578)) 67 T ELT)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2369 (($ $) 70 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-4059 (((-793) $) 75 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-2703 (((-578)) 72 T ELT)) (-3186 (((-578) $) 71 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2704 (($ $ (-578)) 74 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-3472 (((-1188 (-578)) $) 76 T ELT)) (-2117 (($ $) 73 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-3909 (((-578) $ (-578)) 69 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-893 |#1|) (-142) (-578)) (T -893)) +((-3472 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-1188 (-578))))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-793)))) (-2704 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) (-2117 (*1 *1 *1) (-4 *1 (-893 *2))) (-2703 (*1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) (-2369 (*1 *1 *1) (-4 *1 (-893 *2))) (-3909 (*1 *2 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) (-2811 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) (-2647 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 (-578))) (-5 *3 (-578)) (-4 *1 (-893 *4))))) +(-13 (-319) (-149) (-10 -8 (-15 -3472 ((-1188 (-578)) $)) (-15 -4059 ((-793) $)) (-15 -2704 ($ $ (-578))) (-15 -2117 ($ $)) (-15 -2703 ((-578))) (-15 -3186 ((-578) $)) (-15 -2369 ($ $)) (-15 -3909 ((-578) $ (-578))) (-15 -2811 ($ $ (-578))) (-15 -2647 ($ (-1203 (-578)) (-578))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $ (-578)) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2647 (($ (-1203 (-578)) (-578)) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2369 (($ $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-4059 (((-793) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2703 (((-578)) NIL T ELT)) (-3186 (((-578) $) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2704 (($ $ (-578)) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3472 (((-1188 (-578)) $) NIL T ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3909 (((-578) $ (-578)) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-894 |#1|) (-893 |#1|) (-578)) (T -894)) +NIL +(-893 |#1|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 (((-894 |#1|) $) NIL (|has| (-894 |#1|) (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| (-894 |#1|) (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-894 |#1|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-894 |#1|) (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-894 |#1|) (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| (-894 |#1|) (-1069 (-578))) ELT)) (-3516 (((-894 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-894 |#1|) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| (-894 |#1|) (-1069 (-578))) ELT) (((-578) $) NIL (|has| (-894 |#1|) (-1069 (-578))) ELT)) (-3178 (($ $) NIL T ELT) (($ (-578) $) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-894 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-894 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-894 |#1|))) (|:| |vec| (-1298 (-894 |#1|)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-894 |#1|)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-894 |#1|) (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| (-894 |#1|) (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-894 |#1|) (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-894 |#1|) (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 (((-894 |#1|) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-894 |#1|) (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| (-894 |#1|) (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| (-894 |#1|) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-894 |#1|) (-871)) ELT)) (-3611 (($ (-1 (-894 |#1|) (-894 |#1|)) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-894 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-894 |#1|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-894 |#1|))) (|:| |vec| (-1298 (-894 |#1|)))) (-1298 $) $) NIL T ELT) (((-711 (-894 |#1|)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-894 |#1|) (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| (-894 |#1|) (-319)) ELT)) (-3575 (((-894 |#1|) $) NIL (|has| (-894 |#1|) (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-894 |#1|) (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 (-894 |#1|)) (-666 (-894 |#1|))) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-894 |#1|) (-894 |#1|)) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-306 (-894 |#1|))) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-666 (-306 (-894 |#1|)))) NIL (|has| (-894 |#1|) (-321 (-894 |#1|))) ELT) (($ $ (-666 (-1207)) (-666 (-894 |#1|))) NIL (|has| (-894 |#1|) (-528 (-1207) (-894 |#1|))) ELT) (($ $ (-1207) (-894 |#1|)) NIL (|has| (-894 |#1|) (-528 (-1207) (-894 |#1|))) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ (-894 |#1|)) NIL (|has| (-894 |#1|) (-298 (-894 |#1|) (-894 |#1|))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 (-894 |#1|) (-894 |#1|))) NIL T ELT) (($ $ (-1 (-894 |#1|) (-894 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-894 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-894 |#1|) (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 (((-894 |#1|) $) NIL T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| (-894 |#1|) (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| (-894 |#1|) (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| (-894 |#1|) (-633 (-550))) ELT) (((-392) $) NIL (|has| (-894 |#1|) (-1053)) ELT) (((-229) $) NIL (|has| (-894 |#1|) (-1053)) ELT)) (-1562 (((-177 (-421 (-578))) $) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-894 |#1|) (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-894 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-894 |#1|) (-1069 (-1207))) ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-894 |#1|) (-938))) (|has| (-894 |#1|) (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 (((-894 |#1|) $) NIL (|has| (-894 |#1|) (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3909 (((-421 (-578)) $ (-578)) NIL T ELT)) (-2628 (($ $) NIL (|has| (-894 |#1|) (-842)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-894 |#1|) (-894 |#1|))) NIL T ELT) (($ $ (-1 (-894 |#1|) (-894 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-894 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-894 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-894 |#1|) (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-894 |#1|) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-894 |#1|) (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| (-894 |#1|) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-894 |#1|) (-871)) ELT)) (-2495 (($ $ $) NIL T ELT) (($ (-894 |#1|) (-894 |#1|)) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ (-894 |#1|) $) NIL T ELT) (($ $ (-894 |#1|)) NIL T ELT))) +(((-895 |#1|) (-13 (-1023 (-894 |#1|)) (-10 -8 (-15 -3909 ((-421 (-578)) $ (-578))) (-15 -1562 ((-177 (-421 (-578))) $)) (-15 -3178 ($ $)) (-15 -3178 ($ (-578) $)))) (-578)) (T -895)) +((-3909 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-895 *4)) (-14 *4 *3) (-5 *3 (-578)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-578)))) (-5 *1 (-895 *3)) (-14 *3 (-578)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-14 *2 (-578)))) (-3178 (*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-895 *3)) (-14 *3 *2)))) +(-13 (-1023 (-894 |#1|)) (-10 -8 (-15 -3909 ((-421 (-578)) $ (-578))) (-15 -1562 ((-177 (-421 (-578))) $)) (-15 -3178 ($ $)) (-15 -3178 ($ (-578) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| |#2| (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| |#2| (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT)) (-3516 ((|#2| $) NIL T ELT) (((-1207) $) NIL (|has| |#2| (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT)) (-3178 (($ $) 35 T ELT) (($ (-578) $) 38 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) 64 T ELT)) (-2062 (($) NIL (|has| |#2| (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) NIL (|has| |#2| (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| |#2| (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| |#2| (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 ((|#2| $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#2| (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| |#2| (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 60 T ELT)) (-2199 (($) NIL (|has| |#2| (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3575 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 |#2|) (-666 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-306 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-666 (-306 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-666 (-1207)) (-666 |#2|)) NIL (|has| |#2| (-528 (-1207) |#2|)) ELT) (($ $ (-1207) |#2|) NIL (|has| |#2| (-528 (-1207) |#2|)) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 ((|#2| $) NIL T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| |#2| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| |#2| (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| |#2| (-633 (-550))) ELT) (((-392) $) NIL (|has| |#2| (-1053)) ELT) (((-229) $) NIL (|has| |#2| (-1053)) ELT)) (-1562 (((-177 (-421 (-578))) $) 78 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-2411 (((-886) $) 106 T ELT) (($ (-578)) 20 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1207)) NIL (|has| |#2| (-1069 (-1207))) ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-1585 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3909 (((-421 (-578)) $ (-578)) 71 T ELT)) (-2628 (($ $) NIL (|has| |#2| (-842)) ELT)) (-2368 (($) 15 T CONST)) (-2379 (($) 17 T CONST)) (-1676 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2384 (((-112) $ $) 46 T ELT)) (-2429 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#2| (-871)) ELT)) (-2495 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-2484 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-2472 (($ $ $) 48 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) 61 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-896 |#1| |#2|) (-13 (-1023 |#2|) (-10 -8 (-15 -3909 ((-421 (-578)) $ (-578))) (-15 -1562 ((-177 (-421 (-578))) $)) (-15 -3178 ($ $)) (-15 -3178 ($ (-578) $)))) (-578) (-893 |#1|)) (T -896)) +((-3909 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-421 (-578))) (-5 *1 (-896 *4 *5)) (-5 *3 (-578)) (-4 *5 (-893 *4)))) (-1562 (*1 *2 *1) (-12 (-14 *3 (-578)) (-5 *2 (-177 (-421 (-578)))) (-5 *1 (-896 *3 *4)) (-4 *4 (-893 *3)))) (-3178 (*1 *1 *1) (-12 (-14 *2 (-578)) (-5 *1 (-896 *2 *3)) (-4 *3 (-893 *2)))) (-3178 (*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-14 *3 *2) (-5 *1 (-896 *3 *4)) (-4 *4 (-893 *3))))) +(-13 (-1023 |#2|) (-10 -8 (-15 -3909 ((-421 (-578)) $ (-578))) (-15 -1562 ((-177 (-421 (-578))) $)) (-15 -3178 ($ $)) (-15 -3178 ($ (-578) $)))) +((-3213 (((-112) $ $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-3920 ((|#2| $) 12 T ELT)) (-2114 (($ |#1| |#2|) 9 T ELT)) (-2617 (((-1189) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-4313 (((-1151) $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#1| $) 11 T ELT)) (-2423 (($ |#1| |#2|) 10 T ELT)) (-2411 (((-886) $) 18 (-2230 (-12 (|has| |#1| (-632 (-886))) (|has| |#2| (-632 (-886)))) (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131)))) ELT)) (-2876 (((-112) $ $) NIL (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT)) (-2384 (((-112) $ $) 23 (-12 (|has| |#1| (-1131)) (|has| |#2| (-1131))) ELT))) +(((-897 |#1| |#2|) (-13 (-1248) (-10 -8 (IF (|has| |#1| (-632 (-886))) (IF (|has| |#2| (-632 (-886))) (-6 (-632 (-886))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1131)) (IF (|has| |#2| (-1131)) (-6 (-1131)) |%noBranch|) |%noBranch|) (-15 -2114 ($ |#1| |#2|)) (-15 -2423 ($ |#1| |#2|)) (-15 -4189 (|#1| $)) (-15 -3920 (|#2| $)))) (-1248) (-1248)) (T -897)) +((-2114 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1248)) (-4 *3 (-1248)))) (-2423 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1248)) (-4 *3 (-1248)))) (-4189 (*1 *2 *1) (-12 (-4 *2 (-1248)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1248)))) (-3920 (*1 *2 *1) (-12 (-4 *2 (-1248)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1248))))) +(-13 (-1248) (-10 -8 (IF (|has| |#1| (-632 (-886))) (IF (|has| |#2| (-632 (-886))) (-6 (-632 (-886))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1131)) (IF (|has| |#2| (-1131)) (-6 (-1131)) |%noBranch|) |%noBranch|) (-15 -2114 ($ |#1| |#2|)) (-15 -2423 ($ |#1| |#2|)) (-15 -4189 (|#1| $)) (-15 -3920 (|#2| $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3150 (((-578) $) 16 T ELT)) (-2803 (($ (-159)) 13 T ELT)) (-1627 (($ (-159)) 14 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1594 (((-159) $) 15 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3755 (($ (-159)) 11 T ELT)) (-2821 (($ (-159)) 10 T ELT)) (-2411 (((-886) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-3339 (($ (-159)) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-898) (-13 (-1131) (-10 -8 (-15 -2821 ($ (-159))) (-15 -3755 ($ (-159))) (-15 -3339 ($ (-159))) (-15 -2803 ($ (-159))) (-15 -1627 ($ (-159))) (-15 -1594 ((-159) $)) (-15 -3150 ((-578) $)) (-15 -2411 ($ (-159)))))) (T -898)) +((-2821 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-3339 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-2803 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-1627 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-898)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))) +(-13 (-1131) (-10 -8 (-15 -2821 ($ (-159))) (-15 -3755 ($ (-159))) (-15 -3339 ($ (-159))) (-15 -2803 ($ (-159))) (-15 -1627 ($ (-159))) (-15 -1594 ((-159) $)) (-15 -3150 ((-578) $)) (-15 -2411 ($ (-159))))) +((-2411 (((-328 (-578)) (-421 (-981 (-48)))) 23 T ELT) (((-328 (-578)) (-981 (-48))) 18 T ELT))) +(((-899) (-10 -7 (-15 -2411 ((-328 (-578)) (-981 (-48)))) (-15 -2411 ((-328 (-578)) (-421 (-981 (-48))))))) (T -899)) +((-2411 (*1 *2 *3) (-12 (-5 *3 (-421 (-981 (-48)))) (-5 *2 (-328 (-578))) (-5 *1 (-899)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-981 (-48))) (-5 *2 (-328 (-578))) (-5 *1 (-899))))) +(-10 -7 (-15 -2411 ((-328 (-578)) (-981 (-48)))) (-15 -2411 ((-328 (-578)) (-421 (-981 (-48)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2355 (((-112) $ (|[\|\|]| (-520))) 9 T ELT) (((-112) $ (|[\|\|]| (-1189))) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4032 (((-520) $) 10 T ELT) (((-1189) $) 14 T ELT)) (-2384 (((-112) $ $) 15 T ELT))) +(((-900) (-13 (-1114) (-1293) (-10 -8 (-15 -2355 ((-112) $ (|[\|\|]| (-520)))) (-15 -4032 ((-520) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1189)))) (-15 -4032 ((-1189) $))))) (T -900)) +((-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)) (-5 *1 (-900)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-900)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-112)) (-5 *1 (-900)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-900))))) +(-13 (-1114) (-1293) (-10 -8 (-15 -2355 ((-112) $ (|[\|\|]| (-520)))) (-15 -4032 ((-520) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1189)))) (-15 -4032 ((-1189) $)))) +((-3611 (((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)) 15 T ELT))) +(((-901 |#1| |#2|) (-10 -7 (-15 -3611 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) (-1248) (-1248)) (T -901)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6))))) +(-10 -7 (-15 -3611 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) +((-2825 (($ |#1| |#1|) 8 T ELT)) (-1471 ((|#1| $ (-793)) 15 T ELT))) +(((-902 |#1|) (-10 -8 (-15 -2825 ($ |#1| |#1|)) (-15 -1471 (|#1| $ (-793)))) (-1248)) (T -902)) +((-1471 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-902 *2)) (-4 *2 (-1248)))) (-2825 (*1 *1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1248))))) +(-10 -8 (-15 -2825 ($ |#1| |#1|)) (-15 -1471 (|#1| $ (-793)))) +((-3611 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 15 T ELT))) +(((-903 |#1| |#2|) (-10 -7 (-15 -3611 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) (-1248) (-1248)) (T -903)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6))))) +(-10 -7 (-15 -3611 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) +((-2825 (($ |#1| |#1| |#1|) 8 T ELT)) (-1471 ((|#1| $ (-793)) 15 T ELT))) +(((-904 |#1|) (-10 -8 (-15 -2825 ($ |#1| |#1| |#1|)) (-15 -1471 (|#1| $ (-793)))) (-1248)) (T -904)) +((-1471 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-904 *2)) (-4 *2 (-1248)))) (-2825 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1248))))) +(-10 -8 (-15 -2825 ($ |#1| |#1| |#1|)) (-15 -1471 (|#1| $ (-793)))) +((-3711 (((-666 (-1212)) (-1189)) 9 T ELT))) +(((-905) (-10 -7 (-15 -3711 ((-666 (-1212)) (-1189))))) (T -905)) +((-3711 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-666 (-1212))) (-5 *1 (-905))))) +(-10 -7 (-15 -3711 ((-666 (-1212)) (-1189)))) +((-3611 (((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)) 15 T ELT))) +(((-906 |#1| |#2|) (-10 -7 (-15 -3611 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) (-1248) (-1248)) (T -906)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6))))) +(-10 -7 (-15 -3611 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) +((-1615 (($ |#1| |#1| |#1|) 8 T ELT)) (-1471 ((|#1| $ (-793)) 15 T ELT))) +(((-907 |#1|) (-10 -8 (-15 -1615 ($ |#1| |#1| |#1|)) (-15 -1471 (|#1| $ (-793)))) (-1248)) (T -907)) +((-1471 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-907 *2)) (-4 *2 (-1248)))) (-1615 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1248))))) +(-10 -8 (-15 -1615 ($ |#1| |#1| |#1|)) (-15 -1471 (|#1| $ (-793)))) +((-3851 (((-1188 (-666 (-578))) (-666 (-578)) (-1188 (-666 (-578)))) 41 T ELT)) (-2885 (((-1188 (-666 (-578))) (-666 (-578)) (-666 (-578))) 31 T ELT)) (-4307 (((-1188 (-666 (-578))) (-666 (-578))) 53 T ELT) (((-1188 (-666 (-578))) (-666 (-578)) (-666 (-578))) 50 T ELT)) (-2792 (((-1188 (-666 (-578))) (-578)) 55 T ELT)) (-2539 (((-1188 (-666 (-950))) (-1188 (-666 (-950)))) 22 T ELT)) (-1433 (((-666 (-950)) (-666 (-950))) 18 T ELT))) +(((-908) (-10 -7 (-15 -1433 ((-666 (-950)) (-666 (-950)))) (-15 -2539 ((-1188 (-666 (-950))) (-1188 (-666 (-950))))) (-15 -2885 ((-1188 (-666 (-578))) (-666 (-578)) (-666 (-578)))) (-15 -3851 ((-1188 (-666 (-578))) (-666 (-578)) (-1188 (-666 (-578))))) (-15 -4307 ((-1188 (-666 (-578))) (-666 (-578)) (-666 (-578)))) (-15 -4307 ((-1188 (-666 (-578))) (-666 (-578)))) (-15 -2792 ((-1188 (-666 (-578))) (-578))))) (T -908)) +((-2792 (*1 *2 *3) (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) (-5 *3 (-578)))) (-4307 (*1 *2 *3) (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) (-5 *3 (-666 (-578))))) (-4307 (*1 *2 *3 *3) (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) (-5 *3 (-666 (-578))))) (-3851 (*1 *2 *3 *2) (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *3 (-666 (-578))) (-5 *1 (-908)))) (-2885 (*1 *2 *3 *3) (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) (-5 *3 (-666 (-578))))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-1188 (-666 (-950)))) (-5 *1 (-908)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-908))))) +(-10 -7 (-15 -1433 ((-666 (-950)) (-666 (-950)))) (-15 -2539 ((-1188 (-666 (-950))) (-1188 (-666 (-950))))) (-15 -2885 ((-1188 (-666 (-578))) (-666 (-578)) (-666 (-578)))) (-15 -3851 ((-1188 (-666 (-578))) (-666 (-578)) (-1188 (-666 (-578))))) (-15 -4307 ((-1188 (-666 (-578))) (-666 (-578)) (-666 (-578)))) (-15 -4307 ((-1188 (-666 (-578))) (-666 (-578)))) (-15 -2792 ((-1188 (-666 (-578))) (-578)))) +((-3343 (((-917 (-392)) $) 9 (|has| |#1| (-633 (-917 (-392)))) ELT) (((-917 (-578)) $) 8 (|has| |#1| (-633 (-917 (-578)))) ELT))) +(((-909 |#1|) (-142) (-1248)) (T -909)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-633 (-917 (-578)))) (-6 (-633 (-917 (-578)))) |%noBranch|) (IF (|has| |t#1| (-633 (-917 (-392)))) (-6 (-633 (-917 (-392)))) |%noBranch|))) +(((-633 (-917 (-392))) |has| |#1| (-633 (-917 (-392)))) ((-633 (-917 (-578))) |has| |#1| (-633 (-917 (-578))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3749 (($) 14 T ELT)) (-3464 (($ (-914 |#1| |#2|) (-914 |#1| |#3|)) 28 T ELT)) (-1951 (((-914 |#1| |#3|) $) 16 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1543 (((-112) $) 22 T ELT)) (-3849 (($) 19 T ELT)) (-2411 (((-886) $) 31 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1889 (((-914 |#1| |#2|) $) 15 T ELT)) (-2384 (((-112) $ $) 26 T ELT))) +(((-910 |#1| |#2| |#3|) (-13 (-1131) (-10 -8 (-15 -1543 ((-112) $)) (-15 -3849 ($)) (-15 -3749 ($)) (-15 -3464 ($ (-914 |#1| |#2|) (-914 |#1| |#3|))) (-15 -1889 ((-914 |#1| |#2|) $)) (-15 -1951 ((-914 |#1| |#3|) $)))) (-1131) (-1131) (-688 |#2|)) (T -910)) +((-1543 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1131)) (-4 *5 (-688 *4)))) (-3849 (*1 *1) (-12 (-4 *3 (-1131)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1131)) (-4 *4 (-688 *3)))) (-3749 (*1 *1) (-12 (-4 *3 (-1131)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1131)) (-4 *4 (-688 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-914 *4 *5)) (-5 *3 (-914 *4 *6)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-688 *5)) (-5 *1 (-910 *4 *5 *6)))) (-1889 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-914 *3 *4)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1131)) (-4 *5 (-688 *4)))) (-1951 (*1 *2 *1) (-12 (-4 *4 (-1131)) (-5 *2 (-914 *3 *5)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1131)) (-4 *5 (-688 *4))))) +(-13 (-1131) (-10 -8 (-15 -1543 ((-112) $)) (-15 -3849 ($)) (-15 -3749 ($)) (-15 -3464 ($ (-914 |#1| |#2|) (-914 |#1| |#3|))) (-15 -1889 ((-914 |#1| |#2|) $)) (-15 -1951 ((-914 |#1| |#3|) $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3386 (((-914 |#1| $) $ (-917 |#1|) (-914 |#1| $)) 14 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-911 |#1|) (-142) (-1131)) (T -911)) +((-3386 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-914 *4 *1)) (-5 *3 (-917 *4)) (-4 *1 (-911 *4)) (-4 *4 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -3386 ((-914 |t#1| $) $ (-917 |t#1|) (-914 |t#1| $))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-1413 (((-112) (-666 |#2|) |#3|) 23 T ELT) (((-112) |#2| |#3|) 18 T ELT)) (-2903 (((-914 |#1| |#2|) |#2| |#3|) 45 (-12 (-2309 (|has| |#2| (-1069 (-1207)))) (-2309 (|has| |#2| (-1080)))) ELT) (((-666 (-306 (-981 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1080)) (-2309 (|has| |#2| (-1069 (-1207))))) ELT) (((-666 (-306 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1069 (-1207))) ELT) (((-910 |#1| |#2| (-666 |#2|)) (-666 |#2|) |#3|) 21 T ELT))) +(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -1413 ((-112) |#2| |#3|)) (-15 -1413 ((-112) (-666 |#2|) |#3|)) (-15 -2903 ((-910 |#1| |#2| (-666 |#2|)) (-666 |#2|) |#3|)) (IF (|has| |#2| (-1069 (-1207))) (-15 -2903 ((-666 (-306 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1080)) (-15 -2903 ((-666 (-306 (-981 |#2|))) |#2| |#3|)) (-15 -2903 ((-914 |#1| |#2|) |#2| |#3|))))) (-1131) (-911 |#1|) (-633 (-917 |#1|))) (T -912)) +((-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-914 *5 *3)) (-5 *1 (-912 *5 *3 *4)) (-2309 (-4 *3 (-1069 (-1207)))) (-2309 (-4 *3 (-1080))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-917 *5))))) (-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-666 (-306 (-981 *3)))) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1080)) (-2309 (-4 *3 (-1069 (-1207)))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-917 *5))))) (-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-666 (-306 *3))) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1069 (-1207))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-917 *5))))) (-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *6 (-911 *5)) (-5 *2 (-910 *5 *6 (-666 *6))) (-5 *1 (-912 *5 *6 *4)) (-5 *3 (-666 *6)) (-4 *4 (-633 (-917 *5))))) (-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6)) (-4 *6 (-911 *5)) (-4 *5 (-1131)) (-5 *2 (-112)) (-5 *1 (-912 *5 *6 *4)) (-4 *4 (-633 (-917 *5))))) (-1413 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-5 *2 (-112)) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-911 *5)) (-4 *4 (-633 (-917 *5)))))) +(-10 -7 (-15 -1413 ((-112) |#2| |#3|)) (-15 -1413 ((-112) (-666 |#2|) |#3|)) (-15 -2903 ((-910 |#1| |#2| (-666 |#2|)) (-666 |#2|) |#3|)) (IF (|has| |#2| (-1069 (-1207))) (-15 -2903 ((-666 (-306 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1080)) (-15 -2903 ((-666 (-306 (-981 |#2|))) |#2| |#3|)) (-15 -2903 ((-914 |#1| |#2|) |#2| |#3|))))) +((-3611 (((-914 |#1| |#3|) (-1 |#3| |#2|) (-914 |#1| |#2|)) 22 T ELT))) +(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -3611 ((-914 |#1| |#3|) (-1 |#3| |#2|) (-914 |#1| |#2|)))) (-1131) (-1131) (-1131)) (T -913)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-914 *5 *6)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-914 *5 *7)) (-5 *1 (-913 *5 *6 *7))))) +(-10 -7 (-15 -3611 ((-914 |#1| |#3|) (-1 |#3| |#2|) (-914 |#1| |#2|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-1340 (($ $ $) 40 T ELT)) (-2755 (((-3 (-112) "failed") $ (-917 |#1|)) 37 T ELT)) (-3749 (($) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1931 (($ (-917 |#1|) |#2| $) 20 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3853 (((-3 |#2| "failed") (-917 |#1|) $) 51 T ELT)) (-1543 (((-112) $) 15 T ELT)) (-3849 (($) 13 T ELT)) (-2879 (((-666 (-2 (|:| -3173 (-1207)) (|:| -2754 |#2|))) $) 25 T ELT)) (-2423 (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 |#2|)))) 23 T ELT)) (-2411 (((-886) $) 45 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1352 (($ (-917 |#1|) |#2| $ |#2|) 49 T ELT)) (-1398 (($ (-917 |#1|) |#2| $) 48 T ELT)) (-2384 (((-112) $ $) 42 T ELT))) +(((-914 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -1543 ((-112) $)) (-15 -3849 ($)) (-15 -3749 ($)) (-15 -1340 ($ $ $)) (-15 -3853 ((-3 |#2| "failed") (-917 |#1|) $)) (-15 -1398 ($ (-917 |#1|) |#2| $)) (-15 -1931 ($ (-917 |#1|) |#2| $)) (-15 -1352 ($ (-917 |#1|) |#2| $ |#2|)) (-15 -2879 ((-666 (-2 (|:| -3173 (-1207)) (|:| -2754 |#2|))) $)) (-15 -2423 ($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 |#2|))))) (-15 -2755 ((-3 (-112) "failed") $ (-917 |#1|))))) (-1131) (-1131)) (T -914)) +((-1543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-3849 (*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3749 (*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-1340 (*1 *1 *1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3853 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) (-5 *1 (-914 *4 *2)))) (-1398 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1131)))) (-1931 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1131)))) (-1352 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1131)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 *4)))) (-5 *1 (-914 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 *4)))) (-4 *4 (-1131)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1131)))) (-2755 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -1543 ((-112) $)) (-15 -3849 ($)) (-15 -3749 ($)) (-15 -1340 ($ $ $)) (-15 -3853 ((-3 |#2| "failed") (-917 |#1|) $)) (-15 -1398 ($ (-917 |#1|) |#2| $)) (-15 -1931 ($ (-917 |#1|) |#2| $)) (-15 -1352 ($ (-917 |#1|) |#2| $ |#2|)) (-15 -2879 ((-666 (-2 (|:| -3173 (-1207)) (|:| -2754 |#2|))) $)) (-15 -2423 ($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 |#2|))))) (-15 -2755 ((-3 (-112) "failed") $ (-917 |#1|))))) +((-2367 (((-917 |#1|) (-917 |#1|) (-666 (-1207)) (-1 (-112) (-666 |#2|))) 32 T ELT) (((-917 |#1|) (-917 |#1|) (-666 (-1 (-112) |#2|))) 46 T ELT) (((-917 |#1|) (-917 |#1|) (-1 (-112) |#2|)) 35 T ELT)) (-2755 (((-112) (-666 |#2|) (-917 |#1|)) 42 T ELT) (((-112) |#2| (-917 |#1|)) 36 T ELT)) (-2184 (((-1 (-112) |#2|) (-917 |#1|)) 16 T ELT)) (-3562 (((-666 |#2|) (-917 |#1|)) 24 T ELT)) (-3049 (((-917 |#1|) (-917 |#1|) |#2|) 20 T ELT))) +(((-915 |#1| |#2|) (-10 -7 (-15 -2367 ((-917 |#1|) (-917 |#1|) (-1 (-112) |#2|))) (-15 -2367 ((-917 |#1|) (-917 |#1|) (-666 (-1 (-112) |#2|)))) (-15 -2367 ((-917 |#1|) (-917 |#1|) (-666 (-1207)) (-1 (-112) (-666 |#2|)))) (-15 -2184 ((-1 (-112) |#2|) (-917 |#1|))) (-15 -2755 ((-112) |#2| (-917 |#1|))) (-15 -2755 ((-112) (-666 |#2|) (-917 |#1|))) (-15 -3049 ((-917 |#1|) (-917 |#1|) |#2|)) (-15 -3562 ((-666 |#2|) (-917 |#1|)))) (-1131) (-1248)) (T -915)) +((-3562 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-5 *2 (-666 *5)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1248)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1248)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-4 *6 (-1248)) (-5 *2 (-112)) (-5 *1 (-915 *5 *6)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-5 *2 (-112)) (-5 *1 (-915 *5 *3)) (-4 *3 (-1248)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1248)))) (-2367 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-917 *5)) (-5 *3 (-666 (-1207))) (-5 *4 (-1 (-112) (-666 *6))) (-4 *5 (-1131)) (-4 *6 (-1248)) (-5 *1 (-915 *5 *6)))) (-2367 (*1 *2 *2 *3) (-12 (-5 *2 (-917 *4)) (-5 *3 (-666 (-1 (-112) *5))) (-4 *4 (-1131)) (-4 *5 (-1248)) (-5 *1 (-915 *4 *5)))) (-2367 (*1 *2 *2 *3) (-12 (-5 *2 (-917 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1131)) (-4 *5 (-1248)) (-5 *1 (-915 *4 *5))))) +(-10 -7 (-15 -2367 ((-917 |#1|) (-917 |#1|) (-1 (-112) |#2|))) (-15 -2367 ((-917 |#1|) (-917 |#1|) (-666 (-1 (-112) |#2|)))) (-15 -2367 ((-917 |#1|) (-917 |#1|) (-666 (-1207)) (-1 (-112) (-666 |#2|)))) (-15 -2184 ((-1 (-112) |#2|) (-917 |#1|))) (-15 -2755 ((-112) |#2| (-917 |#1|))) (-15 -2755 ((-112) (-666 |#2|) (-917 |#1|))) (-15 -3049 ((-917 |#1|) (-917 |#1|) |#2|)) (-15 -3562 ((-666 |#2|) (-917 |#1|)))) +((-3611 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 19 T ELT))) +(((-916 |#1| |#2|) (-10 -7 (-15 -3611 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1131) (-1131)) (T -916)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-917 *6)) (-5 *1 (-916 *5 *6))))) +(-10 -7 (-15 -3611 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2493 (($ $ (-666 (-52))) 74 T ELT)) (-2949 (((-666 $) $) 139 T ELT)) (-2726 (((-2 (|:| |var| (-666 (-1207))) (|:| |pred| (-52))) $) 30 T ELT)) (-2763 (((-112) $) 35 T ELT)) (-1573 (($ $ (-666 (-1207)) (-52)) 31 T ELT)) (-4081 (($ $ (-666 (-52))) 73 T ELT)) (-2818 (((-3 |#1| "failed") $) 71 T ELT) (((-3 (-1207) "failed") $) 164 T ELT)) (-3516 ((|#1| $) 68 T ELT) (((-1207) $) NIL T ELT)) (-1967 (($ $) 126 T ELT)) (-3259 (((-112) $) 55 T ELT)) (-4298 (((-666 (-52)) $) 50 T ELT)) (-3624 (($ (-1207) (-112) (-112) (-112)) 75 T ELT)) (-1956 (((-3 (-666 $) "failed") (-666 $)) 82 T ELT)) (-1634 (((-112) $) 58 T ELT)) (-3944 (((-112) $) 57 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) 41 T ELT)) (-1681 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-2929 (((-3 (-2 (|:| |val| $) (|:| -2764 $)) "failed") $) 97 T ELT)) (-1968 (((-3 (-666 $) "failed") $) 40 T ELT)) (-4035 (((-3 (-666 $) "failed") $ (-116)) 124 T ELT) (((-3 (-2 (|:| -4424 (-116)) (|:| |arg| (-666 $))) "failed") $) 107 T ELT)) (-1963 (((-3 (-666 $) "failed") $) 42 T ELT)) (-1590 (((-3 (-2 (|:| |val| $) (|:| -2764 (-793))) "failed") $) 45 T ELT)) (-2240 (((-112) $) 34 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3194 (((-112) $) 28 T ELT)) (-3913 (((-112) $) 52 T ELT)) (-3384 (((-666 (-52)) $) 130 T ELT)) (-2923 (((-112) $) 56 T ELT)) (-2436 (($ (-116) (-666 $)) 104 T ELT)) (-3302 (((-793) $) 33 T ELT)) (-3979 (($ $) 72 T ELT)) (-3343 (($ (-666 $)) 69 T ELT)) (-3239 (((-112) $) 32 T ELT)) (-2411 (((-886) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1207)) 76 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3049 (($ $ (-52)) 129 T ELT)) (-2368 (($) 103 T CONST)) (-2379 (($) 83 T CONST)) (-2384 (((-112) $ $) 93 T ELT)) (-2495 (($ $ $) 117 T ELT)) (-2472 (($ $ $) 121 T ELT)) (** (($ $ (-793)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-917 |#1|) (-13 (-1131) (-1069 |#1|) (-1069 (-1207)) (-10 -8 (-15 0 ($) -1529) (-15 1 ($) -1529) (-15 -1968 ((-3 (-666 $) "failed") $)) (-15 -3315 ((-3 (-666 $) "failed") $)) (-15 -4035 ((-3 (-666 $) "failed") $ (-116))) (-15 -4035 ((-3 (-2 (|:| -4424 (-116)) (|:| |arg| (-666 $))) "failed") $)) (-15 -1590 ((-3 (-2 (|:| |val| $) (|:| -2764 (-793))) "failed") $)) (-15 -1681 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1963 ((-3 (-666 $) "failed") $)) (-15 -2929 ((-3 (-2 (|:| |val| $) (|:| -2764 $)) "failed") $)) (-15 -2436 ($ (-116) (-666 $))) (-15 -2472 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -2495 ($ $ $)) (-15 -3302 ((-793) $)) (-15 -3343 ($ (-666 $))) (-15 -3979 ($ $)) (-15 -2240 ((-112) $)) (-15 -3259 ((-112) $)) (-15 -2763 ((-112) $)) (-15 -3239 ((-112) $)) (-15 -2923 ((-112) $)) (-15 -3944 ((-112) $)) (-15 -1634 ((-112) $)) (-15 -3913 ((-112) $)) (-15 -4298 ((-666 (-52)) $)) (-15 -4081 ($ $ (-666 (-52)))) (-15 -2493 ($ $ (-666 (-52)))) (-15 -3624 ($ (-1207) (-112) (-112) (-112))) (-15 -1573 ($ $ (-666 (-1207)) (-52))) (-15 -2726 ((-2 (|:| |var| (-666 (-1207))) (|:| |pred| (-52))) $)) (-15 -3194 ((-112) $)) (-15 -1967 ($ $)) (-15 -3049 ($ $ (-52))) (-15 -3384 ((-666 (-52)) $)) (-15 -2949 ((-666 $) $)) (-15 -1956 ((-3 (-666 $) "failed") (-666 $))))) (-1131)) (T -917)) +((-2368 (*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (-2379 (*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (-1968 (*1 *2 *1) (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3315 (*1 *2 *1) (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-4035 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-116)) (-5 *2 (-666 (-917 *4))) (-5 *1 (-917 *4)) (-4 *4 (-1131)))) (-4035 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4424 (-116)) (|:| |arg| (-666 (-917 *3))))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-1590 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-917 *3)) (|:| -2764 (-793)))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-1681 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-917 *3)) (|:| |den| (-917 *3)))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-1963 (*1 *2 *1) (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-2929 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-917 *3)) (|:| -2764 (-917 *3)))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-2436 (*1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-666 (-917 *4))) (-5 *1 (-917 *4)) (-4 *4 (-1131)))) (-2472 (*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (-2495 (*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3979 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-2493 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3624 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-112)) (-5 *1 (-917 *4)) (-4 *4 (-1131)))) (-1573 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-52)) (-5 *1 (-917 *4)) (-4 *4 (-1131)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-666 (-1207))) (|:| |pred| (-52)))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-1967 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) (-1956 (*1 *2 *2) (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(-13 (-1131) (-1069 |#1|) (-1069 (-1207)) (-10 -8 (-15 (-2368) ($) -1529) (-15 (-2379) ($) -1529) (-15 -1968 ((-3 (-666 $) "failed") $)) (-15 -3315 ((-3 (-666 $) "failed") $)) (-15 -4035 ((-3 (-666 $) "failed") $ (-116))) (-15 -4035 ((-3 (-2 (|:| -4424 (-116)) (|:| |arg| (-666 $))) "failed") $)) (-15 -1590 ((-3 (-2 (|:| |val| $) (|:| -2764 (-793))) "failed") $)) (-15 -1681 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1963 ((-3 (-666 $) "failed") $)) (-15 -2929 ((-3 (-2 (|:| |val| $) (|:| -2764 $)) "failed") $)) (-15 -2436 ($ (-116) (-666 $))) (-15 -2472 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -2495 ($ $ $)) (-15 -3302 ((-793) $)) (-15 -3343 ($ (-666 $))) (-15 -3979 ($ $)) (-15 -2240 ((-112) $)) (-15 -3259 ((-112) $)) (-15 -2763 ((-112) $)) (-15 -3239 ((-112) $)) (-15 -2923 ((-112) $)) (-15 -3944 ((-112) $)) (-15 -1634 ((-112) $)) (-15 -3913 ((-112) $)) (-15 -4298 ((-666 (-52)) $)) (-15 -4081 ($ $ (-666 (-52)))) (-15 -2493 ($ $ (-666 (-52)))) (-15 -3624 ($ (-1207) (-112) (-112) (-112))) (-15 -1573 ($ $ (-666 (-1207)) (-52))) (-15 -2726 ((-2 (|:| |var| (-666 (-1207))) (|:| |pred| (-52))) $)) (-15 -3194 ((-112) $)) (-15 -1967 ($ $)) (-15 -3049 ($ $ (-52))) (-15 -3384 ((-666 (-52)) $)) (-15 -2949 ((-666 $) $)) (-15 -1956 ((-3 (-666 $) "failed") (-666 $))))) +((-3213 (((-112) $ $) NIL T ELT)) (-4418 (((-666 |#1|) $) 19 T ELT)) (-1622 (((-112) $) 49 T ELT)) (-2818 (((-3 (-694 |#1|) "failed") $) 56 T ELT)) (-3516 (((-694 |#1|) $) 54 T ELT)) (-4198 (($ $) 23 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3492 (((-793) $) 61 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-694 |#1|) $) 21 T ELT)) (-2411 (((-886) $) 47 T ELT) (($ (-694 |#1|)) 26 T ELT) (((-841 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 9 T CONST)) (-1829 (((-666 (-694 |#1|)) $) 28 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 12 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 67 T ELT))) +(((-918 |#1|) (-13 (-871) (-1069 (-694 |#1|)) (-10 -8 (-15 1 ($) -1529) (-15 -2411 ((-841 |#1|) $)) (-15 -2411 ($ |#1|)) (-15 -4189 ((-694 |#1|) $)) (-15 -3492 ((-793) $)) (-15 -1829 ((-666 (-694 |#1|)) $)) (-15 -4198 ($ $)) (-15 -1622 ((-112) $)) (-15 -4418 ((-666 |#1|) $)))) (-871)) (T -918)) +((-2379 (*1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-2411 (*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-666 (-694 *3))) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871))))) +(-13 (-871) (-1069 (-694 |#1|)) (-10 -8 (-15 (-2379) ($) -1529) (-15 -2411 ((-841 |#1|) $)) (-15 -2411 ($ |#1|)) (-15 -4189 ((-694 |#1|) $)) (-15 -3492 ((-793) $)) (-15 -1829 ((-666 (-694 |#1|)) $)) (-15 -4198 ($ $)) (-15 -1622 ((-112) $)) (-15 -4418 ((-666 |#1|) $)))) +((-2954 ((|#1| |#1| |#1|) 19 T ELT))) +(((-919 |#1| |#2|) (-10 -7 (-15 -2954 (|#1| |#1| |#1|))) (-1274 |#2|) (-1080)) (T -919)) +((-2954 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-919 *2 *3)) (-4 *2 (-1274 *3))))) +(-10 -7 (-15 -2954 (|#1| |#1| |#1|))) +((-1676 ((|#2| $ |#3|) 10 T ELT))) +(((-920 |#1| |#2| |#3|) (-10 -8 (-15 -1676 (|#2| |#1| |#3|))) (-921 |#2| |#3|) (-1248) (-1248)) (T -920)) +NIL +(-10 -8 (-15 -1676 (|#2| |#1| |#3|))) +((-2031 ((|#1| $ |#2|) 7 T ELT)) (-1676 ((|#1| $ |#2|) 6 T ELT))) +(((-921 |#1| |#2|) (-142) (-1248) (-1248)) (T -921)) +((-2031 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1248)))) (-1676 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1248))))) +(-13 (-1248) (-10 -8 (-15 -2031 (|t#1| $ |t#2|)) (-15 -1676 (|t#1| $ |t#2|)))) +(((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 15 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1948 (((-1066) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 14 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-922) (-142)) (T -922)) +((-4374 (*1 *2 *3 *4) (-12 (-4 *1 (-922)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) (-1948 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *3 (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-1066))))) +(-13 (-1131) (-10 -7 (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -1948 ((-1066) (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-1822 ((|#1| |#1| (-793)) 27 T ELT)) (-4000 (((-3 |#1| "failed") |#1| |#1|) 24 T ELT)) (-2623 (((-3 (-2 (|:| -3855 |#1|) (|:| -3868 |#1|)) "failed") |#1| (-793) (-793)) 30 T ELT) (((-666 |#1|) |#1|) 38 T ELT))) +(((-923 |#1| |#2|) (-10 -7 (-15 -2623 ((-666 |#1|) |#1|)) (-15 -2623 ((-3 (-2 (|:| -3855 |#1|) (|:| -3868 |#1|)) "failed") |#1| (-793) (-793))) (-15 -4000 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1822 (|#1| |#1| (-793)))) (-1274 |#2|) (-376)) (T -923)) +((-1822 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-923 *2 *4)) (-4 *2 (-1274 *4)))) (-4000 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-923 *2 *3)) (-4 *2 (-1274 *3)))) (-2623 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3855 *3) (|:| -3868 *3))) (-5 *1 (-923 *3 *5)) (-4 *3 (-1274 *5)))) (-2623 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-666 *3)) (-5 *1 (-923 *3 *4)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -2623 ((-666 |#1|) |#1|)) (-15 -2623 ((-3 (-2 (|:| -3855 |#1|) (|:| -3868 |#1|)) "failed") |#1| (-793) (-793))) (-15 -4000 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1822 (|#1| |#1| (-793)))) +((-2096 (((-1066) (-392) (-392) (-392) (-392) (-793) (-793) (-666 (-328 (-392))) (-666 (-666 (-328 (-392)))) (-1189)) 104 T ELT) (((-1066) (-392) (-392) (-392) (-392) (-793) (-793) (-666 (-328 (-392))) (-666 (-666 (-328 (-392)))) (-1189) (-229)) 100 T ELT) (((-1066) (-925) (-1094)) 92 T ELT) (((-1066) (-925)) 93 T ELT)) (-4374 (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-925) (-1094)) 62 T ELT) (((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-925)) 64 T ELT))) +(((-924) (-10 -7 (-15 -2096 ((-1066) (-925))) (-15 -2096 ((-1066) (-925) (-1094))) (-15 -2096 ((-1066) (-392) (-392) (-392) (-392) (-793) (-793) (-666 (-328 (-392))) (-666 (-666 (-328 (-392)))) (-1189) (-229))) (-15 -2096 ((-1066) (-392) (-392) (-392) (-392) (-793) (-793) (-666 (-328 (-392))) (-666 (-666 (-328 (-392)))) (-1189))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-925))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-925) (-1094))))) (T -924)) +((-4374 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) (-5 *1 (-924)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189))))) (-5 *1 (-924)))) (-2096 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-793)) (-5 *6 (-666 (-666 (-328 *3)))) (-5 *7 (-1189)) (-5 *5 (-666 (-328 (-392)))) (-5 *3 (-392)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-2096 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-793)) (-5 *6 (-666 (-666 (-328 *3)))) (-5 *7 (-1189)) (-5 *8 (-229)) (-5 *5 (-666 (-328 (-392)))) (-5 *3 (-392)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1066)) (-5 *1 (-924))))) +(-10 -7 (-15 -2096 ((-1066) (-925))) (-15 -2096 ((-1066) (-925) (-1094))) (-15 -2096 ((-1066) (-392) (-392) (-392) (-392) (-793) (-793) (-666 (-328 (-392))) (-666 (-666 (-328 (-392)))) (-1189) (-229))) (-15 -2096 ((-1066) (-392) (-392) (-392) (-392) (-793) (-793) (-666 (-328 (-392))) (-666 (-666 (-328 (-392)))) (-1189))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-925))) (-15 -4374 ((-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) (|:| |explanations| (-666 (-1189)))) (-925) (-1094)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3516 (((-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $) 19 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 21 T ELT) (($ (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 18 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-925) (-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3516 ((-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $))))) (T -925)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-925)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-925))))) +(-13 (-1131) (-10 -8 (-15 -2411 ($ (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3516 ((-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| (-666 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-578)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2031 (($ $ (-666 |#2|) (-666 (-793))) 39 T ELT) (($ $ |#2| (-793)) 38 T ELT) (($ $ (-666 |#2|)) 37 T ELT) (($ $ |#2|) 35 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-1676 (($ $ (-666 |#2|) (-666 (-793))) 42 T ELT) (($ $ |#2| (-793)) 41 T ELT) (($ $ (-666 |#2|)) 40 T ELT) (($ $ |#2|) 36 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-926 |#1| |#2|) (-142) (-1080) (-1131)) (T -926)) +NIL +(-13 (-111 |t#1| |t#1|) (-929 |t#2|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-921 $ |#2|) . T) ((-929 |#2|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2031 (($ $ (-666 |#1|) (-666 (-793))) 44 T ELT) (($ $ |#1| (-793)) 43 T ELT) (($ $ (-666 |#1|)) 42 T ELT) (($ $ |#1|) 40 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-666 |#1|) (-666 (-793))) 47 T ELT) (($ $ |#1| (-793)) 46 T ELT) (($ $ (-666 |#1|)) 45 T ELT) (($ $ |#1|) 41 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-927 |#1|) (-142) (-1131)) (T -927)) +NIL +(-13 (-1080) (-929 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-921 $ |#1|) . T) ((-929 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-2031 (($ $ |#2|) NIL T ELT) (($ $ (-666 |#2|)) 10 T ELT) (($ $ |#2| (-793)) 12 T ELT) (($ $ (-666 |#2|) (-666 (-793))) 15 T ELT)) (-1676 (($ $ |#2|) 16 T ELT) (($ $ (-666 |#2|)) 18 T ELT) (($ $ |#2| (-793)) 19 T ELT) (($ $ (-666 |#2|) (-666 (-793))) 21 T ELT))) +(((-928 |#1| |#2|) (-10 -8 (-15 -1676 (|#1| |#1| (-666 |#2|) (-666 (-793)))) (-15 -1676 (|#1| |#1| |#2| (-793))) (-15 -1676 (|#1| |#1| (-666 |#2|))) (-15 -2031 (|#1| |#1| (-666 |#2|) (-666 (-793)))) (-15 -2031 (|#1| |#1| |#2| (-793))) (-15 -2031 (|#1| |#1| (-666 |#2|))) (-15 -1676 (|#1| |#1| |#2|)) (-15 -2031 (|#1| |#1| |#2|))) (-929 |#2|) (-1131)) (T -928)) +NIL +(-10 -8 (-15 -1676 (|#1| |#1| (-666 |#2|) (-666 (-793)))) (-15 -1676 (|#1| |#1| |#2| (-793))) (-15 -1676 (|#1| |#1| (-666 |#2|))) (-15 -2031 (|#1| |#1| (-666 |#2|) (-666 (-793)))) (-15 -2031 (|#1| |#1| |#2| (-793))) (-15 -2031 (|#1| |#1| (-666 |#2|))) (-15 -1676 (|#1| |#1| |#2|)) (-15 -2031 (|#1| |#1| |#2|))) +((-2031 (($ $ |#1|) 7 T ELT) (($ $ (-666 |#1|)) 15 T ELT) (($ $ |#1| (-793)) 14 T ELT) (($ $ (-666 |#1|) (-666 (-793))) 13 T ELT)) (-1676 (($ $ |#1|) 6 T ELT) (($ $ (-666 |#1|)) 12 T ELT) (($ $ |#1| (-793)) 11 T ELT) (($ $ (-666 |#1|) (-666 (-793))) 10 T ELT))) +(((-929 |#1|) (-142) (-1131)) (T -929)) +((-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1131)))) (-2031 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1131)))) (-2031 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 (-793))) (-4 *1 (-929 *4)) (-4 *4 (-1131)))) (-1676 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1131)))) (-1676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1131)))) (-1676 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 (-793))) (-4 *1 (-929 *4)) (-4 *4 (-1131))))) +(-13 (-921 $ |t#1|) (-10 -8 (-15 -2031 ($ $ (-666 |t#1|))) (-15 -2031 ($ $ |t#1| (-793))) (-15 -2031 ($ $ (-666 |t#1|) (-666 (-793)))) (-15 -1676 ($ $ (-666 |t#1|))) (-15 -1676 ($ $ |t#1| (-793))) (-15 -1676 ($ $ (-666 |t#1|) (-666 (-793)))))) +(((-921 $ |#1|) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 26 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4090 (($ $ $) NIL (|has| $ (-6 -4501)) ELT)) (-3144 (($ $ $) NIL (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4501)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-3868 (($ $) 25 T ELT)) (-1728 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3855 (($ $) 23 T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) 20 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-1368 (((-112) $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-1234 |#1|) $) 9 T ELT) (((-886) $) 29 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-930 |#1|) (-13 (-121 |#1|) (-632 (-1234 |#1|)) (-10 -8 (-15 -1728 ($ |#1|)) (-15 -1728 ($ $ $)))) (-1131)) (T -930)) +((-1728 (*1 *1 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1131)))) (-1728 (*1 *1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1131))))) +(-13 (-121 |#1|) (-632 (-1234 |#1|)) (-10 -8 (-15 -1728 ($ |#1|)) (-15 -1728 ($ $ $)))) +((-1347 ((|#2| (-1173 |#1| |#2|)) 48 T ELT))) +(((-931 |#1| |#2|) (-10 -7 (-15 -1347 (|#2| (-1173 |#1| |#2|)))) (-950) (-13 (-1080) (-10 -7 (-6 (-4502 "*"))))) (T -931)) +((-1347 (*1 *2 *3) (-12 (-5 *3 (-1173 *4 *2)) (-14 *4 (-950)) (-4 *2 (-13 (-1080) (-10 -7 (-6 (-4502 "*"))))) (-5 *1 (-931 *4 *2))))) +(-10 -7 (-15 -1347 (|#2| (-1173 |#1| |#2|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-2654 (((-1133 |#1|) $) 36 T ELT)) (-3534 (($) 19 T CONST)) (-3493 (((-3 $ "failed") $) 16 T ELT)) (-2605 (((-1133 |#1|) $ |#1|) 35 T ELT)) (-4382 (((-112) $) 18 T ELT)) (-1345 (($ $ $) 29 (-2230 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-3667 (($ $ $) 30 (-2230 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 25 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2436 ((|#1| $ |#1|) 39 T ELT)) (-4267 (($ (-666 (-666 |#1|))) 37 T ELT)) (-2575 (($ (-666 |#1|)) 38 T ELT)) (-1433 (($ $ $) 22 T ELT)) (-1863 (($ $ $) 21 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2379 (($) 20 T CONST)) (-2441 (((-112) $ $) 31 (-2230 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2416 (((-112) $ $) 33 (-2230 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 32 (-2230 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2404 (((-112) $ $) 34 T ELT)) (-2495 (($ $ $) 24 T ELT)) (** (($ $ (-950)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ $ (-578)) 23 T ELT)) (* (($ $ $) 15 T ELT))) +(((-932 |#1|) (-142) (-1131)) (T -932)) +((-2575 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-932 *3)))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-4 *1 (-932 *3)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1133 *3)))) (-2605 (*1 *2 *1 *3) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1133 *3)))) (-2404 (*1 *2 *1 *1) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))) +(-13 (-487) (-298 |t#1| |t#1|) (-10 -8 (-15 -2575 ($ (-666 |t#1|))) (-15 -4267 ($ (-666 (-666 |t#1|)))) (-15 -2654 ((-1133 |t#1|) $)) (-15 -2605 ((-1133 |t#1|) $ |t#1|)) (-15 -2404 ((-112) $ $)) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-871)) |%noBranch|))) +(((-102) . T) ((-632 (-886)) . T) ((-298 |#1| |#1|) . T) ((-487) . T) ((-748) . T) ((-871) -2230 (|has| |#1| (-871)) (|has| |#1| (-381))) ((-874) -2230 (|has| |#1| (-871)) (|has| |#1| (-381))) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3366 (((-666 (-666 (-793))) $) 160 T ELT)) (-3770 (((-666 (-793)) (-934 |#1|) $) 188 T ELT)) (-2813 (((-666 (-793)) (-934 |#1|) $) 189 T ELT)) (-2654 (((-1133 |#1|) $) 152 T ELT)) (-3319 (((-666 (-934 |#1|)) $) 149 T ELT)) (-2062 (((-934 |#1|) $ (-578)) 154 T ELT) (((-934 |#1|) $) 155 T ELT)) (-4354 (($ (-666 (-934 |#1|))) 162 T ELT)) (-4059 (((-793) $) 156 T ELT)) (-1779 (((-1133 (-1133 |#1|)) $) 186 T ELT)) (-2605 (((-1133 |#1|) $ |#1|) 177 T ELT) (((-1133 (-1133 |#1|)) $ (-1133 |#1|)) 197 T ELT) (((-1133 (-666 |#1|)) $ (-666 |#1|)) 200 T ELT)) (-1624 (((-112) (-934 |#1|) $) 137 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4295 (((-1303) $) 142 T ELT) (((-1303) $ (-578) (-578)) 201 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1940 (((-666 (-934 |#1|)) $) 143 T ELT)) (-2436 (((-934 |#1|) $ (-793)) 150 T ELT)) (-3683 (((-793) $) 157 T ELT)) (-2411 (((-886) $) 174 T ELT) (((-666 (-934 |#1|)) $) 28 T ELT) (($ (-666 (-934 |#1|))) 161 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (((-666 |#1|) $) 159 T ELT)) (-2384 (((-112) $ $) 194 T ELT)) (-2429 (((-112) $ $) 192 T ELT)) (-2404 (((-112) $ $) 191 T ELT))) +(((-933 |#1|) (-13 (-1131) (-10 -8 (-15 -2411 ((-666 (-934 |#1|)) $)) (-15 -1940 ((-666 (-934 |#1|)) $)) (-15 -2436 ((-934 |#1|) $ (-793))) (-15 -2062 ((-934 |#1|) $ (-578))) (-15 -2062 ((-934 |#1|) $)) (-15 -4059 ((-793) $)) (-15 -3683 ((-793) $)) (-15 -3648 ((-666 |#1|) $)) (-15 -3319 ((-666 (-934 |#1|)) $)) (-15 -3366 ((-666 (-666 (-793))) $)) (-15 -2411 ($ (-666 (-934 |#1|)))) (-15 -4354 ($ (-666 (-934 |#1|)))) (-15 -2605 ((-1133 |#1|) $ |#1|)) (-15 -1779 ((-1133 (-1133 |#1|)) $)) (-15 -2605 ((-1133 (-1133 |#1|)) $ (-1133 |#1|))) (-15 -2605 ((-1133 (-666 |#1|)) $ (-666 |#1|))) (-15 -1624 ((-112) (-934 |#1|) $)) (-15 -3770 ((-666 (-793)) (-934 |#1|) $)) (-15 -2813 ((-666 (-793)) (-934 |#1|) $)) (-15 -2654 ((-1133 |#1|) $)) (-15 -2404 ((-112) $ $)) (-15 -2429 ((-112) $ $)) (-15 -4295 ((-1303) $)) (-15 -4295 ((-1303) $ (-578) (-578))))) (-1131)) (T -933)) +((-2411 (*1 *2 *1) (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-1940 (*1 *2 *1) (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-934 *4)) (-5 *1 (-933 *4)) (-4 *4 (-1131)))) (-2062 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-934 *4)) (-5 *1 (-933 *4)) (-4 *4 (-1131)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-934 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-666 (-666 (-793)))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-934 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3)))) (-4354 (*1 *1 *2) (-12 (-5 *2 (-666 (-934 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3)))) (-2605 (*1 *2 *1 *3) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-1133 (-1133 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-2605 (*1 *2 *1 *3) (-12 (-4 *4 (-1131)) (-5 *2 (-1133 (-1133 *4))) (-5 *1 (-933 *4)) (-5 *3 (-1133 *4)))) (-2605 (*1 *2 *1 *3) (-12 (-4 *4 (-1131)) (-5 *2 (-1133 (-666 *4))) (-5 *1 (-933 *4)) (-5 *3 (-666 *4)))) (-1624 (*1 *2 *3 *1) (-12 (-5 *3 (-934 *4)) (-4 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-933 *4)))) (-3770 (*1 *2 *3 *1) (-12 (-5 *3 (-934 *4)) (-4 *4 (-1131)) (-5 *2 (-666 (-793))) (-5 *1 (-933 *4)))) (-2813 (*1 *2 *3 *1) (-12 (-5 *3 (-934 *4)) (-4 *4 (-1131)) (-5 *2 (-666 (-793))) (-5 *1 (-933 *4)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-2404 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-2429 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) (-4295 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-933 *4)) (-4 *4 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -2411 ((-666 (-934 |#1|)) $)) (-15 -1940 ((-666 (-934 |#1|)) $)) (-15 -2436 ((-934 |#1|) $ (-793))) (-15 -2062 ((-934 |#1|) $ (-578))) (-15 -2062 ((-934 |#1|) $)) (-15 -4059 ((-793) $)) (-15 -3683 ((-793) $)) (-15 -3648 ((-666 |#1|) $)) (-15 -3319 ((-666 (-934 |#1|)) $)) (-15 -3366 ((-666 (-666 (-793))) $)) (-15 -2411 ($ (-666 (-934 |#1|)))) (-15 -4354 ($ (-666 (-934 |#1|)))) (-15 -2605 ((-1133 |#1|) $ |#1|)) (-15 -1779 ((-1133 (-1133 |#1|)) $)) (-15 -2605 ((-1133 (-1133 |#1|)) $ (-1133 |#1|))) (-15 -2605 ((-1133 (-666 |#1|)) $ (-666 |#1|))) (-15 -1624 ((-112) (-934 |#1|) $)) (-15 -3770 ((-666 (-793)) (-934 |#1|) $)) (-15 -2813 ((-666 (-793)) (-934 |#1|) $)) (-15 -2654 ((-1133 |#1|) $)) (-15 -2404 ((-112) $ $)) (-15 -2429 ((-112) $ $)) (-15 -4295 ((-1303) $)) (-15 -4295 ((-1303) $ (-578) (-578))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2654 (((-1133 |#1|) $) 60 T ELT)) (-2042 (((-666 $) (-666 $)) 103 T ELT)) (-1490 (((-578) $) 83 T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4059 (((-793) $) 80 T ELT)) (-2605 (((-1133 |#1|) $ |#1|) 70 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2382 (((-112) $) 88 T ELT)) (-1771 (((-793) $) 84 T ELT)) (-1345 (($ $ $) NIL (-2230 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-3667 (($ $ $) NIL (-2230 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-3359 (((-2 (|:| |preimage| (-666 |#1|)) (|:| |image| (-666 |#1|))) $) 55 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 130 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4023 (((-1133 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-3873 (((-112) $) 81 T ELT)) (-2436 ((|#1| $ |#1|) 68 T ELT)) (-3683 (((-793) $) 62 T ELT)) (-4267 (($ (-666 (-666 |#1|))) 118 T ELT)) (-1435 (((-1002) $) 74 T ELT)) (-2575 (($ (-666 |#1|)) 32 T ELT)) (-1433 (($ $ $) NIL T ELT)) (-1863 (($ $ $) NIL T ELT)) (-2290 (($ (-666 (-666 |#1|))) 57 T ELT)) (-3608 (($ (-666 (-666 |#1|))) 123 T ELT)) (-3614 (($ (-666 |#1|)) 132 T ELT)) (-2411 (((-886) $) 117 T ELT) (($ (-666 (-666 |#1|))) 91 T ELT) (($ (-666 |#1|)) 92 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) 24 T CONST)) (-2441 (((-112) $ $) NIL (-2230 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2416 (((-112) $ $) NIL (-2230 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2384 (((-112) $ $) 66 T ELT)) (-2429 (((-112) $ $) NIL (-2230 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2404 (((-112) $ $) 90 T ELT)) (-2495 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-934 |#1|) (-13 (-932 |#1|) (-10 -8 (-15 -3359 ((-2 (|:| |preimage| (-666 |#1|)) (|:| |image| (-666 |#1|))) $)) (-15 -2290 ($ (-666 (-666 |#1|)))) (-15 -2411 ($ (-666 (-666 |#1|)))) (-15 -2411 ($ (-666 |#1|))) (-15 -3608 ($ (-666 (-666 |#1|)))) (-15 -3683 ((-793) $)) (-15 -1435 ((-1002) $)) (-15 -4059 ((-793) $)) (-15 -1771 ((-793) $)) (-15 -1490 ((-578) $)) (-15 -3873 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -2042 ((-666 $) (-666 $))) (IF (|has| |#1| (-381)) (-15 -4023 ((-1133 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3614 ($ (-666 |#1|))) (IF (|has| |#1| (-381)) (-15 -3614 ($ (-666 |#1|))) |%noBranch|)))) (-1131)) (T -934)) +((-3359 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-666 *3)) (|:| |image| (-666 *3)))) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-2290 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-934 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-934 *3)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-934 *3)))) (-3608 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-934 *3)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-1133 *3)) (-5 *1 (-934 *3)) (-4 *3 (-381)) (-4 *3 (-1131)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-934 *3))))) +(-13 (-932 |#1|) (-10 -8 (-15 -3359 ((-2 (|:| |preimage| (-666 |#1|)) (|:| |image| (-666 |#1|))) $)) (-15 -2290 ($ (-666 (-666 |#1|)))) (-15 -2411 ($ (-666 (-666 |#1|)))) (-15 -2411 ($ (-666 |#1|))) (-15 -3608 ($ (-666 (-666 |#1|)))) (-15 -3683 ((-793) $)) (-15 -1435 ((-1002) $)) (-15 -4059 ((-793) $)) (-15 -1771 ((-793) $)) (-15 -1490 ((-578) $)) (-15 -3873 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -2042 ((-666 $) (-666 $))) (IF (|has| |#1| (-381)) (-15 -4023 ((-1133 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3614 ($ (-666 |#1|))) (IF (|has| |#1| (-381)) (-15 -3614 ($ (-666 |#1|))) |%noBranch|)))) +((-1773 (((-3 (-666 (-1203 |#4|)) "failed") (-666 (-1203 |#4|)) (-1203 |#4|)) 160 T ELT)) (-2410 ((|#1|) 97 T ELT)) (-3998 (((-432 (-1203 |#4|)) (-1203 |#4|)) 169 T ELT)) (-1785 (((-432 (-1203 |#4|)) (-666 |#3|) (-1203 |#4|)) 84 T ELT)) (-1486 (((-432 (-1203 |#4|)) (-1203 |#4|)) 179 T ELT)) (-2919 (((-3 (-666 (-1203 |#4|)) "failed") (-666 (-1203 |#4|)) (-1203 |#4|) |#3|) 113 T ELT))) +(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1773 ((-3 (-666 (-1203 |#4|)) "failed") (-666 (-1203 |#4|)) (-1203 |#4|))) (-15 -1486 ((-432 (-1203 |#4|)) (-1203 |#4|))) (-15 -3998 ((-432 (-1203 |#4|)) (-1203 |#4|))) (-15 -2410 (|#1|)) (-15 -2919 ((-3 (-666 (-1203 |#4|)) "failed") (-666 (-1203 |#4|)) (-1203 |#4|) |#3|)) (-15 -1785 ((-432 (-1203 |#4|)) (-666 |#3|) (-1203 |#4|)))) (-938) (-815) (-871) (-978 |#1| |#2| |#3|)) (T -935)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *7)) (-4 *7 (-871)) (-4 *5 (-938)) (-4 *6 (-815)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-432 (-1203 *8))) (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-1203 *8)))) (-2919 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-666 (-1203 *7))) (-5 *3 (-1203 *7)) (-4 *7 (-978 *5 *6 *4)) (-4 *5 (-938)) (-4 *6 (-815)) (-4 *4 (-871)) (-5 *1 (-935 *5 *6 *4 *7)))) (-2410 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-938)) (-5 *1 (-935 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) (-3998 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-432 (-1203 *7))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-432 (-1203 *7))) (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) (-1773 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 (-1203 *7))) (-5 *3 (-1203 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-935 *4 *5 *6 *7))))) +(-10 -7 (-15 -1773 ((-3 (-666 (-1203 |#4|)) "failed") (-666 (-1203 |#4|)) (-1203 |#4|))) (-15 -1486 ((-432 (-1203 |#4|)) (-1203 |#4|))) (-15 -3998 ((-432 (-1203 |#4|)) (-1203 |#4|))) (-15 -2410 (|#1|)) (-15 -2919 ((-3 (-666 (-1203 |#4|)) "failed") (-666 (-1203 |#4|)) (-1203 |#4|) |#3|)) (-15 -1785 ((-432 (-1203 |#4|)) (-666 |#3|) (-1203 |#4|)))) +((-1773 (((-3 (-666 (-1203 |#2|)) "failed") (-666 (-1203 |#2|)) (-1203 |#2|)) 39 T ELT)) (-2410 ((|#1|) 72 T ELT)) (-3998 (((-432 (-1203 |#2|)) (-1203 |#2|)) 121 T ELT)) (-1785 (((-432 (-1203 |#2|)) (-1203 |#2|)) 105 T ELT)) (-1486 (((-432 (-1203 |#2|)) (-1203 |#2|)) 132 T ELT))) +(((-936 |#1| |#2|) (-10 -7 (-15 -1773 ((-3 (-666 (-1203 |#2|)) "failed") (-666 (-1203 |#2|)) (-1203 |#2|))) (-15 -1486 ((-432 (-1203 |#2|)) (-1203 |#2|))) (-15 -3998 ((-432 (-1203 |#2|)) (-1203 |#2|))) (-15 -2410 (|#1|)) (-15 -1785 ((-432 (-1203 |#2|)) (-1203 |#2|)))) (-938) (-1274 |#1|)) (T -936)) +((-1785 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-1274 *4)) (-5 *2 (-432 (-1203 *5))) (-5 *1 (-936 *4 *5)) (-5 *3 (-1203 *5)))) (-2410 (*1 *2) (-12 (-4 *2 (-938)) (-5 *1 (-936 *2 *3)) (-4 *3 (-1274 *2)))) (-3998 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-1274 *4)) (-5 *2 (-432 (-1203 *5))) (-5 *1 (-936 *4 *5)) (-5 *3 (-1203 *5)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-938)) (-4 *5 (-1274 *4)) (-5 *2 (-432 (-1203 *5))) (-5 *1 (-936 *4 *5)) (-5 *3 (-1203 *5)))) (-1773 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 (-1203 *5))) (-5 *3 (-1203 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-938)) (-5 *1 (-936 *4 *5))))) +(-10 -7 (-15 -1773 ((-3 (-666 (-1203 |#2|)) "failed") (-666 (-1203 |#2|)) (-1203 |#2|))) (-15 -1486 ((-432 (-1203 |#2|)) (-1203 |#2|))) (-15 -3998 ((-432 (-1203 |#2|)) (-1203 |#2|))) (-15 -2410 (|#1|)) (-15 -1785 ((-432 (-1203 |#2|)) (-1203 |#2|)))) +((-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 42 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 18 T ELT)) (-2213 (((-3 $ "failed") $) 36 T ELT))) +(((-937 |#1|) (-10 -8 (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) (-938)) (T -937)) +NIL +(-10 -8 (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 66 T ELT)) (-1457 (($ $) 57 T ELT)) (-3034 (((-432 $) $) 58 T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 63 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2159 (((-112) $) 59 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 64 T ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 65 T ELT)) (-2800 (((-432 $) $) 56 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 62 (|has| $ (-147)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-2213 (((-3 $ "failed") $) 61 (|has| $ (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-938) (-142)) (T -938)) +((-1927 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-938)))) (-2194 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-432 (-1203 *1))) (-5 *3 (-1203 *1)))) (-3428 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-432 (-1203 *1))) (-5 *3 (-1203 *1)))) (-2245 (*1 *2 *3) (-12 (-4 *1 (-938)) (-5 *2 (-432 (-1203 *1))) (-5 *3 (-1203 *1)))) (-3273 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-666 (-1203 *1))) (-5 *3 (-1203 *1)) (-4 *1 (-938)))) (-2948 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-938)) (-5 *2 (-1298 *1)))) (-2213 (*1 *1 *1) (|partial| -12 (-4 *1 (-147)) (-4 *1 (-938))))) +(-13 (-1252) (-10 -8 (-15 -2194 ((-432 (-1203 $)) (-1203 $))) (-15 -3428 ((-432 (-1203 $)) (-1203 $))) (-15 -2245 ((-432 (-1203 $)) (-1203 $))) (-15 -1927 ((-1203 $) (-1203 $) (-1203 $))) (-15 -3273 ((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $))) (IF (|has| $ (-147)) (PROGN (-15 -2948 ((-3 (-1298 $) "failed") (-711 $))) (-15 -2213 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-3646 (((-112) $) NIL T ELT)) (-2727 (((-793)) NIL T ELT)) (-1881 (($ $ (-950)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 $ "failed") $) NIL T ELT)) (-3516 (($ $) NIL T ELT)) (-3095 (($ (-1298 $)) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-3146 (($) NIL T ELT)) (-2681 (((-112) $) NIL T ELT)) (-2953 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-4059 (((-855 (-950)) $) NIL T ELT) (((-950) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3011 (($) NIL (|has| $ (-381)) ELT)) (-2488 (((-112) $) NIL (|has| $ (-381)) ELT)) (-1550 (($ $ (-950)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1993 (((-1203 $) $ (-950)) NIL (|has| $ (-381)) ELT) (((-1203 $) $) NIL T ELT)) (-3193 (((-950) $) NIL T ELT)) (-3994 (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-3606 (((-3 (-1203 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1203 $) $) NIL (|has| $ (-381)) ELT)) (-3207 (($ $ (-1203 $)) NIL (|has| $ (-381)) ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-2087 (($ (-950)) NIL T ELT)) (-2323 (((-112) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) NIL (|has| $ (-381)) ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3443 (((-950)) NIL T ELT) (((-855 (-950))) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-4375 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-4425 (((-136)) NIL T ELT)) (-2031 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3683 (((-950) $) NIL T ELT) (((-855 (-950)) $) NIL T ELT)) (-4269 (((-1203 $)) NIL T ELT)) (-3430 (($) NIL T ELT)) (-4062 (($) NIL (|has| $ (-381)) ELT)) (-1453 (((-711 $) (-1298 $)) NIL T ELT) (((-1298 $) $) NIL T ELT)) (-3343 (((-578) $) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL T ELT) (($ $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $) (-950)) NIL T ELT) (((-1298 $)) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2714 (((-112) $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1536 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-939 |#1|) (-13 (-362) (-341 $) (-633 (-578))) (-950)) (T -939)) +NIL +(-13 (-362) (-341 $) (-633 (-578))) +((-3788 (((-3 (-2 (|:| -4059 (-793)) (|:| -2265 |#5|)) "failed") (-349 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-1633 (((-112) (-349 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-4059 (((-3 (-793) "failed") (-349 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-940 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4059 ((-3 (-793) "failed") (-349 |#2| |#3| |#4| |#5|))) (-15 -1633 ((-112) (-349 |#2| |#3| |#4| |#5|))) (-15 -3788 ((-3 (-2 (|:| -4059 (-793)) (|:| -2265 |#5|)) "failed") (-349 |#2| |#3| |#4| |#5|)))) (-13 (-570) (-1069 (-578))) (-444 |#1|) (-1274 |#2|) (-1274 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -940)) +((-3788 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 *5 *6 *7 *8)) (-4 *5 (-444 *4)) (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-2 (|:| -4059 (-793)) (|:| -2265 *8))) (-5 *1 (-940 *4 *5 *6 *7 *8)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-349 *5 *6 *7 *8)) (-4 *5 (-444 *4)) (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-112)) (-5 *1 (-940 *4 *5 *6 *7 *8)))) (-4059 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 *5 *6 *7 *8)) (-4 *5 (-444 *4)) (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-793)) (-5 *1 (-940 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4059 ((-3 (-793) "failed") (-349 |#2| |#3| |#4| |#5|))) (-15 -1633 ((-112) (-349 |#2| |#3| |#4| |#5|))) (-15 -3788 ((-3 (-2 (|:| -4059 (-793)) (|:| -2265 |#5|)) "failed") (-349 |#2| |#3| |#4| |#5|)))) +((-3788 (((-3 (-2 (|:| -4059 (-793)) (|:| -2265 |#3|)) "failed") (-349 (-421 (-578)) |#1| |#2| |#3|)) 64 T ELT)) (-1633 (((-112) (-349 (-421 (-578)) |#1| |#2| |#3|)) 16 T ELT)) (-4059 (((-3 (-793) "failed") (-349 (-421 (-578)) |#1| |#2| |#3|)) 14 T ELT))) +(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -4059 ((-3 (-793) "failed") (-349 (-421 (-578)) |#1| |#2| |#3|))) (-15 -1633 ((-112) (-349 (-421 (-578)) |#1| |#2| |#3|))) (-15 -3788 ((-3 (-2 (|:| -4059 (-793)) (|:| -2265 |#3|)) "failed") (-349 (-421 (-578)) |#1| |#2| |#3|)))) (-1274 (-421 (-578))) (-1274 (-421 |#1|)) (-355 (-421 (-578)) |#1| |#2|)) (T -941)) +((-3788 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-421 (-578)) *4 *5 *6)) (-4 *4 (-1274 (-421 (-578)))) (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 (-421 (-578)) *4 *5)) (-5 *2 (-2 (|:| -4059 (-793)) (|:| -2265 *6))) (-5 *1 (-941 *4 *5 *6)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-349 (-421 (-578)) *4 *5 *6)) (-4 *4 (-1274 (-421 (-578)))) (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 (-421 (-578)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6)))) (-4059 (*1 *2 *3) (|partial| -12 (-5 *3 (-349 (-421 (-578)) *4 *5 *6)) (-4 *4 (-1274 (-421 (-578)))) (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 (-421 (-578)) *4 *5)) (-5 *2 (-793)) (-5 *1 (-941 *4 *5 *6))))) +(-10 -7 (-15 -4059 ((-3 (-793) "failed") (-349 (-421 (-578)) |#1| |#2| |#3|))) (-15 -1633 ((-112) (-349 (-421 (-578)) |#1| |#2| |#3|))) (-15 -3788 ((-3 (-2 (|:| -4059 (-793)) (|:| -2265 |#3|)) "failed") (-349 (-421 (-578)) |#1| |#2| |#3|)))) +((-3483 ((|#2| |#2|) 26 T ELT)) (-2635 (((-578) (-666 (-2 (|:| |den| (-578)) (|:| |gcdnum| (-578))))) 15 T ELT)) (-2928 (((-950) (-578)) 38 T ELT)) (-3513 (((-578) |#2|) 45 T ELT)) (-3901 (((-578) |#2|) 21 T ELT) (((-2 (|:| |den| (-578)) (|:| |gcdnum| (-578))) |#1|) 20 T ELT))) +(((-942 |#1| |#2|) (-10 -7 (-15 -2928 ((-950) (-578))) (-15 -3901 ((-2 (|:| |den| (-578)) (|:| |gcdnum| (-578))) |#1|)) (-15 -3901 ((-578) |#2|)) (-15 -2635 ((-578) (-666 (-2 (|:| |den| (-578)) (|:| |gcdnum| (-578)))))) (-15 -3513 ((-578) |#2|)) (-15 -3483 (|#2| |#2|))) (-1274 (-421 (-578))) (-1274 (-421 |#1|))) (T -942)) +((-3483 (*1 *2 *2) (-12 (-4 *3 (-1274 (-421 (-578)))) (-5 *1 (-942 *3 *2)) (-4 *2 (-1274 (-421 *3))))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-1274 (-421 *2))) (-5 *2 (-578)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1274 (-421 *4))))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| |den| (-578)) (|:| |gcdnum| (-578))))) (-4 *4 (-1274 (-421 *2))) (-5 *2 (-578)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1274 (-421 *4))))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-1274 (-421 *2))) (-5 *2 (-578)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1274 (-421 *4))))) (-3901 (*1 *2 *3) (-12 (-4 *3 (-1274 (-421 (-578)))) (-5 *2 (-2 (|:| |den| (-578)) (|:| |gcdnum| (-578)))) (-5 *1 (-942 *3 *4)) (-4 *4 (-1274 (-421 *3))))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-578)) (-4 *4 (-1274 (-421 *3))) (-5 *2 (-950)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1274 (-421 *4)))))) +(-10 -7 (-15 -2928 ((-950) (-578))) (-15 -3901 ((-2 (|:| |den| (-578)) (|:| |gcdnum| (-578))) |#1|)) (-15 -3901 ((-578) |#2|)) (-15 -2635 ((-578) (-666 (-2 (|:| |den| (-578)) (|:| |gcdnum| (-578)))))) (-15 -3513 ((-578) |#2|)) (-15 -3483 (|#2| |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 ((|#1| $) 100 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3154 (($ $ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 94 T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3180 (($ |#1| (-432 |#1|)) 92 T ELT)) (-2000 (((-1203 |#1|) |#1| |#1|) 53 T ELT)) (-4083 (($ $) 61 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3763 (((-578) $) 97 T ELT)) (-4106 (($ $ (-578)) 99 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-1385 ((|#1| $) 96 T ELT)) (-2815 (((-432 |#1|) $) 95 T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) 93 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2739 (($ $) 50 T ELT)) (-2411 (((-886) $) 124 T ELT) (($ (-578)) 73 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) 41 T ELT) (((-421 |#1|) $) 78 T ELT) (($ (-421 (-432 |#1|))) 86 T ELT)) (-3753 (((-793)) 71 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) 26 T CONST)) (-2379 (($) 15 T CONST)) (-2384 (((-112) $ $) 87 T ELT)) (-2495 (($ $ $) NIL T ELT)) (-2484 (($ $) 108 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 49 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 110 T ELT) (($ $ $) 48 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ |#1| $) 109 T ELT) (($ $ |#1|) NIL T ELT))) +(((-943 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -2411 ((-421 |#1|) $)) (-15 -2411 ($ (-421 (-432 |#1|)))) (-15 -2739 ($ $)) (-15 -2815 ((-432 |#1|) $)) (-15 -1385 (|#1| $)) (-15 -4106 ($ $ (-578))) (-15 -3763 ((-578) $)) (-15 -2000 ((-1203 |#1|) |#1| |#1|)) (-15 -4083 ($ $)) (-15 -3180 ($ |#1| (-432 |#1|))) (-15 -2873 (|#1| $)))) (-319)) (T -943)) +((-2411 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-421 (-432 *3))) (-4 *3 (-319)) (-5 *1 (-943 *3)))) (-2739 (*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-432 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-1385 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-4106 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-2000 (*1 *2 *3 *3) (-12 (-5 *2 (-1203 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-4083 (*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-3180 (*1 *1 *2 *3) (-12 (-5 *3 (-432 *2)) (-4 *2 (-319)) (-5 *1 (-943 *2)))) (-2873 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319))))) +(-13 (-376) (-38 |#1|) (-10 -8 (-15 -2411 ((-421 |#1|) $)) (-15 -2411 ($ (-421 (-432 |#1|)))) (-15 -2739 ($ $)) (-15 -2815 ((-432 |#1|) $)) (-15 -1385 (|#1| $)) (-15 -4106 ($ $ (-578))) (-15 -3763 ((-578) $)) (-15 -2000 ((-1203 |#1|) |#1| |#1|)) (-15 -4083 ($ $)) (-15 -3180 ($ |#1| (-432 |#1|))) (-15 -2873 (|#1| $)))) +((-3180 (((-52) (-981 |#1|) (-432 (-981 |#1|)) (-1207)) 17 T ELT) (((-52) (-421 (-981 |#1|)) (-1207)) 18 T ELT))) +(((-944 |#1|) (-10 -7 (-15 -3180 ((-52) (-421 (-981 |#1|)) (-1207))) (-15 -3180 ((-52) (-981 |#1|) (-432 (-981 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -944)) +((-3180 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-432 (-981 *6))) (-5 *5 (-1207)) (-5 *3 (-981 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-52)) (-5 *1 (-944 *6)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-52)) (-5 *1 (-944 *5))))) +(-10 -7 (-15 -3180 ((-52) (-421 (-981 |#1|)) (-1207))) (-15 -3180 ((-52) (-981 |#1|) (-432 (-981 |#1|)) (-1207)))) +((-4045 ((|#4| (-666 |#4|)) 147 T ELT) (((-1203 |#4|) (-1203 |#4|) (-1203 |#4|)) 84 T ELT) ((|#4| |#4| |#4|) 146 T ELT)) (-2421 (((-1203 |#4|) (-666 (-1203 |#4|))) 140 T ELT) (((-1203 |#4|) (-1203 |#4|) (-1203 |#4|)) 61 T ELT) ((|#4| (-666 |#4|)) 69 T ELT) ((|#4| |#4| |#4|) 107 T ELT))) +(((-945 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2421 (|#4| |#4| |#4|)) (-15 -2421 (|#4| (-666 |#4|))) (-15 -2421 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -2421 ((-1203 |#4|) (-666 (-1203 |#4|)))) (-15 -4045 (|#4| |#4| |#4|)) (-15 -4045 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -4045 (|#4| (-666 |#4|)))) (-815) (-871) (-319) (-978 |#3| |#1| |#2|)) (T -945)) +((-4045 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *6 *4 *5)) (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)))) (-4045 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) (-4045 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-978 *5 *3 *4)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-666 (-1203 *7))) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-1203 *7)) (-5 *1 (-945 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) (-2421 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *6 *4 *5)) (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)))) (-2421 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-978 *5 *3 *4))))) +(-10 -7 (-15 -2421 (|#4| |#4| |#4|)) (-15 -2421 (|#4| (-666 |#4|))) (-15 -2421 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -2421 ((-1203 |#4|) (-666 (-1203 |#4|)))) (-15 -4045 (|#4| |#4| |#4|)) (-15 -4045 ((-1203 |#4|) (-1203 |#4|) (-1203 |#4|))) (-15 -4045 (|#4| (-666 |#4|)))) +((-2838 (((-933 (-578)) (-1002)) 38 T ELT) (((-933 (-578)) (-666 (-578))) 34 T ELT)) (-1459 (((-933 (-578)) (-666 (-578))) 67 T ELT) (((-933 (-578)) (-950)) 68 T ELT)) (-2872 (((-933 (-578))) 39 T ELT)) (-3446 (((-933 (-578))) 53 T ELT) (((-933 (-578)) (-666 (-578))) 52 T ELT)) (-2772 (((-933 (-578))) 51 T ELT) (((-933 (-578)) (-666 (-578))) 50 T ELT)) (-3729 (((-933 (-578))) 49 T ELT) (((-933 (-578)) (-666 (-578))) 48 T ELT)) (-3845 (((-933 (-578))) 47 T ELT) (((-933 (-578)) (-666 (-578))) 46 T ELT)) (-2091 (((-933 (-578))) 45 T ELT) (((-933 (-578)) (-666 (-578))) 44 T ELT)) (-4202 (((-933 (-578))) 55 T ELT) (((-933 (-578)) (-666 (-578))) 54 T ELT)) (-2742 (((-933 (-578)) (-666 (-578))) 72 T ELT) (((-933 (-578)) (-950)) 74 T ELT)) (-1379 (((-933 (-578)) (-666 (-578))) 69 T ELT) (((-933 (-578)) (-950)) 70 T ELT)) (-1454 (((-933 (-578)) (-666 (-578))) 65 T ELT) (((-933 (-578)) (-950)) 66 T ELT)) (-4383 (((-933 (-578)) (-666 (-950))) 57 T ELT))) +(((-946) (-10 -7 (-15 -1459 ((-933 (-578)) (-950))) (-15 -1459 ((-933 (-578)) (-666 (-578)))) (-15 -1454 ((-933 (-578)) (-950))) (-15 -1454 ((-933 (-578)) (-666 (-578)))) (-15 -4383 ((-933 (-578)) (-666 (-950)))) (-15 -1379 ((-933 (-578)) (-950))) (-15 -1379 ((-933 (-578)) (-666 (-578)))) (-15 -2742 ((-933 (-578)) (-950))) (-15 -2742 ((-933 (-578)) (-666 (-578)))) (-15 -2091 ((-933 (-578)) (-666 (-578)))) (-15 -2091 ((-933 (-578)))) (-15 -3845 ((-933 (-578)) (-666 (-578)))) (-15 -3845 ((-933 (-578)))) (-15 -3729 ((-933 (-578)) (-666 (-578)))) (-15 -3729 ((-933 (-578)))) (-15 -2772 ((-933 (-578)) (-666 (-578)))) (-15 -2772 ((-933 (-578)))) (-15 -3446 ((-933 (-578)) (-666 (-578)))) (-15 -3446 ((-933 (-578)))) (-15 -4202 ((-933 (-578)) (-666 (-578)))) (-15 -4202 ((-933 (-578)))) (-15 -2872 ((-933 (-578)))) (-15 -2838 ((-933 (-578)) (-666 (-578)))) (-15 -2838 ((-933 (-578)) (-1002))))) (T -946)) +((-2838 (*1 *2 *3) (-12 (-5 *3 (-1002)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2872 (*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-4202 (*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-4202 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-3446 (*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2772 (*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-3729 (*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-3845 (*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2091 (*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-666 (-950))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(-10 -7 (-15 -1459 ((-933 (-578)) (-950))) (-15 -1459 ((-933 (-578)) (-666 (-578)))) (-15 -1454 ((-933 (-578)) (-950))) (-15 -1454 ((-933 (-578)) (-666 (-578)))) (-15 -4383 ((-933 (-578)) (-666 (-950)))) (-15 -1379 ((-933 (-578)) (-950))) (-15 -1379 ((-933 (-578)) (-666 (-578)))) (-15 -2742 ((-933 (-578)) (-950))) (-15 -2742 ((-933 (-578)) (-666 (-578)))) (-15 -2091 ((-933 (-578)) (-666 (-578)))) (-15 -2091 ((-933 (-578)))) (-15 -3845 ((-933 (-578)) (-666 (-578)))) (-15 -3845 ((-933 (-578)))) (-15 -3729 ((-933 (-578)) (-666 (-578)))) (-15 -3729 ((-933 (-578)))) (-15 -2772 ((-933 (-578)) (-666 (-578)))) (-15 -2772 ((-933 (-578)))) (-15 -3446 ((-933 (-578)) (-666 (-578)))) (-15 -3446 ((-933 (-578)))) (-15 -4202 ((-933 (-578)) (-666 (-578)))) (-15 -4202 ((-933 (-578)))) (-15 -2872 ((-933 (-578)))) (-15 -2838 ((-933 (-578)) (-666 (-578)))) (-15 -2838 ((-933 (-578)) (-1002)))) +((-1683 (((-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207))) 14 T ELT)) (-1557 (((-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207))) 13 T ELT))) +(((-947 |#1|) (-10 -7 (-15 -1557 ((-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -1683 ((-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207))))) (-466)) (T -947)) +((-1683 (*1 *2 *2 *3) (-12 (-5 *2 (-666 (-981 *4))) (-5 *3 (-666 (-1207))) (-4 *4 (-466)) (-5 *1 (-947 *4)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *2 (-666 (-981 *4))) (-5 *3 (-666 (-1207))) (-4 *4 (-466)) (-5 *1 (-947 *4))))) +(-10 -7 (-15 -1557 ((-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -1683 ((-666 (-981 |#1|)) (-666 (-981 |#1|)) (-666 (-1207))))) +((-2411 (((-328 |#1|) (-491)) 16 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -2411 ((-328 |#1|) (-491)))) (-570)) (T -948)) +((-2411 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-328 *4)) (-5 *1 (-948 *4)) (-4 *4 (-570))))) +(-10 -7 (-15 -2411 ((-328 |#1|) (-491)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-949) (-142)) (T -949)) +((-2136 (*1 *2 *3) (-12 (-4 *1 (-949)) (-5 *2 (-2 (|:| -2672 (-666 *1)) (|:| -2847 *1))) (-5 *3 (-666 *1)))) (-3448 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-666 *1)) (-4 *1 (-949))))) +(-13 (-466) (-10 -8 (-15 -2136 ((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $))) (-15 -3448 ((-3 (-666 $) "failed") (-666 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2379 (($) NIL T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-950) (-13 (-816) (-748) (-10 -8 (-15 -2421 ($ $ $)) (-6 (-4502 "*"))))) (T -950)) +((-2421 (*1 *1 *1 *1) (-5 *1 (-950)))) +(-13 (-816) (-748) (-10 -8 (-15 -2421 ($ $ $)) (-6 (-4502 "*")))) ((|NonNegativeInteger|) (|%ilt| 0 |#1|)) -((-2900 ((|#2| (-665 |#1|) (-665 |#1|)) 28 T ELT))) -(((-950 |#1| |#2|) (-10 -7 (-15 -2900 (|#2| (-665 |#1|) (-665 |#1|)))) (-375) (-1273 |#1|)) (T -950)) -((-2900 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-4 *2 (-1273 *4)) (-5 *1 (-950 *4 *2))))) -(-10 -7 (-15 -2900 (|#2| (-665 |#1|) (-665 |#1|)))) -((-2990 (((-1202 |#2|) (-665 |#2|) (-665 |#2|)) 17 T ELT) (((-1270 |#1| |#2|) (-1270 |#1| |#2|) (-665 |#2|) (-665 |#2|)) 13 T ELT))) -(((-951 |#1| |#2|) (-10 -7 (-15 -2990 ((-1270 |#1| |#2|) (-1270 |#1| |#2|) (-665 |#2|) (-665 |#2|))) (-15 -2990 ((-1202 |#2|) (-665 |#2|) (-665 |#2|)))) (-1206) (-375)) (T -951)) -((-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *5)) (-4 *5 (-375)) (-5 *2 (-1202 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-1206)))) (-2990 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1270 *4 *5)) (-5 *3 (-665 *5)) (-14 *4 (-1206)) (-4 *5 (-375)) (-5 *1 (-951 *4 *5))))) -(-10 -7 (-15 -2990 ((-1270 |#1| |#2|) (-1270 |#1| |#2|) (-665 |#2|) (-665 |#2|))) (-15 -2990 ((-1202 |#2|) (-665 |#2|) (-665 |#2|)))) -((-1419 (((-577) (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188)) 174 T ELT)) (-3626 ((|#4| |#4|) 193 T ELT)) (-3297 (((-665 (-420 (-980 |#1|))) (-665 (-1206))) 146 T ELT)) (-4238 (((-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-665 (-665 |#4|)) (-792) (-792) (-577)) 88 T ELT)) (-3504 (((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-665 |#4|)) 69 T ELT)) (-2172 (((-710 |#4|) (-710 |#4|) (-665 |#4|)) 65 T ELT)) (-3584 (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188)) 186 T ELT)) (-1746 (((-577) (-710 |#4|) (-949) (-1188)) 166 T ELT) (((-577) (-710 |#4|) (-665 (-1206)) (-949) (-1188)) 165 T ELT) (((-577) (-710 |#4|) (-665 |#4|) (-949) (-1188)) 164 T ELT) (((-577) (-710 |#4|) (-1188)) 154 T ELT) (((-577) (-710 |#4|) (-665 (-1206)) (-1188)) 153 T ELT) (((-577) (-710 |#4|) (-665 |#4|) (-1188)) 152 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-949)) 151 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)) (-949)) 150 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|) (-949)) 149 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|)) 148 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206))) 147 T ELT) (((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|)) 143 T ELT)) (-1730 ((|#4| (-980 |#1|)) 80 T ELT)) (-4371 (((-112) (-665 |#4|) (-665 (-665 |#4|))) 190 T ELT)) (-2332 (((-665 (-665 (-577))) (-577) (-577)) 159 T ELT)) (-2706 (((-665 (-665 |#4|)) (-665 (-665 |#4|))) 106 T ELT)) (-1579 (((-792) (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|))))) 100 T ELT)) (-3997 (((-792) (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|))))) 99 T ELT)) (-3831 (((-112) (-665 (-980 |#1|))) 19 T ELT) (((-112) (-665 |#4|)) 15 T ELT)) (-1881 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-665 |#4|)) (|:| |n0| (-665 |#4|))) (-665 |#4|) (-665 |#4|)) 84 T ELT)) (-1483 (((-665 |#4|) |#4|) 57 T ELT)) (-1599 (((-665 (-420 (-980 |#1|))) (-665 |#4|)) 142 T ELT) (((-710 (-420 (-980 |#1|))) (-710 |#4|)) 66 T ELT) (((-420 (-980 |#1|)) |#4|) 139 T ELT)) (-1375 (((-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))))))) (|:| |rgsz| (-577))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-792) (-1188) (-577)) 112 T ELT)) (-2808 (((-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))) (-710 |#4|) (-792)) 98 T ELT)) (-4236 (((-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-710 |#4|) (-792)) 121 T ELT)) (-4234 (((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| -1670 (-710 (-420 (-980 |#1|)))) (|:| |vec| (-665 (-420 (-980 |#1|)))) (|:| -1875 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) 56 T ELT))) -(((-952 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|) (-949))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)) (-949))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-949))) (-15 -1746 ((-577) (-710 |#4|) (-665 |#4|) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-665 (-1206)) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-665 |#4|) (-949) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-665 (-1206)) (-949) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-949) (-1188))) (-15 -1419 ((-577) (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -3584 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -1375 ((-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))))))) (|:| |rgsz| (-577))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-792) (-1188) (-577))) (-15 -1599 ((-420 (-980 |#1|)) |#4|)) (-15 -1599 ((-710 (-420 (-980 |#1|))) (-710 |#4|))) (-15 -1599 ((-665 (-420 (-980 |#1|))) (-665 |#4|))) (-15 -3297 ((-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -1730 (|#4| (-980 |#1|))) (-15 -1881 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-665 |#4|)) (|:| |n0| (-665 |#4|))) (-665 |#4|) (-665 |#4|))) (-15 -2808 ((-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))) (-710 |#4|) (-792))) (-15 -3504 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-665 |#4|))) (-15 -4234 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| -1670 (-710 (-420 (-980 |#1|)))) (|:| |vec| (-665 (-420 (-980 |#1|)))) (|:| -1875 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (-15 -1483 ((-665 |#4|) |#4|)) (-15 -3997 ((-792) (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -1579 ((-792) (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -2706 ((-665 (-665 |#4|)) (-665 (-665 |#4|)))) (-15 -2332 ((-665 (-665 (-577))) (-577) (-577))) (-15 -4371 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -4236 ((-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-710 |#4|) (-792))) (-15 -2172 ((-710 |#4|) (-710 |#4|) (-665 |#4|))) (-15 -4238 ((-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-665 (-665 |#4|)) (-792) (-792) (-577))) (-15 -3626 (|#4| |#4|)) (-15 -3831 ((-112) (-665 |#4|))) (-15 -3831 ((-112) (-665 (-980 |#1|))))) (-13 (-318) (-148)) (-13 (-870) (-632 (-1206))) (-814) (-977 |#1| |#3| |#2|)) (T -952)) -((-3831 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *2)) (-4 *2 (-977 *3 *5 *4)))) (-4238 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-5 *4 (-710 *12)) (-5 *5 (-665 (-420 (-980 *9)))) (-5 *6 (-665 (-665 *12))) (-5 *7 (-792)) (-5 *8 (-577)) (-4 *9 (-13 (-318) (-148))) (-4 *12 (-977 *9 *11 *10)) (-4 *10 (-13 (-870) (-632 (-1206)))) (-4 *11 (-814)) (-5 *2 (-2 (|:| |eqzro| (-665 *12)) (|:| |neqzro| (-665 *12)) (|:| |wcond| (-665 (-980 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *9)))) (|:| -2225 (-665 (-1297 (-420 (-980 *9))))))))) (-5 *1 (-952 *9 *10 *11 *12)))) (-2172 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *7)) (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7)))) (-4236 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-792)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-4371 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *5 *6 *7 *8)))) (-2332 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-665 (-577)))) (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *6 *5)))) (-2706 (*1 *2 *2) (-12 (-5 *2 (-665 (-665 *6))) (-4 *6 (-977 *3 *5 *4)) (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *6)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 *7))))) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) (-5 *1 (-952 *4 *5 *6 *7)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 *7))))) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) (-5 *1 (-952 *4 *5 *6 *7)))) (-1483 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 *3)) (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-977 *4 *6 *5)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1670 (-710 (-420 (-980 *4)))) (|:| |vec| (-665 (-420 (-980 *4)))) (|:| -1875 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2225 (-665 (-1297 (-420 (-980 *4))))))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-3504 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2225 (-665 (-1297 (-420 (-980 *4))))))) (-5 *3 (-665 *7)) (-4 *4 (-13 (-318) (-148))) (-4 *7 (-977 *4 *6 *5)) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 *8))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-792)))) (-1881 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-4 *7 (-977 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-665 *7)) (|:| |n0| (-665 *7)))) (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-318) (-148))) (-4 *2 (-977 *4 *6 *5)) (-5 *1 (-952 *4 *5 *6 *2)) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-710 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)))) (-1599 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-420 (-980 *4))) (-5 *1 (-952 *4 *5 *6 *3)) (-4 *3 (-977 *4 *6 *5)))) (-1375 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-710 *11)) (-5 *4 (-665 (-420 (-980 *8)))) (-5 *5 (-792)) (-5 *6 (-1188)) (-4 *8 (-13 (-318) (-148))) (-4 *11 (-977 *8 *10 *9)) (-4 *9 (-13 (-870) (-632 (-1206)))) (-4 *10 (-814)) (-5 *2 (-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 *11)) (|:| |neqzro| (-665 *11)) (|:| |wcond| (-665 (-980 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *8)))) (|:| -2225 (-665 (-1297 (-420 (-980 *8)))))))))) (|:| |rgsz| (-577)))) (-5 *1 (-952 *8 *9 *10 *11)) (-5 *7 (-577)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) (|:| |wcond| (-665 (-980 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2225 (-665 (-1297 (-420 (-980 *4)))))))))) (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *4 (-1188)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-977 *5 *7 *6)) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *5 *6 *7 *8)))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-949)) (-5 *5 (-1188)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *6 *7 *8 *9)))) (-1746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *7 *8 *9 *10)))) (-1746 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 *10)) (-5 *5 (-949)) (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *7 *8 *9 *10)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-1188)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *5 *6 *7 *8)))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-1188)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *6 *7 *8 *9)))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 *9)) (-5 *5 (-1188)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *6 *7 *8 *9)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-949)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) (|:| |wcond| (-665 (-980 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) (|:| -2225 (-665 (-1297 (-420 (-980 *6)))))))))) (-5 *1 (-952 *6 *7 *8 *9)))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-710 *9)) (-5 *5 (-949)) (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) (|:| |wcond| (-665 (-980 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) (|:| -2225 (-665 (-1297 (-420 (-980 *6)))))))))) (-5 *1 (-952 *6 *7 *8 *9)) (-5 *4 (-665 *9)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) (|:| |wcond| (-665 (-980 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) (|:| -2225 (-665 (-1297 (-420 (-980 *4)))))))))) (-5 *1 (-952 *4 *5 *6 *7)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-5 *4 (-665 (-1206))) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-665 (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) (|:| |wcond| (-665 (-980 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) -(-10 -7 (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 |#4|) (-949))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-665 (-1206)) (-949))) (-15 -1746 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-710 |#4|) (-949))) (-15 -1746 ((-577) (-710 |#4|) (-665 |#4|) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-665 (-1206)) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-665 |#4|) (-949) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-665 (-1206)) (-949) (-1188))) (-15 -1746 ((-577) (-710 |#4|) (-949) (-1188))) (-15 -1419 ((-577) (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -3584 ((-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|))))))))) (-1188))) (-15 -1375 ((-2 (|:| |rgl| (-665 (-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))))))) (|:| |rgsz| (-577))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-792) (-1188) (-577))) (-15 -1599 ((-420 (-980 |#1|)) |#4|)) (-15 -1599 ((-710 (-420 (-980 |#1|))) (-710 |#4|))) (-15 -1599 ((-665 (-420 (-980 |#1|))) (-665 |#4|))) (-15 -3297 ((-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -1730 (|#4| (-980 |#1|))) (-15 -1881 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-665 |#4|)) (|:| |n0| (-665 |#4|))) (-665 |#4|) (-665 |#4|))) (-15 -2808 ((-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))) (-710 |#4|) (-792))) (-15 -3504 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-665 |#4|))) (-15 -4234 ((-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))) (-2 (|:| -1670 (-710 (-420 (-980 |#1|)))) (|:| |vec| (-665 (-420 (-980 |#1|)))) (|:| -1875 (-792)) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (-15 -1483 ((-665 |#4|) |#4|)) (-15 -3997 ((-792) (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -1579 ((-792) (-665 (-2 (|:| -1875 (-792)) (|:| |eqns| (-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))))) (|:| |fgb| (-665 |#4|)))))) (-15 -2706 ((-665 (-665 |#4|)) (-665 (-665 |#4|)))) (-15 -2332 ((-665 (-665 (-577))) (-577) (-577))) (-15 -4371 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -4236 ((-665 (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) (-710 |#4|) (-792))) (-15 -2172 ((-710 |#4|) (-710 |#4|) (-665 |#4|))) (-15 -4238 ((-2 (|:| |eqzro| (-665 |#4|)) (|:| |neqzro| (-665 |#4|)) (|:| |wcond| (-665 (-980 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-420 (-980 |#1|)))) (|:| -2225 (-665 (-1297 (-420 (-980 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577)))) (-710 |#4|) (-665 (-420 (-980 |#1|))) (-665 (-665 |#4|)) (-792) (-792) (-577))) (-15 -3626 (|#4| |#4|)) (-15 -3831 ((-112) (-665 |#4|))) (-15 -3831 ((-112) (-665 (-980 |#1|))))) -((-2174 (((-955) |#1| (-1206)) 17 T ELT) (((-955) |#1| (-1206) (-1124 (-228))) 21 T ELT)) (-1758 (((-955) |#1| |#1| (-1206) (-1124 (-228))) 19 T ELT) (((-955) |#1| (-1206) (-1124 (-228))) 15 T ELT))) -(((-953 |#1|) (-10 -7 (-15 -1758 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -1758 ((-955) |#1| |#1| (-1206) (-1124 (-228)))) (-15 -2174 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -2174 ((-955) |#1| (-1206)))) (-632 (-549))) (T -953)) -((-2174 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) (-2174 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) (-1758 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) (-1758 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) (-5 *1 (-953 *3)) (-4 *3 (-632 (-549)))))) -(-10 -7 (-15 -1758 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -1758 ((-955) |#1| |#1| (-1206) (-1124 (-228)))) (-15 -2174 ((-955) |#1| (-1206) (-1124 (-228)))) (-15 -2174 ((-955) |#1| (-1206)))) -((-3062 (($ $ (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 121 T ELT)) (-3426 (((-1124 (-228)) $) 64 T ELT)) (-3416 (((-1124 (-228)) $) 63 T ELT)) (-3405 (((-1124 (-228)) $) 62 T ELT)) (-3891 (((-665 (-665 (-228))) $) 69 T ELT)) (-2968 (((-1124 (-228)) $) 65 T ELT)) (-4150 (((-577) (-577)) 57 T ELT)) (-2087 (((-577) (-577)) 52 T ELT)) (-2014 (((-577) (-577)) 55 T ELT)) (-1777 (((-112) (-112)) 59 T ELT)) (-4403 (((-577)) 56 T ELT)) (-3647 (($ $ (-1124 (-228))) 124 T ELT) (($ $) 125 T ELT)) (-4046 (($ (-1 (-971 (-228)) (-228)) (-1124 (-228))) 131 T ELT) (($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 132 T ELT)) (-1758 (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228))) 134 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 135 T ELT) (($ $ (-1124 (-228))) 127 T ELT)) (-2243 (((-577)) 60 T ELT)) (-1587 (((-577)) 50 T ELT)) (-1514 (((-577)) 53 T ELT)) (-1606 (((-665 (-665 (-971 (-228)))) $) 151 T ELT)) (-2047 (((-112) (-112)) 61 T ELT)) (-2410 (((-885) $) 149 T ELT)) (-2839 (((-112)) 58 T ELT))) -(((-954) (-13 (-1004) (-10 -8 (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3647 ($ $ (-1124 (-228)))) (-15 -3647 ($ $)) (-15 -2968 ((-1124 (-228)) $)) (-15 -3891 ((-665 (-665 (-228))) $)) (-15 -1587 ((-577))) (-15 -2087 ((-577) (-577))) (-15 -1514 ((-577))) (-15 -2014 ((-577) (-577))) (-15 -4403 ((-577))) (-15 -4150 ((-577) (-577))) (-15 -2839 ((-112))) (-15 -1777 ((-112) (-112))) (-15 -2243 ((-577))) (-15 -2047 ((-112) (-112)))))) (T -954)) -((-4046 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-4046 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-1758 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-1758 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-954)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-3062 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-3647 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-3647 (*1 *1 *1) (-5 *1 (-954))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-954)))) (-1587 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-1514 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-2014 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-4403 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-2839 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954)))) (-2243 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954)))) (-2047 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) -(-13 (-1004) (-10 -8 (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -3647 ($ $ (-1124 (-228)))) (-15 -3647 ($ $)) (-15 -2968 ((-1124 (-228)) $)) (-15 -3891 ((-665 (-665 (-228))) $)) (-15 -1587 ((-577))) (-15 -2087 ((-577) (-577))) (-15 -1514 ((-577))) (-15 -2014 ((-577) (-577))) (-15 -4403 ((-577))) (-15 -4150 ((-577) (-577))) (-15 -2839 ((-112))) (-15 -1777 ((-112) (-112))) (-15 -2243 ((-577))) (-15 -2047 ((-112) (-112))))) -((-3062 (($ $ (-1124 (-228))) 122 T ELT) (($ $ (-1124 (-228)) (-1124 (-228))) 123 T ELT)) (-3416 (((-1124 (-228)) $) 73 T ELT)) (-3405 (((-1124 (-228)) $) 72 T ELT)) (-2968 (((-1124 (-228)) $) 74 T ELT)) (-3074 (((-577) (-577)) 66 T ELT)) (-4093 (((-577) (-577)) 61 T ELT)) (-1460 (((-577) (-577)) 64 T ELT)) (-3900 (((-112) (-112)) 68 T ELT)) (-2083 (((-577)) 65 T ELT)) (-3647 (($ $ (-1124 (-228))) 126 T ELT) (($ $) 127 T ELT)) (-4046 (($ (-1 (-971 (-228)) (-228)) (-1124 (-228))) 141 T ELT) (($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 142 T ELT)) (-2174 (($ (-1 (-228) (-228)) (-1124 (-228))) 149 T ELT) (($ (-1 (-228) (-228))) 153 T ELT)) (-1758 (($ (-1 (-228) (-228)) (-1124 (-228))) 137 T ELT) (($ (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228))) 138 T ELT) (($ (-665 (-1 (-228) (-228))) (-1124 (-228))) 146 T ELT) (($ (-665 (-1 (-228) (-228))) (-1124 (-228)) (-1124 (-228))) 147 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228))) 139 T ELT) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228))) 140 T ELT) (($ $ (-1124 (-228))) 128 T ELT)) (-3807 (((-112) $) 69 T ELT)) (-3935 (((-577)) 70 T ELT)) (-3475 (((-577)) 59 T ELT)) (-1655 (((-577)) 62 T ELT)) (-1606 (((-665 (-665 (-971 (-228)))) $) 35 T ELT)) (-1665 (((-112) (-112)) 71 T ELT)) (-2410 (((-885) $) 167 T ELT)) (-1332 (((-112)) 67 T ELT))) -(((-955) (-13 (-983) (-10 -8 (-15 -1758 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)))) (-15 -1758 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -2174 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -2174 ($ (-1 (-228) (-228)))) (-15 -1758 ($ $ (-1124 (-228)))) (-15 -3807 ((-112) $)) (-15 -3062 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)))) (-15 -3647 ($ $ (-1124 (-228)))) (-15 -3647 ($ $)) (-15 -2968 ((-1124 (-228)) $)) (-15 -3475 ((-577))) (-15 -4093 ((-577) (-577))) (-15 -1655 ((-577))) (-15 -1460 ((-577) (-577))) (-15 -2083 ((-577))) (-15 -3074 ((-577) (-577))) (-15 -1332 ((-112))) (-15 -3900 ((-112) (-112))) (-15 -3935 ((-577))) (-15 -1665 ((-112) (-112)))))) (T -955)) -((-1758 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-1758 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-1758 (*1 *1 *2 *3) (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-1758 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-1758 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-1758 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-4046 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-4046 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-2174 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) (-5 *1 (-955)))) (-2174 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-955)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-3062 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-3062 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-3647 (*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-3647 (*1 *1 *1) (-5 *1 (-955))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) (-3475 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-1655 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-2083 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-3074 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-1332 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-3935 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955)))) (-1665 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) -(-13 (-983) (-10 -8 (-15 -1758 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)))) (-15 -1758 ($ (-665 (-1 (-228) (-228))) (-1124 (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)))) (-15 -1758 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)))) (-15 -4046 ($ (-1 (-971 (-228)) (-228)) (-1124 (-228)) (-1124 (-228)) (-1124 (-228)))) (-15 -2174 ($ (-1 (-228) (-228)) (-1124 (-228)))) (-15 -2174 ($ (-1 (-228) (-228)))) (-15 -1758 ($ $ (-1124 (-228)))) (-15 -3807 ((-112) $)) (-15 -3062 ($ $ (-1124 (-228)))) (-15 -3062 ($ $ (-1124 (-228)) (-1124 (-228)))) (-15 -3647 ($ $ (-1124 (-228)))) (-15 -3647 ($ $)) (-15 -2968 ((-1124 (-228)) $)) (-15 -3475 ((-577))) (-15 -4093 ((-577) (-577))) (-15 -1655 ((-577))) (-15 -1460 ((-577) (-577))) (-15 -2083 ((-577))) (-15 -3074 ((-577) (-577))) (-15 -1332 ((-112))) (-15 -3900 ((-112) (-112))) (-15 -3935 ((-577))) (-15 -1665 ((-112) (-112))))) -((-4468 (((-665 (-1124 (-228))) (-665 (-665 (-971 (-228))))) 34 T ELT))) -(((-956) (-10 -7 (-15 -4468 ((-665 (-1124 (-228))) (-665 (-665 (-971 (-228)))))))) (T -956)) -((-4468 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-665 (-1124 (-228)))) (-5 *1 (-956))))) -(-10 -7 (-15 -4468 ((-665 (-1124 (-228))) (-665 (-665 (-971 (-228))))))) -((-2472 ((|#2| |#2|) 28 T ELT)) (-1619 ((|#2| |#2|) 29 T ELT)) (-1528 ((|#2| |#2|) 27 T ELT)) (-4256 ((|#2| |#2| (-519)) 26 T ELT))) -(((-957 |#1| |#2|) (-10 -7 (-15 -4256 (|#2| |#2| (-519))) (-15 -1528 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -1619 (|#2| |#2|))) (-1130) (-443 |#1|)) (T -957)) -((-1619 (*1 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) (-4256 (*1 *2 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-1130)) (-5 *1 (-957 *4 *2)) (-4 *2 (-443 *4))))) -(-10 -7 (-15 -4256 (|#2| |#2| (-519))) (-15 -1528 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -1619 (|#2| |#2|))) -((-2472 (((-327 (-577)) (-1206)) 16 T ELT)) (-1619 (((-327 (-577)) (-1206)) 14 T ELT)) (-1528 (((-327 (-577)) (-1206)) 12 T ELT)) (-4256 (((-327 (-577)) (-1206) (-519)) 19 T ELT))) -(((-958) (-10 -7 (-15 -4256 ((-327 (-577)) (-1206) (-519))) (-15 -1528 ((-327 (-577)) (-1206))) (-15 -2472 ((-327 (-577)) (-1206))) (-15 -1619 ((-327 (-577)) (-1206))))) (T -958)) -((-1619 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) (-5 *1 (-958))))) -(-10 -7 (-15 -4256 ((-327 (-577)) (-1206) (-519))) (-15 -1528 ((-327 (-577)) (-1206))) (-15 -2472 ((-327 (-577)) (-1206))) (-15 -1619 ((-327 (-577)) (-1206)))) -((-2244 (((-913 |#1| |#3|) |#2| (-916 |#1|) (-913 |#1| |#3|)) 25 T ELT)) (-2737 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13 T ELT))) -(((-959 |#1| |#2| |#3|) (-10 -7 (-15 -2737 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2244 ((-913 |#1| |#3|) |#2| (-916 |#1|) (-913 |#1| |#3|)))) (-1130) (-910 |#1|) (-13 (-1130) (-1068 |#2|))) (T -959)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-13 (-1130) (-1068 *3))) (-4 *3 (-910 *5)) (-5 *1 (-959 *5 *3 *6)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1130) (-1068 *5))) (-4 *5 (-910 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-959 *4 *5 *6))))) -(-10 -7 (-15 -2737 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2244 ((-913 |#1| |#3|) |#2| (-916 |#1|) (-913 |#1| |#3|)))) -((-2244 (((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)) 30 T ELT))) -(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -2244 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-1130) (-13 (-569) (-910 |#1|)) (-13 (-443 |#2|) (-632 (-916 |#1|)) (-910 |#1|) (-1068 (-630 $)))) (T -960)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-13 (-443 *6) (-632 *4) (-910 *5) (-1068 (-630 $)))) (-5 *4 (-916 *5)) (-4 *6 (-13 (-569) (-910 *5))) (-5 *1 (-960 *5 *6 *3))))) -(-10 -7 (-15 -2244 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) -((-2244 (((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|)) 13 T ELT))) -(((-961 |#1|) (-10 -7 (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|)))) (-558)) (T -961)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 (-577) *3)) (-5 *4 (-916 (-577))) (-4 *3 (-558)) (-5 *1 (-961 *3))))) -(-10 -7 (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|)))) -((-2244 (((-913 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-913 |#1| |#2|)) 57 T ELT))) -(((-962 |#1| |#2|) (-10 -7 (-15 -2244 ((-913 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-913 |#1| |#2|)))) (-1130) (-13 (-1130) (-1068 (-630 $)) (-632 (-916 |#1|)) (-910 |#1|))) (T -962)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1130)) (-4 *6 (-13 (-1130) (-1068 (-630 $)) (-632 *4) (-910 *5))) (-5 *4 (-916 *5)) (-5 *1 (-962 *5 *6))))) -(-10 -7 (-15 -2244 ((-913 |#1| |#2|) (-630 |#2|) (-916 |#1|) (-913 |#1| |#2|)))) -((-2244 (((-909 |#1| |#2| |#3|) |#3| (-916 |#1|) (-909 |#1| |#2| |#3|)) 17 T ELT))) -(((-963 |#1| |#2| |#3|) (-10 -7 (-15 -2244 ((-909 |#1| |#2| |#3|) |#3| (-916 |#1|) (-909 |#1| |#2| |#3|)))) (-1130) (-910 |#1|) (-687 |#2|)) (T -963)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-909 *5 *6 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-4 *6 (-910 *5)) (-4 *3 (-687 *6)) (-5 *1 (-963 *5 *6 *3))))) -(-10 -7 (-15 -2244 ((-909 |#1| |#2| |#3|) |#3| (-916 |#1|) (-909 |#1| |#2| |#3|)))) -((-2244 (((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|)) 17 (|has| |#3| (-910 |#1|)) ELT) (((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-916 |#1|) (-913 |#1| |#5|))) 16 T ELT))) -(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2244 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-916 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-910 |#1|)) (-15 -2244 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|))) |%noBranch|)) (-1130) (-814) (-870) (-13 (-1079) (-910 |#1|)) (-13 (-977 |#4| |#2| |#3|) (-632 (-916 |#1|)))) (T -964)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-13 (-977 *8 *6 *7) (-632 *4))) (-5 *4 (-916 *5)) (-4 *7 (-910 *5)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-13 (-1079) (-910 *5))) (-5 *1 (-964 *5 *6 *7 *8 *3)))) (-2244 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-916 *6) (-913 *6 *3))) (-4 *8 (-870)) (-5 *2 (-913 *6 *3)) (-5 *4 (-916 *6)) (-4 *6 (-1130)) (-4 *3 (-13 (-977 *9 *7 *8) (-632 *4))) (-4 *7 (-814)) (-4 *9 (-13 (-1079) (-910 *6))) (-5 *1 (-964 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2244 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-916 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-910 |#1|)) (-15 -2244 ((-913 |#1| |#5|) |#5| (-916 |#1|) (-913 |#1| |#5|))) |%noBranch|)) -((-2366 ((|#2| |#2| (-665 (-1 (-112) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-112) |#3|)) 13 T ELT))) -(((-965 |#1| |#2| |#3|) (-10 -7 (-15 -2366 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2366 (|#2| |#2| (-665 (-1 (-112) |#3|))))) (-1130) (-443 |#1|) (-1247)) (T -965)) -((-2366 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) (-4 *4 (-1130)) (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4)))) (-2366 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1247)) (-4 *4 (-1130)) (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4))))) -(-10 -7 (-15 -2366 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2366 (|#2| |#2| (-665 (-1 (-112) |#3|))))) -((-2366 (((-327 (-577)) (-1206) (-665 (-1 (-112) |#1|))) 18 T ELT) (((-327 (-577)) (-1206) (-1 (-112) |#1|)) 15 T ELT))) -(((-966 |#1|) (-10 -7 (-15 -2366 ((-327 (-577)) (-1206) (-1 (-112) |#1|))) (-15 -2366 ((-327 (-577)) (-1206) (-665 (-1 (-112) |#1|))))) (-1247)) (T -966)) -((-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) (-5 *2 (-327 (-577))) (-5 *1 (-966 *5)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1247)) (-5 *2 (-327 (-577))) (-5 *1 (-966 *5))))) -(-10 -7 (-15 -2366 ((-327 (-577)) (-1206) (-1 (-112) |#1|))) (-15 -2366 ((-327 (-577)) (-1206) (-665 (-1 (-112) |#1|))))) -((-2244 (((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)) 25 T ELT))) -(((-967 |#1| |#2| |#3|) (-10 -7 (-15 -2244 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-1130) (-13 (-569) (-910 |#1|) (-632 (-916 |#1|))) (-1022 |#2|)) (T -967)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-1022 *6)) (-4 *6 (-13 (-569) (-910 *5) (-632 *4))) (-5 *4 (-916 *5)) (-5 *1 (-967 *5 *6 *3))))) -(-10 -7 (-15 -2244 ((-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) -((-2244 (((-913 |#1| (-1206)) (-1206) (-916 |#1|) (-913 |#1| (-1206))) 18 T ELT))) -(((-968 |#1|) (-10 -7 (-15 -2244 ((-913 |#1| (-1206)) (-1206) (-916 |#1|) (-913 |#1| (-1206))))) (-1130)) (T -968)) -((-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 (-1206))) (-5 *3 (-1206)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-5 *1 (-968 *5))))) -(-10 -7 (-15 -2244 ((-913 |#1| (-1206)) (-1206) (-916 |#1|) (-913 |#1| (-1206))))) -((-3410 (((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) 34 T ELT)) (-2244 (((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-1 |#3| (-665 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))) 33 T ELT))) -(((-969 |#1| |#2| |#3|) (-10 -7 (-15 -2244 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-1 |#3| (-665 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-15 -3410 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))))) (-1130) (-1079) (-13 (-1079) (-632 (-916 |#1|)) (-1068 |#2|))) (T -969)) -((-3410 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-916 *6))) (-5 *5 (-1 (-913 *6 *8) *8 (-916 *6) (-913 *6 *8))) (-4 *6 (-1130)) (-4 *8 (-13 (-1079) (-632 (-916 *6)) (-1068 *7))) (-5 *2 (-913 *6 *8)) (-4 *7 (-1079)) (-5 *1 (-969 *6 *7 *8)))) (-2244 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-665 (-916 *7))) (-5 *5 (-1 *9 (-665 *9))) (-5 *6 (-1 (-913 *7 *9) *9 (-916 *7) (-913 *7 *9))) (-4 *7 (-1130)) (-4 *9 (-13 (-1079) (-632 (-916 *7)) (-1068 *8))) (-5 *2 (-913 *7 *9)) (-5 *3 (-665 *9)) (-4 *8 (-1079)) (-5 *1 (-969 *7 *8 *9))))) -(-10 -7 (-15 -2244 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-1 |#3| (-665 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|)))) (-15 -3410 ((-913 |#1| |#3|) (-665 |#3|) (-665 (-916 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-916 |#1|) (-913 |#1| |#3|))))) -((-2364 (((-1202 (-420 (-577))) (-577)) 79 T ELT)) (-1695 (((-1202 (-577)) (-577)) 82 T ELT)) (-3713 (((-1202 (-577)) (-577)) 76 T ELT)) (-2543 (((-577) (-1202 (-577))) 72 T ELT)) (-4433 (((-1202 (-420 (-577))) (-577)) 65 T ELT)) (-4174 (((-1202 (-577)) (-577)) 49 T ELT)) (-2063 (((-1202 (-577)) (-577)) 84 T ELT)) (-1876 (((-1202 (-577)) (-577)) 83 T ELT)) (-1864 (((-1202 (-420 (-577))) (-577)) 67 T ELT))) -(((-970) (-10 -7 (-15 -1864 ((-1202 (-420 (-577))) (-577))) (-15 -1876 ((-1202 (-577)) (-577))) (-15 -2063 ((-1202 (-577)) (-577))) (-15 -4174 ((-1202 (-577)) (-577))) (-15 -4433 ((-1202 (-420 (-577))) (-577))) (-15 -2543 ((-577) (-1202 (-577)))) (-15 -3713 ((-1202 (-577)) (-577))) (-15 -1695 ((-1202 (-577)) (-577))) (-15 -2364 ((-1202 (-420 (-577))) (-577))))) (T -970)) -((-2364 (*1 *2 *3) (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577)))) (-1695 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-3713 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-577)) (-5 *1 (-970)))) (-4433 (*1 *2 *3) (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577)))) (-4174 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-2063 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-1876 (*1 *2 *3) (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) (-1864 (*1 *2 *3) (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) -(-10 -7 (-15 -1864 ((-1202 (-420 (-577))) (-577))) (-15 -1876 ((-1202 (-577)) (-577))) (-15 -2063 ((-1202 (-577)) (-577))) (-15 -4174 ((-1202 (-577)) (-577))) (-15 -4433 ((-1202 (-420 (-577))) (-577))) (-15 -2543 ((-577) (-1202 (-577)))) (-15 -3713 ((-1202 (-577)) (-577))) (-15 -1695 ((-1202 (-577)) (-577))) (-15 -2364 ((-1202 (-420 (-577))) (-577)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1525 (($ (-792)) NIL (|has| |#1| (-23)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-4414 (($ (-665 |#1|)) 9 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2359 (((-710 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2323 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3490 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4013 (($ $ (-665 |#1|)) 25 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 18 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3511 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-2419 (((-949) $) 13 T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4437 (($ $ $) 23 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT) (($ (-665 |#1|)) 14 T ELT)) (-2422 (($ (-665 |#1|)) NIL T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2483 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-747)) ELT) (($ $ |#1|) NIL (|has| |#1| (-747)) ELT)) (-3224 (((-792) $) 11 (|has| $ (-6 -4499)) ELT))) -(((-971 |#1|) (-1010 |#1|) (-1079)) (T -971)) -NIL -(-1010 |#1|) -((-3363 (((-494 |#1| |#2|) (-980 |#2|)) 22 T ELT)) (-3359 (((-254 |#1| |#2|) (-980 |#2|)) 35 T ELT)) (-3308 (((-980 |#2|) (-494 |#1| |#2|)) 27 T ELT)) (-3782 (((-254 |#1| |#2|) (-494 |#1| |#2|)) 57 T ELT)) (-1998 (((-980 |#2|) (-254 |#1| |#2|)) 32 T ELT)) (-1724 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 48 T ELT))) -(((-972 |#1| |#2|) (-10 -7 (-15 -1724 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -3782 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -3363 ((-494 |#1| |#2|) (-980 |#2|))) (-15 -3308 ((-980 |#2|) (-494 |#1| |#2|))) (-15 -1998 ((-980 |#2|) (-254 |#1| |#2|))) (-15 -3359 ((-254 |#1| |#2|) (-980 |#2|)))) (-665 (-1206)) (-1079)) (T -972)) -((-3359 (*1 *2 *3) (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-254 *4 *5)) (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206))))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-494 *4 *5)) (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206))))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-254 *4 *5)) (-5 *1 (-972 *4 *5)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) (-5 *2 (-494 *4 *5)) (-5 *1 (-972 *4 *5))))) -(-10 -7 (-15 -1724 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -3782 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -3363 ((-494 |#1| |#2|) (-980 |#2|))) (-15 -3308 ((-980 |#2|) (-494 |#1| |#2|))) (-15 -1998 ((-980 |#2|) (-254 |#1| |#2|))) (-15 -3359 ((-254 |#1| |#2|) (-980 |#2|)))) -((-1828 (((-665 |#2|) |#2| |#2|) 10 T ELT)) (-1453 (((-792) (-665 |#1|)) 48 (|has| |#1| (-869)) ELT)) (-1390 (((-665 |#2|) |#2|) 11 T ELT)) (-4286 (((-792) (-665 |#1|) (-577) (-577)) 52 (|has| |#1| (-869)) ELT)) (-4350 ((|#1| |#2|) 38 (|has| |#1| (-869)) ELT))) -(((-973 |#1| |#2|) (-10 -7 (-15 -1828 ((-665 |#2|) |#2| |#2|)) (-15 -1390 ((-665 |#2|) |#2|)) (IF (|has| |#1| (-869)) (PROGN (-15 -4350 (|#1| |#2|)) (-15 -1453 ((-792) (-665 |#1|))) (-15 -4286 ((-792) (-665 |#1|) (-577) (-577)))) |%noBranch|)) (-375) (-1273 |#1|)) (T -973)) -((-4286 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-577)) (-4 *5 (-869)) (-4 *5 (-375)) (-5 *2 (-792)) (-5 *1 (-973 *5 *6)) (-4 *6 (-1273 *5)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-869)) (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-973 *4 *5)) (-4 *5 (-1273 *4)))) (-4350 (*1 *2 *3) (-12 (-4 *2 (-375)) (-4 *2 (-869)) (-5 *1 (-973 *2 *3)) (-4 *3 (-1273 *2)))) (-1390 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1273 *4)))) (-1828 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -1828 ((-665 |#2|) |#2| |#2|)) (-15 -1390 ((-665 |#2|) |#2|)) (IF (|has| |#1| (-869)) (PROGN (-15 -4350 (|#1| |#2|)) (-15 -1453 ((-792) (-665 |#1|))) (-15 -4286 ((-792) (-665 |#1|) (-577) (-577)))) |%noBranch|)) -((-3609 (((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)) 19 T ELT))) -(((-974 |#1| |#2|) (-10 -7 (-15 -3609 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)))) (-1079) (-1079)) (T -974)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-980 *6)) (-5 *1 (-974 *5 *6))))) -(-10 -7 (-15 -3609 ((-980 |#2|) (-1 |#2| |#1|) (-980 |#1|)))) -((-4419 (((-1270 |#1| (-980 |#2|)) (-980 |#2|) (-1293 |#1|)) 18 T ELT))) -(((-975 |#1| |#2|) (-10 -7 (-15 -4419 ((-1270 |#1| (-980 |#2|)) (-980 |#2|) (-1293 |#1|)))) (-1206) (-1079)) (T -975)) -((-4419 (*1 *2 *3 *4) (-12 (-5 *4 (-1293 *5)) (-14 *5 (-1206)) (-4 *6 (-1079)) (-5 *2 (-1270 *5 (-980 *6))) (-5 *1 (-975 *5 *6)) (-5 *3 (-980 *6))))) -(-10 -7 (-15 -4419 ((-1270 |#1| (-980 |#2|)) (-980 |#2|) (-1293 |#1|)))) -((-3703 (((-792) $) 88 T ELT) (((-792) $ (-665 |#4|)) 93 T ELT)) (-4456 (($ $) 203 T ELT)) (-4240 (((-431 $) $) 195 T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 141 T ELT)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) 74 T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3760 (($ $ $ |#4|) 95 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 131 T ELT) (((-710 |#2|) (-710 $)) 121 T ELT)) (-3008 (($ $) 210 T ELT) (($ $ |#4|) 213 T ELT)) (-3120 (((-665 $) $) 77 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 229 T ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 222 T ELT)) (-1387 (((-665 $) $) 34 T ELT)) (-2925 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-792)) NIL T ELT) (($ $ (-665 |#4|) (-665 (-792))) 71 T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |#4|) 192 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 52 T ELT)) (-3124 (((-3 (-665 $) "failed") $) 39 T ELT)) (-2315 (((-3 (-2 (|:| |var| |#4|) (|:| -2182 (-792))) "failed") $) 57 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 134 T ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 147 T ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 145 T ELT)) (-2799 (((-431 $) $) 165 T ELT)) (-3362 (($ $ (-665 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-665 |#4|) (-665 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-665 |#4|) (-665 $)) NIL T ELT)) (-1611 (($ $ |#4|) 97 T ELT)) (-3341 (((-916 (-391)) $) 243 T ELT) (((-916 (-577)) $) 236 T ELT) (((-549) $) 251 T ELT)) (-2091 ((|#2| $) NIL T ELT) (($ $ |#4|) 205 T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 184 T ELT)) (-2778 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-792)) 62 T ELT) (($ $ (-665 |#4|) (-665 (-792))) 69 T ELT)) (-2580 (((-3 $ "failed") $) 186 T ELT)) (-2525 (((-112) $ $) 216 T ELT))) -(((-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -4456 (|#1| |#1|)) (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4275 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2583 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -3601 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -3008 (|#1| |#1| |#4|)) (-15 -2091 (|#1| |#1| |#4|)) (-15 -1611 (|#1| |#1| |#4|)) (-15 -3760 (|#1| |#1| |#1| |#4|)) (-15 -3120 ((-665 |#1|) |#1|)) (-15 -3703 ((-792) |#1| (-665 |#4|))) (-15 -3703 ((-792) |#1|)) (-15 -2315 ((-3 (-2 (|:| |var| |#4|) (|:| -2182 (-792))) "failed") |#1|)) (-15 -1620 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3124 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -2925 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -2925 (|#1| |#1| |#4| (-792))) (-15 -3553 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1| |#4|)) (-15 -1387 ((-665 |#1|) |#1|)) (-15 -2778 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -2778 (|#1| |#1| |#4| (-792))) (-15 -1953 ((-710 |#2|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2817 ((-3 |#4| "failed") |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#4| |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#4| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -2925 (|#1| |#2| |#3|)) (-15 -2778 (|#2| |#1| |#3|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -2525 ((-112) |#1| |#1|))) (-977 |#2| |#3| |#4|) (-1079) (-814) (-870)) (T -976)) -NIL -(-10 -8 (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -4456 (|#1| |#1|)) (-15 -2580 ((-3 |#1| "failed") |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4275 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2583 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -3601 ((-3 (-1297 |#1|) "failed") (-710 |#1|))) (-15 -3008 (|#1| |#1| |#4|)) (-15 -2091 (|#1| |#1| |#4|)) (-15 -1611 (|#1| |#1| |#4|)) (-15 -3760 (|#1| |#1| |#1| |#4|)) (-15 -3120 ((-665 |#1|) |#1|)) (-15 -3703 ((-792) |#1| (-665 |#4|))) (-15 -3703 ((-792) |#1|)) (-15 -2315 ((-3 (-2 (|:| |var| |#4|) (|:| -2182 (-792))) "failed") |#1|)) (-15 -1620 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -3124 ((-3 (-665 |#1|) "failed") |#1|)) (-15 -2925 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -2925 (|#1| |#1| |#4| (-792))) (-15 -3553 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1| |#4|)) (-15 -1387 ((-665 |#1|) |#1|)) (-15 -2778 (|#1| |#1| (-665 |#4|) (-665 (-792)))) (-15 -2778 (|#1| |#1| |#4| (-792))) (-15 -1953 ((-710 |#2|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2817 ((-3 |#4| "failed") |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#4| |#1|)) (-15 -3362 (|#1| |#1| (-665 |#4|) (-665 |#2|))) (-15 -3362 (|#1| |#1| |#4| |#2|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -2925 (|#1| |#2| |#3|)) (-15 -2778 (|#2| |#1| |#3|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -2525 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 |#3|) $) 113 T ELT)) (-4419 (((-1202 $) $ |#3|) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 91 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) 115 T ELT) (((-792) $ (-665 |#3|)) 114 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-4456 (($ $) 101 (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT)) (-3514 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) 144 T ELT)) (-3760 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT)) (-3134 (($ $) 161 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3008 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) 112 T ELT)) (-1632 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| |#2| $) 179 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| |#3| (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-2097 (((-112) $) 35 T ELT)) (-3641 (((-792) $) 176 T ELT)) (-2935 (($ (-1202 |#1|) |#3|) 120 T ELT) (($ (-1202 $) |#3|) 119 T ELT)) (-1387 (((-665 $) $) 129 T ELT)) (-2338 (((-112) $) 159 T ELT)) (-2925 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-792)) 122 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 121 T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |#3|) 123 T ELT)) (-3569 ((|#2| $) 177 T ELT) (((-792) $ |#3|) 125 T ELT) (((-665 (-792)) $ (-665 |#3|)) 124 T ELT)) (-4309 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-2505 (((-3 |#3| "failed") $) 126 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-3095 (($ $) 156 T ELT)) (-3109 ((|#1| $) 155 T ELT)) (-2388 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 117 T ELT)) (-3124 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2315 (((-3 (-2 (|:| |var| |#3|) (|:| -2182 (-792))) "failed") $) 116 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3069 (((-112) $) 173 T ELT)) (-3081 ((|#1| $) 174 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-665 |#3|) (-665 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-665 |#3|) (-665 $)) 145 T ELT)) (-1611 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 |#3|) (-665 (-792))) 44 T ELT) (($ $ |#3| (-792)) 43 T ELT) (($ $ (-665 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-2776 ((|#2| $) 157 T ELT) (((-792) $ |#3|) 133 T ELT) (((-665 (-792)) $ (-665 |#3|)) 132 T ELT)) (-3341 (((-916 (-391)) $) 85 (-12 (|has| |#3| (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| |#3| (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ $) 88 (|has| |#1| (-569)) ELT) (($ (-420 (-577))) 81 (-2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-2929 (((-665 |#1|) $) 175 T ELT)) (-2778 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-792)) 131 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 130 T ELT)) (-2580 (((-3 $ "failed") $) 82 (-2229 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 32 T CONST)) (-3668 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-665 |#3|) (-665 (-792))) 47 T ELT) (($ $ |#3| (-792)) 46 T ELT) (($ $ (-665 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-977 |#1| |#2| |#3|) (-141) (-1079) (-814) (-870)) (T -977)) -((-3008 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-2776 (*1 *2 *1 *3) (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-792)))) (-2776 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) (-2778 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *2 (-870)))) (-2778 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) (-1387 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-4419 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-1202 *1)) (-4 *1 (-977 *4 *5 *3)))) (-4419 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-1202 *3)))) (-2505 (*1 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3569 (*1 *2 *1 *3) (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-792)))) (-3569 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) (-3553 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-977 *4 *5 *3)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *2 (-870)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) (-2935 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *4)) (-4 *4 (-1079)) (-4 *1 (-977 *4 *5 *3)) (-4 *5 (-814)) (-4 *3 (-870)))) (-2935 (*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)))) (-3124 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-1620 (*1 *2 *1) (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-2315 (*1 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| |var| *5) (|:| -2182 (-792)))))) (-3703 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-792)))) (-3703 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *5)))) (-3120 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3760 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-174)))) (-1611 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-174)))) (-2091 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-465)))) (-3008 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *3 (-465)))) (-4456 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-4240 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-431 *1)) (-4 *1 (-977 *3 *4 *5))))) -(-13 (-926 |t#3|) (-337 |t#1| |t#2|) (-320 $) (-527 |t#3| |t#1|) (-527 |t#3| $) (-1068 |t#3|) (-389 |t#1|) (-10 -8 (-15 -2776 ((-792) $ |t#3|)) (-15 -2776 ((-665 (-792)) $ (-665 |t#3|))) (-15 -2778 ($ $ |t#3| (-792))) (-15 -2778 ($ $ (-665 |t#3|) (-665 (-792)))) (-15 -1387 ((-665 $) $)) (-15 -4419 ((-1202 $) $ |t#3|)) (-15 -4419 ((-1202 |t#1|) $)) (-15 -2505 ((-3 |t#3| "failed") $)) (-15 -3569 ((-792) $ |t#3|)) (-15 -3569 ((-665 (-792)) $ (-665 |t#3|))) (-15 -3553 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |t#3|)) (-15 -2925 ($ $ |t#3| (-792))) (-15 -2925 ($ $ (-665 |t#3|) (-665 (-792)))) (-15 -2935 ($ (-1202 |t#1|) |t#3|)) (-15 -2935 ($ (-1202 $) |t#3|)) (-15 -3124 ((-3 (-665 $) "failed") $)) (-15 -1620 ((-3 (-665 $) "failed") $)) (-15 -2315 ((-3 (-2 (|:| |var| |t#3|) (|:| -2182 (-792))) "failed") $)) (-15 -3703 ((-792) $)) (-15 -3703 ((-792) $ (-665 |t#3|))) (-15 -2948 ((-665 |t#3|) $)) (-15 -3120 ((-665 $) $)) (IF (|has| |t#1| (-632 (-549))) (IF (|has| |t#3| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-632 (-916 (-577)))) (IF (|has| |t#3| (-632 (-916 (-577)))) (-6 (-632 (-916 (-577)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-632 (-916 (-391)))) (IF (|has| |t#3| (-632 (-916 (-391)))) (-6 (-632 (-916 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-910 (-577))) (IF (|has| |t#3| (-910 (-577))) (-6 (-910 (-577))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-910 (-391))) (IF (|has| |t#3| (-910 (-391))) (-6 (-910 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3760 ($ $ $ |t#3|)) (-15 -1611 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-6 (-465)) (-15 -2091 ($ $ |t#3|)) (-15 -3008 ($ $)) (-15 -3008 ($ $ |t#3|)) (-15 -4240 ((-431 $) $)) (-15 -4456 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4497)) (-6 -4497) |%noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 |#3|) . T) ((-634 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ((-301) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2229 (|has| |#1| (-937)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-747) . T) ((-920 $ |#3|) . T) ((-926 |#3|) . T) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ((-937) |has| |#1| (-937)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1068 |#3|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-937))) -((-2948 (((-665 |#2|) |#5|) 40 T ELT)) (-4419 (((-1202 |#5|) |#5| |#2| (-1202 |#5|)) 23 T ELT) (((-420 (-1202 |#5|)) |#5| |#2|) 16 T ELT)) (-2935 ((|#5| (-420 (-1202 |#5|)) |#2|) 30 T ELT)) (-2505 (((-3 |#2| "failed") |#5|) 71 T ELT)) (-1620 (((-3 (-665 |#5|) "failed") |#5|) 65 T ELT)) (-2200 (((-3 (-2 (|:| |val| |#5|) (|:| -2182 (-577))) "failed") |#5|) 53 T ELT)) (-3124 (((-3 (-665 |#5|) "failed") |#5|) 67 T ELT)) (-2315 (((-3 (-2 (|:| |var| |#2|) (|:| -2182 (-577))) "failed") |#5|) 57 T ELT))) -(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2948 ((-665 |#2|) |#5|)) (-15 -2505 ((-3 |#2| "failed") |#5|)) (-15 -4419 ((-420 (-1202 |#5|)) |#5| |#2|)) (-15 -2935 (|#5| (-420 (-1202 |#5|)) |#2|)) (-15 -4419 ((-1202 |#5|) |#5| |#2| (-1202 |#5|))) (-15 -3124 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -1620 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -2315 ((-3 (-2 (|:| |var| |#2|) (|:| -2182 (-577))) "failed") |#5|)) (-15 -2200 ((-3 (-2 (|:| |val| |#5|) (|:| -2182 (-577))) "failed") |#5|))) (-814) (-870) (-1079) (-977 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -2410 ($ |#4|)) (-15 -2518 (|#4| $)) (-15 -2528 (|#4| $))))) (T -978)) -((-2200 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2182 (-577)))) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))))) (-2315 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2182 (-577)))) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))))) (-1620 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))))) (-3124 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))))) (-4419 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))) (-4 *7 (-977 *6 *5 *4)) (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) (-5 *1 (-978 *5 *4 *6 *7 *3)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1202 *2))) (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *2 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))) (-5 *1 (-978 *5 *4 *6 *7 *2)) (-4 *7 (-977 *6 *5 *4)))) (-4419 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-420 (-1202 *3))) (-5 *1 (-978 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))))) (-2505 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-1079)) (-4 *6 (-977 *5 *4 *2)) (-4 *2 (-870)) (-5 *1 (-978 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *6)) (-15 -2518 (*6 $)) (-15 -2528 (*6 $))))))) (-2948 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *5)) (-5 *1 (-978 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $)))))))) -(-10 -7 (-15 -2948 ((-665 |#2|) |#5|)) (-15 -2505 ((-3 |#2| "failed") |#5|)) (-15 -4419 ((-420 (-1202 |#5|)) |#5| |#2|)) (-15 -2935 (|#5| (-420 (-1202 |#5|)) |#2|)) (-15 -4419 ((-1202 |#5|) |#5| |#2| (-1202 |#5|))) (-15 -3124 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -1620 ((-3 (-665 |#5|) "failed") |#5|)) (-15 -2315 ((-3 (-2 (|:| |var| |#2|) (|:| -2182 (-577))) "failed") |#5|)) (-15 -2200 ((-3 (-2 (|:| |val| |#5|) (|:| -2182 (-577))) "failed") |#5|))) -((-3609 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3609 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-814) (-870) (-1079) (-977 |#3| |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -2471 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792)))))) (T -979)) -((-3609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *6 (-814)) (-4 *2 (-13 (-1130) (-10 -8 (-15 -2471 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792)))))) (-5 *1 (-979 *6 *7 *8 *5 *2)) (-4 *5 (-977 *8 *6 *7))))) -(-10 -7 (-15 -3609 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1206)) $) 16 T ELT)) (-4419 (((-1202 $) $ (-1206)) 21 T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1206))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 8 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1206) "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1206) $) NIL T ELT)) (-3760 (($ $ $ (-1206)) NIL (|has| |#1| (-174)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-544 (-1206)) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1206) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1206) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2935 (($ (-1202 |#1|) (-1206)) NIL T ELT) (($ (-1202 $) (-1206)) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-1206)) NIL T ELT)) (-3569 (((-544 (-1206)) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT) (((-665 (-792)) $ (-665 (-1206))) NIL T ELT)) (-4309 (($ (-1 (-544 (-1206)) (-544 (-1206))) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2505 (((-3 (-1206) "failed") $) 19 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-1206)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-3491 (($ $ (-1206)) 29 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1206) |#1|) NIL T ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL T ELT) (($ $ (-1206) $) NIL T ELT) (($ $ (-665 (-1206)) (-665 $)) NIL T ELT)) (-1611 (($ $ (-1206)) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-2776 (((-544 (-1206)) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT) (((-665 (-792)) $ (-665 (-1206))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-1206) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1206) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1206) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) 25 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1206)) 27 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-980 |#1|) (-13 (-977 |#1| (-544 (-1206)) (-1206)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1206))) |%noBranch|))) (-1079)) (T -980)) -((-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-980 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079))))) -(-13 (-977 |#1| (-544 (-1206)) (-1206)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1206))) |%noBranch|))) -((-3949 (((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) |#3| (-792)) 49 T ELT)) (-2320 (((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-792)) 44 T ELT)) (-3752 (((-2 (|:| -2182 (-792)) (|:| -2671 |#4|) (|:| |radicand| (-665 |#4|))) |#4| (-792)) 65 T ELT)) (-3615 (((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) |#5| (-792)) 74 (|has| |#3| (-465)) ELT))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3949 ((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) |#3| (-792))) (-15 -2320 ((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-792))) (IF (|has| |#3| (-465)) (-15 -3615 ((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) |#5| (-792))) |%noBranch|) (-15 -3752 ((-2 (|:| -2182 (-792)) (|:| -2671 |#4|) (|:| |radicand| (-665 |#4|))) |#4| (-792)))) (-814) (-870) (-569) (-977 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -2410 ($ |#4|)) (-15 -2518 (|#4| $)) (-15 -2528 (|#4| $))))) (T -981)) -((-3752 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *3 (-977 *7 *5 *6)) (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *3) (|:| |radicand| (-665 *3)))) (-5 *1 (-981 *5 *6 *7 *3 *8)) (-5 *4 (-792)) (-4 *8 (-13 (-375) (-10 -8 (-15 -2410 ($ *3)) (-15 -2518 (*3 $)) (-15 -2528 (*3 $))))))) (-3615 (*1 *2 *3 *4) (-12 (-4 *7 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *8 (-977 *7 *5 *6)) (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *3) (|:| |radicand| *3))) (-5 *1 (-981 *5 *6 *7 *8 *3)) (-5 *4 (-792)) (-4 *3 (-13 (-375) (-10 -8 (-15 -2410 ($ *8)) (-15 -2518 (*8 $)) (-15 -2528 (*8 $))))))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) (-4 *8 (-977 *7 *5 *6)) (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *9) (|:| |radicand| *9))) (-5 *1 (-981 *5 *6 *7 *8 *9)) (-5 *4 (-792)) (-4 *9 (-13 (-375) (-10 -8 (-15 -2410 ($ *8)) (-15 -2518 (*8 $)) (-15 -2528 (*8 $))))))) (-3949 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-569)) (-4 *7 (-977 *3 *5 *6)) (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *8) (|:| |radicand| *8))) (-5 *1 (-981 *5 *6 *3 *7 *8)) (-5 *4 (-792)) (-4 *8 (-13 (-375) (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $)))))))) -(-10 -7 (-15 -3949 ((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) |#3| (-792))) (-15 -2320 ((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-792))) (IF (|has| |#3| (-465)) (-15 -3615 ((-2 (|:| -2182 (-792)) (|:| -2671 |#5|) (|:| |radicand| |#5|)) |#5| (-792))) |%noBranch|) (-15 -3752 ((-2 (|:| -2182 (-792)) (|:| -2671 |#4|) (|:| |radicand| (-665 |#4|))) |#4| (-792)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4184 (($ (-1150)) 8 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 15 T ELT) (((-1150) $) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 11 T ELT))) -(((-982) (-13 (-1130) (-631 (-1150)) (-10 -8 (-15 -4184 ($ (-1150)))))) (T -982)) -((-4184 (*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-982))))) -(-13 (-1130) (-631 (-1150)) (-10 -8 (-15 -4184 ($ (-1150))))) -((-3416 (((-1124 (-228)) $) 8 T ELT)) (-3405 (((-1124 (-228)) $) 9 T ELT)) (-1606 (((-665 (-665 (-971 (-228)))) $) 10 T ELT)) (-2410 (((-885) $) 6 T ELT))) -(((-983) (-141)) (T -983)) -((-1606 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-665 (-665 (-971 (-228))))))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228))))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228)))))) -(-13 (-631 (-885)) (-10 -8 (-15 -1606 ((-665 (-665 (-971 (-228)))) $)) (-15 -3405 ((-1124 (-228)) $)) (-15 -3416 ((-1124 (-228)) $)))) -(((-631 (-885)) . T)) -((-4415 (((-3 (-710 |#1|) "failed") |#2| (-949)) 18 T ELT))) -(((-984 |#1| |#2|) (-10 -7 (-15 -4415 ((-3 (-710 |#1|) "failed") |#2| (-949)))) (-569) (-677 |#1|)) (T -984)) -((-4415 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-949)) (-4 *5 (-569)) (-5 *2 (-710 *5)) (-5 *1 (-984 *5 *3)) (-4 *3 (-677 *5))))) -(-10 -7 (-15 -4415 ((-3 (-710 |#1|) "failed") |#2| (-949)))) -((-2090 (((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|) 16 T ELT)) (-2511 ((|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|) 18 T ELT)) (-3609 (((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)) 13 T ELT))) -(((-985 |#1| |#2|) (-10 -7 (-15 -2090 ((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -3609 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)))) (-1247) (-1247)) (T -985)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-986 *6)) (-5 *1 (-985 *5 *6)))) (-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-985 *5 *2)))) (-2090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-986 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-986 *5)) (-5 *1 (-985 *6 *5))))) -(-10 -7 (-15 -2090 ((-986 |#2|) (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-986 |#1|) |#2|)) (-15 -3609 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) |#1|) 20 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 19 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 17 T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) |#1|) 16 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) 11 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) 21 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) 13 T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) 18 T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 22 T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 15 T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-3224 (((-792) $) 8 (|has| $ (-6 -4499)) ELT))) -(((-986 |#1|) (-19 |#1|) (-1247)) (T -986)) +((-3525 ((|#2| (-666 |#1|) (-666 |#1|)) 28 T ELT))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3525 (|#2| (-666 |#1|) (-666 |#1|)))) (-376) (-1274 |#1|)) (T -951)) +((-3525 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-376)) (-4 *2 (-1274 *4)) (-5 *1 (-951 *4 *2))))) +(-10 -7 (-15 -3525 (|#2| (-666 |#1|) (-666 |#1|)))) +((-3181 (((-1203 |#2|) (-666 |#2|) (-666 |#2|)) 17 T ELT) (((-1271 |#1| |#2|) (-1271 |#1| |#2|) (-666 |#2|) (-666 |#2|)) 13 T ELT))) +(((-952 |#1| |#2|) (-10 -7 (-15 -3181 ((-1271 |#1| |#2|) (-1271 |#1| |#2|) (-666 |#2|) (-666 |#2|))) (-15 -3181 ((-1203 |#2|) (-666 |#2|) (-666 |#2|)))) (-1207) (-376)) (T -952)) +((-3181 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *5)) (-4 *5 (-376)) (-5 *2 (-1203 *5)) (-5 *1 (-952 *4 *5)) (-14 *4 (-1207)))) (-3181 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1271 *4 *5)) (-5 *3 (-666 *5)) (-14 *4 (-1207)) (-4 *5 (-376)) (-5 *1 (-952 *4 *5))))) +(-10 -7 (-15 -3181 ((-1271 |#1| |#2|) (-1271 |#1| |#2|) (-666 |#2|) (-666 |#2|))) (-15 -3181 ((-1203 |#2|) (-666 |#2|) (-666 |#2|)))) +((-3891 (((-578) (-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-1189)) 174 T ELT)) (-3217 ((|#4| |#4|) 193 T ELT)) (-3076 (((-666 (-421 (-981 |#1|))) (-666 (-1207))) 146 T ELT)) (-3005 (((-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))) (-711 |#4|) (-666 (-421 (-981 |#1|))) (-666 (-666 |#4|)) (-793) (-793) (-578)) 88 T ELT)) (-4477 (((-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-666 |#4|)) 69 T ELT)) (-3964 (((-711 |#4|) (-711 |#4|) (-666 |#4|)) 65 T ELT)) (-4078 (((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-1189)) 186 T ELT)) (-2058 (((-578) (-711 |#4|) (-950) (-1189)) 166 T ELT) (((-578) (-711 |#4|) (-666 (-1207)) (-950) (-1189)) 165 T ELT) (((-578) (-711 |#4|) (-666 |#4|) (-950) (-1189)) 164 T ELT) (((-578) (-711 |#4|) (-1189)) 154 T ELT) (((-578) (-711 |#4|) (-666 (-1207)) (-1189)) 153 T ELT) (((-578) (-711 |#4|) (-666 |#4|) (-1189)) 152 T ELT) (((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-950)) 151 T ELT) (((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 (-1207)) (-950)) 150 T ELT) (((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 |#4|) (-950)) 149 T ELT) (((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|)) 148 T ELT) (((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 (-1207))) 147 T ELT) (((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 |#4|)) 143 T ELT)) (-1919 ((|#4| (-981 |#1|)) 80 T ELT)) (-1908 (((-112) (-666 |#4|) (-666 (-666 |#4|))) 190 T ELT)) (-1741 (((-666 (-666 (-578))) (-578) (-578)) 159 T ELT)) (-4203 (((-666 (-666 |#4|)) (-666 (-666 |#4|))) 106 T ELT)) (-2883 (((-793) (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|))))) 100 T ELT)) (-2529 (((-793) (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|))))) 99 T ELT)) (-1549 (((-112) (-666 (-981 |#1|))) 19 T ELT) (((-112) (-666 |#4|)) 15 T ELT)) (-2778 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-666 |#4|)) (|:| |n0| (-666 |#4|))) (-666 |#4|) (-666 |#4|)) 84 T ELT)) (-3093 (((-666 |#4|) |#4|) 57 T ELT)) (-3089 (((-666 (-421 (-981 |#1|))) (-666 |#4|)) 142 T ELT) (((-711 (-421 (-981 |#1|))) (-711 |#4|)) 66 T ELT) (((-421 (-981 |#1|)) |#4|) 139 T ELT)) (-2912 (((-2 (|:| |rgl| (-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))))))) (|:| |rgsz| (-578))) (-711 |#4|) (-666 (-421 (-981 |#1|))) (-793) (-1189) (-578)) 112 T ELT)) (-4021 (((-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|)))) (-711 |#4|) (-793)) 98 T ELT)) (-2982 (((-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578))))) (-711 |#4|) (-793)) 121 T ELT)) (-2962 (((-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-2 (|:| -2547 (-711 (-421 (-981 |#1|)))) (|:| |vec| (-666 (-421 (-981 |#1|)))) (|:| -1875 (-793)) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578))))) 56 T ELT))) +(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 |#4|))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 (-1207)))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 |#4|) (-950))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 (-1207)) (-950))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-950))) (-15 -2058 ((-578) (-711 |#4|) (-666 |#4|) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-666 (-1207)) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-666 |#4|) (-950) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-666 (-1207)) (-950) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-950) (-1189))) (-15 -3891 ((-578) (-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-1189))) (-15 -4078 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-1189))) (-15 -2912 ((-2 (|:| |rgl| (-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))))))) (|:| |rgsz| (-578))) (-711 |#4|) (-666 (-421 (-981 |#1|))) (-793) (-1189) (-578))) (-15 -3089 ((-421 (-981 |#1|)) |#4|)) (-15 -3089 ((-711 (-421 (-981 |#1|))) (-711 |#4|))) (-15 -3089 ((-666 (-421 (-981 |#1|))) (-666 |#4|))) (-15 -3076 ((-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -1919 (|#4| (-981 |#1|))) (-15 -2778 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-666 |#4|)) (|:| |n0| (-666 |#4|))) (-666 |#4|) (-666 |#4|))) (-15 -4021 ((-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|)))) (-711 |#4|) (-793))) (-15 -4477 ((-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-666 |#4|))) (-15 -2962 ((-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-2 (|:| -2547 (-711 (-421 (-981 |#1|)))) (|:| |vec| (-666 (-421 (-981 |#1|)))) (|:| -1875 (-793)) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (-15 -3093 ((-666 |#4|) |#4|)) (-15 -2529 ((-793) (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|)))))) (-15 -2883 ((-793) (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|)))))) (-15 -4203 ((-666 (-666 |#4|)) (-666 (-666 |#4|)))) (-15 -1741 ((-666 (-666 (-578))) (-578) (-578))) (-15 -1908 ((-112) (-666 |#4|) (-666 (-666 |#4|)))) (-15 -2982 ((-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578))))) (-711 |#4|) (-793))) (-15 -3964 ((-711 |#4|) (-711 |#4|) (-666 |#4|))) (-15 -3005 ((-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))) (-711 |#4|) (-666 (-421 (-981 |#1|))) (-666 (-666 |#4|)) (-793) (-793) (-578))) (-15 -3217 (|#4| |#4|)) (-15 -1549 ((-112) (-666 |#4|))) (-15 -1549 ((-112) (-666 (-981 |#1|))))) (-13 (-319) (-149)) (-13 (-871) (-633 (-1207))) (-815) (-978 |#1| |#3| |#2|)) (T -953)) +((-1549 (*1 *2 *3) (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3217 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *2)) (-4 *2 (-978 *3 *5 *4)))) (-3005 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578))))) (-5 *4 (-711 *12)) (-5 *5 (-666 (-421 (-981 *9)))) (-5 *6 (-666 (-666 *12))) (-5 *7 (-793)) (-5 *8 (-578)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-978 *9 *11 *10)) (-4 *10 (-13 (-871) (-633 (-1207)))) (-4 *11 (-815)) (-5 *2 (-2 (|:| |eqzro| (-666 *12)) (|:| |neqzro| (-666 *12)) (|:| |wcond| (-666 (-981 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *9)))) (|:| -3198 (-666 (-1298 (-421 (-981 *9))))))))) (-5 *1 (-953 *9 *10 *11 *12)))) (-3964 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *7)) (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-666 (-2 (|:| |det| *8) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-666 *8))) (-5 *3 (-666 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-112)) (-5 *1 (-953 *5 *6 *7 *8)))) (-1741 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-666 (-666 (-578)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-578)) (-4 *7 (-978 *4 *6 *5)))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-666 (-666 *6))) (-4 *6 (-978 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| *7) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 *7))))) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| *7) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 *7))))) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-666 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-978 *4 *6 *5)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2547 (-711 (-421 (-981 *4)))) (|:| |vec| (-666 (-421 (-981 *4)))) (|:| -1875 (-793)) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) (|:| -3198 (-666 (-1298 (-421 (-981 *4))))))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-4477 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) (|:| -3198 (-666 (-1298 (-421 (-981 *4))))))) (-5 *3 (-666 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-978 *4 *6 *5)) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| *8) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 *8))))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-793)))) (-2778 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-4 *7 (-978 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-666 *7)) (|:| |n0| (-666 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-981 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-978 *4 *6 *5)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-666 (-1207))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-666 (-421 (-981 *4)))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-666 (-421 (-981 *4)))) (-5 *1 (-953 *4 *5 *6 *7)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-711 (-421 (-981 *4)))) (-5 *1 (-953 *4 *5 *6 *7)))) (-3089 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-421 (-981 *4))) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-978 *4 *6 *5)))) (-2912 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-711 *11)) (-5 *4 (-666 (-421 (-981 *8)))) (-5 *5 (-793)) (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-978 *8 *10 *9)) (-4 *9 (-13 (-871) (-633 (-1207)))) (-4 *10 (-815)) (-5 *2 (-2 (|:| |rgl| (-666 (-2 (|:| |eqzro| (-666 *11)) (|:| |neqzro| (-666 *11)) (|:| |wcond| (-666 (-981 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *8)))) (|:| -3198 (-666 (-1298 (-421 (-981 *8)))))))))) (|:| |rgsz| (-578)))) (-5 *1 (-953 *8 *9 *10 *11)) (-5 *7 (-578)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-666 (-2 (|:| |eqzro| (-666 *7)) (|:| |neqzro| (-666 *7)) (|:| |wcond| (-666 (-981 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) (|:| -3198 (-666 (-1298 (-421 (-981 *4)))))))))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) (|:| |wcond| (-666 (-981 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-978 *5 *7 *6)) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2058 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-950)) (-5 *5 (-1189)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-666 (-1207))) (-5 *5 (-950)) (-5 *6 (-1189)) (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *7 *8 *9 *10)))) (-2058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-666 *10)) (-5 *5 (-950)) (-5 *6 (-1189)) (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *7 *8 *9 *10)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-1189)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2058 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-666 (-1207))) (-5 *5 (-1189)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2058 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-666 *9)) (-5 *5 (-1189)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-950)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-666 (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) (|:| |wcond| (-666 (-981 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-2058 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-666 (-1207))) (-5 *5 (-950)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-666 (-2 (|:| |eqzro| (-666 *9)) (|:| |neqzro| (-666 *9)) (|:| |wcond| (-666 (-981 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *6)))) (|:| -3198 (-666 (-1298 (-421 (-981 *6)))))))))) (-5 *1 (-953 *6 *7 *8 *9)))) (-2058 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *5 (-950)) (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-666 (-2 (|:| |eqzro| (-666 *9)) (|:| |neqzro| (-666 *9)) (|:| |wcond| (-666 (-981 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *6)))) (|:| -3198 (-666 (-1298 (-421 (-981 *6)))))))))) (-5 *1 (-953 *6 *7 *8 *9)) (-5 *4 (-666 *9)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-666 (-2 (|:| |eqzro| (-666 *7)) (|:| |neqzro| (-666 *7)) (|:| |wcond| (-666 (-981 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) (|:| -3198 (-666 (-1298 (-421 (-981 *4)))))))))) (-5 *1 (-953 *4 *5 *6 *7)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-666 (-1207))) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-666 (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) (|:| |wcond| (-666 (-981 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-2058 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-666 (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) (|:| |wcond| (-666 (-981 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-666 *8))))) +(-10 -7 (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 |#4|))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 (-1207)))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 |#4|) (-950))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-666 (-1207)) (-950))) (-15 -2058 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-711 |#4|) (-950))) (-15 -2058 ((-578) (-711 |#4|) (-666 |#4|) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-666 (-1207)) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-666 |#4|) (-950) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-666 (-1207)) (-950) (-1189))) (-15 -2058 ((-578) (-711 |#4|) (-950) (-1189))) (-15 -3891 ((-578) (-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-1189))) (-15 -4078 ((-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|))))))))) (-1189))) (-15 -2912 ((-2 (|:| |rgl| (-666 (-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))))))) (|:| |rgsz| (-578))) (-711 |#4|) (-666 (-421 (-981 |#1|))) (-793) (-1189) (-578))) (-15 -3089 ((-421 (-981 |#1|)) |#4|)) (-15 -3089 ((-711 (-421 (-981 |#1|))) (-711 |#4|))) (-15 -3089 ((-666 (-421 (-981 |#1|))) (-666 |#4|))) (-15 -3076 ((-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -1919 (|#4| (-981 |#1|))) (-15 -2778 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-666 |#4|)) (|:| |n0| (-666 |#4|))) (-666 |#4|) (-666 |#4|))) (-15 -4021 ((-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|)))) (-711 |#4|) (-793))) (-15 -4477 ((-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-666 |#4|))) (-15 -2962 ((-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))) (-2 (|:| -2547 (-711 (-421 (-981 |#1|)))) (|:| |vec| (-666 (-421 (-981 |#1|)))) (|:| -1875 (-793)) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (-15 -3093 ((-666 |#4|) |#4|)) (-15 -2529 ((-793) (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|)))))) (-15 -2883 ((-793) (-666 (-2 (|:| -1875 (-793)) (|:| |eqns| (-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))))) (|:| |fgb| (-666 |#4|)))))) (-15 -4203 ((-666 (-666 |#4|)) (-666 (-666 |#4|)))) (-15 -1741 ((-666 (-666 (-578))) (-578) (-578))) (-15 -1908 ((-112) (-666 |#4|) (-666 (-666 |#4|)))) (-15 -2982 ((-666 (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578))))) (-711 |#4|) (-793))) (-15 -3964 ((-711 |#4|) (-711 |#4|) (-666 |#4|))) (-15 -3005 ((-2 (|:| |eqzro| (-666 |#4|)) (|:| |neqzro| (-666 |#4|)) (|:| |wcond| (-666 (-981 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1298 (-421 (-981 |#1|)))) (|:| -3198 (-666 (-1298 (-421 (-981 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578)))) (-711 |#4|) (-666 (-421 (-981 |#1|))) (-666 (-666 |#4|)) (-793) (-793) (-578))) (-15 -3217 (|#4| |#4|)) (-15 -1549 ((-112) (-666 |#4|))) (-15 -1549 ((-112) (-666 (-981 |#1|))))) +((-3989 (((-956) |#1| (-1207)) 17 T ELT) (((-956) |#1| (-1207) (-1125 (-229))) 21 T ELT)) (-4130 (((-956) |#1| |#1| (-1207) (-1125 (-229))) 19 T ELT) (((-956) |#1| (-1207) (-1125 (-229))) 15 T ELT))) +(((-954 |#1|) (-10 -7 (-15 -4130 ((-956) |#1| (-1207) (-1125 (-229)))) (-15 -4130 ((-956) |#1| |#1| (-1207) (-1125 (-229)))) (-15 -3989 ((-956) |#1| (-1207) (-1125 (-229)))) (-15 -3989 ((-956) |#1| (-1207)))) (-633 (-550))) (T -954)) +((-3989 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-956)) (-5 *1 (-954 *3)) (-4 *3 (-633 (-550))))) (-3989 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1125 (-229))) (-5 *2 (-956)) (-5 *1 (-954 *3)) (-4 *3 (-633 (-550))))) (-4130 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1125 (-229))) (-5 *2 (-956)) (-5 *1 (-954 *3)) (-4 *3 (-633 (-550))))) (-4130 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1125 (-229))) (-5 *2 (-956)) (-5 *1 (-954 *3)) (-4 *3 (-633 (-550)))))) +(-10 -7 (-15 -4130 ((-956) |#1| (-1207) (-1125 (-229)))) (-15 -4130 ((-956) |#1| |#1| (-1207) (-1125 (-229)))) (-15 -3989 ((-956) |#1| (-1207) (-1125 (-229)))) (-15 -3989 ((-956) |#1| (-1207)))) +((-2597 (($ $ (-1125 (-229)) (-1125 (-229)) (-1125 (-229))) 121 T ELT)) (-3429 (((-1125 (-229)) $) 64 T ELT)) (-3419 (((-1125 (-229)) $) 63 T ELT)) (-3407 (((-1125 (-229)) $) 62 T ELT)) (-4066 (((-666 (-666 (-229))) $) 69 T ELT)) (-2913 (((-1125 (-229)) $) 65 T ELT)) (-1568 (((-578) (-578)) 57 T ELT)) (-4285 (((-578) (-578)) 52 T ELT)) (-1679 (((-578) (-578)) 55 T ELT)) (-4289 (((-112) (-112)) 59 T ELT)) (-2195 (((-578)) 56 T ELT)) (-3437 (($ $ (-1125 (-229))) 124 T ELT) (($ $) 125 T ELT)) (-1807 (($ (-1 (-972 (-229)) (-229)) (-1125 (-229))) 131 T ELT) (($ (-1 (-972 (-229)) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229))) 132 T ELT)) (-4130 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229))) 134 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229))) 135 T ELT) (($ $ (-1125 (-229))) 127 T ELT)) (-3376 (((-578)) 60 T ELT)) (-2952 (((-578)) 50 T ELT)) (-3610 (((-578)) 53 T ELT)) (-3174 (((-666 (-666 (-972 (-229)))) $) 151 T ELT)) (-1977 (((-112) (-112)) 61 T ELT)) (-2411 (((-886) $) 149 T ELT)) (-2997 (((-112)) 58 T ELT))) +(((-955) (-13 (-1005) (-10 -8 (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)))) (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ $ (-1125 (-229)))) (-15 -2597 ($ $ (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -3437 ($ $ (-1125 (-229)))) (-15 -3437 ($ $)) (-15 -2913 ((-1125 (-229)) $)) (-15 -4066 ((-666 (-666 (-229))) $)) (-15 -2952 ((-578))) (-15 -4285 ((-578) (-578))) (-15 -3610 ((-578))) (-15 -1679 ((-578) (-578))) (-15 -2195 ((-578))) (-15 -1568 ((-578) (-578))) (-15 -2997 ((-112))) (-15 -4289 ((-112) (-112))) (-15 -3376 ((-578))) (-15 -1977 ((-112) (-112)))))) (T -955)) +((-1807 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-955)))) (-1807 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-955)))) (-4130 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-955)))) (-4130 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-955)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) (-2597 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) (-3437 (*1 *1 *1) (-5 *1 (-955))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-666 (-666 (-229)))) (-5 *1 (-955)))) (-2952 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955)))) (-4285 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955)))) (-3610 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955)))) (-2195 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955)))) (-2997 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-4289 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955)))) (-3376 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955)))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) +(-13 (-1005) (-10 -8 (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)))) (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ $ (-1125 (-229)))) (-15 -2597 ($ $ (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -3437 ($ $ (-1125 (-229)))) (-15 -3437 ($ $)) (-15 -2913 ((-1125 (-229)) $)) (-15 -4066 ((-666 (-666 (-229))) $)) (-15 -2952 ((-578))) (-15 -4285 ((-578) (-578))) (-15 -3610 ((-578))) (-15 -1679 ((-578) (-578))) (-15 -2195 ((-578))) (-15 -1568 ((-578) (-578))) (-15 -2997 ((-112))) (-15 -4289 ((-112) (-112))) (-15 -3376 ((-578))) (-15 -1977 ((-112) (-112))))) +((-2597 (($ $ (-1125 (-229))) 122 T ELT) (($ $ (-1125 (-229)) (-1125 (-229))) 123 T ELT)) (-3419 (((-1125 (-229)) $) 73 T ELT)) (-3407 (((-1125 (-229)) $) 72 T ELT)) (-2913 (((-1125 (-229)) $) 74 T ELT)) (-2705 (((-578) (-578)) 66 T ELT)) (-4187 (((-578) (-578)) 61 T ELT)) (-4091 (((-578) (-578)) 64 T ELT)) (-2863 (((-112) (-112)) 68 T ELT)) (-4264 (((-578)) 65 T ELT)) (-3437 (($ $ (-1125 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-1807 (($ (-1 (-972 (-229)) (-229)) (-1125 (-229))) 141 T ELT) (($ (-1 (-972 (-229)) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229))) 142 T ELT)) (-3989 (($ (-1 (-229) (-229)) (-1125 (-229))) 149 T ELT) (($ (-1 (-229) (-229))) 153 T ELT)) (-4130 (($ (-1 (-229) (-229)) (-1125 (-229))) 137 T ELT) (($ (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229))) 138 T ELT) (($ (-666 (-1 (-229) (-229))) (-1125 (-229))) 146 T ELT) (($ (-666 (-1 (-229) (-229))) (-1125 (-229)) (-1125 (-229))) 147 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229))) 139 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229))) 140 T ELT) (($ $ (-1125 (-229))) 128 T ELT)) (-4451 (((-112) $) 69 T ELT)) (-3201 (((-578)) 70 T ELT)) (-4220 (((-578)) 59 T ELT)) (-2391 (((-578)) 62 T ELT)) (-3174 (((-666 (-666 (-972 (-229)))) $) 35 T ELT)) (-1666 (((-112) (-112)) 71 T ELT)) (-2411 (((-886) $) 167 T ELT)) (-2502 (((-112)) 67 T ELT))) +(((-956) (-13 (-984) (-10 -8 (-15 -4130 ($ (-1 (-229) (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ (-666 (-1 (-229) (-229))) (-1125 (-229)))) (-15 -4130 ($ (-666 (-1 (-229) (-229))) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)))) (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -3989 ($ (-1 (-229) (-229)) (-1125 (-229)))) (-15 -3989 ($ (-1 (-229) (-229)))) (-15 -4130 ($ $ (-1125 (-229)))) (-15 -4451 ((-112) $)) (-15 -2597 ($ $ (-1125 (-229)))) (-15 -2597 ($ $ (-1125 (-229)) (-1125 (-229)))) (-15 -3437 ($ $ (-1125 (-229)))) (-15 -3437 ($ $)) (-15 -2913 ((-1125 (-229)) $)) (-15 -4220 ((-578))) (-15 -4187 ((-578) (-578))) (-15 -2391 ((-578))) (-15 -4091 ((-578) (-578))) (-15 -4264 ((-578))) (-15 -2705 ((-578) (-578))) (-15 -2502 ((-112))) (-15 -2863 ((-112) (-112))) (-15 -3201 ((-578))) (-15 -1666 ((-112) (-112)))))) (T -956)) +((-4130 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-4130 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-4130 (*1 *1 *2 *3) (-12 (-5 *2 (-666 (-1 (-229) (-229)))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-4130 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-666 (-1 (-229) (-229)))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-4130 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-4130 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-1807 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-1807 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-3989 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) (-5 *1 (-956)))) (-3989 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-956)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) (-4451 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) (-2597 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) (-3437 (*1 *1 *1) (-5 *1 (-956))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) (-4220 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956)))) (-4187 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956)))) (-2391 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956)))) (-4091 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956)))) (-4264 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956)))) (-2502 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-956)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-956)))) (-3201 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-956))))) +(-13 (-984) (-10 -8 (-15 -4130 ($ (-1 (-229) (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ (-666 (-1 (-229) (-229))) (-1125 (-229)))) (-15 -4130 ($ (-666 (-1 (-229) (-229))) (-1125 (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)))) (-15 -4130 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)))) (-15 -1807 ($ (-1 (-972 (-229)) (-229)) (-1125 (-229)) (-1125 (-229)) (-1125 (-229)))) (-15 -3989 ($ (-1 (-229) (-229)) (-1125 (-229)))) (-15 -3989 ($ (-1 (-229) (-229)))) (-15 -4130 ($ $ (-1125 (-229)))) (-15 -4451 ((-112) $)) (-15 -2597 ($ $ (-1125 (-229)))) (-15 -2597 ($ $ (-1125 (-229)) (-1125 (-229)))) (-15 -3437 ($ $ (-1125 (-229)))) (-15 -3437 ($ $)) (-15 -2913 ((-1125 (-229)) $)) (-15 -4220 ((-578))) (-15 -4187 ((-578) (-578))) (-15 -2391 ((-578))) (-15 -4091 ((-578) (-578))) (-15 -4264 ((-578))) (-15 -2705 ((-578) (-578))) (-15 -2502 ((-112))) (-15 -2863 ((-112) (-112))) (-15 -3201 ((-578))) (-15 -1666 ((-112) (-112))))) +((-1586 (((-666 (-1125 (-229))) (-666 (-666 (-972 (-229))))) 34 T ELT))) +(((-957) (-10 -7 (-15 -1586 ((-666 (-1125 (-229))) (-666 (-666 (-972 (-229)))))))) (T -957)) +((-1586 (*1 *2 *3) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *2 (-666 (-1125 (-229)))) (-5 *1 (-957))))) +(-10 -7 (-15 -1586 ((-666 (-1125 (-229))) (-666 (-666 (-972 (-229))))))) +((-2473 ((|#2| |#2|) 28 T ELT)) (-1620 ((|#2| |#2|) 29 T ELT)) (-1529 ((|#2| |#2|) 27 T ELT)) (-4257 ((|#2| |#2| (-520)) 26 T ELT))) +(((-958 |#1| |#2|) (-10 -7 (-15 -4257 (|#2| |#2| (-520))) (-15 -1529 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -1620 (|#2| |#2|))) (-1131) (-444 |#1|)) (T -958)) +((-1620 (*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-444 *3)))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-444 *3)))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-444 *3)))) (-4257 (*1 *2 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-1131)) (-5 *1 (-958 *4 *2)) (-4 *2 (-444 *4))))) +(-10 -7 (-15 -4257 (|#2| |#2| (-520))) (-15 -1529 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -1620 (|#2| |#2|))) +((-2473 (((-328 (-578)) (-1207)) 16 T ELT)) (-1620 (((-328 (-578)) (-1207)) 14 T ELT)) (-1529 (((-328 (-578)) (-1207)) 12 T ELT)) (-4257 (((-328 (-578)) (-1207) (-520)) 19 T ELT))) +(((-959) (-10 -7 (-15 -4257 ((-328 (-578)) (-1207) (-520))) (-15 -1529 ((-328 (-578)) (-1207))) (-15 -2473 ((-328 (-578)) (-1207))) (-15 -1620 ((-328 (-578)) (-1207))))) (T -959)) +((-1620 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-328 (-578))) (-5 *1 (-959)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-328 (-578))) (-5 *1 (-959)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-328 (-578))) (-5 *1 (-959)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-520)) (-5 *2 (-328 (-578))) (-5 *1 (-959))))) +(-10 -7 (-15 -4257 ((-328 (-578)) (-1207) (-520))) (-15 -1529 ((-328 (-578)) (-1207))) (-15 -2473 ((-328 (-578)) (-1207))) (-15 -1620 ((-328 (-578)) (-1207)))) +((-3386 (((-914 |#1| |#3|) |#2| (-917 |#1|) (-914 |#1| |#3|)) 25 T ELT)) (-1358 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13 T ELT))) +(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -1358 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3386 ((-914 |#1| |#3|) |#2| (-917 |#1|) (-914 |#1| |#3|)))) (-1131) (-911 |#1|) (-13 (-1131) (-1069 |#2|))) (T -960)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *6)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-4 *6 (-13 (-1131) (-1069 *3))) (-4 *3 (-911 *5)) (-5 *1 (-960 *5 *3 *6)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1131) (-1069 *5))) (-4 *5 (-911 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-960 *4 *5 *6))))) +(-10 -7 (-15 -1358 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3386 ((-914 |#1| |#3|) |#2| (-917 |#1|) (-914 |#1| |#3|)))) +((-3386 (((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)) 30 T ELT))) +(((-961 |#1| |#2| |#3|) (-10 -7 (-15 -3386 ((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)))) (-1131) (-13 (-570) (-911 |#1|)) (-13 (-444 |#2|) (-633 (-917 |#1|)) (-911 |#1|) (-1069 (-631 $)))) (T -961)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-13 (-444 *6) (-633 *4) (-911 *5) (-1069 (-631 $)))) (-5 *4 (-917 *5)) (-4 *6 (-13 (-570) (-911 *5))) (-5 *1 (-961 *5 *6 *3))))) +(-10 -7 (-15 -3386 ((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)))) +((-3386 (((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|)) 13 T ELT))) +(((-962 |#1|) (-10 -7 (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|)))) (-559)) (T -962)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 (-578) *3)) (-5 *4 (-917 (-578))) (-4 *3 (-559)) (-5 *1 (-962 *3))))) +(-10 -7 (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|)))) +((-3386 (((-914 |#1| |#2|) (-631 |#2|) (-917 |#1|) (-914 |#1| |#2|)) 57 T ELT))) +(((-963 |#1| |#2|) (-10 -7 (-15 -3386 ((-914 |#1| |#2|) (-631 |#2|) (-917 |#1|) (-914 |#1| |#2|)))) (-1131) (-13 (-1131) (-1069 (-631 $)) (-633 (-917 |#1|)) (-911 |#1|))) (T -963)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *6)) (-5 *3 (-631 *6)) (-4 *5 (-1131)) (-4 *6 (-13 (-1131) (-1069 (-631 $)) (-633 *4) (-911 *5))) (-5 *4 (-917 *5)) (-5 *1 (-963 *5 *6))))) +(-10 -7 (-15 -3386 ((-914 |#1| |#2|) (-631 |#2|) (-917 |#1|) (-914 |#1| |#2|)))) +((-3386 (((-910 |#1| |#2| |#3|) |#3| (-917 |#1|) (-910 |#1| |#2| |#3|)) 17 T ELT))) +(((-964 |#1| |#2| |#3|) (-10 -7 (-15 -3386 ((-910 |#1| |#2| |#3|) |#3| (-917 |#1|) (-910 |#1| |#2| |#3|)))) (-1131) (-911 |#1|) (-688 |#2|)) (T -964)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-910 *5 *6 *3)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-4 *6 (-911 *5)) (-4 *3 (-688 *6)) (-5 *1 (-964 *5 *6 *3))))) +(-10 -7 (-15 -3386 ((-910 |#1| |#2| |#3|) |#3| (-917 |#1|) (-910 |#1| |#2| |#3|)))) +((-3386 (((-914 |#1| |#5|) |#5| (-917 |#1|) (-914 |#1| |#5|)) 17 (|has| |#3| (-911 |#1|)) ELT) (((-914 |#1| |#5|) |#5| (-917 |#1|) (-914 |#1| |#5|) (-1 (-914 |#1| |#5|) |#3| (-917 |#1|) (-914 |#1| |#5|))) 16 T ELT))) +(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3386 ((-914 |#1| |#5|) |#5| (-917 |#1|) (-914 |#1| |#5|) (-1 (-914 |#1| |#5|) |#3| (-917 |#1|) (-914 |#1| |#5|)))) (IF (|has| |#3| (-911 |#1|)) (-15 -3386 ((-914 |#1| |#5|) |#5| (-917 |#1|) (-914 |#1| |#5|))) |%noBranch|)) (-1131) (-815) (-871) (-13 (-1080) (-911 |#1|)) (-13 (-978 |#4| |#2| |#3|) (-633 (-917 |#1|)))) (T -965)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-13 (-978 *8 *6 *7) (-633 *4))) (-5 *4 (-917 *5)) (-4 *7 (-911 *5)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-13 (-1080) (-911 *5))) (-5 *1 (-965 *5 *6 *7 *8 *3)))) (-3386 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-914 *6 *3) *8 (-917 *6) (-914 *6 *3))) (-4 *8 (-871)) (-5 *2 (-914 *6 *3)) (-5 *4 (-917 *6)) (-4 *6 (-1131)) (-4 *3 (-13 (-978 *9 *7 *8) (-633 *4))) (-4 *7 (-815)) (-4 *9 (-13 (-1080) (-911 *6))) (-5 *1 (-965 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3386 ((-914 |#1| |#5|) |#5| (-917 |#1|) (-914 |#1| |#5|) (-1 (-914 |#1| |#5|) |#3| (-917 |#1|) (-914 |#1| |#5|)))) (IF (|has| |#3| (-911 |#1|)) (-15 -3386 ((-914 |#1| |#5|) |#5| (-917 |#1|) (-914 |#1| |#5|))) |%noBranch|)) +((-2367 ((|#2| |#2| (-666 (-1 (-112) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-112) |#3|)) 13 T ELT))) +(((-966 |#1| |#2| |#3|) (-10 -7 (-15 -2367 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2367 (|#2| |#2| (-666 (-1 (-112) |#3|))))) (-1131) (-444 |#1|) (-1248)) (T -966)) +((-2367 (*1 *2 *2 *3) (-12 (-5 *3 (-666 (-1 (-112) *5))) (-4 *5 (-1248)) (-4 *4 (-1131)) (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-444 *4)))) (-2367 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1248)) (-4 *4 (-1131)) (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-444 *4))))) +(-10 -7 (-15 -2367 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2367 (|#2| |#2| (-666 (-1 (-112) |#3|))))) +((-2367 (((-328 (-578)) (-1207) (-666 (-1 (-112) |#1|))) 18 T ELT) (((-328 (-578)) (-1207) (-1 (-112) |#1|)) 15 T ELT))) +(((-967 |#1|) (-10 -7 (-15 -2367 ((-328 (-578)) (-1207) (-1 (-112) |#1|))) (-15 -2367 ((-328 (-578)) (-1207) (-666 (-1 (-112) |#1|))))) (-1248)) (T -967)) +((-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-666 (-1 (-112) *5))) (-4 *5 (-1248)) (-5 *2 (-328 (-578))) (-5 *1 (-967 *5)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1248)) (-5 *2 (-328 (-578))) (-5 *1 (-967 *5))))) +(-10 -7 (-15 -2367 ((-328 (-578)) (-1207) (-1 (-112) |#1|))) (-15 -2367 ((-328 (-578)) (-1207) (-666 (-1 (-112) |#1|))))) +((-3386 (((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)) 25 T ELT))) +(((-968 |#1| |#2| |#3|) (-10 -7 (-15 -3386 ((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)))) (-1131) (-13 (-570) (-911 |#1|) (-633 (-917 |#1|))) (-1023 |#2|)) (T -968)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-1023 *6)) (-4 *6 (-13 (-570) (-911 *5) (-633 *4))) (-5 *4 (-917 *5)) (-5 *1 (-968 *5 *6 *3))))) +(-10 -7 (-15 -3386 ((-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)))) +((-3386 (((-914 |#1| (-1207)) (-1207) (-917 |#1|) (-914 |#1| (-1207))) 18 T ELT))) +(((-969 |#1|) (-10 -7 (-15 -3386 ((-914 |#1| (-1207)) (-1207) (-917 |#1|) (-914 |#1| (-1207))))) (-1131)) (T -969)) +((-3386 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-914 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-5 *1 (-969 *5))))) +(-10 -7 (-15 -3386 ((-914 |#1| (-1207)) (-1207) (-917 |#1|) (-914 |#1| (-1207))))) +((-1663 (((-914 |#1| |#3|) (-666 |#3|) (-666 (-917 |#1|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|))) 34 T ELT)) (-3386 (((-914 |#1| |#3|) (-666 |#3|) (-666 (-917 |#1|)) (-1 |#3| (-666 |#3|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|))) 33 T ELT))) +(((-970 |#1| |#2| |#3|) (-10 -7 (-15 -3386 ((-914 |#1| |#3|) (-666 |#3|) (-666 (-917 |#1|)) (-1 |#3| (-666 |#3|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)))) (-15 -1663 ((-914 |#1| |#3|) (-666 |#3|) (-666 (-917 |#1|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|))))) (-1131) (-1080) (-13 (-1080) (-633 (-917 |#1|)) (-1069 |#2|))) (T -970)) +((-1663 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 (-917 *6))) (-5 *5 (-1 (-914 *6 *8) *8 (-917 *6) (-914 *6 *8))) (-4 *6 (-1131)) (-4 *8 (-13 (-1080) (-633 (-917 *6)) (-1069 *7))) (-5 *2 (-914 *6 *8)) (-4 *7 (-1080)) (-5 *1 (-970 *6 *7 *8)))) (-3386 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-666 (-917 *7))) (-5 *5 (-1 *9 (-666 *9))) (-5 *6 (-1 (-914 *7 *9) *9 (-917 *7) (-914 *7 *9))) (-4 *7 (-1131)) (-4 *9 (-13 (-1080) (-633 (-917 *7)) (-1069 *8))) (-5 *2 (-914 *7 *9)) (-5 *3 (-666 *9)) (-4 *8 (-1080)) (-5 *1 (-970 *7 *8 *9))))) +(-10 -7 (-15 -3386 ((-914 |#1| |#3|) (-666 |#3|) (-666 (-917 |#1|)) (-1 |#3| (-666 |#3|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|)))) (-15 -1663 ((-914 |#1| |#3|) (-666 |#3|) (-666 (-917 |#1|)) (-914 |#1| |#3|) (-1 (-914 |#1| |#3|) |#3| (-917 |#1|) (-914 |#1| |#3|))))) +((-2010 (((-1203 (-421 (-578))) (-578)) 79 T ELT)) (-1588 (((-1203 (-578)) (-578)) 82 T ELT)) (-1616 (((-1203 (-578)) (-578)) 76 T ELT)) (-3085 (((-578) (-1203 (-578))) 72 T ELT)) (-4387 (((-1203 (-421 (-578))) (-578)) 65 T ELT)) (-3735 (((-1203 (-578)) (-578)) 49 T ELT)) (-4092 (((-1203 (-578)) (-578)) 84 T ELT)) (-2747 (((-1203 (-578)) (-578)) 83 T ELT)) (-3957 (((-1203 (-421 (-578))) (-578)) 67 T ELT))) +(((-971) (-10 -7 (-15 -3957 ((-1203 (-421 (-578))) (-578))) (-15 -2747 ((-1203 (-578)) (-578))) (-15 -4092 ((-1203 (-578)) (-578))) (-15 -3735 ((-1203 (-578)) (-578))) (-15 -4387 ((-1203 (-421 (-578))) (-578))) (-15 -3085 ((-578) (-1203 (-578)))) (-15 -1616 ((-1203 (-578)) (-578))) (-15 -1588 ((-1203 (-578)) (-578))) (-15 -2010 ((-1203 (-421 (-578))) (-578))))) (T -971)) +((-2010 (*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-578)))) (-5 *1 (-971)) (-5 *3 (-578)))) (-1588 (*1 *2 *3) (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578)))) (-1616 (*1 *2 *3) (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-1203 (-578))) (-5 *2 (-578)) (-5 *1 (-971)))) (-4387 (*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-578)))) (-5 *1 (-971)) (-5 *3 (-578)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578)))) (-2747 (*1 *2 *3) (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578)))) (-3957 (*1 *2 *3) (-12 (-5 *2 (-1203 (-421 (-578)))) (-5 *1 (-971)) (-5 *3 (-578))))) +(-10 -7 (-15 -3957 ((-1203 (-421 (-578))) (-578))) (-15 -2747 ((-1203 (-578)) (-578))) (-15 -4092 ((-1203 (-578)) (-578))) (-15 -3735 ((-1203 (-578)) (-578))) (-15 -4387 ((-1203 (-421 (-578))) (-578))) (-15 -3085 ((-578) (-1203 (-578)))) (-15 -1616 ((-1203 (-578)) (-578))) (-15 -1588 ((-1203 (-578)) (-578))) (-15 -2010 ((-1203 (-421 (-578))) (-578)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1526 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-4414 (($ (-666 |#1|)) 9 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2360 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1664 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3492 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2704 (($ $ (-666 |#1|)) 25 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) 18 T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1406 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-4425 (((-950) $) 13 T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4431 (($ $ $) 23 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT) (($ (-666 |#1|)) 14 T ELT)) (-2423 (($ (-666 |#1|)) NIL T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2484 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-578) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-3226 (((-793) $) 11 (|has| $ (-6 -4500)) ELT))) +(((-972 |#1|) (-1011 |#1|) (-1080)) (T -972)) +NIL +(-1011 |#1|) +((-2439 (((-495 |#1| |#2|) (-981 |#2|)) 22 T ELT)) (-2402 (((-255 |#1| |#2|) (-981 |#2|)) 35 T ELT)) (-3187 (((-981 |#2|) (-495 |#1| |#2|)) 27 T ELT)) (-4192 (((-255 |#1| |#2|) (-495 |#1| |#2|)) 57 T ELT)) (-2706 (((-981 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-1865 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT))) +(((-973 |#1| |#2|) (-10 -7 (-15 -1865 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -4192 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -2439 ((-495 |#1| |#2|) (-981 |#2|))) (-15 -3187 ((-981 |#2|) (-495 |#1| |#2|))) (-15 -2706 ((-981 |#2|) (-255 |#1| |#2|))) (-15 -2402 ((-255 |#1| |#2|) (-981 |#2|)))) (-666 (-1207)) (-1080)) (T -973)) +((-2402 (*1 *2 *3) (-12 (-5 *3 (-981 *5)) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)) (-14 *4 (-666 (-1207))))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) (-5 *2 (-981 *5)) (-5 *1 (-973 *4 *5)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) (-5 *2 (-981 *5)) (-5 *1 (-973 *4 *5)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-981 *5)) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5)) (-14 *4 (-666 (-1207))))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5))))) +(-10 -7 (-15 -1865 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -4192 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -2439 ((-495 |#1| |#2|) (-981 |#2|))) (-15 -3187 ((-981 |#2|) (-495 |#1| |#2|))) (-15 -2706 ((-981 |#2|) (-255 |#1| |#2|))) (-15 -2402 ((-255 |#1| |#2|) (-981 |#2|)))) +((-3593 (((-666 |#2|) |#2| |#2|) 10 T ELT)) (-3834 (((-793) (-666 |#1|)) 48 (|has| |#1| (-870)) ELT)) (-1726 (((-666 |#2|) |#2|) 11 T ELT)) (-2266 (((-793) (-666 |#1|) (-578) (-578)) 52 (|has| |#1| (-870)) ELT)) (-1704 ((|#1| |#2|) 38 (|has| |#1| (-870)) ELT))) +(((-974 |#1| |#2|) (-10 -7 (-15 -3593 ((-666 |#2|) |#2| |#2|)) (-15 -1726 ((-666 |#2|) |#2|)) (IF (|has| |#1| (-870)) (PROGN (-15 -1704 (|#1| |#2|)) (-15 -3834 ((-793) (-666 |#1|))) (-15 -2266 ((-793) (-666 |#1|) (-578) (-578)))) |%noBranch|)) (-376) (-1274 |#1|)) (T -974)) +((-2266 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-666 *5)) (-5 *4 (-578)) (-4 *5 (-870)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-974 *5 *6)) (-4 *6 (-1274 *5)))) (-3834 (*1 *2 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-870)) (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-974 *4 *5)) (-4 *5 (-1274 *4)))) (-1704 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-870)) (-5 *1 (-974 *2 *3)) (-4 *3 (-1274 *2)))) (-1726 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-666 *3)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1274 *4)))) (-3593 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-666 *3)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -3593 ((-666 |#2|) |#2| |#2|)) (-15 -1726 ((-666 |#2|) |#2|)) (IF (|has| |#1| (-870)) (PROGN (-15 -1704 (|#1| |#2|)) (-15 -3834 ((-793) (-666 |#1|))) (-15 -2266 ((-793) (-666 |#1|) (-578) (-578)))) |%noBranch|)) +((-3611 (((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)) 19 T ELT))) +(((-975 |#1| |#2|) (-10 -7 (-15 -3611 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)))) (-1080) (-1080)) (T -975)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-981 *6)) (-5 *1 (-975 *5 *6))))) +(-10 -7 (-15 -3611 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)))) +((-4420 (((-1271 |#1| (-981 |#2|)) (-981 |#2|) (-1294 |#1|)) 18 T ELT))) +(((-976 |#1| |#2|) (-10 -7 (-15 -4420 ((-1271 |#1| (-981 |#2|)) (-981 |#2|) (-1294 |#1|)))) (-1207) (-1080)) (T -976)) +((-4420 (*1 *2 *3 *4) (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1080)) (-5 *2 (-1271 *5 (-981 *6))) (-5 *1 (-976 *5 *6)) (-5 *3 (-981 *6))))) +(-10 -7 (-15 -4420 ((-1271 |#1| (-981 |#2|)) (-981 |#2|) (-1294 |#1|)))) +((-2707 (((-793) $) 88 T ELT) (((-793) $ (-666 |#4|)) 93 T ELT)) (-1457 (($ $) 203 T ELT)) (-3034 (((-432 $) $) 195 T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 141 T ELT)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) 74 T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) (((-578) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-2035 (($ $ $ |#4|) 95 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) 131 T ELT) (((-711 |#2|) (-711 $)) 121 T ELT)) (-2111 (($ $) 210 T ELT) (($ $ |#4|) 213 T ELT)) (-3123 (((-666 $) $) 77 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 229 T ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 222 T ELT)) (-2613 (((-666 $) $) 34 T ELT)) (-2925 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-666 |#4|) (-666 (-793))) 71 T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |#4|) 192 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 52 T ELT)) (-1968 (((-3 (-666 $) "failed") $) 39 T ELT)) (-1590 (((-3 (-2 (|:| |var| |#4|) (|:| -2764 (-793))) "failed") $) 57 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 134 T ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 147 T ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 145 T ELT)) (-2800 (((-432 $) $) 165 T ELT)) (-3364 (($ $ (-666 (-306 $))) 24 T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-666 |#4|) (-666 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-666 |#4|) (-666 $)) NIL T ELT)) (-3232 (($ $ |#4|) 97 T ELT)) (-3343 (((-917 (-392)) $) 243 T ELT) (((-917 (-578)) $) 236 T ELT) (((-550) $) 251 T ELT)) (-4325 ((|#2| $) NIL T ELT) (($ $ |#4|) 205 T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 184 T ELT)) (-3708 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-793)) 62 T ELT) (($ $ (-666 |#4|) (-666 (-793))) 69 T ELT)) (-2213 (((-3 $ "failed") $) 186 T ELT)) (-2876 (((-112) $ $) 216 T ELT))) +(((-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3428 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -2245 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -2948 ((-3 (-1298 |#1|) "failed") (-711 |#1|))) (-15 -2111 (|#1| |#1| |#4|)) (-15 -4325 (|#1| |#1| |#4|)) (-15 -3232 (|#1| |#1| |#4|)) (-15 -2035 (|#1| |#1| |#1| |#4|)) (-15 -3123 ((-666 |#1|) |#1|)) (-15 -2707 ((-793) |#1| (-666 |#4|))) (-15 -2707 ((-793) |#1|)) (-15 -1590 ((-3 (-2 (|:| |var| |#4|) (|:| -2764 (-793))) "failed") |#1|)) (-15 -3315 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -1968 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -2925 (|#1| |#1| (-666 |#4|) (-666 (-793)))) (-15 -2925 (|#1| |#1| |#4| (-793))) (-15 -3760 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1| |#4|)) (-15 -2613 ((-666 |#1|) |#1|)) (-15 -3708 (|#1| |#1| (-666 |#4|) (-666 (-793)))) (-15 -3708 (|#1| |#1| |#4| (-793))) (-15 -2242 ((-711 |#2|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2818 ((-3 |#4| "failed") |#1|)) (-15 -3516 (|#4| |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#4| |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#4| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -2925 (|#1| |#2| |#3|)) (-15 -3708 (|#2| |#1| |#3|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -2876 ((-112) |#1| |#1|))) (-978 |#2| |#3| |#4|) (-1080) (-815) (-871)) (T -977)) +NIL +(-10 -8 (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -2213 ((-3 |#1| "failed") |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3428 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -2245 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -2948 ((-3 (-1298 |#1|) "failed") (-711 |#1|))) (-15 -2111 (|#1| |#1| |#4|)) (-15 -4325 (|#1| |#1| |#4|)) (-15 -3232 (|#1| |#1| |#4|)) (-15 -2035 (|#1| |#1| |#1| |#4|)) (-15 -3123 ((-666 |#1|) |#1|)) (-15 -2707 ((-793) |#1| (-666 |#4|))) (-15 -2707 ((-793) |#1|)) (-15 -1590 ((-3 (-2 (|:| |var| |#4|) (|:| -2764 (-793))) "failed") |#1|)) (-15 -3315 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -1968 ((-3 (-666 |#1|) "failed") |#1|)) (-15 -2925 (|#1| |#1| (-666 |#4|) (-666 (-793)))) (-15 -2925 (|#1| |#1| |#4| (-793))) (-15 -3760 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1| |#4|)) (-15 -2613 ((-666 |#1|) |#1|)) (-15 -3708 (|#1| |#1| (-666 |#4|) (-666 (-793)))) (-15 -3708 (|#1| |#1| |#4| (-793))) (-15 -2242 ((-711 |#2|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2818 ((-3 |#4| "failed") |#1|)) (-15 -3516 (|#4| |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#4| |#1|)) (-15 -3364 (|#1| |#1| (-666 |#4|) (-666 |#2|))) (-15 -3364 (|#1| |#1| |#4| |#2|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -2925 (|#1| |#2| |#3|)) (-15 -3708 (|#2| |#1| |#3|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -2876 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 |#3|) $) 113 T ELT)) (-4420 (((-1203 $) $ |#3|) 128 T ELT) (((-1203 |#1|) $) 127 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 90 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 91 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 93 (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) 115 T ELT) (((-793) $ (-666 |#3|)) 114 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 103 (|has| |#1| (-938)) ELT)) (-1457 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) 100 (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 106 (|has| |#1| (-938)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-578)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) 166 (|has| |#1| (-1069 (-578))) ELT) (((-3 |#3| "failed") $) 143 T ELT)) (-3516 ((|#1| $) 170 T ELT) (((-421 (-578)) $) 169 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) 167 (|has| |#1| (-1069 (-578))) ELT) ((|#3| $) 144 T ELT)) (-2035 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT)) (-3136 (($ $) 161 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 139 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 138 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2111 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) 112 T ELT)) (-2159 (((-112) $) 99 (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| |#2| $) 179 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 87 (-12 (|has| |#3| (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 86 (-12 (|has| |#3| (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4382 (((-112) $) 35 T ELT)) (-3380 (((-793) $) 176 T ELT)) (-2936 (($ (-1203 |#1|) |#3|) 120 T ELT) (($ (-1203 $) |#3|) 119 T ELT)) (-2613 (((-666 $) $) 129 T ELT)) (-1796 (((-112) $) 159 T ELT)) (-2925 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-666 |#3|) (-666 (-793))) 121 T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |#3|) 123 T ELT)) (-3937 ((|#2| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-666 (-793)) $ (-666 |#3|)) 124 T ELT)) (-2500 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-4006 (((-3 |#3| "failed") $) 126 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 141 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 140 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 135 T ELT) (((-711 |#1|) (-1298 $)) 134 T ELT)) (-3097 (($ $) 156 T ELT)) (-3110 ((|#1| $) 155 T ELT)) (-2389 (($ (-666 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 117 T ELT)) (-1968 (((-3 (-666 $) "failed") $) 118 T ELT)) (-1590 (((-3 (-2 (|:| |var| |#3|) (|:| -2764 (-793))) "failed") $) 116 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3067 (((-112) $) 173 T ELT)) (-3080 ((|#1| $) 174 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 98 (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 105 (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 104 (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) 102 (|has| |#1| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) 152 T ELT) (($ $ (-306 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-666 $) (-666 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-666 |#3|) (-666 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-666 |#3|) (-666 $)) 145 T ELT)) (-3232 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 |#3|) (-666 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-666 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3683 ((|#2| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-666 (-793)) $ (-666 |#3|)) 132 T ELT)) (-3343 (((-917 (-392)) $) 85 (-12 (|has| |#3| (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) 84 (-12 (|has| |#3| (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) 83 (-12 (|has| |#3| (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 107 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ $) 88 (|has| |#1| (-570)) ELT) (($ (-421 (-578))) 81 (-2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ELT)) (-3839 (((-666 |#1|) $) 175 T ELT)) (-3708 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-666 |#3|) (-666 (-793))) 130 T ELT)) (-2213 (((-3 $ "failed") $) 82 (-2230 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 32 T CONST)) (-2364 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 92 (|has| |#1| (-570)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-666 |#3|) (-666 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-666 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 165 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) 164 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-978 |#1| |#2| |#3|) (-142) (-1080) (-815) (-871)) (T -978)) +((-2111 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3683 (*1 *2 *1 *3) (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3683 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 (-793))))) (-3708 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *2 (-871)))) (-3708 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *6)) (-5 *3 (-666 (-793))) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) (-2613 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-978 *3 *4 *5)))) (-4420 (*1 *2 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-1203 *1)) (-4 *1 (-978 *4 *5 *3)))) (-4420 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-1203 *3)))) (-4006 (*1 *2 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3937 (*1 *2 *1 *3) (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3937 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 (-793))))) (-3760 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-978 *4 *5 *3)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *2 (-871)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *6)) (-5 *3 (-666 (-793))) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) (-2936 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *4)) (-4 *4 (-1080)) (-4 *1 (-978 *4 *5 *3)) (-4 *5 (-815)) (-4 *3 (-871)))) (-2936 (*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)))) (-1968 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3315 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-978 *3 *4 *5)))) (-1590 (*1 *2 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| |var| *5) (|:| -2764 (-793)))))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-793)))) (-2707 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *5)))) (-3123 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-978 *3 *4 *5)))) (-2035 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-175)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-175)))) (-4325 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-466)))) (-2111 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-466)))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3034 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-432 *1)) (-4 *1 (-978 *3 *4 *5))))) +(-13 (-927 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-528 |t#3| |t#1|) (-528 |t#3| $) (-1069 |t#3|) (-390 |t#1|) (-10 -8 (-15 -3683 ((-793) $ |t#3|)) (-15 -3683 ((-666 (-793)) $ (-666 |t#3|))) (-15 -3708 ($ $ |t#3| (-793))) (-15 -3708 ($ $ (-666 |t#3|) (-666 (-793)))) (-15 -2613 ((-666 $) $)) (-15 -4420 ((-1203 $) $ |t#3|)) (-15 -4420 ((-1203 |t#1|) $)) (-15 -4006 ((-3 |t#3| "failed") $)) (-15 -3937 ((-793) $ |t#3|)) (-15 -3937 ((-666 (-793)) $ (-666 |t#3|))) (-15 -3760 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |t#3|)) (-15 -2925 ($ $ |t#3| (-793))) (-15 -2925 ($ $ (-666 |t#3|) (-666 (-793)))) (-15 -2936 ($ (-1203 |t#1|) |t#3|)) (-15 -2936 ($ (-1203 $) |t#3|)) (-15 -1968 ((-3 (-666 $) "failed") $)) (-15 -3315 ((-3 (-666 $) "failed") $)) (-15 -1590 ((-3 (-2 (|:| |var| |t#3|) (|:| -2764 (-793))) "failed") $)) (-15 -2707 ((-793) $)) (-15 -2707 ((-793) $ (-666 |t#3|))) (-15 -2949 ((-666 |t#3|) $)) (-15 -3123 ((-666 $) $)) (IF (|has| |t#1| (-633 (-550))) (IF (|has| |t#3| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-917 (-578)))) (IF (|has| |t#3| (-633 (-917 (-578)))) (-6 (-633 (-917 (-578)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-917 (-392)))) (IF (|has| |t#3| (-633 (-917 (-392)))) (-6 (-633 (-917 (-392)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-911 (-578))) (IF (|has| |t#3| (-911 (-578))) (-6 (-911 (-578))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-911 (-392))) (IF (|has| |t#3| (-911 (-392))) (-6 (-911 (-392))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -2035 ($ $ $ |t#3|)) (-15 -3232 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-6 (-466)) (-15 -4325 ($ $ |t#3|)) (-15 -2111 ($ $)) (-15 -2111 ($ $ |t#3|)) (-15 -3034 ((-432 $) $)) (-15 -1457 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4498)) (-6 -4498) |%noBranch|) (IF (|has| |t#1| (-938)) (-6 (-938)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-550)) -12 (|has| |#1| (-633 (-550))) (|has| |#3| (-633 (-550)))) ((-633 (-917 (-392))) -12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#3| (-633 (-917 (-392))))) ((-633 (-917 (-578))) -12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#3| (-633 (-917 (-578))))) ((-302) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-425 |#1|) . T) ((-466) -2230 (|has| |#1| (-938)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-570) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-578)))) ((-670 #1=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ |#3|) . T) ((-927 |#3|) . T) ((-929 |#3|) . T) ((-911 (-392)) -12 (|has| |#1| (-911 (-392))) (|has| |#3| (-911 (-392)))) ((-911 (-578)) -12 (|has| |#1| (-911 (-578))) (|has| |#3| (-911 (-578)))) ((-938) |has| |#1| (-938)) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) |has| |#1| (-938))) +((-2949 (((-666 |#2|) |#5|) 40 T ELT)) (-4420 (((-1203 |#5|) |#5| |#2| (-1203 |#5|)) 23 T ELT) (((-421 (-1203 |#5|)) |#5| |#2|) 16 T ELT)) (-2936 ((|#5| (-421 (-1203 |#5|)) |#2|) 30 T ELT)) (-4006 (((-3 |#2| "failed") |#5|) 71 T ELT)) (-3315 (((-3 (-666 |#5|) "failed") |#5|) 65 T ELT)) (-2929 (((-3 (-2 (|:| |val| |#5|) (|:| -2764 (-578))) "failed") |#5|) 53 T ELT)) (-1968 (((-3 (-666 |#5|) "failed") |#5|) 67 T ELT)) (-1590 (((-3 (-2 (|:| |var| |#2|) (|:| -2764 (-578))) "failed") |#5|) 57 T ELT))) +(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2949 ((-666 |#2|) |#5|)) (-15 -4006 ((-3 |#2| "failed") |#5|)) (-15 -4420 ((-421 (-1203 |#5|)) |#5| |#2|)) (-15 -2936 (|#5| (-421 (-1203 |#5|)) |#2|)) (-15 -4420 ((-1203 |#5|) |#5| |#2| (-1203 |#5|))) (-15 -1968 ((-3 (-666 |#5|) "failed") |#5|)) (-15 -3315 ((-3 (-666 |#5|) "failed") |#5|)) (-15 -1590 ((-3 (-2 (|:| |var| |#2|) (|:| -2764 (-578))) "failed") |#5|)) (-15 -2929 ((-3 (-2 (|:| |val| |#5|) (|:| -2764 (-578))) "failed") |#5|))) (-815) (-871) (-1080) (-978 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -2411 ($ |#4|)) (-15 -2519 (|#4| $)) (-15 -2530 (|#4| $))))) (T -979)) +((-2929 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2764 (-578)))) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))))) (-1590 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2764 (-578)))) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))))) (-3315 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-666 *3)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))))) (-1968 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-666 *3)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))))) (-4420 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))) (-4 *7 (-978 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-5 *1 (-979 *5 *4 *6 *7 *3)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1203 *2))) (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-4 *2 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))) (-5 *1 (-979 *5 *4 *6 *7 *2)) (-4 *7 (-978 *6 *5 *4)))) (-4420 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-421 (-1203 *3))) (-5 *1 (-979 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))))) (-4006 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1080)) (-4 *6 (-978 *5 *4 *2)) (-4 *2 (-871)) (-5 *1 (-979 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *6)) (-15 -2519 (*6 $)) (-15 -2530 (*6 $))))))) (-2949 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-666 *5)) (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $)))))))) +(-10 -7 (-15 -2949 ((-666 |#2|) |#5|)) (-15 -4006 ((-3 |#2| "failed") |#5|)) (-15 -4420 ((-421 (-1203 |#5|)) |#5| |#2|)) (-15 -2936 (|#5| (-421 (-1203 |#5|)) |#2|)) (-15 -4420 ((-1203 |#5|) |#5| |#2| (-1203 |#5|))) (-15 -1968 ((-3 (-666 |#5|) "failed") |#5|)) (-15 -3315 ((-3 (-666 |#5|) "failed") |#5|)) (-15 -1590 ((-3 (-2 (|:| |var| |#2|) (|:| -2764 (-578))) "failed") |#5|)) (-15 -2929 ((-3 (-2 (|:| |val| |#5|) (|:| -2764 (-578))) "failed") |#5|))) +((-3611 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3611 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-815) (-871) (-1080) (-978 |#3| |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -2472 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (T -980)) +((-3611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *6 (-815)) (-4 *2 (-13 (-1131) (-10 -8 (-15 -2472 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (-5 *1 (-980 *6 *7 *8 *5 *2)) (-4 *5 (-978 *8 *6 *7))))) +(-10 -7 (-15 -3611 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1207)) $) 16 T ELT)) (-4420 (((-1203 $) $ (-1207)) 21 T ELT) (((-1203 |#1|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-1207))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 8 T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-1207) "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-1207) $) NIL T ELT)) (-2035 (($ $ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-545 (-1207)) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1207) (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1207) (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2936 (($ (-1203 |#1|) (-1207)) NIL T ELT) (($ (-1203 $) (-1207)) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-1207)) NIL T ELT)) (-3937 (((-545 (-1207)) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT) (((-666 (-793)) $ (-666 (-1207))) NIL T ELT)) (-2500 (($ (-1 (-545 (-1207)) (-545 (-1207))) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4006 (((-3 (-1207) "failed") $) 19 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-1207)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4371 (($ $ (-1207)) 29 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-1207) |#1|) NIL T ELT) (($ $ (-666 (-1207)) (-666 |#1|)) NIL T ELT) (($ $ (-1207) $) NIL T ELT) (($ $ (-666 (-1207)) (-666 $)) NIL T ELT)) (-3232 (($ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3683 (((-545 (-1207)) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT) (((-666 (-793)) $ (-666 (-1207))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-1207) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1207) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-1207) (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) 25 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1207)) 27 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-981 |#1|) (-13 (-978 |#1| (-545 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1207))) |%noBranch|))) (-1080)) (T -981)) +((-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-981 *3)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080))))) +(-13 (-978 |#1| (-545 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1207))) |%noBranch|))) +((-3341 (((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) |#3| (-793)) 49 T ELT)) (-1635 (((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) (-421 (-578)) (-793)) 44 T ELT)) (-1988 (((-2 (|:| -2764 (-793)) (|:| -2672 |#4|) (|:| |radicand| (-666 |#4|))) |#4| (-793)) 65 T ELT)) (-3096 (((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) |#5| (-793)) 74 (|has| |#3| (-466)) ELT))) +(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3341 ((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -1635 ((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) (-421 (-578)) (-793))) (IF (|has| |#3| (-466)) (-15 -3096 ((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -1988 ((-2 (|:| -2764 (-793)) (|:| -2672 |#4|) (|:| |radicand| (-666 |#4|))) |#4| (-793)))) (-815) (-871) (-570) (-978 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -2411 ($ |#4|)) (-15 -2519 (|#4| $)) (-15 -2530 (|#4| $))))) (T -982)) +((-1988 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-570)) (-4 *3 (-978 *7 *5 *6)) (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *3) (|:| |radicand| (-666 *3)))) (-5 *1 (-982 *5 *6 *7 *3 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -2411 ($ *3)) (-15 -2519 (*3 $)) (-15 -2530 (*3 $))))))) (-3096 (*1 *2 *3 *4) (-12 (-4 *7 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-570)) (-4 *8 (-978 *7 *5 *6)) (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *3) (|:| |radicand| *3))) (-5 *1 (-982 *5 *6 *7 *8 *3)) (-5 *4 (-793)) (-4 *3 (-13 (-376) (-10 -8 (-15 -2411 ($ *8)) (-15 -2519 (*8 $)) (-15 -2530 (*8 $))))))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-578))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-570)) (-4 *8 (-978 *7 *5 *6)) (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *9) (|:| |radicand| *9))) (-5 *1 (-982 *5 *6 *7 *8 *9)) (-5 *4 (-793)) (-4 *9 (-13 (-376) (-10 -8 (-15 -2411 ($ *8)) (-15 -2519 (*8 $)) (-15 -2530 (*8 $))))))) (-3341 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-570)) (-4 *7 (-978 *3 *5 *6)) (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *8) (|:| |radicand| *8))) (-5 *1 (-982 *5 *6 *3 *7 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $)))))))) +(-10 -7 (-15 -3341 ((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -1635 ((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) (-421 (-578)) (-793))) (IF (|has| |#3| (-466)) (-15 -3096 ((-2 (|:| -2764 (-793)) (|:| -2672 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -1988 ((-2 (|:| -2764 (-793)) (|:| -2672 |#4|) (|:| |radicand| (-666 |#4|))) |#4| (-793)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4185 (($ (-1151)) 8 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 15 T ELT) (((-1151) $) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 11 T ELT))) +(((-983) (-13 (-1131) (-632 (-1151)) (-10 -8 (-15 -4185 ($ (-1151)))))) (T -983)) +((-4185 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-983))))) +(-13 (-1131) (-632 (-1151)) (-10 -8 (-15 -4185 ($ (-1151))))) +((-3419 (((-1125 (-229)) $) 8 T ELT)) (-3407 (((-1125 (-229)) $) 9 T ELT)) (-3174 (((-666 (-666 (-972 (-229)))) $) 10 T ELT)) (-2411 (((-886) $) 6 T ELT))) +(((-984) (-142)) (T -984)) +((-3174 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-666 (-666 (-972 (-229))))))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1125 (-229))))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1125 (-229)))))) +(-13 (-632 (-886)) (-10 -8 (-15 -3174 ((-666 (-666 (-972 (-229)))) $)) (-15 -3407 ((-1125 (-229)) $)) (-15 -3419 ((-1125 (-229)) $)))) +(((-632 (-886)) . T)) +((-4258 (((-3 (-711 |#1|) "failed") |#2| (-950)) 18 T ELT))) +(((-985 |#1| |#2|) (-10 -7 (-15 -4258 ((-3 (-711 |#1|) "failed") |#2| (-950)))) (-570) (-678 |#1|)) (T -985)) +((-4258 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-950)) (-4 *5 (-570)) (-5 *2 (-711 *5)) (-5 *1 (-985 *5 *3)) (-4 *3 (-678 *5))))) +(-10 -7 (-15 -4258 ((-3 (-711 |#1|) "failed") |#2| (-950)))) +((-4315 (((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|) 16 T ELT)) (-2512 ((|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|) 18 T ELT)) (-3611 (((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|)) 13 T ELT))) +(((-986 |#1| |#2|) (-10 -7 (-15 -4315 ((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -3611 ((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|)))) (-1248) (-1248)) (T -986)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-987 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-987 *6)) (-5 *1 (-986 *5 *6)))) (-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-987 *5)) (-4 *5 (-1248)) (-4 *2 (-1248)) (-5 *1 (-986 *5 *2)))) (-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-987 *6)) (-4 *6 (-1248)) (-4 *5 (-1248)) (-5 *2 (-987 *5)) (-5 *1 (-986 *6 *5))))) +(-10 -7 (-15 -4315 ((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -3611 ((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) |#1|) 20 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 19 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 17 T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) |#1|) 16 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) 11 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) 21 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) 13 T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) 18 T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 22 T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 15 T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-3226 (((-793) $) 8 (|has| $ (-6 -4500)) ELT))) +(((-987 |#1|) (-19 |#1|) (-1248)) (T -987)) NIL (-19 |#1|) -((-3293 (($ $ (-1122 $)) 7 T ELT) (($ $ (-1206)) 6 T ELT))) -(((-987) (-141)) (T -987)) -((-3293 (*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-987)))) (-3293 (*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-1206))))) -(-13 (-10 -8 (-15 -3293 ($ $ (-1206))) (-15 -3293 ($ $ (-1122 $))))) -((-3619 (((-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)) (-1206)) 26 T ELT) (((-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206))) 27 T ELT) (((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 |#1|))) (-980 |#1|) (-1206) (-980 |#1|) (-1206)) 49 T ELT))) -(((-988 |#1|) (-10 -7 (-15 -3619 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 |#1|))) (-980 |#1|) (-1206) (-980 |#1|) (-1206))) (-15 -3619 ((-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -3619 ((-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)) (-1206)))) (-13 (-375) (-148))) (T -988)) -((-3619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-5 *5 (-1206)) (-4 *6 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 *6))) (|:| |prim| (-1202 *6)))) (-5 *1 (-988 *6)))) (-3619 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 *5))) (|:| |prim| (-1202 *5)))) (-5 *1 (-988 *5)))) (-3619 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-980 *5)) (-5 *4 (-1206)) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 *5)))) (-5 *1 (-988 *5))))) -(-10 -7 (-15 -3619 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1202 |#1|))) (-980 |#1|) (-1206) (-980 |#1|) (-1206))) (-15 -3619 ((-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)))) (-15 -3619 ((-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 |#1|))) (|:| |prim| (-1202 |#1|))) (-665 (-980 |#1|)) (-665 (-1206)) (-1206)))) -((-3223 (((-665 |#1|) |#1| |#1|) 47 T ELT)) (-1632 (((-112) |#1|) 44 T ELT)) (-3885 ((|#1| |#1|) 79 T ELT)) (-1955 ((|#1| |#1|) 78 T ELT))) -(((-989 |#1|) (-10 -7 (-15 -1632 ((-112) |#1|)) (-15 -1955 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3223 ((-665 |#1|) |#1| |#1|))) (-558)) (T -989)) -((-3223 (*1 *2 *3 *3) (-12 (-5 *2 (-665 *3)) (-5 *1 (-989 *3)) (-4 *3 (-558)))) (-3885 (*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558)))) (-1955 (*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558)))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-989 *3)) (-4 *3 (-558))))) -(-10 -7 (-15 -1632 ((-112) |#1|)) (-15 -1955 (|#1| |#1|)) (-15 -3885 (|#1| |#1|)) (-15 -3223 ((-665 |#1|) |#1| |#1|))) -((-1775 (((-1302) (-885)) 9 T ELT))) -(((-990) (-10 -7 (-15 -1775 ((-1302) (-885))))) (T -990)) -((-1775 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-990))))) -(-10 -7 (-15 -1775 ((-1302) (-885)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 78 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 79 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 34 T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3134 (($ $) 31 T ELT)) (-4281 (((-3 $ "failed") $) 42 T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4313 (($ $ |#1| |#2| $) 62 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) 17 T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-3569 ((|#2| $) 24 T ELT)) (-4309 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3095 (($ $) 28 T ELT)) (-3109 ((|#1| $) 26 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) 51 T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-2726 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-569))) ELT)) (-3200 (((-3 $ "failed") $ $) 91 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-569)) ELT)) (-2776 ((|#2| $) 22 T ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) 46 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 41 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ |#2|) 37 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 15 T CONST)) (-3668 (($ $ $ (-792)) 74 (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) 84 (|has| |#1| (-569)) ELT)) (-2367 (($) 27 T CONST)) (-2378 (($) 12 T CONST)) (-2383 (((-112) $ $) 83 T ELT)) (-2494 (($ $ |#1|) 92 (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) 69 T ELT) (($ $ (-792)) 67 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 66 T ELT) (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-991 |#1| |#2|) (-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -2726 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) (-1079) (-813)) (T -991)) -((-2726 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-991 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *2 (-813))))) -(-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -2726 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL (-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (-1658 (($ $ $) 65 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) ELT)) (-3262 (((-3 $ "failed") $ $) 52 (-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (-2221 (((-792)) 36 (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-1833 ((|#2| $) 22 T ELT)) (-3260 ((|#1| $) 21 T ELT)) (-2762 (($) NIL (-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) CONST)) (-4281 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT)) (-2060 (($) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-2097 (((-112) $) NIL (-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT)) (-1344 (($ $ $) NIL (-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-4167 (($ $ $) NIL (-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-2634 (($ |#1| |#2|) 20 T ELT)) (-2553 (((-949) $) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 39 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-2085 (($ (-949)) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2744 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-4365 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-2410 (((-885) $) 14 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 42 (-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) CONST)) (-2378 (($) 25 (-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) CONST)) (-2440 (((-112) $ $) NIL (-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-2415 (((-112) $ $) NIL (-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-2383 (((-112) $ $) 19 T ELT)) (-2428 (((-112) $ $) NIL (-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-2403 (((-112) $ $) 69 (-2229 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-870)) (|has| |#2| (-870)))) ELT)) (-2494 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT)) (-2483 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-2471 (($ $ $) 45 (-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (** (($ $ (-577)) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) ELT) (($ $ (-792)) 32 (-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT) (($ $ (-949)) NIL (-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT)) (* (($ (-577) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-792) $) 48 (-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT) (($ (-949) $) NIL (-2229 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT) (($ $ $) 28 (-2229 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-747)) (|has| |#2| (-747)))) ELT))) -(((-992 |#1| |#2|) (-13 (-1130) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-747)) (IF (|has| |#2| (-747)) (-6 (-747)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-814)) (IF (|has| |#2| (-814)) (-6 (-814)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-870)) (IF (|has| |#2| (-870)) (-6 (-870)) |%noBranch|) |%noBranch|) (-15 -2634 ($ |#1| |#2|)) (-15 -3260 (|#1| $)) (-15 -1833 (|#2| $)))) (-1130) (-1130)) (T -992)) -((-2634 (*1 *1 *2 *3) (-12 (-5 *1 (-992 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3260 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-992 *2 *3)) (-4 *3 (-1130)))) (-1833 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-992 *3 *2)) (-4 *3 (-1130))))) -(-13 (-1130) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-747)) (IF (|has| |#2| (-747)) (-6 (-747)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-814)) (IF (|has| |#2| (-814)) (-6 (-814)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-870)) (IF (|has| |#2| (-870)) (-6 (-870)) |%noBranch|) |%noBranch|) (-15 -2634 ($ |#1| |#2|)) (-15 -3260 (|#1| $)) (-15 -1833 (|#2| $)))) -((-4119 (((-1134) $) 12 T ELT)) (-3181 (($ (-519) (-1134)) 14 T ELT)) (-4105 (((-519) $) 9 T ELT)) (-2410 (((-885) $) 24 T ELT))) -(((-993) (-13 (-631 (-885)) (-10 -8 (-15 -4105 ((-519) $)) (-15 -4119 ((-1134) $)) (-15 -3181 ($ (-519) (-1134)))))) (T -993)) -((-4105 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-993)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-993)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-993))))) -(-13 (-631 (-885)) (-10 -8 (-15 -4105 ((-519) $)) (-15 -4119 ((-1134) $)) (-15 -3181 ($ (-519) (-1134))))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-4301 (($) NIL T CONST)) (-2331 (($ $ $) 30 T ELT)) (-2308 (($ $) 24 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3882 (((-712 (-896 $ $)) $) 55 T ELT)) (-3600 (((-712 $) $) 45 T ELT)) (-2289 (((-712 (-896 $ $)) $) 56 T ELT)) (-4179 (((-712 (-896 $ $)) $) 57 T ELT)) (-4048 (((-712 |#1|) $) 36 T ELT)) (-3937 (((-712 (-896 $ $)) $) 54 T ELT)) (-4265 (($ $ $) 31 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2434 (($) NIL T CONST)) (-2211 (($ $ $) 32 T ELT)) (-3545 (($ $ $) 29 T ELT)) (-2917 (($ $ $) 27 T ELT)) (-2410 (((-885) $) 59 T ELT) (($ |#1|) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2319 (($ $ $) 28 T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-994 |#1|) (-13 (-997) (-634 |#1|) (-10 -8 (-15 -4048 ((-712 |#1|) $)) (-15 -3600 ((-712 $) $)) (-15 -3937 ((-712 (-896 $ $)) $)) (-15 -3882 ((-712 (-896 $ $)) $)) (-15 -2289 ((-712 (-896 $ $)) $)) (-15 -4179 ((-712 (-896 $ $)) $)) (-15 -2917 ($ $ $)) (-15 -3545 ($ $ $)))) (-1130)) (T -994)) -((-4048 (*1 *2 *1) (-12 (-5 *2 (-712 *3)) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-712 (-994 *3))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) (-4 *3 (-1130)))) (-2917 (*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130)))) (-3545 (*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130))))) -(-13 (-997) (-634 |#1|) (-10 -8 (-15 -4048 ((-712 |#1|) $)) (-15 -3600 ((-712 $) $)) (-15 -3937 ((-712 (-896 $ $)) $)) (-15 -3882 ((-712 (-896 $ $)) $)) (-15 -2289 ((-712 (-896 $ $)) $)) (-15 -4179 ((-712 (-896 $ $)) $)) (-15 -2917 ($ $ $)) (-15 -3545 ($ $ $)))) -((-1703 (((-994 |#1|) (-994 |#1|)) 46 T ELT)) (-3958 (((-994 |#1|) (-994 |#1|)) 22 T ELT)) (-3435 (((-1132 |#1|) (-994 |#1|)) 41 T ELT))) -(((-995 |#1|) (-13 (-1247) (-10 -7 (-15 -3958 ((-994 |#1|) (-994 |#1|))) (-15 -3435 ((-1132 |#1|) (-994 |#1|))) (-15 -1703 ((-994 |#1|) (-994 |#1|))))) (-1130)) (T -995)) -((-3958 (*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3)))) (-3435 (*1 *2 *3) (-12 (-5 *3 (-994 *4)) (-4 *4 (-1130)) (-5 *2 (-1132 *4)) (-5 *1 (-995 *4)))) (-1703 (*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3))))) -(-13 (-1247) (-10 -7 (-15 -3958 ((-994 |#1|) (-994 |#1|))) (-15 -3435 ((-1132 |#1|) (-994 |#1|))) (-15 -1703 ((-994 |#1|) (-994 |#1|))))) -((-3609 (((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|)) 29 T ELT))) -(((-996 |#1| |#2|) (-13 (-1247) (-10 -7 (-15 -3609 ((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|))))) (-1130) (-1130)) (T -996)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-994 *6)) (-5 *1 (-996 *5 *6))))) -(-13 (-1247) (-10 -7 (-15 -3609 ((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|))))) -((-3211 (((-112) $ $) 19 T ELT)) (-3235 (($ $) 8 T ELT)) (-4301 (($) 17 T CONST)) (-2331 (($ $ $) 9 T ELT)) (-2308 (($ $) 11 T ELT)) (-3384 (((-1188) $) 23 T ELT)) (-4265 (($ $ $) 15 T ELT)) (-4312 (((-1150) $) 22 T ELT)) (-2434 (($) 16 T CONST)) (-2211 (($ $ $) 14 T ELT)) (-2410 (((-885) $) 21 T ELT)) (-2525 (((-112) $ $) 20 T ELT)) (-2319 (($ $ $) 10 T ELT)) (-3285 (($ $ $) 6 T ELT)) (-2383 (((-112) $ $) 18 T ELT)) (-3272 (($ $ $) 7 T ELT))) -(((-997) (-141)) (T -997)) -((-4301 (*1 *1) (-4 *1 (-997))) (-2434 (*1 *1) (-4 *1 (-997))) (-4265 (*1 *1 *1 *1) (-4 *1 (-997))) (-2211 (*1 *1 *1 *1) (-4 *1 (-997)))) -(-13 (-113) (-1130) (-10 -8 (-15 -4301 ($) -1528) (-15 -2434 ($) -1528) (-15 -4265 ($ $ $)) (-15 -2211 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-631 (-885)) . T) ((-682) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2762 (($) 7 T CONST)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-2044 (($ $ $) 44 T ELT)) (-2223 (($ $ $) 45 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-4167 ((|#1| $) 46 T ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-998 |#1|) (-141) (-870)) (T -998)) -((-4167 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) (-2223 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) (-2044 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4499) (-15 -4167 (|t#1| $)) (-15 -2223 ($ $ $)) (-15 -2044 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-2701 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2420 |#2|)) |#2| |#2|) 105 T ELT)) (-2907 ((|#2| |#2| |#2|) 103 T ELT)) (-1590 (((-2 (|:| |coef2| |#2|) (|:| -2420 |#2|)) |#2| |#2|) 107 T ELT)) (-2444 (((-2 (|:| |coef1| |#2|) (|:| -2420 |#2|)) |#2| |#2|) 109 T ELT)) (-2556 (((-2 (|:| |coef2| |#2|) (|:| -2635 |#1|)) |#2| |#2|) 131 (|has| |#1| (-465)) ELT)) (-2691 (((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|) 56 T ELT)) (-3247 (((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|) 80 T ELT)) (-3116 (((-2 (|:| |coef1| |#2|) (|:| -3760 |#1|)) |#2| |#2|) 82 T ELT)) (-4206 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-1422 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 89 T ELT)) (-2820 (((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2|) 121 T ELT)) (-3999 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 92 T ELT)) (-2886 (((-665 (-792)) |#2| |#2|) 102 T ELT)) (-3686 ((|#1| |#2| |#2|) 50 T ELT)) (-1682 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2635 |#1|)) |#2| |#2|) 129 (|has| |#1| (-465)) ELT)) (-2635 ((|#1| |#2| |#2|) 127 (|has| |#1| (-465)) ELT)) (-3996 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|) 54 T ELT)) (-4099 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|) 79 T ELT)) (-3760 ((|#1| |#2| |#2|) 76 T ELT)) (-3536 (((-2 (|:| -2671 |#1|) (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2|) 41 T ELT)) (-2325 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2134 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-2212 ((|#2| |#2| |#2|) 93 T ELT)) (-1731 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 87 T ELT)) (-3312 ((|#2| |#2| |#2| (-792)) 85 T ELT)) (-2420 ((|#2| |#2| |#2|) 135 (|has| |#1| (-465)) ELT)) (-3200 (((-1297 |#2|) (-1297 |#2|) |#1|) 22 T ELT)) (-4384 (((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2|) 46 T ELT)) (-3366 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2|) 119 T ELT)) (-1611 ((|#1| |#2|) 116 T ELT)) (-1614 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792)) 91 T ELT)) (-4005 ((|#2| |#2| |#2| (-792)) 90 T ELT)) (-4274 (((-665 |#2|) |#2| |#2|) 99 T ELT)) (-2217 ((|#2| |#2| |#1| |#1| (-792)) 62 T ELT)) (-1696 ((|#1| |#1| |#1| (-792)) 61 T ELT)) (* (((-1297 |#2|) |#1| (-1297 |#2|)) 17 T ELT))) -(((-999 |#1| |#2|) (-10 -7 (-15 -3760 (|#1| |#2| |#2|)) (-15 -4099 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -3247 ((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -3116 ((-2 (|:| |coef1| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -3312 (|#2| |#2| |#2| (-792))) (-15 -1731 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -1422 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -4005 (|#2| |#2| |#2| (-792))) (-15 -1614 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -3999 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -2212 (|#2| |#2| |#2|)) (-15 -2134 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4206 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2907 (|#2| |#2| |#2|)) (-15 -2701 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2420 |#2|)) |#2| |#2|)) (-15 -1590 ((-2 (|:| |coef2| |#2|) (|:| -2420 |#2|)) |#2| |#2|)) (-15 -2444 ((-2 (|:| |coef1| |#2|) (|:| -2420 |#2|)) |#2| |#2|)) (-15 -1611 (|#1| |#2|)) (-15 -3366 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2|)) (-15 -2820 ((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2|)) (-15 -4274 ((-665 |#2|) |#2| |#2|)) (-15 -2886 ((-665 (-792)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -2635 (|#1| |#2| |#2|)) (-15 -1682 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2635 |#1|)) |#2| |#2|)) (-15 -2556 ((-2 (|:| |coef2| |#2|) (|:| -2635 |#1|)) |#2| |#2|)) (-15 -2420 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -3200 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -3536 ((-2 (|:| -2671 |#1|) (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2|)) (-15 -4384 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-792))) (-15 -2217 (|#2| |#2| |#1| |#1| (-792))) (-15 -2325 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3686 (|#1| |#2| |#2|)) (-15 -3996 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -2691 ((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|))) (-569) (-1273 |#1|)) (T -999)) -((-2691 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3996 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3686 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-2325 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-2217 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-1696 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *2 (-569)) (-5 *1 (-999 *2 *4)) (-4 *4 (-1273 *2)))) (-4384 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3536 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2671 *4) (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3200 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) (-5 *1 (-999 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) (-5 *1 (-999 *3 *4)))) (-2420 (*1 *2 *2 *2) (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-2556 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2635 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1682 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2635 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2635 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-792))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4274 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2820 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1611 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3366 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1611 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1611 (*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) (-2444 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2420 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-1590 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2420 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2701 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2420 *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2907 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-4206 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2134 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-2212 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) (-3999 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-1614 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-4005 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4)))) (-1422 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-1731 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5)))) (-3312 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) (-4 *2 (-1273 *4)))) (-3116 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3760 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3247 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-4099 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) (-3760 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2))))) -(-10 -7 (-15 -3760 (|#1| |#2| |#2|)) (-15 -4099 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -3247 ((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -3116 ((-2 (|:| |coef1| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -3312 (|#2| |#2| |#2| (-792))) (-15 -1731 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -1422 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -4005 (|#2| |#2| |#2| (-792))) (-15 -1614 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -3999 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-792))) (-15 -2212 (|#2| |#2| |#2|)) (-15 -2134 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4206 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2907 (|#2| |#2| |#2|)) (-15 -2701 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2420 |#2|)) |#2| |#2|)) (-15 -1590 ((-2 (|:| |coef2| |#2|) (|:| -2420 |#2|)) |#2| |#2|)) (-15 -2444 ((-2 (|:| |coef1| |#2|) (|:| -2420 |#2|)) |#2| |#2|)) (-15 -1611 (|#1| |#2|)) (-15 -3366 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2|)) (-15 -2820 ((-2 (|:| |coef2| |#2|) (|:| -1611 |#1|)) |#2|)) (-15 -4274 ((-665 |#2|) |#2| |#2|)) (-15 -2886 ((-665 (-792)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -2635 (|#1| |#2| |#2|)) (-15 -1682 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2635 |#1|)) |#2| |#2|)) (-15 -2556 ((-2 (|:| |coef2| |#2|) (|:| -2635 |#1|)) |#2| |#2|)) (-15 -2420 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -3200 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -3536 ((-2 (|:| -2671 |#1|) (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2|)) (-15 -4384 ((-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) |#2| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-792))) (-15 -2217 (|#2| |#2| |#1| |#1| (-792))) (-15 -2325 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3686 (|#1| |#2| |#2|)) (-15 -3996 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|)) (-15 -2691 ((-2 (|:| |coef2| |#2|) (|:| -3760 |#1|)) |#2| |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1892 (((-1246) $) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2076 (((-1165) $) 10 T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1000) (-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -1892 ((-1246) $))))) (T -1000)) -((-2076 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1000)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1000))))) -(-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -1892 ((-1246) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 40 T ELT)) (-3262 (((-3 $ "failed") $ $) 54 T ELT)) (-2762 (($) NIL T CONST)) (-1964 (((-665 (-896 (-949) (-949))) $) 67 T ELT)) (-2520 (((-949) $) 94 T ELT)) (-2728 (((-665 (-949)) $) 17 T ELT)) (-2660 (((-1187 $) (-792)) 39 T ELT)) (-2061 (($ (-665 (-949))) 16 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2744 (($ $) 70 T ELT)) (-2410 (((-885) $) 90 T ELT) (((-665 (-949)) $) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 8 T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 44 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 42 T ELT)) (-2471 (($ $ $) 46 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 49 T ELT)) (-3224 (((-792) $) 22 T ELT))) -(((-1001) (-13 (-816) (-631 (-665 (-949))) (-10 -8 (-15 -2061 ($ (-665 (-949)))) (-15 -2728 ((-665 (-949)) $)) (-15 -3224 ((-792) $)) (-15 -2660 ((-1187 $) (-792))) (-15 -1964 ((-665 (-896 (-949) (-949))) $)) (-15 -2520 ((-949) $)) (-15 -2744 ($ $))))) (T -1001)) -((-2061 (*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1001)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1187 (-1001))) (-5 *1 (-1001)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-949) (-949)))) (-5 *1 (-1001)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-1001)))) (-2744 (*1 *1 *1) (-5 *1 (-1001)))) -(-13 (-816) (-631 (-665 (-949))) (-10 -8 (-15 -2061 ($ (-665 (-949)))) (-15 -2728 ((-665 (-949)) $)) (-15 -3224 ((-792) $)) (-15 -2660 ((-1187 $) (-792))) (-15 -1964 ((-665 (-896 (-949) (-949))) $)) (-15 -2520 ((-949) $)) (-15 -2744 ($ $)))) -((-2494 (($ $ |#2|) 31 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-420 (-577)) $) 27 T ELT) (($ $ (-420 (-577))) 29 T ELT))) -(((-1002 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2494 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) (-1003 |#2| |#3| |#4|) (-1079) (-813) (-870)) (T -1002)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2494 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 * (|#1| (-949) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 |#3|) $) 86 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2741 (((-112) $) 85 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT) (($ $ |#3| |#2|) 88 T ELT) (($ $ (-665 |#3|) (-665 |#2|)) 87 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2776 ((|#2| $) 76 T ELT)) (-1470 (($ $) 84 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-2778 ((|#1| $ |#2|) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1003 |#1| |#2| |#3|) (-141) (-1079) (-813) (-870)) (T -1003)) -((-3109 (*1 *2 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *3 (-813)) (-4 *4 (-870)) (-4 *2 (-1079)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *4 (-870)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *2 *4)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *2 (-813)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-1003 *4 *3 *2)) (-4 *4 (-1079)) (-4 *3 (-813)) (-4 *2 (-870)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 *5)) (-4 *1 (-1003 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-813)) (-4 *6 (-870)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) (-4 *5 (-870)) (-5 *2 (-665 *5)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) (-4 *5 (-870)) (-5 *2 (-112)))) (-1470 (*1 *1 *1) (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) (-4 *4 (-870))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2925 ($ $ |t#3| |t#2|)) (-15 -2925 ($ $ (-665 |t#3|) (-665 |t#2|))) (-15 -3095 ($ $)) (-15 -3109 (|t#1| $)) (-15 -2776 (|t#2| $)) (-15 -2948 ((-665 |t#3|) $)) (-15 -2741 ((-112) $)) (-15 -1470 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3426 (((-1124 (-228)) $) 8 T ELT)) (-3416 (((-1124 (-228)) $) 9 T ELT)) (-3405 (((-1124 (-228)) $) 10 T ELT)) (-1606 (((-665 (-665 (-971 (-228)))) $) 11 T ELT)) (-2410 (((-885) $) 6 T ELT))) -(((-1004) (-141)) (T -1004)) -((-1606 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-665 (-665 (-971 (-228))))))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228))))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228))))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) -(-13 (-631 (-885)) (-10 -8 (-15 -1606 ((-665 (-665 (-971 (-228)))) $)) (-15 -3405 ((-1124 (-228)) $)) (-15 -3416 ((-1124 (-228)) $)) (-15 -3426 ((-1124 (-228)) $)))) -(((-631 (-885)) . T)) -((-2948 (((-665 |#4|) $) 23 T ELT)) (-3294 (((-112) $) 55 T ELT)) (-1567 (((-112) $) 54 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-1760 (((-112) $) 56 T ELT)) (-3408 (((-112) $ $) 62 T ELT)) (-2307 (((-112) $ $) 65 T ELT)) (-4394 (((-112) $) 60 T ELT)) (-2450 (((-665 |#5|) (-665 |#5|) $) 98 T ELT)) (-4091 (((-665 |#5|) (-665 |#5|) $) 95 T ELT)) (-4369 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2850 (((-665 |#4|) $) 27 T ELT)) (-2746 (((-112) |#4| $) 34 T ELT)) (-4363 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-1799 (($ $ |#4|) 39 T ELT)) (-3139 (($ $ |#4|) 38 T ELT)) (-1600 (($ $ |#4|) 40 T ELT)) (-2383 (((-112) $ $) 46 T ELT))) -(((-1005 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1567 ((-112) |#1|)) (-15 -2450 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -4091 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -4369 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4363 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1760 ((-112) |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -3408 ((-112) |#1| |#1|)) (-15 -4394 ((-112) |#1|)) (-15 -3294 ((-112) |#1|)) (-15 -2040 ((-2 (|:| |under| |#1|) (|:| -2136 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1799 (|#1| |#1| |#4|)) (-15 -1600 (|#1| |#1| |#4|)) (-15 -3139 (|#1| |#1| |#4|)) (-15 -2746 ((-112) |#4| |#1|)) (-15 -2850 ((-665 |#4|) |#1|)) (-15 -2948 ((-665 |#4|) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-1006 |#2| |#3| |#4| |#5|) (-1079) (-814) (-870) (-1095 |#2| |#3| |#4|)) (T -1005)) -NIL -(-10 -8 (-15 -1567 ((-112) |#1|)) (-15 -2450 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -4091 ((-665 |#5|) (-665 |#5|) |#1|)) (-15 -4369 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4363 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1760 ((-112) |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -3408 ((-112) |#1| |#1|)) (-15 -4394 ((-112) |#1|)) (-15 -3294 ((-112) |#1|)) (-15 -2040 ((-2 (|:| |under| |#1|) (|:| -2136 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1799 (|#1| |#1| |#4|)) (-15 -1600 (|#1| |#1| |#4|)) (-15 -3139 (|#1| |#1| |#4|)) (-15 -2746 ((-112) |#4| |#1|)) (-15 -2850 ((-665 |#4|) |#1|)) (-15 -2948 ((-665 |#4|) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-2948 (((-665 |#3|) $) 34 T ELT)) (-3294 (((-112) $) 27 T ELT)) (-1567 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-2641 (((-112) $ (-792)) 45 T ELT)) (-4232 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 46 T CONST)) (-1760 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3514 (($ (-665 |#4|)) 36 T ELT)) (-3860 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-1669 ((|#3| $) 35 T ELT)) (-1967 (((-112) $ (-792)) 44 T ELT)) (-4138 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2850 (((-665 |#3|) $) 33 T ELT)) (-2746 (((-112) |#3| $) 32 T ELT)) (-3417 (((-112) $ (-792)) 43 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) 39 T ELT)) (-2392 (((-112) $) 42 T ELT)) (-3414 (($) 41 T ELT)) (-4323 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 40 T ELT)) (-3341 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 61 T ELT)) (-1799 (($ $ |#3|) 29 T ELT)) (-3139 (($ $ |#3|) 31 T ELT)) (-1600 (($ $ |#3|) 30 T ELT)) (-2410 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) -(((-1006 |#1| |#2| |#3| |#4|) (-141) (-1079) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1006)) -((-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) (-1669 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-1095 *3 *4 *2)) (-4 *2 (-870)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) (-2746 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *3 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112)))) (-3139 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-1600 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-1799 (*1 *1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2)))) (-2040 (*1 *2 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2136 *1) (|:| |upper| *1))) (-4 *1 (-1006 *4 *5 *3 *6)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-4394 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-3408 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2307 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-4363 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4369 (*1 *2 *3 *1) (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4091 (*1 *2 *2 *1) (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)))) (-2450 (*1 *2 *2 *1) (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)))) (-1567 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112))))) -(-13 (-1130) (-152 |t#4|) (-631 (-665 |t#4|)) (-10 -8 (-6 -4499) (-15 -2817 ((-3 $ "failed") (-665 |t#4|))) (-15 -3514 ($ (-665 |t#4|))) (-15 -1669 (|t#3| $)) (-15 -2948 ((-665 |t#3|) $)) (-15 -2850 ((-665 |t#3|) $)) (-15 -2746 ((-112) |t#3| $)) (-15 -3139 ($ $ |t#3|)) (-15 -1600 ($ $ |t#3|)) (-15 -1799 ($ $ |t#3|)) (-15 -2040 ((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |t#3|)) (-15 -3294 ((-112) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -4394 ((-112) $)) (-15 -3408 ((-112) $ $)) (-15 -2307 ((-112) $ $)) (-15 -1760 ((-112) $)) (-15 -4363 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4369 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4091 ((-665 |t#4|) (-665 |t#4|) $)) (-15 -2450 ((-665 |t#4|) (-665 |t#4|) $)) (-15 -1567 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1130) . T) ((-1247) . T)) -((-2768 (((-665 |#4|) |#4| |#4|) 136 T ELT)) (-2818 (((-665 |#4|) (-665 |#4|) (-112)) 125 (|has| |#1| (-465)) ELT) (((-665 |#4|) (-665 |#4|)) 126 (|has| |#1| (-465)) ELT)) (-1638 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 44 T ELT)) (-3019 (((-112) |#4|) 43 T ELT)) (-4356 (((-665 |#4|) |#4|) 121 (|has| |#1| (-465)) ELT)) (-4269 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-1 (-112) |#4|) (-665 |#4|)) 24 T ELT)) (-3193 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|)) 30 T ELT)) (-3994 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|)) 31 T ELT)) (-4340 (((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|)) 90 T ELT)) (-4006 (((-665 |#4|) (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-1920 (((-665 |#4|) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-2541 (((-665 |#4|) (-665 |#4|)) 128 T ELT)) (-4395 (((-665 |#4|) (-665 |#4|) (-665 |#4|) (-112)) 59 T ELT) (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 61 T ELT)) (-4023 ((|#4| |#4| (-665 |#4|)) 60 T ELT)) (-2396 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 132 (|has| |#1| (-465)) ELT)) (-2970 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 135 (|has| |#1| (-465)) ELT)) (-3510 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 134 (|has| |#1| (-465)) ELT)) (-3494 (((-665 |#4|) (-665 |#4|) (-665 |#4|) (-1 (-665 |#4|) (-665 |#4|))) 105 T ELT) (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 107 T ELT) (((-665 |#4|) (-665 |#4|) |#4|) 140 T ELT) (((-665 |#4|) |#4| |#4|) 137 T ELT) (((-665 |#4|) (-665 |#4|)) 106 T ELT)) (-1769 (((-665 |#4|) (-665 |#4|) (-665 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-2118 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 52 T ELT)) (-2185 (((-112) (-665 |#4|)) 79 T ELT)) (-2684 (((-112) (-665 |#4|) (-665 (-665 |#4|))) 67 T ELT)) (-1595 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 37 T ELT)) (-1815 (((-112) |#4|) 36 T ELT)) (-2693 (((-665 |#4|) (-665 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-4018 (((-665 |#4|) (-665 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-4434 (((-665 |#4|) (-665 |#4|)) 83 T ELT)) (-3835 (((-665 |#4|) (-665 |#4|)) 97 T ELT)) (-2352 (((-112) (-665 |#4|) (-665 |#4|)) 65 T ELT)) (-2035 (((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|)) 50 T ELT)) (-1811 (((-112) |#4|) 45 T ELT))) -(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 ((-665 |#4|) (-665 |#4|))) (-15 -3494 ((-665 |#4|) |#4| |#4|)) (-15 -2541 ((-665 |#4|) (-665 |#4|))) (-15 -2768 ((-665 |#4|) |#4| |#4|)) (-15 -3494 ((-665 |#4|) (-665 |#4|) |#4|)) (-15 -3494 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -3494 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-1 (-665 |#4|) (-665 |#4|)))) (-15 -2352 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2684 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -2185 ((-112) (-665 |#4|))) (-15 -4269 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-1 (-112) |#4|) (-665 |#4|))) (-15 -3193 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -3994 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -2118 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -3019 ((-112) |#4|)) (-15 -1638 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -1815 ((-112) |#4|)) (-15 -1595 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -1811 ((-112) |#4|)) (-15 -2035 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -4395 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -4395 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-112))) (-15 -4023 (|#4| |#4| (-665 |#4|))) (-15 -4434 ((-665 |#4|) (-665 |#4|))) (-15 -4340 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|))) (-15 -3835 ((-665 |#4|) (-665 |#4|))) (-15 -4006 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1920 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -4356 ((-665 |#4|) |#4|)) (-15 -2818 ((-665 |#4|) (-665 |#4|))) (-15 -2818 ((-665 |#4|) (-665 |#4|) (-112))) (-15 -2396 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -3510 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2970 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -4018 ((-665 |#4|) (-665 |#4|))) (-15 -2693 ((-665 |#4|) (-665 |#4|))) (-15 -1769 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) |%noBranch|)) (-569) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1007)) -((-1769 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2693 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2970 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3510 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2818 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-2818 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-4356 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-1920 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1007 *5 *6 *7 *8)))) (-4006 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-665 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *1 (-1007 *6 *7 *8 *9)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-4340 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -2852 (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-4434 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-4023 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *2)))) (-4395 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-4395 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-2118 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) (-3994 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) (-4269 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8)))) (-2352 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3494 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-665 *7) (-665 *7))) (-5 *2 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7)))) (-3494 (*1 *2 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3494 (*1 *2 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *3)))) (-2768 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) (-3494 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) -(-10 -7 (-15 -3494 ((-665 |#4|) (-665 |#4|))) (-15 -3494 ((-665 |#4|) |#4| |#4|)) (-15 -2541 ((-665 |#4|) (-665 |#4|))) (-15 -2768 ((-665 |#4|) |#4| |#4|)) (-15 -3494 ((-665 |#4|) (-665 |#4|) |#4|)) (-15 -3494 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -3494 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-1 (-665 |#4|) (-665 |#4|)))) (-15 -2352 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2684 ((-112) (-665 |#4|) (-665 (-665 |#4|)))) (-15 -2185 ((-112) (-665 |#4|))) (-15 -4269 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-1 (-112) |#4|) (-665 |#4|))) (-15 -3193 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -3994 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 (-1 (-112) |#4|)) (-665 |#4|))) (-15 -2118 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -3019 ((-112) |#4|)) (-15 -1638 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -1815 ((-112) |#4|)) (-15 -1595 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -1811 ((-112) |#4|)) (-15 -2035 ((-2 (|:| |goodPols| (-665 |#4|)) (|:| |badPols| (-665 |#4|))) (-665 |#4|))) (-15 -4395 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -4395 ((-665 |#4|) (-665 |#4|) (-665 |#4|) (-112))) (-15 -4023 (|#4| |#4| (-665 |#4|))) (-15 -4434 ((-665 |#4|) (-665 |#4|))) (-15 -4340 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|))) (-15 -3835 ((-665 |#4|) (-665 |#4|))) (-15 -4006 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1920 ((-665 |#4|) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -4356 ((-665 |#4|) |#4|)) (-15 -2818 ((-665 |#4|) (-665 |#4|))) (-15 -2818 ((-665 |#4|) (-665 |#4|) (-112))) (-15 -2396 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -3510 ((-665 |#4|) (-665 |#4|) (-665 |#4|))) (-15 -2970 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -4018 ((-665 |#4|) (-665 |#4|))) (-15 -2693 ((-665 |#4|) (-665 |#4|))) (-15 -1769 ((-665 |#4|) (-665 |#4|) (-665 |#4|)))) |%noBranch|) |%noBranch|)) -((-1615 (((-2 (|:| R (-710 |#1|)) (|:| A (-710 |#1|)) (|:| |Ainv| (-710 |#1|))) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2002 (((-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)) 46 T ELT)) (-2245 (((-710 |#1|) (-710 |#1|) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-1008 |#1|) (-10 -7 (-15 -1615 ((-2 (|:| R (-710 |#1|)) (|:| A (-710 |#1|)) (|:| |Ainv| (-710 |#1|))) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2245 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2002 ((-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)))) (-375)) (T -1008)) -((-2002 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-665 (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5))))) (-5 *1 (-1008 *5)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)))) (-2245 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-710 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-1008 *5)))) (-1615 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) (-5 *2 (-2 (|:| R (-710 *6)) (|:| A (-710 *6)) (|:| |Ainv| (-710 *6)))) (-5 *1 (-1008 *6)) (-5 *3 (-710 *6))))) -(-10 -7 (-15 -1615 ((-2 (|:| R (-710 |#1|)) (|:| A (-710 |#1|)) (|:| |Ainv| (-710 |#1|))) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2245 ((-710 |#1|) (-710 |#1|) (-710 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2002 ((-665 (-2 (|:| C (-710 |#1|)) (|:| |g| (-1297 |#1|)))) (-710 |#1|) (-1297 |#1|)))) -((-4240 (((-431 |#4|) |#4|) 56 T ELT))) -(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4240 ((-431 |#4|) |#4|))) (-870) (-814) (-465) (-977 |#3| |#2| |#1|)) (T -1009)) -((-4240 (*1 *2 *3) (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-465)) (-5 *2 (-431 *3)) (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) -(-10 -7 (-15 -4240 ((-431 |#4|) |#4|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1525 (($ (-792)) 115 (|has| |#1| (-23)) ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3823 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 103 T ELT)) (-3860 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 52 T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-4414 (($ (-665 |#1|)) 121 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2359 (((-710 |#1|) $ $) 108 (|has| |#1| (-1079)) ELT)) (-3748 (($ (-792) |#1|) 70 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-2323 ((|#1| $) 105 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3490 ((|#1| $) 106 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-3482 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-4013 (($ $ (-665 |#1|)) 119 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-3511 ((|#1| $ $) 109 (|has| |#1| (-1079)) ELT)) (-2419 (((-949) $) 120 T ELT)) (-1704 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-4437 (($ $ $) 107 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1530 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT) (($ (-665 |#1|)) 122 T ELT)) (-2422 (($ (-665 |#1|)) 72 T ELT)) (-3702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-2483 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-577) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-747)) ELT) (($ $ |#1|) 110 (|has| |#1| (-747)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1010 |#1|) (-141) (-1079)) (T -1010)) -((-4414 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-1010 *3)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1079)) (-5 *2 (-949)))) (-4437 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1079)))) (-4013 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-1010 *3)) (-4 *3 (-1079))))) -(-13 (-1295 |t#1|) (-636 (-665 |t#1|)) (-10 -8 (-15 -4414 ($ (-665 |t#1|))) (-15 -2419 ((-949) $)) (-15 -4437 ($ $ $)) (-15 -4013 ($ $ (-665 |t#1|))))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-636 (-665 |#1|)) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-19 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T) ((-1295 |#1|) . T)) -((-3609 (((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)) 17 T ELT))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -3609 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) (-1079) (-1079)) (T -1011)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-971 *6)) (-5 *1 (-1011 *5 *6))))) -(-10 -7 (-15 -3609 ((-971 |#2|) (-1 |#2| |#1|) (-971 |#1|)))) -((-3621 ((|#1| (-971 |#1|)) 14 T ELT)) (-3654 ((|#1| (-971 |#1|)) 13 T ELT)) (-3334 ((|#1| (-971 |#1|)) 12 T ELT)) (-4397 ((|#1| (-971 |#1|)) 16 T ELT)) (-3304 ((|#1| (-971 |#1|)) 24 T ELT)) (-3213 ((|#1| (-971 |#1|)) 15 T ELT)) (-2206 ((|#1| (-971 |#1|)) 17 T ELT)) (-2638 ((|#1| (-971 |#1|)) 23 T ELT)) (-4230 ((|#1| (-971 |#1|)) 22 T ELT))) -(((-1012 |#1|) (-10 -7 (-15 -3334 (|#1| (-971 |#1|))) (-15 -3654 (|#1| (-971 |#1|))) (-15 -3621 (|#1| (-971 |#1|))) (-15 -3213 (|#1| (-971 |#1|))) (-15 -4397 (|#1| (-971 |#1|))) (-15 -2206 (|#1| (-971 |#1|))) (-15 -4230 (|#1| (-971 |#1|))) (-15 -2638 (|#1| (-971 |#1|))) (-15 -3304 (|#1| (-971 |#1|)))) (-1079)) (T -1012)) -((-3304 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-2638 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(-10 -7 (-15 -3334 (|#1| (-971 |#1|))) (-15 -3654 (|#1| (-971 |#1|))) (-15 -3621 (|#1| (-971 |#1|))) (-15 -3213 (|#1| (-971 |#1|))) (-15 -4397 (|#1| (-971 |#1|))) (-15 -2206 (|#1| (-971 |#1|))) (-15 -4230 (|#1| (-971 |#1|))) (-15 -2638 (|#1| (-971 |#1|))) (-15 -3304 (|#1| (-971 |#1|)))) -((-3306 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2019 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3399 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2344 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2508 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2707 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-1888 (((-3 |#1| "failed") |#1| (-792)) 1 T ELT)) (-2146 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3986 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-1526 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-4066 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2597 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2884 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2618 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2034 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3350 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-1561 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3427 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3719 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-1398 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-1821 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3444 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2259 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3515 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3291 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2022 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3325 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-1013 |#1|) (-141) (-1232)) (T -1013)) -((-3444 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1398 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3515 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3350 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3427 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1526 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2508 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2597 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3306 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2618 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3399 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2259 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1821 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3291 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1561 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3325 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3719 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-4066 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2707 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2884 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2019 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2034 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2344 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-2146 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-3986 (*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232)))) (-1888 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-792)) (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(-13 (-10 -7 (-15 -1888 ((-3 |t#1| "failed") |t#1| (-792))) (-15 -3986 ((-3 |t#1| "failed") |t#1|)) (-15 -2146 ((-3 |t#1| "failed") |t#1|)) (-15 -2344 ((-3 |t#1| "failed") |t#1|)) (-15 -2034 ((-3 |t#1| "failed") |t#1|)) (-15 -2019 ((-3 |t#1| "failed") |t#1|)) (-15 -2884 ((-3 |t#1| "failed") |t#1|)) (-15 -2707 ((-3 |t#1| "failed") |t#1|)) (-15 -4066 ((-3 |t#1| "failed") |t#1|)) (-15 -3719 ((-3 |t#1| "failed") |t#1|)) (-15 -3325 ((-3 |t#1| "failed") |t#1|)) (-15 -1561 ((-3 |t#1| "failed") |t#1|)) (-15 -3291 ((-3 |t#1| "failed") |t#1|)) (-15 -1821 ((-3 |t#1| "failed") |t#1|)) (-15 -2259 ((-3 |t#1| "failed") |t#1|)) (-15 -3399 ((-3 |t#1| "failed") |t#1|)) (-15 -2618 ((-3 |t#1| "failed") |t#1|)) (-15 -3306 ((-3 |t#1| "failed") |t#1|)) (-15 -2597 ((-3 |t#1| "failed") |t#1|)) (-15 -2508 ((-3 |t#1| "failed") |t#1|)) (-15 -1526 ((-3 |t#1| "failed") |t#1|)) (-15 -3427 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -3350 ((-3 |t#1| "failed") |t#1|)) (-15 -3515 ((-3 |t#1| "failed") |t#1|)) (-15 -1398 ((-3 |t#1| "failed") |t#1|)) (-15 -3444 ((-3 |t#1| "failed") |t#1|)))) -((-3027 ((|#4| |#4| (-665 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3470 ((|#4| |#4| (-665 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3609 ((|#4| (-1 |#4| (-980 |#1|)) |#4|) 31 T ELT))) -(((-1014 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3470 (|#4| |#4| |#3|)) (-15 -3470 (|#4| |#4| (-665 |#3|))) (-15 -3027 (|#4| |#4| |#3|)) (-15 -3027 (|#4| |#4| (-665 |#3|))) (-15 -3609 (|#4| (-1 |#4| (-980 |#1|)) |#4|))) (-1079) (-814) (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206))))) (-977 (-980 |#1|) |#2| |#3|)) (T -1014)) -((-3609 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-980 *4))) (-4 *4 (-1079)) (-4 *2 (-977 (-980 *4) *5 *6)) (-4 *5 (-814)) (-4 *6 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206)))))) (-5 *1 (-1014 *4 *5 *6 *2)))) (-3027 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206)))))) (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) (-4 *2 (-977 (-980 *4) *5 *6)))) (-3027 (*1 *2 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206)))))) (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3)))) (-3470 (*1 *2 *2 *3) (-12 (-5 *3 (-665 *6)) (-4 *6 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206)))))) (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) (-4 *2 (-977 (-980 *4) *5 *6)))) (-3470 (*1 *2 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)) (-15 -3966 ((-3 $ "failed") (-1206)))))) (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3))))) -(-10 -7 (-15 -3470 (|#4| |#4| |#3|)) (-15 -3470 (|#4| |#4| (-665 |#3|))) (-15 -3027 (|#4| |#4| |#3|)) (-15 -3027 (|#4| |#4| (-665 |#3|))) (-15 -3609 (|#4| (-1 |#4| (-980 |#1|)) |#4|))) -((-3588 ((|#2| |#3|) 35 T ELT)) (-4175 (((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|) 79 T ELT)) (-2544 (((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) 100 T ELT))) -(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -4175 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|)) (-15 -3588 (|#2| |#3|))) (-361) (-1273 |#1|) (-1273 |#2|) (-745 |#2| |#3|)) (T -1015)) -((-3588 (*1 *2 *3) (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-1015 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-745 *2 *3)))) (-4175 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-1015 *4 *3 *5 *6)) (-4 *6 (-745 *3 *5)))) (-2544 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2225 (-710 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-710 *4)))) (-5 *1 (-1015 *3 *4 *5 *6)) (-4 *6 (-745 *4 *5))))) -(-10 -7 (-15 -2544 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -4175 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|)) (-15 -3588 (|#2| |#3|))) -((-2880 (((-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577)))) (-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577))))) 82 T ELT))) -(((-1016 |#1| |#2|) (-10 -7 (-15 -2880 ((-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577)))) (-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577))))))) (-665 (-1206)) (-792)) (T -1016)) -((-2880 (*1 *2 *2) (-12 (-5 *2 (-1017 (-420 (-577)) (-887 *3) (-246 *4 (-792)) (-254 *3 (-420 (-577))))) (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-1016 *3 *4))))) -(-10 -7 (-15 -2880 ((-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577)))) (-1017 (-420 (-577)) (-887 |#1|) (-246 |#2| (-792)) (-254 |#1| (-420 (-577))))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2501 (((-3 (-112) "failed") $) 71 T ELT)) (-1703 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))) ELT)) (-1958 (($ $ (-3 (-112) "failed")) 72 T ELT)) (-2738 (($ (-665 |#4|) |#4|) 25 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3343 (($ $) 69 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2392 (((-112) $) 70 T ELT)) (-3414 (($) 30 T ELT)) (-2619 ((|#4| $) 74 T ELT)) (-3881 (((-665 |#4|) $) 73 T ELT)) (-2410 (((-885) $) 68 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1017 |#1| |#2| |#3| |#4|) (-13 (-1130) (-631 (-885)) (-10 -8 (-15 -3414 ($)) (-15 -2738 ($ (-665 |#4|) |#4|)) (-15 -2501 ((-3 (-112) "failed") $)) (-15 -1958 ($ $ (-3 (-112) "failed"))) (-15 -2392 ((-112) $)) (-15 -3881 ((-665 |#4|) $)) (-15 -2619 (|#4| $)) (-15 -3343 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -1703 ($ $)) |%noBranch|) |%noBranch|))) (-465) (-870) (-814) (-977 |#1| |#3| |#2|)) (T -1017)) -((-3414 (*1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) (-2738 (*1 *1 *2 *3) (-12 (-5 *2 (-665 *3)) (-4 *3 (-977 *4 *6 *5)) (-4 *4 (-465)) (-4 *5 (-870)) (-4 *6 (-814)) (-5 *1 (-1017 *4 *5 *6 *3)))) (-2501 (*1 *2 *1) (|partial| -12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-1958 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-2392 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-112)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-3881 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-665 *6)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) (-2619 (*1 *2 *1) (-12 (-4 *2 (-977 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)))) (-3343 (*1 *1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) (-1703 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3))))) -(-13 (-1130) (-631 (-885)) (-10 -8 (-15 -3414 ($)) (-15 -2738 ($ (-665 |#4|) |#4|)) (-15 -2501 ((-3 (-112) "failed") $)) (-15 -1958 ($ $ (-3 (-112) "failed"))) (-15 -2392 ((-112) $)) (-15 -3881 ((-665 |#4|) $)) (-15 -2619 (|#4| $)) (-15 -3343 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -1703 ($ $)) |%noBranch|) |%noBranch|))) -((-3197 (((-112) |#5| |#5|) 44 T ELT)) (-3114 (((-112) |#5| |#5|) 59 T ELT)) (-2610 (((-112) |#5| (-665 |#5|)) 81 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-4318 (((-112) (-665 |#4|) (-665 |#4|)) 65 T ELT)) (-3645 (((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) 70 T ELT)) (-3132 (((-1302)) 32 T ELT)) (-1414 (((-1302) (-1188) (-1188) (-1188)) 28 T ELT)) (-3865 (((-665 |#5|) (-665 |#5|)) 100 T ELT)) (-3758 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) 92 T ELT)) (-2689 (((-665 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112)) 122 T ELT)) (-3488 (((-112) |#5| |#5|) 53 T ELT)) (-4401 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-4172 (((-112) (-665 |#4|) (-665 |#4|)) 64 T ELT)) (-1377 (((-112) (-665 |#4|) (-665 |#4|)) 66 T ELT)) (-2220 (((-112) (-665 |#4|) (-665 |#4|)) 67 T ELT)) (-3051 (((-3 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)) 117 T ELT)) (-3190 (((-665 |#5|) (-665 |#5|)) 49 T ELT))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1414 ((-1302) (-1188) (-1188) (-1188))) (-15 -3132 ((-1302))) (-15 -3197 ((-112) |#5| |#5|)) (-15 -3190 ((-665 |#5|) (-665 |#5|))) (-15 -3488 ((-112) |#5| |#5|)) (-15 -3114 ((-112) |#5| |#5|)) (-15 -4318 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4172 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1377 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2220 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4401 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2610 ((-112) |#5| |#5|)) (-15 -2610 ((-112) |#5| (-665 |#5|))) (-15 -3865 ((-665 |#5|) (-665 |#5|))) (-15 -3645 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -3758 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-15 -2689 ((-665 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -3051 ((-3 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1018)) -((-3051 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| -3503 (-665 *9)) (|:| -4317 *4) (|:| |ineq| (-665 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) (-4 *4 (-1101 *6 *7 *8 *9)))) (-2689 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| -3503 (-665 *9)) (|:| -4317 *10) (|:| |ineq| (-665 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -4317 *7)))) (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3645 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3865 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-2610 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-4401 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-2220 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-1377 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-4172 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-4318 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3114 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3488 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3132 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-1414 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(-10 -7 (-15 -1414 ((-1302) (-1188) (-1188) (-1188))) (-15 -3132 ((-1302))) (-15 -3197 ((-112) |#5| |#5|)) (-15 -3190 ((-665 |#5|) (-665 |#5|))) (-15 -3488 ((-112) |#5| |#5|)) (-15 -3114 ((-112) |#5| |#5|)) (-15 -4318 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4172 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1377 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2220 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4401 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2610 ((-112) |#5| |#5|)) (-15 -2610 ((-112) |#5| (-665 |#5|))) (-15 -3865 ((-665 |#5|) (-665 |#5|))) (-15 -3645 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -3758 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-15 -2689 ((-665 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -3051 ((-3 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3966 (((-1206) $) 15 T ELT)) (-4119 (((-1188) $) 16 T ELT)) (-4017 (($ (-1206) (-1188)) 14 T ELT)) (-2410 (((-885) $) 13 T ELT))) -(((-1019) (-13 (-631 (-885)) (-10 -8 (-15 -4017 ($ (-1206) (-1188))) (-15 -3966 ((-1206) $)) (-15 -4119 ((-1188) $))))) (T -1019)) -((-4017 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-1019)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1019)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1019))))) -(-13 (-631 (-885)) (-10 -8 (-15 -4017 ($ (-1206) (-1188))) (-15 -3966 ((-1206) $)) (-15 -4119 ((-1188) $)))) -((-3609 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-1020 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#4| (-1 |#2| |#1|) |#3|))) (-569) (-569) (-1022 |#1|) (-1022 |#2|)) (T -1020)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1022 *6)) (-5 *1 (-1020 *5 *6 *4 *2)) (-4 *4 (-1022 *5))))) -(-10 -7 (-15 -3609 (|#4| (-1 |#2| |#1|) |#3|))) -((-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) 66 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) 96 T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-1206) $) 61 T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) 93 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 115 T ELT) (((-710 |#2|) (-710 $)) 28 T ELT)) (-2060 (($) 99 T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 76 T ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 85 T ELT)) (-2614 (($ $) 10 T ELT)) (-3651 (((-3 $ "failed") $) 20 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-2199 (($) 16 T ELT)) (-2687 (($ $) 55 T ELT)) (-2030 (($ $ (-1 |#2| |#2|)) 36 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2430 (($ $) 12 T ELT)) (-3341 (((-916 (-577)) $) 71 T ELT) (((-916 (-391)) $) 80 T ELT) (((-549) $) 40 T ELT) (((-391) $) 44 T ELT) (((-228) $) 48 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 91 T ELT) (($ |#2|) NIL T ELT) (($ (-1206)) 58 T ELT)) (-3234 (((-792)) 31 T ELT)) (-2403 (((-112) $ $) 51 T ELT))) -(((-1021 |#1| |#2|) (-10 -8 (-15 -2403 ((-112) |#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3341 ((-228) |#1|)) (-15 -3341 ((-391) |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2410 (|#1| (-1206))) (-15 -2817 ((-3 (-1206) "failed") |#1|)) (-15 -3514 ((-1206) |#1|)) (-15 -2060 (|#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -1953 ((-710 |#2|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| |#1|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-1022 |#2|) (-569)) (T -1021)) -((-3234 (*1 *2) (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-1021 *3 *4)) (-4 *3 (-1022 *4))))) -(-10 -8 (-15 -2403 ((-112) |#1| |#1|)) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3341 ((-228) |#1|)) (-15 -3341 ((-391) |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2410 (|#1| (-1206))) (-15 -2817 ((-3 (-1206) "failed") |#1|)) (-15 -3514 ((-1206) |#1|)) (-15 -2060 (|#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2430 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -2244 ((-913 (-577) |#1|) |#1| (-916 (-577)) (-913 (-577) |#1|))) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -1953 ((-710 |#2|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| |#1|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3277 ((|#1| $) 163 (|has| |#1| (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 154 (|has| |#1| (-937)) ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 157 (|has| |#1| (-937)) ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-4459 (((-577) $) 144 (|has| |#1| (-841)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 193 T ELT) (((-3 (-1206) "failed") $) 152 (|has| |#1| (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) 135 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-577) "failed") $) 133 (|has| |#1| (-1068 (-577))) ELT)) (-3514 ((|#1| $) 194 T ELT) (((-1206) $) 153 (|has| |#1| (-1068 (-1206))) ELT) (((-420 (-577)) $) 136 (|has| |#1| (-1068 (-577))) ELT) (((-577) $) 134 (|has| |#1| (-1068 (-577))) ELT)) (-3152 (($ $ $) 61 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 178 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 177 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 176 T ELT) (((-710 |#1|) (-710 $)) 175 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2060 (($) 161 (|has| |#1| (-558)) ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-2785 (((-112) $) 146 (|has| |#1| (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 170 (|has| |#1| (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 169 (|has| |#1| (-910 (-391))) ELT)) (-2097 (((-112) $) 35 T ELT)) (-2614 (($ $) 165 T ELT)) (-2518 ((|#1| $) 167 T ELT)) (-3651 (((-3 $ "failed") $) 132 (|has| |#1| (-1182)) ELT)) (-1434 (((-112) $) 145 (|has| |#1| (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-1344 (($ $ $) 137 (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) 138 (|has| |#1| (-870)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 185 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 180 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 179 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 174 T ELT) (((-710 |#1|) (-1297 $)) 173 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-2199 (($) 131 (|has| |#1| (-1182)) CONST)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2687 (($ $) 162 (|has| |#1| (-318)) ELT)) (-2136 ((|#1| $) 159 (|has| |#1| (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 156 (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 155 (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) 191 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 190 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 189 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 188 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 187 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 186 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2442 (((-792) $) 64 T ELT)) (-2435 (($ $ |#1|) 192 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2030 (($ $ (-1 |#1| |#1|)) 184 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 183 T ELT) (($ $) 130 (|has| |#1| (-238)) ELT) (($ $ (-792)) 128 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 126 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 124 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 123 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 122 (|has| |#1| (-928 (-1206))) ELT)) (-2430 (($ $) 164 T ELT)) (-2528 ((|#1| $) 166 T ELT)) (-3341 (((-916 (-577)) $) 172 (|has| |#1| (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) 171 (|has| |#1| (-632 (-916 (-391)))) ELT) (((-549) $) 149 (|has| |#1| (-632 (-549))) ELT) (((-391) $) 148 (|has| |#1| (-1052)) ELT) (((-228) $) 147 (|has| |#1| (-1052)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 158 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 197 T ELT) (($ (-1206)) 151 (|has| |#1| (-1068 (-1206))) ELT)) (-2580 (((-3 $ "failed") $) 150 (-2229 (|has| |#1| (-146)) (-2319 (|has| $ (-146)) (|has| |#1| (-937)))) ELT)) (-3234 (((-792)) 32 T CONST)) (-1465 ((|#1| $) 160 (|has| |#1| (-558)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-3385 (($ $) 143 (|has| |#1| (-841)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 181 T ELT) (($ $) 129 (|has| |#1| (-238)) ELT) (($ $ (-792)) 127 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 125 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 121 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 120 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 119 (|has| |#1| (-928 (-1206))) ELT)) (-2440 (((-112) $ $) 139 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 141 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 140 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 142 (|has| |#1| (-870)) ELT)) (-2494 (($ $ $) 73 T ELT) (($ |#1| |#1|) 168 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ |#1| $) 196 T ELT) (($ $ |#1|) 195 T ELT))) -(((-1022 |#1|) (-141) (-569)) (T -1022)) -((-2494 (*1 *1 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-2614 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-2430 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-2687 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-2060 (*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-558)) (-4 *2 (-569)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558))))) -(-13 (-375) (-38 |t#1|) (-1068 |t#1|) (-350 |t#1|) (-233 |t#1|) (-389 |t#1|) (-908 |t#1|) (-413 |t#1|) (-10 -8 (-15 -2494 ($ |t#1| |t#1|)) (-15 -2518 (|t#1| $)) (-15 -2528 (|t#1| $)) (-15 -2614 ($ $)) (-15 -2430 ($ $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-1068 (-577))) (PROGN (-6 (-1068 (-577))) (-6 (-1068 (-420 (-577))))) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1068 (-1206))) (-6 (-1068 (-1206))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -3277 (|t#1| $)) (-15 -2687 ($ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2060 ($)) (-15 -1465 (|t#1| $)) (-15 -2136 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 #1=(-1206)) |has| |#1| (-1068 (-1206))) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-228)) |has| |#1| (-1052)) ((-632 (-391)) |has| |#1| (-1052)) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-632 (-916 (-391))) |has| |#1| (-632 (-916 (-391)))) ((-632 (-916 (-577))) |has| |#1| (-632 (-916 (-577)))) ((-235 $) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) . T) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) . T) ((-318) . T) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-465) . T) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 #2=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-659 #2#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) . T) ((-738 |#1|) . T) ((-738 $) . T) ((-747) . T) ((-812) |has| |#1| (-841)) ((-813) |has| |#1| (-841)) ((-815) |has| |#1| (-841)) ((-816) |has| |#1| (-841)) ((-841) |has| |#1| (-841)) ((-869) |has| |#1| (-841)) ((-870) -2229 (|has| |#1| (-870)) (|has| |#1| (-841))) ((-873) -2229 (|has| |#1| (-870)) (|has| |#1| (-841))) ((-920 $ #3=(-1206)) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #3#) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-910 (-391)) |has| |#1| (-910 (-391))) ((-910 (-577)) |has| |#1| (-910 (-577))) ((-908 |#1|) . T) ((-937) |has| |#1| (-937)) ((-948) . T) ((-1052) |has| |#1| (-1052)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-577))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #1#) |has| |#1| (-1068 (-1206))) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1251) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3354 (($ (-1172 |#1| |#2|)) 11 T ELT)) (-1868 (((-1172 |#1| |#2|) $) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT))) -(((-1023 |#1| |#2|) (-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3354 ($ (-1172 |#1| |#2|))) (-15 -1868 ((-1172 |#1| |#2|) $)))) (-949) (-375)) (T -1023)) -((-3354 (*1 *1 *2) (-12 (-5 *2 (-1172 *3 *4)) (-14 *3 (-949)) (-4 *4 (-375)) (-5 *1 (-1023 *3 *4)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-1023 *3 *4)) (-14 *3 (-949)) (-4 *4 (-375))))) -(-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3354 ($ (-1172 |#1| |#2|))) (-15 -1868 ((-1172 |#1| |#2|) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2076 (((-1165) $) 9 T ELT)) (-2410 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1024) (-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $))))) (T -1024)) -((-2076 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1024))))) -(-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2762 (($) 7 T CONST)) (-4171 (($ $) 47 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3490 (((-792) $) 46 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-1818 ((|#1| $) 45 T ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-1930 ((|#1| |#1| $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-4038 ((|#1| $) 48 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-3290 ((|#1| $) 44 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1025 |#1|) (-141) (-1247)) (T -1025)) -((-1930 (*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-4171 (*1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247)))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4499) (-15 -1930 (|t#1| |t#1| $)) (-15 -4038 (|t#1| $)) (-15 -4171 ($ $)) (-15 -3490 ((-792) $)) (-15 -1818 (|t#1| $)) (-15 -3290 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-1516 (((-112) $) 43 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 46 T ELT)) (-3514 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 78 T ELT)) (-2748 (((-112) $) 72 T ELT)) (-3557 (((-420 (-577)) $) 76 T ELT)) (-2097 (((-112) $) 42 T ELT)) (-2755 ((|#2| $) 22 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-3055 (($ $) 58 T ELT)) (-2030 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-3341 (((-549) $) 67 T ELT)) (-2744 (($ $) 17 T ELT)) (-2410 (((-885) $) 53 T ELT) (($ (-577)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-420 (-577))) NIL T ELT)) (-3234 (((-792)) 10 T ELT)) (-3385 ((|#2| $) 71 T ELT)) (-2383 (((-112) $ $) 26 T ELT)) (-2403 (((-112) $ $) 69 T ELT)) (-2483 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-2471 (($ $ $) 27 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT))) -(((-1026 |#1| |#2|) (-10 -8 (-15 -2410 (|#1| (-420 (-577)))) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2403 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -3055 (|#1| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 -2097 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-1027 |#2|) (-174)) (T -1026)) -((-3234 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1027 *4))))) -(-10 -8 (-15 -2410 (|#1| (-420 (-577)))) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2403 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -3055 (|#1| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -2755 (|#2| |#1|)) (-15 -2744 (|#1| |#1|)) (-15 -3609 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 -2097 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-792) |#1|)) (-15 -1516 ((-112) |#1|)) (-15 * (|#1| (-949) |#1|)) (-15 -2471 (|#1| |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 (-577) "failed") $) 135 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 133 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) 130 T ELT)) (-3514 (((-577) $) 134 (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) 132 (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) 131 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 115 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 114 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 113 T ELT) (((-710 |#1|) (-710 $)) 112 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2821 ((|#1| $) 103 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) 99 (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) 101 (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) 100 (|has| |#1| (-558)) ELT)) (-2342 (($ |#1| |#1| |#1| |#1|) 104 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2755 ((|#1| $) 105 T ELT)) (-1344 (($ $ $) 87 (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) 88 (|has| |#1| (-870)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 118 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 117 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 116 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 111 T ELT) (((-710 |#1|) (-1297 $)) 110 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 96 (|has| |#1| (-375)) ELT)) (-3930 ((|#1| $) 106 T ELT)) (-3048 ((|#1| $) 107 T ELT)) (-3322 ((|#1| $) 108 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) 124 (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) 123 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) 122 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) 121 (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) 120 (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) 119 (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2435 (($ $ |#1|) 125 (|has| |#1| (-297 |#1| |#1|)) ELT)) (-2030 (($ $ (-1 |#1| |#1|)) 129 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 128 T ELT) (($ $) 86 (|has| |#1| (-238)) ELT) (($ $ (-792)) 84 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 82 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 80 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 79 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 78 (|has| |#1| (-928 (-1206))) ELT)) (-3341 (((-549) $) 97 (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $) 109 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-420 (-577))) 74 (-2229 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2580 (((-3 $ "failed") $) 98 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-3385 ((|#1| $) 102 (|has| |#1| (-1090)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1 |#1| |#1|)) 127 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 126 T ELT) (($ $) 85 (|has| |#1| (-238)) ELT) (($ $ (-792)) 83 (|has| |#1| (-238)) ELT) (($ $ (-1206)) 81 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 77 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 76 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 75 (|has| |#1| (-928 (-1206))) ELT)) (-2440 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 91 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 92 (|has| |#1| (-870)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 95 (|has| |#1| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ $ (-420 (-577))) 94 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) 93 (|has| |#1| (-375)) ELT))) -(((-1027 |#1|) (-141) (-174)) (T -1027)) -((-2744 (*1 *1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-2755 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-2342 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-2751 (*1 *2 *1) (|partial| -12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-389 |t#1|) (-10 -8 (-15 -2744 ($ $)) (-15 -3322 (|t#1| $)) (-15 -3048 (|t#1| $)) (-15 -3930 (|t#1| $)) (-15 -2755 (|t#1| $)) (-15 -2342 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2821 (|t#1| $)) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1090)) (-15 -3385 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -2748 ((-112) $)) (-15 -3557 ((-420 (-577)) $)) (-15 -2751 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-375)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-375)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-375))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-235 $) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2229 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) |has| |#1| (-375)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2229 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1206) |#1|) |has| |#1| (-527 (-1206) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-667 #0#) |has| |#1| (-375)) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-375)) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-375)) ((-661 |#1|) . T) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-375)) ((-738 |#1|) . T) ((-747) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-920 $ #2=(-1206)) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #2#) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1081 #0#) |has| |#1| (-375)) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1086 #0#) |has| |#1| (-375)) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3609 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-1028 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#3| (-1 |#4| |#2|) |#1|))) (-1027 |#2|) (-174) (-1027 |#4|) (-174)) (T -1028)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1027 *6)) (-5 *1 (-1028 *4 *5 *2 *6)) (-4 *4 (-1027 *5))))) -(-10 -7 (-15 -3609 (|#3| (-1 |#4| |#2|) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2821 ((|#1| $) 12 T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)) ELT)) (-2748 (((-112) $) NIL (|has| |#1| (-558)) ELT)) (-3557 (((-420 (-577)) $) NIL (|has| |#1| (-558)) ELT)) (-2342 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2755 ((|#1| $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3930 ((|#1| $) 15 T ELT)) (-3048 ((|#1| $) 14 T ELT)) (-3322 ((|#1| $) 13 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-527 (-1206) |#1|)) ELT)) (-2435 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)) ELT)) (-2030 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2744 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-3385 ((|#1| $) NIL (|has| |#1| (-1090)) ELT)) (-2367 (($) 8 T CONST)) (-2378 (($) 10 T CONST)) (-1675 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT))) -(((-1029 |#1|) (-1027 |#1|) (-174)) (T -1029)) -NIL -(-1027 |#1|) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4171 (($ $) 23 T ELT)) (-1336 (($ (-665 |#1|)) 33 T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3490 (((-792) $) 26 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 28 T ELT)) (-3795 (($ |#1| $) 17 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-1818 ((|#1| $) 27 T ELT)) (-3127 ((|#1| $) 22 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-1930 ((|#1| |#1| $) 16 T ELT)) (-2392 (((-112) $) 18 T ELT)) (-3414 (($) NIL T ELT)) (-4038 ((|#1| $) 21 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) NIL T ELT)) (-3290 ((|#1| $) 30 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1030 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -1336 ($ (-665 |#1|))))) (-1130)) (T -1030)) -((-1336 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1030 *3))))) -(-13 (-1025 |#1|) (-10 -8 (-15 -1336 ($ (-665 |#1|))))) -((-2809 (($ $) 12 T ELT)) (-4341 (($ $ (-577)) 13 T ELT))) -(((-1031 |#1|) (-10 -8 (-15 -2809 (|#1| |#1|)) (-15 -4341 (|#1| |#1| (-577)))) (-1032)) (T -1031)) -NIL -(-10 -8 (-15 -2809 (|#1| |#1|)) (-15 -4341 (|#1| |#1| (-577)))) -((-2809 (($ $) 6 T ELT)) (-4341 (($ $ (-577)) 7 T ELT)) (** (($ $ (-420 (-577))) 8 T ELT))) -(((-1032) (-141)) (T -1032)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-420 (-577))))) (-4341 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-577)))) (-2809 (*1 *1 *1) (-4 *1 (-1032)))) -(-13 (-10 -8 (-15 -2809 ($ $)) (-15 -4341 ($ $ (-577))) (-15 ** ($ $ (-420 (-577)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3675 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3913 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4244 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2716 (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|))) NIL T ELT)) (-1880 (((-420 |#2|) $) NIL T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3397 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2221 (((-792)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2266 (((-112)) NIL T ELT)) (-1948 (((-112) |#1|) 162 T ELT) (((-112) |#2|) 166 T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-3 (-420 |#2|) "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| (-420 |#2|) (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1068 (-420 (-577)))) ELT) (((-420 |#2|) $) NIL T ELT)) (-1912 (($ (-1297 (-420 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-420 |#2|))) 79 T ELT) (($ (-1297 |#2|) |#2|) NIL T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3152 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3449 (((-710 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-710 $)) NIL T ELT)) (-3495 (((-1297 $) (-1297 $)) NIL T ELT)) (-2511 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2720 (((-665 (-665 |#1|))) NIL (|has| |#1| (-380)) ELT)) (-2280 (((-112) |#1| |#1|) NIL T ELT)) (-1875 (((-949)) NIL T ELT)) (-2060 (($) NIL (|has| (-420 |#2|) (-380)) ELT)) (-1694 (((-112)) NIL T ELT)) (-4409 (((-112) |#1|) 61 T ELT) (((-112) |#2|) 164 T ELT)) (-3164 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3008 (($ $) NIL T ELT)) (-3619 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-3390 (((-112) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2202 (($ $ (-792)) NIL (|has| (-420 |#2|) (-361)) ELT) (($ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-1632 (((-112) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3890 (((-949) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-854 (-949)) $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-1763 (((-792)) NIL T ELT)) (-1644 (((-1297 $) (-1297 $)) NIL T ELT)) (-2755 (((-420 |#2|) $) NIL T ELT)) (-2351 (((-665 (-980 |#1|)) (-1206)) NIL (|has| |#1| (-375)) ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4067 ((|#3| $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2553 (((-949) $) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2500 ((|#3| $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-420 |#2|) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-420 |#2|))) (|:| |vec| (-1297 (-420 |#2|)))) (-1297 $) $) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4330 (((-710 (-420 |#2|))) 57 T ELT)) (-2633 (((-710 (-420 |#2|))) 56 T ELT)) (-3055 (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4352 (($ (-1297 |#2|) |#2|) 80 T ELT)) (-3099 (((-710 (-420 |#2|))) 55 T ELT)) (-2169 (((-710 (-420 |#2|))) 54 T ELT)) (-3205 (((-2 (|:| |num| (-710 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-3256 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-4377 (((-1297 $)) 51 T ELT)) (-2544 (((-1297 $)) 50 T ELT)) (-2645 (((-112) $) NIL T ELT)) (-1932 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-2199 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-2085 (($ (-949)) NIL (|has| (-420 |#2|) (-380)) ELT)) (-2133 (((-3 |#2| "failed")) 70 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3541 (((-792)) NIL T ELT)) (-2846 (($) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2799 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2442 (((-792) $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2435 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1943 (((-3 |#2| "failed")) 68 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1611 (((-420 |#2|) (-1297 $)) NIL T ELT) (((-420 |#2|)) 47 T ELT)) (-2723 (((-792) $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2030 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-1935 (((-710 (-420 |#2|)) (-1297 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT)) (-1773 ((|#3|) 58 T ELT)) (-1494 (($) NIL (|has| (-420 |#2|) (-361)) ELT)) (-2119 (((-1297 (-420 |#2|)) $ (-1297 $)) NIL T ELT) (((-710 (-420 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-420 |#2|)) $) 81 T ELT) (((-710 (-420 |#2|)) (-1297 $)) NIL T ELT)) (-3341 (((-1297 (-420 |#2|)) $) NIL T ELT) (($ (-1297 (-420 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| (-420 |#2|) (-361)) ELT)) (-4160 (((-1297 $) (-1297 $)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 |#2|)) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| (-420 |#2|) (-1068 (-420 (-577)))) (|has| (-420 |#2|) (-375))) ELT) (($ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2580 (($ $) NIL (|has| (-420 |#2|) (-361)) ELT) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)) ELT)) (-3400 ((|#3| $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2588 (((-112)) 65 T ELT)) (-2237 (((-112) |#1|) 167 T ELT) (((-112) |#2|) 168 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-3072 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-2373 (((-112)) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-792)) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-926 (-1206)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-928 (-1206))))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT) (($ $) NIL (-2229 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ $) NIL (|has| (-420 |#2|) (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 |#2|)) NIL T ELT) (($ (-420 |#2|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375)) ELT))) -(((-1033 |#1| |#2| |#3| |#4| |#5|) (-354 |#1| |#2| |#3|) (-1251) (-1273 |#1|) (-1273 (-420 |#2|)) (-420 |#2|) (-792)) (T -1033)) -NIL -(-354 |#1| |#2| |#3|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-4129 (((-665 (-577)) $) 73 T ELT)) (-3301 (($ (-665 (-577))) 81 T ELT)) (-3277 (((-577) $) 48 (|has| (-577) (-318)) ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL (|has| (-577) (-841)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) 60 T ELT) (((-3 (-1206) "failed") $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-3 (-420 (-577)) "failed") $) 57 (|has| (-577) (-1068 (-577))) ELT) (((-3 (-577) "failed") $) 60 (|has| (-577) (-1068 (-577))) ELT)) (-3514 (((-577) $) NIL T ELT) (((-1206) $) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) NIL (|has| (-577) (-1068 (-577))) ELT) (((-577) $) NIL (|has| (-577) (-1068 (-577))) ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2060 (($) NIL (|has| (-577) (-558)) ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2623 (((-665 (-577)) $) 79 T ELT)) (-2785 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (|has| (-577) (-910 (-577))) ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (|has| (-577) (-910 (-391))) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2518 (((-577) $) 45 T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| (-577) (-1182)) ELT)) (-1434 (((-112) $) NIL (|has| (-577) (-841)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-577) (-870)) ELT)) (-3609 (($ (-1 (-577) (-577)) $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| (-577) (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-577) (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-577) (-318)) ELT) (((-420 (-577)) $) 50 T ELT)) (-1630 (((-1187 (-577)) $) 78 T ELT)) (-3729 (($ (-665 (-577)) (-665 (-577))) 82 T ELT)) (-2136 (((-577) $) 64 (|has| (-577) (-558)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| (-577) (-937)) ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-3362 (($ $ (-665 (-577)) (-665 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-305 (-577)))) NIL (|has| (-577) (-320 (-577))) ELT) (($ $ (-665 (-1206)) (-665 (-577))) NIL (|has| (-577) (-527 (-1206) (-577))) ELT) (($ $ (-1206) (-577)) NIL (|has| (-577) (-527 (-1206) (-577))) ELT)) (-2442 (((-792) $) NIL T ELT)) (-2435 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) 15 (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2430 (($ $) NIL T ELT)) (-2528 (((-577) $) 47 T ELT)) (-3872 (((-665 (-577)) $) 80 T ELT)) (-3341 (((-916 (-577)) $) NIL (|has| (-577) (-632 (-916 (-577)))) ELT) (((-916 (-391)) $) NIL (|has| (-577) (-632 (-916 (-391)))) ELT) (((-549) $) NIL (|has| (-577) (-632 (-549))) ELT) (((-391) $) NIL (|has| (-577) (-1052)) ELT) (((-228) $) NIL (|has| (-577) (-1052)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-937))) ELT)) (-2410 (((-885) $) 107 T ELT) (($ (-577)) 51 T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 27 T ELT) (($ (-577)) 51 T ELT) (($ (-1206)) NIL (|has| (-577) (-1068 (-1206))) ELT) (((-420 (-577)) $) 25 T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-577) (-937))) (|has| (-577) (-146))) ELT)) (-3234 (((-792)) 13 T CONST)) (-1465 (((-577) $) 62 (|has| (-577) (-558)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-577) (-841)) ELT)) (-2367 (($) 14 T CONST)) (-2378 (($) 17 T CONST)) (-1675 (($ $ (-1 (-577) (-577))) NIL T ELT) (($ $ (-1 (-577) (-577)) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| (-577) (-928 (-1206))) ELT) (($ $) NIL (|has| (-577) (-238)) ELT) (($ $ (-792)) NIL (|has| (-577) (-238)) ELT)) (-2440 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2383 (((-112) $ $) 21 T ELT)) (-2428 (((-112) $ $) NIL (|has| (-577) (-870)) ELT)) (-2403 (((-112) $ $) 40 (|has| (-577) (-870)) ELT)) (-2494 (($ $ $) 36 T ELT) (($ (-577) (-577)) 38 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-2471 (($ $ $) 28 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ (-577) $) 32 T ELT) (($ $ (-577)) NIL T ELT))) -(((-1034 |#1|) (-13 (-1022 (-577)) (-631 (-420 (-577))) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -4129 ((-665 (-577)) $)) (-15 -1630 ((-1187 (-577)) $)) (-15 -2623 ((-665 (-577)) $)) (-15 -3872 ((-665 (-577)) $)) (-15 -3301 ($ (-665 (-577)))) (-15 -3729 ($ (-665 (-577)) (-665 (-577)))))) (-577)) (T -1034)) -((-2687 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) (-3729 (*1 *1 *2 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) -(-13 (-1022 (-577)) (-631 (-420 (-577))) (-10 -8 (-15 -2687 ((-420 (-577)) $)) (-15 -4129 ((-665 (-577)) $)) (-15 -1630 ((-1187 (-577)) $)) (-15 -2623 ((-665 (-577)) $)) (-15 -3872 ((-665 (-577)) $)) (-15 -3301 ($ (-665 (-577)))) (-15 -3729 ($ (-665 (-577)) (-665 (-577)))))) -((-4222 (((-52) (-420 (-577)) (-577)) 9 T ELT))) -(((-1035) (-10 -7 (-15 -4222 ((-52) (-420 (-577)) (-577))))) (T -1035)) -((-4222 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) (-5 *1 (-1035))))) -(-10 -7 (-15 -4222 ((-52) (-420 (-577)) (-577)))) -((-2221 (((-577)) 23 T ELT)) (-3628 (((-577)) 28 T ELT)) (-2412 (((-1302) (-577)) 26 T ELT)) (-2869 (((-577) (-577)) 29 T ELT) (((-577)) 22 T ELT))) -(((-1036) (-10 -7 (-15 -2869 ((-577))) (-15 -2221 ((-577))) (-15 -2869 ((-577) (-577))) (-15 -2412 ((-1302) (-577))) (-15 -3628 ((-577))))) (T -1036)) -((-3628 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1036)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) (-2221 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) (-2869 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036))))) -(-10 -7 (-15 -2869 ((-577))) (-15 -2221 ((-577))) (-15 -2869 ((-577) (-577))) (-15 -2412 ((-1302) (-577))) (-15 -3628 ((-577)))) -((-4255 (((-431 |#1|) |#1|) 43 T ELT)) (-2799 (((-431 |#1|) |#1|) 41 T ELT))) -(((-1037 |#1|) (-10 -7 (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4255 ((-431 |#1|) |#1|))) (-1273 (-420 (-577)))) (T -1037)) -((-4255 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-420 (-577)))))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1273 (-420 (-577))))))) -(-10 -7 (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4255 ((-431 |#1|) |#1|))) -((-2751 (((-3 (-420 (-577)) "failed") |#1|) 15 T ELT)) (-2748 (((-112) |#1|) 14 T ELT)) (-3557 (((-420 (-577)) |#1|) 10 T ELT))) -(((-1038 |#1|) (-10 -7 (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|))) (-1068 (-420 (-577)))) (T -1038)) -((-2751 (*1 *2 *3) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2)))) (-2748 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1068 (-420 (-577)))))) (-3557 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2))))) -(-10 -7 (-15 -3557 ((-420 (-577)) |#1|)) (-15 -2748 ((-112) |#1|)) (-15 -2751 ((-3 (-420 (-577)) "failed") |#1|))) -((-2589 ((|#2| $ "value" |#2|) 12 T ELT)) (-2435 ((|#2| $ "value") 10 T ELT)) (-3737 (((-112) $ $) 18 T ELT))) -(((-1039 |#1| |#2|) (-10 -8 (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -3737 ((-112) |#1| |#1|)) (-15 -2435 (|#2| |#1| "value"))) (-1040 |#2|) (-1247)) (T -1039)) -NIL -(-10 -8 (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -3737 ((-112) |#1| |#1|)) (-15 -2435 (|#2| |#1| "value"))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-2762 (($) 7 T CONST)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1040 |#1|) (-141) (-1247)) (T -1040)) -((-2421 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3)))) (-4284 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3)))) (-1452 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3)))) (-1722 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-577)))) (-3737 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-2975 (*1 *2 *1 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-2802 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *1)) (|has| *1 (-6 -4500)) (-4 *1 (-1040 *3)) (-4 *3 (-1247)))) (-2589 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) (-4411 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) (-4 *2 (-1247))))) -(-13 (-502 |t#1|) (-10 -8 (-15 -2421 ((-665 $) $)) (-15 -4284 ((-665 $) $)) (-15 -1452 ((-112) $)) (-15 -4119 (|t#1| $)) (-15 -2435 (|t#1| $ "value")) (-15 -2110 ((-112) $)) (-15 -1503 ((-665 |t#1|) $)) (-15 -1722 ((-577) $ $)) (IF (|has| |t#1| (-1130)) (PROGN (-15 -3737 ((-112) $ $)) (-15 -2975 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2802 ($ $ (-665 $))) (-15 -2589 (|t#1| $ "value" |t#1|)) (-15 -4411 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-2809 (($ $) 9 T ELT) (($ $ (-949)) 49 T ELT) (($ (-420 (-577))) 13 T ELT) (($ (-577)) 15 T ELT)) (-2312 (((-3 $ "failed") (-1202 $) (-949) (-885)) 24 T ELT) (((-3 $ "failed") (-1202 $) (-949)) 32 T ELT)) (-4341 (($ $ (-577)) 58 T ELT)) (-3234 (((-792)) 18 T ELT)) (-3634 (((-665 $) (-1202 $)) NIL T ELT) (((-665 $) (-1202 (-420 (-577)))) 63 T ELT) (((-665 $) (-1202 (-577))) 68 T ELT) (((-665 $) (-980 $)) 72 T ELT) (((-665 $) (-980 (-420 (-577)))) 76 T ELT) (((-665 $) (-980 (-577))) 80 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) 53 T ELT))) -(((-1041 |#1|) (-10 -8 (-15 -2809 (|#1| (-577))) (-15 -2809 (|#1| (-420 (-577)))) (-15 -2809 (|#1| |#1| (-949))) (-15 -3634 ((-665 |#1|) (-980 (-577)))) (-15 -3634 ((-665 |#1|) (-980 (-420 (-577))))) (-15 -3634 ((-665 |#1|) (-980 |#1|))) (-15 -3634 ((-665 |#1|) (-1202 (-577)))) (-15 -3634 ((-665 |#1|) (-1202 (-420 (-577))))) (-15 -3634 ((-665 |#1|) (-1202 |#1|))) (-15 -2312 ((-3 |#1| "failed") (-1202 |#1|) (-949))) (-15 -2312 ((-3 |#1| "failed") (-1202 |#1|) (-949) (-885))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -4341 (|#1| |#1| (-577))) (-15 -2809 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3234 ((-792))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) (-1042)) (T -1041)) -((-3234 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1041 *3)) (-4 *3 (-1042))))) -(-10 -8 (-15 -2809 (|#1| (-577))) (-15 -2809 (|#1| (-420 (-577)))) (-15 -2809 (|#1| |#1| (-949))) (-15 -3634 ((-665 |#1|) (-980 (-577)))) (-15 -3634 ((-665 |#1|) (-980 (-420 (-577))))) (-15 -3634 ((-665 |#1|) (-980 |#1|))) (-15 -3634 ((-665 |#1|) (-1202 (-577)))) (-15 -3634 ((-665 |#1|) (-1202 (-420 (-577))))) (-15 -3634 ((-665 |#1|) (-1202 |#1|))) (-15 -2312 ((-3 |#1| "failed") (-1202 |#1|) (-949))) (-15 -2312 ((-3 |#1| "failed") (-1202 |#1|) (-949) (-885))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -4341 (|#1| |#1| (-577))) (-15 -2809 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3234 ((-792))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 103 T ELT)) (-3913 (($ $) 104 T ELT)) (-4244 (((-112) $) 106 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 123 T ELT)) (-4240 (((-431 $) $) 124 T ELT)) (-2809 (($ $) 87 T ELT) (($ $ (-949)) 73 T ELT) (($ (-420 (-577))) 72 T ELT) (($ (-577)) 71 T ELT)) (-3397 (((-112) $ $) 114 T ELT)) (-4459 (((-577) $) 140 T ELT)) (-2762 (($) 18 T CONST)) (-2312 (((-3 $ "failed") (-1202 $) (-949) (-885)) 81 T ELT) (((-3 $ "failed") (-1202 $) (-949)) 80 T ELT)) (-2817 (((-3 (-577) "failed") $) 100 (|has| (-420 (-577)) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 98 (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) 95 T ELT)) (-3514 (((-577) $) 99 (|has| (-420 (-577)) (-1068 (-577))) ELT) (((-420 (-577)) $) 97 (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-420 (-577)) $) 96 T ELT)) (-1973 (($ $ (-885)) 70 T ELT)) (-4439 (($ $ (-885)) 69 T ELT)) (-3152 (($ $ $) 118 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 117 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 112 T ELT)) (-1632 (((-112) $) 125 T ELT)) (-2785 (((-112) $) 138 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 86 T ELT)) (-1434 (((-112) $) 139 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 121 T ELT)) (-1344 (($ $ $) 132 T ELT)) (-4167 (($ $ $) 133 T ELT)) (-4001 (((-3 (-1202 $) "failed") $) 82 T ELT)) (-2530 (((-3 (-885) "failed") $) 84 T ELT)) (-2316 (((-3 (-1202 $) "failed") $) 83 T ELT)) (-2388 (($ (-665 $)) 110 T ELT) (($ $ $) 109 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 126 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 111 T ELT)) (-2420 (($ (-665 $)) 108 T ELT) (($ $ $) 107 T ELT)) (-2799 (((-431 $) $) 122 T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 119 T ELT)) (-3200 (((-3 $ "failed") $ $) 102 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 113 T ELT)) (-2442 (((-792) $) 115 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 116 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 130 T ELT) (($ $) 101 T ELT) (($ (-420 (-577))) 94 T ELT) (($ (-577)) 93 T ELT) (($ (-420 (-577))) 90 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 105 T ELT)) (-3908 (((-420 (-577)) $ $) 68 T ELT)) (-3634 (((-665 $) (-1202 $)) 79 T ELT) (((-665 $) (-1202 (-420 (-577)))) 78 T ELT) (((-665 $) (-1202 (-577))) 77 T ELT) (((-665 $) (-980 $)) 76 T ELT) (((-665 $) (-980 (-420 (-577)))) 75 T ELT) (((-665 $) (-980 (-577))) 74 T ELT)) (-3385 (($ $) 141 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2440 (((-112) $ $) 134 T ELT)) (-2415 (((-112) $ $) 136 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 135 T ELT)) (-2403 (((-112) $ $) 137 T ELT)) (-2494 (($ $ $) 131 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 127 T ELT) (($ $ (-420 (-577))) 85 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-420 (-577)) $) 129 T ELT) (($ $ (-420 (-577))) 128 T ELT) (($ (-577) $) 92 T ELT) (($ $ (-577)) 91 T ELT) (($ (-420 (-577)) $) 89 T ELT) (($ $ (-420 (-577))) 88 T ELT))) -(((-1042) (-141)) (T -1042)) -((-2809 (*1 *1 *1) (-4 *1 (-1042))) (-2530 (*1 *2 *1) (|partial| -12 (-4 *1 (-1042)) (-5 *2 (-885)))) (-2316 (*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042)))) (-4001 (*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042)))) (-2312 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-5 *4 (-885)) (-4 *1 (-1042)))) (-2312 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-4 *1 (-1042)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-1202 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) (-2809 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-949)))) (-2809 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1042)))) (-2809 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1042)))) (-1973 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885)))) (-4439 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885)))) (-3908 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-420 (-577)))))) -(-13 (-148) (-869) (-174) (-375) (-424 (-420 (-577))) (-38 (-577)) (-38 (-420 (-577))) (-1032) (-10 -8 (-15 -2530 ((-3 (-885) "failed") $)) (-15 -2316 ((-3 (-1202 $) "failed") $)) (-15 -4001 ((-3 (-1202 $) "failed") $)) (-15 -2312 ((-3 $ "failed") (-1202 $) (-949) (-885))) (-15 -2312 ((-3 $ "failed") (-1202 $) (-949))) (-15 -3634 ((-665 $) (-1202 $))) (-15 -3634 ((-665 $) (-1202 (-420 (-577))))) (-15 -3634 ((-665 $) (-1202 (-577)))) (-15 -3634 ((-665 $) (-980 $))) (-15 -3634 ((-665 $) (-980 (-420 (-577))))) (-15 -3634 ((-665 $) (-980 (-577)))) (-15 -2809 ($ $ (-949))) (-15 -2809 ($ $)) (-15 -2809 ($ (-420 (-577)))) (-15 -2809 ($ (-577))) (-15 -1973 ($ $ (-885))) (-15 -4439 ($ $ (-885))) (-15 -3908 ((-420 (-577)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 #1=(-577)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-424 (-420 (-577))) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 #1#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 #1#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 #1#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-948) . T) ((-1032) . T) ((-1068 (-420 (-577))) . T) ((-1068 (-577)) |has| (-420 (-577)) (-1068 (-577))) ((-1081 #0#) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 #1#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-3192 (((-2 (|:| |ans| |#2|) (|:| -3867 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT))) -(((-1043 |#1| |#2|) (-10 -7 (-15 -3192 ((-2 (|:| |ans| |#2|) (|:| -3867 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-27) (-443 |#1|))) (T -1043)) -((-3192 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1206)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-665 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1827 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1232) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3867 *4) (|:| |sol?| (-112)))) (-5 *1 (-1043 *8 *4))))) -(-10 -7 (-15 -3192 ((-2 (|:| |ans| |#2|) (|:| -3867 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1754 (((-3 (-665 |#2|) "failed") (-577) |#2| |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -1754 ((-3 (-665 |#2|) "failed") (-577) |#2| |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1068 (-577)) (-659 (-577))) (-13 (-1232) (-27) (-443 |#1|))) (T -1044)) -((-1754 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1206)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-665 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1827 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1232) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) (-5 *2 (-665 *4)) (-5 *1 (-1044 *8 *4))))) -(-10 -7 (-15 -1754 ((-3 (-665 |#2|) "failed") (-577) |#2| |#2| |#2| (-1206) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-665 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-665 |#2|)) (-1 (-3 (-2 (|:| -1827 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1513 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3503 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)) 38 T ELT)) (-1836 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -4208 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 69 T ELT)) (-1861 (((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|)) 74 T ELT))) -(((-1045 |#1| |#2|) (-10 -7 (-15 -1836 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -4208 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1861 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -1513 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3503 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) (-13 (-375) (-148) (-1068 (-577))) (-1273 |#1|)) (T -1045)) -((-1513 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) (-4 *6 (-13 (-375) (-148) (-1068 *4))) (-5 *4 (-577)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3503 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1045 *6 *3)))) (-1861 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1045 *4 *5)) (-5 *3 (-420 *5)))) (-1836 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) (|:| -4208 *6))) (-5 *1 (-1045 *5 *6)) (-5 *3 (-420 *6))))) -(-10 -7 (-15 -1836 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -4208 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1861 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -1513 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3503 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) -((-2760 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -4208 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3520 (((-3 (-665 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 34 T ELT))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -2760 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -4208 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3520 ((-3 (-665 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) (-13 (-375) (-148) (-1068 (-577))) (-1273 |#1|)) (T -1046)) -((-3520 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) (-5 *2 (-665 (-420 *5))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-420 *5)))) (-2760 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -4208 *6))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-420 *6))))) -(-10 -7 (-15 -2760 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -4208 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -3520 ((-3 (-665 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) -((-3257 (((-1 |#1|) (-665 (-2 (|:| -4119 |#1|) (|:| -1975 (-577))))) 34 T ELT)) (-3897 (((-1 |#1|) (-1132 |#1|)) 42 T ELT)) (-2625 (((-1 |#1|) (-1297 |#1|) (-1297 (-577)) (-577)) 31 T ELT))) -(((-1047 |#1|) (-10 -7 (-15 -3897 ((-1 |#1|) (-1132 |#1|))) (-15 -3257 ((-1 |#1|) (-665 (-2 (|:| -4119 |#1|) (|:| -1975 (-577)))))) (-15 -2625 ((-1 |#1|) (-1297 |#1|) (-1297 (-577)) (-577)))) (-1130)) (T -1047)) -((-2625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-577))) (-5 *5 (-577)) (-4 *6 (-1130)) (-5 *2 (-1 *6)) (-5 *1 (-1047 *6)))) (-3257 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -4119 *4) (|:| -1975 (-577))))) (-4 *4 (-1130)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1132 *4)) (-4 *4 (-1130)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4))))) -(-10 -7 (-15 -3897 ((-1 |#1|) (-1132 |#1|))) (-15 -3257 ((-1 |#1|) (-665 (-2 (|:| -4119 |#1|) (|:| -1975 (-577)))))) (-15 -2625 ((-1 |#1|) (-1297 |#1|) (-1297 (-577)) (-577)))) -((-3890 (((-792) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3890 ((-792) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-375) (-1273 |#1|) (-1273 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-13 (-380) (-375))) (T -1048)) -((-3890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) (-4 *9 (-13 (-380) (-375))) (-5 *2 (-792)) (-5 *1 (-1048 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3890 ((-792) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4396 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-1165) $) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1049) (-13 (-1113) (-10 -8 (-15 -4396 ((-1165) $)) (-15 -4115 ((-1165) $))))) (T -1049)) -((-4396 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049))))) -(-13 (-1113) (-10 -8 (-15 -4396 ((-1165) $)) (-15 -4115 ((-1165) $)))) -((-3647 (((-3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) "failed") |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) 32 T ELT) (((-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577))) 29 T ELT)) (-3579 (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577))) 34 T ELT) (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-420 (-577))) 30 T ELT) (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) 33 T ELT) (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1|) 28 T ELT)) (-3611 (((-665 (-420 (-577))) (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) 20 T ELT)) (-3483 (((-420 (-577)) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) 17 T ELT))) -(((-1050 |#1|) (-10 -7 (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1|)) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) "failed") |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3483 ((-420 (-577)) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3611 ((-665 (-420 (-577))) (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))))) (-1273 (-577))) (T -1050)) -((-3611 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-5 *2 (-665 (-420 (-577)))) (-5 *1 (-1050 *4)) (-4 *4 (-1273 (-577))))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) (-5 *2 (-420 (-577))) (-5 *1 (-1050 *4)) (-4 *4 (-1273 (-577))))) (-3647 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) (-3647 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-665 (-2 (|:| -3854 *5) (|:| -3867 *5)))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-2 (|:| -3854 *5) (|:| -3867 *5))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-420 (-577))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) (-3579 (*1 *2 *3) (-12 (-5 *2 (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577)))))) -(-10 -7 (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1|)) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) "failed") |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3483 ((-420 (-577)) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3611 ((-665 (-420 (-577))) (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))))) -((-3647 (((-3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) "failed") |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) 35 T ELT) (((-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577))) 32 T ELT)) (-3579 (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577))) 30 T ELT) (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-420 (-577))) 26 T ELT) (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) 28 T ELT) (((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1|) 24 T ELT))) -(((-1051 |#1|) (-10 -7 (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1|)) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) "failed") |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) (-1273 (-420 (-577)))) (T -1051)) -((-3647 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))))) (-3647 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *4)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-665 (-2 (|:| -3854 *5) (|:| -3867 *5)))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -3854 *5) (|:| -3867 *5))))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-5 *2 (-665 (-2 (|:| -3854 *4) (|:| -3867 *4)))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *2 (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))) (-5 *4 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) (-3579 (*1 *2 *3) (-12 (-5 *2 (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577))))))) -(-10 -7 (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1|)) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -3579 ((-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-420 (-577)))) (-15 -3647 ((-3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) "failed") |#1| (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))) (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) -((-3341 (((-228) $) 6 T ELT) (((-391) $) 9 T ELT))) -(((-1052) (-141)) (T -1052)) -NIL -(-13 (-632 (-228)) (-632 (-391))) -(((-632 (-228)) . T) ((-632 (-391)) . T)) -((-3766 (((-665 (-391)) (-980 (-577)) (-391)) 28 T ELT) (((-665 (-391)) (-980 (-420 (-577))) (-391)) 27 T ELT)) (-4059 (((-665 (-665 (-391))) (-665 (-980 (-577))) (-665 (-1206)) (-391)) 37 T ELT))) -(((-1053) (-10 -7 (-15 -3766 ((-665 (-391)) (-980 (-420 (-577))) (-391))) (-15 -3766 ((-665 (-391)) (-980 (-577)) (-391))) (-15 -4059 ((-665 (-665 (-391))) (-665 (-980 (-577))) (-665 (-1206)) (-391))))) (T -1053)) -((-4059 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 (-391)))) (-5 *1 (-1053)) (-5 *5 (-391)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 (-391))) (-5 *1 (-1053)) (-5 *4 (-391)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 (-391))) (-5 *1 (-1053)) (-5 *4 (-391))))) -(-10 -7 (-15 -3766 ((-665 (-391)) (-980 (-420 (-577))) (-391))) (-15 -3766 ((-665 (-391)) (-980 (-577)) (-391))) (-15 -4059 ((-665 (-665 (-391))) (-665 (-980 (-577))) (-665 (-1206)) (-391)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 75 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-2809 (($ $) NIL T ELT) (($ $ (-949)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) 70 T ELT)) (-2762 (($) NIL T CONST)) (-2312 (((-3 $ "failed") (-1202 $) (-949) (-885)) NIL T ELT) (((-3 $ "failed") (-1202 $) (-949)) 55 T ELT)) (-2817 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 116 T ELT) (((-3 (-577) "failed") $) NIL (-2229 (|has| (-420 (-577)) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT)) (-3514 (((-420 (-577)) $) 17 (|has| (-420 (-577)) (-1068 (-420 (-577)))) ELT) (((-420 (-577)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-577) $) NIL (-2229 (|has| (-420 (-577)) (-1068 (-577))) (|has| |#1| (-1068 (-577)))) ELT)) (-1973 (($ $ (-885)) 47 T ELT)) (-4439 (($ $ (-885)) 48 T ELT)) (-3152 (($ $ $) NIL T ELT)) (-3440 (((-420 (-577)) $ $) 21 T ELT)) (-4281 (((-3 $ "failed") $) 88 T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-2785 (((-112) $) 66 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL T ELT)) (-1434 (((-112) $) 69 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-4001 (((-3 (-1202 $) "failed") $) 83 T ELT)) (-2530 (((-3 (-885) "failed") $) 82 T ELT)) (-2316 (((-3 (-1202 $) "failed") $) 80 T ELT)) (-2730 (((-3 (-1091 $ (-1202 $)) "failed") $) 78 T ELT)) (-2388 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 89 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2410 (((-885) $) 87 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) 63 T ELT) (($ (-420 (-577))) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-3908 (((-420 (-577)) $ $) 27 T ELT)) (-3634 (((-665 $) (-1202 $)) 61 T ELT) (((-665 $) (-1202 (-420 (-577)))) NIL T ELT) (((-665 $) (-1202 (-577))) NIL T ELT) (((-665 $) (-980 $)) NIL T ELT) (((-665 $) (-980 (-420 (-577)))) NIL T ELT) (((-665 $) (-980 (-577))) NIL T ELT)) (-1546 (($ (-1091 $ (-1202 $)) (-885)) 46 T ELT)) (-3385 (($ $) 22 T ELT)) (-2367 (($) 32 T CONST)) (-2378 (($) 39 T CONST)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 76 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 24 T ELT)) (-2494 (($ $ $) 37 T ELT)) (-2483 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-2471 (($ $ $) 112 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ (-577) $) 98 T ELT) (($ $ (-577)) NIL T ELT) (($ (-420 (-577)) $) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1054 |#1|) (-13 (-1042) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -1546 ($ (-1091 $ (-1202 $)) (-885))) (-15 -2730 ((-3 (-1091 $ (-1202 $)) "failed") $)) (-15 -3440 ((-420 (-577)) $ $)))) (-13 (-869) (-375) (-1052))) (T -1054)) -((-1546 (*1 *1 *2 *3) (-12 (-5 *2 (-1091 (-1054 *4) (-1202 (-1054 *4)))) (-5 *3 (-885)) (-5 *1 (-1054 *4)) (-4 *4 (-13 (-869) (-375) (-1052))))) (-2730 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091 (-1054 *3) (-1202 (-1054 *3)))) (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-375) (-1052))))) (-3440 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-375) (-1052)))))) -(-13 (-1042) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -1546 ($ (-1091 $ (-1202 $)) (-885))) (-15 -2730 ((-3 (-1091 $ (-1202 $)) "failed") $)) (-15 -3440 ((-420 (-577)) $ $)))) -((-3850 (((-2 (|:| -3503 |#2|) (|:| -4422 (-665 |#1|))) |#2| (-665 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-1055 |#1| |#2|) (-10 -7 (-15 -3850 (|#2| |#2| |#1|)) (-15 -3850 ((-2 (|:| -3503 |#2|) (|:| -4422 (-665 |#1|))) |#2| (-665 |#1|)))) (-375) (-677 |#1|)) (T -1055)) -((-3850 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -3503 *3) (|:| -4422 (-665 *5)))) (-5 *1 (-1055 *5 *3)) (-5 *4 (-665 *5)) (-4 *3 (-677 *5)))) (-3850 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-1055 *3 *2)) (-4 *2 (-677 *3))))) -(-10 -7 (-15 -3850 (|#2| |#2| |#1|)) (-15 -3850 ((-2 (|:| -3503 |#2|) (|:| -4422 (-665 |#1|))) |#2| (-665 |#1|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-1683 ((|#1| $ |#1|) 14 T ELT)) (-2589 ((|#1| $ |#1|) 12 T ELT)) (-1889 (($ |#1|) 10 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2435 ((|#1| $) 11 T ELT)) (-2824 ((|#1| $) 13 T ELT)) (-2410 (((-885) $) 21 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2383 (((-112) $ $) 9 T ELT))) -(((-1056 |#1|) (-13 (-1247) (-10 -8 (-15 -1889 ($ |#1|)) (-15 -2435 (|#1| $)) (-15 -2589 (|#1| $ |#1|)) (-15 -2824 (|#1| $)) (-15 -1683 (|#1| $ |#1|)) (-15 -2383 ((-112) $ $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) (-1247)) (T -1056)) -((-1889 (*1 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-2435 (*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-2589 (*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-2824 (*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-1683 (*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) (-2383 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1056 *3)) (-4 *3 (-1247))))) -(-13 (-1247) (-10 -8 (-15 -1889 ($ |#1|)) (-15 -2435 (|#1| $)) (-15 -2589 (|#1| $ |#1|)) (-15 -2824 (|#1| $)) (-15 -1683 (|#1| $ |#1|)) (-15 -2383 ((-112) $ $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-4202 (((-665 $) (-665 |#4|)) 118 T ELT) (((-665 $) (-665 |#4|) (-112)) 119 T ELT) (((-665 $) (-665 |#4|) (-112) (-112)) 117 T ELT) (((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112)) 120 T ELT)) (-2948 (((-665 |#3|) $) NIL T ELT)) (-3294 (((-112) $) NIL T ELT)) (-1567 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1988 ((|#4| |#4| $) NIL T ELT)) (-4456 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| $) 112 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4232 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 66 T ELT)) (-2762 (($) NIL T CONST)) (-1760 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3514 (($ (-665 |#4|)) NIL T ELT)) (-4197 (((-3 $ "failed") $) 45 T ELT)) (-3415 ((|#4| |#4| $) 69 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-2736 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2981 ((|#4| |#4| $) NIL T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) NIL T ELT)) (-3820 (((-112) |#4| $) NIL T ELT)) (-3389 (((-112) |#4| $) NIL T ELT)) (-1566 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2371 (((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112)) 133 T ELT)) (-2728 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1669 ((|#3| $) 38 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#4|) $) 19 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2850 (((-665 |#3|) $) NIL T ELT)) (-2746 (((-112) |#3| $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2334 (((-3 |#4| (-665 $)) |#4| |#4| $) NIL T ELT)) (-2212 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| |#4| $) 110 T ELT)) (-2756 (((-3 |#4| "failed") $) 42 T ELT)) (-2510 (((-665 $) |#4| $) 93 T ELT)) (-2173 (((-3 (-112) (-665 $)) |#4| $) NIL T ELT)) (-4049 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) |#4| $) 103 T ELT) (((-112) |#4| $) 64 T ELT)) (-3959 (((-665 $) |#4| $) 115 T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 116 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT)) (-1358 (((-665 $) (-665 |#4|) (-112) (-112) (-112)) 128 T ELT)) (-4213 (($ |#4| $) 82 T ELT) (($ (-665 |#4|) $) 83 T ELT) (((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79 T ELT)) (-2327 (((-665 |#4|) $) NIL T ELT)) (-2982 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1502 ((|#4| |#4| $) NIL T ELT)) (-2220 (((-112) $ $) NIL T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4058 ((|#4| |#4| $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-3 |#4| "failed") $) 40 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-4013 (($ $ |#4|) NIL T ELT) (((-665 $) |#4| $) 95 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 89 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 17 T ELT)) (-3414 (($) 14 T ELT)) (-2776 (((-792) $) NIL T ELT)) (-4323 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 22 T ELT)) (-1799 (($ $ |#3|) 52 T ELT)) (-3139 (($ $ |#3|) 54 T ELT)) (-3680 (($ $) NIL T ELT)) (-1600 (($ $ |#3|) NIL T ELT)) (-2410 (((-885) $) 35 T ELT) (((-665 |#4|) $) 46 T ELT)) (-3050 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-1338 (((-665 $) |#4| $) 92 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) NIL T ELT)) (-2214 (((-112) |#4| $) NIL T ELT)) (-2306 (((-112) |#3| $) 65 T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1057 |#1| |#2| |#3| |#4|) (-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4213 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1358 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -2371 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1057)) -((-4213 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *3))) (-5 *1 (-1057 *5 *6 *7 *3)) (-4 *3 (-1095 *5 *6 *7)))) (-4202 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-4202 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-1358 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) (-2371 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-665 *8)) (|:| |towers| (-665 (-1057 *5 *6 *7 *8))))) (-5 *1 (-1057 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) -(-13 (-1101 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4213 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1358 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -2371 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) -((-2994 (((-665 (-710 |#1|)) (-665 (-710 |#1|))) 70 T ELT) (((-710 |#1|) (-710 |#1|)) 69 T ELT) (((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-665 (-710 |#1|))) 68 T ELT) (((-710 |#1|) (-710 |#1|) (-710 |#1|)) 65 T ELT)) (-4154 (((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949)) 63 T ELT) (((-710 |#1|) (-710 |#1|) (-949)) 62 T ELT)) (-3521 (((-665 (-710 (-577))) (-665 (-665 (-577)))) 81 T ELT) (((-665 (-710 (-577))) (-665 (-933 (-577))) (-577)) 80 T ELT) (((-710 (-577)) (-665 (-577))) 77 T ELT) (((-710 (-577)) (-933 (-577)) (-577)) 75 T ELT)) (-2112 (((-710 (-980 |#1|)) (-792)) 95 T ELT)) (-1362 (((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949)) 49 (|has| |#1| (-6 (-4501 "*"))) ELT) (((-710 |#1|) (-710 |#1|) (-949)) 47 (|has| |#1| (-6 (-4501 "*"))) ELT))) -(((-1058 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1362 ((-710 |#1|) (-710 |#1|) (-949))) |%noBranch|) (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1362 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) |%noBranch|) (-15 -2112 ((-710 (-980 |#1|)) (-792))) (-15 -4154 ((-710 |#1|) (-710 |#1|) (-949))) (-15 -4154 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) (-15 -2994 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2994 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -2994 ((-710 |#1|) (-710 |#1|))) (-15 -2994 ((-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3521 ((-710 (-577)) (-933 (-577)) (-577))) (-15 -3521 ((-710 (-577)) (-665 (-577)))) (-15 -3521 ((-665 (-710 (-577))) (-665 (-933 (-577))) (-577))) (-15 -3521 ((-665 (-710 (-577))) (-665 (-665 (-577)))))) (-1079)) (T -1058)) -((-3521 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-577)))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-1058 *4)) (-4 *4 (-1079)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-933 (-577)))) (-5 *4 (-577)) (-5 *2 (-665 (-710 *4))) (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1058 *4)) (-4 *4 (-1079)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-933 (-577))) (-5 *4 (-577)) (-5 *2 (-710 *4)) (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-2994 (*1 *2 *2 *2) (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-2994 (*1 *2 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) (-4154 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) (-4154 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-710 (-980 *4))) (-5 *1 (-1058 *4)) (-4 *4 (-1079)))) (-1362 (*1 *2 *2 *3) (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) (|has| *4 (-6 (-4501 "*"))) (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) (-1362 (*1 *2 *2 *3) (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (|has| *4 (-6 (-4501 "*"))) (-4 *4 (-1079)) (-5 *1 (-1058 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1362 ((-710 |#1|) (-710 |#1|) (-949))) |%noBranch|) (IF (|has| |#1| (-6 (-4501 "*"))) (-15 -1362 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) |%noBranch|) (-15 -2112 ((-710 (-980 |#1|)) (-792))) (-15 -4154 ((-710 |#1|) (-710 |#1|) (-949))) (-15 -4154 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-949))) (-15 -2994 ((-710 |#1|) (-710 |#1|) (-710 |#1|))) (-15 -2994 ((-665 (-710 |#1|)) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -2994 ((-710 |#1|) (-710 |#1|))) (-15 -2994 ((-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3521 ((-710 (-577)) (-933 (-577)) (-577))) (-15 -3521 ((-710 (-577)) (-665 (-577)))) (-15 -3521 ((-665 (-710 (-577))) (-665 (-933 (-577))) (-577))) (-15 -3521 ((-665 (-710 (-577))) (-665 (-665 (-577)))))) -((-4223 (((-710 |#1|) (-665 (-710 |#1|)) (-1297 |#1|)) 70 (|has| |#1| (-318)) ELT)) (-2574 (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 (-1297 |#1|))) 110 (|has| |#1| (-375)) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 |#1|)) 117 (|has| |#1| (-375)) ELT)) (-2516 (((-1297 |#1|) (-665 (-1297 |#1|)) (-577)) 135 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT)) (-2704 (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-949)) 123 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112)) 122 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|))) 121 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT) (((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112) (-577) (-577)) 120 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))) ELT)) (-4310 (((-112) (-665 (-710 |#1|))) 103 (|has| |#1| (-375)) ELT) (((-112) (-665 (-710 |#1|)) (-577)) 106 (|has| |#1| (-375)) ELT)) (-3598 (((-1297 (-1297 |#1|)) (-665 (-710 |#1|)) (-1297 |#1|)) 67 (|has| |#1| (-318)) ELT)) (-3663 (((-710 |#1|) (-665 (-710 |#1|)) (-710 |#1|)) 47 T ELT)) (-4207 (((-710 |#1|) (-1297 (-1297 |#1|))) 40 T ELT)) (-3102 (((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-577)) 94 (|has| |#1| (-375)) ELT) (((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|))) 93 (|has| |#1| (-375)) ELT) (((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-112) (-577)) 101 (|has| |#1| (-375)) ELT))) -(((-1059 |#1|) (-10 -7 (-15 -4207 ((-710 |#1|) (-1297 (-1297 |#1|)))) (-15 -3663 ((-710 |#1|) (-665 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -3598 ((-1297 (-1297 |#1|)) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -4223 ((-710 |#1|) (-665 (-710 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3102 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-112) (-577))) (-15 -3102 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3102 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-577))) (-15 -4310 ((-112) (-665 (-710 |#1|)) (-577))) (-15 -4310 ((-112) (-665 (-710 |#1|)))) (-15 -2574 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -2574 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112) (-577) (-577))) (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)))) (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112))) (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-949))) (-15 -2516 ((-1297 |#1|) (-665 (-1297 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) (-1079)) (T -1059)) -((-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1297 *5))) (-5 *4 (-577)) (-5 *2 (-1297 *5)) (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-2704 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1079)) (-5 *2 (-665 (-665 (-710 *4)))) (-5 *1 (-1059 *4)) (-5 *3 (-665 (-710 *4))))) (-2704 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) (-4 *6 (-1079)) (-5 *2 (-665 (-665 (-710 *6)))) (-5 *1 (-1059 *6)) (-5 *3 (-665 (-710 *6))))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) (-5 *3 (-665 (-710 *5))))) (-4310 (*1 *2 *3) (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) (-4 *4 (-1079)) (-5 *2 (-112)) (-5 *1 (-1059 *4)))) (-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-4 *5 (-375)) (-4 *5 (-1079)) (-5 *2 (-112)) (-5 *1 (-1059 *5)))) (-3102 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-5 *2 (-710 *5)) (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-1079)))) (-3102 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-5 *1 (-1059 *4)) (-4 *4 (-375)) (-4 *4 (-1079)))) (-3102 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-665 (-710 *6))) (-5 *4 (-112)) (-5 *5 (-577)) (-5 *2 (-710 *6)) (-5 *1 (-1059 *6)) (-4 *6 (-375)) (-4 *6 (-1079)))) (-4223 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-318)) (-4 *5 (-1079)) (-5 *2 (-710 *5)) (-5 *1 (-1059 *5)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-710 *5))) (-4 *5 (-318)) (-4 *5 (-1079)) (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1059 *5)) (-5 *4 (-1297 *5)))) (-3663 (*1 *2 *3 *2) (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-4 *4 (-1079)) (-5 *1 (-1059 *4)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1079)) (-5 *2 (-710 *4)) (-5 *1 (-1059 *4))))) -(-10 -7 (-15 -4207 ((-710 |#1|) (-1297 (-1297 |#1|)))) (-15 -3663 ((-710 |#1|) (-665 (-710 |#1|)) (-710 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -3598 ((-1297 (-1297 |#1|)) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -4223 ((-710 |#1|) (-665 (-710 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3102 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-112) (-577))) (-15 -3102 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -3102 ((-710 |#1|) (-665 (-710 |#1|)) (-665 (-710 |#1|)) (-577))) (-15 -4310 ((-112) (-665 (-710 |#1|)) (-577))) (-15 -4310 ((-112) (-665 (-710 |#1|)))) (-15 -2574 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 |#1|))) (-15 -2574 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112) (-577) (-577))) (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)))) (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-112))) (-15 -2704 ((-665 (-665 (-710 |#1|))) (-665 (-710 |#1|)) (-949))) (-15 -2516 ((-1297 |#1|) (-665 (-1297 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) -((-4095 ((|#1| (-949) |#1|) 18 T ELT))) -(((-1060 |#1|) (-10 -7 (-15 -4095 (|#1| (-949) |#1|))) (-13 (-1130) (-10 -8 (-15 -2471 ($ $ $))))) (T -1060)) -((-4095 (*1 *2 *3 *2) (-12 (-5 *3 (-949)) (-5 *1 (-1060 *2)) (-4 *2 (-13 (-1130) (-10 -8 (-15 -2471 ($ $ $)))))))) -(-10 -7 (-15 -4095 (|#1| (-949) |#1|))) -((-3983 (((-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577))))))) (-710 (-420 (-980 (-577))))) 67 T ELT)) (-4009 (((-665 (-710 (-327 (-577)))) (-327 (-577)) (-710 (-420 (-980 (-577))))) 52 T ELT)) (-4007 (((-665 (-327 (-577))) (-710 (-420 (-980 (-577))))) 45 T ELT)) (-4122 (((-665 (-710 (-327 (-577)))) (-710 (-420 (-980 (-577))))) 85 T ELT)) (-2292 (((-710 (-327 (-577))) (-710 (-327 (-577)))) 38 T ELT)) (-2074 (((-665 (-710 (-327 (-577)))) (-665 (-710 (-327 (-577))))) 74 T ELT)) (-4121 (((-3 (-710 (-327 (-577))) "failed") (-710 (-420 (-980 (-577))))) 82 T ELT))) -(((-1061) (-10 -7 (-15 -3983 ((-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577))))))) (-710 (-420 (-980 (-577)))))) (-15 -4009 ((-665 (-710 (-327 (-577)))) (-327 (-577)) (-710 (-420 (-980 (-577)))))) (-15 -4007 ((-665 (-327 (-577))) (-710 (-420 (-980 (-577)))))) (-15 -4121 ((-3 (-710 (-327 (-577))) "failed") (-710 (-420 (-980 (-577)))))) (-15 -2292 ((-710 (-327 (-577))) (-710 (-327 (-577))))) (-15 -2074 ((-665 (-710 (-327 (-577)))) (-665 (-710 (-327 (-577)))))) (-15 -4122 ((-665 (-710 (-327 (-577)))) (-710 (-420 (-980 (-577)))))))) (T -1061)) -((-4122 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061)))) (-4121 (*1 *2 *3) (|partial| -12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-327 (-577)))) (-5 *1 (-1061)))) (-4009 (*1 *2 *3 *4) (-12 (-5 *4 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)) (-5 *3 (-327 (-577))))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577)))))))) (-5 *1 (-1061))))) -(-10 -7 (-15 -3983 ((-665 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-665 (-710 (-327 (-577))))))) (-710 (-420 (-980 (-577)))))) (-15 -4009 ((-665 (-710 (-327 (-577)))) (-327 (-577)) (-710 (-420 (-980 (-577)))))) (-15 -4007 ((-665 (-327 (-577))) (-710 (-420 (-980 (-577)))))) (-15 -4121 ((-3 (-710 (-327 (-577))) "failed") (-710 (-420 (-980 (-577)))))) (-15 -2292 ((-710 (-327 (-577))) (-710 (-327 (-577))))) (-15 -2074 ((-665 (-710 (-327 (-577)))) (-665 (-710 (-327 (-577)))))) (-15 -4122 ((-665 (-710 (-327 (-577)))) (-710 (-420 (-980 (-577))))))) -((-1926 ((|#1| |#1| (-949)) 18 T ELT))) -(((-1062 |#1|) (-10 -7 (-15 -1926 (|#1| |#1| (-949)))) (-13 (-1130) (-10 -8 (-15 * ($ $ $))))) (T -1062)) -((-1926 (*1 *2 *2 *3) (-12 (-5 *3 (-949)) (-5 *1 (-1062 *2)) (-4 *2 (-13 (-1130) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -1926 (|#1| |#1| (-949)))) -((-2410 ((|#1| (-323)) 11 T ELT) (((-1302) |#1|) 9 T ELT))) -(((-1063 |#1|) (-10 -7 (-15 -2410 ((-1302) |#1|)) (-15 -2410 (|#1| (-323)))) (-1247)) (T -1063)) -((-2410 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1063 *2)) (-4 *2 (-1247)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1302)) (-5 *1 (-1063 *3)) (-4 *3 (-1247))))) -(-10 -7 (-15 -2410 ((-1302) |#1|)) (-15 -2410 (|#1| (-323)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2511 (($ |#4|) 25 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2500 ((|#4| $) 27 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 46 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3234 (((-792)) 43 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 21 T CONST)) (-2378 (($) 23 T CONST)) (-2383 (((-112) $ $) 40 T ELT)) (-2483 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 29 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1064 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2511 ($ |#4|)) (-15 -2410 ($ |#4|)) (-15 -2500 (|#4| $)))) (-375) (-814) (-870) (-977 |#1| |#2| |#3|) (-665 |#4|)) (T -1064)) -((-2511 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) (-14 *6 (-665 *2)))) (-2410 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) (-14 *6 (-665 *2)))) (-2500 (*1 *2 *1) (-12 (-4 *2 (-977 *3 *4 *5)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-14 *6 (-665 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2511 ($ |#4|)) (-15 -2410 ($ |#4|)) (-15 -2500 (|#4| $)))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL T ELT)) (-3425 (((-1302) $ (-1206) (-1206)) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2335 (((-112) (-112)) 43 T ELT)) (-2834 (((-112) (-112)) 42 T ELT)) (-2589 (((-52) $ (-1206) (-52)) NIL T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 (-52) "failed") (-1206) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-52) "failed") (-1206) $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 (((-52) $ (-1206) (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3381 (((-52) $ (-1206)) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-1962 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-52) (-1130)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT)) (-3242 (((-665 (-1206)) $) 37 T ELT)) (-2404 (((-112) (-1206) $) NIL T ELT)) (-3398 (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL T ELT)) (-3887 (((-665 (-1206)) $) NIL T ELT)) (-1593 (((-112) (-1206) $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-52) (-1130)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT)) (-4188 (((-52) $) NIL (|has| (-1206) (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) "failed") (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL T ELT)) (-3482 (($ $ (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-665 (-52)) (-665 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-665 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-3485 (((-665 (-52)) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 (((-52) $ (-1206)) 39 T ELT) (((-52) $ (-1206) (-52)) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (((-792) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT) (((-792) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL T ELT)) (-2410 (((-885) $) 41 (-2229 (|has| (-52) (-631 (-885))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1065) (-13 (-1223 (-1206) (-52)) (-10 -7 (-15 -2335 ((-112) (-112))) (-15 -2834 ((-112) (-112))) (-6 -4499)))) (T -1065)) -((-2335 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065))))) -(-13 (-1223 (-1206) (-52)) (-10 -7 (-15 -2335 ((-112) (-112))) (-15 -2834 ((-112) (-112))) (-6 -4499))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2076 (((-1165) $) 9 T ELT)) (-2410 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1066) (-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $))))) (T -1066)) -((-2076 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1066))))) -(-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)))) -((-3514 ((|#2| $) 10 T ELT))) -(((-1067 |#1| |#2|) (-10 -8 (-15 -3514 (|#2| |#1|))) (-1068 |#2|) (-1247)) (T -1067)) -NIL -(-10 -8 (-15 -3514 (|#2| |#1|))) -((-2817 (((-3 |#1| "failed") $) 9 T ELT)) (-3514 ((|#1| $) 8 T ELT)) (-2410 (($ |#1|) 6 T ELT))) -(((-1068 |#1|) (-141) (-1247)) (T -1068)) -((-2817 (*1 *2 *1) (|partial| -12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1247))))) -(-13 (-634 |t#1|) (-10 -8 (-15 -2817 ((-3 |t#1| "failed") $)) (-15 -3514 (|t#1| $)))) -(((-634 |#1|) . T)) -((-1674 (((-665 (-665 (-305 (-420 (-980 |#2|))))) (-665 (-980 |#2|)) (-665 (-1206))) 38 T ELT))) -(((-1069 |#1| |#2|) (-10 -7 (-15 -1674 ((-665 (-665 (-305 (-420 (-980 |#2|))))) (-665 (-980 |#2|)) (-665 (-1206))))) (-569) (-13 (-569) (-1068 |#1|))) (T -1069)) -((-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-4 *6 (-13 (-569) (-1068 *5))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *6)))))) (-5 *1 (-1069 *5 *6))))) -(-10 -7 (-15 -1674 ((-665 (-665 (-305 (-420 (-980 |#2|))))) (-665 (-980 |#2|)) (-665 (-1206))))) -((-2811 (((-391)) 17 T ELT)) (-3897 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-4208 (((-1 (-391)) (-792)) 48 T ELT)) (-3497 (((-391)) 37 T ELT)) (-3084 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-2937 (((-391)) 29 T ELT)) (-3374 (((-1 (-391)) (-391)) 30 T ELT)) (-2003 (((-391) (-792)) 43 T ELT)) (-3622 (((-1 (-391)) (-792)) 44 T ELT)) (-2154 (((-1 (-391)) (-792) (-792)) 47 T ELT)) (-3587 (((-1 (-391)) (-792) (-792)) 45 T ELT))) -(((-1070) (-10 -7 (-15 -2811 ((-391))) (-15 -3497 ((-391))) (-15 -2937 ((-391))) (-15 -2003 ((-391) (-792))) (-15 -3897 ((-1 (-391)) (-391) (-391))) (-15 -3084 ((-1 (-391)) (-391) (-391))) (-15 -3374 ((-1 (-391)) (-391))) (-15 -3622 ((-1 (-391)) (-792))) (-15 -3587 ((-1 (-391)) (-792) (-792))) (-15 -2154 ((-1 (-391)) (-792) (-792))) (-15 -4208 ((-1 (-391)) (-792))))) (T -1070)) -((-4208 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-2154 (*1 *2 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-3622 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) (-3374 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) (-3084 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) (-3897 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-391)) (-5 *1 (-1070)))) (-2937 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070)))) (-3497 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070)))) (-2811 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) -(-10 -7 (-15 -2811 ((-391))) (-15 -3497 ((-391))) (-15 -2937 ((-391))) (-15 -2003 ((-391) (-792))) (-15 -3897 ((-1 (-391)) (-391) (-391))) (-15 -3084 ((-1 (-391)) (-391) (-391))) (-15 -3374 ((-1 (-391)) (-391))) (-15 -3622 ((-1 (-391)) (-792))) (-15 -3587 ((-1 (-391)) (-792) (-792))) (-15 -2154 ((-1 (-391)) (-792) (-792))) (-15 -4208 ((-1 (-391)) (-792)))) -((-2799 (((-431 |#1|) |#1|) 33 T ELT))) -(((-1071 |#1|) (-10 -7 (-15 -2799 ((-431 |#1|) |#1|))) (-1273 (-420 (-980 (-577))))) (T -1071)) -((-2799 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-1273 (-420 (-980 (-577)))))))) -(-10 -7 (-15 -2799 ((-431 |#1|) |#1|))) -((-3612 (((-420 (-431 (-980 |#1|))) (-420 (-980 |#1|))) 14 T ELT))) -(((-1072 |#1|) (-10 -7 (-15 -3612 ((-420 (-431 (-980 |#1|))) (-420 (-980 |#1|))))) (-318)) (T -1072)) -((-3612 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-318)) (-5 *2 (-420 (-431 (-980 *4)))) (-5 *1 (-1072 *4))))) -(-10 -7 (-15 -3612 ((-420 (-431 (-980 |#1|))) (-420 (-980 |#1|))))) -((-2948 (((-665 (-1206)) (-420 (-980 |#1|))) 17 T ELT)) (-4419 (((-420 (-1202 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206)) 24 T ELT)) (-2935 (((-420 (-980 |#1|)) (-420 (-1202 (-420 (-980 |#1|)))) (-1206)) 26 T ELT)) (-2505 (((-3 (-1206) "failed") (-420 (-980 |#1|))) 20 T ELT)) (-3362 (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-305 (-420 (-980 |#1|))))) 32 T ELT) (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|)))) 33 T ELT) (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-1206)) (-665 (-420 (-980 |#1|)))) 28 T ELT) (((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|))) 29 T ELT)) (-2410 (((-420 (-980 |#1|)) |#1|) 11 T ELT))) -(((-1073 |#1|) (-10 -7 (-15 -2948 ((-665 (-1206)) (-420 (-980 |#1|)))) (-15 -2505 ((-3 (-1206) "failed") (-420 (-980 |#1|)))) (-15 -4419 ((-420 (-1202 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -2935 ((-420 (-980 |#1|)) (-420 (-1202 (-420 (-980 |#1|)))) (-1206))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-1206)) (-665 (-420 (-980 |#1|))))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -2410 ((-420 (-980 |#1|)) |#1|))) (-569)) (T -1073)) -((-2410 (*1 *2 *3) (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-569)))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) (-5 *2 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *1 (-1073 *4)))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-5 *2 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *1 (-1073 *4)))) (-3362 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-665 (-1206))) (-5 *4 (-665 (-420 (-980 *5)))) (-5 *2 (-420 (-980 *5))) (-4 *5 (-569)) (-5 *1 (-1073 *5)))) (-3362 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-1073 *4)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1202 (-420 (-980 *5))))) (-5 *4 (-1206)) (-5 *2 (-420 (-980 *5))) (-5 *1 (-1073 *5)) (-4 *5 (-569)))) (-4419 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-569)) (-5 *2 (-420 (-1202 (-420 (-980 *5))))) (-5 *1 (-1073 *5)) (-5 *3 (-420 (-980 *5))))) (-2505 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-1206)) (-5 *1 (-1073 *4)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-1206))) (-5 *1 (-1073 *4))))) -(-10 -7 (-15 -2948 ((-665 (-1206)) (-420 (-980 |#1|)))) (-15 -2505 ((-3 (-1206) "failed") (-420 (-980 |#1|)))) (-15 -4419 ((-420 (-1202 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -2935 ((-420 (-980 |#1|)) (-420 (-1202 (-420 (-980 |#1|)))) (-1206))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-1206)) (-665 (-420 (-980 |#1|))))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-305 (-420 (-980 |#1|))))) (-15 -3362 ((-420 (-980 |#1|)) (-420 (-980 |#1|)) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -2410 ((-420 (-980 |#1|)) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2762 (($) 18 T CONST)) (-3324 ((|#1| $) 23 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4319 ((|#1| $) 22 T ELT)) (-3797 ((|#1|) 20 T CONST)) (-2410 (((-885) $) 12 T ELT)) (-1382 ((|#1| $) 21 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) -(((-1074 |#1|) (-141) (-23)) (T -1074)) -((-3324 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-4319 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-1382 (*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23)))) (-3797 (*1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3324 (|t#1| $)) (-15 -4319 (|t#1| $)) (-15 -1382 (|t#1| $)) (-15 -3797 (|t#1|) -1528))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2124 (($) 25 T CONST)) (-2762 (($) 18 T CONST)) (-3324 ((|#1| $) 23 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4319 ((|#1| $) 22 T ELT)) (-3797 ((|#1|) 20 T CONST)) (-2410 (((-885) $) 12 T ELT)) (-1382 ((|#1| $) 21 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT))) -(((-1075 |#1|) (-141) (-23)) (T -1075)) -((-2124 (*1 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) -(-13 (-1074 |t#1|) (-10 -8 (-15 -2124 ($) -1528))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-631 (-885)) . T) ((-1074 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 (-801 |#1| (-887 |#2|)))))) (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-4202 (((-665 $) (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112)) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112) (-112)) NIL T ELT)) (-2948 (((-665 (-887 |#2|)) $) NIL T ELT)) (-3294 (((-112) $) NIL T ELT)) (-1567 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1790 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-1988 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-4456 (((-665 (-2 (|:| |val| (-801 |#1| (-887 |#2|))) (|:| -4317 $))) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ (-887 |#2|)) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4232 (($ (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-801 |#1| (-887 |#2|)) "failed") $ (-887 |#2|)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1760 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3480 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))) $ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-2450 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-4091 (((-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-3514 (($ (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-4197 (((-3 $ "failed") $) NIL T ELT)) (-3415 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT)) (-2736 (($ (-801 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-801 |#1| (-887 |#2|))) (|:| |den| |#1|)) (-801 |#1| (-887 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-4002 (((-112) (-801 |#1| (-887 |#2|)) $ (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-2981 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2511 (((-801 |#1| (-887 |#2|)) (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $ (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (((-801 |#1| (-887 |#2|)) (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $ (-801 |#1| (-887 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-801 |#1| (-887 |#2|)) (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-3717 (((-2 (|:| -1624 (-665 (-801 |#1| (-887 |#2|)))) (|:| -2258 (-665 (-801 |#1| (-887 |#2|))))) $) NIL T ELT)) (-3820 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-3389 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-1566 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-2728 (((-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-1669 (((-887 |#2|) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-801 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT)) (-3437 (($ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-2850 (((-665 (-887 |#2|)) $) NIL T ELT)) (-2746 (((-112) (-887 |#2|) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2334 (((-3 (-801 |#1| (-887 |#2|)) (-665 $)) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2212 (((-665 (-2 (|:| |val| (-801 |#1| (-887 |#2|))) (|:| -4317 $))) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2756 (((-3 (-801 |#1| (-887 |#2|)) "failed") $) NIL T ELT)) (-2510 (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2173 (((-3 (-112) (-665 $)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-4049 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-3959 (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-665 $)) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) (-665 $)) NIL T ELT)) (-4213 (($ (-801 |#1| (-887 |#2|)) $) NIL T ELT) (($ (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-2327 (((-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-2982 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-1502 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2220 (((-112) $ $) NIL T ELT)) (-4363 (((-2 (|:| |num| (-801 |#1| (-887 |#2|))) (|:| |den| |#1|)) (-801 |#1| (-887 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-2624 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-4058 (((-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-3 (-801 |#1| (-887 |#2|)) "failed") $) NIL T ELT)) (-1520 (((-3 (-801 |#1| (-887 |#2|)) "failed") (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-3276 (((-3 $ "failed") $ (-801 |#1| (-887 |#2|))) NIL T ELT)) (-4013 (($ $ (-801 |#1| (-887 |#2|))) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) (-665 $)) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-665 $)) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-801 |#1| (-887 |#2|))) (-665 (-801 |#1| (-887 |#2|)))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ $ (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ $ (-305 (-801 |#1| (-887 |#2|)))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (($ $ (-665 (-305 (-801 |#1| (-887 |#2|))))) NIL (-12 (|has| (-801 |#1| (-887 |#2|)) (-320 (-801 |#1| (-887 |#2|)))) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2776 (((-792) $) NIL T ELT)) (-4323 (((-792) (-801 |#1| (-887 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-801 |#1| (-887 |#2|)) (-1130))) ELT) (((-792) (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-801 |#1| (-887 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-1799 (($ $ (-887 |#2|)) NIL T ELT)) (-3139 (($ $ (-887 |#2|)) NIL T ELT)) (-3680 (($ $) NIL T ELT)) (-1600 (($ $ (-887 |#2|)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (((-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT)) (-3050 (((-792) $) NIL (|has| (-887 |#2|) (-380)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 (-801 |#1| (-887 |#2|))))) "failed") (-665 (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 (-801 |#1| (-887 |#2|))))) "failed") (-665 (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|))) (-1 (-112) (-801 |#1| (-887 |#2|)) (-801 |#1| (-887 |#2|)))) NIL T ELT)) (-3441 (((-112) $ (-1 (-112) (-801 |#1| (-887 |#2|)) (-665 (-801 |#1| (-887 |#2|))))) NIL T ELT)) (-1338 (((-665 $) (-801 |#1| (-887 |#2|)) $) NIL T ELT) (((-665 $) (-801 |#1| (-887 |#2|)) (-665 $)) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) $) NIL T ELT) (((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-665 $)) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-801 |#1| (-887 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 (-887 |#2|)) $) NIL T ELT)) (-2214 (((-112) (-801 |#1| (-887 |#2|)) $) NIL T ELT)) (-2306 (((-112) (-887 |#2|) $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1076 |#1| |#2|) (-13 (-1101 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) (-10 -8 (-15 -4202 ((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112) (-112))))) (-465) (-665 (-1206))) (T -1076)) -((-4202 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1076 *5 *6))))) -(-13 (-1101 |#1| (-544 (-887 |#2|)) (-887 |#2|) (-801 |#1| (-887 |#2|))) (-10 -8 (-15 -4202 ((-665 $) (-665 (-801 |#1| (-887 |#2|))) (-112) (-112))))) -((-3897 (((-1 (-577)) (-1124 (-577))) 32 T ELT)) (-4219 (((-577) (-577) (-577) (-577) (-577)) 29 T ELT)) (-3044 (((-1 (-577)) |RationalNumber|) NIL T ELT)) (-1485 (((-1 (-577)) |RationalNumber|) NIL T ELT)) (-3267 (((-1 (-577)) (-577) |RationalNumber|) NIL T ELT))) -(((-1077) (-10 -7 (-15 -3897 ((-1 (-577)) (-1124 (-577)))) (-15 -3267 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3044 ((-1 (-577)) |RationalNumber|)) (-15 -1485 ((-1 (-577)) |RationalNumber|)) (-15 -4219 ((-577) (-577) (-577) (-577) (-577))))) (T -1077)) -((-4219 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1077)))) (-1485 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)))) (-3044 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)) (-5 *3 (-577)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1124 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) -(-10 -7 (-15 -3897 ((-1 (-577)) (-1124 (-577)))) (-15 -3267 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3044 ((-1 (-577)) |RationalNumber|)) (-15 -1485 ((-1 (-577)) |RationalNumber|)) (-15 -4219 ((-577) (-577) (-577) (-577) (-577)))) -((-2410 (((-885) $) NIL T ELT) (($ (-577)) 10 T ELT))) -(((-1078 |#1|) (-10 -8 (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-1079)) (T -1078)) -NIL -(-10 -8 (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-1079) (-141)) (T -1079)) -((-3234 (*1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-792))))) -(-13 (-1088) (-747) (-669 $) (-634 (-577)) (-10 -7 (-15 -3234 ((-792)) -1528) (-6 -4496))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-634 (-577)) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-747) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-2990 (((-420 (-980 |#2|)) (-665 |#2|) (-665 |#2|) (-792) (-792)) 54 T ELT))) -(((-1080 |#1| |#2|) (-10 -7 (-15 -2990 ((-420 (-980 |#2|)) (-665 |#2|) (-665 |#2|) (-792) (-792)))) (-1206) (-375)) (T -1080)) -((-2990 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-792)) (-4 *6 (-375)) (-5 *2 (-420 (-980 *6))) (-5 *1 (-1080 *5 *6)) (-14 *5 (-1206))))) -(-10 -7 (-15 -2990 ((-420 (-980 |#2|)) (-665 |#2|) (-665 |#2|) (-792) (-792)))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (* (($ $ |#1|) 14 T ELT))) -(((-1081 |#1|) (-141) (-1142)) (T -1081)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2)) (-4 *2 (-1142))))) -(-13 (-1130) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3387 (((-112) $) 38 T ELT)) (-4405 (((-112) $) 17 T ELT)) (-3066 (((-792) $) 13 T ELT)) (-3080 (((-792) $) 14 T ELT)) (-2101 (((-112) $) 30 T ELT)) (-3110 (((-112) $) 40 T ELT))) -(((-1082 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3080 ((-792) |#1|)) (-15 -3066 ((-792) |#1|)) (-15 -3110 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -2101 ((-112) |#1|)) (-15 -4405 ((-112) |#1|))) (-1083 |#2| |#3| |#4| |#5| |#6|) (-792) (-792) (-1079) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1082)) -NIL -(-10 -8 (-15 -3080 ((-792) |#1|)) (-15 -3066 ((-792) |#1|)) (-15 -3110 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -2101 ((-112) |#1|)) (-15 -4405 ((-112) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3387 (((-112) $) 56 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4405 (((-112) $) 58 T ELT)) (-2641 (((-112) $ (-792)) 66 T ELT)) (-2762 (($) 18 T CONST)) (-1433 (($ $) 39 (|has| |#3| (-318)) ELT)) (-2803 ((|#4| $ (-577)) 44 T ELT)) (-1875 (((-792) $) 38 (|has| |#3| (-569)) ELT)) (-3381 ((|#3| $ (-577) (-577)) 46 T ELT)) (-2728 (((-665 |#3|) $) 73 (|has| $ (-6 -4499)) ELT)) (-3309 (((-792) $) 37 (|has| |#3| (-569)) ELT)) (-4111 (((-665 |#5|) $) 36 (|has| |#3| (-569)) ELT)) (-3066 (((-792) $) 50 T ELT)) (-3080 (((-792) $) 49 T ELT)) (-1967 (((-112) $ (-792)) 65 T ELT)) (-2664 (((-577) $) 54 T ELT)) (-2988 (((-577) $) 52 T ELT)) (-4138 (((-665 |#3|) $) 74 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1707 (((-577) $) 53 T ELT)) (-2529 (((-577) $) 51 T ELT)) (-1868 (($ (-665 (-665 |#3|))) 59 T ELT)) (-3437 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#3| |#3|) $) 68 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 42 T ELT)) (-1522 (((-665 (-665 |#3|)) $) 48 T ELT)) (-3417 (((-112) $ (-792)) 64 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#3|) (-665 |#3|)) 80 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) 78 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 (-305 |#3|))) 77 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3674 (((-112) $ $) 60 T ELT)) (-2392 (((-112) $) 63 T ELT)) (-3414 (($) 62 T ELT)) (-2435 ((|#3| $ (-577) (-577)) 47 T ELT) ((|#3| $ (-577) (-577) |#3|) 45 T ELT)) (-2101 (((-112) $) 57 T ELT)) (-4323 (((-792) |#3| $) 75 (-12 (|has| |#3| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 61 T ELT)) (-2397 ((|#5| $ (-577)) 43 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1835 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) 55 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#3|) 40 (|has| |#3| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#3| $) 27 T ELT) (($ $ |#3|) 31 T ELT)) (-3224 (((-792) $) 67 (|has| $ (-6 -4499)) ELT))) -(((-1083 |#1| |#2| |#3| |#4| |#5|) (-141) (-792) (-792) (-1079) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1083)) -((-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *5))) (-4 *5 (-1079)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-4405 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-665 (-665 *5))))) (-2435 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079)))) (-3381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079)))) (-2435 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *2 (-1079)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *2 *7)) (-4 *6 (-1079)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-2397 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *7 *2)) (-4 *6 (-1079)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-3609 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-3200 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-569)))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-375)))) (-1433 (*1 *1 *1) (-12 (-4 *1 (-1083 *2 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-792)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-792)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-665 *7))))) -(-13 (-111 |t#3| |t#3|) (-502 |t#3|) (-10 -8 (-6 -4499) (IF (|has| |t#3| (-174)) (-6 (-738 |t#3|)) |%noBranch|) (-15 -1868 ($ (-665 (-665 |t#3|)))) (-15 -4405 ((-112) $)) (-15 -2101 ((-112) $)) (-15 -3387 ((-112) $)) (-15 -3110 ((-112) $)) (-15 -2664 ((-577) $)) (-15 -1707 ((-577) $)) (-15 -2988 ((-577) $)) (-15 -2529 ((-577) $)) (-15 -3066 ((-792) $)) (-15 -3080 ((-792) $)) (-15 -1522 ((-665 (-665 |t#3|)) $)) (-15 -2435 (|t#3| $ (-577) (-577))) (-15 -3381 (|t#3| $ (-577) (-577))) (-15 -2435 (|t#3| $ (-577) (-577) |t#3|)) (-15 -2803 (|t#4| $ (-577))) (-15 -2397 (|t#5| $ (-577))) (-15 -3609 ($ (-1 |t#3| |t#3|) $)) (-15 -3609 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-569)) (-15 -3200 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-375)) (-15 -2494 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-318)) (-15 -1433 ($ $)) |%noBranch|) (IF (|has| |t#3| (-569)) (PROGN (-15 -1875 ((-792) $)) (-15 -3309 ((-792) $)) (-15 -4111 ((-665 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-631 (-885)) . T) ((-320 |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ((-502 |#3|) . T) ((-527 |#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ((-667 (-577)) . T) ((-667 |#3|) . T) ((-669 |#3|) . T) ((-661 |#3|) |has| |#3| (-174)) ((-738 |#3|) |has| |#3| (-174)) ((-1081 |#3|) . T) ((-1086 |#3|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3387 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4405 (((-112) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1433 (($ $) 47 (|has| |#3| (-318)) ELT)) (-2803 (((-246 |#2| |#3|) $ (-577)) 36 T ELT)) (-2361 (($ (-710 |#3|)) 45 T ELT)) (-1875 (((-792) $) 49 (|has| |#3| (-569)) ELT)) (-3381 ((|#3| $ (-577) (-577)) NIL T ELT)) (-2728 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3309 (((-792) $) 51 (|has| |#3| (-569)) ELT)) (-4111 (((-665 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-569)) ELT)) (-3066 (((-792) $) NIL T ELT)) (-3080 (((-792) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-2664 (((-577) $) NIL T ELT)) (-2988 (((-577) $) NIL T ELT)) (-4138 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1707 (((-577) $) NIL T ELT)) (-2529 (((-577) $) NIL T ELT)) (-1868 (($ (-665 (-665 |#3|))) 31 T ELT)) (-3437 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-1522 (((-665 (-665 |#3|)) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#3|) (-665 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#3| $ (-577) (-577)) NIL T ELT) ((|#3| $ (-577) (-577) |#3|) NIL T ELT)) (-2419 (((-135)) 59 (|has| |#3| (-375)) ELT)) (-2101 (((-112) $) NIL T ELT)) (-4323 (((-792) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT) (((-792) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) 65 (|has| |#3| (-632 (-549))) ELT)) (-2397 (((-246 |#1| |#3|) $ (-577)) 40 T ELT)) (-2410 (((-885) $) 19 T ELT) (((-710 |#3|) $) 42 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) NIL T ELT)) (-2367 (($) 16 T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1084 |#1| |#2| |#3|) (-13 (-1083 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-631 (-710 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1304 |#3|)) |%noBranch|) (IF (|has| |#3| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (-15 -2361 ($ (-710 |#3|))))) (-792) (-792) (-1079)) (T -1084)) -((-2361 (*1 *1 *2) (-12 (-5 *2 (-710 *5)) (-4 *5 (-1079)) (-5 *1 (-1084 *3 *4 *5)) (-14 *3 (-792)) (-14 *4 (-792))))) -(-13 (-1083 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-631 (-710 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1304 |#3|)) |%noBranch|) (IF (|has| |#3| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|) (-15 -2361 ($ (-710 |#3|))))) -((-2511 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3609 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-1085 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3609 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2511 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-792) (-792) (-1079) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1083 |#1| |#2| |#3| |#4| |#5|) (-1079) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1083 |#1| |#2| |#7| |#8| |#9|)) (T -1085)) -((-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1079)) (-4 *2 (-1079)) (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *12 (-1083 *5 *6 *2 *10 *11)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1079)) (-4 *10 (-1079)) (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1083 *5 *6 *10 *11 *12)) (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) -(-10 -7 (-15 -3609 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2511 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ |#1|) 27 T ELT))) -(((-1086 |#1|) (-141) (-1088)) (T -1086)) -NIL -(-13 (-21) (-1081 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1081 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3966 (((-1206) $) 11 T ELT)) (-4227 ((|#1| $) 12 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4017 (($ (-1206) |#1|) 10 T ELT)) (-2410 (((-885) $) 22 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2383 (((-112) $ $) 17 (|has| |#1| (-1130)) ELT))) -(((-1087 |#1| |#2|) (-13 (-1247) (-10 -8 (-15 -4017 ($ (-1206) |#1|)) (-15 -3966 ((-1206) $)) (-15 -4227 (|#1| $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) (-1123 |#2|) (-1247)) (T -1087)) -((-4017 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-4 *4 (-1247)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1123 *4)))) (-3966 (*1 *2 *1) (-12 (-4 *4 (-1247)) (-5 *2 (-1206)) (-5 *1 (-1087 *3 *4)) (-4 *3 (-1123 *4)))) (-4227 (*1 *2 *1) (-12 (-4 *2 (-1123 *3)) (-5 *1 (-1087 *2 *3)) (-4 *3 (-1247))))) -(-13 (-1247) (-10 -8 (-15 -4017 ($ (-1206) |#1|)) (-15 -3966 ((-1206) $)) (-15 -4227 (|#1| $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-1088) (-141)) (T -1088)) -NIL -(-13 (-21) (-1142)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-4083 (($ $) 17 T ELT)) (-4019 (($ $) 25 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 55 T ELT)) (-2755 (($ $) 27 T ELT)) (-2687 (($ $) 12 T ELT)) (-2136 (($ $) 43 T ELT)) (-3341 (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (((-916 (-391)) $) 36 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) 31 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) 31 T ELT)) (-3234 (((-792)) 9 T ELT)) (-1465 (($ $) 45 T ELT))) -(((-1089 |#1|) (-10 -8 (-15 -4019 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| (-577))) (-15 -3341 ((-228) |#1|)) (-15 -3341 ((-391) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| |#1|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-1090)) (T -1089)) -((-3234 (*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1089 *3)) (-4 *3 (-1090))))) -(-10 -8 (-15 -4019 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -2755 (|#1| |#1|)) (-15 -2244 ((-913 (-391) |#1|) |#1| (-916 (-391)) (-913 (-391) |#1|))) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| (-577))) (-15 -3341 ((-228) |#1|)) (-15 -3341 ((-391) |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| |#1|)) (-15 -3234 ((-792))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3277 (((-577) $) 98 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-4083 (($ $) 96 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-2809 (($ $) 106 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-4459 (((-577) $) 123 T ELT)) (-2762 (($) 18 T CONST)) (-4019 (($ $) 95 T ELT)) (-2817 (((-3 (-577) "failed") $) 111 T ELT) (((-3 (-420 (-577)) "failed") $) 108 T ELT)) (-3514 (((-577) $) 112 T ELT) (((-420 (-577)) $) 109 T ELT)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-1632 (((-112) $) 79 T ELT)) (-2785 (((-112) $) 121 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 102 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 105 T ELT)) (-2755 (($ $) 101 T ELT)) (-1434 (((-112) $) 122 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-1344 (($ $ $) 115 T ELT)) (-4167 (($ $ $) 116 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2687 (($ $) 97 T ELT)) (-2136 (($ $) 99 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-3341 (((-391) $) 114 T ELT) (((-228) $) 113 T ELT) (((-916 (-391)) $) 103 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ (-577)) 110 T ELT) (($ (-420 (-577))) 107 T ELT)) (-3234 (((-792)) 32 T CONST)) (-1465 (($ $) 100 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-3385 (($ $) 124 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2440 (((-112) $ $) 117 T ELT)) (-2415 (((-112) $ $) 119 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 118 T ELT)) (-2403 (((-112) $ $) 120 T ELT)) (-2494 (($ $ $) 73 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT) (($ $ (-420 (-577))) 104 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT))) -(((-1090) (-141)) (T -1090)) -((-3385 (*1 *1 *1) (-4 *1 (-1090))) (-2755 (*1 *1 *1) (-4 *1 (-1090))) (-1465 (*1 *1 *1) (-4 *1 (-1090))) (-2136 (*1 *1 *1) (-4 *1 (-1090))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-577)))) (-2687 (*1 *1 *1) (-4 *1 (-1090))) (-4083 (*1 *1 *1) (-4 *1 (-1090))) (-4019 (*1 *1 *1) (-4 *1 (-1090)))) -(-13 (-375) (-869) (-1052) (-1068 (-577)) (-1068 (-420 (-577))) (-1032) (-632 (-916 (-391))) (-910 (-391)) (-148) (-10 -8 (-15 -2755 ($ $)) (-15 -1465 ($ $)) (-15 -2136 ($ $)) (-15 -3277 ((-577) $)) (-15 -2687 ($ $)) (-15 -4083 ($ $)) (-15 -4019 ($ $)) (-15 -3385 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-632 (-228)) . T) ((-632 (-391)) . T) ((-632 (-916 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 $) . T) ((-747) . T) ((-812) . T) ((-813) . T) ((-815) . T) ((-816) . T) ((-869) . T) ((-870) . T) ((-873) . T) ((-910 (-391)) . T) ((-948) . T) ((-1032) . T) ((-1052) . T) ((-1068 (-420 (-577))) . T) ((-1068 (-577)) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) |#2| $) 26 T ELT)) (-2221 ((|#1| $) 10 T ELT)) (-4459 (((-577) |#2| $) 116 T ELT)) (-2312 (((-3 $ "failed") |#2| (-949)) 75 T ELT)) (-3867 ((|#1| $) 31 T ELT)) (-3440 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3647 (($ $) 28 T ELT)) (-4281 (((-3 |#2| "failed") |#2| $) 111 T ELT)) (-2785 (((-112) |#2| $) NIL T ELT)) (-1434 (((-112) |#2| $) NIL T ELT)) (-2860 (((-112) |#2| $) 27 T ELT)) (-3990 ((|#1| $) 117 T ELT)) (-3854 ((|#1| $) 30 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1773 ((|#2| $) 102 T ELT)) (-2410 (((-885) $) 92 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3908 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3634 (((-665 $) |#2|) 77 T ELT)) (-2383 (((-112) $ $) 97 T ELT))) -(((-1091 |#1| |#2|) (-13 (-1098 |#1| |#2|) (-10 -8 (-15 -3854 (|#1| $)) (-15 -3867 (|#1| $)) (-15 -2221 (|#1| $)) (-15 -3990 (|#1| $)) (-15 -3647 ($ $)) (-15 -2860 ((-112) |#2| $)) (-15 -3440 (|#1| |#2| $ |#1|)))) (-13 (-869) (-375)) (-1273 |#1|)) (T -1091)) -((-3440 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3854 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3867 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-2221 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3990 (*1 *2 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-3647 (*1 *1 *1) (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) (-4 *3 (-1273 *2)))) (-2860 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-869) (-375))) (-5 *2 (-112)) (-5 *1 (-1091 *4 *3)) (-4 *3 (-1273 *4))))) -(-13 (-1098 |#1| |#2|) (-10 -8 (-15 -3854 (|#1| $)) (-15 -3867 (|#1| $)) (-15 -2221 (|#1| $)) (-15 -3990 (|#1| $)) (-15 -3647 ($ $)) (-15 -2860 ((-112) |#2| $)) (-15 -3440 (|#1| |#2| $ |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3198 (($ $ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2865 (($ $ $ $) NIL T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-4459 (((-577) $) NIL T ELT)) (-1886 (($ $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1847 (($ (-1206)) 10 T ELT) (($ (-577)) 7 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL T ELT)) (-3152 (($ $ $) NIL T ELT)) (-1953 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-710 (-577)) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2748 (((-112) $) NIL T ELT)) (-3557 (((-420 (-577)) $) NIL T ELT)) (-2060 (($) NIL T ELT) (($ $) NIL T ELT)) (-3164 (($ $ $) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3924 (($ $ $ $) NIL T ELT)) (-1642 (($ $ $) NIL T ELT)) (-2785 (((-112) $) NIL T ELT)) (-2283 (($ $ $) NIL T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3356 (((-112) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL T ELT)) (-1434 (((-112) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2832 (($ $ $ $) NIL T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3692 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2796 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-1353 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2606 (($ $) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2793 (((-112) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-2030 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1686 (($ $) NIL T ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-577) $) 16 T ELT) (((-549) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-228) $) NIL T ELT) (($ (-1206)) 9 T ELT)) (-2410 (((-885) $) 23 T ELT) (($ (-577)) 6 T ELT) (($ $) NIL T ELT) (($ (-577)) 6 T ELT)) (-3234 (((-792)) NIL T CONST)) (-3254 (((-112) $ $) NIL T ELT)) (-3267 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (($) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2460 (($ $ $ $) NIL T ELT)) (-3385 (($ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-2483 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-577) $) NIL T ELT))) -(((-1092) (-13 (-558) (-636 (-1206)) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -1847 ($ (-1206))) (-15 -1847 ($ (-577)))))) (T -1092)) -((-1847 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1092)))) (-1847 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1092))))) -(-13 (-558) (-636 (-1206)) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -1847 ($ (-1206))) (-15 -1847 ($ (-577))))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL T ELT)) (-3425 (((-1302) $ (-1206) (-1206)) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-3329 (($) 9 T ELT)) (-2589 (((-52) $ (-1206) (-52)) NIL T ELT)) (-2612 (($ $) 32 T ELT)) (-4143 (($ $) 30 T ELT)) (-4034 (($ $) 29 T ELT)) (-4164 (($ $) 31 T ELT)) (-3108 (($ $) 35 T ELT)) (-2954 (($ $) 36 T ELT)) (-3379 (($ $) 28 T ELT)) (-2712 (($ $) 33 T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) 27 (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 (-52) "failed") (-1206) $) 43 T ELT)) (-2762 (($) NIL T CONST)) (-2596 (($) 7 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) 53 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 (-52) "failed") (-1206) $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3361 (((-3 (-1188) "failed") $ (-1188) (-577)) 72 T ELT)) (-3448 (((-52) $ (-1206) (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3381 (((-52) $ (-1206)) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) 38 (|has| $ (-6 -4499)) ELT) (((-665 (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-1962 (((-1206) $) NIL (|has| (-1206) (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-52) (-1130)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT)) (-3242 (((-665 (-1206)) $) NIL T ELT)) (-2404 (((-112) (-1206) $) NIL T ELT)) (-3398 (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) 46 T ELT)) (-3887 (((-665 (-1206)) $) NIL T ELT)) (-1593 (((-112) (-1206) $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-52) (-1130)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT)) (-2976 (((-391) $ (-1206)) 52 T ELT)) (-2041 (((-665 (-1188)) $ (-1188)) 74 T ELT)) (-4188 (((-52) $) NIL (|has| (-1206) (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) "failed") (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL T ELT)) (-3482 (($ $ (-52)) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL (-12 (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-320 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (($ $ (-665 (-52)) (-665 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT) (($ $ (-665 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT)) (-3485 (((-665 (-52)) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 (((-52) $ (-1206)) NIL T ELT) (((-52) $ (-1206) (-52)) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL T ELT)) (-2999 (($ $ (-1206)) 54 T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-1130))) ELT) (((-792) (-52) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-52) (-1130))) ELT) (((-792) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) 40 T ELT)) (-3702 (($ $ $) 41 T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-52) (-631 (-885))) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-631 (-885)))) ELT)) (-1770 (($ $ (-1206) (-391)) 50 T ELT)) (-3268 (($ $ (-1206) (-391)) 51 T ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 (-1206)) (|:| -2753 (-52)))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-52) (-102)) (|has| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1093) (-13 (-1223 (-1206) (-52)) (-10 -8 (-15 -3702 ($ $ $)) (-15 -2596 ($)) (-15 -3379 ($ $)) (-15 -4034 ($ $)) (-15 -4143 ($ $)) (-15 -4164 ($ $)) (-15 -2712 ($ $)) (-15 -2612 ($ $)) (-15 -3108 ($ $)) (-15 -2954 ($ $)) (-15 -1770 ($ $ (-1206) (-391))) (-15 -3268 ($ $ (-1206) (-391))) (-15 -2976 ((-391) $ (-1206))) (-15 -2041 ((-665 (-1188)) $ (-1188))) (-15 -2999 ($ $ (-1206))) (-15 -3329 ($)) (-15 -3361 ((-3 (-1188) "failed") $ (-1188) (-577))) (-6 -4499)))) (T -1093)) -((-3702 (*1 *1 *1 *1) (-5 *1 (-1093))) (-2596 (*1 *1) (-5 *1 (-1093))) (-3379 (*1 *1 *1) (-5 *1 (-1093))) (-4034 (*1 *1 *1) (-5 *1 (-1093))) (-4143 (*1 *1 *1) (-5 *1 (-1093))) (-4164 (*1 *1 *1) (-5 *1 (-1093))) (-2712 (*1 *1 *1) (-5 *1 (-1093))) (-2612 (*1 *1 *1) (-5 *1 (-1093))) (-3108 (*1 *1 *1) (-5 *1 (-1093))) (-2954 (*1 *1 *1) (-5 *1 (-1093))) (-1770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093)))) (-3268 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093)))) (-2976 (*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-391)) (-5 *1 (-1093)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1093)) (-5 *3 (-1188)))) (-2999 (*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1093)))) (-3329 (*1 *1) (-5 *1 (-1093))) (-3361 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-1093))))) -(-13 (-1223 (-1206) (-52)) (-10 -8 (-15 -3702 ($ $ $)) (-15 -2596 ($)) (-15 -3379 ($ $)) (-15 -4034 ($ $)) (-15 -4143 ($ $)) (-15 -4164 ($ $)) (-15 -2712 ($ $)) (-15 -2612 ($ $)) (-15 -3108 ($ $)) (-15 -2954 ($ $)) (-15 -1770 ($ $ (-1206) (-391))) (-15 -3268 ($ $ (-1206) (-391))) (-15 -2976 ((-391) $ (-1206))) (-15 -2041 ((-665 (-1188)) $ (-1188))) (-15 -2999 ($ $ (-1206))) (-15 -3329 ($)) (-15 -3361 ((-3 (-1188) "failed") $ (-1188) (-577))) (-6 -4499))) -((-3840 (($ $) 46 T ELT)) (-2867 (((-112) $ $) 82 T ELT)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 $ "failed") (-980 (-420 (-577)))) 247 T ELT) (((-3 $ "failed") (-980 (-577))) 246 T ELT) (((-3 $ "failed") (-980 |#2|)) 249 T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-980 (-420 (-577)))) 235 T ELT) (($ (-980 (-577))) 231 T ELT) (($ (-980 |#2|)) 255 T ELT)) (-3134 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-4002 (((-112) $ $) 131 T ELT) (((-112) $ (-665 $)) 135 T ELT)) (-3352 (((-112) $) 60 T ELT)) (-3536 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 125 T ELT)) (-2399 (($ $) 160 T ELT)) (-1772 (($ $) 156 T ELT)) (-3096 (($ $) 155 T ELT)) (-3788 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3551 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4424 (((-112) $ $) 143 T ELT) (((-112) $ (-665 $)) 144 T ELT)) (-1669 ((|#4| $) 32 T ELT)) (-2814 (($ $ $) 128 T ELT)) (-3784 (((-112) $) 59 T ELT)) (-1702 (((-792) $) 35 T ELT)) (-3671 (($ $) 174 T ELT)) (-3973 (($ $) 171 T ELT)) (-2800 (((-665 $) $) 72 T ELT)) (-2300 (($ $) 62 T ELT)) (-2147 (($ $) 167 T ELT)) (-3149 (((-665 $) $) 69 T ELT)) (-2923 (($ $) 64 T ELT)) (-3109 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-4443 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4327 (-792))) $ $) 130 T ELT)) (-3430 (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $) 126 T ELT) (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $ |#4|) 127 T ELT)) (-1573 (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $) 121 T ELT) (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $ |#4|) 123 T ELT)) (-1521 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3786 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-2477 (((-665 $) $) 54 T ELT)) (-2982 (((-112) $ $) 140 T ELT) (((-112) $ (-665 $)) 141 T ELT)) (-1502 (($ $ $) 116 T ELT)) (-2199 (($ $) 37 T ELT)) (-2220 (((-112) $ $) 80 T ELT)) (-2624 (((-112) $ $) 136 T ELT) (((-112) $ (-665 $)) 138 T ELT)) (-4058 (($ $ $) 112 T ELT)) (-3133 (($ $) 41 T ELT)) (-2420 ((|#2| |#2| $) 164 T ELT) (($ (-665 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3339 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-4030 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-2940 (($ $) 49 T ELT)) (-2616 (($ $) 55 T ELT)) (-3341 (((-916 (-391)) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-549) $) NIL T ELT) (($ (-980 (-420 (-577)))) 237 T ELT) (($ (-980 (-577))) 233 T ELT) (($ (-980 |#2|)) 248 T ELT) (((-1188) $) 279 T ELT) (((-980 |#2|) $) 184 T ELT)) (-2410 (((-885) $) 29 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-980 |#2|) $) 185 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT)) (-3819 (((-3 (-112) "failed") $ $) 79 T ELT))) -(((-1094 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2410 (|#1| |#1|)) (-15 -2420 (|#1| |#1| |#1|)) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 ((-980 |#2|) |#1|)) (-15 -3341 ((-980 |#2|) |#1|)) (-15 -3341 ((-1188) |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2420 (|#2| |#2| |#1|)) (-15 -3339 (|#1| |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -3339 (|#1| |#1| |#2|)) (-15 -4030 (|#1| |#1| |#2|)) (-15 -1772 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3341 (|#1| (-980 |#2|))) (-15 -3514 (|#1| (-980 |#2|))) (-15 -2817 ((-3 |#1| "failed") (-980 |#2|))) (-15 -3341 (|#1| (-980 (-577)))) (-15 -3514 (|#1| (-980 (-577)))) (-15 -2817 ((-3 |#1| "failed") (-980 (-577)))) (-15 -3341 (|#1| (-980 (-420 (-577))))) (-15 -3514 (|#1| (-980 (-420 (-577))))) (-15 -2817 ((-3 |#1| "failed") (-980 (-420 (-577))))) (-15 -1502 (|#1| |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1|)) (-15 -4443 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4327 (-792))) |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -3536 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3430 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1| |#4|)) (-15 -3430 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -1573 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -4369 |#1|)) |#1| |#1| |#4|)) (-15 -1573 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3786 (|#1| |#1| |#1| |#4|)) (-15 -1521 (|#1| |#1| |#1| |#4|)) (-15 -3786 (|#1| |#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -3551 (|#1| |#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#1| |#4|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -4424 ((-112) |#1| (-665 |#1|))) (-15 -4424 ((-112) |#1| |#1|)) (-15 -2982 ((-112) |#1| (-665 |#1|))) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2624 ((-112) |#1| (-665 |#1|))) (-15 -2624 ((-112) |#1| |#1|)) (-15 -4002 ((-112) |#1| (-665 |#1|))) (-15 -4002 ((-112) |#1| |#1|)) (-15 -2867 ((-112) |#1| |#1|)) (-15 -2220 ((-112) |#1| |#1|)) (-15 -3819 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2800 ((-665 |#1|) |#1|)) (-15 -3149 ((-665 |#1|) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -3352 ((-112) |#1|)) (-15 -3784 ((-112) |#1|)) (-15 -3134 (|#1| |#1| |#4|)) (-15 -3109 (|#1| |#1| |#4|)) (-15 -2616 (|#1| |#1|)) (-15 -2477 ((-665 |#1|) |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -1702 ((-792) |#1|)) (-15 -1669 (|#4| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -2410 (|#1| |#4|)) (-15 -2817 ((-3 |#4| "failed") |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -3109 (|#2| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-1095 |#2| |#3| |#4|) (-1079) (-814) (-870)) (T -1094)) -NIL -(-10 -8 (-15 -2410 (|#1| |#1|)) (-15 -2420 (|#1| |#1| |#1|)) (-15 -2420 (|#1| (-665 |#1|))) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 ((-980 |#2|) |#1|)) (-15 -3341 ((-980 |#2|) |#1|)) (-15 -3341 ((-1188) |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3973 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2420 (|#2| |#2| |#1|)) (-15 -3339 (|#1| |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -3339 (|#1| |#1| |#2|)) (-15 -4030 (|#1| |#1| |#2|)) (-15 -1772 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -3341 (|#1| (-980 |#2|))) (-15 -3514 (|#1| (-980 |#2|))) (-15 -2817 ((-3 |#1| "failed") (-980 |#2|))) (-15 -3341 (|#1| (-980 (-577)))) (-15 -3514 (|#1| (-980 (-577)))) (-15 -2817 ((-3 |#1| "failed") (-980 (-577)))) (-15 -3341 (|#1| (-980 (-420 (-577))))) (-15 -3514 (|#1| (-980 (-420 (-577))))) (-15 -2817 ((-3 |#1| "failed") (-980 (-420 (-577))))) (-15 -1502 (|#1| |#1| |#1|)) (-15 -4058 (|#1| |#1| |#1|)) (-15 -4443 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4327 (-792))) |#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -3536 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3430 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1| |#4|)) (-15 -3430 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -1573 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -4369 |#1|)) |#1| |#1| |#4|)) (-15 -1573 ((-2 (|:| -2671 |#1|) (|:| |gap| (-792)) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3786 (|#1| |#1| |#1| |#4|)) (-15 -1521 (|#1| |#1| |#1| |#4|)) (-15 -3786 (|#1| |#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -3551 (|#1| |#1| |#1| |#4|)) (-15 -3788 (|#1| |#1| |#1| |#4|)) (-15 -3551 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -4424 ((-112) |#1| (-665 |#1|))) (-15 -4424 ((-112) |#1| |#1|)) (-15 -2982 ((-112) |#1| (-665 |#1|))) (-15 -2982 ((-112) |#1| |#1|)) (-15 -2624 ((-112) |#1| (-665 |#1|))) (-15 -2624 ((-112) |#1| |#1|)) (-15 -4002 ((-112) |#1| (-665 |#1|))) (-15 -4002 ((-112) |#1| |#1|)) (-15 -2867 ((-112) |#1| |#1|)) (-15 -2220 ((-112) |#1| |#1|)) (-15 -3819 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2800 ((-665 |#1|) |#1|)) (-15 -3149 ((-665 |#1|) |#1|)) (-15 -2923 (|#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -3352 ((-112) |#1|)) (-15 -3784 ((-112) |#1|)) (-15 -3134 (|#1| |#1| |#4|)) (-15 -3109 (|#1| |#1| |#4|)) (-15 -2616 (|#1| |#1|)) (-15 -2477 ((-665 |#1|) |#1|)) (-15 -2940 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -1702 ((-792) |#1|)) (-15 -1669 (|#4| |#1|)) (-15 -3341 ((-549) |#1|)) (-15 -3341 ((-916 (-577)) |#1|)) (-15 -3341 ((-916 (-391)) |#1|)) (-15 -2410 (|#1| |#4|)) (-15 -2817 ((-3 |#4| "failed") |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -3109 (|#2| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 |#3|) $) 113 T ELT)) (-4419 (((-1202 $) $ |#3|) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 91 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) 115 T ELT) (((-792) $ (-665 |#3|)) 114 T ELT)) (-3840 (($ $) 278 T ELT)) (-2867 (((-112) $ $) 264 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2907 (($ $ $) 223 (|has| |#1| (-569)) ELT)) (-2055 (((-665 $) $ $) 218 (|has| |#1| (-569)) ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-4456 (($ $) 101 (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 $ "failed") (-980 (-420 (-577)))) 238 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206)))) ELT) (((-3 $ "failed") (-980 (-577))) 235 (-2229 (-12 (-2308 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT) (((-3 $ "failed") (-980 |#1|)) 232 (-2229 (-12 (-2308 (|has| |#1| (-38 (-420 (-577))))) (-2308 (|has| |#1| (-38 (-577)))) (|has| |#3| (-632 (-1206)))) (-12 (-2308 (|has| |#1| (-558))) (-2308 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (-2308 (|has| |#1| (-1022 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT)) (-3514 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) ((|#3| $) 144 T ELT) (($ (-980 (-420 (-577)))) 237 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206)))) ELT) (($ (-980 (-577))) 234 (-2229 (-12 (-2308 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT) (($ (-980 |#1|)) 231 (-2229 (-12 (-2308 (|has| |#1| (-38 (-420 (-577))))) (-2308 (|has| |#1| (-38 (-577)))) (|has| |#3| (-632 (-1206)))) (-12 (-2308 (|has| |#1| (-558))) (-2308 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (-2308 (|has| |#1| (-1022 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT)) (-3760 (($ $ $ |#3|) 111 (|has| |#1| (-174)) ELT) (($ $ $) 219 (|has| |#1| (-569)) ELT)) (-3134 (($ $) 161 T ELT) (($ $ |#3|) 273 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-4002 (((-112) $ $) 263 T ELT) (((-112) $ (-665 $)) 262 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3352 (((-112) $) 271 T ELT)) (-3536 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 243 T ELT)) (-2399 (($ $) 212 (|has| |#1| (-465)) ELT)) (-3008 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ |#3|) 108 (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) 112 T ELT)) (-1632 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-1772 (($ $) 228 (|has| |#1| (-569)) ELT)) (-3096 (($ $) 229 (|has| |#1| (-569)) ELT)) (-3788 (($ $ $) 255 T ELT) (($ $ $ |#3|) 253 T ELT)) (-3551 (($ $ $) 254 T ELT) (($ $ $ |#3|) 252 T ELT)) (-4313 (($ $ |#1| |#2| $) 179 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| |#3| (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-2097 (((-112) $) 35 T ELT)) (-3641 (((-792) $) 176 T ELT)) (-4424 (((-112) $ $) 257 T ELT) (((-112) $ (-665 $)) 256 T ELT)) (-2187 (($ $ $ $ $) 214 (|has| |#1| (-569)) ELT)) (-1669 ((|#3| $) 282 T ELT)) (-2935 (($ (-1202 |#1|) |#3|) 120 T ELT) (($ (-1202 $) |#3|) 119 T ELT)) (-1387 (((-665 $) $) 129 T ELT)) (-2338 (((-112) $) 159 T ELT)) (-2925 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-792)) 122 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 121 T ELT)) (-2814 (($ $ $) 242 T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |#3|) 123 T ELT)) (-3784 (((-112) $) 272 T ELT)) (-3569 ((|#2| $) 177 T ELT) (((-792) $ |#3|) 125 T ELT) (((-665 (-792)) $ (-665 |#3|)) 124 T ELT)) (-1702 (((-792) $) 281 T ELT)) (-4309 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-2505 (((-3 |#3| "failed") $) 126 T ELT)) (-3671 (($ $) 209 (|has| |#1| (-465)) ELT)) (-3973 (($ $) 210 (|has| |#1| (-465)) ELT)) (-2800 (((-665 $) $) 267 T ELT)) (-2300 (($ $) 270 T ELT)) (-2147 (($ $) 211 (|has| |#1| (-465)) ELT)) (-3149 (((-665 $) $) 268 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-2923 (($ $) 269 T ELT)) (-3095 (($ $) 156 T ELT)) (-3109 ((|#1| $) 155 T ELT) (($ $ |#3|) 274 T ELT)) (-2388 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-4443 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4327 (-792))) $ $) 241 T ELT)) (-3430 (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $) 245 T ELT) (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $ |#3|) 244 T ELT)) (-1573 (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $) 247 T ELT) (((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $ |#3|) 246 T ELT)) (-1521 (($ $ $) 251 T ELT) (($ $ $ |#3|) 249 T ELT)) (-3786 (($ $ $) 250 T ELT) (($ $ $ |#3|) 248 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2212 (($ $ $) 217 (|has| |#1| (-569)) ELT)) (-2477 (((-665 $) $) 276 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 117 T ELT)) (-3124 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2315 (((-3 (-2 (|:| |var| |#3|) (|:| -2182 (-792))) "failed") $) 116 T ELT)) (-2982 (((-112) $ $) 259 T ELT) (((-112) $ (-665 $)) 258 T ELT)) (-1502 (($ $ $) 239 T ELT)) (-2199 (($ $) 280 T ELT)) (-2220 (((-112) $ $) 265 T ELT)) (-2624 (((-112) $ $) 261 T ELT) (((-112) $ (-665 $)) 260 T ELT)) (-4058 (($ $ $) 240 T ELT)) (-3133 (($ $) 279 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2665 (((-2 (|:| -2420 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-569)) ELT)) (-1723 (((-2 (|:| -2420 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-569)) ELT)) (-3069 (((-112) $) 173 T ELT)) (-3081 ((|#1| $) 174 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-2420 ((|#1| |#1| $) 213 (|has| |#1| (-465)) ELT) (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-1442 (((-2 (|:| -2420 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-569)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-3339 (($ $ |#1|) 226 (|has| |#1| (-569)) ELT) (($ $ $) 224 (|has| |#1| (-569)) ELT)) (-4030 (($ $ |#1|) 227 (|has| |#1| (-569)) ELT) (($ $ $) 225 (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-665 |#3|) (-665 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-665 |#3|) (-665 $)) 145 T ELT)) (-1611 (($ $ |#3|) 110 (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 |#3|) (-665 (-792))) 44 T ELT) (($ $ |#3| (-792)) 43 T ELT) (($ $ (-665 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-2776 ((|#2| $) 157 T ELT) (((-792) $ |#3|) 133 T ELT) (((-665 (-792)) $ (-665 |#3|)) 132 T ELT)) (-2940 (($ $) 277 T ELT)) (-2616 (($ $) 275 T ELT)) (-3341 (((-916 (-391)) $) 85 (-12 (|has| |#3| (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| |#3| (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT) (($ (-980 (-420 (-577)))) 236 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206)))) ELT) (($ (-980 (-577))) 233 (-2229 (-12 (-2308 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-632 (-1206)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-632 (-1206))))) ELT) (($ (-980 |#1|)) 230 (|has| |#3| (-632 (-1206))) ELT) (((-1188) $) 208 (-12 (|has| |#1| (-1068 (-577))) (|has| |#3| (-632 (-1206)))) ELT) (((-980 |#1|) $) 207 (|has| |#3| (-632 (-1206))) ELT)) (-2091 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ |#3|) 109 (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (((-980 |#1|) $) 206 (|has| |#3| (-632 (-1206))) ELT) (($ (-420 (-577))) 81 (-2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) 175 T ELT)) (-2778 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-792)) 131 T ELT) (($ $ (-665 |#3|) (-665 (-792))) 130 T ELT)) (-2580 (((-3 $ "failed") $) 82 (-2229 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 32 T CONST)) (-3668 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2367 (($) 19 T CONST)) (-3819 (((-3 (-112) "failed") $ $) 266 T ELT)) (-2378 (($) 34 T CONST)) (-3701 (($ $ $ $ (-792)) 215 (|has| |#1| (-569)) ELT)) (-1906 (($ $ $ (-792)) 216 (|has| |#1| (-569)) ELT)) (-1675 (($ $ (-665 |#3|) (-665 (-792))) 47 T ELT) (($ $ |#3| (-792)) 46 T ELT) (($ $ (-665 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-1095 |#1| |#2| |#3|) (-141) (-1079) (-814) (-870)) (T -1095)) -((-1669 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-792)))) (-2199 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3133 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2940 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2477 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3109 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3134 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2300 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2923 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3149 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-3819 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2220 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2867 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-4002 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-4002 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-2624 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2624 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-2982 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-2982 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-4424 (*1 *2 *1 *1) (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)))) (-4424 (*1 *2 *1 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) (-3788 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3551 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3788 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3551 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-1521 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-3786 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-1521 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-3786 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *2 (-870)))) (-1573 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -4369 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-1573 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -4369 *1))) (-4 *1 (-1095 *4 *5 *3)))) (-3430 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3430 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1095 *4 *5 *3)))) (-3536 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1095 *3 *4 *5)))) (-2814 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-4443 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4327 (-792)))) (-4 *1 (-1095 *3 *4 *5)))) (-4058 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-1502 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)))) (-2817 (*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)))) (-2817 (*1 *1 *2) (|partial| -2229 (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) (-3514 (*1 *1 *2) (-2229 (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) (-3341 (*1 *1 *2) (-2229 (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) (-2817 (*1 *1 *2) (|partial| -2229 (-12 (-5 *2 (-980 *3)) (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-2308 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2308 (-4 *3 (-558))) (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2308 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))))) (-3514 (*1 *1 *2) (-2229 (-12 (-5 *2 (-980 *3)) (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-2308 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2308 (-4 *3 (-558))) (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))) (-12 (-5 *2 (-980 *3)) (-12 (-2308 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-870))))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *5 (-632 (-1206))) (-4 *4 (-814)) (-4 *5 (-870)))) (-3096 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-1772 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-4030 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3339 (*1 *1 *1 *2) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-4030 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-3339 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-2907 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-1442 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -2420 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-1723 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -2420 *1) (|:| |coef1| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-2665 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-2 (|:| -2420 *1) (|:| |coef2| *1))) (-4 *1 (-1095 *3 *4 *5)))) (-3760 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-2055 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5)))) (-2212 (*1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-1906 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569)))) (-3701 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569)))) (-2187 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-569)))) (-2420 (*1 *2 *2 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-2399 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-2147 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-3973 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-465))))) -(-13 (-977 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1669 (|t#3| $)) (-15 -1702 ((-792) $)) (-15 -2199 ($ $)) (-15 -3133 ($ $)) (-15 -3840 ($ $)) (-15 -2940 ($ $)) (-15 -2477 ((-665 $) $)) (-15 -2616 ($ $)) (-15 -3109 ($ $ |t#3|)) (-15 -3134 ($ $ |t#3|)) (-15 -3784 ((-112) $)) (-15 -3352 ((-112) $)) (-15 -2300 ($ $)) (-15 -2923 ($ $)) (-15 -3149 ((-665 $) $)) (-15 -2800 ((-665 $) $)) (-15 -3819 ((-3 (-112) "failed") $ $)) (-15 -2220 ((-112) $ $)) (-15 -2867 ((-112) $ $)) (-15 -4002 ((-112) $ $)) (-15 -4002 ((-112) $ (-665 $))) (-15 -2624 ((-112) $ $)) (-15 -2624 ((-112) $ (-665 $))) (-15 -2982 ((-112) $ $)) (-15 -2982 ((-112) $ (-665 $))) (-15 -4424 ((-112) $ $)) (-15 -4424 ((-112) $ (-665 $))) (-15 -3788 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -3788 ($ $ $ |t#3|)) (-15 -3551 ($ $ $ |t#3|)) (-15 -1521 ($ $ $)) (-15 -3786 ($ $ $)) (-15 -1521 ($ $ $ |t#3|)) (-15 -3786 ($ $ $ |t#3|)) (-15 -1573 ((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $)) (-15 -1573 ((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -4369 $)) $ $ |t#3|)) (-15 -3430 ((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -3430 ((-2 (|:| -2671 $) (|:| |gap| (-792)) (|:| -1636 $) (|:| -4369 $)) $ $ |t#3|)) (-15 -3536 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -2814 ($ $ $)) (-15 -4443 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4327 (-792))) $ $)) (-15 -4058 ($ $ $)) (-15 -1502 ($ $ $)) (IF (|has| |t#3| (-632 (-1206))) (PROGN (-6 (-631 (-980 |t#1|))) (-6 (-632 (-980 |t#1|))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -2817 ((-3 $ "failed") (-980 (-420 (-577))))) (-15 -3514 ($ (-980 (-420 (-577))))) (-15 -3341 ($ (-980 (-420 (-577))))) (-15 -2817 ((-3 $ "failed") (-980 (-577)))) (-15 -3514 ($ (-980 (-577)))) (-15 -3341 ($ (-980 (-577)))) (IF (|has| |t#1| (-1022 (-577))) |%noBranch| (PROGN (-15 -2817 ((-3 $ "failed") (-980 |t#1|))) (-15 -3514 ($ (-980 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -2817 ((-3 $ "failed") (-980 (-577)))) (-15 -3514 ($ (-980 (-577)))) (-15 -3341 ($ (-980 (-577)))) (IF (|has| |t#1| (-558)) |%noBranch| (PROGN (-15 -2817 ((-3 $ "failed") (-980 |t#1|))) (-15 -3514 ($ (-980 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) |%noBranch| (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -2817 ((-3 $ "failed") (-980 |t#1|))) (-15 -3514 ($ (-980 |t#1|)))))) (-15 -3341 ($ (-980 |t#1|))) (IF (|has| |t#1| (-1068 (-577))) (-6 (-632 (-1188))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3096 ($ $)) (-15 -1772 ($ $)) (-15 -4030 ($ $ |t#1|)) (-15 -3339 ($ $ |t#1|)) (-15 -4030 ($ $ $)) (-15 -3339 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -1442 ((-2 (|:| -2420 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1723 ((-2 (|:| -2420 $) (|:| |coef1| $)) $ $)) (-15 -2665 ((-2 (|:| -2420 $) (|:| |coef2| $)) $ $)) (-15 -3760 ($ $ $)) (-15 -2055 ((-665 $) $ $)) (-15 -2212 ($ $ $)) (-15 -1906 ($ $ $ (-792))) (-15 -3701 ($ $ $ $ (-792))) (-15 -2187 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -2420 (|t#1| |t#1| $)) (-15 -2399 ($ $)) (-15 -2147 ($ $)) (-15 -3973 ($ $)) (-15 -3671 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 |#3|) . T) ((-634 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-631 (-885)) . T) ((-631 (-980 |#1|)) |has| |#3| (-632 (-1206))) ((-174) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| |#1| (-632 (-549))) (|has| |#3| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#3| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#3| (-632 (-916 (-577))))) ((-632 (-980 |#1|)) |has| |#3| (-632 (-1206))) ((-632 (-1188)) -12 (|has| |#1| (-1068 (-577))) (|has| |#3| (-632 (-1206)))) ((-301) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2229 (|has| |#1| (-937)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 #1=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-659 #1#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-747) . T) ((-920 $ |#3|) . T) ((-926 |#3|) . T) ((-928 |#3|) . T) ((-910 (-391)) -12 (|has| |#1| (-910 (-391))) (|has| |#3| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-910 (-577))) (|has| |#3| (-910 (-577)))) ((-977 |#1| |#2| |#3|) . T) ((-937) |has| |#1| (-937)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 |#1|) . T) ((-1068 |#3|) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) |has| |#1| (-937))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3979 (((-665 (-1165)) $) 18 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 27 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-1165) $) 20 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1096) (-13 (-1113) (-10 -8 (-15 -3979 ((-665 (-1165)) $)) (-15 -4115 ((-1165) $))))) (T -1096)) -((-3979 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1096)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1096))))) -(-13 (-1113) (-10 -8 (-15 -3979 ((-665 (-1165)) $)) (-15 -4115 ((-1165) $)))) -((-1516 (((-112) |#3| $) 15 T ELT)) (-2312 (((-3 $ "failed") |#3| (-949)) 29 T ELT)) (-4281 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-2785 (((-112) |#3| $) 19 T ELT)) (-1434 (((-112) |#3| $) 17 T ELT))) -(((-1097 |#1| |#2| |#3|) (-10 -8 (-15 -2312 ((-3 |#1| "failed") |#3| (-949))) (-15 -4281 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2785 ((-112) |#3| |#1|)) (-15 -1434 ((-112) |#3| |#1|)) (-15 -1516 ((-112) |#3| |#1|))) (-1098 |#2| |#3|) (-13 (-869) (-375)) (-1273 |#2|)) (T -1097)) -NIL -(-10 -8 (-15 -2312 ((-3 |#1| "failed") |#3| (-949))) (-15 -4281 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2785 ((-112) |#3| |#1|)) (-15 -1434 ((-112) |#3| |#1|)) (-15 -1516 ((-112) |#3| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) |#2| $) 22 T ELT)) (-4459 (((-577) |#2| $) 23 T ELT)) (-2312 (((-3 $ "failed") |#2| (-949)) 16 T ELT)) (-3440 ((|#1| |#2| $ |#1|) 14 T ELT)) (-4281 (((-3 |#2| "failed") |#2| $) 19 T ELT)) (-2785 (((-112) |#2| $) 20 T ELT)) (-1434 (((-112) |#2| $) 21 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1773 ((|#2| $) 18 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-3908 ((|#1| |#2| $ |#1|) 15 T ELT)) (-3634 (((-665 $) |#2|) 17 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-1098 |#1| |#2|) (-141) (-13 (-869) (-375)) (-1273 |t#1|)) (T -1098)) -((-4459 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-577)))) (-1516 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-112)))) (-1434 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-112)))) (-2785 (*1 *2 *3 *1) (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-112)))) (-4281 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) (-4 *2 (-1273 *3)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) (-4 *2 (-1273 *3)))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-665 *1)) (-4 *1 (-1098 *4 *3)))) (-2312 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-949)) (-4 *4 (-13 (-869) (-375))) (-4 *1 (-1098 *4 *2)) (-4 *2 (-1273 *4)))) (-3908 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) (-4 *3 (-1273 *2)))) (-3440 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) (-4 *3 (-1273 *2))))) -(-13 (-1130) (-10 -8 (-15 -4459 ((-577) |t#2| $)) (-15 -1516 ((-112) |t#2| $)) (-15 -1434 ((-112) |t#2| $)) (-15 -2785 ((-112) |t#2| $)) (-15 -4281 ((-3 |t#2| "failed") |t#2| $)) (-15 -1773 (|t#2| $)) (-15 -3634 ((-665 $) |t#2|)) (-15 -2312 ((-3 $ "failed") |t#2| (-949))) (-15 -3908 (|t#1| |t#2| $ |t#1|)) (-15 -3440 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-2825 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-792)) 114 T ELT)) (-4024 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792)) 63 T ELT)) (-4211 (((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-792)) 99 T ELT)) (-2629 (((-792) (-665 |#4|) (-665 |#5|)) 30 T ELT)) (-3507 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792)) 65 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792) (-112)) 67 T ELT)) (-2622 (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112)) 86 T ELT) (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112)) 87 T ELT)) (-3341 (((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) 92 T ELT)) (-2290 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-112)) 62 T ELT)) (-2311 (((-792) (-665 |#4|) (-665 |#5|)) 21 T ELT))) -(((-1099 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2311 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2629 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2290 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-112))) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2825 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-792))) (-15 -3341 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -4211 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-792)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1099)) -((-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) (-5 *1 (-1099 *4 *5 *6 *7 *8)))) (-2825 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-665 *11)) (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -4317 *11)))))) (-5 *6 (-792)) (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -4317 *11)))) (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-5 *1 (-1099 *7 *8 *9 *10 *11)))) (-2622 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-2622 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-3507 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3507 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-3507 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1099 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) (-4024 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-4024 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-2290 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2311 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2629 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2290 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-112))) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2825 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-792))) (-15 -3341 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -4211 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-792)))) -((-3820 (((-112) |#5| $) 26 T ELT)) (-3389 (((-112) |#5| $) 29 T ELT)) (-1566 (((-112) |#5| $) 18 T ELT) (((-112) $) 52 T ELT)) (-3959 (((-665 $) |#5| $) NIL T ELT) (((-665 $) (-665 |#5|) $) 94 T ELT) (((-665 $) (-665 |#5|) (-665 $)) 92 T ELT) (((-665 $) |#5| (-665 $)) 95 T ELT)) (-4013 (($ $ |#5|) NIL T ELT) (((-665 $) |#5| $) NIL T ELT) (((-665 $) |#5| (-665 $)) 73 T ELT) (((-665 $) (-665 |#5|) $) 75 T ELT) (((-665 $) (-665 |#5|) (-665 $)) 77 T ELT)) (-1338 (((-665 $) |#5| $) NIL T ELT) (((-665 $) |#5| (-665 $)) 64 T ELT) (((-665 $) (-665 |#5|) $) 69 T ELT) (((-665 $) (-665 |#5|) (-665 $)) 71 T ELT)) (-2214 (((-112) |#5| $) 32 T ELT))) -(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4013 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -4013 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -4013 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -4013 ((-665 |#1|) |#5| |#1|)) (-15 -1338 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -1338 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -1338 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -1338 ((-665 |#1|) |#5| |#1|)) (-15 -3959 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -3959 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -3959 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -3959 ((-665 |#1|) |#5| |#1|)) (-15 -3389 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#1|)) (-15 -2214 ((-112) |#5| |#1|)) (-15 -3820 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#5| |#1|)) (-15 -4013 (|#1| |#1| |#5|))) (-1101 |#2| |#3| |#4| |#5|) (-465) (-814) (-870) (-1095 |#2| |#3| |#4|)) (T -1100)) -NIL -(-10 -8 (-15 -4013 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -4013 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -4013 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -4013 ((-665 |#1|) |#5| |#1|)) (-15 -1338 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -1338 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -1338 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -1338 ((-665 |#1|) |#5| |#1|)) (-15 -3959 ((-665 |#1|) |#5| (-665 |#1|))) (-15 -3959 ((-665 |#1|) (-665 |#5|) (-665 |#1|))) (-15 -3959 ((-665 |#1|) (-665 |#5|) |#1|)) (-15 -3959 ((-665 |#1|) |#5| |#1|)) (-15 -3389 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#1|)) (-15 -2214 ((-112) |#5| |#1|)) (-15 -3820 ((-112) |#5| |#1|)) (-15 -1566 ((-112) |#5| |#1|)) (-15 -4013 (|#1| |#1| |#5|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-4202 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-2948 (((-665 |#3|) $) 34 T ELT)) (-3294 (((-112) $) 27 T ELT)) (-1567 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-1988 ((|#4| |#4| $) 93 T ELT)) (-4456 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| $) 127 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-2641 (((-112) $ (-792)) 45 T ELT)) (-4232 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2762 (($) 46 T CONST)) (-1760 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3514 (($ (-665 |#4|)) 36 T ELT)) (-4197 (((-3 $ "failed") $) 83 T ELT)) (-3415 ((|#4| |#4| $) 90 T ELT)) (-3860 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-2981 ((|#4| |#4| $) 88 T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) 106 T ELT)) (-3820 (((-112) |#4| $) 137 T ELT)) (-3389 (((-112) |#4| $) 134 T ELT)) (-1566 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2728 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1669 ((|#3| $) 35 T ELT)) (-1967 (((-112) $ (-792)) 44 T ELT)) (-4138 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2850 (((-665 |#3|) $) 33 T ELT)) (-2746 (((-112) |#3| $) 32 T ELT)) (-3417 (((-112) $ (-792)) 43 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2334 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-2212 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| |#4| $) 128 T ELT)) (-2756 (((-3 |#4| "failed") $) 84 T ELT)) (-2510 (((-665 $) |#4| $) 130 T ELT)) (-2173 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-4049 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3959 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-4213 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-2327 (((-665 |#4|) $) 108 T ELT)) (-2982 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1502 ((|#4| |#4| $) 91 T ELT)) (-2220 (((-112) $ $) 111 T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-4058 ((|#4| |#4| $) 92 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4188 (((-3 |#4| "failed") $) 85 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4013 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) 39 T ELT)) (-2392 (((-112) $) 42 T ELT)) (-3414 (($) 41 T ELT)) (-2776 (((-792) $) 107 T ELT)) (-4323 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 40 T ELT)) (-3341 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 61 T ELT)) (-1799 (($ $ |#3|) 29 T ELT)) (-3139 (($ $ |#3|) 31 T ELT)) (-3680 (($ $) 89 T ELT)) (-1600 (($ $ |#3|) 30 T ELT)) (-2410 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3050 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-1338 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) 82 T ELT)) (-2214 (((-112) |#4| $) 136 T ELT)) (-2306 (((-112) |#3| $) 81 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) -(((-1101 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1101)) -((-1566 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-3820 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2214 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-3389 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2173 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 (-112) (-665 *1))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4049 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4049 (*1 *2 *3 *1) (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2510 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-2334 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 *3 (-665 *1))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-2212 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4456 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *1)))) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3959 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-3959 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-3959 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-3959 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-1338 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-1338 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-1338 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-4213 (*1 *1 *2 *1) (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4213 (*1 *1 *2 *1) (-12 (-5 *2 (-665 *6)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)))) (-4013 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)))) (-4013 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) (-4013 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *7)))) (-4013 (*1 *2 *3 *2) (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)))) (-4202 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1101 *5 *6 *7 *8))))) -(-13 (-1240 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1566 ((-112) |t#4| $)) (-15 -3820 ((-112) |t#4| $)) (-15 -2214 ((-112) |t#4| $)) (-15 -1566 ((-112) $)) (-15 -3389 ((-112) |t#4| $)) (-15 -2173 ((-3 (-112) (-665 $)) |t#4| $)) (-15 -4049 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) |t#4| $)) (-15 -4049 ((-112) |t#4| $)) (-15 -2510 ((-665 $) |t#4| $)) (-15 -2334 ((-3 |t#4| (-665 $)) |t#4| |t#4| $)) (-15 -2212 ((-665 (-2 (|:| |val| |t#4|) (|:| -4317 $))) |t#4| |t#4| $)) (-15 -4456 ((-665 (-2 (|:| |val| |t#4|) (|:| -4317 $))) |t#4| $)) (-15 -3959 ((-665 $) |t#4| $)) (-15 -3959 ((-665 $) (-665 |t#4|) $)) (-15 -3959 ((-665 $) (-665 |t#4|) (-665 $))) (-15 -3959 ((-665 $) |t#4| (-665 $))) (-15 -1338 ((-665 $) |t#4| $)) (-15 -1338 ((-665 $) |t#4| (-665 $))) (-15 -1338 ((-665 $) (-665 |t#4|) $)) (-15 -1338 ((-665 $) (-665 |t#4|) (-665 $))) (-15 -4213 ($ |t#4| $)) (-15 -4213 ($ (-665 |t#4|) $)) (-15 -4013 ((-665 $) |t#4| $)) (-15 -4013 ((-665 $) |t#4| (-665 $))) (-15 -4013 ((-665 $) (-665 |t#4|) $)) (-15 -4013 ((-665 $) (-665 |t#4|) (-665 $))) (-15 -4202 ((-665 $) (-665 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) -((-1802 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|) 86 T ELT)) (-2453 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|) 127 T ELT)) (-2213 (((-665 |#5|) |#4| |#5|) 74 T ELT)) (-4166 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-3957 (((-1302)) 36 T ELT)) (-3870 (((-1302)) 25 T ELT)) (-3107 (((-1302) (-1188) (-1188) (-1188)) 32 T ELT)) (-2070 (((-1302) (-1188) (-1188) (-1188)) 21 T ELT)) (-1661 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#4| |#4| |#5|) 107 T ELT)) (-2401 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#3| (-112)) 118 T ELT) (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-2694 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|) 113 T ELT))) -(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2070 ((-1302) (-1188) (-1188) (-1188))) (-15 -3870 ((-1302))) (-15 -3107 ((-1302) (-1188) (-1188) (-1188))) (-15 -3957 ((-1302))) (-15 -1661 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2401 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2401 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#3| (-112))) (-15 -2694 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2453 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -4166 ((-112) |#4| |#5|)) (-15 -4166 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -2213 ((-665 |#5|) |#4| |#5|)) (-15 -1802 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1102)) -((-1802 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2213 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-4166 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-4166 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2453 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2694 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -4317 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-2401 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-1661 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3957 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3107 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3870 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-2070 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(-10 -7 (-15 -2070 ((-1302) (-1188) (-1188) (-1188))) (-15 -3870 ((-1302))) (-15 -3107 ((-1302) (-1188) (-1188) (-1188))) (-15 -3957 ((-1302))) (-15 -1661 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2401 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2401 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#3| (-112))) (-15 -2694 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2453 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -4166 ((-112) |#4| |#5|)) (-15 -4166 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -2213 ((-665 |#5|) |#4| |#5|)) (-15 -1802 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1892 (((-1246) $) 13 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2076 (((-1165) $) 10 T ELT)) (-2410 (((-885) $) 20 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1103) (-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -1892 ((-1246) $))))) (T -1103)) -((-2076 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1103)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1103))))) -(-13 (-1113) (-10 -8 (-15 -2076 ((-1165) $)) (-15 -1892 ((-1246) $)))) -((-3503 (((-112) $ $) 7 T ELT))) -(((-1104) (-13 (-1247) (-10 -8 (-15 -3503 ((-112) $ $))))) (T -1104)) -((-3503 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1104))))) -(-13 (-1247) (-10 -8 (-15 -3503 ((-112) $ $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-4105 (((-1206) $) 8 T ELT)) (-3384 (((-1188) $) 17 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 11 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 14 T ELT))) -(((-1105 |#1|) (-13 (-1130) (-10 -8 (-15 -4105 ((-1206) $)))) (-1206)) (T -1105)) -((-4105 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1105 *3)) (-14 *3 *2)))) -(-13 (-1130) (-10 -8 (-15 -4105 ((-1206) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2366 (($ $ (-665 (-1206)) (-1 (-112) (-665 |#3|))) 34 T ELT)) (-1795 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-665 (-1206))) 21 T ELT)) (-3664 ((|#3| $) 13 T ELT)) (-2817 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3514 (((-305 |#3|) $) NIL T ELT)) (-3862 (((-665 (-1206)) $) 16 T ELT)) (-2904 (((-916 |#1|) $) 11 T ELT)) (-3653 ((|#3| $) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-949)) 41 T ELT)) (-2410 (((-885) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 38 T ELT))) -(((-1106 |#1| |#2| |#3|) (-13 (-1130) (-297 |#3| |#3|) (-1068 (-305 |#3|)) (-10 -8 (-15 -1795 ($ |#3| |#3|)) (-15 -1795 ($ |#3| |#3| (-665 (-1206)))) (-15 -2366 ($ $ (-665 (-1206)) (-1 (-112) (-665 |#3|)))) (-15 -2904 ((-916 |#1|) $)) (-15 -3653 (|#3| $)) (-15 -3664 (|#3| $)) (-15 -2435 (|#3| $ |#3| (-949))) (-15 -3862 ((-665 (-1206)) $)))) (-1130) (-13 (-1079) (-910 |#1|) (-632 (-916 |#1|))) (-13 (-443 |#2|) (-910 |#1|) (-632 (-916 |#1|)))) (T -1106)) -((-1795 (*1 *1 *2 *2) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))))) (-1795 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) (-2366 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1 (-112) (-665 *6))) (-4 *6 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1106 *4 *5 *6)))) (-2904 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 *2))) (-5 *2 (-916 *3)) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 *2))))) (-3653 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) (-3664 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) (-2435 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) (-3862 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-5 *2 (-665 (-1206))) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) -(-13 (-1130) (-297 |#3| |#3|) (-1068 (-305 |#3|)) (-10 -8 (-15 -1795 ($ |#3| |#3|)) (-15 -1795 ($ |#3| |#3| (-665 (-1206)))) (-15 -2366 ($ $ (-665 (-1206)) (-1 (-112) (-665 |#3|)))) (-15 -2904 ((-916 |#1|) $)) (-15 -3653 (|#3| $)) (-15 -3664 (|#3| $)) (-15 -2435 (|#3| $ |#3| (-949))) (-15 -3862 ((-665 (-1206)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2330 (($ (-665 (-1106 |#1| |#2| |#3|))) 14 T ELT)) (-2433 (((-665 (-1106 |#1| |#2| |#3|)) $) 21 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-949)) 27 T ELT)) (-2410 (((-885) $) 17 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 20 T ELT))) -(((-1107 |#1| |#2| |#3|) (-13 (-1130) (-297 |#3| |#3|) (-10 -8 (-15 -2330 ($ (-665 (-1106 |#1| |#2| |#3|)))) (-15 -2433 ((-665 (-1106 |#1| |#2| |#3|)) $)) (-15 -2435 (|#3| $ |#3| (-949))))) (-1130) (-13 (-1079) (-910 |#1|) (-632 (-916 |#1|))) (-13 (-443 |#2|) (-910 |#1|) (-632 (-916 |#1|)))) (T -1107)) -((-2330 (*1 *1 *2) (-12 (-5 *2 (-665 (-1106 *3 *4 *5))) (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) (-5 *1 (-1107 *3 *4 *5)))) (-2433 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) (-5 *2 (-665 (-1106 *3 *4 *5))) (-5 *1 (-1107 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))))) (-2435 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-949)) (-4 *4 (-1130)) (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) (-5 *1 (-1107 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4))))))) -(-13 (-1130) (-297 |#3| |#3|) (-10 -8 (-15 -2330 ($ (-665 (-1106 |#1| |#2| |#3|)))) (-15 -2433 ((-665 (-1106 |#1| |#2| |#3|)) $)) (-15 -2435 (|#3| $ |#3| (-949))))) -((-2347 (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)) 88 T ELT) (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|))) 92 T ELT) (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112)) 90 T ELT))) -(((-1108 |#1| |#2|) (-10 -7 (-15 -2347 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -2347 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -2347 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)))) (-13 (-318) (-148)) (-665 (-1206))) (T -1108)) -((-2347 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *4)) (|:| -2119 (-665 (-980 *4)))))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-665 (-980 *4))) (-14 *5 (-665 (-1206))))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206)))))) -(-10 -7 (-15 -2347 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -2347 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -2347 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)))) -((-2799 (((-431 |#3|) |#3|) 18 T ELT))) -(((-1109 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-431 |#3|) |#3|))) (-1273 (-420 (-577))) (-13 (-375) (-148) (-745 (-420 (-577)) |#1|)) (-1273 |#2|)) (T -1109)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-13 (-375) (-148) (-745 (-420 (-577)) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1109 *4 *5 *3)) (-4 *3 (-1273 *5))))) -(-10 -7 (-15 -2799 ((-431 |#3|) |#3|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 136 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-375)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2716 (((-710 |#1|) (-1297 $)) NIL T ELT) (((-710 |#1|)) 121 T ELT)) (-1880 ((|#1| $) 125 T ELT)) (-1645 (((-1219 (-949) (-792)) (-577)) NIL (|has| |#1| (-361)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2221 (((-792)) 43 (|has| |#1| (-380)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-1912 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) 46 T ELT)) (-2437 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)) ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3449 (((-710 |#1|) $ (-1297 $)) NIL T ELT) (((-710 |#1|) $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 113 T ELT) (((-710 |#1|) (-710 $)) 108 T ELT)) (-2511 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-420 |#2|)) NIL (|has| |#1| (-375)) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1875 (((-949)) 84 T ELT)) (-2060 (($) 47 (|has| |#1| (-380)) ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3619 (($) NIL (|has| |#1| (-361)) ELT)) (-3390 (((-112) $) NIL (|has| |#1| (-361)) ELT)) (-2202 (($ $ (-792)) NIL (|has| |#1| (-361)) ELT) (($ $) NIL (|has| |#1| (-361)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-3890 (((-949) $) NIL (|has| |#1| (-361)) ELT) (((-854 (-949)) $) NIL (|has| |#1| (-361)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-2755 ((|#1| $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-361)) ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-4067 ((|#2| $) 91 (|has| |#1| (-375)) ELT)) (-2553 (((-949) $) 145 (|has| |#1| (-380)) ELT)) (-2500 ((|#2| $) 62 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2199 (($) NIL (|has| |#1| (-361)) CONST)) (-2085 (($ (-949)) 135 (|has| |#1| (-380)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2846 (($) 127 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-4086 (((-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577))))) NIL (|has| |#1| (-361)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-1611 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-2723 (((-792) $) NIL (|has| |#1| (-361)) ELT) (((-3 (-792) "failed") $ $) NIL (|has| |#1| (-361)) ELT)) (-2030 (($ $ (-792)) NIL (-2229 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) NIL (-2229 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL (|has| |#1| (-375)) ELT)) (-1935 (((-710 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT)) (-1773 ((|#2|) 81 T ELT)) (-1494 (($) NIL (|has| |#1| (-361)) ELT)) (-2119 (((-1297 |#1|) $ (-1297 $)) 96 T ELT) (((-710 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 75 T ELT) (((-710 |#1|) (-1297 $)) 92 T ELT)) (-3341 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (|has| |#1| (-361)) ELT)) (-2410 (((-885) $) 61 T ELT) (($ (-577)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-375)) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2580 (($ $) NIL (|has| |#1| (-361)) ELT) (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3400 ((|#2| $) 89 T ELT)) (-3234 (((-792)) 83 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2225 (((-1297 $)) 88 T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2367 (($) 32 T CONST)) (-2378 (($) 19 T CONST)) (-1675 (($ $ (-792)) NIL (-2229 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $) NIL (-2229 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-928 (-1206)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL (|has| |#1| (-375)) ELT)) (-2383 (((-112) $ $) 67 T ELT)) (-2494 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 69 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-375)) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-375)) ELT))) -(((-1110 |#1| |#2| |#3|) (-745 |#1| |#2|) (-174) (-1273 |#1|) |#2|) (T -1110)) -NIL -(-745 |#1| |#2|) -((-2799 (((-431 |#3|) |#3|) 19 T ELT))) -(((-1111 |#1| |#2| |#3|) (-10 -7 (-15 -2799 ((-431 |#3|) |#3|))) (-1273 (-420 (-980 (-577)))) (-13 (-375) (-148) (-745 (-420 (-980 (-577))) |#1|)) (-1273 |#2|)) (T -1111)) -((-2799 (*1 *2 *3) (-12 (-4 *4 (-1273 (-420 (-980 (-577))))) (-4 *5 (-13 (-375) (-148) (-745 (-420 (-980 (-577))) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5))))) -(-10 -7 (-15 -2799 ((-431 |#3|) |#3|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1344 (($ $ $) 16 T ELT)) (-4167 (($ $ $) 17 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2957 (($) 6 T ELT)) (-3341 (((-1206) $) 20 T ELT)) (-2410 (((-885) $) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 15 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 9 T ELT))) -(((-1112) (-13 (-870) (-632 (-1206)) (-10 -8 (-15 -2957 ($))))) (T -1112)) -((-2957 (*1 *1) (-5 *1 (-1112)))) -(-13 (-870) (-632 (-1206)) (-10 -8 (-15 -2957 ($)))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-1211)) 17 T ELT) (((-1211) $) 16 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-1113) (-141)) (T -1113)) +((-3025 (($ $ (-1123 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT))) +(((-988) (-142)) (T -988)) +((-3025 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-988)))) (-3025 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-1207))))) +(-13 (-10 -8 (-15 -3025 ($ $ (-1207))) (-15 -3025 ($ $ (-1123 $))))) +((-3146 (((-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-666 (-981 |#1|)) (-666 (-1207)) (-1207)) 26 T ELT) (((-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-666 (-981 |#1|)) (-666 (-1207))) 27 T ELT) (((-2 (|:| |coef1| (-578)) (|:| |coef2| (-578)) (|:| |prim| (-1203 |#1|))) (-981 |#1|) (-1207) (-981 |#1|) (-1207)) 49 T ELT))) +(((-989 |#1|) (-10 -7 (-15 -3146 ((-2 (|:| |coef1| (-578)) (|:| |coef2| (-578)) (|:| |prim| (-1203 |#1|))) (-981 |#1|) (-1207) (-981 |#1|) (-1207))) (-15 -3146 ((-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -3146 ((-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-666 (-981 |#1|)) (-666 (-1207)) (-1207)))) (-13 (-376) (-149))) (T -989)) +((-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-981 *6))) (-5 *4 (-666 (-1207))) (-5 *5 (-1207)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 *6))) (|:| |prim| (-1203 *6)))) (-5 *1 (-989 *6)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-666 (-1207))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 *5))) (|:| |prim| (-1203 *5)))) (-5 *1 (-989 *5)))) (-3146 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-981 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-578)) (|:| |coef2| (-578)) (|:| |prim| (-1203 *5)))) (-5 *1 (-989 *5))))) +(-10 -7 (-15 -3146 ((-2 (|:| |coef1| (-578)) (|:| |coef2| (-578)) (|:| |prim| (-1203 |#1|))) (-981 |#1|) (-1207) (-981 |#1|) (-1207))) (-15 -3146 ((-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-666 (-981 |#1|)) (-666 (-1207)))) (-15 -3146 ((-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 |#1|))) (|:| |prim| (-1203 |#1|))) (-666 (-981 |#1|)) (-666 (-1207)) (-1207)))) +((-3636 (((-666 |#1|) |#1| |#1|) 47 T ELT)) (-2159 (((-112) |#1|) 44 T ELT)) (-4022 ((|#1| |#1|) 79 T ELT)) (-2251 ((|#1| |#1|) 78 T ELT))) +(((-990 |#1|) (-10 -7 (-15 -2159 ((-112) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -4022 (|#1| |#1|)) (-15 -3636 ((-666 |#1|) |#1| |#1|))) (-559)) (T -990)) +((-3636 (*1 *2 *3 *3) (-12 (-5 *2 (-666 *3)) (-5 *1 (-990 *3)) (-4 *3 (-559)))) (-4022 (*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-559)))) (-2251 (*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-559)))) (-2159 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-990 *3)) (-4 *3 (-559))))) +(-10 -7 (-15 -2159 ((-112) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -4022 (|#1| |#1|)) (-15 -3636 ((-666 |#1|) |#1| |#1|))) +((-1776 (((-1303) (-886)) 9 T ELT))) +(((-991) (-10 -7 (-15 -1776 ((-1303) (-886))))) (T -991)) +((-1776 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-991))))) +(-10 -7 (-15 -1776 ((-1303) (-886)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 78 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 79 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 34 T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3136 (($ $) 31 T ELT)) (-3493 (((-3 $ "failed") $) 42 T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2535 (($ $ |#1| |#2| $) 62 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) 17 T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| |#2|) NIL T ELT)) (-3937 ((|#2| $) 24 T ELT)) (-2500 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3097 (($ $) 28 T ELT)) (-3110 ((|#1| $) 26 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) 51 T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-4406 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-133)) (|has| |#1| (-570))) ELT)) (-3202 (((-3 $ "failed") $ $) 91 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-570)) ELT)) (-3683 ((|#2| $) 22 T ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) 46 T ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ |#1|) 41 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ |#2|) 37 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 15 T CONST)) (-2364 (($ $ $ (-793)) 74 (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) 84 (|has| |#1| (-570)) ELT)) (-2368 (($) 27 T CONST)) (-2379 (($) 12 T CONST)) (-2384 (((-112) $ $) 83 T ELT)) (-2495 (($ $ |#1|) 92 (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) 69 T ELT) (($ $ (-793)) 67 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 66 T ELT) (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-992 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-570)) (IF (|has| |#2| (-133)) (-15 -4406 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|))) (-1080) (-814)) (T -992)) +((-4406 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-992 *3 *2)) (-4 *2 (-133)) (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *2 (-814))))) +(-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-570)) (IF (|has| |#2| (-133)) (-15 -4406 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL (-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-2424 (($ $ $) 65 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) ELT)) (-4028 (((-3 $ "failed") $ $) 52 (-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-2222 (((-793)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3652 ((|#2| $) 22 T ELT)) (-4010 ((|#1| $) 21 T ELT)) (-3534 (($) NIL (-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-3493 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-2062 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-4382 (((-112) $) NIL (-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-1345 (($ $ $) NIL (-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-3667 (($ $ $) NIL (-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2748 (($ |#1| |#2|) 20 T ELT)) (-3193 (((-950) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 39 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2087 (($ (-950)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1433 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-1863 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2411 (((-886) $) 14 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 42 (-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-2379 (($) 25 (-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) CONST)) (-2441 (((-112) $ $) NIL (-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2416 (((-112) $ $) NIL (-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2384 (((-112) $ $) 19 T ELT)) (-2429 (((-112) $ $) NIL (-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2404 (((-112) $ $) 69 (-2230 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2495 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2484 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-2472 (($ $ $) 45 (-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (** (($ $ (-578)) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT) (($ $ (-793)) 32 (-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT) (($ $ (-950)) NIL (-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (* (($ (-578) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-793) $) 48 (-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ (-950) $) NIL (-2230 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ $ $) 28 (-2230 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT))) +(((-993 |#1| |#2|) (-13 (-1131) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-871)) (IF (|has| |#2| (-871)) (-6 (-871)) |%noBranch|) |%noBranch|) (-15 -2748 ($ |#1| |#2|)) (-15 -4010 (|#1| $)) (-15 -3652 (|#2| $)))) (-1131) (-1131)) (T -993)) +((-2748 (*1 *1 *2 *3) (-12 (-5 *1 (-993 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-4010 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-993 *2 *3)) (-4 *3 (-1131)))) (-3652 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-993 *3 *2)) (-4 *3 (-1131))))) +(-13 (-1131) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-871)) (IF (|has| |#2| (-871)) (-6 (-871)) |%noBranch|) |%noBranch|) (-15 -2748 ($ |#1| |#2|)) (-15 -4010 (|#1| $)) (-15 -3652 (|#2| $)))) +((-4120 (((-1135) $) 12 T ELT)) (-4438 (($ (-520) (-1135)) 14 T ELT)) (-4107 (((-520) $) 9 T ELT)) (-2411 (((-886) $) 24 T ELT))) +(((-994) (-13 (-632 (-886)) (-10 -8 (-15 -4107 ((-520) $)) (-15 -4120 ((-1135) $)) (-15 -4438 ($ (-520) (-1135)))))) (T -994)) +((-4107 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-994)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-994)))) (-4438 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-994))))) +(-13 (-632 (-886)) (-10 -8 (-15 -4107 ((-520) $)) (-15 -4120 ((-1135) $)) (-15 -4438 ($ (-520) (-1135))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-4303 (($) NIL T CONST)) (-2332 (($ $ $) 30 T ELT)) (-2309 (($ $) 24 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3991 (((-713 (-897 $ $)) $) 55 T ELT)) (-2935 (((-713 $) $) 45 T ELT)) (-2560 (((-713 (-897 $ $)) $) 56 T ELT)) (-3784 (((-713 (-897 $ $)) $) 57 T ELT)) (-1826 (((-713 |#1|) $) 36 T ELT)) (-3224 (((-713 (-897 $ $)) $) 54 T ELT)) (-3326 (($ $ $) 31 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2435 (($) NIL T CONST)) (-3051 (($ $ $) 32 T ELT)) (-3665 (($ $ $) 29 T ELT)) (-3710 (($ $ $) 27 T ELT)) (-2411 (((-886) $) 59 T ELT) (($ |#1|) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2320 (($ $ $) 28 T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-995 |#1|) (-13 (-998) (-635 |#1|) (-10 -8 (-15 -1826 ((-713 |#1|) $)) (-15 -2935 ((-713 $) $)) (-15 -3224 ((-713 (-897 $ $)) $)) (-15 -3991 ((-713 (-897 $ $)) $)) (-15 -2560 ((-713 (-897 $ $)) $)) (-15 -3784 ((-713 (-897 $ $)) $)) (-15 -3710 ($ $ $)) (-15 -3665 ($ $ $)))) (-1131)) (T -995)) +((-1826 (*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1131)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-713 (-995 *3))) (-5 *1 (-995 *3)) (-4 *3 (-1131)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1131)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1131)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1131)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1131)))) (-3710 (*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1131)))) (-3665 (*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1131))))) +(-13 (-998) (-635 |#1|) (-10 -8 (-15 -1826 ((-713 |#1|) $)) (-15 -2935 ((-713 $) $)) (-15 -3224 ((-713 (-897 $ $)) $)) (-15 -3991 ((-713 (-897 $ $)) $)) (-15 -2560 ((-713 (-897 $ $)) $)) (-15 -3784 ((-713 (-897 $ $)) $)) (-15 -3710 ($ $ $)) (-15 -3665 ($ $ $)))) +((-1662 (((-995 |#1|) (-995 |#1|)) 46 T ELT)) (-3445 (((-995 |#1|) (-995 |#1|)) 22 T ELT)) (-1889 (((-1133 |#1|) (-995 |#1|)) 41 T ELT))) +(((-996 |#1|) (-13 (-1248) (-10 -7 (-15 -3445 ((-995 |#1|) (-995 |#1|))) (-15 -1889 ((-1133 |#1|) (-995 |#1|))) (-15 -1662 ((-995 |#1|) (-995 |#1|))))) (-1131)) (T -996)) +((-3445 (*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1131)) (-5 *1 (-996 *3)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-995 *4)) (-4 *4 (-1131)) (-5 *2 (-1133 *4)) (-5 *1 (-996 *4)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1131)) (-5 *1 (-996 *3))))) +(-13 (-1248) (-10 -7 (-15 -3445 ((-995 |#1|) (-995 |#1|))) (-15 -1889 ((-1133 |#1|) (-995 |#1|))) (-15 -1662 ((-995 |#1|) (-995 |#1|))))) +((-3611 (((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)) 29 T ELT))) +(((-997 |#1| |#2|) (-13 (-1248) (-10 -7 (-15 -3611 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|))))) (-1131) (-1131)) (T -997)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *2 (-995 *6)) (-5 *1 (-997 *5 *6))))) +(-13 (-1248) (-10 -7 (-15 -3611 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|))))) +((-3213 (((-112) $ $) 19 T ELT)) (-3237 (($ $) 8 T ELT)) (-4303 (($) 17 T CONST)) (-2332 (($ $ $) 9 T ELT)) (-2309 (($ $) 11 T ELT)) (-2617 (((-1189) $) 23 T ELT)) (-3326 (($ $ $) 15 T ELT)) (-4313 (((-1151) $) 22 T ELT)) (-2435 (($) 16 T CONST)) (-3051 (($ $ $) 14 T ELT)) (-2411 (((-886) $) 21 T ELT)) (-2876 (((-112) $ $) 20 T ELT)) (-2320 (($ $ $) 10 T ELT)) (-3287 (($ $ $) 6 T ELT)) (-2384 (((-112) $ $) 18 T ELT)) (-3274 (($ $ $) 7 T ELT))) +(((-998) (-142)) (T -998)) +((-4303 (*1 *1) (-4 *1 (-998))) (-2435 (*1 *1) (-4 *1 (-998))) (-3326 (*1 *1 *1 *1) (-4 *1 (-998))) (-3051 (*1 *1 *1 *1) (-4 *1 (-998)))) +(-13 (-114) (-1131) (-10 -8 (-15 -4303 ($) -1529) (-15 -2435 ($) -1529) (-15 -3326 ($ $ $)) (-15 -3051 ($ $ $)))) +(((-102) . T) ((-114) . T) ((-632 (-886)) . T) ((-683) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-3534 (($) 7 T CONST)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1957 (($ $ $) 44 T ELT)) (-3176 (($ $ $) 45 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3667 ((|#1| $) 46 T ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-999 |#1|) (-142) (-871)) (T -999)) +((-3667 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))) (-3176 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))) (-1957 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4500) (-15 -3667 (|t#1| $)) (-15 -3176 ($ $ $)) (-15 -1957 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-4155 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2421 |#2|)) |#2| |#2|) 105 T ELT)) (-3594 ((|#2| |#2| |#2|) 103 T ELT)) (-2983 (((-2 (|:| |coef2| |#2|) (|:| -2421 |#2|)) |#2| |#2|) 107 T ELT)) (-1469 (((-2 (|:| |coef1| |#2|) (|:| -2421 |#2|)) |#2| |#2|) 109 T ELT)) (-3230 (((-2 (|:| |coef2| |#2|) (|:| -2760 |#1|)) |#2| |#2|) 131 (|has| |#1| (-466)) ELT)) (-2095 (((-2 (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|) 56 T ELT)) (-3870 (((-2 (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|) 80 T ELT)) (-1895 (((-2 (|:| |coef1| |#2|) (|:| -2035 |#1|)) |#2| |#2|) 82 T ELT)) (-4027 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-4008 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 89 T ELT)) (-4112 (((-2 (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2|) 121 T ELT)) (-2550 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 92 T ELT)) (-3487 (((-666 (-793)) |#2| |#2|) 102 T ELT)) (-2555 ((|#1| |#2| |#2|) 50 T ELT)) (-2656 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2760 |#1|)) |#2| |#2|) 129 (|has| |#1| (-466)) ELT)) (-2760 ((|#1| |#2| |#2|) 127 (|has| |#1| (-466)) ELT)) (-2518 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|) 54 T ELT)) (-4232 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|) 79 T ELT)) (-2035 ((|#1| |#2| |#2|) 76 T ELT)) (-3580 (((-2 (|:| -2672 |#1|) (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2|) 41 T ELT)) (-1684 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-3552 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3064 ((|#2| |#2| |#2|) 93 T ELT)) (-1930 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 87 T ELT)) (-3234 ((|#2| |#2| |#2| (-793)) 85 T ELT)) (-2421 ((|#2| |#2| |#2|) 135 (|has| |#1| (-466)) ELT)) (-3202 (((-1298 |#2|) (-1298 |#2|) |#1|) 22 T ELT)) (-2036 (((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2|) 46 T ELT)) (-2468 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2|) 119 T ELT)) (-3232 ((|#1| |#2|) 116 T ELT)) (-3269 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 91 T ELT)) (-2619 ((|#2| |#2| |#2| (-793)) 90 T ELT)) (-3418 (((-666 |#2|) |#2| |#2|) 99 T ELT)) (-3128 ((|#2| |#2| |#1| |#1| (-793)) 62 T ELT)) (-1599 ((|#1| |#1| |#1| (-793)) 61 T ELT)) (* (((-1298 |#2|) |#1| (-1298 |#2|)) 17 T ELT))) +(((-1000 |#1| |#2|) (-10 -7 (-15 -2035 (|#1| |#2| |#2|)) (-15 -4232 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -3870 ((-2 (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -1895 ((-2 (|:| |coef1| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -3234 (|#2| |#2| |#2| (-793))) (-15 -1930 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -4008 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -2619 (|#2| |#2| |#2| (-793))) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -2550 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3064 (|#2| |#2| |#2|)) (-15 -3552 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4027 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3594 (|#2| |#2| |#2|)) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2421 |#2|)) |#2| |#2|)) (-15 -2983 ((-2 (|:| |coef2| |#2|) (|:| -2421 |#2|)) |#2| |#2|)) (-15 -1469 ((-2 (|:| |coef1| |#2|) (|:| -2421 |#2|)) |#2| |#2|)) (-15 -3232 (|#1| |#2|)) (-15 -2468 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2|)) (-15 -4112 ((-2 (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2|)) (-15 -3418 ((-666 |#2|) |#2| |#2|)) (-15 -3487 ((-666 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -2760 (|#1| |#2| |#2|)) (-15 -2656 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2760 |#1|)) |#2| |#2|)) (-15 -3230 ((-2 (|:| |coef2| |#2|) (|:| -2760 |#1|)) |#2| |#2|)) (-15 -2421 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1298 |#2|) |#1| (-1298 |#2|))) (-15 -3202 ((-1298 |#2|) (-1298 |#2|) |#1|)) (-15 -3580 ((-2 (|:| -2672 |#1|) (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2|)) (-15 -2036 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2|)) (-15 -1599 (|#1| |#1| |#1| (-793))) (-15 -3128 (|#2| |#2| |#1| |#1| (-793))) (-15 -1684 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2555 (|#1| |#2| |#2|)) (-15 -2518 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -2095 ((-2 (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|))) (-570) (-1274 |#1|)) (T -1000)) +((-2095 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2035 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-2518 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2035 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-2555 (*1 *2 *3 *3) (-12 (-4 *2 (-570)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1274 *2)))) (-1684 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3)))) (-3128 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3)))) (-1599 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *2 (-570)) (-5 *1 (-1000 *2 *4)) (-4 *4 (-1274 *2)))) (-2036 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3580 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| -2672 *4) (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3202 (*1 *2 *2 *3) (-12 (-5 *2 (-1298 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-570)) (-5 *1 (-1000 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1298 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-570)) (-5 *1 (-1000 *3 *4)))) (-2421 (*1 *2 *2 *2) (-12 (-4 *3 (-466)) (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3)))) (-3230 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2760 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-2656 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2760 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-2760 (*1 *2 *3 *3) (-12 (-4 *2 (-570)) (-4 *2 (-466)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1274 *2)))) (-3487 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-666 (-793))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3418 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-666 *3)) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-4112 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3232 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3232 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3232 (*1 *2 *3) (-12 (-4 *2 (-570)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1274 *2)))) (-1469 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2421 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-2983 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2421 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-4155 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2421 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3594 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3)))) (-4027 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3552 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3064 (*1 *2 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5)))) (-3269 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5)))) (-2619 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-570)) (-5 *1 (-1000 *4 *2)) (-4 *2 (-1274 *4)))) (-4008 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5)))) (-1930 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5)))) (-3234 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-570)) (-5 *1 (-1000 *4 *2)) (-4 *2 (-1274 *4)))) (-1895 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2035 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-3870 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2035 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-4232 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2035 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) (-2035 (*1 *2 *3 *3) (-12 (-4 *2 (-570)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1274 *2))))) +(-10 -7 (-15 -2035 (|#1| |#2| |#2|)) (-15 -4232 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -3870 ((-2 (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -1895 ((-2 (|:| |coef1| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -3234 (|#2| |#2| |#2| (-793))) (-15 -1930 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -4008 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -2619 (|#2| |#2| |#2| (-793))) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -2550 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3064 (|#2| |#2| |#2|)) (-15 -3552 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4027 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3594 (|#2| |#2| |#2|)) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2421 |#2|)) |#2| |#2|)) (-15 -2983 ((-2 (|:| |coef2| |#2|) (|:| -2421 |#2|)) |#2| |#2|)) (-15 -1469 ((-2 (|:| |coef1| |#2|) (|:| -2421 |#2|)) |#2| |#2|)) (-15 -3232 (|#1| |#2|)) (-15 -2468 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2|)) (-15 -4112 ((-2 (|:| |coef2| |#2|) (|:| -3232 |#1|)) |#2|)) (-15 -3418 ((-666 |#2|) |#2| |#2|)) (-15 -3487 ((-666 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -2760 (|#1| |#2| |#2|)) (-15 -2656 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2760 |#1|)) |#2| |#2|)) (-15 -3230 ((-2 (|:| |coef2| |#2|) (|:| -2760 |#1|)) |#2| |#2|)) (-15 -2421 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1298 |#2|) |#1| (-1298 |#2|))) (-15 -3202 ((-1298 |#2|) (-1298 |#2|) |#1|)) (-15 -3580 ((-2 (|:| -2672 |#1|) (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2|)) (-15 -2036 ((-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) |#2| |#2|)) (-15 -1599 (|#1| |#1| |#1| (-793))) (-15 -3128 (|#2| |#2| |#1| |#1| (-793))) (-15 -1684 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2555 (|#1| |#2| |#2|)) (-15 -2518 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|)) (-15 -2095 ((-2 (|:| |coef2| |#2|) (|:| -2035 |#1|)) |#2| |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1893 (((-1247) $) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2077 (((-1166) $) 10 T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1001) (-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -1893 ((-1247) $))))) (T -1001)) +((-2077 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1001)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-1001))))) +(-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -1893 ((-1247) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 40 T ELT)) (-4028 (((-3 $ "failed") $ $) 54 T ELT)) (-3534 (($) NIL T CONST)) (-2338 (((-666 (-897 (-950) (-950))) $) 67 T ELT)) (-2822 (((-950) $) 94 T ELT)) (-2729 (((-666 (-950)) $) 17 T ELT)) (-1811 (((-1188 $) (-793)) 39 T ELT)) (-4073 (($ (-666 (-950))) 16 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1433 (($ $) 70 T ELT)) (-2411 (((-886) $) 90 T ELT) (((-666 (-950)) $) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 8 T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 44 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 42 T ELT)) (-2472 (($ $ $) 46 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) 49 T ELT)) (-3226 (((-793) $) 22 T ELT))) +(((-1002) (-13 (-817) (-632 (-666 (-950))) (-10 -8 (-15 -4073 ($ (-666 (-950)))) (-15 -2729 ((-666 (-950)) $)) (-15 -3226 ((-793) $)) (-15 -1811 ((-1188 $) (-793))) (-15 -2338 ((-666 (-897 (-950) (-950))) $)) (-15 -2822 ((-950) $)) (-15 -1433 ($ $))))) (T -1002)) +((-4073 (*1 *1 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1002)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1002)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1002)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1188 (-1002))) (-5 *1 (-1002)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-666 (-897 (-950) (-950)))) (-5 *1 (-1002)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-1002)))) (-1433 (*1 *1 *1) (-5 *1 (-1002)))) +(-13 (-817) (-632 (-666 (-950))) (-10 -8 (-15 -4073 ($ (-666 (-950)))) (-15 -2729 ((-666 (-950)) $)) (-15 -3226 ((-793) $)) (-15 -1811 ((-1188 $) (-793))) (-15 -2338 ((-666 (-897 (-950) (-950))) $)) (-15 -2822 ((-950) $)) (-15 -1433 ($ $)))) +((-2495 (($ $ |#2|) 31 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-421 (-578)) $) 27 T ELT) (($ $ (-421 (-578))) 29 T ELT))) +(((-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -2495 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) (-1004 |#2| |#3| |#4|) (-1080) (-814) (-871)) (T -1003)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-421 (-578)))) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 -2495 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-950) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 |#3|) $) 86 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1401 (((-112) $) 85 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT) (($ $ |#3| |#2|) 88 T ELT) (($ $ (-666 |#3|) (-666 |#2|)) 87 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3683 ((|#2| $) 76 T ELT)) (-2117 (($ $) 84 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-3708 ((|#1| $ |#2|) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1004 |#1| |#2| |#3|) (-142) (-1080) (-814) (-871)) (T -1004)) +((-3110 (*1 *2 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-871)) (-4 *2 (-1080)))) (-3097 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *4 (-871)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *2 *4)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *2 (-814)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-1004 *4 *3 *2)) (-4 *4 (-1080)) (-4 *3 (-814)) (-4 *2 (-871)))) (-2925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 *6)) (-5 *3 (-666 *5)) (-4 *1 (-1004 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-814)) (-4 *6 (-871)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *5 (-871)) (-5 *2 (-666 *5)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *5 (-871)) (-5 *2 (-112)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *4 (-871))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2925 ($ $ |t#3| |t#2|)) (-15 -2925 ($ $ (-666 |t#3|) (-666 |t#2|))) (-15 -3097 ($ $)) (-15 -3110 (|t#1| $)) (-15 -3683 (|t#2| $)) (-15 -2949 ((-666 |t#3|) $)) (-15 -1401 ((-112) $)) (-15 -2117 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-570)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-570)) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-302) |has| |#1| (-570)) ((-570) |has| |#1| (-570)) ((-668 #0#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-578)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-570)) ((-739 #0#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-570)) ((-748) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3429 (((-1125 (-229)) $) 8 T ELT)) (-3419 (((-1125 (-229)) $) 9 T ELT)) (-3407 (((-1125 (-229)) $) 10 T ELT)) (-3174 (((-666 (-666 (-972 (-229)))) $) 11 T ELT)) (-2411 (((-886) $) 6 T ELT))) +(((-1005) (-142)) (T -1005)) +((-3174 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-666 (-666 (-972 (-229))))))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1125 (-229))))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1125 (-229))))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1125 (-229)))))) +(-13 (-632 (-886)) (-10 -8 (-15 -3174 ((-666 (-666 (-972 (-229)))) $)) (-15 -3407 ((-1125 (-229)) $)) (-15 -3419 ((-1125 (-229)) $)) (-15 -3429 ((-1125 (-229)) $)))) +(((-632 (-886)) . T)) +((-2949 (((-666 |#4|) $) 23 T ELT)) (-3039 (((-112) $) 55 T ELT)) (-2774 (((-112) $) 54 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-4147 (((-112) $) 56 T ELT)) (-1645 (((-112) $ $) 62 T ELT)) (-2722 (((-112) $ $) 65 T ELT)) (-2115 (((-112) $) 60 T ELT)) (-1532 (((-666 |#5|) (-666 |#5|) $) 98 T ELT)) (-4168 (((-666 |#5|) (-666 |#5|) $) 95 T ELT)) (-1886 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3117 (((-666 |#4|) $) 27 T ELT)) (-1455 (((-112) |#4| $) 34 T ELT)) (-1840 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-1339 (($ $ |#4|) 39 T ELT)) (-2093 (($ $ |#4|) 38 T ELT)) (-3102 (($ $ |#4|) 40 T ELT)) (-2384 (((-112) $ $) 46 T ELT))) +(((-1006 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2774 ((-112) |#1|)) (-15 -1532 ((-666 |#5|) (-666 |#5|) |#1|)) (-15 -4168 ((-666 |#5|) (-666 |#5|) |#1|)) (-15 -1886 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1840 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4147 ((-112) |#1|)) (-15 -2722 ((-112) |#1| |#1|)) (-15 -1645 ((-112) |#1| |#1|)) (-15 -2115 ((-112) |#1|)) (-15 -3039 ((-112) |#1|)) (-15 -2042 ((-2 (|:| |under| |#1|) (|:| -3575 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1339 (|#1| |#1| |#4|)) (-15 -3102 (|#1| |#1| |#4|)) (-15 -2093 (|#1| |#1| |#4|)) (-15 -1455 ((-112) |#4| |#1|)) (-15 -3117 ((-666 |#4|) |#1|)) (-15 -2949 ((-666 |#4|) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-1007 |#2| |#3| |#4| |#5|) (-1080) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1006)) +NIL +(-10 -8 (-15 -2774 ((-112) |#1|)) (-15 -1532 ((-666 |#5|) (-666 |#5|) |#1|)) (-15 -4168 ((-666 |#5|) (-666 |#5|) |#1|)) (-15 -1886 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1840 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4147 ((-112) |#1|)) (-15 -2722 ((-112) |#1| |#1|)) (-15 -1645 ((-112) |#1| |#1|)) (-15 -2115 ((-112) |#1|)) (-15 -3039 ((-112) |#1|)) (-15 -2042 ((-2 (|:| |under| |#1|) (|:| -3575 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1339 (|#1| |#1| |#4|)) (-15 -3102 (|#1| |#1| |#4|)) (-15 -2093 (|#1| |#1| |#4|)) (-15 -1455 ((-112) |#4| |#1|)) (-15 -3117 ((-666 |#4|) |#1|)) (-15 -2949 ((-666 |#4|) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2949 (((-666 |#3|) $) 34 T ELT)) (-3039 (((-112) $) 27 T ELT)) (-2774 (((-112) $) 18 (|has| |#1| (-570)) ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1628 (((-112) $ (-793)) 45 T ELT)) (-4233 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 46 T CONST)) (-4147 (((-112) $) 23 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) 25 (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) 24 (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) 26 (|has| |#1| (-570)) ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) 19 (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) 20 (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) 37 T ELT)) (-3516 (($ (-666 |#4|)) 36 T ELT)) (-3776 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-570)) ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#4|) $) 53 (|has| $ (-6 -4500)) ELT)) (-2537 ((|#3| $) 35 T ELT)) (-2363 (((-112) $ (-793)) 44 T ELT)) (-1441 (((-666 |#4|) $) 54 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3117 (((-666 |#3|) $) 33 T ELT)) (-1455 (((-112) |#3| $) 32 T ELT)) (-1719 (((-112) $ (-793)) 43 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-570)) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) 39 T ELT)) (-4186 (((-112) $) 42 T ELT)) (-1696 (($) 41 T ELT)) (-4324 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 40 T ELT)) (-3343 (((-550) $) 70 (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 61 T ELT)) (-1339 (($ $ |#3|) 29 T ELT)) (-2093 (($ $ |#3|) 31 T ELT)) (-3102 (($ $ |#3|) 30 T ELT)) (-2411 (((-886) $) 12 T ELT) (((-666 |#4|) $) 38 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-793) $) 47 (|has| $ (-6 -4500)) ELT))) +(((-1007 |#1| |#2| |#3| |#4|) (-142) (-1080) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1007)) +((-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-1096 *3 *4 *2)) (-4 *2 (-871)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *5)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *5)))) (-1455 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *3 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-112)))) (-2093 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-3102 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-1339 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-2042 (*1 *2 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3575 *1) (|:| |upper| *1))) (-4 *1 (-1007 *4 *5 *3 *6)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-5 *2 (-112)))) (-1645 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-5 *2 (-112)))) (-2722 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-5 *2 (-112)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-5 *2 (-112)))) (-1840 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1886 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4168 (*1 *2 *2 *1) (-12 (-5 *2 (-666 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)))) (-1532 (*1 *2 *2 *1) (-12 (-5 *2 (-666 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-5 *2 (-112))))) +(-13 (-1131) (-153 |t#4|) (-632 (-666 |t#4|)) (-10 -8 (-6 -4500) (-15 -2818 ((-3 $ "failed") (-666 |t#4|))) (-15 -3516 ($ (-666 |t#4|))) (-15 -2537 (|t#3| $)) (-15 -2949 ((-666 |t#3|) $)) (-15 -3117 ((-666 |t#3|) $)) (-15 -1455 ((-112) |t#3| $)) (-15 -2093 ($ $ |t#3|)) (-15 -3102 ($ $ |t#3|)) (-15 -1339 ($ $ |t#3|)) (-15 -2042 ((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |t#3|)) (-15 -3039 ((-112) $)) (IF (|has| |t#1| (-570)) (PROGN (-15 -2115 ((-112) $)) (-15 -1645 ((-112) $ $)) (-15 -2722 ((-112) $ $)) (-15 -4147 ((-112) $)) (-15 -1840 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1886 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4168 ((-666 |t#4|) (-666 |t#4|) $)) (-15 -1532 ((-666 |t#4|) (-666 |t#4|) $)) (-15 -2774 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-632 (-666 |#4|)) . T) ((-632 (-886)) . T) ((-153 |#4|) . T) ((-633 (-550)) |has| |#4| (-633 (-550))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1131) . T) ((-1248) . T)) +((-3590 (((-666 |#4|) |#4| |#4|) 136 T ELT)) (-4094 (((-666 |#4|) (-666 |#4|) (-112)) 125 (|has| |#1| (-466)) ELT) (((-666 |#4|) (-666 |#4|)) 126 (|has| |#1| (-466)) ELT)) (-2215 (((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|)) 44 T ELT)) (-2202 (((-112) |#4|) 43 T ELT)) (-1770 (((-666 |#4|) |#4|) 121 (|has| |#1| (-466)) ELT)) (-3371 (((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-1 (-112) |#4|) (-666 |#4|)) 24 T ELT)) (-1410 (((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 (-1 (-112) |#4|)) (-666 |#4|)) 30 T ELT)) (-2506 (((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 (-1 (-112) |#4|)) (-666 |#4|)) 31 T ELT)) (-2801 (((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|)) 90 T ELT)) (-2629 (((-666 |#4|) (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3192 (((-666 |#4|) (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3058 (((-666 |#4|) (-666 |#4|)) 128 T ELT)) (-2125 (((-666 |#4|) (-666 |#4|) (-666 |#4|) (-112)) 59 T ELT) (((-666 |#4|) (-666 |#4|) (-666 |#4|)) 61 T ELT)) (-2795 ((|#4| |#4| (-666 |#4|)) 60 T ELT)) (-4231 (((-666 |#4|) (-666 |#4|) (-666 |#4|)) 132 (|has| |#1| (-466)) ELT)) (-2934 (((-666 |#4|) (-666 |#4|) (-666 |#4|)) 135 (|has| |#1| (-466)) ELT)) (-1395 (((-666 |#4|) (-666 |#4|) (-666 |#4|)) 134 (|has| |#1| (-466)) ELT)) (-4401 (((-666 |#4|) (-666 |#4|) (-666 |#4|) (-1 (-666 |#4|) (-666 |#4|))) 105 T ELT) (((-666 |#4|) (-666 |#4|) (-666 |#4|)) 107 T ELT) (((-666 |#4|) (-666 |#4|) |#4|) 140 T ELT) (((-666 |#4|) |#4| |#4|) 137 T ELT) (((-666 |#4|) (-666 |#4|)) 106 T ELT)) (-4229 (((-666 |#4|) (-666 |#4|) (-666 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-1442 (((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|)) 52 T ELT)) (-2785 (((-112) (-666 |#4|)) 79 T ELT)) (-2024 (((-112) (-666 |#4|) (-666 (-666 |#4|))) 67 T ELT)) (-3050 (((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|)) 37 T ELT)) (-3447 (((-112) |#4|) 36 T ELT)) (-2113 (((-666 |#4|) (-666 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-2745 (((-666 |#4|) (-666 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-4398 (((-666 |#4|) (-666 |#4|)) 83 T ELT)) (-3523 (((-666 |#4|) (-666 |#4|)) 97 T ELT)) (-1920 (((-112) (-666 |#4|) (-666 |#4|)) 65 T ELT)) (-1883 (((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|)) 50 T ELT)) (-3402 (((-112) |#4|) 45 T ELT))) +(((-1008 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4401 ((-666 |#4|) (-666 |#4|))) (-15 -4401 ((-666 |#4|) |#4| |#4|)) (-15 -3058 ((-666 |#4|) (-666 |#4|))) (-15 -3590 ((-666 |#4|) |#4| |#4|)) (-15 -4401 ((-666 |#4|) (-666 |#4|) |#4|)) (-15 -4401 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -4401 ((-666 |#4|) (-666 |#4|) (-666 |#4|) (-1 (-666 |#4|) (-666 |#4|)))) (-15 -1920 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2024 ((-112) (-666 |#4|) (-666 (-666 |#4|)))) (-15 -2785 ((-112) (-666 |#4|))) (-15 -3371 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-1 (-112) |#4|) (-666 |#4|))) (-15 -1410 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 (-1 (-112) |#4|)) (-666 |#4|))) (-15 -2506 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 (-1 (-112) |#4|)) (-666 |#4|))) (-15 -1442 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -2202 ((-112) |#4|)) (-15 -2215 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -3447 ((-112) |#4|)) (-15 -3050 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -3402 ((-112) |#4|)) (-15 -1883 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -2125 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -2125 ((-666 |#4|) (-666 |#4|) (-666 |#4|) (-112))) (-15 -2795 (|#4| |#4| (-666 |#4|))) (-15 -4398 ((-666 |#4|) (-666 |#4|))) (-15 -2801 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|))) (-15 -3523 ((-666 |#4|) (-666 |#4|))) (-15 -2629 ((-666 |#4|) (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3192 ((-666 |#4|) (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -1770 ((-666 |#4|) |#4|)) (-15 -4094 ((-666 |#4|) (-666 |#4|))) (-15 -4094 ((-666 |#4|) (-666 |#4|) (-112))) (-15 -4231 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -1395 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -2934 ((-666 |#4|) (-666 |#4|) (-666 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -2745 ((-666 |#4|) (-666 |#4|))) (-15 -2113 ((-666 |#4|) (-666 |#4|))) (-15 -4229 ((-666 |#4|) (-666 |#4|) (-666 |#4|)))) |%noBranch|) |%noBranch|)) (-570) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1008)) +((-4229 (*1 *2 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-1395 (*1 *2 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4231 (*1 *2 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4094 (*1 *2 *2 *3) (-12 (-5 *2 (-666 *7)) (-5 *3 (-112)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-3192 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-666 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1008 *5 *6 *7 *8)))) (-2629 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-666 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-570)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *1 (-1008 *6 *7 *8 *9)))) (-3523 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2801 (*1 *2 *3) (|partial| -12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -2853 (-666 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-4398 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2795 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *2)))) (-2125 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-666 *7)) (-5 *3 (-112)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-2125 (*1 *2 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-3050 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-3447 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-2215 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-2202 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1442 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-1 (-112) *8))) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-666 *8)) (|:| |badPols| (-666 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-666 *8)))) (-1410 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-1 (-112) *8))) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-666 *8)) (|:| |badPols| (-666 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-666 *8)))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-666 *8)) (|:| |badPols| (-666 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-666 *8)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-2024 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-666 *8))) (-5 *3 (-666 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-112)) (-5 *1 (-1008 *5 *6 *7 *8)))) (-1920 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-4401 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-666 *7) (-666 *7))) (-5 *2 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-4401 (*1 *2 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4401 (*1 *2 *2 *3) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *3)))) (-3590 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4401 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-4401 (*1 *2 *2) (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))) +(-10 -7 (-15 -4401 ((-666 |#4|) (-666 |#4|))) (-15 -4401 ((-666 |#4|) |#4| |#4|)) (-15 -3058 ((-666 |#4|) (-666 |#4|))) (-15 -3590 ((-666 |#4|) |#4| |#4|)) (-15 -4401 ((-666 |#4|) (-666 |#4|) |#4|)) (-15 -4401 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -4401 ((-666 |#4|) (-666 |#4|) (-666 |#4|) (-1 (-666 |#4|) (-666 |#4|)))) (-15 -1920 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2024 ((-112) (-666 |#4|) (-666 (-666 |#4|)))) (-15 -2785 ((-112) (-666 |#4|))) (-15 -3371 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-1 (-112) |#4|) (-666 |#4|))) (-15 -1410 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 (-1 (-112) |#4|)) (-666 |#4|))) (-15 -2506 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 (-1 (-112) |#4|)) (-666 |#4|))) (-15 -1442 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -2202 ((-112) |#4|)) (-15 -2215 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -3447 ((-112) |#4|)) (-15 -3050 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -3402 ((-112) |#4|)) (-15 -1883 ((-2 (|:| |goodPols| (-666 |#4|)) (|:| |badPols| (-666 |#4|))) (-666 |#4|))) (-15 -2125 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -2125 ((-666 |#4|) (-666 |#4|) (-666 |#4|) (-112))) (-15 -2795 (|#4| |#4| (-666 |#4|))) (-15 -4398 ((-666 |#4|) (-666 |#4|))) (-15 -2801 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|))) (-15 -3523 ((-666 |#4|) (-666 |#4|))) (-15 -2629 ((-666 |#4|) (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3192 ((-666 |#4|) (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -1770 ((-666 |#4|) |#4|)) (-15 -4094 ((-666 |#4|) (-666 |#4|))) (-15 -4094 ((-666 |#4|) (-666 |#4|) (-112))) (-15 -4231 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -1395 ((-666 |#4|) (-666 |#4|) (-666 |#4|))) (-15 -2934 ((-666 |#4|) (-666 |#4|) (-666 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -2745 ((-666 |#4|) (-666 |#4|))) (-15 -2113 ((-666 |#4|) (-666 |#4|))) (-15 -4229 ((-666 |#4|) (-666 |#4|) (-666 |#4|)))) |%noBranch|) |%noBranch|)) +((-3281 (((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-1547 (((-666 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1298 |#1|)))) (-711 |#1|) (-1298 |#1|)) 46 T ELT)) (-3399 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-1009 |#1|) (-10 -7 (-15 -3281 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3399 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1547 ((-666 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1298 |#1|)))) (-711 |#1|) (-1298 |#1|)))) (-376)) (T -1009)) +((-1547 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-666 (-2 (|:| C (-711 *5)) (|:| |g| (-1298 *5))))) (-5 *1 (-1009 *5)) (-5 *3 (-711 *5)) (-5 *4 (-1298 *5)))) (-3399 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-1009 *5)))) (-3281 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6)))) (-5 *1 (-1009 *6)) (-5 *3 (-711 *6))))) +(-10 -7 (-15 -3281 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3399 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -1547 ((-666 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1298 |#1|)))) (-711 |#1|) (-1298 |#1|)))) +((-3034 (((-432 |#4|) |#4|) 56 T ELT))) +(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3034 ((-432 |#4|) |#4|))) (-871) (-815) (-466) (-978 |#3| |#2| |#1|)) (T -1010)) +((-3034 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-466)) (-5 *2 (-432 *3)) (-5 *1 (-1010 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) +(-10 -7 (-15 -3034 ((-432 |#4|) |#4|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1526 (($ (-793)) 115 (|has| |#1| (-23)) ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4501)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4501))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#1| $ (-578) |#1|) 53 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 60 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-1464 (($ $) 93 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 103 T ELT)) (-3776 (($ $) 80 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#1| $) 79 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 52 T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) 100 T ELT) (((-578) |#1| $) 99 (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) 98 (|has| |#1| (-1131)) ELT)) (-4414 (($ (-666 |#1|)) 121 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2360 (((-711 |#1|) $ $) 108 (|has| |#1| (-1080)) ELT)) (-3749 (($ (-793) |#1|) 70 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1664 ((|#1| $) 105 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-3492 ((|#1| $) 106 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) 62 T ELT) (($ $ $ (-578)) 61 T ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 43 (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-4291 (($ $ |#1|) 42 (|has| $ (-6 -4501)) ELT)) (-2704 (($ $ (-666 |#1|)) 119 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) |#1|) 51 T ELT) ((|#1| $ (-578)) 50 T ELT) (($ $ (-1265 (-578))) 71 T ELT)) (-1406 ((|#1| $ $) 109 (|has| |#1| (-1080)) ELT)) (-4425 (((-950) $) 120 T ELT)) (-1705 (($ $ (-578)) 64 T ELT) (($ $ (-1265 (-578))) 63 T ELT)) (-4431 (($ $ $) 107 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3751 (($ $ $ (-578)) 94 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 81 (|has| |#1| (-633 (-550))) ELT) (($ (-666 |#1|)) 122 T ELT)) (-2423 (($ (-666 |#1|)) 72 T ELT)) (-3703 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-666 $)) 66 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) 87 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 89 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) 88 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 90 (|has| |#1| (-871)) ELT)) (-2484 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-578) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-748)) ELT) (($ $ |#1|) 110 (|has| |#1| (-748)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1011 |#1|) (-142) (-1080)) (T -1011)) +((-4414 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1080)) (-4 *1 (-1011 *3)))) (-4425 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1080)) (-5 *2 (-950)))) (-4431 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1080)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *1 (-1011 *3)) (-4 *3 (-1080))))) +(-13 (-1296 |t#1|) (-637 (-666 |t#1|)) (-10 -8 (-15 -4414 ($ (-666 |t#1|))) (-15 -4425 ((-950) $)) (-15 -4431 ($ $ $)) (-15 -2704 ($ $ (-666 |t#1|))))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-637 (-666 |#1|)) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-386 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1131) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871))) ((-1248) . T) ((-1296 |#1|) . T)) +((-3611 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 17 T ELT))) +(((-1012 |#1| |#2|) (-10 -7 (-15 -3611 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) (-1080) (-1080)) (T -1012)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-972 *6)) (-5 *1 (-1012 *5 *6))))) +(-10 -7 (-15 -3611 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) +((-3170 ((|#1| (-972 |#1|)) 14 T ELT)) (-2224 ((|#1| (-972 |#1|)) 13 T ELT)) (-2188 ((|#1| (-972 |#1|)) 12 T ELT)) (-2137 ((|#1| (-972 |#1|)) 16 T ELT)) (-3150 ((|#1| (-972 |#1|)) 24 T ELT)) (-3532 ((|#1| (-972 |#1|)) 15 T ELT)) (-2995 ((|#1| (-972 |#1|)) 17 T ELT)) (-1594 ((|#1| (-972 |#1|)) 23 T ELT)) (-2927 ((|#1| (-972 |#1|)) 22 T ELT))) +(((-1013 |#1|) (-10 -7 (-15 -2188 (|#1| (-972 |#1|))) (-15 -2224 (|#1| (-972 |#1|))) (-15 -3170 (|#1| (-972 |#1|))) (-15 -3532 (|#1| (-972 |#1|))) (-15 -2137 (|#1| (-972 |#1|))) (-15 -2995 (|#1| (-972 |#1|))) (-15 -2927 (|#1| (-972 |#1|))) (-15 -1594 (|#1| (-972 |#1|))) (-15 -3150 (|#1| (-972 |#1|)))) (-1080)) (T -1013)) +((-3150 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) +(-10 -7 (-15 -2188 (|#1| (-972 |#1|))) (-15 -2224 (|#1| (-972 |#1|))) (-15 -3170 (|#1| (-972 |#1|))) (-15 -3532 (|#1| (-972 |#1|))) (-15 -2137 (|#1| (-972 |#1|))) (-15 -2995 (|#1| (-972 |#1|))) (-15 -2927 (|#1| (-972 |#1|))) (-15 -1594 (|#1| (-972 |#1|))) (-15 -3150 (|#1| (-972 |#1|)))) +((-3175 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-1735 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-1555 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-1844 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-4025 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-4215 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2843 (((-3 |#1| "failed") |#1| (-793)) 1 T ELT)) (-3681 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2427 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3725 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-1984 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2365 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3466 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2576 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-1870 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2312 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2719 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-1806 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-1680 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3836 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3511 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-1974 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2247 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-1427 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2996 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-1755 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3362 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-1014 |#1|) (-142) (-1233)) (T -1014)) +((-1974 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3836 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1427 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2312 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1755 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1806 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3725 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4025 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2365 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3175 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2576 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1555 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2247 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3511 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2996 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2719 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1680 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1984 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4215 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3466 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1735 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1870 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1844 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3681 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2427 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2843 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(-13 (-10 -7 (-15 -2843 ((-3 |t#1| "failed") |t#1| (-793))) (-15 -2427 ((-3 |t#1| "failed") |t#1|)) (-15 -3681 ((-3 |t#1| "failed") |t#1|)) (-15 -1844 ((-3 |t#1| "failed") |t#1|)) (-15 -1870 ((-3 |t#1| "failed") |t#1|)) (-15 -1735 ((-3 |t#1| "failed") |t#1|)) (-15 -3466 ((-3 |t#1| "failed") |t#1|)) (-15 -4215 ((-3 |t#1| "failed") |t#1|)) (-15 -1984 ((-3 |t#1| "failed") |t#1|)) (-15 -1680 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -2719 ((-3 |t#1| "failed") |t#1|)) (-15 -2996 ((-3 |t#1| "failed") |t#1|)) (-15 -3511 ((-3 |t#1| "failed") |t#1|)) (-15 -2247 ((-3 |t#1| "failed") |t#1|)) (-15 -1555 ((-3 |t#1| "failed") |t#1|)) (-15 -2576 ((-3 |t#1| "failed") |t#1|)) (-15 -3175 ((-3 |t#1| "failed") |t#1|)) (-15 -2365 ((-3 |t#1| "failed") |t#1|)) (-15 -4025 ((-3 |t#1| "failed") |t#1|)) (-15 -3725 ((-3 |t#1| "failed") |t#1|)) (-15 -1806 ((-3 |t#1| "failed") |t#1|)) (-15 -1755 ((-3 |t#1| "failed") |t#1|)) (-15 -2312 ((-3 |t#1| "failed") |t#1|)) (-15 -1427 ((-3 |t#1| "failed") |t#1|)) (-15 -3836 ((-3 |t#1| "failed") |t#1|)) (-15 -1974 ((-3 |t#1| "failed") |t#1|)))) +((-2272 ((|#4| |#4| (-666 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-4167 ((|#4| |#4| (-666 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3611 ((|#4| (-1 |#4| (-981 |#1|)) |#4|) 31 T ELT))) +(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4167 (|#4| |#4| |#3|)) (-15 -4167 (|#4| |#4| (-666 |#3|))) (-15 -2272 (|#4| |#4| |#3|)) (-15 -2272 (|#4| |#4| (-666 |#3|))) (-15 -3611 (|#4| (-1 |#4| (-981 |#1|)) |#4|))) (-1080) (-815) (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207))))) (-978 (-981 |#1|) |#2| |#3|)) (T -1015)) +((-3611 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-981 *4))) (-4 *4 (-1080)) (-4 *2 (-978 (-981 *4) *5 *6)) (-4 *5 (-815)) (-4 *6 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *6 *2)))) (-2272 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *6)) (-4 *6 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207)))))) (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) (-4 *2 (-978 (-981 *4) *5 *6)))) (-2272 (*1 *2 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-978 (-981 *4) *5 *3)))) (-4167 (*1 *2 *2 *3) (-12 (-5 *3 (-666 *6)) (-4 *6 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207)))))) (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) (-4 *2 (-978 (-981 *4) *5 *6)))) (-4167 (*1 *2 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)) (-15 -3967 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-978 (-981 *4) *5 *3))))) +(-10 -7 (-15 -4167 (|#4| |#4| |#3|)) (-15 -4167 (|#4| |#4| (-666 |#3|))) (-15 -2272 (|#4| |#4| |#3|)) (-15 -2272 (|#4| |#4| (-666 |#3|))) (-15 -3611 (|#4| (-1 |#4| (-981 |#1|)) |#4|))) +((-2810 ((|#2| |#3|) 35 T ELT)) (-3748 (((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 79 T ELT)) (-3098 (((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 100 T ELT))) +(((-1016 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3098 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -3748 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -2810 (|#2| |#3|))) (-362) (-1274 |#1|) (-1274 |#2|) (-746 |#2| |#3|)) (T -1016)) +((-2810 (*1 *2 *3) (-12 (-4 *3 (-1274 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-1016 *4 *2 *3 *5)) (-4 *4 (-362)) (-4 *5 (-746 *2 *3)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 *3)) (-5 *2 (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1016 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5)))) (-3098 (*1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| -3198 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5))))) +(-10 -7 (-15 -3098 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -3748 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -2810 (|#2| |#3|))) +((-3423 (((-1018 (-421 (-578)) (-888 |#1|) (-247 |#2| (-793)) (-255 |#1| (-421 (-578)))) (-1018 (-421 (-578)) (-888 |#1|) (-247 |#2| (-793)) (-255 |#1| (-421 (-578))))) 82 T ELT))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -3423 ((-1018 (-421 (-578)) (-888 |#1|) (-247 |#2| (-793)) (-255 |#1| (-421 (-578)))) (-1018 (-421 (-578)) (-888 |#1|) (-247 |#2| (-793)) (-255 |#1| (-421 (-578))))))) (-666 (-1207)) (-793)) (T -1017)) +((-3423 (*1 *2 *2) (-12 (-5 *2 (-1018 (-421 (-578)) (-888 *3) (-247 *4 (-793)) (-255 *3 (-421 (-578))))) (-14 *3 (-666 (-1207))) (-14 *4 (-793)) (-5 *1 (-1017 *3 *4))))) +(-10 -7 (-15 -3423 ((-1018 (-421 (-578)) (-888 |#1|) (-247 |#2| (-793)) (-255 |#1| (-421 (-578)))) (-1018 (-421 (-578)) (-888 |#1|) (-247 |#2| (-793)) (-255 |#1| (-421 (-578))))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3960 (((-3 (-112) "failed") $) 71 T ELT)) (-1662 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-2282 (($ $ (-3 (-112) "failed")) 72 T ELT)) (-1370 (($ (-666 |#4|) |#4|) 25 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2248 (($ $) 69 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4186 (((-112) $) 70 T ELT)) (-1696 (($) 30 T ELT)) (-2587 ((|#4| $) 74 T ELT)) (-3977 (((-666 |#4|) $) 73 T ELT)) (-2411 (((-886) $) 68 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1018 |#1| |#2| |#3| |#4|) (-13 (-1131) (-632 (-886)) (-10 -8 (-15 -1696 ($)) (-15 -1370 ($ (-666 |#4|) |#4|)) (-15 -3960 ((-3 (-112) "failed") $)) (-15 -2282 ($ $ (-3 (-112) "failed"))) (-15 -4186 ((-112) $)) (-15 -3977 ((-666 |#4|) $)) (-15 -2587 (|#4| $)) (-15 -2248 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -1662 ($ $)) |%noBranch|) |%noBranch|))) (-466) (-871) (-815) (-978 |#1| |#3| |#2|)) (T -1018)) +((-1696 (*1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3)))) (-1370 (*1 *1 *2 *3) (-12 (-5 *2 (-666 *3)) (-4 *3 (-978 *4 *6 *5)) (-4 *4 (-466)) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *1 (-1018 *4 *5 *6 *3)))) (-3960 (*1 *2 *1) (|partial| -12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-112)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-2282 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-4186 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-112)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-3977 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-666 *6)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) (-2587 (*1 *2 *1) (-12 (-4 *2 (-978 *3 *5 *4)) (-5 *1 (-1018 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)))) (-2248 (*1 *1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3)))) (-1662 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3))))) +(-13 (-1131) (-632 (-886)) (-10 -8 (-15 -1696 ($)) (-15 -1370 ($ (-666 |#4|) |#4|)) (-15 -3960 ((-3 (-112) "failed") $)) (-15 -2282 ($ $ (-3 (-112) "failed"))) (-15 -4186 ((-112) $)) (-15 -3977 ((-666 |#4|) $)) (-15 -2587 (|#4| $)) (-15 -2248 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -1662 ($ $)) |%noBranch|) |%noBranch|))) +((-1443 (((-112) |#5| |#5|) 44 T ELT)) (-1871 (((-112) |#5| |#5|) 59 T ELT)) (-2498 (((-112) |#5| (-666 |#5|)) 81 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-2577 (((-112) (-666 |#4|) (-666 |#4|)) 65 T ELT)) (-3426 (((-112) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) 70 T ELT)) (-2032 (((-1303)) 32 T ELT)) (-1554 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-3811 (((-666 |#5|) (-666 |#5|)) 100 T ELT)) (-2015 (((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) 92 T ELT)) (-2075 (((-666 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|)))) (-666 |#4|) (-666 |#5|) (-112) (-112)) 122 T ELT)) (-4351 (((-112) |#5| |#5|) 53 T ELT)) (-2175 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-3713 (((-112) (-666 |#4|) (-666 |#4|)) 64 T ELT)) (-2291 (((-112) (-666 |#4|) (-666 |#4|)) 66 T ELT)) (-3151 (((-112) (-666 |#4|) (-666 |#4|)) 67 T ELT)) (-2486 (((-3 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|))) "failed") (-666 |#4|) |#5| (-666 |#4|) (-112) (-112) (-112) (-112) (-112)) 117 T ELT)) (-1378 (((-666 |#5|) (-666 |#5|)) 49 T ELT))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1554 ((-1303) (-1189) (-1189) (-1189))) (-15 -2032 ((-1303))) (-15 -1443 ((-112) |#5| |#5|)) (-15 -1378 ((-666 |#5|) (-666 |#5|))) (-15 -4351 ((-112) |#5| |#5|)) (-15 -1871 ((-112) |#5| |#5|)) (-15 -2577 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3713 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2291 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3151 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2498 ((-112) |#5| |#5|)) (-15 -2498 ((-112) |#5| (-666 |#5|))) (-15 -3811 ((-666 |#5|) (-666 |#5|))) (-15 -3426 ((-112) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -2015 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-15 -2075 ((-666 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|)))) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2486 ((-3 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|))) "failed") (-666 |#4|) |#5| (-666 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1019)) +((-2486 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| -3505 (-666 *9)) (|:| -4318 *4) (|:| |ineq| (-666 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-666 *9)) (-4 *4 (-1102 *6 *7 *8 *9)))) (-2075 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-666 *10)) (-5 *5 (-112)) (-4 *10 (-1102 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-666 (-2 (|:| -3505 (-666 *9)) (|:| -4318 *10) (|:| |ineq| (-666 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-666 *9)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-666 (-2 (|:| |val| (-666 *6)) (|:| -4318 *7)))) (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3426 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-2498 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2175 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3151 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2291 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2577 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-4351 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-1443 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2032 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1554 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(-10 -7 (-15 -1554 ((-1303) (-1189) (-1189) (-1189))) (-15 -2032 ((-1303))) (-15 -1443 ((-112) |#5| |#5|)) (-15 -1378 ((-666 |#5|) (-666 |#5|))) (-15 -4351 ((-112) |#5| |#5|)) (-15 -1871 ((-112) |#5| |#5|)) (-15 -2577 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3713 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2291 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3151 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2498 ((-112) |#5| |#5|)) (-15 -2498 ((-112) |#5| (-666 |#5|))) (-15 -3811 ((-666 |#5|) (-666 |#5|))) (-15 -3426 ((-112) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -2015 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-15 -2075 ((-666 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|)))) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2486 ((-3 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|))) "failed") (-666 |#4|) |#5| (-666 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3967 (((-1207) $) 15 T ELT)) (-4120 (((-1189) $) 16 T ELT)) (-4018 (($ (-1207) (-1189)) 14 T ELT)) (-2411 (((-886) $) 13 T ELT))) +(((-1020) (-13 (-632 (-886)) (-10 -8 (-15 -4018 ($ (-1207) (-1189))) (-15 -3967 ((-1207) $)) (-15 -4120 ((-1189) $))))) (T -1020)) +((-4018 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1020)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1020)))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1020))))) +(-13 (-632 (-886)) (-10 -8 (-15 -4018 ($ (-1207) (-1189))) (-15 -3967 ((-1207) $)) (-15 -4120 ((-1189) $)))) +((-3611 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-1021 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#4| (-1 |#2| |#1|) |#3|))) (-570) (-570) (-1023 |#1|) (-1023 |#2|)) (T -1021)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-570)) (-4 *6 (-570)) (-4 *2 (-1023 *6)) (-5 *1 (-1021 *5 *6 *4 *2)) (-4 *4 (-1023 *5))))) +(-10 -7 (-15 -3611 (|#4| (-1 |#2| |#1|) |#3|))) +((-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) 66 T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) 96 T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-1207) $) 61 T ELT) (((-421 (-578)) $) NIL T ELT) (((-578) $) 93 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) 115 T ELT) (((-711 |#2|) (-711 $)) 28 T ELT)) (-2062 (($) 99 T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 76 T ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 85 T ELT)) (-2544 (($ $) 10 T ELT)) (-2204 (((-3 $ "failed") $) 20 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-2199 (($) 16 T ELT)) (-2055 (($ $) 55 T ELT)) (-2031 (($ $ (-1 |#2| |#2|)) 36 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1363 (($ $) 12 T ELT)) (-3343 (((-917 (-578)) $) 71 T ELT) (((-917 (-392)) $) 80 T ELT) (((-550) $) 40 T ELT) (((-392) $) 44 T ELT) (((-229) $) 48 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 91 T ELT) (($ |#2|) NIL T ELT) (($ (-1207)) 58 T ELT)) (-3753 (((-793)) 31 T ELT)) (-2404 (((-112) $ $) 51 T ELT))) +(((-1022 |#1| |#2|) (-10 -8 (-15 -2404 ((-112) |#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3343 ((-229) |#1|)) (-15 -3343 ((-392) |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -2411 (|#1| (-1207))) (-15 -2818 ((-3 (-1207) "failed") |#1|)) (-15 -3516 ((-1207) |#1|)) (-15 -2062 (|#1|)) (-15 -2055 (|#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -2242 ((-711 |#2|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| |#1|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-1023 |#2|) (-570)) (T -1022)) +((-3753 (*1 *2) (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-1022 *3 *4)) (-4 *3 (-1023 *4))))) +(-10 -8 (-15 -2404 ((-112) |#1| |#1|)) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3343 ((-229) |#1|)) (-15 -3343 ((-392) |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -2411 (|#1| (-1207))) (-15 -2818 ((-3 (-1207) "failed") |#1|)) (-15 -3516 ((-1207) |#1|)) (-15 -2062 (|#1|)) (-15 -2055 (|#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -2544 (|#1| |#1|)) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -3386 ((-914 (-578) |#1|) |#1| (-917 (-578)) (-914 (-578) |#1|))) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -2242 ((-711 |#2|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| |#1|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2873 ((|#1| $) 163 (|has| |#1| (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 154 (|has| |#1| (-938)) ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 157 (|has| |#1| (-938)) ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-1490 (((-578) $) 144 (|has| |#1| (-842)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 193 T ELT) (((-3 (-1207) "failed") $) 152 (|has| |#1| (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) 135 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-578) "failed") $) 133 (|has| |#1| (-1069 (-578))) ELT)) (-3516 ((|#1| $) 194 T ELT) (((-1207) $) 153 (|has| |#1| (-1069 (-1207))) ELT) (((-421 (-578)) $) 136 (|has| |#1| (-1069 (-578))) ELT) (((-578) $) 134 (|has| |#1| (-1069 (-578))) ELT)) (-3154 (($ $ $) 61 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 178 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 177 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 176 T ELT) (((-711 |#1|) (-711 $)) 175 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2062 (($) 161 (|has| |#1| (-559)) ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-3789 (((-112) $) 146 (|has| |#1| (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 170 (|has| |#1| (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 169 (|has| |#1| (-911 (-392))) ELT)) (-4382 (((-112) $) 35 T ELT)) (-2544 (($ $) 165 T ELT)) (-2519 ((|#1| $) 167 T ELT)) (-2204 (((-3 $ "failed") $) 132 (|has| |#1| (-1183)) ELT)) (-1721 (((-112) $) 145 (|has| |#1| (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-1345 (($ $ $) 137 (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) 138 (|has| |#1| (-871)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 185 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 180 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 179 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 174 T ELT) (((-711 |#1|) (-1298 $)) 173 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-2199 (($) 131 (|has| |#1| (-1183)) CONST)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2055 (($ $) 162 (|has| |#1| (-319)) ELT)) (-3575 ((|#1| $) 159 (|has| |#1| (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 156 (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 155 (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) 191 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 190 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) 189 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) 188 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) 187 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 186 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1449 (((-793) $) 64 T ELT)) (-2436 (($ $ |#1|) 192 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-2031 (($ $ (-1 |#1| |#1|)) 184 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 183 T ELT) (($ $) 130 (|has| |#1| (-239)) ELT) (($ $ (-793)) 128 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 126 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 124 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 123 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 122 (|has| |#1| (-929 (-1207))) ELT)) (-1363 (($ $) 164 T ELT)) (-2530 ((|#1| $) 166 T ELT)) (-3343 (((-917 (-578)) $) 172 (|has| |#1| (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) 171 (|has| |#1| (-633 (-917 (-392)))) ELT) (((-550) $) 149 (|has| |#1| (-633 (-550))) ELT) (((-392) $) 148 (|has| |#1| (-1053)) ELT) (((-229) $) 147 (|has| |#1| (-1053)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 158 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT) (($ |#1|) 197 T ELT) (($ (-1207)) 151 (|has| |#1| (-1069 (-1207))) ELT)) (-2213 (((-3 $ "failed") $) 150 (-2230 (|has| |#1| (-147)) (-2320 (|has| $ (-147)) (|has| |#1| (-938)))) ELT)) (-3753 (((-793)) 32 T CONST)) (-1585 ((|#1| $) 160 (|has| |#1| (-559)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2628 (($ $) 143 (|has| |#1| (-842)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 181 T ELT) (($ $) 129 (|has| |#1| (-239)) ELT) (($ $ (-793)) 127 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 125 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 121 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 120 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 119 (|has| |#1| (-929 (-1207))) ELT)) (-2441 (((-112) $ $) 139 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 141 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 140 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 142 (|has| |#1| (-871)) ELT)) (-2495 (($ $ $) 73 T ELT) (($ |#1| |#1|) 168 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT) (($ |#1| $) 196 T ELT) (($ $ |#1|) 195 T ELT))) +(((-1023 |#1|) (-142) (-570)) (T -1023)) +((-2495 (*1 *1 *2 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)))) (-2544 (*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-319)))) (-2055 (*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-319)))) (-2062 (*1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-559)) (-4 *2 (-570)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-559)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-559))))) +(-13 (-376) (-38 |t#1|) (-1069 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-909 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2495 ($ |t#1| |t#1|)) (-15 -2519 (|t#1| $)) (-15 -2530 (|t#1| $)) (-15 -2544 ($ $)) (-15 -1363 ($ $)) (IF (|has| |t#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |t#1| (-1069 (-578))) (PROGN (-6 (-1069 (-578))) (-6 (-1069 (-421 (-578))))) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#1| (-1053)) (-6 (-1053)) |%noBranch|) (IF (|has| |t#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1069 (-1207))) (-6 (-1069 (-1207))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -2873 (|t#1| $)) (-15 -2055 ($ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2062 ($)) (-15 -1585 (|t#1| $)) (-15 -3575 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-938)) (-6 (-938)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 #1=(-1207)) |has| |#1| (-1069 (-1207))) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-633 (-229)) |has| |#1| (-1053)) ((-633 (-392)) |has| |#1| (-1053)) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-633 (-917 (-392))) |has| |#1| (-633 (-917 (-392)))) ((-633 (-917 (-578))) |has| |#1| (-633 (-917 (-578)))) ((-236 $) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-466) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 #2=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-660 #2#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-813) |has| |#1| (-842)) ((-814) |has| |#1| (-842)) ((-816) |has| |#1| (-842)) ((-817) |has| |#1| (-842)) ((-842) |has| |#1| (-842)) ((-870) |has| |#1| (-842)) ((-871) -2230 (|has| |#1| (-871)) (|has| |#1| (-842))) ((-874) -2230 (|has| |#1| (-871)) (|has| |#1| (-842))) ((-921 $ #3=(-1207)) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #3#) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-392)) |has| |#1| (-911 (-392))) ((-911 (-578)) |has| |#1| (-911 (-578))) ((-909 |#1|) . T) ((-938) |has| |#1| (-938)) ((-949) . T) ((-1053) |has| |#1| (-1053)) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-578))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 #1#) |has| |#1| (-1069 (-1207))) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) |has| |#1| (-1183)) ((-1248) . T) ((-1252) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2358 (($ (-1173 |#1| |#2|)) 11 T ELT)) (-1869 (((-1173 |#1| |#2|) $) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 ((|#2| $ (-247 |#1| |#2|)) 16 T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT))) +(((-1024 |#1| |#2|) (-13 (-21) (-298 (-247 |#1| |#2|) |#2|) (-10 -8 (-15 -2358 ($ (-1173 |#1| |#2|))) (-15 -1869 ((-1173 |#1| |#2|) $)))) (-950) (-376)) (T -1024)) +((-2358 (*1 *1 *2) (-12 (-5 *2 (-1173 *3 *4)) (-14 *3 (-950)) (-4 *4 (-376)) (-5 *1 (-1024 *3 *4)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-1173 *3 *4)) (-5 *1 (-1024 *3 *4)) (-14 *3 (-950)) (-4 *4 (-376))))) +(-13 (-21) (-298 (-247 |#1| |#2|) |#2|) (-10 -8 (-15 -2358 ($ (-1173 |#1| |#2|))) (-15 -1869 ((-1173 |#1| |#2|) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2077 (((-1166) $) 9 T ELT)) (-2411 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1025) (-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $))))) (T -1025)) +((-2077 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1025))))) +(-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-3534 (($) 7 T CONST)) (-3702 (($ $) 47 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-3492 (((-793) $) 46 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-3479 ((|#1| $) 45 T ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-3298 ((|#1| |#1| $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-1732 ((|#1| $) 48 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-2985 ((|#1| $) 44 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1026 |#1|) (-142) (-1248)) (T -1026)) +((-3298 (*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248)))) (-3702 (*1 *1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1248)) (-5 *2 (-793)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4500) (-15 -3298 (|t#1| |t#1| $)) (-15 -1732 (|t#1| $)) (-15 -3702 ($ $)) (-15 -3492 ((-793) $)) (-15 -3479 (|t#1| $)) (-15 -2985 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3623 (((-112) $) 43 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 46 T ELT)) (-3516 (((-578) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 78 T ELT)) (-1474 (((-112) $) 72 T ELT)) (-3805 (((-421 (-578)) $) 76 T ELT)) (-4382 (((-112) $) 42 T ELT)) (-1550 ((|#2| $) 22 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-3057 (($ $) 58 T ELT)) (-2031 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3343 (((-550) $) 67 T ELT)) (-1433 (($ $) 17 T ELT)) (-2411 (((-886) $) 53 T ELT) (($ (-578)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-421 (-578))) NIL T ELT)) (-3753 (((-793)) 10 T ELT)) (-2628 ((|#2| $) 71 T ELT)) (-2384 (((-112) $ $) 26 T ELT)) (-2404 (((-112) $ $) 69 T ELT)) (-2484 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-2472 (($ $ $) 27 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT))) +(((-1027 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| (-421 (-578)))) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2404 ((-112) |#1| |#1|)) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 * (|#1| |#1| (-421 (-578)))) (-15 -3057 (|#1| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -2628 (|#2| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 -4382 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-1028 |#2|) (-175)) (T -1027)) +((-3753 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1027 *3 *4)) (-4 *3 (-1028 *4))))) +(-10 -8 (-15 -2411 (|#1| (-421 (-578)))) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2404 ((-112) |#1| |#1|)) (-15 * (|#1| (-421 (-578)) |#1|)) (-15 * (|#1| |#1| (-421 (-578)))) (-15 -3057 (|#1| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -2628 (|#2| |#1|)) (-15 -1550 (|#2| |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -3611 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 -4382 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -3623 ((-112) |#1|)) (-15 * (|#1| (-950) |#1|)) (-15 -2472 (|#1| |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 (-578) "failed") $) 135 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 133 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) 130 T ELT)) (-3516 (((-578) $) 134 (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) 132 (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) 131 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 115 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 114 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 113 T ELT) (((-711 |#1|) (-711 $)) 112 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2823 ((|#1| $) 103 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) 99 (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) 101 (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) 100 (|has| |#1| (-559)) ELT)) (-1833 (($ |#1| |#1| |#1| |#1|) 104 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1550 ((|#1| $) 105 T ELT)) (-1345 (($ $ $) 87 (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) 88 (|has| |#1| (-871)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 118 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 117 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 116 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 111 T ELT) (((-711 |#1|) (-1298 $)) 110 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 96 (|has| |#1| (-376)) ELT)) (-3164 ((|#1| $) 106 T ELT)) (-2453 ((|#1| $) 107 T ELT)) (-3329 ((|#1| $) 108 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) 124 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 123 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) 122 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) 121 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) 120 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 119 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2436 (($ $ |#1|) 125 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2031 (($ $ (-1 |#1| |#1|)) 129 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 128 T ELT) (($ $) 86 (|has| |#1| (-239)) ELT) (($ $ (-793)) 84 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 82 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 80 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 79 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 78 (|has| |#1| (-929 (-1207))) ELT)) (-3343 (((-550) $) 97 (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $) 109 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-578))) 74 (-2230 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-2213 (((-3 $ "failed") $) 98 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2628 ((|#1| $) 102 (|has| |#1| (-1091)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1 |#1| |#1|)) 127 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 126 T ELT) (($ $) 85 (|has| |#1| (-239)) ELT) (($ $ (-793)) 83 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 81 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 77 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 76 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 75 (|has| |#1| (-929 (-1207))) ELT)) (-2441 (((-112) $ $) 89 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 91 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 90 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 92 (|has| |#1| (-871)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 95 (|has| |#1| (-376)) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ $ (-421 (-578))) 94 (|has| |#1| (-376)) ELT) (($ (-421 (-578)) $) 93 (|has| |#1| (-376)) ELT))) +(((-1028 |#1|) (-142) (-175)) (T -1028)) +((-1433 (*1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-2453 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-1833 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-578))))) (-1514 (*1 *2 *1) (|partial| -12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-578)))))) +(-13 (-38 |t#1|) (-425 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -1433 ($ $)) (-15 -3329 (|t#1| $)) (-15 -2453 (|t#1| $)) (-15 -3164 (|t#1| $)) (-15 -1550 (|t#1| $)) (-15 -1833 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2823 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2628 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1474 ((-112) $)) (-15 -3805 ((-421 (-578)) $)) (-15 -1514 ((-3 (-421 (-578)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-376))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-236 $) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2230 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -2230 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-425 |#1|) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-668 #0#) |has| |#1| (-376)) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-376)) ((-670 #1=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-376)) ((-662 |#1|) . T) ((-660 #1#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-376)) ((-739 |#1|) . T) ((-748) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-921 $ #2=(-1207)) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #2#) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-376)) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1087 #0#) |has| |#1| (-376)) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3611 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-1029 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#3| (-1 |#4| |#2|) |#1|))) (-1028 |#2|) (-175) (-1028 |#4|) (-175)) (T -1029)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1028 *6)) (-5 *1 (-1029 *4 *5 *2 *6)) (-4 *4 (-1028 *5))))) +(-10 -7 (-15 -3611 (|#3| (-1 |#4| |#2|) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2823 ((|#1| $) 12 T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-1474 (((-112) $) NIL (|has| |#1| (-559)) ELT)) (-3805 (((-421 (-578)) $) NIL (|has| |#1| (-559)) ELT)) (-1833 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1550 ((|#1| $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3164 ((|#1| $) 15 T ELT)) (-2453 ((|#1| $) 14 T ELT)) (-3329 ((|#1| $) 13 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-306 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-306 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2436 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2031 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-1433 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2628 ((|#1| $) NIL (|has| |#1| (-1091)) ELT)) (-2368 (($) 8 T CONST)) (-2379 (($) 10 T CONST)) (-1676 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-376)) ELT))) +(((-1030 |#1|) (-1028 |#1|) (-175)) (T -1030)) +NIL +(-1028 |#1|) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3702 (($ $) 23 T ELT)) (-2536 (($ (-666 |#1|)) 33 T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3492 (((-793) $) 26 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 28 T ELT)) (-4328 (($ |#1| $) 17 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-3479 ((|#1| $) 27 T ELT)) (-1994 ((|#1| $) 22 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-3298 ((|#1| |#1| $) 16 T ELT)) (-4186 (((-112) $) 18 T ELT)) (-1696 (($) NIL T ELT)) (-1732 ((|#1| $) 21 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) NIL T ELT)) (-2985 ((|#1| $) 30 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1031 |#1|) (-13 (-1026 |#1|) (-10 -8 (-15 -2536 ($ (-666 |#1|))))) (-1131)) (T -1031)) +((-2536 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-1031 *3))))) +(-13 (-1026 |#1|) (-10 -8 (-15 -2536 ($ (-666 |#1|))))) +((-2811 (($ $) 12 T ELT)) (-2812 (($ $ (-578)) 13 T ELT))) +(((-1032 |#1|) (-10 -8 (-15 -2811 (|#1| |#1|)) (-15 -2812 (|#1| |#1| (-578)))) (-1033)) (T -1032)) +NIL +(-10 -8 (-15 -2811 (|#1| |#1|)) (-15 -2812 (|#1| |#1| (-578)))) +((-2811 (($ $) 6 T ELT)) (-2812 (($ $ (-578)) 7 T ELT)) (** (($ $ (-421 (-578))) 8 T ELT))) +(((-1033) (-142)) (T -1033)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-421 (-578))))) (-2812 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-578)))) (-2811 (*1 *1 *1) (-4 *1 (-1033)))) +(-13 (-10 -8 (-15 -2811 ($ $)) (-15 -2812 ($ $ (-578))) (-15 ** ($ $ (-421 (-578)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2444 (((-2 (|:| |num| (-1298 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2987 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3087 (((-112) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4306 (((-711 (-421 |#2|)) (-1298 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-1881 (((-421 |#2|) $) NIL T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| (-421 |#2|) (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2732 (((-112) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2222 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2311 (((-112)) NIL T ELT)) (-2201 (((-112) |#1|) 162 T ELT) (((-112) |#2|) 166 T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-421 (-578)))) ELT) (((-3 (-421 |#2|) "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| (-421 |#2|) (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| (-421 |#2|) (-1069 (-421 (-578)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-3095 (($ (-1298 (-421 |#2|)) (-1298 $)) NIL T ELT) (($ (-1298 (-421 |#2|))) 79 T ELT) (($ (-1298 |#2|) |#2|) NIL T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-362)) ELT)) (-3154 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2009 (((-711 (-421 |#2|)) $ (-1298 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-421 |#2|))) (|:| |vec| (-1298 (-421 |#2|)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-4411 (((-1298 $) (-1298 $)) NIL T ELT)) (-2512 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4345 (((-666 (-666 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-2459 (((-112) |#1| |#1|) NIL T ELT)) (-1875 (((-950)) NIL T ELT)) (-2062 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1577 (((-112)) NIL T ELT)) (-4204 (((-112) |#1|) 61 T ELT) (((-112) |#2|) 164 T ELT)) (-3166 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2111 (($ $) NIL T ELT)) (-3146 (($) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2681 (((-112) $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2953 (($ $ (-793)) NIL (|has| (-421 |#2|) (-362)) ELT) (($ $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2159 (((-112) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4059 (((-950) $) NIL (|has| (-421 |#2|) (-362)) ELT) (((-855 (-950)) $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-4174 (((-793)) NIL T ELT)) (-2277 (((-1298 $) (-1298 $)) NIL T ELT)) (-1550 (((-421 |#2|) $) NIL T ELT)) (-1910 (((-666 (-981 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1993 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3193 (((-950) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2501 ((|#3| $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-421 |#2|) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-421 |#2|))) (|:| |vec| (-1298 (-421 |#2|)))) (-1298 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1298 $)) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2698 (((-711 (-421 |#2|))) 57 T ELT)) (-2738 (((-711 (-421 |#2|))) 56 T ELT)) (-3057 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1727 (($ (-1298 |#2|) |#2|) 80 T ELT)) (-1722 (((-711 (-421 |#2|))) 55 T ELT)) (-3928 (((-711 (-421 |#2|))) 54 T ELT)) (-3454 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-3963 (((-2 (|:| |num| (-1298 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1971 (((-1298 $)) 51 T ELT)) (-3098 (((-1298 $)) 50 T ELT)) (-1669 (((-112) $) NIL T ELT)) (-3321 (((-112) $) NIL T ELT) (((-112) $ |#1|) NIL T ELT) (((-112) $ |#2|) NIL T ELT)) (-2199 (($) NIL (|has| (-421 |#2|) (-362)) CONST)) (-2087 (($ (-950)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-3542 (((-3 |#2| "failed")) 70 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3631 (((-793)) NIL T ELT)) (-2847 (($) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2800 (((-432 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1449 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2436 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2153 (((-3 |#2| "failed")) 68 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3232 (((-421 |#2|) (-1298 $)) NIL T ELT) (((-421 |#2|)) 47 T ELT)) (-4375 (((-793) $) NIL (|has| (-421 |#2|) (-362)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-362)) ELT)) (-2031 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT) (($ $) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT)) (-3345 (((-711 (-421 |#2|)) (-1298 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4269 ((|#3|) 58 T ELT)) (-3430 (($) NIL (|has| (-421 |#2|) (-362)) ELT)) (-1453 (((-1298 (-421 |#2|)) $ (-1298 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 (-421 |#2|)) $) 81 T ELT) (((-711 (-421 |#2|)) (-1298 $)) NIL T ELT)) (-3343 (((-1298 (-421 |#2|)) $) NIL T ELT) (($ (-1298 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-362)) ELT)) (-3597 (((-1298 $) (-1298 $)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| (-421 |#2|) (-1069 (-421 (-578)))) (|has| (-421 |#2|) (-376))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2213 (($ $) NIL (|has| (-421 |#2|) (-362)) ELT) (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-1566 ((|#3| $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2285 (((-112)) 65 T ELT)) (-3316 (((-112) |#1|) 167 T ELT) (((-112) |#2|) 168 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2684 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-2069 (((-112)) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT) (($ $) NIL (-2230 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-362))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-578))) NIL (|has| (-421 |#2|) (-376)) ELT))) +(((-1034 |#1| |#2| |#3| |#4| |#5|) (-355 |#1| |#2| |#3|) (-1252) (-1274 |#1|) (-1274 (-421 |#2|)) (-421 |#2|) (-793)) (T -1034)) +NIL +(-355 |#1| |#2| |#3|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-1353 (((-666 (-578)) $) 73 T ELT)) (-3116 (($ (-666 (-578))) 81 T ELT)) (-2873 (((-578) $) 48 (|has| (-578) (-319)) ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL (|has| (-578) (-842)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) 60 T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-3 (-421 (-578)) "failed") $) 57 (|has| (-578) (-1069 (-578))) ELT) (((-3 (-578) "failed") $) 60 (|has| (-578) (-1069 (-578))) ELT)) (-3516 (((-578) $) NIL T ELT) (((-1207) $) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) NIL (|has| (-578) (-1069 (-578))) ELT) (((-578) $) NIL (|has| (-578) (-1069 (-578))) ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2062 (($) NIL (|has| (-578) (-559)) ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-2633 (((-666 (-578)) $) 79 T ELT)) (-3789 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (|has| (-578) (-911 (-578))) ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (|has| (-578) (-911 (-392))) ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL T ELT)) (-2519 (((-578) $) 45 T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| (-578) (-1183)) ELT)) (-1721 (((-112) $) NIL (|has| (-578) (-842)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-578) (-871)) ELT)) (-3611 (($ (-1 (-578) (-578)) $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| (-578) (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL T ELT)) (-2199 (($) NIL (|has| (-578) (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2055 (($ $) NIL (|has| (-578) (-319)) ELT) (((-421 (-578)) $) 50 T ELT)) (-2139 (((-1188 (-578)) $) 78 T ELT)) (-1791 (($ (-666 (-578)) (-666 (-578))) 82 T ELT)) (-3575 (((-578) $) 64 (|has| (-578) (-559)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| (-578) (-938)) ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3364 (($ $ (-666 (-578)) (-666 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-578) (-578)) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-306 (-578))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-306 (-578)))) NIL (|has| (-578) (-321 (-578))) ELT) (($ $ (-666 (-1207)) (-666 (-578))) NIL (|has| (-578) (-528 (-1207) (-578))) ELT) (($ $ (-1207) (-578)) NIL (|has| (-578) (-528 (-1207) (-578))) ELT)) (-1449 (((-793) $) NIL T ELT)) (-2436 (($ $ (-578)) NIL (|has| (-578) (-298 (-578) (-578))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) 15 (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-1363 (($ $) NIL T ELT)) (-2530 (((-578) $) 47 T ELT)) (-3883 (((-666 (-578)) $) 80 T ELT)) (-3343 (((-917 (-578)) $) NIL (|has| (-578) (-633 (-917 (-578)))) ELT) (((-917 (-392)) $) NIL (|has| (-578) (-633 (-917 (-392)))) ELT) (((-550) $) NIL (|has| (-578) (-633 (-550))) ELT) (((-392) $) NIL (|has| (-578) (-1053)) ELT) (((-229) $) NIL (|has| (-578) (-1053)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-578) (-938))) ELT)) (-2411 (((-886) $) 107 T ELT) (($ (-578)) 51 T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 27 T ELT) (($ (-578)) 51 T ELT) (($ (-1207)) NIL (|has| (-578) (-1069 (-1207))) ELT) (((-421 (-578)) $) 25 T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-578) (-938))) (|has| (-578) (-147))) ELT)) (-3753 (((-793)) 13 T CONST)) (-1585 (((-578) $) 62 (|has| (-578) (-559)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2628 (($ $) NIL (|has| (-578) (-842)) ELT)) (-2368 (($) 14 T CONST)) (-2379 (($) 17 T CONST)) (-1676 (($ $ (-1 (-578) (-578))) NIL T ELT) (($ $ (-1 (-578) (-578)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| (-578) (-929 (-1207))) ELT) (($ $) NIL (|has| (-578) (-239)) ELT) (($ $ (-793)) NIL (|has| (-578) (-239)) ELT)) (-2441 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2384 (((-112) $ $) 21 T ELT)) (-2429 (((-112) $ $) NIL (|has| (-578) (-871)) ELT)) (-2404 (((-112) $ $) 40 (|has| (-578) (-871)) ELT)) (-2495 (($ $ $) 36 T ELT) (($ (-578) (-578)) 38 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-2472 (($ $ $) 28 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ (-578) $) 32 T ELT) (($ $ (-578)) NIL T ELT))) +(((-1035 |#1|) (-13 (-1023 (-578)) (-632 (-421 (-578))) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -1353 ((-666 (-578)) $)) (-15 -2139 ((-1188 (-578)) $)) (-15 -2633 ((-666 (-578)) $)) (-15 -3883 ((-666 (-578)) $)) (-15 -3116 ($ (-666 (-578)))) (-15 -1791 ($ (-666 (-578)) (-666 (-578)))))) (-578)) (T -1035)) +((-2055 (*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578)))) (-1353 (*1 *2 *1) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-1188 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578)))) (-2633 (*1 *2 *1) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578)))) (-3116 (*1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578)))) (-1791 (*1 *1 *2 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578))))) +(-13 (-1023 (-578)) (-632 (-421 (-578))) (-10 -8 (-15 -2055 ((-421 (-578)) $)) (-15 -1353 ((-666 (-578)) $)) (-15 -2139 ((-1188 (-578)) $)) (-15 -2633 ((-666 (-578)) $)) (-15 -3883 ((-666 (-578)) $)) (-15 -3116 ($ (-666 (-578)))) (-15 -1791 ($ (-666 (-578)) (-666 (-578)))))) +((-4133 (((-52) (-421 (-578)) (-578)) 9 T ELT))) +(((-1036) (-10 -7 (-15 -4133 ((-52) (-421 (-578)) (-578))))) (T -1036)) +((-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-578))) (-5 *4 (-578)) (-5 *2 (-52)) (-5 *1 (-1036))))) +(-10 -7 (-15 -4133 ((-52) (-421 (-578)) (-578)))) +((-2222 (((-578)) 23 T ELT)) (-3241 (((-578)) 28 T ELT)) (-4360 (((-1303) (-578)) 26 T ELT)) (-3308 (((-578) (-578)) 29 T ELT) (((-578)) 22 T ELT))) +(((-1037) (-10 -7 (-15 -3308 ((-578))) (-15 -2222 ((-578))) (-15 -3308 ((-578) (-578))) (-15 -4360 ((-1303) (-578))) (-15 -3241 ((-578))))) (T -1037)) +((-3241 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037)))) (-4360 (*1 *2 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1037)))) (-3308 (*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037)))) (-2222 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037)))) (-3308 (*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037))))) +(-10 -7 (-15 -3308 ((-578))) (-15 -2222 ((-578))) (-15 -3308 ((-578) (-578))) (-15 -4360 ((-1303) (-578))) (-15 -3241 ((-578)))) +((-3218 (((-432 |#1|) |#1|) 43 T ELT)) (-2800 (((-432 |#1|) |#1|) 41 T ELT))) +(((-1038 |#1|) (-10 -7 (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3218 ((-432 |#1|) |#1|))) (-1274 (-421 (-578)))) (T -1038)) +((-3218 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1274 (-421 (-578)))))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1274 (-421 (-578))))))) +(-10 -7 (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3218 ((-432 |#1|) |#1|))) +((-1514 (((-3 (-421 (-578)) "failed") |#1|) 15 T ELT)) (-1474 (((-112) |#1|) 14 T ELT)) (-3805 (((-421 (-578)) |#1|) 10 T ELT))) +(((-1039 |#1|) (-10 -7 (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|))) (-1069 (-421 (-578)))) (T -1039)) +((-1514 (*1 *2 *3) (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2)))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1039 *3)) (-4 *3 (-1069 (-421 (-578)))))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2))))) +(-10 -7 (-15 -3805 ((-421 (-578)) |#1|)) (-15 -1474 ((-112) |#1|)) (-15 -1514 ((-3 (-421 (-578)) "failed") |#1|))) +((-2590 ((|#2| $ "value" |#2|) 12 T ELT)) (-2436 ((|#2| $ "value") 10 T ELT)) (-1849 (((-112) $ $) 18 T ELT))) +(((-1040 |#1| |#2|) (-10 -8 (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -2436 (|#2| |#1| "value"))) (-1041 |#2|) (-1248)) (T -1040)) +NIL +(-10 -8 (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -1849 ((-112) |#1| |#1|)) (-15 -2436 (|#2| |#1| "value"))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-3534 (($) 7 T CONST)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1041 |#1|) (-142) (-1248)) (T -1041)) +((-4435 (*1 *2 *1) (-12 (-4 *3 (-1248)) (-5 *2 (-666 *1)) (-4 *1 (-1041 *3)))) (-3528 (*1 *2 *1) (-12 (-4 *3 (-1248)) (-5 *2 (-666 *1)) (-4 *1 (-1041 *3)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1248)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1041 *2)) (-4 *2 (-1248)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) (-1504 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-666 *3)))) (-1842 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-578)))) (-1849 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) (-5 *2 (-112)))) (-2989 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) (-5 *2 (-112)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *1)) (|has| *1 (-6 -4501)) (-4 *1 (-1041 *3)) (-4 *3 (-1248)))) (-2590 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4501)) (-4 *1 (-1041 *2)) (-4 *2 (-1248)))) (-4227 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1041 *2)) (-4 *2 (-1248))))) +(-13 (-503 |t#1|) (-10 -8 (-15 -4435 ((-666 $) $)) (-15 -3528 ((-666 $) $)) (-15 -3821 ((-112) $)) (-15 -4120 (|t#1| $)) (-15 -2436 (|t#1| $ "value")) (-15 -1368 ((-112) $)) (-15 -1504 ((-666 |t#1|) $)) (-15 -1842 ((-578) $ $)) (IF (|has| |t#1| (-1131)) (PROGN (-15 -1849 ((-112) $ $)) (-15 -2989 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4501)) (PROGN (-15 -3966 ($ $ (-666 $))) (-15 -2590 (|t#1| $ "value" |t#1|)) (-15 -4227 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-2811 (($ $) 9 T ELT) (($ $ (-950)) 49 T ELT) (($ (-421 (-578))) 13 T ELT) (($ (-578)) 15 T ELT)) (-1567 (((-3 $ "failed") (-1203 $) (-950) (-886)) 24 T ELT) (((-3 $ "failed") (-1203 $) (-950)) 32 T ELT)) (-2812 (($ $ (-578)) 58 T ELT)) (-3753 (((-793)) 18 T ELT)) (-3313 (((-666 $) (-1203 $)) NIL T ELT) (((-666 $) (-1203 (-421 (-578)))) 63 T ELT) (((-666 $) (-1203 (-578))) 68 T ELT) (((-666 $) (-981 $)) 72 T ELT) (((-666 $) (-981 (-421 (-578)))) 76 T ELT) (((-666 $) (-981 (-578))) 80 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT) (($ $ (-421 (-578))) 53 T ELT))) +(((-1042 |#1|) (-10 -8 (-15 -2811 (|#1| (-578))) (-15 -2811 (|#1| (-421 (-578)))) (-15 -2811 (|#1| |#1| (-950))) (-15 -3313 ((-666 |#1|) (-981 (-578)))) (-15 -3313 ((-666 |#1|) (-981 (-421 (-578))))) (-15 -3313 ((-666 |#1|) (-981 |#1|))) (-15 -3313 ((-666 |#1|) (-1203 (-578)))) (-15 -3313 ((-666 |#1|) (-1203 (-421 (-578))))) (-15 -3313 ((-666 |#1|) (-1203 |#1|))) (-15 -1567 ((-3 |#1| "failed") (-1203 |#1|) (-950))) (-15 -1567 ((-3 |#1| "failed") (-1203 |#1|) (-950) (-886))) (-15 ** (|#1| |#1| (-421 (-578)))) (-15 -2812 (|#1| |#1| (-578))) (-15 -2811 (|#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -3753 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950)))) (-1043)) (T -1042)) +((-3753 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1042 *3)) (-4 *3 (-1043))))) +(-10 -8 (-15 -2811 (|#1| (-578))) (-15 -2811 (|#1| (-421 (-578)))) (-15 -2811 (|#1| |#1| (-950))) (-15 -3313 ((-666 |#1|) (-981 (-578)))) (-15 -3313 ((-666 |#1|) (-981 (-421 (-578))))) (-15 -3313 ((-666 |#1|) (-981 |#1|))) (-15 -3313 ((-666 |#1|) (-1203 (-578)))) (-15 -3313 ((-666 |#1|) (-1203 (-421 (-578))))) (-15 -3313 ((-666 |#1|) (-1203 |#1|))) (-15 -1567 ((-3 |#1| "failed") (-1203 |#1|) (-950))) (-15 -1567 ((-3 |#1| "failed") (-1203 |#1|) (-950) (-886))) (-15 ** (|#1| |#1| (-421 (-578)))) (-15 -2812 (|#1| |#1| (-578))) (-15 -2811 (|#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -3753 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 103 T ELT)) (-2987 (($ $) 104 T ELT)) (-3087 (((-112) $) 106 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 123 T ELT)) (-3034 (((-432 $) $) 124 T ELT)) (-2811 (($ $) 87 T ELT) (($ $ (-950)) 73 T ELT) (($ (-421 (-578))) 72 T ELT) (($ (-578)) 71 T ELT)) (-2732 (((-112) $ $) 114 T ELT)) (-1490 (((-578) $) 140 T ELT)) (-3534 (($) 18 T CONST)) (-1567 (((-3 $ "failed") (-1203 $) (-950) (-886)) 81 T ELT) (((-3 $ "failed") (-1203 $) (-950)) 80 T ELT)) (-2818 (((-3 (-578) "failed") $) 100 (|has| (-421 (-578)) (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 98 (|has| (-421 (-578)) (-1069 (-421 (-578)))) ELT) (((-3 (-421 (-578)) "failed") $) 95 T ELT)) (-3516 (((-578) $) 99 (|has| (-421 (-578)) (-1069 (-578))) ELT) (((-421 (-578)) $) 97 (|has| (-421 (-578)) (-1069 (-421 (-578)))) ELT) (((-421 (-578)) $) 96 T ELT)) (-2430 (($ $ (-886)) 70 T ELT)) (-4453 (($ $ (-886)) 69 T ELT)) (-3154 (($ $ $) 118 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 117 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 112 T ELT)) (-2159 (((-112) $) 125 T ELT)) (-3789 (((-112) $) 138 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 86 T ELT)) (-1721 (((-112) $) 139 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 121 T ELT)) (-1345 (($ $ $) 132 T ELT)) (-3667 (($ $ $) 133 T ELT)) (-2572 (((-3 (-1203 $) "failed") $) 82 T ELT)) (-2926 (((-3 (-886) "failed") $) 84 T ELT)) (-1601 (((-3 (-1203 $) "failed") $) 83 T ELT)) (-2389 (($ (-666 $)) 110 T ELT) (($ $ $) 109 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 126 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 111 T ELT)) (-2421 (($ (-666 $)) 108 T ELT) (($ $ $) 107 T ELT)) (-2800 (((-432 $) $) 122 T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 119 T ELT)) (-3202 (((-3 $ "failed") $ $) 102 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 113 T ELT)) (-1449 (((-793) $) 115 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 116 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 130 T ELT) (($ $) 101 T ELT) (($ (-421 (-578))) 94 T ELT) (($ (-578)) 93 T ELT) (($ (-421 (-578))) 90 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 105 T ELT)) (-3909 (((-421 (-578)) $ $) 68 T ELT)) (-3313 (((-666 $) (-1203 $)) 79 T ELT) (((-666 $) (-1203 (-421 (-578)))) 78 T ELT) (((-666 $) (-1203 (-578))) 77 T ELT) (((-666 $) (-981 $)) 76 T ELT) (((-666 $) (-981 (-421 (-578)))) 75 T ELT) (((-666 $) (-981 (-578))) 74 T ELT)) (-2628 (($ $) 141 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2441 (((-112) $ $) 134 T ELT)) (-2416 (((-112) $ $) 136 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 135 T ELT)) (-2404 (((-112) $ $) 137 T ELT)) (-2495 (($ $ $) 131 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 127 T ELT) (($ $ (-421 (-578))) 85 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-421 (-578)) $) 129 T ELT) (($ $ (-421 (-578))) 128 T ELT) (($ (-578) $) 92 T ELT) (($ $ (-578)) 91 T ELT) (($ (-421 (-578)) $) 89 T ELT) (($ $ (-421 (-578))) 88 T ELT))) +(((-1043) (-142)) (T -1043)) +((-2811 (*1 *1 *1) (-4 *1 (-1043))) (-2926 (*1 *2 *1) (|partial| -12 (-4 *1 (-1043)) (-5 *2 (-886)))) (-1601 (*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1043)))) (-2572 (*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1043)))) (-1567 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-950)) (-5 *4 (-886)) (-4 *1 (-1043)))) (-1567 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-950)) (-4 *1 (-1043)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-1043)) (-5 *2 (-666 *1)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1203 (-421 (-578)))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1203 (-578))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-981 *1)) (-4 *1 (-1043)) (-5 *2 (-666 *1)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-981 (-421 (-578)))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-981 (-578))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) (-2811 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-950)))) (-2811 (*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-4 *1 (-1043)))) (-2811 (*1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-1043)))) (-2430 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-886)))) (-4453 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-886)))) (-3909 (*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-421 (-578)))))) +(-13 (-149) (-870) (-175) (-376) (-425 (-421 (-578))) (-38 (-578)) (-38 (-421 (-578))) (-1033) (-10 -8 (-15 -2926 ((-3 (-886) "failed") $)) (-15 -1601 ((-3 (-1203 $) "failed") $)) (-15 -2572 ((-3 (-1203 $) "failed") $)) (-15 -1567 ((-3 $ "failed") (-1203 $) (-950) (-886))) (-15 -1567 ((-3 $ "failed") (-1203 $) (-950))) (-15 -3313 ((-666 $) (-1203 $))) (-15 -3313 ((-666 $) (-1203 (-421 (-578))))) (-15 -3313 ((-666 $) (-1203 (-578)))) (-15 -3313 ((-666 $) (-981 $))) (-15 -3313 ((-666 $) (-981 (-421 (-578))))) (-15 -3313 ((-666 $) (-981 (-578)))) (-15 -2811 ($ $ (-950))) (-15 -2811 ($ $)) (-15 -2811 ($ (-421 (-578)))) (-15 -2811 ($ (-578))) (-15 -2430 ($ $ (-886))) (-15 -4453 ($ $ (-886))) (-15 -3909 ((-421 (-578)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 #1=(-578)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-425 (-421 (-578))) . T) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-949) . T) ((-1033) . T) ((-1069 (-421 (-578))) . T) ((-1069 (-578)) |has| (-421 (-578)) (-1069 (-578))) ((-1082 #0#) . T) ((-1082 #1#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 #1#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-1399 (((-2 (|:| |ans| |#2|) (|:| -3868 |#2|) (|:| |sol?| (-112))) (-578) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-666 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT))) +(((-1044 |#1| |#2|) (-10 -7 (-15 -1399 ((-2 (|:| |ans| |#2|) (|:| -3868 |#2|) (|:| |sol?| (-112))) (-578) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-666 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-27) (-444 |#1|))) (T -1044)) +((-1399 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-666 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-444 *8))) (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-578)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3868 *4) (|:| |sol?| (-112)))) (-5 *1 (-1044 *8 *4))))) +(-10 -7 (-15 -1399 ((-2 (|:| |ans| |#2|) (|:| -3868 |#2|) (|:| |sol?| (-112))) (-578) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-666 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-4097 (((-3 (-666 |#2|) "failed") (-578) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-666 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -4097 ((-3 (-666 |#2|) "failed") (-578) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-666 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1069 (-578)) (-660 (-578))) (-13 (-1233) (-27) (-444 |#1|))) (T -1045)) +((-4097 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-666 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-444 *8))) (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-578)) (-5 *2 (-666 *4)) (-5 *1 (-1045 *8 *4))))) +(-10 -7 (-15 -4097 ((-3 (-666 |#2|) "failed") (-578) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-666 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-666 |#2|)) (-1 (-3 (-2 (|:| -3579 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3598 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3505 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-578)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-578) (-1 |#2| |#2|)) 38 T ELT)) (-3687 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -4209 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 69 T ELT)) (-3923 (((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-112))) (-421 |#2|) (-421 |#2|)) 74 T ELT))) +(((-1046 |#1| |#2|) (-10 -7 (-15 -3687 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -4209 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -3923 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-112))) (-421 |#2|) (-421 |#2|))) (-15 -3598 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3505 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-578)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-578) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1069 (-578))) (-1274 |#1|)) (T -1046)) +((-3598 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1274 *6)) (-4 *6 (-13 (-376) (-149) (-1069 *4))) (-5 *4 (-578)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3505 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1046 *6 *3)))) (-3923 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-421 *5)))) (-3687 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6)) (|:| -4209 *6))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-421 *6))))) +(-10 -7 (-15 -3687 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -4209 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -3923 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-112))) (-421 |#2|) (-421 |#2|))) (-15 -3598 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3505 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-578)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-578) (-1 |#2| |#2|)))) +((-3509 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -4209 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-1470 (((-3 (-666 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 34 T ELT))) +(((-1047 |#1| |#2|) (-10 -7 (-15 -3509 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -4209 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -1470 ((-3 (-666 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)))) (-13 (-376) (-149) (-1069 (-578))) (-1274 |#1|)) (T -1047)) +((-1470 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) (-4 *5 (-1274 *4)) (-5 *2 (-666 (-421 *5))) (-5 *1 (-1047 *4 *5)) (-5 *3 (-421 *5)))) (-3509 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6) (|:| |c1| (-421 *6)) (|:| |c2| (-421 *6)) (|:| -4209 *6))) (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6))))) +(-10 -7 (-15 -3509 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -4209 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -1470 ((-3 (-666 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)))) +((-3975 (((-1 |#1|) (-666 (-2 (|:| -4120 |#1|) (|:| -2452 (-578))))) 34 T ELT)) (-4122 (((-1 |#1|) (-1133 |#1|)) 42 T ELT)) (-2653 (((-1 |#1|) (-1298 |#1|) (-1298 (-578)) (-578)) 31 T ELT))) +(((-1048 |#1|) (-10 -7 (-15 -4122 ((-1 |#1|) (-1133 |#1|))) (-15 -3975 ((-1 |#1|) (-666 (-2 (|:| -4120 |#1|) (|:| -2452 (-578)))))) (-15 -2653 ((-1 |#1|) (-1298 |#1|) (-1298 (-578)) (-578)))) (-1131)) (T -1048)) +((-2653 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1298 *6)) (-5 *4 (-1298 (-578))) (-5 *5 (-578)) (-4 *6 (-1131)) (-5 *2 (-1 *6)) (-5 *1 (-1048 *6)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -4120 *4) (|:| -2452 (-578))))) (-4 *4 (-1131)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-1133 *4)) (-4 *4 (-1131)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4))))) +(-10 -7 (-15 -4122 ((-1 |#1|) (-1133 |#1|))) (-15 -3975 ((-1 |#1|) (-666 (-2 (|:| -4120 |#1|) (|:| -2452 (-578)))))) (-15 -2653 ((-1 |#1|) (-1298 |#1|) (-1298 (-578)) (-578)))) +((-4059 (((-793) (-349 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4059 ((-793) (-349 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1274 |#1|) (-1274 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1049)) +((-4059 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-349 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1274 *6)) (-4 *4 (-1274 (-421 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793)) (-5 *1 (-1049 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4059 ((-793) (-349 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4397 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-1166) $) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1050) (-13 (-1114) (-10 -8 (-15 -4397 ((-1166) $)) (-15 -4117 ((-1166) $))))) (T -1050)) +((-4397 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050))))) +(-13 (-1114) (-10 -8 (-15 -4397 ((-1166) $)) (-15 -4117 ((-1166) $)))) +((-3437 (((-3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) "failed") |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) 32 T ELT) (((-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578))) 29 T ELT)) (-4043 (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578))) 34 T ELT) (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-421 (-578))) 30 T ELT) (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) 33 T ELT) (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1|) 28 T ELT)) (-3059 (((-666 (-421 (-578))) (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) 20 T ELT)) (-4301 (((-421 (-578)) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) 17 T ELT))) +(((-1051 |#1|) (-10 -7 (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1|)) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-421 (-578)))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) "failed") |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -4301 ((-421 (-578)) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -3059 ((-666 (-421 (-578))) (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))))) (-1274 (-578))) (T -1051)) +((-3059 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-5 *2 (-666 (-421 (-578)))) (-5 *1 (-1051 *4)) (-4 *4 (-1274 (-578))))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) (-5 *2 (-421 (-578))) (-5 *1 (-1051 *4)) (-4 *4 (-1274 (-578))))) (-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) (-5 *4 (-421 (-578))) (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))))) (-4043 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-578))) (-5 *2 (-666 (-2 (|:| -3855 *5) (|:| -3868 *5)))) (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))) (-5 *4 (-2 (|:| -3855 *5) (|:| -3868 *5))))) (-4043 (*1 *2 *3 *4) (-12 (-5 *2 (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))) (-5 *4 (-421 (-578))))) (-4043 (*1 *2 *3 *4) (-12 (-5 *2 (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))) (-5 *4 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) (-4043 (*1 *2 *3) (-12 (-5 *2 (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578)))))) +(-10 -7 (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1|)) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-421 (-578)))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) "failed") |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -4301 ((-421 (-578)) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -3059 ((-666 (-421 (-578))) (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))))) +((-3437 (((-3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) "failed") |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) 35 T ELT) (((-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578))) 32 T ELT)) (-4043 (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578))) 30 T ELT) (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-421 (-578))) 26 T ELT) (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) 28 T ELT) (((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1|) 24 T ELT))) +(((-1052 |#1|) (-10 -7 (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1|)) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-421 (-578)))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) "failed") |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) (-1274 (-421 (-578)))) (T -1052)) +((-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) (-5 *1 (-1052 *3)) (-4 *3 (-1274 (-421 (-578)))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) (-5 *4 (-421 (-578))) (-5 *1 (-1052 *3)) (-4 *3 (-1274 *4)))) (-4043 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-578))) (-5 *2 (-666 (-2 (|:| -3855 *5) (|:| -3868 *5)))) (-5 *1 (-1052 *3)) (-4 *3 (-1274 *5)) (-5 *4 (-2 (|:| -3855 *5) (|:| -3868 *5))))) (-4043 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-578))) (-5 *2 (-666 (-2 (|:| -3855 *4) (|:| -3868 *4)))) (-5 *1 (-1052 *3)) (-4 *3 (-1274 *4)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *2 (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1274 (-421 (-578)))) (-5 *4 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) (-4043 (*1 *2 *3) (-12 (-5 *2 (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1274 (-421 (-578))))))) +(-10 -7 (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1|)) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-421 (-578)))) (-15 -4043 ((-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-421 (-578)))) (-15 -3437 ((-3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) "failed") |#1| (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))) (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) +((-3343 (((-229) $) 6 T ELT) (((-392) $) 9 T ELT))) +(((-1053) (-142)) (T -1053)) +NIL +(-13 (-633 (-229)) (-633 (-392))) +(((-633 (-229)) . T) ((-633 (-392)) . T)) +((-2096 (((-666 (-392)) (-981 (-578)) (-392)) 28 T ELT) (((-666 (-392)) (-981 (-421 (-578))) (-392)) 27 T ELT)) (-1933 (((-666 (-666 (-392))) (-666 (-981 (-578))) (-666 (-1207)) (-392)) 37 T ELT))) +(((-1054) (-10 -7 (-15 -2096 ((-666 (-392)) (-981 (-421 (-578))) (-392))) (-15 -2096 ((-666 (-392)) (-981 (-578)) (-392))) (-15 -1933 ((-666 (-666 (-392))) (-666 (-981 (-578))) (-666 (-1207)) (-392))))) (T -1054)) +((-1933 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-666 (-1207))) (-5 *2 (-666 (-666 (-392)))) (-5 *1 (-1054)) (-5 *5 (-392)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-981 (-578))) (-5 *2 (-666 (-392))) (-5 *1 (-1054)) (-5 *4 (-392)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-981 (-421 (-578)))) (-5 *2 (-666 (-392))) (-5 *1 (-1054)) (-5 *4 (-392))))) +(-10 -7 (-15 -2096 ((-666 (-392)) (-981 (-421 (-578))) (-392))) (-15 -2096 ((-666 (-392)) (-981 (-578)) (-392))) (-15 -1933 ((-666 (-666 (-392))) (-666 (-981 (-578))) (-666 (-1207)) (-392)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 75 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2811 (($ $) NIL T ELT) (($ $ (-950)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-578)) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) 70 T ELT)) (-3534 (($) NIL T CONST)) (-1567 (((-3 $ "failed") (-1203 $) (-950) (-886)) NIL T ELT) (((-3 $ "failed") (-1203 $) (-950)) 55 T ELT)) (-2818 (((-3 (-421 (-578)) "failed") $) NIL (|has| (-421 (-578)) (-1069 (-421 (-578)))) ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 116 T ELT) (((-3 (-578) "failed") $) NIL (-2230 (|has| (-421 (-578)) (-1069 (-578))) (|has| |#1| (-1069 (-578)))) ELT)) (-3516 (((-421 (-578)) $) 17 (|has| (-421 (-578)) (-1069 (-421 (-578)))) ELT) (((-421 (-578)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-578) $) NIL (-2230 (|has| (-421 (-578)) (-1069 (-578))) (|has| |#1| (-1069 (-578)))) ELT)) (-2430 (($ $ (-886)) 47 T ELT)) (-4453 (($ $ (-886)) 48 T ELT)) (-3154 (($ $ $) NIL T ELT)) (-1932 (((-421 (-578)) $ $) 21 T ELT)) (-3493 (((-3 $ "failed") $) 88 T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3789 (((-112) $) 66 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL T ELT)) (-1721 (((-112) $) 69 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2572 (((-3 (-1203 $) "failed") $) 83 T ELT)) (-2926 (((-3 (-886) "failed") $) 82 T ELT)) (-1601 (((-3 (-1203 $) "failed") $) 80 T ELT)) (-4440 (((-3 (-1092 $ (-1203 $)) "failed") $) 78 T ELT)) (-2389 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 89 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2411 (((-886) $) 87 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) 63 T ELT) (($ (-421 (-578))) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3909 (((-421 (-578)) $ $) 27 T ELT)) (-3313 (((-666 $) (-1203 $)) 61 T ELT) (((-666 $) (-1203 (-421 (-578)))) NIL T ELT) (((-666 $) (-1203 (-578))) NIL T ELT) (((-666 $) (-981 $)) NIL T ELT) (((-666 $) (-981 (-421 (-578)))) NIL T ELT) (((-666 $) (-981 (-578))) NIL T ELT)) (-3892 (($ (-1092 $ (-1203 $)) (-886)) 46 T ELT)) (-2628 (($ $) 22 T ELT)) (-2368 (($) 32 T CONST)) (-2379 (($) 39 T CONST)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 76 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 24 T ELT)) (-2495 (($ $ $) 37 T ELT)) (-2484 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-2472 (($ $ $) 112 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ (-578) $) 98 T ELT) (($ $ (-578)) NIL T ELT) (($ (-421 (-578)) $) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1055 |#1|) (-13 (-1043) (-425 |#1|) (-38 |#1|) (-10 -8 (-15 -3892 ($ (-1092 $ (-1203 $)) (-886))) (-15 -4440 ((-3 (-1092 $ (-1203 $)) "failed") $)) (-15 -1932 ((-421 (-578)) $ $)))) (-13 (-870) (-376) (-1053))) (T -1055)) +((-3892 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 (-1055 *4) (-1203 (-1055 *4)))) (-5 *3 (-886)) (-5 *1 (-1055 *4)) (-4 *4 (-13 (-870) (-376) (-1053))))) (-4440 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092 (-1055 *3) (-1203 (-1055 *3)))) (-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1053))))) (-1932 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1053)))))) +(-13 (-1043) (-425 |#1|) (-38 |#1|) (-10 -8 (-15 -3892 ($ (-1092 $ (-1203 $)) (-886))) (-15 -4440 ((-3 (-1092 $ (-1203 $)) "failed") $)) (-15 -1932 ((-421 (-578)) $ $)))) +((-3671 (((-2 (|:| -3505 |#2|) (|:| -4424 (-666 |#1|))) |#2| (-666 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-1056 |#1| |#2|) (-10 -7 (-15 -3671 (|#2| |#2| |#1|)) (-15 -3671 ((-2 (|:| -3505 |#2|) (|:| -4424 (-666 |#1|))) |#2| (-666 |#1|)))) (-376) (-678 |#1|)) (T -1056)) +((-3671 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3505 *3) (|:| -4424 (-666 *5)))) (-5 *1 (-1056 *5 *3)) (-5 *4 (-666 *5)) (-4 *3 (-678 *5)))) (-3671 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1056 *3 *2)) (-4 *2 (-678 *3))))) +(-10 -7 (-15 -3671 (|#2| |#2| |#1|)) (-15 -3671 ((-2 (|:| -3505 |#2|) (|:| -4424 (-666 |#1|))) |#2| (-666 |#1|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2668 ((|#1| $ |#1|) 14 T ELT)) (-2590 ((|#1| $ |#1|) 12 T ELT)) (-2855 (($ |#1|) 10 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2436 ((|#1| $) 11 T ELT)) (-2840 ((|#1| $) 13 T ELT)) (-2411 (((-886) $) 21 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2384 (((-112) $ $) 9 T ELT))) +(((-1057 |#1|) (-13 (-1248) (-10 -8 (-15 -2855 ($ |#1|)) (-15 -2436 (|#1| $)) (-15 -2590 (|#1| $ |#1|)) (-15 -2840 (|#1| $)) (-15 -2668 (|#1| $ |#1|)) (-15 -2384 ((-112) $ $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) (-1248)) (T -1057)) +((-2855 (*1 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248)))) (-2436 (*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248)))) (-2590 (*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248)))) (-2840 (*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248)))) (-2668 (*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248)))) (-2384 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1057 *3)) (-4 *3 (-1248))))) +(-13 (-1248) (-10 -8 (-15 -2855 ($ |#1|)) (-15 -2436 (|#1| $)) (-15 -2590 (|#1| $ |#1|)) (-15 -2840 (|#1| $)) (-15 -2668 (|#1| $ |#1|)) (-15 -2384 ((-112) $ $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) NIL T ELT)) (-3997 (((-666 $) (-666 |#4|)) 118 T ELT) (((-666 $) (-666 |#4|) (-112)) 119 T ELT) (((-666 $) (-666 |#4|) (-112) (-112)) 117 T ELT) (((-666 $) (-666 |#4|) (-112) (-112) (-112) (-112)) 120 T ELT)) (-2949 (((-666 |#3|) $) NIL T ELT)) (-3039 (((-112) $) NIL T ELT)) (-2774 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2596 ((|#4| |#4| $) NIL T ELT)) (-1457 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| $) 112 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4233 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) 66 T ELT)) (-3534 (($) NIL T CONST)) (-4147 (((-112) $) 29 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) NIL T ELT)) (-3516 (($ (-666 |#4|)) NIL T ELT)) (-4198 (((-3 $ "failed") $) 45 T ELT)) (-1707 ((|#4| |#4| $) 69 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-2737 (($ |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3069 ((|#4| |#4| $) NIL T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) NIL T ELT)) (-1434 (((-112) |#4| $) NIL T ELT)) (-2669 (((-112) |#4| $) NIL T ELT)) (-2762 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2059 (((-2 (|:| |val| (-666 |#4|)) (|:| |towers| (-666 $))) (-666 |#4|) (-112) (-112)) 133 T ELT)) (-2729 (((-666 |#4|) $) 18 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2537 ((|#3| $) 38 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#4|) $) 19 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3117 (((-666 |#3|) $) NIL T ELT)) (-1455 (((-112) |#3| $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1763 (((-3 |#4| (-666 $)) |#4| |#4| $) NIL T ELT)) (-3064 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| |#4| $) 110 T ELT)) (-2757 (((-3 |#4| "failed") $) 42 T ELT)) (-4044 (((-666 $) |#4| $) 93 T ELT)) (-3976 (((-3 (-112) (-666 $)) |#4| $) NIL T ELT)) (-1835 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) |#4| $) 103 T ELT) (((-112) |#4| $) 64 T ELT)) (-3457 (((-666 $) |#4| $) 115 T ELT) (((-666 $) (-666 |#4|) $) NIL T ELT) (((-666 $) (-666 |#4|) (-666 $)) 116 T ELT) (((-666 $) |#4| (-666 $)) NIL T ELT)) (-2720 (((-666 $) (-666 |#4|) (-112) (-112) (-112)) 128 T ELT)) (-4064 (($ |#4| $) 82 T ELT) (($ (-666 |#4|) $) 83 T ELT) (((-666 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79 T ELT)) (-1708 (((-666 |#4|) $) NIL T ELT)) (-3084 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3494 ((|#4| |#4| $) NIL T ELT)) (-3151 (((-112) $ $) NIL T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1922 ((|#4| |#4| $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-3 |#4| "failed") $) 40 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-2704 (($ $ |#4|) NIL T ELT) (((-666 $) |#4| $) 95 T ELT) (((-666 $) |#4| (-666 $)) NIL T ELT) (((-666 $) (-666 |#4|) $) NIL T ELT) (((-666 $) (-666 |#4|) (-666 $)) 89 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 17 T ELT)) (-1696 (($) 14 T ELT)) (-3683 (((-793) $) NIL T ELT)) (-4324 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (((-793) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) NIL (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 22 T ELT)) (-1339 (($ $ |#3|) 52 T ELT)) (-2093 (($ $ |#3|) 54 T ELT)) (-2499 (($ $) NIL T ELT)) (-3102 (($ $ |#3|) NIL T ELT)) (-2411 (((-886) $) 35 T ELT) (((-666 |#4|) $) 46 T ELT)) (-2474 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) NIL T ELT)) (-2557 (((-666 $) |#4| $) 92 T ELT) (((-666 $) |#4| (-666 $)) NIL T ELT) (((-666 $) (-666 |#4|) $) NIL T ELT) (((-666 $) (-666 |#4|) (-666 $)) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) NIL T ELT)) (-3091 (((-112) |#4| $) NIL T ELT)) (-2714 (((-112) |#3| $) 65 T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4064 ((-666 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112) (-112) (-112))) (-15 -2720 ((-666 $) (-666 |#4|) (-112) (-112) (-112))) (-15 -2059 ((-2 (|:| |val| (-666 |#4|)) (|:| |towers| (-666 $))) (-666 |#4|) (-112) (-112))))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1058)) +((-4064 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-1096 *5 *6 *7)))) (-3997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3997 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-2720 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-2059 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-666 *8)) (|:| |towers| (-666 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-666 *8))))) +(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4064 ((-666 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112) (-112) (-112))) (-15 -2720 ((-666 $) (-666 |#4|) (-112) (-112) (-112))) (-15 -2059 ((-2 (|:| |val| (-666 |#4|)) (|:| |towers| (-666 $))) (-666 |#4|) (-112) (-112))))) +((-3228 (((-666 (-711 |#1|)) (-666 (-711 |#1|))) 70 T ELT) (((-711 |#1|) (-711 |#1|)) 69 T ELT) (((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-666 (-711 |#1|))) 68 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 65 T ELT)) (-1613 (((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-950)) 63 T ELT) (((-711 |#1|) (-711 |#1|) (-950)) 62 T ELT)) (-1481 (((-666 (-711 (-578))) (-666 (-666 (-578)))) 81 T ELT) (((-666 (-711 (-578))) (-666 (-934 (-578))) (-578)) 80 T ELT) (((-711 (-578)) (-666 (-578))) 77 T ELT) (((-711 (-578)) (-934 (-578)) (-578)) 75 T ELT)) (-1388 (((-711 (-981 |#1|)) (-793)) 95 T ELT)) (-2752 (((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-950)) 49 (|has| |#1| (-6 (-4502 "*"))) ELT) (((-711 |#1|) (-711 |#1|) (-950)) 47 (|has| |#1| (-6 (-4502 "*"))) ELT))) +(((-1059 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4502 "*"))) (-15 -2752 ((-711 |#1|) (-711 |#1|) (-950))) |%noBranch|) (IF (|has| |#1| (-6 (-4502 "*"))) (-15 -2752 ((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-950))) |%noBranch|) (-15 -1388 ((-711 (-981 |#1|)) (-793))) (-15 -1613 ((-711 |#1|) (-711 |#1|) (-950))) (-15 -1613 ((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-950))) (-15 -3228 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3228 ((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -3228 ((-711 |#1|) (-711 |#1|))) (-15 -3228 ((-666 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -1481 ((-711 (-578)) (-934 (-578)) (-578))) (-15 -1481 ((-711 (-578)) (-666 (-578)))) (-15 -1481 ((-666 (-711 (-578))) (-666 (-934 (-578))) (-578))) (-15 -1481 ((-666 (-711 (-578))) (-666 (-666 (-578)))))) (-1080)) (T -1059)) +((-1481 (*1 *2 *3) (-12 (-5 *3 (-666 (-666 (-578)))) (-5 *2 (-666 (-711 (-578)))) (-5 *1 (-1059 *4)) (-4 *4 (-1080)))) (-1481 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-934 (-578)))) (-5 *4 (-578)) (-5 *2 (-666 (-711 *4))) (-5 *1 (-1059 *5)) (-4 *5 (-1080)))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-711 (-578))) (-5 *1 (-1059 *4)) (-4 *4 (-1080)))) (-1481 (*1 *2 *3 *4) (-12 (-5 *3 (-934 (-578))) (-5 *4 (-578)) (-5 *2 (-711 *4)) (-5 *1 (-1059 *5)) (-4 *5 (-1080)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-666 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1059 *3)))) (-3228 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1059 *3)))) (-3228 (*1 *2 *2 *2) (-12 (-5 *2 (-666 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1059 *3)))) (-3228 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1059 *3)))) (-1613 (*1 *2 *2 *3) (-12 (-5 *2 (-666 (-711 *4))) (-5 *3 (-950)) (-4 *4 (-1080)) (-5 *1 (-1059 *4)))) (-1613 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-950)) (-4 *4 (-1080)) (-5 *1 (-1059 *4)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-711 (-981 *4))) (-5 *1 (-1059 *4)) (-4 *4 (-1080)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *2 (-666 (-711 *4))) (-5 *3 (-950)) (|has| *4 (-6 (-4502 "*"))) (-4 *4 (-1080)) (-5 *1 (-1059 *4)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-950)) (|has| *4 (-6 (-4502 "*"))) (-4 *4 (-1080)) (-5 *1 (-1059 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4502 "*"))) (-15 -2752 ((-711 |#1|) (-711 |#1|) (-950))) |%noBranch|) (IF (|has| |#1| (-6 (-4502 "*"))) (-15 -2752 ((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-950))) |%noBranch|) (-15 -1388 ((-711 (-981 |#1|)) (-793))) (-15 -1613 ((-711 |#1|) (-711 |#1|) (-950))) (-15 -1613 ((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-950))) (-15 -3228 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3228 ((-666 (-711 |#1|)) (-666 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -3228 ((-711 |#1|) (-711 |#1|))) (-15 -3228 ((-666 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -1481 ((-711 (-578)) (-934 (-578)) (-578))) (-15 -1481 ((-711 (-578)) (-666 (-578)))) (-15 -1481 ((-666 (-711 (-578))) (-666 (-934 (-578))) (-578))) (-15 -1481 ((-666 (-711 (-578))) (-666 (-666 (-578)))))) +((-4142 (((-711 |#1|) (-666 (-711 |#1|)) (-1298 |#1|)) 70 (|has| |#1| (-319)) ELT)) (-3427 (((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-1298 (-1298 |#1|))) 110 (|has| |#1| (-376)) ELT) (((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-1298 |#1|)) 117 (|has| |#1| (-376)) ELT)) (-4088 (((-1298 |#1|) (-666 (-1298 |#1|)) (-578)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-4182 (((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-950)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-112)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-112) (-578) (-578)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-2513 (((-112) (-666 (-711 |#1|))) 103 (|has| |#1| (-376)) ELT) (((-112) (-666 (-711 |#1|)) (-578)) 106 (|has| |#1| (-376)) ELT)) (-2914 (((-1298 (-1298 |#1|)) (-666 (-711 |#1|)) (-1298 |#1|)) 67 (|has| |#1| (-319)) ELT)) (-2318 (((-711 |#1|) (-666 (-711 |#1|)) (-711 |#1|)) 47 T ELT)) (-4036 (((-711 |#1|) (-1298 (-1298 |#1|))) 40 T ELT)) (-1756 (((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)) (-578)) 94 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|))) 93 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)) (-112) (-578)) 101 (|has| |#1| (-376)) ELT))) +(((-1060 |#1|) (-10 -7 (-15 -4036 ((-711 |#1|) (-1298 (-1298 |#1|)))) (-15 -2318 ((-711 |#1|) (-666 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -2914 ((-1298 (-1298 |#1|)) (-666 (-711 |#1|)) (-1298 |#1|))) (-15 -4142 ((-711 |#1|) (-666 (-711 |#1|)) (-1298 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1756 ((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)) (-112) (-578))) (-15 -1756 ((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -1756 ((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)) (-578))) (-15 -2513 ((-112) (-666 (-711 |#1|)) (-578))) (-15 -2513 ((-112) (-666 (-711 |#1|)))) (-15 -3427 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-1298 |#1|))) (-15 -3427 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-1298 (-1298 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-112) (-578) (-578))) (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)))) (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-112))) (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-950))) (-15 -4088 ((-1298 |#1|) (-666 (-1298 |#1|)) (-578)))) |%noBranch|) |%noBranch|)) (-1080)) (T -1060)) +((-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-1298 *5))) (-5 *4 (-578)) (-5 *2 (-1298 *5)) (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-666 (-711 *5))))) (-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-666 (-711 *5))))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1080)) (-5 *2 (-666 (-666 (-711 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-666 (-711 *4))))) (-4182 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-578)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1080)) (-5 *2 (-666 (-666 (-711 *6)))) (-5 *1 (-1060 *6)) (-5 *3 (-666 (-711 *6))))) (-3427 (*1 *2 *3 *4) (-12 (-5 *4 (-1298 (-1298 *5))) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-666 (-711 *5))))) (-3427 (*1 *2 *3 *4) (-12 (-5 *4 (-1298 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-666 (-711 *5))))) (-2513 (*1 *2 *3) (-12 (-5 *3 (-666 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1080)) (-5 *2 (-112)) (-5 *1 (-1060 *4)))) (-2513 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-711 *5))) (-5 *4 (-578)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-112)) (-5 *1 (-1060 *5)))) (-1756 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-666 (-711 *5))) (-5 *4 (-578)) (-5 *2 (-711 *5)) (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-1080)))) (-1756 (*1 *2 *3 *3) (-12 (-5 *3 (-666 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1060 *4)) (-4 *4 (-376)) (-4 *4 (-1080)))) (-1756 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-666 (-711 *6))) (-5 *4 (-112)) (-5 *5 (-578)) (-5 *2 (-711 *6)) (-5 *1 (-1060 *6)) (-4 *6 (-376)) (-4 *6 (-1080)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-711 *5))) (-5 *4 (-1298 *5)) (-4 *5 (-319)) (-4 *5 (-1080)) (-5 *2 (-711 *5)) (-5 *1 (-1060 *5)))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1080)) (-5 *2 (-1298 (-1298 *5))) (-5 *1 (-1060 *5)) (-5 *4 (-1298 *5)))) (-2318 (*1 *2 *3 *2) (-12 (-5 *3 (-666 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))) (-4036 (*1 *2 *3) (-12 (-5 *3 (-1298 (-1298 *4))) (-4 *4 (-1080)) (-5 *2 (-711 *4)) (-5 *1 (-1060 *4))))) +(-10 -7 (-15 -4036 ((-711 |#1|) (-1298 (-1298 |#1|)))) (-15 -2318 ((-711 |#1|) (-666 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -2914 ((-1298 (-1298 |#1|)) (-666 (-711 |#1|)) (-1298 |#1|))) (-15 -4142 ((-711 |#1|) (-666 (-711 |#1|)) (-1298 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1756 ((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)) (-112) (-578))) (-15 -1756 ((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -1756 ((-711 |#1|) (-666 (-711 |#1|)) (-666 (-711 |#1|)) (-578))) (-15 -2513 ((-112) (-666 (-711 |#1|)) (-578))) (-15 -2513 ((-112) (-666 (-711 |#1|)))) (-15 -3427 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-1298 |#1|))) (-15 -3427 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-1298 (-1298 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-112) (-578) (-578))) (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)))) (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-112))) (-15 -4182 ((-666 (-666 (-711 |#1|))) (-666 (-711 |#1|)) (-950))) (-15 -4088 ((-1298 |#1|) (-666 (-1298 |#1|)) (-578)))) |%noBranch|) |%noBranch|)) +((-4096 ((|#1| (-950) |#1|) 18 T ELT))) +(((-1061 |#1|) (-10 -7 (-15 -4096 (|#1| (-950) |#1|))) (-13 (-1131) (-10 -8 (-15 -2472 ($ $ $))))) (T -1061)) +((-4096 (*1 *2 *3 *2) (-12 (-5 *3 (-950)) (-5 *1 (-1061 *2)) (-4 *2 (-13 (-1131) (-10 -8 (-15 -2472 ($ $ $)))))))) +(-10 -7 (-15 -4096 (|#1| (-950) |#1|))) +((-2394 (((-666 (-2 (|:| |radval| (-328 (-578))) (|:| |radmult| (-578)) (|:| |radvect| (-666 (-711 (-328 (-578))))))) (-711 (-421 (-981 (-578))))) 67 T ELT)) (-2661 (((-666 (-711 (-328 (-578)))) (-328 (-578)) (-711 (-421 (-981 (-578))))) 52 T ELT)) (-2639 (((-666 (-328 (-578))) (-711 (-421 (-981 (-578))))) 45 T ELT)) (-4426 (((-666 (-711 (-328 (-578)))) (-711 (-421 (-981 (-578))))) 85 T ELT)) (-2593 (((-711 (-328 (-578))) (-711 (-328 (-578)))) 38 T ELT)) (-4180 (((-666 (-711 (-328 (-578)))) (-666 (-711 (-328 (-578))))) 74 T ELT)) (-4412 (((-3 (-711 (-328 (-578))) "failed") (-711 (-421 (-981 (-578))))) 82 T ELT))) +(((-1062) (-10 -7 (-15 -2394 ((-666 (-2 (|:| |radval| (-328 (-578))) (|:| |radmult| (-578)) (|:| |radvect| (-666 (-711 (-328 (-578))))))) (-711 (-421 (-981 (-578)))))) (-15 -2661 ((-666 (-711 (-328 (-578)))) (-328 (-578)) (-711 (-421 (-981 (-578)))))) (-15 -2639 ((-666 (-328 (-578))) (-711 (-421 (-981 (-578)))))) (-15 -4412 ((-3 (-711 (-328 (-578))) "failed") (-711 (-421 (-981 (-578)))))) (-15 -2593 ((-711 (-328 (-578))) (-711 (-328 (-578))))) (-15 -4180 ((-666 (-711 (-328 (-578)))) (-666 (-711 (-328 (-578)))))) (-15 -4426 ((-666 (-711 (-328 (-578)))) (-711 (-421 (-981 (-578)))))))) (T -1062)) +((-4426 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-981 (-578))))) (-5 *2 (-666 (-711 (-328 (-578))))) (-5 *1 (-1062)))) (-4180 (*1 *2 *2) (-12 (-5 *2 (-666 (-711 (-328 (-578))))) (-5 *1 (-1062)))) (-2593 (*1 *2 *2) (-12 (-5 *2 (-711 (-328 (-578)))) (-5 *1 (-1062)))) (-4412 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 (-421 (-981 (-578))))) (-5 *2 (-711 (-328 (-578)))) (-5 *1 (-1062)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-981 (-578))))) (-5 *2 (-666 (-328 (-578)))) (-5 *1 (-1062)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *4 (-711 (-421 (-981 (-578))))) (-5 *2 (-666 (-711 (-328 (-578))))) (-5 *1 (-1062)) (-5 *3 (-328 (-578))))) (-2394 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-981 (-578))))) (-5 *2 (-666 (-2 (|:| |radval| (-328 (-578))) (|:| |radmult| (-578)) (|:| |radvect| (-666 (-711 (-328 (-578)))))))) (-5 *1 (-1062))))) +(-10 -7 (-15 -2394 ((-666 (-2 (|:| |radval| (-328 (-578))) (|:| |radmult| (-578)) (|:| |radvect| (-666 (-711 (-328 (-578))))))) (-711 (-421 (-981 (-578)))))) (-15 -2661 ((-666 (-711 (-328 (-578)))) (-328 (-578)) (-711 (-421 (-981 (-578)))))) (-15 -2639 ((-666 (-328 (-578))) (-711 (-421 (-981 (-578)))))) (-15 -4412 ((-3 (-711 (-328 (-578))) "failed") (-711 (-421 (-981 (-578)))))) (-15 -2593 ((-711 (-328 (-578))) (-711 (-328 (-578))))) (-15 -4180 ((-666 (-711 (-328 (-578)))) (-666 (-711 (-328 (-578)))))) (-15 -4426 ((-666 (-711 (-328 (-578)))) (-711 (-421 (-981 (-578))))))) +((-3262 ((|#1| |#1| (-950)) 18 T ELT))) +(((-1063 |#1|) (-10 -7 (-15 -3262 (|#1| |#1| (-950)))) (-13 (-1131) (-10 -8 (-15 * ($ $ $))))) (T -1063)) +((-3262 (*1 *2 *2 *3) (-12 (-5 *3 (-950)) (-5 *1 (-1063 *2)) (-4 *2 (-13 (-1131) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3262 (|#1| |#1| (-950)))) +((-2411 ((|#1| (-324)) 11 T ELT) (((-1303) |#1|) 9 T ELT))) +(((-1064 |#1|) (-10 -7 (-15 -2411 ((-1303) |#1|)) (-15 -2411 (|#1| (-324)))) (-1248)) (T -1064)) +((-2411 (*1 *2 *3) (-12 (-5 *3 (-324)) (-5 *1 (-1064 *2)) (-4 *2 (-1248)))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1064 *3)) (-4 *3 (-1248))))) +(-10 -7 (-15 -2411 ((-1303) |#1|)) (-15 -2411 (|#1| (-324)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2512 (($ |#4|) 25 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2501 ((|#4| $) 27 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 46 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3753 (((-793)) 43 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 21 T CONST)) (-2379 (($) 23 T CONST)) (-2384 (((-112) $ $) 40 T ELT)) (-2484 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 29 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1065 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -2512 ($ |#4|)) (-15 -2411 ($ |#4|)) (-15 -2501 (|#4| $)))) (-376) (-815) (-871) (-978 |#1| |#2| |#3|) (-666 |#4|)) (T -1065)) +((-2512 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) (-14 *6 (-666 *2)))) (-2411 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) (-14 *6 (-666 *2)))) (-2501 (*1 *2 *1) (-12 (-4 *2 (-978 *3 *4 *5)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-14 *6 (-666 *2))))) +(-13 (-175) (-38 |#1|) (-10 -8 (-15 -2512 ($ |#4|)) (-15 -2411 ($ |#4|)) (-15 -2501 (|#4| $)))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL T ELT)) (-1794 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-1774 (((-112) (-112)) 43 T ELT)) (-2943 (((-112) (-112)) 42 T ELT)) (-2590 (((-52) $ (-1207) (-52)) NIL T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 (-52) "failed") (-1207) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 (-52) "failed") (-1207) $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 (((-52) $ (-1207) (-52)) NIL (|has| $ (-6 -4501)) ELT)) (-3382 (((-52) $ (-1207)) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT)) (-2316 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-52) (-1131)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT)) (-3244 (((-666 (-1207)) $) 37 T ELT)) (-4300 (((-112) (-1207) $) NIL T ELT)) (-2743 (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL T ELT)) (-4030 (((-666 (-1207)) $) NIL T ELT)) (-3023 (((-112) (-1207) $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-52) (-1131)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT)) (-4189 (((-52) $) NIL (|has| (-1207) (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) "failed") (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL T ELT)) (-4291 (($ $ (-52)) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-666 (-52)) (-666 (-52))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-306 (-52))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-666 (-306 (-52)))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT)) (-4322 (((-666 (-52)) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 (((-52) $ (-1207)) 39 T ELT) (((-52) $ (-1207) (-52)) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (((-793) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT) (((-793) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL T ELT)) (-2411 (((-886) $) 41 (-2230 (|has| (-52) (-632 (-886))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1066) (-13 (-1224 (-1207) (-52)) (-10 -7 (-15 -1774 ((-112) (-112))) (-15 -2943 ((-112) (-112))) (-6 -4500)))) (T -1066)) +((-1774 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1066)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1066))))) +(-13 (-1224 (-1207) (-52)) (-10 -7 (-15 -1774 ((-112) (-112))) (-15 -2943 ((-112) (-112))) (-6 -4500))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2077 (((-1166) $) 9 T ELT)) (-2411 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1067) (-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $))))) (T -1067)) +((-2077 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1067))))) +(-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)))) +((-3516 ((|#2| $) 10 T ELT))) +(((-1068 |#1| |#2|) (-10 -8 (-15 -3516 (|#2| |#1|))) (-1069 |#2|) (-1248)) (T -1068)) +NIL +(-10 -8 (-15 -3516 (|#2| |#1|))) +((-2818 (((-3 |#1| "failed") $) 9 T ELT)) (-3516 ((|#1| $) 8 T ELT)) (-2411 (($ |#1|) 6 T ELT))) +(((-1069 |#1|) (-142) (-1248)) (T -1069)) +((-2818 (*1 *2 *1) (|partial| -12 (-4 *1 (-1069 *2)) (-4 *2 (-1248)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1248))))) +(-13 (-635 |t#1|) (-10 -8 (-15 -2818 ((-3 |t#1| "failed") $)) (-15 -3516 (|t#1| $)))) +(((-635 |#1|) . T)) +((-2591 (((-666 (-666 (-306 (-421 (-981 |#2|))))) (-666 (-981 |#2|)) (-666 (-1207))) 38 T ELT))) +(((-1070 |#1| |#2|) (-10 -7 (-15 -2591 ((-666 (-666 (-306 (-421 (-981 |#2|))))) (-666 (-981 |#2|)) (-666 (-1207))))) (-570) (-13 (-570) (-1069 |#1|))) (T -1070)) +((-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-981 *6))) (-5 *4 (-666 (-1207))) (-4 *6 (-13 (-570) (-1069 *5))) (-4 *5 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *6)))))) (-5 *1 (-1070 *5 *6))))) +(-10 -7 (-15 -2591 ((-666 (-666 (-306 (-421 (-981 |#2|))))) (-666 (-981 |#2|)) (-666 (-1207))))) +((-4041 (((-392)) 17 T ELT)) (-4122 (((-1 (-392)) (-392) (-392)) 22 T ELT)) (-4209 (((-1 (-392)) (-793)) 48 T ELT)) (-4434 (((-392)) 37 T ELT)) (-3086 (((-1 (-392)) (-392) (-392)) 38 T ELT)) (-3924 (((-392)) 29 T ELT)) (-2549 (((-1 (-392)) (-392)) 30 T ELT)) (-1559 (((-392) (-793)) 43 T ELT)) (-3183 (((-1 (-392)) (-793)) 44 T ELT)) (-2155 (((-1 (-392)) (-793) (-793)) 47 T ELT)) (-2799 (((-1 (-392)) (-793) (-793)) 45 T ELT))) +(((-1071) (-10 -7 (-15 -4041 ((-392))) (-15 -4434 ((-392))) (-15 -3924 ((-392))) (-15 -1559 ((-392) (-793))) (-15 -4122 ((-1 (-392)) (-392) (-392))) (-15 -3086 ((-1 (-392)) (-392) (-392))) (-15 -2549 ((-1 (-392)) (-392))) (-15 -3183 ((-1 (-392)) (-793))) (-15 -2799 ((-1 (-392)) (-793) (-793))) (-15 -2155 ((-1 (-392)) (-793) (-793))) (-15 -4209 ((-1 (-392)) (-793))))) (T -1071)) +((-4209 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071)))) (-2155 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071)))) (-2799 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071)))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071)))) (-2549 (*1 *2 *3) (-12 (-5 *2 (-1 (-392))) (-5 *1 (-1071)) (-5 *3 (-392)))) (-3086 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-392))) (-5 *1 (-1071)) (-5 *3 (-392)))) (-4122 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-392))) (-5 *1 (-1071)) (-5 *3 (-392)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-392)) (-5 *1 (-1071)))) (-3924 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1071)))) (-4434 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1071)))) (-4041 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1071))))) +(-10 -7 (-15 -4041 ((-392))) (-15 -4434 ((-392))) (-15 -3924 ((-392))) (-15 -1559 ((-392) (-793))) (-15 -4122 ((-1 (-392)) (-392) (-392))) (-15 -3086 ((-1 (-392)) (-392) (-392))) (-15 -2549 ((-1 (-392)) (-392))) (-15 -3183 ((-1 (-392)) (-793))) (-15 -2799 ((-1 (-392)) (-793) (-793))) (-15 -2155 ((-1 (-392)) (-793) (-793))) (-15 -4209 ((-1 (-392)) (-793)))) +((-2800 (((-432 |#1|) |#1|) 33 T ELT))) +(((-1072 |#1|) (-10 -7 (-15 -2800 ((-432 |#1|) |#1|))) (-1274 (-421 (-981 (-578))))) (T -1072)) +((-2800 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-1072 *3)) (-4 *3 (-1274 (-421 (-981 (-578)))))))) +(-10 -7 (-15 -2800 ((-432 |#1|) |#1|))) +((-3072 (((-421 (-432 (-981 |#1|))) (-421 (-981 |#1|))) 14 T ELT))) +(((-1073 |#1|) (-10 -7 (-15 -3072 ((-421 (-432 (-981 |#1|))) (-421 (-981 |#1|))))) (-319)) (T -1073)) +((-3072 (*1 *2 *3) (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-319)) (-5 *2 (-421 (-432 (-981 *4)))) (-5 *1 (-1073 *4))))) +(-10 -7 (-15 -3072 ((-421 (-432 (-981 |#1|))) (-421 (-981 |#1|))))) +((-2949 (((-666 (-1207)) (-421 (-981 |#1|))) 17 T ELT)) (-4420 (((-421 (-1203 (-421 (-981 |#1|)))) (-421 (-981 |#1|)) (-1207)) 24 T ELT)) (-2936 (((-421 (-981 |#1|)) (-421 (-1203 (-421 (-981 |#1|)))) (-1207)) 26 T ELT)) (-4006 (((-3 (-1207) "failed") (-421 (-981 |#1|))) 20 T ELT)) (-3364 (((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-666 (-306 (-421 (-981 |#1|))))) 32 T ELT) (((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|)))) 33 T ELT) (((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-666 (-1207)) (-666 (-421 (-981 |#1|)))) 28 T ELT) (((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|))) 29 T ELT)) (-2411 (((-421 (-981 |#1|)) |#1|) 11 T ELT))) +(((-1074 |#1|) (-10 -7 (-15 -2949 ((-666 (-1207)) (-421 (-981 |#1|)))) (-15 -4006 ((-3 (-1207) "failed") (-421 (-981 |#1|)))) (-15 -4420 ((-421 (-1203 (-421 (-981 |#1|)))) (-421 (-981 |#1|)) (-1207))) (-15 -2936 ((-421 (-981 |#1|)) (-421 (-1203 (-421 (-981 |#1|)))) (-1207))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|)))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-666 (-1207)) (-666 (-421 (-981 |#1|))))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-666 (-306 (-421 (-981 |#1|)))))) (-15 -2411 ((-421 (-981 |#1|)) |#1|))) (-570)) (T -1074)) +((-2411 (*1 *2 *3) (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-1074 *3)) (-4 *3 (-570)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *3 (-666 (-306 (-421 (-981 *4))))) (-5 *2 (-421 (-981 *4))) (-4 *4 (-570)) (-5 *1 (-1074 *4)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *3 (-306 (-421 (-981 *4)))) (-5 *2 (-421 (-981 *4))) (-4 *4 (-570)) (-5 *1 (-1074 *4)))) (-3364 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-666 (-1207))) (-5 *4 (-666 (-421 (-981 *5)))) (-5 *2 (-421 (-981 *5))) (-4 *5 (-570)) (-5 *1 (-1074 *5)))) (-3364 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-421 (-981 *4))) (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-1074 *4)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1203 (-421 (-981 *5))))) (-5 *4 (-1207)) (-5 *2 (-421 (-981 *5))) (-5 *1 (-1074 *5)) (-4 *5 (-570)))) (-4420 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-570)) (-5 *2 (-421 (-1203 (-421 (-981 *5))))) (-5 *1 (-1074 *5)) (-5 *3 (-421 (-981 *5))))) (-4006 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-5 *2 (-1207)) (-5 *1 (-1074 *4)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-5 *2 (-666 (-1207))) (-5 *1 (-1074 *4))))) +(-10 -7 (-15 -2949 ((-666 (-1207)) (-421 (-981 |#1|)))) (-15 -4006 ((-3 (-1207) "failed") (-421 (-981 |#1|)))) (-15 -4420 ((-421 (-1203 (-421 (-981 |#1|)))) (-421 (-981 |#1|)) (-1207))) (-15 -2936 ((-421 (-981 |#1|)) (-421 (-1203 (-421 (-981 |#1|)))) (-1207))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|)))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-666 (-1207)) (-666 (-421 (-981 |#1|))))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-306 (-421 (-981 |#1|))))) (-15 -3364 ((-421 (-981 |#1|)) (-421 (-981 |#1|)) (-666 (-306 (-421 (-981 |#1|)))))) (-15 -2411 ((-421 (-981 |#1|)) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3534 (($) 18 T CONST)) (-3352 ((|#1| $) 23 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2588 ((|#1| $) 22 T ELT)) (-4346 ((|#1|) 20 T CONST)) (-2411 (((-886) $) 12 T ELT)) (-1652 ((|#1| $) 21 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT))) +(((-1075 |#1|) (-142) (-23)) (T -1075)) +((-3352 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-4346 (*1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3352 (|t#1| $)) (-15 -2588 (|t#1| $)) (-15 -1652 (|t#1| $)) (-15 -4346 (|t#1|) -1529))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3442 (($) 25 T CONST)) (-3534 (($) 18 T CONST)) (-3352 ((|#1| $) 23 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2588 ((|#1| $) 22 T ELT)) (-4346 ((|#1|) 20 T CONST)) (-2411 (((-886) $) 12 T ELT)) (-1652 ((|#1| $) 21 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT))) +(((-1076 |#1|) (-142) (-23)) (T -1076)) +((-3442 (*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23))))) +(-13 (-1075 |t#1|) (-10 -8 (-15 -3442 ($) -1529))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-886)) . T) ((-1075 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 (-802 |#1| (-888 |#2|)))))) (-666 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3997 (((-666 $) (-666 (-802 |#1| (-888 |#2|)))) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) (-112)) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) (-112) (-112)) NIL T ELT)) (-2949 (((-666 (-888 |#2|)) $) NIL T ELT)) (-3039 (((-112) $) NIL T ELT)) (-2774 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4409 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-2596 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1457 (((-666 (-2 (|:| |val| (-802 |#1| (-888 |#2|))) (|:| -4318 $))) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ (-888 |#2|)) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4233 (($ (-1 (-112) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 (-802 |#1| (-888 |#2|)) "failed") $ (-888 |#2|)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-4147 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4271 (((-666 (-802 |#1| (-888 |#2|))) (-666 (-802 |#1| (-888 |#2|))) $ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) (-1 (-112) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-1532 (((-666 (-802 |#1| (-888 |#2|))) (-666 (-802 |#1| (-888 |#2|))) $) NIL (|has| |#1| (-570)) ELT)) (-4168 (((-666 (-802 |#1| (-888 |#2|))) (-666 (-802 |#1| (-888 |#2|))) $) NIL (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3516 (($ (-666 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-4198 (((-3 $ "failed") $) NIL T ELT)) (-1707 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT)) (-2737 (($ (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-802 |#1| (-888 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-888 |#2|)) $) NIL (|has| |#1| (-570)) ELT)) (-2582 (((-112) (-802 |#1| (-888 |#2|)) $ (-1 (-112) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3069 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2512 (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $ (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT) (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $ (-802 |#1| (-888 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) (-1 (-112) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-1661 (((-2 (|:| -1625 (-666 (-802 |#1| (-888 |#2|)))) (|:| -2259 (-666 (-802 |#1| (-888 |#2|))))) $) NIL T ELT)) (-1434 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2669 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2762 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-2729 (((-666 (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-2537 (((-888 |#2|) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT)) (-3439 (($ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-3117 (((-666 (-888 |#2|)) $) NIL T ELT)) (-1455 (((-112) (-888 |#2|) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1763 (((-3 (-802 |#1| (-888 |#2|)) (-666 $)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3064 (((-666 (-2 (|:| |val| (-802 |#1| (-888 |#2|))) (|:| -4318 $))) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2757 (((-3 (-802 |#1| (-888 |#2|)) "failed") $) NIL T ELT)) (-4044 (((-666 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3976 (((-3 (-112) (-666 $)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1835 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3457 (((-666 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) (-666 $)) NIL T ELT) (((-666 $) (-802 |#1| (-888 |#2|)) (-666 $)) NIL T ELT)) (-4064 (($ (-802 |#1| (-888 |#2|)) $) NIL T ELT) (($ (-666 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-1708 (((-666 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-3084 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-3494 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3151 (((-112) $ $) NIL T ELT)) (-1840 (((-2 (|:| |num| (-802 |#1| (-888 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-888 |#2|)) $) NIL (|has| |#1| (-570)) ELT)) (-2643 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-112) $) NIL T ELT)) (-1922 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-3 (-802 |#1| (-888 |#2|)) "failed") $) NIL T ELT)) (-3668 (((-3 (-802 |#1| (-888 |#2|)) "failed") (-1 (-112) (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-2861 (((-3 $ "failed") $ (-802 |#1| (-888 |#2|))) NIL T ELT)) (-2704 (($ $ (-802 |#1| (-888 |#2|))) NIL T ELT) (((-666 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-666 $) (-802 |#1| (-888 |#2|)) (-666 $)) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) (-666 $)) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-802 |#1| (-888 |#2|))) (-666 (-802 |#1| (-888 |#2|)))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT) (($ $ (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT) (($ $ (-306 (-802 |#1| (-888 |#2|)))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT) (($ $ (-666 (-306 (-802 |#1| (-888 |#2|))))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-3683 (((-793) $) NIL T ELT)) (-4324 (((-793) (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-802 |#1| (-888 |#2|)) (-1131))) ELT) (((-793) (-1 (-112) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-802 |#1| (-888 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-1339 (($ $ (-888 |#2|)) NIL T ELT)) (-2093 (($ $ (-888 |#2|)) NIL T ELT)) (-2499 (($ $) NIL T ELT)) (-3102 (($ $ (-888 |#2|)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (((-666 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-2474 (((-793) $) NIL (|has| (-888 |#2|) (-381)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 (-802 |#1| (-888 |#2|))))) "failed") (-666 (-802 |#1| (-888 |#2|))) (-1 (-112) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 (-802 |#1| (-888 |#2|))))) "failed") (-666 (-802 |#1| (-888 |#2|))) (-1 (-112) (-802 |#1| (-888 |#2|))) (-1 (-112) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-1943 (((-112) $ (-1 (-112) (-802 |#1| (-888 |#2|)) (-666 (-802 |#1| (-888 |#2|))))) NIL T ELT)) (-2557 (((-666 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-666 $) (-802 |#1| (-888 |#2|)) (-666 $)) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-666 $) (-666 (-802 |#1| (-888 |#2|))) (-666 $)) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 (-888 |#2|)) $) NIL T ELT)) (-3091 (((-112) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2714 (((-112) (-888 |#2|) $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1077 |#1| |#2|) (-13 (-1102 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) (-10 -8 (-15 -3997 ((-666 $) (-666 (-802 |#1| (-888 |#2|))) (-112) (-112))))) (-466) (-666 (-1207))) (T -1077)) +((-3997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1077 *5 *6))) (-5 *1 (-1077 *5 *6))))) +(-13 (-1102 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) (-10 -8 (-15 -3997 ((-666 $) (-666 (-802 |#1| (-888 |#2|))) (-112) (-112))))) +((-4122 (((-1 (-578)) (-1125 (-578))) 32 T ELT)) (-4118 (((-578) (-578) (-578) (-578) (-578)) 29 T ELT)) (-2406 (((-1 (-578)) |RationalNumber|) NIL T ELT)) (-3118 (((-1 (-578)) |RationalNumber|) NIL T ELT)) (-2776 (((-1 (-578)) (-578) |RationalNumber|) NIL T ELT))) +(((-1078) (-10 -7 (-15 -4122 ((-1 (-578)) (-1125 (-578)))) (-15 -2776 ((-1 (-578)) (-578) |RationalNumber|)) (-15 -2406 ((-1 (-578)) |RationalNumber|)) (-15 -3118 ((-1 (-578)) |RationalNumber|)) (-15 -4118 ((-578) (-578) (-578) (-578) (-578))))) (T -1078)) +((-4118 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1078)))) (-3118 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-578))) (-5 *1 (-1078)))) (-2406 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-578))) (-5 *1 (-1078)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-578))) (-5 *1 (-1078)) (-5 *3 (-578)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-1125 (-578))) (-5 *2 (-1 (-578))) (-5 *1 (-1078))))) +(-10 -7 (-15 -4122 ((-1 (-578)) (-1125 (-578)))) (-15 -2776 ((-1 (-578)) (-578) |RationalNumber|)) (-15 -2406 ((-1 (-578)) |RationalNumber|)) (-15 -3118 ((-1 (-578)) |RationalNumber|)) (-15 -4118 ((-578) (-578) (-578) (-578) (-578)))) +((-2411 (((-886) $) NIL T ELT) (($ (-578)) 10 T ELT))) +(((-1079 |#1|) (-10 -8 (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-1080)) (T -1079)) +NIL +(-10 -8 (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-1080) (-142)) (T -1080)) +((-3753 (*1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-793))))) +(-13 (-1089) (-748) (-670 $) (-635 (-578)) (-10 -7 (-15 -3753 ((-793)) -1529) (-6 -4497))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-578)) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3181 (((-421 (-981 |#2|)) (-666 |#2|) (-666 |#2|) (-793) (-793)) 54 T ELT))) +(((-1081 |#1| |#2|) (-10 -7 (-15 -3181 ((-421 (-981 |#2|)) (-666 |#2|) (-666 |#2|) (-793) (-793)))) (-1207) (-376)) (T -1081)) +((-3181 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-666 *6)) (-5 *4 (-793)) (-4 *6 (-376)) (-5 *2 (-421 (-981 *6))) (-5 *1 (-1081 *5 *6)) (-14 *5 (-1207))))) +(-10 -7 (-15 -3181 ((-421 (-981 |#2|)) (-666 |#2|) (-666 |#2|) (-793) (-793)))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (* (($ $ |#1|) 14 T ELT))) +(((-1082 |#1|) (-142) (-1143)) (T -1082)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *2)) (-4 *2 (-1143))))) +(-13 (-1131) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-2648 (((-112) $) 38 T ELT)) (-2214 (((-112) $) 17 T ELT)) (-3068 (((-793) $) 13 T ELT)) (-3082 (((-793) $) 14 T ELT)) (-4415 (((-112) $) 30 T ELT)) (-1828 (((-112) $) 40 T ELT))) +(((-1083 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3082 ((-793) |#1|)) (-15 -3068 ((-793) |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -2648 ((-112) |#1|)) (-15 -4415 ((-112) |#1|)) (-15 -2214 ((-112) |#1|))) (-1084 |#2| |#3| |#4| |#5| |#6|) (-793) (-793) (-1080) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1083)) +NIL +(-10 -8 (-15 -3082 ((-793) |#1|)) (-15 -3068 ((-793) |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -2648 ((-112) |#1|)) (-15 -4415 ((-112) |#1|)) (-15 -2214 ((-112) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2648 (((-112) $) 56 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2214 (((-112) $) 58 T ELT)) (-1628 (((-112) $ (-793)) 66 T ELT)) (-3534 (($) 18 T CONST)) (-1612 (($ $) 39 (|has| |#3| (-319)) ELT)) (-3978 ((|#4| $ (-578)) 44 T ELT)) (-1875 (((-793) $) 38 (|has| |#3| (-570)) ELT)) (-3382 ((|#3| $ (-578) (-578)) 46 T ELT)) (-2729 (((-666 |#3|) $) 73 (|has| $ (-6 -4500)) ELT)) (-3199 (((-793) $) 37 (|has| |#3| (-570)) ELT)) (-4342 (((-666 |#5|) $) 36 (|has| |#3| (-570)) ELT)) (-3068 (((-793) $) 50 T ELT)) (-3082 (((-793) $) 49 T ELT)) (-2363 (((-112) $ (-793)) 65 T ELT)) (-1850 (((-578) $) 54 T ELT)) (-3156 (((-578) $) 52 T ELT)) (-1441 (((-666 |#3|) $) 74 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1131)) (|has| $ (-6 -4500))) ELT)) (-1694 (((-578) $) 53 T ELT)) (-2915 (((-578) $) 51 T ELT)) (-1869 (($ (-666 (-666 |#3|))) 59 T ELT)) (-3439 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#3| |#3|) $) 68 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 42 T ELT)) (-3692 (((-666 (-666 |#3|)) $) 48 T ELT)) (-1719 (((-112) $ (-793)) 64 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#3|) (-666 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-306 |#3|)) 78 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-666 (-306 |#3|))) 77 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-2428 (((-112) $ $) 60 T ELT)) (-4186 (((-112) $) 63 T ELT)) (-1696 (($) 62 T ELT)) (-2436 ((|#3| $ (-578) (-578)) 47 T ELT) ((|#3| $ (-578) (-578) |#3|) 45 T ELT)) (-4415 (((-112) $) 57 T ELT)) (-4324 (((-793) |#3| $) 75 (-12 (|has| |#3| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 61 T ELT)) (-4240 ((|#5| $ (-578)) 43 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3673 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) 55 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#3|) 40 (|has| |#3| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#3| $) 27 T ELT) (($ $ |#3|) 31 T ELT)) (-3226 (((-793) $) 67 (|has| $ (-6 -4500)) ELT))) +(((-1084 |#1| |#2| |#3| |#4| |#5|) (-142) (-793) (-793) (-1080) (-245 |t#2| |t#3|) (-245 |t#1| |t#3|)) (T -1084)) +((-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 *5))) (-4 *5 (-1080)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-2214 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112)))) (-4415 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112)))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112)))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-666 (-666 *5))))) (-2436 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))) (-3382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))) (-2436 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *2 (-1080)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3978 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *6 *2 *7)) (-4 *6 (-1080)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *6 *7 *2)) (-4 *6 (-1080)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-3611 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3202 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-570)))) (-2495 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-570)) (-5 *2 (-793)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-570)) (-5 *2 (-793)))) (-4342 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-570)) (-5 *2 (-666 *7))))) +(-13 (-111 |t#3| |t#3|) (-503 |t#3|) (-10 -8 (-6 -4500) (IF (|has| |t#3| (-175)) (-6 (-739 |t#3|)) |%noBranch|) (-15 -1869 ($ (-666 (-666 |t#3|)))) (-15 -2214 ((-112) $)) (-15 -4415 ((-112) $)) (-15 -2648 ((-112) $)) (-15 -1828 ((-112) $)) (-15 -1850 ((-578) $)) (-15 -1694 ((-578) $)) (-15 -3156 ((-578) $)) (-15 -2915 ((-578) $)) (-15 -3068 ((-793) $)) (-15 -3082 ((-793) $)) (-15 -3692 ((-666 (-666 |t#3|)) $)) (-15 -2436 (|t#3| $ (-578) (-578))) (-15 -3382 (|t#3| $ (-578) (-578))) (-15 -2436 (|t#3| $ (-578) (-578) |t#3|)) (-15 -3978 (|t#4| $ (-578))) (-15 -4240 (|t#5| $ (-578))) (-15 -3611 ($ (-1 |t#3| |t#3|) $)) (-15 -3611 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-570)) (-15 -3202 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -2495 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -1612 ($ $)) |%noBranch|) (IF (|has| |t#3| (-570)) (PROGN (-15 -1875 ((-793) $)) (-15 -3199 ((-793) $)) (-15 -4342 ((-666 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-133) . T) ((-632 (-886)) . T) ((-321 |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ((-503 |#3|) . T) ((-528 |#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ((-668 (-578)) . T) ((-668 |#3|) . T) ((-670 |#3|) . T) ((-662 |#3|) |has| |#3| (-175)) ((-739 |#3|) |has| |#3| (-175)) ((-1082 |#3|) . T) ((-1087 |#3|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2648 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2214 (((-112) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-1612 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3978 (((-247 |#2| |#3|) $ (-578)) 36 T ELT)) (-1982 (($ (-711 |#3|)) 45 T ELT)) (-1875 (((-793) $) 49 (|has| |#3| (-570)) ELT)) (-3382 ((|#3| $ (-578) (-578)) NIL T ELT)) (-2729 (((-666 |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3199 (((-793) $) 51 (|has| |#3| (-570)) ELT)) (-4342 (((-666 (-247 |#1| |#3|)) $) 55 (|has| |#3| (-570)) ELT)) (-3068 (((-793) $) NIL T ELT)) (-3082 (((-793) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1850 (((-578) $) NIL T ELT)) (-3156 (((-578) $) NIL T ELT)) (-1441 (((-666 |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT)) (-1694 (((-578) $) NIL T ELT)) (-2915 (((-578) $) NIL T ELT)) (-1869 (($ (-666 (-666 |#3|))) 31 T ELT)) (-3439 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3692 (((-666 (-666 |#3|)) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#3|) (-666 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-306 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-666 (-306 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#3| $ (-578) (-578)) NIL T ELT) ((|#3| $ (-578) (-578) |#3|) NIL T ELT)) (-4425 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-4415 (((-112) $) NIL T ELT)) (-4324 (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT) (((-793) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) 65 (|has| |#3| (-633 (-550))) ELT)) (-4240 (((-247 |#1| |#3|) $ (-578)) 40 T ELT)) (-2411 (((-886) $) 19 T ELT) (((-711 |#3|) $) 42 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) NIL T ELT)) (-2368 (($) 16 T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1085 |#1| |#2| |#3|) (-13 (-1084 |#1| |#2| |#3| (-247 |#2| |#3|) (-247 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (-15 -1982 ($ (-711 |#3|))))) (-793) (-793) (-1080)) (T -1085)) +((-1982 (*1 *1 *2) (-12 (-5 *2 (-711 *5)) (-4 *5 (-1080)) (-5 *1 (-1085 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793))))) +(-13 (-1084 |#1| |#2| |#3| (-247 |#2| |#3|) (-247 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|) (-15 -1982 ($ (-711 |#3|))))) +((-2512 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3611 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-1086 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3611 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2512 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-793) (-793) (-1080) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1084 |#1| |#2| |#3| |#4| |#5|) (-1080) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1084 |#1| |#2| |#7| |#8| |#9|)) (T -1086)) +((-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1080)) (-4 *2 (-1080)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *12 (-1084 *5 *6 *2 *10 *11)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1080)) (-4 *10 (-1080)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1084 *5 *6 *10 *11 *12)) (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10))))) +(-10 -7 (-15 -3611 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2512 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ |#1|) 27 T ELT))) +(((-1087 |#1|) (-142) (-1089)) (T -1087)) +NIL +(-13 (-21) (-1082 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-1082 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3967 (((-1207) $) 11 T ELT)) (-4228 ((|#1| $) 12 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4018 (($ (-1207) |#1|) 10 T ELT)) (-2411 (((-886) $) 22 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2384 (((-112) $ $) 17 (|has| |#1| (-1131)) ELT))) +(((-1088 |#1| |#2|) (-13 (-1248) (-10 -8 (-15 -4018 ($ (-1207) |#1|)) (-15 -3967 ((-1207) $)) (-15 -4228 (|#1| $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) (-1124 |#2|) (-1248)) (T -1088)) +((-4018 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-4 *4 (-1248)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1124 *4)))) (-3967 (*1 *2 *1) (-12 (-4 *4 (-1248)) (-5 *2 (-1207)) (-5 *1 (-1088 *3 *4)) (-4 *3 (-1124 *4)))) (-4228 (*1 *2 *1) (-12 (-4 *2 (-1124 *3)) (-5 *1 (-1088 *2 *3)) (-4 *3 (-1248))))) +(-13 (-1248) (-10 -8 (-15 -4018 ($ (-1207) |#1|)) (-15 -3967 ((-1207) $)) (-15 -4228 (|#1| $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-1089) (-142)) (T -1089)) +NIL +(-13 (-21) (-1143)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-2140 (($ $) 17 T ELT)) (-2753 (($ $) 25 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 55 T ELT)) (-1550 (($ $) 27 T ELT)) (-2055 (($ $) 12 T ELT)) (-3575 (($ $) 43 T ELT)) (-3343 (((-392) $) NIL T ELT) (((-229) $) NIL T ELT) (((-917 (-392)) $) 36 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) 31 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) 31 T ELT)) (-3753 (((-793)) 9 T ELT)) (-1585 (($ $) 45 T ELT))) +(((-1090 |#1|) (-10 -8 (-15 -2753 (|#1| |#1|)) (-15 -2140 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| (-578))) (-15 -3343 ((-229) |#1|)) (-15 -3343 ((-392) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| |#1|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-1091)) (T -1090)) +((-3753 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1090 *3)) (-4 *3 (-1091))))) +(-10 -8 (-15 -2753 (|#1| |#1|)) (-15 -2140 (|#1| |#1|)) (-15 -2055 (|#1| |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -3386 ((-914 (-392) |#1|) |#1| (-917 (-392)) (-914 (-392) |#1|))) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| (-578))) (-15 -3343 ((-229) |#1|)) (-15 -3343 ((-392) |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| |#1|)) (-15 -3753 ((-793))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2873 (((-578) $) 98 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-2140 (($ $) 96 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2811 (($ $) 106 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-1490 (((-578) $) 123 T ELT)) (-3534 (($) 18 T CONST)) (-2753 (($ $) 95 T ELT)) (-2818 (((-3 (-578) "failed") $) 111 T ELT) (((-3 (-421 (-578)) "failed") $) 108 T ELT)) (-3516 (((-578) $) 112 T ELT) (((-421 (-578)) $) 109 T ELT)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2159 (((-112) $) 79 T ELT)) (-3789 (((-112) $) 121 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 102 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 105 T ELT)) (-1550 (($ $) 101 T ELT)) (-1721 (((-112) $) 122 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-1345 (($ $ $) 115 T ELT)) (-3667 (($ $ $) 116 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2055 (($ $) 97 T ELT)) (-3575 (($ $) 99 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-3343 (((-392) $) 114 T ELT) (((-229) $) 113 T ELT) (((-917 (-392)) $) 103 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT) (($ (-578)) 110 T ELT) (($ (-421 (-578))) 107 T ELT)) (-3753 (((-793)) 32 T CONST)) (-1585 (($ $) 100 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2628 (($ $) 124 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2441 (((-112) $ $) 117 T ELT)) (-2416 (((-112) $ $) 119 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 118 T ELT)) (-2404 (((-112) $ $) 120 T ELT)) (-2495 (($ $ $) 73 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT) (($ $ (-421 (-578))) 104 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT))) +(((-1091) (-142)) (T -1091)) +((-2628 (*1 *1 *1) (-4 *1 (-1091))) (-1550 (*1 *1 *1) (-4 *1 (-1091))) (-1585 (*1 *1 *1) (-4 *1 (-1091))) (-3575 (*1 *1 *1) (-4 *1 (-1091))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-578)))) (-2055 (*1 *1 *1) (-4 *1 (-1091))) (-2140 (*1 *1 *1) (-4 *1 (-1091))) (-2753 (*1 *1 *1) (-4 *1 (-1091)))) +(-13 (-376) (-870) (-1053) (-1069 (-578)) (-1069 (-421 (-578))) (-1033) (-633 (-917 (-392))) (-911 (-392)) (-149) (-10 -8 (-15 -1550 ($ $)) (-15 -1585 ($ $)) (-15 -3575 ($ $)) (-15 -2873 ((-578) $)) (-15 -2055 ($ $)) (-15 -2140 ($ $)) (-15 -2753 ($ $)) (-15 -2628 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-392)) . T) ((-633 (-917 (-392))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-817) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-911 (-392)) . T) ((-949) . T) ((-1033) . T) ((-1053) . T) ((-1069 (-421 (-578))) . T) ((-1069 (-578)) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) |#2| $) 26 T ELT)) (-2222 ((|#1| $) 10 T ELT)) (-1490 (((-578) |#2| $) 116 T ELT)) (-1567 (((-3 $ "failed") |#2| (-950)) 75 T ELT)) (-3868 ((|#1| $) 31 T ELT)) (-1932 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3437 (($ $) 28 T ELT)) (-3493 (((-3 |#2| "failed") |#2| $) 111 T ELT)) (-3789 (((-112) |#2| $) NIL T ELT)) (-1721 (((-112) |#2| $) NIL T ELT)) (-3225 (((-112) |#2| $) 27 T ELT)) (-2461 ((|#1| $) 117 T ELT)) (-3855 ((|#1| $) 30 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4269 ((|#2| $) 102 T ELT)) (-2411 (((-886) $) 92 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3909 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3313 (((-666 $) |#2|) 77 T ELT)) (-2384 (((-112) $ $) 97 T ELT))) +(((-1092 |#1| |#2|) (-13 (-1099 |#1| |#2|) (-10 -8 (-15 -3855 (|#1| $)) (-15 -3868 (|#1| $)) (-15 -2222 (|#1| $)) (-15 -2461 (|#1| $)) (-15 -3437 ($ $)) (-15 -3225 ((-112) |#2| $)) (-15 -1932 (|#1| |#2| $ |#1|)))) (-13 (-870) (-376)) (-1274 |#1|)) (T -1092)) +((-1932 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1274 *2)))) (-3855 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1274 *2)))) (-3868 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1274 *2)))) (-2222 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1274 *2)))) (-2461 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1274 *2)))) (-3437 (*1 *1 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1274 *2)))) (-3225 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-870) (-376))) (-5 *2 (-112)) (-5 *1 (-1092 *4 *3)) (-4 *3 (-1274 *4))))) +(-13 (-1099 |#1| |#2|) (-10 -8 (-15 -3855 (|#1| $)) (-15 -3868 (|#1| $)) (-15 -2222 (|#1| $)) (-15 -2461 (|#1| $)) (-15 -3437 ($ $)) (-15 -3225 ((-112) |#2| $)) (-15 -1932 (|#1| |#2| $ |#1|)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-1452 (($ $ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3267 (($ $ $ $) NIL T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-1490 (((-578) $) NIL T ELT)) (-1887 (($ $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3792 (($ (-1207)) 10 T ELT) (($ (-578)) 7 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL T ELT)) (-3154 (($ $ $) NIL T ELT)) (-2242 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-711 (-578)) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-1474 (((-112) $) NIL T ELT)) (-3805 (((-421 (-578)) $) NIL T ELT)) (-2062 (($) NIL T ELT) (($ $) NIL T ELT)) (-3166 (($ $ $) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3092 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-3789 (((-112) $) NIL T ELT)) (-2492 (($ $ $) NIL T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2382 (((-112) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL T ELT)) (-1721 (((-112) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2931 (($ $ $ $) NIL T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-3695 (($ $) NIL T ELT)) (-3492 (($ $) NIL T ELT)) (-3908 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-1354 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2454 (($ $) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3873 (((-112) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-2031 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1687 (($ $) NIL T ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-578) $) 16 T ELT) (((-550) $) NIL T ELT) (((-917 (-578)) $) NIL T ELT) (((-392) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1207)) 9 T ELT)) (-2411 (((-886) $) 23 T ELT) (($ (-578)) 6 T ELT) (($ $) NIL T ELT) (($ (-578)) 6 T ELT)) (-3753 (((-793)) NIL T CONST)) (-3953 (((-112) $ $) NIL T ELT)) (-2776 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (($) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-3559 (($ $ $ $) NIL T ELT)) (-2628 (($ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-2484 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578) $) NIL T ELT))) +(((-1093) (-13 (-559) (-637 (-1207)) (-10 -8 (-6 -4487) (-6 -4492) (-6 -4488) (-15 -3792 ($ (-1207))) (-15 -3792 ($ (-578)))))) (T -1093)) +((-3792 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1093))))) +(-13 (-559) (-637 (-1207)) (-10 -8 (-6 -4487) (-6 -4492) (-6 -4488) (-15 -3792 ($ (-1207))) (-15 -3792 ($ (-578))))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL T ELT)) (-1794 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3410 (($) 9 T ELT)) (-2590 (((-52) $ (-1207) (-52)) NIL T ELT)) (-2523 (($ $) 32 T ELT)) (-1496 (($ $) 30 T ELT)) (-1697 (($ $) 29 T ELT)) (-3633 (($ $) 31 T ELT)) (-1818 (($ $) 35 T ELT)) (-2769 (($ $) 36 T ELT)) (-2581 (($ $) 28 T ELT)) (-4266 (($ $) 33 T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) 27 (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 (-52) "failed") (-1207) $) 43 T ELT)) (-3534 (($) NIL T CONST)) (-2353 (($) 7 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) 53 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 (-52) "failed") (-1207) $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2426 (((-3 (-1189) "failed") $ (-1189) (-578)) 72 T ELT)) (-3450 (((-52) $ (-1207) (-52)) NIL (|has| $ (-6 -4501)) ELT)) (-3382 (((-52) $ (-1207)) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) 38 (|has| $ (-6 -4500)) ELT) (((-666 (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT)) (-2316 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL T ELT) (($ (-1 (-52) (-52)) $) NIL T ELT) (($ (-1 (-52) (-52) (-52)) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-52) (-1131)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT)) (-3244 (((-666 (-1207)) $) NIL T ELT)) (-4300 (((-112) (-1207) $) NIL T ELT)) (-2743 (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) 46 T ELT)) (-4030 (((-666 (-1207)) $) NIL T ELT)) (-3023 (((-112) (-1207) $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-52) (-1131)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT)) (-3002 (((-392) $ (-1207)) 52 T ELT)) (-1924 (((-666 (-1189)) $ (-1189)) 74 T ELT)) (-4189 (((-52) $) NIL (|has| (-1207) (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) "failed") (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL T ELT)) (-4291 (($ $ (-52)) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL (-12 (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-321 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (($ $ (-666 (-52)) (-666 (-52))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-306 (-52))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT) (($ $ (-666 (-306 (-52)))) NIL (-12 (|has| (-52) (-321 (-52))) (|has| (-52) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT)) (-4322 (((-666 (-52)) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 (((-52) $ (-1207)) NIL T ELT) (((-52) $ (-1207) (-52)) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL T ELT)) (-3288 (($ $ (-1207)) 54 T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-1131))) ELT) (((-793) (-52) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-52) (-1131))) ELT) (((-793) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) 40 T ELT)) (-3703 (($ $ $) 41 T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-52) (-632 (-886))) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-632 (-886)))) ELT)) (-4239 (($ $ (-1207) (-392)) 50 T ELT)) (-2786 (($ $ (-1207) (-392)) 51 T ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 (-1207)) (|:| -2754 (-52)))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-52) (-102)) (|has| (-2 (|:| -3173 (-1207)) (|:| -2754 (-52))) (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1094) (-13 (-1224 (-1207) (-52)) (-10 -8 (-15 -3703 ($ $ $)) (-15 -2353 ($)) (-15 -2581 ($ $)) (-15 -1697 ($ $)) (-15 -1496 ($ $)) (-15 -3633 ($ $)) (-15 -4266 ($ $)) (-15 -2523 ($ $)) (-15 -1818 ($ $)) (-15 -2769 ($ $)) (-15 -4239 ($ $ (-1207) (-392))) (-15 -2786 ($ $ (-1207) (-392))) (-15 -3002 ((-392) $ (-1207))) (-15 -1924 ((-666 (-1189)) $ (-1189))) (-15 -3288 ($ $ (-1207))) (-15 -3410 ($)) (-15 -2426 ((-3 (-1189) "failed") $ (-1189) (-578))) (-6 -4500)))) (T -1094)) +((-3703 (*1 *1 *1 *1) (-5 *1 (-1094))) (-2353 (*1 *1) (-5 *1 (-1094))) (-2581 (*1 *1 *1) (-5 *1 (-1094))) (-1697 (*1 *1 *1) (-5 *1 (-1094))) (-1496 (*1 *1 *1) (-5 *1 (-1094))) (-3633 (*1 *1 *1) (-5 *1 (-1094))) (-4266 (*1 *1 *1) (-5 *1 (-1094))) (-2523 (*1 *1 *1) (-5 *1 (-1094))) (-1818 (*1 *1 *1) (-5 *1 (-1094))) (-2769 (*1 *1 *1) (-5 *1 (-1094))) (-4239 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-392)) (-5 *1 (-1094)))) (-2786 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-392)) (-5 *1 (-1094)))) (-3002 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-392)) (-5 *1 (-1094)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1094)) (-5 *3 (-1189)))) (-3288 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1094)))) (-3410 (*1 *1) (-5 *1 (-1094))) (-2426 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-578)) (-5 *1 (-1094))))) +(-13 (-1224 (-1207) (-52)) (-10 -8 (-15 -3703 ($ $ $)) (-15 -2353 ($)) (-15 -2581 ($ $)) (-15 -1697 ($ $)) (-15 -1496 ($ $)) (-15 -3633 ($ $)) (-15 -4266 ($ $)) (-15 -2523 ($ $)) (-15 -1818 ($ $)) (-15 -2769 ($ $)) (-15 -4239 ($ $ (-1207) (-392))) (-15 -2786 ($ $ (-1207) (-392))) (-15 -3002 ((-392) $ (-1207))) (-15 -1924 ((-666 (-1189)) $ (-1189))) (-15 -3288 ($ $ (-1207))) (-15 -3410 ($)) (-15 -2426 ((-3 (-1189) "failed") $ (-1189) (-578))) (-6 -4500))) +((-3841 (($ $) 46 T ELT)) (-3296 (((-112) $ $) 82 T ELT)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 $ "failed") (-981 (-421 (-578)))) 247 T ELT) (((-3 $ "failed") (-981 (-578))) 246 T ELT) (((-3 $ "failed") (-981 |#2|)) 249 T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) (((-578) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-981 (-421 (-578)))) 235 T ELT) (($ (-981 (-578))) 231 T ELT) (($ (-981 |#2|)) 255 T ELT)) (-3136 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-2582 (((-112) $ $) 131 T ELT) (((-112) $ (-666 $)) 135 T ELT)) (-2334 (((-112) $) 60 T ELT)) (-3580 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 125 T ELT)) (-4261 (($ $) 160 T ELT)) (-4259 (($ $) 156 T ELT)) (-1700 (($ $) 155 T ELT)) (-4256 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3733 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4308 (((-112) $ $) 143 T ELT) (((-112) $ (-666 $)) 144 T ELT)) (-2537 ((|#4| $) 32 T ELT)) (-4067 (($ $ $) 128 T ELT)) (-4216 (((-112) $) 59 T ELT)) (-1654 (((-793) $) 35 T ELT)) (-2398 (($ $) 174 T ELT)) (-2313 (($ $) 171 T ELT)) (-3945 (((-666 $) $) 72 T ELT)) (-2659 (($ $) 62 T ELT)) (-3693 (($ $) 167 T ELT)) (-4153 (((-666 $) $) 69 T ELT)) (-3781 (($ $) 64 T ELT)) (-3110 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-1348 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2666 (-793))) $ $) 130 T ELT)) (-1834 (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $) 126 T ELT) (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $ |#4|) 127 T ELT)) (-2826 (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $) 121 T ELT) (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $ |#4|) 123 T ELT)) (-3679 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-4237 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3723 (((-666 $) $) 54 T ELT)) (-3084 (((-112) $ $) 140 T ELT) (((-112) $ (-666 $)) 141 T ELT)) (-3494 (($ $ $) 116 T ELT)) (-2199 (($ $) 37 T ELT)) (-3151 (((-112) $ $) 80 T ELT)) (-2643 (((-112) $ $) 136 T ELT) (((-112) $ (-666 $)) 138 T ELT)) (-1922 (($ $ $) 112 T ELT)) (-2045 (($ $) 41 T ELT)) (-2421 ((|#2| |#2| $) 164 T ELT) (($ (-666 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-2217 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-1675 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3958 (($ $) 49 T ELT)) (-2565 (($ $) 55 T ELT)) (-3343 (((-917 (-392)) $) NIL T ELT) (((-917 (-578)) $) NIL T ELT) (((-550) $) NIL T ELT) (($ (-981 (-421 (-578)))) 237 T ELT) (($ (-981 (-578))) 233 T ELT) (($ (-981 |#2|)) 248 T ELT) (((-1189) $) 279 T ELT) (((-981 |#2|) $) 184 T ELT)) (-2411 (((-886) $) 29 T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-981 |#2|) $) 185 T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT)) (-1422 (((-3 (-112) "failed") $ $) 79 T ELT))) +(((-1095 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2411 (|#1| |#1|)) (-15 -2421 (|#1| |#1| |#1|)) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 ((-981 |#2|) |#1|)) (-15 -3343 ((-981 |#2|) |#1|)) (-15 -3343 ((-1189) |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -4261 (|#1| |#1|)) (-15 -2421 (|#2| |#2| |#1|)) (-15 -2217 (|#1| |#1| |#1|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1| |#2|)) (-15 -1675 (|#1| |#1| |#2|)) (-15 -4259 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3343 (|#1| (-981 |#2|))) (-15 -3516 (|#1| (-981 |#2|))) (-15 -2818 ((-3 |#1| "failed") (-981 |#2|))) (-15 -3343 (|#1| (-981 (-578)))) (-15 -3516 (|#1| (-981 (-578)))) (-15 -2818 ((-3 |#1| "failed") (-981 (-578)))) (-15 -3343 (|#1| (-981 (-421 (-578))))) (-15 -3516 (|#1| (-981 (-421 (-578))))) (-15 -2818 ((-3 |#1| "failed") (-981 (-421 (-578))))) (-15 -3494 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1348 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2666 (-793))) |#1| |#1|)) (-15 -4067 (|#1| |#1| |#1|)) (-15 -3580 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -1834 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1| |#4|)) (-15 -1834 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -2826 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -1886 |#1|)) |#1| |#1| |#4|)) (-15 -2826 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -4237 (|#1| |#1| |#1| |#4|)) (-15 -3679 (|#1| |#1| |#1| |#4|)) (-15 -4237 (|#1| |#1| |#1|)) (-15 -3679 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#1| |#4|)) (-15 -4256 (|#1| |#1| |#1| |#4|)) (-15 -3733 (|#1| |#1| |#1|)) (-15 -4256 (|#1| |#1| |#1|)) (-15 -4308 ((-112) |#1| (-666 |#1|))) (-15 -4308 ((-112) |#1| |#1|)) (-15 -3084 ((-112) |#1| (-666 |#1|))) (-15 -3084 ((-112) |#1| |#1|)) (-15 -2643 ((-112) |#1| (-666 |#1|))) (-15 -2643 ((-112) |#1| |#1|)) (-15 -2582 ((-112) |#1| (-666 |#1|))) (-15 -2582 ((-112) |#1| |#1|)) (-15 -3296 ((-112) |#1| |#1|)) (-15 -3151 ((-112) |#1| |#1|)) (-15 -1422 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3945 ((-666 |#1|) |#1|)) (-15 -4153 ((-666 |#1|) |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -2334 ((-112) |#1|)) (-15 -4216 ((-112) |#1|)) (-15 -3136 (|#1| |#1| |#4|)) (-15 -3110 (|#1| |#1| |#4|)) (-15 -2565 (|#1| |#1|)) (-15 -3723 ((-666 |#1|) |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -1654 ((-793) |#1|)) (-15 -2537 (|#4| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -2411 (|#1| |#4|)) (-15 -2818 ((-3 |#4| "failed") |#1|)) (-15 -3516 (|#4| |#1|)) (-15 -3110 (|#2| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-1096 |#2| |#3| |#4|) (-1080) (-815) (-871)) (T -1095)) +NIL +(-10 -8 (-15 -2411 (|#1| |#1|)) (-15 -2421 (|#1| |#1| |#1|)) (-15 -2421 (|#1| (-666 |#1|))) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 ((-981 |#2|) |#1|)) (-15 -3343 ((-981 |#2|) |#1|)) (-15 -3343 ((-1189) |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -3693 (|#1| |#1|)) (-15 -4261 (|#1| |#1|)) (-15 -2421 (|#2| |#2| |#1|)) (-15 -2217 (|#1| |#1| |#1|)) (-15 -1675 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1| |#2|)) (-15 -1675 (|#1| |#1| |#2|)) (-15 -4259 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3343 (|#1| (-981 |#2|))) (-15 -3516 (|#1| (-981 |#2|))) (-15 -2818 ((-3 |#1| "failed") (-981 |#2|))) (-15 -3343 (|#1| (-981 (-578)))) (-15 -3516 (|#1| (-981 (-578)))) (-15 -2818 ((-3 |#1| "failed") (-981 (-578)))) (-15 -3343 (|#1| (-981 (-421 (-578))))) (-15 -3516 (|#1| (-981 (-421 (-578))))) (-15 -2818 ((-3 |#1| "failed") (-981 (-421 (-578))))) (-15 -3494 (|#1| |#1| |#1|)) (-15 -1922 (|#1| |#1| |#1|)) (-15 -1348 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2666 (-793))) |#1| |#1|)) (-15 -4067 (|#1| |#1| |#1|)) (-15 -3580 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -1834 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1| |#4|)) (-15 -1834 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -2826 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -1886 |#1|)) |#1| |#1| |#4|)) (-15 -2826 ((-2 (|:| -2672 |#1|) (|:| |gap| (-793)) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -4237 (|#1| |#1| |#1| |#4|)) (-15 -3679 (|#1| |#1| |#1| |#4|)) (-15 -4237 (|#1| |#1| |#1|)) (-15 -3679 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#1| |#4|)) (-15 -4256 (|#1| |#1| |#1| |#4|)) (-15 -3733 (|#1| |#1| |#1|)) (-15 -4256 (|#1| |#1| |#1|)) (-15 -4308 ((-112) |#1| (-666 |#1|))) (-15 -4308 ((-112) |#1| |#1|)) (-15 -3084 ((-112) |#1| (-666 |#1|))) (-15 -3084 ((-112) |#1| |#1|)) (-15 -2643 ((-112) |#1| (-666 |#1|))) (-15 -2643 ((-112) |#1| |#1|)) (-15 -2582 ((-112) |#1| (-666 |#1|))) (-15 -2582 ((-112) |#1| |#1|)) (-15 -3296 ((-112) |#1| |#1|)) (-15 -3151 ((-112) |#1| |#1|)) (-15 -1422 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3945 ((-666 |#1|) |#1|)) (-15 -4153 ((-666 |#1|) |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -2659 (|#1| |#1|)) (-15 -2334 ((-112) |#1|)) (-15 -4216 ((-112) |#1|)) (-15 -3136 (|#1| |#1| |#4|)) (-15 -3110 (|#1| |#1| |#4|)) (-15 -2565 (|#1| |#1|)) (-15 -3723 ((-666 |#1|) |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -1654 ((-793) |#1|)) (-15 -2537 (|#4| |#1|)) (-15 -3343 ((-550) |#1|)) (-15 -3343 ((-917 (-578)) |#1|)) (-15 -3343 ((-917 (-392)) |#1|)) (-15 -2411 (|#1| |#4|)) (-15 -2818 ((-3 |#4| "failed") |#1|)) (-15 -3516 (|#4| |#1|)) (-15 -3110 (|#2| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 |#3|) $) 113 T ELT)) (-4420 (((-1203 $) $ |#3|) 128 T ELT) (((-1203 |#1|) $) 127 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 90 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 91 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 93 (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) 115 T ELT) (((-793) $ (-666 |#3|)) 114 T ELT)) (-3841 (($ $) 278 T ELT)) (-3296 (((-112) $ $) 264 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3594 (($ $ $) 223 (|has| |#1| (-570)) ELT)) (-2054 (((-666 $) $ $) 218 (|has| |#1| (-570)) ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 103 (|has| |#1| (-938)) ELT)) (-1457 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) 100 (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 106 (|has| |#1| (-938)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-578)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) 166 (|has| |#1| (-1069 (-578))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 $ "failed") (-981 (-421 (-578)))) 238 (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207)))) ELT) (((-3 $ "failed") (-981 (-578))) 235 (-2230 (-12 (-2309 (|has| |#1| (-38 (-421 (-578))))) (|has| |#1| (-38 (-578))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207))))) ELT) (((-3 $ "failed") (-981 |#1|)) 232 (-2230 (-12 (-2309 (|has| |#1| (-38 (-421 (-578))))) (-2309 (|has| |#1| (-38 (-578)))) (|has| |#3| (-633 (-1207)))) (-12 (-2309 (|has| |#1| (-559))) (-2309 (|has| |#1| (-38 (-421 (-578))))) (|has| |#1| (-38 (-578))) (|has| |#3| (-633 (-1207)))) (-12 (-2309 (|has| |#1| (-1023 (-578)))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207))))) ELT)) (-3516 ((|#1| $) 170 T ELT) (((-421 (-578)) $) 169 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) 167 (|has| |#1| (-1069 (-578))) ELT) ((|#3| $) 144 T ELT) (($ (-981 (-421 (-578)))) 237 (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207)))) ELT) (($ (-981 (-578))) 234 (-2230 (-12 (-2309 (|has| |#1| (-38 (-421 (-578))))) (|has| |#1| (-38 (-578))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207))))) ELT) (($ (-981 |#1|)) 231 (-2230 (-12 (-2309 (|has| |#1| (-38 (-421 (-578))))) (-2309 (|has| |#1| (-38 (-578)))) (|has| |#3| (-633 (-1207)))) (-12 (-2309 (|has| |#1| (-559))) (-2309 (|has| |#1| (-38 (-421 (-578))))) (|has| |#1| (-38 (-578))) (|has| |#3| (-633 (-1207)))) (-12 (-2309 (|has| |#1| (-1023 (-578)))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207))))) ELT)) (-2035 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT) (($ $ $) 219 (|has| |#1| (-570)) ELT)) (-3136 (($ $) 161 T ELT) (($ $ |#3|) 273 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 139 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 138 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-2582 (((-112) $ $) 263 T ELT) (((-112) $ (-666 $)) 262 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2334 (((-112) $) 271 T ELT)) (-3580 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 243 T ELT)) (-4261 (($ $) 212 (|has| |#1| (-466)) ELT)) (-2111 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) 112 T ELT)) (-2159 (((-112) $) 99 (|has| |#1| (-938)) ELT)) (-4259 (($ $) 228 (|has| |#1| (-570)) ELT)) (-1700 (($ $) 229 (|has| |#1| (-570)) ELT)) (-4256 (($ $ $) 255 T ELT) (($ $ $ |#3|) 253 T ELT)) (-3733 (($ $ $) 254 T ELT) (($ $ $ |#3|) 252 T ELT)) (-2535 (($ $ |#1| |#2| $) 179 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 87 (-12 (|has| |#3| (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 86 (-12 (|has| |#3| (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4382 (((-112) $) 35 T ELT)) (-3380 (((-793) $) 176 T ELT)) (-4308 (((-112) $ $) 257 T ELT) (((-112) $ (-666 $)) 256 T ELT)) (-2804 (($ $ $ $ $) 214 (|has| |#1| (-570)) ELT)) (-2537 ((|#3| $) 282 T ELT)) (-2936 (($ (-1203 |#1|) |#3|) 120 T ELT) (($ (-1203 $) |#3|) 119 T ELT)) (-2613 (((-666 $) $) 129 T ELT)) (-1796 (((-112) $) 159 T ELT)) (-2925 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-666 |#3|) (-666 (-793))) 121 T ELT)) (-4067 (($ $ $) 242 T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |#3|) 123 T ELT)) (-4216 (((-112) $) 272 T ELT)) (-3937 ((|#2| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-666 (-793)) $ (-666 |#3|)) 124 T ELT)) (-1654 (((-793) $) 281 T ELT)) (-2500 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-4006 (((-3 |#3| "failed") $) 126 T ELT)) (-2398 (($ $) 209 (|has| |#1| (-466)) ELT)) (-2313 (($ $) 210 (|has| |#1| (-466)) ELT)) (-3945 (((-666 $) $) 267 T ELT)) (-2659 (($ $) 270 T ELT)) (-3693 (($ $) 211 (|has| |#1| (-466)) ELT)) (-4153 (((-666 $) $) 268 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 141 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 140 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 135 T ELT) (((-711 |#1|) (-1298 $)) 134 T ELT)) (-3781 (($ $) 269 T ELT)) (-3097 (($ $) 156 T ELT)) (-3110 ((|#1| $) 155 T ELT) (($ $ |#3|) 274 T ELT)) (-2389 (($ (-666 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-1348 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2666 (-793))) $ $) 241 T ELT)) (-1834 (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $) 245 T ELT) (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $ |#3|) 244 T ELT)) (-2826 (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $) 247 T ELT) (((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $ |#3|) 246 T ELT)) (-3679 (($ $ $) 251 T ELT) (($ $ $ |#3|) 249 T ELT)) (-4237 (($ $ $) 250 T ELT) (($ $ $ |#3|) 248 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3064 (($ $ $) 217 (|has| |#1| (-570)) ELT)) (-3723 (((-666 $) $) 276 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 117 T ELT)) (-1968 (((-3 (-666 $) "failed") $) 118 T ELT)) (-1590 (((-3 (-2 (|:| |var| |#3|) (|:| -2764 (-793))) "failed") $) 116 T ELT)) (-3084 (((-112) $ $) 259 T ELT) (((-112) $ (-666 $)) 258 T ELT)) (-3494 (($ $ $) 239 T ELT)) (-2199 (($ $) 280 T ELT)) (-3151 (((-112) $ $) 265 T ELT)) (-2643 (((-112) $ $) 261 T ELT) (((-112) $ (-666 $)) 260 T ELT)) (-1922 (($ $ $) 240 T ELT)) (-2045 (($ $) 279 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1862 (((-2 (|:| -2421 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-570)) ELT)) (-1853 (((-2 (|:| -2421 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-570)) ELT)) (-3067 (((-112) $) 173 T ELT)) (-3080 ((|#1| $) 174 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 98 (|has| |#1| (-466)) ELT)) (-2421 ((|#1| |#1| $) 213 (|has| |#1| (-466)) ELT) (($ (-666 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 105 (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 104 (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) 102 (|has| |#1| (-938)) ELT)) (-3730 (((-2 (|:| -2421 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-570)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-570)) ELT)) (-2217 (($ $ |#1|) 226 (|has| |#1| (-570)) ELT) (($ $ $) 224 (|has| |#1| (-570)) ELT)) (-1675 (($ $ |#1|) 227 (|has| |#1| (-570)) ELT) (($ $ $) 225 (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) 152 T ELT) (($ $ (-306 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-666 $) (-666 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-666 |#3|) (-666 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-666 |#3|) (-666 $)) 145 T ELT)) (-3232 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 |#3|) (-666 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-666 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3683 ((|#2| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-666 (-793)) $ (-666 |#3|)) 132 T ELT)) (-3958 (($ $) 277 T ELT)) (-2565 (($ $) 275 T ELT)) (-3343 (((-917 (-392)) $) 85 (-12 (|has| |#3| (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) 84 (-12 (|has| |#3| (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) 83 (-12 (|has| |#3| (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT) (($ (-981 (-421 (-578)))) 236 (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207)))) ELT) (($ (-981 (-578))) 233 (-2230 (-12 (-2309 (|has| |#1| (-38 (-421 (-578))))) (|has| |#1| (-38 (-578))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-578)))) (|has| |#3| (-633 (-1207))))) ELT) (($ (-981 |#1|)) 230 (|has| |#3| (-633 (-1207))) ELT) (((-1189) $) 208 (-12 (|has| |#1| (-1069 (-578))) (|has| |#3| (-633 (-1207)))) ELT) (((-981 |#1|) $) 207 (|has| |#3| (-633 (-1207))) ELT)) (-4325 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 107 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (((-981 |#1|) $) 206 (|has| |#3| (-633 (-1207))) ELT) (($ (-421 (-578))) 81 (-2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ELT) (($ $) 88 (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) 175 T ELT)) (-3708 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-666 |#3|) (-666 (-793))) 130 T ELT)) (-2213 (((-3 $ "failed") $) 82 (-2230 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 32 T CONST)) (-2364 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 92 (|has| |#1| (-570)) ELT)) (-2368 (($) 19 T CONST)) (-1422 (((-3 (-112) "failed") $ $) 266 T ELT)) (-2379 (($) 34 T CONST)) (-2696 (($ $ $ $ (-793)) 215 (|has| |#1| (-570)) ELT)) (-3016 (($ $ $ (-793)) 216 (|has| |#1| (-570)) ELT)) (-1676 (($ $ (-666 |#3|) (-666 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-666 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 165 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) 164 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-1096 |#1| |#2| |#3|) (-142) (-1080) (-815) (-871)) (T -1096)) +((-2537 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-793)))) (-2199 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2045 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3958 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3723 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-2565 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3110 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-2334 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-2659 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-4153 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-3945 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-1422 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-3296 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-2582 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-2582 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) (-2643 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-2643 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) (-3084 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) (-4308 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) (-4256 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3733 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-4256 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3733 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3679 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-4237 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3679 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-4237 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-2826 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -1886 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-2826 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -1886 *1))) (-4 *1 (-1096 *4 *5 *3)))) (-1834 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-1834 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1096 *4 *5 *3)))) (-3580 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-4067 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-1348 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2666 (-793)))) (-4 *1 (-1096 *3 *4 *5)))) (-1922 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3494 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2818 (*1 *1 *2) (|partial| -12 (-5 *2 (-981 (-421 (-578)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-3516 (*1 *1 *2) (-12 (-5 *2 (-981 (-421 (-578)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-981 (-421 (-578)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-2818 (*1 *1 *2) (|partial| -2230 (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3516 (*1 *1 *2) (-2230 (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3343 (*1 *1 *2) (-2230 (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-2818 (*1 *1 *2) (|partial| -2230 (-12 (-5 *2 (-981 *3)) (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-2309 (-4 *3 (-38 (-578)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-981 *3)) (-12 (-2309 (-4 *3 (-559))) (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-981 *3)) (-12 (-2309 (-4 *3 (-1023 (-578)))) (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3516 (*1 *1 *2) (-2230 (-12 (-5 *2 (-981 *3)) (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-2309 (-4 *3 (-38 (-578)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-981 *3)) (-12 (-2309 (-4 *3 (-559))) (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-981 *3)) (-12 (-2309 (-4 *3 (-1023 (-578)))) (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *5 (-633 (-1207))) (-4 *4 (-815)) (-4 *5 (-871)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-4259 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-1675 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-2217 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-1675 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-2217 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-3594 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-3730 (*1 *2 *1 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2421 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-1853 (*1 *2 *1 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2421 *1) (|:| |coef1| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-1862 (*1 *2 *1 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2421 *1) (|:| |coef2| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-2035 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-2054 (*1 *2 *1 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-3064 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-3016 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-570)))) (-2696 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-570)))) (-2804 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-570)))) (-2421 (*1 *2 *2 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-4261 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3693 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-2398 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466))))) +(-13 (-978 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2537 (|t#3| $)) (-15 -1654 ((-793) $)) (-15 -2199 ($ $)) (-15 -2045 ($ $)) (-15 -3841 ($ $)) (-15 -3958 ($ $)) (-15 -3723 ((-666 $) $)) (-15 -2565 ($ $)) (-15 -3110 ($ $ |t#3|)) (-15 -3136 ($ $ |t#3|)) (-15 -4216 ((-112) $)) (-15 -2334 ((-112) $)) (-15 -2659 ($ $)) (-15 -3781 ($ $)) (-15 -4153 ((-666 $) $)) (-15 -3945 ((-666 $) $)) (-15 -1422 ((-3 (-112) "failed") $ $)) (-15 -3151 ((-112) $ $)) (-15 -3296 ((-112) $ $)) (-15 -2582 ((-112) $ $)) (-15 -2582 ((-112) $ (-666 $))) (-15 -2643 ((-112) $ $)) (-15 -2643 ((-112) $ (-666 $))) (-15 -3084 ((-112) $ $)) (-15 -3084 ((-112) $ (-666 $))) (-15 -4308 ((-112) $ $)) (-15 -4308 ((-112) $ (-666 $))) (-15 -4256 ($ $ $)) (-15 -3733 ($ $ $)) (-15 -4256 ($ $ $ |t#3|)) (-15 -3733 ($ $ $ |t#3|)) (-15 -3679 ($ $ $)) (-15 -4237 ($ $ $)) (-15 -3679 ($ $ $ |t#3|)) (-15 -4237 ($ $ $ |t#3|)) (-15 -2826 ((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $)) (-15 -2826 ((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -1886 $)) $ $ |t#3|)) (-15 -1834 ((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -1834 ((-2 (|:| -2672 $) (|:| |gap| (-793)) (|:| -2196 $) (|:| -1886 $)) $ $ |t#3|)) (-15 -3580 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -4067 ($ $ $)) (-15 -1348 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2666 (-793))) $ $)) (-15 -1922 ($ $ $)) (-15 -3494 ($ $ $)) (IF (|has| |t#3| (-633 (-1207))) (PROGN (-6 (-632 (-981 |t#1|))) (-6 (-633 (-981 |t#1|))) (IF (|has| |t#1| (-38 (-421 (-578)))) (PROGN (-15 -2818 ((-3 $ "failed") (-981 (-421 (-578))))) (-15 -3516 ($ (-981 (-421 (-578))))) (-15 -3343 ($ (-981 (-421 (-578))))) (-15 -2818 ((-3 $ "failed") (-981 (-578)))) (-15 -3516 ($ (-981 (-578)))) (-15 -3343 ($ (-981 (-578)))) (IF (|has| |t#1| (-1023 (-578))) |%noBranch| (PROGN (-15 -2818 ((-3 $ "failed") (-981 |t#1|))) (-15 -3516 ($ (-981 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-578))) (IF (|has| |t#1| (-38 (-421 (-578)))) |%noBranch| (PROGN (-15 -2818 ((-3 $ "failed") (-981 (-578)))) (-15 -3516 ($ (-981 (-578)))) (-15 -3343 ($ (-981 (-578)))) (IF (|has| |t#1| (-559)) |%noBranch| (PROGN (-15 -2818 ((-3 $ "failed") (-981 |t#1|))) (-15 -3516 ($ (-981 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-578))) |%noBranch| (IF (|has| |t#1| (-38 (-421 (-578)))) |%noBranch| (PROGN (-15 -2818 ((-3 $ "failed") (-981 |t#1|))) (-15 -3516 ($ (-981 |t#1|)))))) (-15 -3343 ($ (-981 |t#1|))) (IF (|has| |t#1| (-1069 (-578))) (-6 (-633 (-1189))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-570)) (PROGN (-15 -1700 ($ $)) (-15 -4259 ($ $)) (-15 -1675 ($ $ |t#1|)) (-15 -2217 ($ $ |t#1|)) (-15 -1675 ($ $ $)) (-15 -2217 ($ $ $)) (-15 -3594 ($ $ $)) (-15 -3730 ((-2 (|:| -2421 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1853 ((-2 (|:| -2421 $) (|:| |coef1| $)) $ $)) (-15 -1862 ((-2 (|:| -2421 $) (|:| |coef2| $)) $ $)) (-15 -2035 ($ $ $)) (-15 -2054 ((-666 $) $ $)) (-15 -3064 ($ $ $)) (-15 -3016 ($ $ $ (-793))) (-15 -2696 ($ $ $ $ (-793))) (-15 -2804 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -2421 (|t#1| |t#1| $)) (-15 -4261 ($ $)) (-15 -3693 ($ $)) (-15 -2313 ($ $)) (-15 -2398 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-632 (-886)) . T) ((-632 (-981 |#1|)) |has| |#3| (-633 (-1207))) ((-175) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-550)) -12 (|has| |#1| (-633 (-550))) (|has| |#3| (-633 (-550)))) ((-633 (-917 (-392))) -12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#3| (-633 (-917 (-392))))) ((-633 (-917 (-578))) -12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#3| (-633 (-917 (-578))))) ((-633 (-981 |#1|)) |has| |#3| (-633 (-1207))) ((-633 (-1189)) -12 (|has| |#1| (-1069 (-578))) (|has| |#3| (-633 (-1207)))) ((-302) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-425 |#1|) . T) ((-466) -2230 (|has| |#1| (-938)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-570) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-578)))) ((-670 #1=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ |#3|) . T) ((-927 |#3|) . T) ((-929 |#3|) . T) ((-911 (-392)) -12 (|has| |#1| (-911 (-392))) (|has| |#3| (-911 (-392)))) ((-911 (-578)) -12 (|has| |#1| (-911 (-578))) (|has| |#3| (-911 (-578)))) ((-978 |#1| |#2| |#3|) . T) ((-938) |has| |#1| (-938)) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 |#1|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) |has| |#1| (-938))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3980 (((-666 (-1166)) $) 18 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-1166) $) 20 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1097) (-13 (-1114) (-10 -8 (-15 -3980 ((-666 (-1166)) $)) (-15 -4117 ((-1166) $))))) (T -1097)) +((-3980 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-1097)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1097))))) +(-13 (-1114) (-10 -8 (-15 -3980 ((-666 (-1166)) $)) (-15 -4117 ((-1166) $)))) +((-3623 (((-112) |#3| $) 15 T ELT)) (-1567 (((-3 $ "failed") |#3| (-950)) 29 T ELT)) (-3493 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-3789 (((-112) |#3| $) 19 T ELT)) (-1721 (((-112) |#3| $) 17 T ELT))) +(((-1098 |#1| |#2| |#3|) (-10 -8 (-15 -1567 ((-3 |#1| "failed") |#3| (-950))) (-15 -3493 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3789 ((-112) |#3| |#1|)) (-15 -1721 ((-112) |#3| |#1|)) (-15 -3623 ((-112) |#3| |#1|))) (-1099 |#2| |#3|) (-13 (-870) (-376)) (-1274 |#2|)) (T -1098)) +NIL +(-10 -8 (-15 -1567 ((-3 |#1| "failed") |#3| (-950))) (-15 -3493 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3789 ((-112) |#3| |#1|)) (-15 -1721 ((-112) |#3| |#1|)) (-15 -3623 ((-112) |#3| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) |#2| $) 22 T ELT)) (-1490 (((-578) |#2| $) 23 T ELT)) (-1567 (((-3 $ "failed") |#2| (-950)) 16 T ELT)) (-1932 ((|#1| |#2| $ |#1|) 14 T ELT)) (-3493 (((-3 |#2| "failed") |#2| $) 19 T ELT)) (-3789 (((-112) |#2| $) 20 T ELT)) (-1721 (((-112) |#2| $) 21 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4269 ((|#2| $) 18 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3909 ((|#1| |#2| $ |#1|) 15 T ELT)) (-3313 (((-666 $) |#2|) 17 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-1099 |#1| |#2|) (-142) (-13 (-870) (-376)) (-1274 |t#1|)) (T -1099)) +((-1490 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1274 *4)) (-5 *2 (-578)))) (-3623 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1274 *4)) (-5 *2 (-112)))) (-1721 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1274 *4)) (-5 *2 (-112)))) (-3789 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1274 *4)) (-5 *2 (-112)))) (-3493 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) (-4 *2 (-1274 *3)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) (-4 *2 (-1274 *3)))) (-3313 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1274 *4)) (-5 *2 (-666 *1)) (-4 *1 (-1099 *4 *3)))) (-1567 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-950)) (-4 *4 (-13 (-870) (-376))) (-4 *1 (-1099 *4 *2)) (-4 *2 (-1274 *4)))) (-3909 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) (-4 *3 (-1274 *2)))) (-1932 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) (-4 *3 (-1274 *2))))) +(-13 (-1131) (-10 -8 (-15 -1490 ((-578) |t#2| $)) (-15 -3623 ((-112) |t#2| $)) (-15 -1721 ((-112) |t#2| $)) (-15 -3789 ((-112) |t#2| $)) (-15 -3493 ((-3 |t#2| "failed") |t#2| $)) (-15 -4269 (|t#2| $)) (-15 -3313 ((-666 $) |t#2|)) (-15 -1567 ((-3 $ "failed") |t#2| (-950))) (-15 -3909 (|t#1| |t#2| $ |t#1|)) (-15 -1932 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-2852 (((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 |#4|) (-666 |#5|) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-793)) 114 T ELT)) (-2805 (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793)) 63 T ELT)) (-4212 (((-1303) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-793)) 99 T ELT)) (-2697 (((-793) (-666 |#4|) (-666 |#5|)) 30 T ELT)) (-1364 (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793)) 65 T ELT) (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793) (-112)) 67 T ELT)) (-2623 (((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112) (-112) (-112) (-112)) 86 T ELT) (((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112)) 87 T ELT)) (-3343 (((-1189) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) 92 T ELT)) (-2571 (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-112)) 62 T ELT)) (-1556 (((-793) (-666 |#4|) (-666 |#5|)) 21 T ELT))) +(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1556 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2697 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2571 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-112))) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793) (-112))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2852 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 |#4|) (-666 |#5|) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-793))) (-15 -3343 ((-1189) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -4212 ((-1303) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-793)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1100)) +((-4212 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) (-5 *1 (-1100 *4 *5 *6 *7 *8)))) (-2852 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-666 *11)) (|:| |todo| (-666 (-2 (|:| |val| *3) (|:| -4318 *11)))))) (-5 *6 (-793)) (-5 *2 (-666 (-2 (|:| |val| (-666 *10)) (|:| -4318 *11)))) (-5 *3 (-666 *10)) (-5 *4 (-666 *11)) (-4 *10 (-1096 *7 *8 *9)) (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-5 *1 (-1100 *7 *8 *9 *10 *11)))) (-2623 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-2623 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-1364 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1364 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1364 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-112)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1100 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-1556 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1556 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2697 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2571 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-112))) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793) (-112))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2852 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 |#4|) (-666 |#5|) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-793))) (-15 -3343 ((-1189) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -4212 ((-1303) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-793)))) +((-1434 (((-112) |#5| $) 26 T ELT)) (-2669 (((-112) |#5| $) 29 T ELT)) (-2762 (((-112) |#5| $) 18 T ELT) (((-112) $) 52 T ELT)) (-3457 (((-666 $) |#5| $) NIL T ELT) (((-666 $) (-666 |#5|) $) 94 T ELT) (((-666 $) (-666 |#5|) (-666 $)) 92 T ELT) (((-666 $) |#5| (-666 $)) 95 T ELT)) (-2704 (($ $ |#5|) NIL T ELT) (((-666 $) |#5| $) NIL T ELT) (((-666 $) |#5| (-666 $)) 73 T ELT) (((-666 $) (-666 |#5|) $) 75 T ELT) (((-666 $) (-666 |#5|) (-666 $)) 77 T ELT)) (-2557 (((-666 $) |#5| $) NIL T ELT) (((-666 $) |#5| (-666 $)) 64 T ELT) (((-666 $) (-666 |#5|) $) 69 T ELT) (((-666 $) (-666 |#5|) (-666 $)) 71 T ELT)) (-3091 (((-112) |#5| $) 32 T ELT))) +(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2704 ((-666 |#1|) (-666 |#5|) (-666 |#1|))) (-15 -2704 ((-666 |#1|) (-666 |#5|) |#1|)) (-15 -2704 ((-666 |#1|) |#5| (-666 |#1|))) (-15 -2704 ((-666 |#1|) |#5| |#1|)) (-15 -2557 ((-666 |#1|) (-666 |#5|) (-666 |#1|))) (-15 -2557 ((-666 |#1|) (-666 |#5|) |#1|)) (-15 -2557 ((-666 |#1|) |#5| (-666 |#1|))) (-15 -2557 ((-666 |#1|) |#5| |#1|)) (-15 -3457 ((-666 |#1|) |#5| (-666 |#1|))) (-15 -3457 ((-666 |#1|) (-666 |#5|) (-666 |#1|))) (-15 -3457 ((-666 |#1|) (-666 |#5|) |#1|)) (-15 -3457 ((-666 |#1|) |#5| |#1|)) (-15 -2669 ((-112) |#5| |#1|)) (-15 -2762 ((-112) |#1|)) (-15 -3091 ((-112) |#5| |#1|)) (-15 -1434 ((-112) |#5| |#1|)) (-15 -2762 ((-112) |#5| |#1|)) (-15 -2704 (|#1| |#1| |#5|))) (-1102 |#2| |#3| |#4| |#5|) (-466) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1101)) +NIL +(-10 -8 (-15 -2704 ((-666 |#1|) (-666 |#5|) (-666 |#1|))) (-15 -2704 ((-666 |#1|) (-666 |#5|) |#1|)) (-15 -2704 ((-666 |#1|) |#5| (-666 |#1|))) (-15 -2704 ((-666 |#1|) |#5| |#1|)) (-15 -2557 ((-666 |#1|) (-666 |#5|) (-666 |#1|))) (-15 -2557 ((-666 |#1|) (-666 |#5|) |#1|)) (-15 -2557 ((-666 |#1|) |#5| (-666 |#1|))) (-15 -2557 ((-666 |#1|) |#5| |#1|)) (-15 -3457 ((-666 |#1|) |#5| (-666 |#1|))) (-15 -3457 ((-666 |#1|) (-666 |#5|) (-666 |#1|))) (-15 -3457 ((-666 |#1|) (-666 |#5|) |#1|)) (-15 -3457 ((-666 |#1|) |#5| |#1|)) (-15 -2669 ((-112) |#5| |#1|)) (-15 -2762 ((-112) |#1|)) (-15 -3091 ((-112) |#5| |#1|)) (-15 -1434 ((-112) |#5| |#1|)) (-15 -2762 ((-112) |#5| |#1|)) (-15 -2704 (|#1| |#1| |#5|))) +((-3213 (((-112) $ $) 7 T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) 86 T ELT)) (-3997 (((-666 $) (-666 |#4|)) 87 T ELT) (((-666 $) (-666 |#4|) (-112)) 112 T ELT)) (-2949 (((-666 |#3|) $) 34 T ELT)) (-3039 (((-112) $) 27 T ELT)) (-2774 (((-112) $) 18 (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-2596 ((|#4| |#4| $) 93 T ELT)) (-1457 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| $) 127 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1628 (((-112) $ (-793)) 45 T ELT)) (-4233 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3534 (($) 46 T CONST)) (-4147 (((-112) $) 23 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) 25 (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) 24 (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) 26 (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) 19 (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) 20 (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) 37 T ELT)) (-3516 (($ (-666 |#4|)) 36 T ELT)) (-4198 (((-3 $ "failed") $) 83 T ELT)) (-1707 ((|#4| |#4| $) 90 T ELT)) (-3776 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3069 ((|#4| |#4| $) 88 T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) 106 T ELT)) (-1434 (((-112) |#4| $) 137 T ELT)) (-2669 (((-112) |#4| $) 134 T ELT)) (-2762 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2729 (((-666 |#4|) $) 53 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-2537 ((|#3| $) 35 T ELT)) (-2363 (((-112) $ (-793)) 44 T ELT)) (-1441 (((-666 |#4|) $) 54 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3117 (((-666 |#3|) $) 33 T ELT)) (-1455 (((-112) |#3| $) 32 T ELT)) (-1719 (((-112) $ (-793)) 43 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1763 (((-3 |#4| (-666 $)) |#4| |#4| $) 129 T ELT)) (-3064 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| |#4| $) 128 T ELT)) (-2757 (((-3 |#4| "failed") $) 84 T ELT)) (-4044 (((-666 $) |#4| $) 130 T ELT)) (-3976 (((-3 (-112) (-666 $)) |#4| $) 133 T ELT)) (-1835 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3457 (((-666 $) |#4| $) 126 T ELT) (((-666 $) (-666 |#4|) $) 125 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 124 T ELT) (((-666 $) |#4| (-666 $)) 123 T ELT)) (-4064 (($ |#4| $) 118 T ELT) (($ (-666 |#4|) $) 117 T ELT)) (-1708 (((-666 |#4|) $) 108 T ELT)) (-3084 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-3494 ((|#4| |#4| $) 91 T ELT)) (-3151 (((-112) $ $) 111 T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-1922 ((|#4| |#4| $) 92 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4189 (((-3 |#4| "failed") $) 85 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2704 (($ $ |#4|) 78 T ELT) (((-666 $) |#4| $) 116 T ELT) (((-666 $) |#4| (-666 $)) 115 T ELT) (((-666 $) (-666 |#4|) $) 114 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 113 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) 39 T ELT)) (-4186 (((-112) $) 42 T ELT)) (-1696 (($) 41 T ELT)) (-3683 (((-793) $) 107 T ELT)) (-4324 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 40 T ELT)) (-3343 (((-550) $) 70 (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 61 T ELT)) (-1339 (($ $ |#3|) 29 T ELT)) (-2093 (($ $ |#3|) 31 T ELT)) (-2499 (($ $) 89 T ELT)) (-3102 (($ $ |#3|) 30 T ELT)) (-2411 (((-886) $) 12 T ELT) (((-666 |#4|) $) 38 T ELT)) (-2474 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) 99 T ELT)) (-2557 (((-666 $) |#4| $) 122 T ELT) (((-666 $) |#4| (-666 $)) 121 T ELT) (((-666 $) (-666 |#4|) $) 120 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 119 T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) 82 T ELT)) (-3091 (((-112) |#4| $) 136 T ELT)) (-2714 (((-112) |#3| $) 81 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-793) $) 47 (|has| $ (-6 -4500)) ELT))) +(((-1102 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1102)) +((-2762 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-1434 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-3091 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) (-2669 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-3976 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 (-112) (-666 *1))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1835 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1835 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-4044 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1763 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 *3 (-666 *1))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-3064 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1457 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-3457 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-3457 (*1 *2 *3 *1) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-3457 (*1 *2 *3 *2) (-12 (-5 *2 (-666 *1)) (-5 *3 (-666 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-3457 (*1 *2 *3 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-2557 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-2557 (*1 *2 *3 *1) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *2 (-666 *1)) (-5 *3 (-666 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-4064 (*1 *1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-4064 (*1 *1 *2 *1) (-12 (-5 *2 (-666 *6)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)))) (-2704 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-2704 (*1 *2 *3 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-2704 (*1 *2 *3 *1) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-2704 (*1 *2 *3 *2) (-12 (-5 *2 (-666 *1)) (-5 *3 (-666 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1102 *5 *6 *7 *8))))) +(-13 (-1241 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2762 ((-112) |t#4| $)) (-15 -1434 ((-112) |t#4| $)) (-15 -3091 ((-112) |t#4| $)) (-15 -2762 ((-112) $)) (-15 -2669 ((-112) |t#4| $)) (-15 -3976 ((-3 (-112) (-666 $)) |t#4| $)) (-15 -1835 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) |t#4| $)) (-15 -1835 ((-112) |t#4| $)) (-15 -4044 ((-666 $) |t#4| $)) (-15 -1763 ((-3 |t#4| (-666 $)) |t#4| |t#4| $)) (-15 -3064 ((-666 (-2 (|:| |val| |t#4|) (|:| -4318 $))) |t#4| |t#4| $)) (-15 -1457 ((-666 (-2 (|:| |val| |t#4|) (|:| -4318 $))) |t#4| $)) (-15 -3457 ((-666 $) |t#4| $)) (-15 -3457 ((-666 $) (-666 |t#4|) $)) (-15 -3457 ((-666 $) (-666 |t#4|) (-666 $))) (-15 -3457 ((-666 $) |t#4| (-666 $))) (-15 -2557 ((-666 $) |t#4| $)) (-15 -2557 ((-666 $) |t#4| (-666 $))) (-15 -2557 ((-666 $) (-666 |t#4|) $)) (-15 -2557 ((-666 $) (-666 |t#4|) (-666 $))) (-15 -4064 ($ |t#4| $)) (-15 -4064 ($ (-666 |t#4|) $)) (-15 -2704 ((-666 $) |t#4| $)) (-15 -2704 ((-666 $) |t#4| (-666 $))) (-15 -2704 ((-666 $) (-666 |t#4|) $)) (-15 -2704 ((-666 $) (-666 |t#4|) (-666 $))) (-15 -3997 ((-666 $) (-666 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-632 (-666 |#4|)) . T) ((-632 (-886)) . T) ((-153 |#4|) . T) ((-633 (-550)) |has| |#4| (-633 (-550))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1241 |#1| |#2| |#3| |#4|) . T) ((-1248) . T)) +((-1373 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|) 86 T ELT)) (-3491 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|) 127 T ELT)) (-3077 (((-666 |#5|) |#4| |#5|) 74 T ELT)) (-3656 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-3434 (((-1303)) 36 T ELT)) (-3860 (((-1303)) 25 T ELT)) (-1809 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-4144 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT)) (-2457 (((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#4| |#4| |#5|) 107 T ELT)) (-4281 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#3| (-112)) 118 T ELT) (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-2124 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|) 113 T ELT))) +(((-1103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4144 ((-1303) (-1189) (-1189) (-1189))) (-15 -3860 ((-1303))) (-15 -1809 ((-1303) (-1189) (-1189) (-1189))) (-15 -3434 ((-1303))) (-15 -2457 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -4281 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4281 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#3| (-112))) (-15 -2124 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -3491 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -3656 ((-112) |#4| |#5|)) (-15 -3656 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -3077 ((-666 |#5|) |#4| |#5|)) (-15 -1373 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1103)) +((-1373 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3077 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3656 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3656 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3491 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2124 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4281 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) (-5 *5 (-112)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) (-5 *2 (-666 (-2 (|:| |val| *8) (|:| -4318 *9)))) (-5 *1 (-1103 *6 *7 *4 *8 *9)))) (-4281 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1103 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-2457 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3434 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1809 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3860 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-4144 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(-10 -7 (-15 -4144 ((-1303) (-1189) (-1189) (-1189))) (-15 -3860 ((-1303))) (-15 -1809 ((-1303) (-1189) (-1189) (-1189))) (-15 -3434 ((-1303))) (-15 -2457 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -4281 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4281 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#3| (-112))) (-15 -2124 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -3491 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -3656 ((-112) |#4| |#5|)) (-15 -3656 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -3077 ((-666 |#5|) |#4| |#5|)) (-15 -1373 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1893 (((-1247) $) 13 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2077 (((-1166) $) 10 T ELT)) (-2411 (((-886) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1104) (-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -1893 ((-1247) $))))) (T -1104)) +((-2077 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1104)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-1104))))) +(-13 (-1114) (-10 -8 (-15 -2077 ((-1166) $)) (-15 -1893 ((-1247) $)))) +((-3505 (((-112) $ $) 7 T ELT))) +(((-1105) (-13 (-1248) (-10 -8 (-15 -3505 ((-112) $ $))))) (T -1105)) +((-3505 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1105))))) +(-13 (-1248) (-10 -8 (-15 -3505 ((-112) $ $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4107 (((-1207) $) 8 T ELT)) (-2617 (((-1189) $) 17 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 11 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 14 T ELT))) +(((-1106 |#1|) (-13 (-1131) (-10 -8 (-15 -4107 ((-1207) $)))) (-1207)) (T -1106)) +((-4107 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1106 *3)) (-14 *3 *2)))) +(-13 (-1131) (-10 -8 (-15 -4107 ((-1207) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2367 (($ $ (-666 (-1207)) (-1 (-112) (-666 |#3|))) 34 T ELT)) (-1795 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-666 (-1207))) 21 T ELT)) (-3666 ((|#3| $) 13 T ELT)) (-2818 (((-3 (-306 |#3|) "failed") $) 60 T ELT)) (-3516 (((-306 |#3|) $) NIL T ELT)) (-3800 (((-666 (-1207)) $) 16 T ELT)) (-2905 (((-917 |#1|) $) 11 T ELT)) (-3655 ((|#3| $) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-950)) 41 T ELT)) (-2411 (((-886) $) 89 T ELT) (($ (-306 |#3|)) 22 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 38 T ELT))) +(((-1107 |#1| |#2| |#3|) (-13 (-1131) (-298 |#3| |#3|) (-1069 (-306 |#3|)) (-10 -8 (-15 -1795 ($ |#3| |#3|)) (-15 -1795 ($ |#3| |#3| (-666 (-1207)))) (-15 -2367 ($ $ (-666 (-1207)) (-1 (-112) (-666 |#3|)))) (-15 -2905 ((-917 |#1|) $)) (-15 -3655 (|#3| $)) (-15 -3666 (|#3| $)) (-15 -2436 (|#3| $ |#3| (-950))) (-15 -3800 ((-666 (-1207)) $)))) (-1131) (-13 (-1080) (-911 |#1|) (-633 (-917 |#1|))) (-13 (-444 |#2|) (-911 |#1|) (-633 (-917 |#1|)))) (T -1107)) +((-1795 (*1 *1 *2 *2) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) (-5 *1 (-1107 *3 *4 *2)) (-4 *2 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))))) (-1795 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-666 (-1207))) (-4 *4 (-1131)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) (-5 *1 (-1107 *4 *5 *2)) (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-1 (-112) (-666 *6))) (-4 *6 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))) (-4 *4 (-1131)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) (-5 *1 (-1107 *4 *5 *6)))) (-2905 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 *2))) (-5 *2 (-917 *3)) (-5 *1 (-1107 *3 *4 *5)) (-4 *5 (-13 (-444 *4) (-911 *3) (-633 *2))))) (-3655 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *2 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))) (-5 *1 (-1107 *3 *4 *2)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))))) (-3666 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *2 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))) (-5 *1 (-1107 *3 *4 *2)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))))) (-2436 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-950)) (-4 *4 (-1131)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) (-5 *1 (-1107 *4 *5 *2)) (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))))) (-3800 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) (-5 *2 (-666 (-1207))) (-5 *1 (-1107 *3 *4 *5)) (-4 *5 (-13 (-444 *4) (-911 *3) (-633 (-917 *3))))))) +(-13 (-1131) (-298 |#3| |#3|) (-1069 (-306 |#3|)) (-10 -8 (-15 -1795 ($ |#3| |#3|)) (-15 -1795 ($ |#3| |#3| (-666 (-1207)))) (-15 -2367 ($ $ (-666 (-1207)) (-1 (-112) (-666 |#3|)))) (-15 -2905 ((-917 |#1|) $)) (-15 -3655 (|#3| $)) (-15 -3666 (|#3| $)) (-15 -2436 (|#3| $ |#3| (-950))) (-15 -3800 ((-666 (-1207)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2331 (($ (-666 (-1107 |#1| |#2| |#3|))) 14 T ELT)) (-2434 (((-666 (-1107 |#1| |#2| |#3|)) $) 21 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-950)) 27 T ELT)) (-2411 (((-886) $) 17 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 20 T ELT))) +(((-1108 |#1| |#2| |#3|) (-13 (-1131) (-298 |#3| |#3|) (-10 -8 (-15 -2331 ($ (-666 (-1107 |#1| |#2| |#3|)))) (-15 -2434 ((-666 (-1107 |#1| |#2| |#3|)) $)) (-15 -2436 (|#3| $ |#3| (-950))))) (-1131) (-13 (-1080) (-911 |#1|) (-633 (-917 |#1|))) (-13 (-444 |#2|) (-911 |#1|) (-633 (-917 |#1|)))) (T -1108)) +((-2331 (*1 *1 *2) (-12 (-5 *2 (-666 (-1107 *3 *4 *5))) (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) (-4 *5 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))) (-5 *1 (-1108 *3 *4 *5)))) (-2434 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) (-5 *2 (-666 (-1107 *3 *4 *5))) (-5 *1 (-1108 *3 *4 *5)) (-4 *5 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))))) (-2436 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-950)) (-4 *4 (-1131)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) (-5 *1 (-1108 *4 *5 *2)) (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4))))))) +(-13 (-1131) (-298 |#3| |#3|) (-10 -8 (-15 -2331 ($ (-666 (-1107 |#1| |#2| |#3|)))) (-15 -2434 ((-666 (-1107 |#1| |#2| |#3|)) $)) (-15 -2436 (|#3| $ |#3| (-950))))) +((-1877 (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112)) 88 T ELT) (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|))) 92 T ELT) (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112)) 90 T ELT))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -1877 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112))) (-15 -1877 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)))) (-15 -1877 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112)))) (-13 (-319) (-149)) (-666 (-1207))) (T -1109)) +((-1877 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) (-5 *1 (-1109 *5 *6)) (-5 *3 (-666 (-981 *5))) (-14 *6 (-666 (-1207))))) (-1877 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *4)) (|:| -1453 (-666 (-981 *4)))))) (-5 *1 (-1109 *4 *5)) (-5 *3 (-666 (-981 *4))) (-14 *5 (-666 (-1207))))) (-1877 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) (-5 *1 (-1109 *5 *6)) (-5 *3 (-666 (-981 *5))) (-14 *6 (-666 (-1207)))))) +(-10 -7 (-15 -1877 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112))) (-15 -1877 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)))) (-15 -1877 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112)))) +((-2800 (((-432 |#3|) |#3|) 18 T ELT))) +(((-1110 |#1| |#2| |#3|) (-10 -7 (-15 -2800 ((-432 |#3|) |#3|))) (-1274 (-421 (-578))) (-13 (-376) (-149) (-746 (-421 (-578)) |#1|)) (-1274 |#2|)) (T -1110)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-1274 (-421 (-578)))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-578)) *4))) (-5 *2 (-432 *3)) (-5 *1 (-1110 *4 *5 *3)) (-4 *3 (-1274 *5))))) +(-10 -7 (-15 -2800 ((-432 |#3|) |#3|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 136 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-4306 (((-711 |#1|) (-1298 $)) NIL T ELT) (((-711 |#1|)) 121 T ELT)) (-1881 ((|#1| $) 125 T ELT)) (-2287 (((-1220 (-950) (-793)) (-578)) NIL (|has| |#1| (-362)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-2222 (((-793)) 43 (|has| |#1| (-381)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3095 (($ (-1298 |#1|) (-1298 $)) NIL T ELT) (($ (-1298 |#1|)) 46 T ELT)) (-1405 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)) ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2009 (((-711 |#1|) $ (-1298 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 113 T ELT) (((-711 |#1|) (-711 $)) 108 T ELT)) (-2512 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-421 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1875 (((-950)) 84 T ELT)) (-2062 (($) 47 (|has| |#1| (-381)) ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-3146 (($) NIL (|has| |#1| (-362)) ELT)) (-2681 (((-112) $) NIL (|has| |#1| (-362)) ELT)) (-2953 (($ $ (-793)) NIL (|has| |#1| (-362)) ELT) (($ $) NIL (|has| |#1| (-362)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-4059 (((-950) $) NIL (|has| |#1| (-362)) ELT) (((-855 (-950)) $) NIL (|has| |#1| (-362)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-1550 ((|#1| $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-362)) ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1993 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-3193 (((-950) $) 145 (|has| |#1| (-381)) ELT)) (-2501 ((|#2| $) 62 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2199 (($) NIL (|has| |#1| (-362)) CONST)) (-2087 (($ (-950)) 135 (|has| |#1| (-381)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2847 (($) 127 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2162 (((-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578))))) NIL (|has| |#1| (-362)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3232 ((|#1| (-1298 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-4375 (((-793) $) NIL (|has| |#1| (-362)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-362)) ELT)) (-2031 (($ $ (-793)) NIL (-2230 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $) NIL (-2230 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-3345 (((-711 |#1|) (-1298 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-4269 ((|#2|) 81 T ELT)) (-3430 (($) NIL (|has| |#1| (-362)) ELT)) (-1453 (((-1298 |#1|) $ (-1298 $)) 96 T ELT) (((-711 |#1|) (-1298 $) (-1298 $)) NIL T ELT) (((-1298 |#1|) $) 75 T ELT) (((-711 |#1|) (-1298 $)) 92 T ELT)) (-3343 (((-1298 |#1|) $) NIL T ELT) (($ (-1298 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (|has| |#1| (-362)) ELT)) (-2411 (((-886) $) 61 T ELT) (($ (-578)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-2213 (($ $) NIL (|has| |#1| (-362)) ELT) (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-1566 ((|#2| $) 89 T ELT)) (-3753 (((-793)) 83 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3198 (((-1298 $)) 88 T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-2368 (($) 32 T CONST)) (-2379 (($) 19 T CONST)) (-1676 (($ $ (-793)) NIL (-2230 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $) NIL (-2230 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-362))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-2384 (((-112) $ $) 67 T ELT)) (-2495 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 69 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-376)) ELT))) +(((-1111 |#1| |#2| |#3|) (-746 |#1| |#2|) (-175) (-1274 |#1|) |#2|) (T -1111)) +NIL +(-746 |#1| |#2|) +((-2800 (((-432 |#3|) |#3|) 19 T ELT))) +(((-1112 |#1| |#2| |#3|) (-10 -7 (-15 -2800 ((-432 |#3|) |#3|))) (-1274 (-421 (-981 (-578)))) (-13 (-376) (-149) (-746 (-421 (-981 (-578))) |#1|)) (-1274 |#2|)) (T -1112)) +((-2800 (*1 *2 *3) (-12 (-4 *4 (-1274 (-421 (-981 (-578))))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-981 (-578))) *4))) (-5 *2 (-432 *3)) (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1274 *5))))) +(-10 -7 (-15 -2800 ((-432 |#3|) |#3|))) +((-3213 (((-112) $ $) NIL T ELT)) (-1345 (($ $ $) 16 T ELT)) (-3667 (($ $ $) 17 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2789 (($) 6 T ELT)) (-3343 (((-1207) $) 20 T ELT)) (-2411 (((-886) $) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 15 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 9 T ELT))) +(((-1113) (-13 (-871) (-633 (-1207)) (-10 -8 (-15 -2789 ($))))) (T -1113)) +((-2789 (*1 *1) (-5 *1 (-1113)))) +(-13 (-871) (-633 (-1207)) (-10 -8 (-15 -2789 ($)))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-1114) (-142)) (T -1114)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-634 #0=(-1211)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1247) . T)) -((-2647 ((|#1| |#1| (-1 (-577) |#1| |#1|)) 42 T ELT) ((|#1| |#1| (-1 (-112) |#1|)) 33 T ELT)) (-3816 (((-1302)) 21 T ELT)) (-3756 (((-665 |#1|)) 13 T ELT))) -(((-1114 |#1|) (-10 -7 (-15 -3816 ((-1302))) (-15 -3756 ((-665 |#1|))) (-15 -2647 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2647 (|#1| |#1| (-1 (-577) |#1| |#1|)))) (-133)) (T -1114)) -((-2647 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2)))) (-3756 (*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-133)))) (-3816 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1114 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -3816 ((-1302))) (-15 -3756 ((-665 |#1|))) (-15 -2647 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2647 (|#1| |#1| (-1 (-577) |#1| |#1|)))) -((-3154 (($ (-109) $) 20 T ELT)) (-2050 (((-712 (-109)) (-519) $) 19 T ELT)) (-3414 (($) 7 T ELT)) (-2702 (($) 21 T ELT)) (-2658 (($) 22 T ELT)) (-3049 (((-665 (-177)) $) 10 T ELT)) (-2410 (((-885) $) 25 T ELT))) -(((-1115) (-13 (-631 (-885)) (-10 -8 (-15 -3414 ($)) (-15 -3049 ((-665 (-177)) $)) (-15 -2050 ((-712 (-109)) (-519) $)) (-15 -3154 ($ (-109) $)) (-15 -2702 ($)) (-15 -2658 ($))))) (T -1115)) -((-3414 (*1 *1) (-5 *1 (-1115))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-665 (-177))) (-5 *1 (-1115)))) (-2050 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-1115)))) (-3154 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1115)))) (-2702 (*1 *1) (-5 *1 (-1115))) (-2658 (*1 *1) (-5 *1 (-1115)))) -(-13 (-631 (-885)) (-10 -8 (-15 -3414 ($)) (-15 -3049 ((-665 (-177)) $)) (-15 -2050 ((-712 (-109)) (-519) $)) (-15 -3154 ($ (-109) $)) (-15 -2702 ($)) (-15 -2658 ($)))) -((-1985 (((-1297 (-710 |#1|)) (-665 (-710 |#1|))) 45 T ELT) (((-1297 (-710 (-980 |#1|))) (-665 (-1206)) (-710 (-980 |#1|))) 75 T ELT) (((-1297 (-710 (-420 (-980 |#1|)))) (-665 (-1206)) (-710 (-420 (-980 |#1|)))) 92 T ELT)) (-2119 (((-1297 |#1|) (-710 |#1|) (-665 (-710 |#1|))) 39 T ELT))) -(((-1116 |#1|) (-10 -7 (-15 -1985 ((-1297 (-710 (-420 (-980 |#1|)))) (-665 (-1206)) (-710 (-420 (-980 |#1|))))) (-15 -1985 ((-1297 (-710 (-980 |#1|))) (-665 (-1206)) (-710 (-980 |#1|)))) (-15 -1985 ((-1297 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -2119 ((-1297 |#1|) (-710 |#1|) (-665 (-710 |#1|))))) (-375)) (T -1116)) -((-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-710 *5))) (-5 *3 (-710 *5)) (-4 *5 (-375)) (-5 *2 (-1297 *5)) (-5 *1 (-1116 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-1116 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) (-5 *2 (-1297 (-710 (-980 *5)))) (-5 *1 (-1116 *5)) (-5 *4 (-710 (-980 *5))))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) (-5 *2 (-1297 (-710 (-420 (-980 *5))))) (-5 *1 (-1116 *5)) (-5 *4 (-710 (-420 (-980 *5))))))) -(-10 -7 (-15 -1985 ((-1297 (-710 (-420 (-980 |#1|)))) (-665 (-1206)) (-710 (-420 (-980 |#1|))))) (-15 -1985 ((-1297 (-710 (-980 |#1|))) (-665 (-1206)) (-710 (-980 |#1|)))) (-15 -1985 ((-1297 (-710 |#1|)) (-665 (-710 |#1|)))) (-15 -2119 ((-1297 |#1|) (-710 |#1|) (-665 (-710 |#1|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3450 (((-665 (-792)) $) NIL T ELT) (((-665 (-792)) $ (-1206)) NIL T ELT)) (-1975 (((-792) $) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-2948 (((-665 (-1118 (-1206))) $) NIL T ELT)) (-4419 (((-1202 $) $ (-1118 (-1206))) NIL T ELT) (((-1202 |#1|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1118 (-1206)))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-3138 (($ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1118 (-1206)) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 (-1155 |#1| (-1206)) "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1118 (-1206)) $) NIL T ELT) (((-1206) $) NIL T ELT) (((-1155 |#1| (-1206)) $) NIL T ELT)) (-3760 (($ $ $ (-1118 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1118 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-544 (-1118 (-1206))) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1118 (-1206)) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1118 (-1206)) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3890 (((-792) $ (-1206)) NIL T ELT) (((-792) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2935 (($ (-1202 |#1|) (-1118 (-1206))) NIL T ELT) (($ (-1202 $) (-1118 (-1206))) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-544 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-1118 (-1206))) NIL T ELT)) (-3569 (((-544 (-1118 (-1206))) $) NIL T ELT) (((-792) $ (-1118 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-1118 (-1206)))) NIL T ELT)) (-4309 (($ (-1 (-544 (-1118 (-1206))) (-544 (-1118 (-1206)))) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3727 (((-1 $ (-792)) (-1206)) NIL T ELT) (((-1 $ (-792)) $) NIL (|has| |#1| (-239)) ELT)) (-2505 (((-3 (-1118 (-1206)) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2823 (((-1118 (-1206)) $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3533 (((-112) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-1118 (-1206))) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4347 (($ $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1118 (-1206)) |#1|) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 |#1|)) NIL T ELT) (($ $ (-1118 (-1206)) $) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 $)) NIL T ELT) (($ $ (-1206) $) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 $)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-239)) ELT) (($ $ (-665 (-1206)) (-665 |#1|)) NIL (|has| |#1| (-239)) ELT)) (-1611 (($ $ (-1118 (-1206))) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-3667 (((-665 (-1206)) $) NIL T ELT)) (-2776 (((-544 (-1118 (-1206))) $) NIL T ELT) (((-792) $ (-1118 (-1206))) NIL T ELT) (((-665 (-792)) $ (-665 (-1118 (-1206)))) NIL T ELT) (((-792) $ (-1206)) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-1118 (-1206)) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1118 (-1206)) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1118 (-1206)) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT) (($ $ (-1118 (-1206))) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1118 (-1206))) NIL T ELT) (($ (-1206)) NIL T ELT) (($ (-1155 |#1| (-1206))) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-544 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 (-1118 (-1206))) (-665 (-792))) NIL T ELT) (($ $ (-1118 (-1206)) (-792)) NIL T ELT) (($ $ (-665 (-1118 (-1206)))) NIL T ELT) (($ $ (-1118 (-1206))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $) NIL (|has| |#1| (-238)) ELT) (($ $ (-792)) NIL (|has| |#1| (-238)) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1117 |#1|) (-13 (-261 |#1| (-1206) (-1118 (-1206)) (-544 (-1118 (-1206)))) (-1068 (-1155 |#1| (-1206)))) (-1079)) (T -1117)) -NIL -(-13 (-261 |#1| (-1206) (-1118 (-1206)) (-544 (-1118 (-1206)))) (-1068 (-1155 |#1| (-1206)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1975 (((-792) $) NIL T ELT)) (-3966 ((|#1| $) 10 T ELT)) (-2817 (((-3 |#1| "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT)) (-3890 (((-792) $) 11 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-3727 (($ |#1| (-792)) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2030 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1675 (($ $ (-792)) NIL T ELT) (($ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 16 T ELT))) -(((-1118 |#1|) (-276 |#1|) (-870)) (T -1118)) -NIL -(-276 |#1|) -((-3609 (((-665 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 29 (|has| |#1| (-869)) ELT) (((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 14 T ELT))) -(((-1119 |#1| |#2|) (-10 -7 (-15 -3609 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (IF (|has| |#1| (-869)) (-15 -3609 ((-665 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1119)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-665 *6)) (-5 *1 (-1119 *5 *6)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1124 *6)) (-5 *1 (-1119 *5 *6))))) -(-10 -7 (-15 -3609 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (IF (|has| |#1| (-869)) (-15 -3609 ((-665 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 16 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2835 (((-665 (-1165)) $) 10 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1120) (-13 (-1113) (-10 -8 (-15 -2835 ((-665 (-1165)) $))))) (T -1120)) -((-2835 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1120))))) -(-13 (-1113) (-10 -8 (-15 -2835 ((-665 (-1165)) $)))) -((-3609 (((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)) 19 T ELT))) -(((-1121 |#1| |#2|) (-10 -7 (-15 -3609 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)))) (-1247) (-1247)) (T -1121)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6))))) -(-10 -7 (-15 -3609 ((-1122 |#2|) (-1 |#2| |#1|) (-1122 |#1|)))) -((-3211 (((-112) $ $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-3966 (((-1206) $) NIL T ELT)) (-4227 (((-1124 |#1|) $) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-4017 (($ (-1206) (-1124 |#1|)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| (-1124 |#1|) (-1130)) ELT)) (-2383 (((-112) $ $) NIL (|has| (-1124 |#1|) (-1130)) ELT))) -(((-1122 |#1|) (-13 (-1247) (-10 -8 (-15 -4017 ($ (-1206) (-1124 |#1|))) (-15 -3966 ((-1206) $)) (-15 -4227 ((-1124 |#1|) $)) (IF (|has| (-1124 |#1|) (-1130)) (-6 (-1130)) |%noBranch|))) (-1247)) (T -1122)) -((-4017 (*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1124 *4)) (-4 *4 (-1247)) (-5 *1 (-1122 *4)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1247))))) -(-13 (-1247) (-10 -8 (-15 -4017 ($ (-1206) (-1124 |#1|))) (-15 -3966 ((-1206) $)) (-15 -4227 ((-1124 |#1|) $)) (IF (|has| (-1124 |#1|) (-1130)) (-6 (-1130)) |%noBranch|))) -((-4227 (($ |#1| |#1|) 8 T ELT)) (-3413 ((|#1| $) 11 T ELT)) (-3319 ((|#1| $) 13 T ELT)) (-4054 (((-577) $) 9 T ELT)) (-4100 ((|#1| $) 10 T ELT)) (-4064 ((|#1| $) 12 T ELT)) (-3341 (($ |#1|) 6 T ELT)) (-3933 (($ |#1| |#1|) 15 T ELT)) (-2165 (($ $ (-577)) 14 T ELT))) -(((-1123 |#1|) (-141) (-1247)) (T -1123)) -((-3933 (*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1123 *3)) (-4 *3 (-1247)))) (-3319 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1247)) (-5 *2 (-577)))) (-4227 (*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) -(-13 (-636 |t#1|) (-10 -8 (-15 -3933 ($ |t#1| |t#1|)) (-15 -2165 ($ $ (-577))) (-15 -3319 (|t#1| $)) (-15 -4064 (|t#1| $)) (-15 -3413 (|t#1| $)) (-15 -4100 (|t#1| $)) (-15 -4054 ((-577) $)) (-15 -4227 ($ |t#1| |t#1|)))) -(((-636 |#1|) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-4227 (($ |#1| |#1|) 16 T ELT)) (-3609 (((-665 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-869)) ELT)) (-3413 ((|#1| $) 12 T ELT)) (-3319 ((|#1| $) 11 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4054 (((-577) $) 15 T ELT)) (-4100 ((|#1| $) 14 T ELT)) (-4064 ((|#1| $) 13 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4198 (((-665 |#1|) $) 44 (|has| |#1| (-869)) ELT) (((-665 |#1|) (-665 $)) 43 (|has| |#1| (-869)) ELT)) (-3341 (($ |#1|) 29 T ELT)) (-2410 (((-885) $) 28 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3933 (($ |#1| |#1|) 10 T ELT)) (-2165 (($ $ (-577)) 17 T ELT)) (-2383 (((-112) $ $) 22 (|has| |#1| (-1130)) ELT))) -(((-1124 |#1|) (-13 (-1123 |#1|) (-10 -7 (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-665 |#1|))) |%noBranch|))) (-1247)) (T -1124)) -NIL -(-13 (-1123 |#1|) (-10 -7 (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-665 |#1|))) |%noBranch|))) -((-4227 (($ |#1| |#1|) 8 T ELT)) (-3609 ((|#2| (-1 |#1| |#1|) $) 16 T ELT)) (-3413 ((|#1| $) 11 T ELT)) (-3319 ((|#1| $) 13 T ELT)) (-4054 (((-577) $) 9 T ELT)) (-4100 ((|#1| $) 10 T ELT)) (-4064 ((|#1| $) 12 T ELT)) (-4198 ((|#2| (-665 $)) 18 T ELT) ((|#2| $) 17 T ELT)) (-3341 (($ |#1|) 6 T ELT)) (-3933 (($ |#1| |#1|) 15 T ELT)) (-2165 (($ $ (-577)) 14 T ELT))) -(((-1125 |#1| |#2|) (-141) (-869) (-1179 |t#1|)) (T -1125)) -((-4198 (*1 *2 *3) (-12 (-5 *3 (-665 *1)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) (-4 *2 (-1179 *4)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-869)) (-4 *2 (-1179 *3)))) (-3609 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) (-4 *2 (-1179 *4))))) -(-13 (-1123 |t#1|) (-10 -8 (-15 -4198 (|t#2| (-665 $))) (-15 -4198 (|t#2| $)) (-15 -3609 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-636 |#1|) . T) ((-1123 |#1|) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2756 (((-1165) $) 12 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 18 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-4115 (((-665 (-1165)) $) 10 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1126) (-13 (-1113) (-10 -8 (-15 -4115 ((-665 (-1165)) $)) (-15 -2756 ((-1165) $))))) (T -1126)) -((-4115 (*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1126)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1126))))) -(-13 (-1113) (-10 -8 (-15 -4115 ((-665 (-1165)) $)) (-15 -2756 ((-1165) $)))) -((-1339 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-2729 (($ $ $) 10 T ELT)) (-2964 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1127 |#1| |#2|) (-10 -8 (-15 -1339 (|#1| |#2| |#1|)) (-15 -1339 (|#1| |#1| |#2|)) (-15 -1339 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#2|)) (-15 -2964 (|#1| |#1| |#1|))) (-1128 |#2|) (-1130)) (T -1127)) -NIL -(-10 -8 (-15 -1339 (|#1| |#2| |#1|)) (-15 -1339 (|#1| |#1| |#2|)) (-15 -1339 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#2|)) (-15 -2964 (|#1| |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1339 (($ $ $) 19 T ELT) (($ $ |#1|) 18 T ELT) (($ |#1| $) 17 T ELT)) (-2729 (($ $ $) 21 T ELT)) (-2171 (((-112) $ $) 20 T ELT)) (-2641 (((-112) $ (-792)) 36 T ELT)) (-1753 (($) 26 T ELT) (($ (-665 |#1|)) 25 T ELT)) (-4232 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 37 T CONST)) (-3860 (($ $) 60 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#1| $) 59 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2728 (((-665 |#1|) $) 44 (|has| $ (-6 -4499)) ELT)) (-3283 (((-112) $ $) 29 T ELT)) (-1967 (((-112) $ (-792)) 35 T ELT)) (-4138 (((-665 |#1|) $) 45 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3417 (((-112) $ (-792)) 34 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3959 (($ $ $) 24 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#1|) (-665 |#1|)) 51 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 (-305 |#1|))) 48 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 30 T ELT)) (-2392 (((-112) $) 33 T ELT)) (-3414 (($) 32 T ELT)) (-2964 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT)) (-4323 (((-792) |#1| $) 46 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 31 T ELT)) (-3341 (((-549) $) 61 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 52 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2868 (($) 28 T ELT) (($ (-665 |#1|)) 27 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-792) $) 38 (|has| $ (-6 -4499)) ELT))) -(((-1128 |#1|) (-141) (-1130)) (T -1128)) -((-3283 (*1 *2 *1 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-2868 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) (-1753 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-1753 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) (-3959 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2964 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2964 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2729 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-2171 (*1 *2 *1 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) (-1339 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-1339 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) (-1339 (*1 *1 *2 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) -(-13 (-1130) (-152 |t#1|) (-10 -8 (-6 -4489) (-15 -3283 ((-112) $ $)) (-15 -2868 ($)) (-15 -2868 ($ (-665 |t#1|))) (-15 -1753 ($)) (-15 -1753 ($ (-665 |t#1|))) (-15 -3959 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2964 ($ $ |t#1|)) (-15 -2729 ($ $ $)) (-15 -2171 ((-112) $ $)) (-15 -1339 ($ $ $)) (-15 -1339 ($ $ |t#1|)) (-15 -1339 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-631 (-885)) . T) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) . T) ((-1247) . T)) -((-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 8 T ELT))) -(((-1129 |#1|) (-10 -8 (-15 -3384 ((-1188) |#1|)) (-15 -4312 ((-1150) |#1|))) (-1130)) (T -1129)) -NIL -(-10 -8 (-15 -3384 ((-1188) |#1|)) (-15 -4312 ((-1150) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-1130) (-141)) (T -1130)) -((-4312 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1150)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1188))))) -(-13 (-102) (-631 (-885)) (-10 -8 (-15 -4312 ((-1150) $)) (-15 -3384 ((-1188) $)))) -(((-102) . T) ((-631 (-885)) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) 36 T ELT)) (-4146 (($ (-665 (-949))) 70 T ELT)) (-3576 (((-3 $ "failed") $ (-949) (-949)) 81 T ELT)) (-2060 (($) 40 T ELT)) (-2318 (((-112) (-949) $) 42 T ELT)) (-2553 (((-949) $) 64 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) 39 T ELT)) (-1921 (((-3 $ "failed") $ (-949)) 77 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2721 (((-1297 $)) 47 T ELT)) (-2349 (((-665 (-949)) $) 27 T ELT)) (-2956 (((-792) $ (-949) (-949)) 78 T ELT)) (-2410 (((-885) $) 32 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 24 T ELT))) -(((-1131 |#1| |#2|) (-13 (-380) (-10 -8 (-15 -1921 ((-3 $ "failed") $ (-949))) (-15 -3576 ((-3 $ "failed") $ (-949) (-949))) (-15 -2349 ((-665 (-949)) $)) (-15 -4146 ($ (-665 (-949)))) (-15 -2721 ((-1297 $))) (-15 -2318 ((-112) (-949) $)) (-15 -2956 ((-792) $ (-949) (-949))))) (-949) (-949)) (T -1131)) -((-1921 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3576 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-2721 (*1 *2) (-12 (-5 *2 (-1297 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) (-2318 (*1 *2 *3 *1) (-12 (-5 *3 (-949)) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2956 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-792)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-380) (-10 -8 (-15 -1921 ((-3 $ "failed") $ (-949))) (-15 -3576 ((-3 $ "failed") $ (-949) (-949))) (-15 -2349 ((-665 (-949)) $)) (-15 -4146 ($ (-665 (-949)))) (-15 -2721 ((-1297 $))) (-15 -2318 ((-112) (-949) $)) (-15 -2956 ((-792) $ (-949) (-949))))) -((-3211 (((-112) $ $) NIL T ELT)) (-4194 (($) NIL (|has| |#1| (-380)) ELT)) (-1339 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-2729 (($ $ $) 81 T ELT)) (-2171 (((-112) $ $) 82 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#1| (-380)) ELT)) (-1753 (($ (-665 |#1|)) NIL T ELT) (($) 13 T ELT)) (-3402 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1991 (($ |#1| $) 74 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4499)) ELT)) (-2060 (($) NIL (|has| |#1| (-380)) ELT)) (-2728 (((-665 |#1|) $) 19 (|has| $ (-6 -4499)) ELT)) (-3283 (((-112) $ $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-1344 ((|#1| $) 55 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-4167 ((|#1| $) 53 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2553 (((-949) $) NIL (|has| |#1| (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3959 (($ $ $) 79 T ELT)) (-3398 ((|#1| $) 25 T ELT)) (-3795 (($ |#1| $) 69 T ELT)) (-2085 (($ (-949)) NIL (|has| |#1| (-380)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31 T ELT)) (-3127 ((|#1| $) 27 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 21 T ELT)) (-3414 (($) 11 T ELT)) (-2964 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-2427 (($) NIL T ELT) (($ (-665 |#1|)) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 16 T ELT)) (-3341 (((-549) $) 50 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 62 T ELT)) (-2698 (($ $) NIL (|has| |#1| (-380)) ELT)) (-2410 (((-885) $) NIL T ELT)) (-2986 (((-792) $) NIL T ELT)) (-2868 (($ (-665 |#1|)) NIL T ELT) (($) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3236 (($ (-665 |#1|)) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 52 T ELT)) (-3224 (((-792) $) 10 (|has| $ (-6 -4499)) ELT))) -(((-1132 |#1|) (-438 |#1|) (-1130)) (T -1132)) -NIL -(-438 |#1|) -((-3211 (((-112) $ $) 7 T ELT)) (-1363 (((-112) $) 33 T ELT)) (-2067 ((|#2| $) 28 T ELT)) (-3678 (((-112) $) 34 T ELT)) (-1965 ((|#1| $) 29 T ELT)) (-2387 (((-112) $) 36 T ELT)) (-2196 (((-112) $) 38 T ELT)) (-2598 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3269 (((-112) $) 32 T ELT)) (-2086 ((|#3| $) 27 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-1343 (((-112) $) 31 T ELT)) (-3241 ((|#4| $) 26 T ELT)) (-3921 ((|#5| $) 25 T ELT)) (-3503 (((-112) $ $) 39 T ELT)) (-2435 (($ $ (-577)) 41 T ELT) (($ $ (-665 (-577))) 40 T ELT)) (-2879 (((-665 $) $) 30 T ELT)) (-3341 (($ |#1|) 47 T ELT) (($ |#2|) 46 T ELT) (($ |#3|) 45 T ELT) (($ |#4|) 44 T ELT) (($ |#5|) 43 T ELT) (($ (-665 $)) 42 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-1649 (($ $) 23 T ELT)) (-1367 (($ $) 24 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2911 (((-112) $) 37 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-577) $) 22 T ELT))) -(((-1133 |#1| |#2| |#3| |#4| |#5|) (-141) (-1130) (-1130) (-1130) (-1130) (-1130)) (T -1133)) -((-3503 (*1 *2 *1 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-2598 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-1343 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112)))) (-2879 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-1133 *3 *4 *5 *6 *7)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *2 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *2 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *2)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) (-1367 (*1 *1 *1) (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-1649 (*1 *1 *1) (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-577))))) -(-13 (-1130) (-636 |t#1|) (-636 |t#2|) (-636 |t#3|) (-636 |t#4|) (-636 |t#4|) (-636 |t#5|) (-636 (-665 $)) (-297 (-577) $) (-297 (-665 (-577)) $) (-10 -8 (-15 -3503 ((-112) $ $)) (-15 -2196 ((-112) $)) (-15 -2911 ((-112) $)) (-15 -2387 ((-112) $)) (-15 -2598 ((-112) $)) (-15 -3678 ((-112) $)) (-15 -1363 ((-112) $)) (-15 -3269 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -2879 ((-665 $) $)) (-15 -1965 (|t#1| $)) (-15 -2067 (|t#2| $)) (-15 -2086 (|t#3| $)) (-15 -3241 (|t#4| $)) (-15 -3921 (|t#5| $)) (-15 -1367 ($ $)) (-15 -1649 ($ $)) (-15 -3224 ((-577) $)))) -(((-102) . T) ((-631 (-885)) . T) ((-636 (-665 $)) . T) ((-636 |#1|) . T) ((-636 |#2|) . T) ((-636 |#3|) . T) ((-636 |#4|) . T) ((-636 |#5|) . T) ((-297 (-577) $) . T) ((-297 (-665 (-577)) $) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1363 (((-112) $) NIL T ELT)) (-2067 (((-1206) $) NIL T ELT)) (-3678 (((-112) $) NIL T ELT)) (-1965 (((-1188) $) NIL T ELT)) (-2387 (((-112) $) NIL T ELT)) (-2196 (((-112) $) NIL T ELT)) (-2598 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3269 (((-112) $) NIL T ELT)) (-2086 (((-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1343 (((-112) $) NIL T ELT)) (-3241 (((-228) $) NIL T ELT)) (-3921 (((-885) $) NIL T ELT)) (-3503 (((-112) $ $) NIL T ELT)) (-2435 (($ $ (-577)) NIL T ELT) (($ $ (-665 (-577))) NIL T ELT)) (-2879 (((-665 $) $) NIL T ELT)) (-3341 (($ (-1188)) NIL T ELT) (($ (-1206)) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-228)) NIL T ELT) (($ (-885)) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-1649 (($ $) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2911 (((-112) $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3224 (((-577) $) NIL T ELT))) -(((-1134) (-1133 (-1188) (-1206) (-577) (-228) (-885))) (T -1134)) -NIL -(-1133 (-1188) (-1206) (-577) (-228) (-885)) -((-3211 (((-112) $ $) NIL T ELT)) (-1363 (((-112) $) 45 T ELT)) (-2067 ((|#2| $) 48 T ELT)) (-3678 (((-112) $) 20 T ELT)) (-1965 ((|#1| $) 21 T ELT)) (-2387 (((-112) $) 42 T ELT)) (-2196 (((-112) $) 14 T ELT)) (-2598 (((-112) $) 44 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3269 (((-112) $) 46 T ELT)) (-2086 ((|#3| $) 50 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1343 (((-112) $) 47 T ELT)) (-3241 ((|#4| $) 49 T ELT)) (-3921 ((|#5| $) 51 T ELT)) (-3503 (((-112) $ $) 41 T ELT)) (-2435 (($ $ (-577)) 62 T ELT) (($ $ (-665 (-577))) 64 T ELT)) (-2879 (((-665 $) $) 27 T ELT)) (-3341 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-665 $)) 52 T ELT)) (-2410 (((-885) $) 28 T ELT)) (-1649 (($ $) 26 T ELT)) (-1367 (($ $) 58 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2911 (((-112) $) 23 T ELT)) (-2383 (((-112) $ $) 40 T ELT)) (-3224 (((-577) $) 60 T ELT))) -(((-1135 |#1| |#2| |#3| |#4| |#5|) (-1133 |#1| |#2| |#3| |#4| |#5|) (-1130) (-1130) (-1130) (-1130) (-1130)) (T -1135)) -NIL -(-1133 |#1| |#2| |#3| |#4| |#5|) -((-1902 (((-1302) $) 22 T ELT)) (-3278 (($ (-1206) (-447) |#2|) 11 T ELT)) (-2410 (((-885) $) 16 T ELT))) -(((-1136 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -3278 ($ (-1206) (-447) |#2|)))) (-1130) (-443 |#1|)) (T -1136)) -((-3278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1206)) (-5 *3 (-447)) (-4 *5 (-1130)) (-5 *1 (-1136 *5 *4)) (-4 *4 (-443 *5))))) -(-13 (-408) (-10 -8 (-15 -3278 ($ (-1206) (-447) |#2|)))) -((-3197 (((-112) |#5| |#5|) 44 T ELT)) (-3114 (((-112) |#5| |#5|) 59 T ELT)) (-2610 (((-112) |#5| (-665 |#5|)) 82 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-4318 (((-112) (-665 |#4|) (-665 |#4|)) 65 T ELT)) (-3645 (((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) 70 T ELT)) (-3132 (((-1302)) 32 T ELT)) (-1414 (((-1302) (-1188) (-1188) (-1188)) 28 T ELT)) (-3865 (((-665 |#5|) (-665 |#5|)) 101 T ELT)) (-3758 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) 93 T ELT)) (-2689 (((-665 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112)) 123 T ELT)) (-3488 (((-112) |#5| |#5|) 53 T ELT)) (-4401 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-4172 (((-112) (-665 |#4|) (-665 |#4|)) 64 T ELT)) (-1377 (((-112) (-665 |#4|) (-665 |#4|)) 66 T ELT)) (-2220 (((-112) (-665 |#4|) (-665 |#4|)) 67 T ELT)) (-3051 (((-3 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)) 118 T ELT)) (-3190 (((-665 |#5|) (-665 |#5|)) 49 T ELT))) -(((-1137 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1414 ((-1302) (-1188) (-1188) (-1188))) (-15 -3132 ((-1302))) (-15 -3197 ((-112) |#5| |#5|)) (-15 -3190 ((-665 |#5|) (-665 |#5|))) (-15 -3488 ((-112) |#5| |#5|)) (-15 -3114 ((-112) |#5| |#5|)) (-15 -4318 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4172 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1377 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2220 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4401 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2610 ((-112) |#5| |#5|)) (-15 -2610 ((-112) |#5| (-665 |#5|))) (-15 -3865 ((-665 |#5|) (-665 |#5|))) (-15 -3645 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -3758 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-15 -2689 ((-665 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -3051 ((-3 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1137)) -((-3051 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| -3503 (-665 *9)) (|:| -4317 *4) (|:| |ineq| (-665 *9)))) (-5 *1 (-1137 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) (-4 *4 (-1101 *6 *7 *8 *9)))) (-2689 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| -3503 (-665 *9)) (|:| -4317 *10) (|:| |ineq| (-665 *9))))) (-5 *1 (-1137 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -4317 *7)))) (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-3645 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)))) (-3865 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1137 *5 *6 *7 *8 *3)))) (-2610 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-4401 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-2220 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-1377 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-4172 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-4318 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3114 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3488 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-1137 *3 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) (-3132 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1137 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-1414 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(-10 -7 (-15 -1414 ((-1302) (-1188) (-1188) (-1188))) (-15 -3132 ((-1302))) (-15 -3197 ((-112) |#5| |#5|)) (-15 -3190 ((-665 |#5|) (-665 |#5|))) (-15 -3488 ((-112) |#5| |#5|)) (-15 -3114 ((-112) |#5| |#5|)) (-15 -4318 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4172 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -1377 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -2220 ((-112) (-665 |#4|) (-665 |#4|))) (-15 -4401 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2610 ((-112) |#5| |#5|)) (-15 -2610 ((-112) |#5| (-665 |#5|))) (-15 -3865 ((-665 |#5|) (-665 |#5|))) (-15 -3645 ((-112) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -3758 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-15 -2689 ((-665 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|)))) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -3051 ((-3 (-2 (|:| -3503 (-665 |#4|)) (|:| -4317 |#5|) (|:| |ineq| (-665 |#4|))) "failed") (-665 |#4|) |#5| (-665 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3945 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|) 108 T ELT)) (-2374 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#4| |#4| |#5|) 80 T ELT)) (-4104 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|) 102 T ELT)) (-1894 (((-665 |#5|) |#4| |#5|) 124 T ELT)) (-1379 (((-665 |#5|) |#4| |#5|) 131 T ELT)) (-2454 (((-665 |#5|) |#4| |#5|) 132 T ELT)) (-3833 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|) 109 T ELT)) (-3311 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|) 130 T ELT)) (-2151 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-2032 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#3| (-112)) 92 T ELT) (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-3082 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|) 87 T ELT)) (-3957 (((-1302)) 36 T ELT)) (-3870 (((-1302)) 25 T ELT)) (-3107 (((-1302) (-1188) (-1188) (-1188)) 32 T ELT)) (-2070 (((-1302) (-1188) (-1188) (-1188)) 21 T ELT))) -(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2070 ((-1302) (-1188) (-1188) (-1188))) (-15 -3870 ((-1302))) (-15 -3107 ((-1302) (-1188) (-1188) (-1188))) (-15 -3957 ((-1302))) (-15 -2374 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2032 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2032 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#3| (-112))) (-15 -3082 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -4104 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2151 ((-112) |#4| |#5|)) (-15 -3833 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -1894 ((-665 |#5|) |#4| |#5|)) (-15 -3311 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -1379 ((-665 |#5|) |#4| |#5|)) (-15 -2151 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -2454 ((-665 |#5|) |#4| |#5|)) (-15 -3945 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1101 |#1| |#2| |#3| |#4|)) (T -1138)) -((-3945 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2454 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2151 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-1379 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3311 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-1894 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3833 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2151 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-4104 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3082 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-2032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -4317 *9)))) (-5 *1 (-1138 *6 *7 *4 *8 *9)))) (-2032 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) (-2374 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) (-3957 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-3107 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) (-3870 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) (-2070 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(-10 -7 (-15 -2070 ((-1302) (-1188) (-1188) (-1188))) (-15 -3870 ((-1302))) (-15 -3107 ((-1302) (-1188) (-1188) (-1188))) (-15 -3957 ((-1302))) (-15 -2374 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2032 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2032 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) |#3| (-112))) (-15 -3082 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -4104 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#4| |#5|)) (-15 -2151 ((-112) |#4| |#5|)) (-15 -3833 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -1894 ((-665 |#5|) |#4| |#5|)) (-15 -3311 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -1379 ((-665 |#5|) |#4| |#5|)) (-15 -2151 ((-665 (-2 (|:| |val| (-112)) (|:| -4317 |#5|))) |#4| |#5|)) (-15 -2454 ((-665 |#5|) |#4| |#5|)) (-15 -3945 ((-665 (-2 (|:| |val| |#4|) (|:| -4317 |#5|))) |#4| |#5|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-4202 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-2948 (((-665 |#3|) $) 34 T ELT)) (-3294 (((-112) $) 27 T ELT)) (-1567 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-1988 ((|#4| |#4| $) 93 T ELT)) (-4456 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| $) 127 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-2641 (((-112) $ (-792)) 45 T ELT)) (-4232 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2762 (($) 46 T CONST)) (-1760 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3514 (($ (-665 |#4|)) 36 T ELT)) (-4197 (((-3 $ "failed") $) 83 T ELT)) (-3415 ((|#4| |#4| $) 90 T ELT)) (-3860 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-2981 ((|#4| |#4| $) 88 T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) 106 T ELT)) (-3820 (((-112) |#4| $) 137 T ELT)) (-3389 (((-112) |#4| $) 134 T ELT)) (-1566 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2728 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1669 ((|#3| $) 35 T ELT)) (-1967 (((-112) $ (-792)) 44 T ELT)) (-4138 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2850 (((-665 |#3|) $) 33 T ELT)) (-2746 (((-112) |#3| $) 32 T ELT)) (-3417 (((-112) $ (-792)) 43 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2334 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-2212 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| |#4| $) 128 T ELT)) (-2756 (((-3 |#4| "failed") $) 84 T ELT)) (-2510 (((-665 $) |#4| $) 130 T ELT)) (-2173 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-4049 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3959 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-4213 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-2327 (((-665 |#4|) $) 108 T ELT)) (-2982 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1502 ((|#4| |#4| $) 91 T ELT)) (-2220 (((-112) $ $) 111 T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-4058 ((|#4| |#4| $) 92 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4188 (((-3 |#4| "failed") $) 85 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4013 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) 39 T ELT)) (-2392 (((-112) $) 42 T ELT)) (-3414 (($) 41 T ELT)) (-2776 (((-792) $) 107 T ELT)) (-4323 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 40 T ELT)) (-3341 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 61 T ELT)) (-1799 (($ $ |#3|) 29 T ELT)) (-3139 (($ $ |#3|) 31 T ELT)) (-3680 (($ $) 89 T ELT)) (-1600 (($ $ |#3|) 30 T ELT)) (-2410 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3050 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-1338 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) 82 T ELT)) (-2214 (((-112) |#4| $) 136 T ELT)) (-2306 (((-112) |#3| $) 81 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) -(((-1139 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1139)) -NIL -(-13 (-1101 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) -((-2934 (((-665 (-577)) (-577) (-577) (-577)) 38 T ELT)) (-2350 (((-665 (-577)) (-577) (-577) (-577)) 28 T ELT)) (-1963 (((-665 (-577)) (-577) (-577) (-577)) 33 T ELT)) (-1961 (((-577) (-577) (-577)) 21 T ELT)) (-3892 (((-1297 (-577)) (-665 (-577)) (-1297 (-577)) (-577)) 77 T ELT) (((-1297 (-577)) (-1297 (-577)) (-1297 (-577)) (-577)) 72 T ELT)) (-3798 (((-665 (-577)) (-665 (-949)) (-665 (-577)) (-112)) 54 T ELT)) (-3669 (((-710 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577))) 76 T ELT)) (-3438 (((-710 (-577)) (-665 (-949)) (-665 (-577))) 59 T ELT)) (-4041 (((-665 (-710 (-577))) (-665 (-949))) 65 T ELT)) (-2627 (((-665 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577))) 80 T ELT)) (-3762 (((-710 (-577)) (-665 (-577)) (-665 (-577)) (-665 (-577))) 90 T ELT))) -(((-1140) (-10 -7 (-15 -3762 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-665 (-577)))) (-15 -2627 ((-665 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -4041 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -3438 ((-710 (-577)) (-665 (-949)) (-665 (-577)))) (-15 -3669 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -3798 ((-665 (-577)) (-665 (-949)) (-665 (-577)) (-112))) (-15 -3892 ((-1297 (-577)) (-1297 (-577)) (-1297 (-577)) (-577))) (-15 -3892 ((-1297 (-577)) (-665 (-577)) (-1297 (-577)) (-577))) (-15 -1961 ((-577) (-577) (-577))) (-15 -1963 ((-665 (-577)) (-577) (-577) (-577))) (-15 -2350 ((-665 (-577)) (-577) (-577) (-577))) (-15 -2934 ((-665 (-577)) (-577) (-577) (-577))))) (T -1140)) -((-2934 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577)))) (-2350 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577)))) (-1963 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577)))) (-1961 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1140)))) (-3892 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-665 (-577))) (-5 *4 (-577)) (-5 *1 (-1140)))) (-3892 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-577)) (-5 *1 (-1140)))) (-3798 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-665 (-577))) (-5 *3 (-665 (-949))) (-5 *4 (-112)) (-5 *1 (-1140)))) (-3669 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-710 (-577))) (-5 *3 (-665 (-577))) (-5 *1 (-1140)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1140)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-1140)))) (-2627 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *3 (-710 (-577))) (-5 *1 (-1140)))) (-3762 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1140))))) -(-10 -7 (-15 -3762 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-665 (-577)))) (-15 -2627 ((-665 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -4041 ((-665 (-710 (-577))) (-665 (-949)))) (-15 -3438 ((-710 (-577)) (-665 (-949)) (-665 (-577)))) (-15 -3669 ((-710 (-577)) (-665 (-577)) (-665 (-577)) (-710 (-577)))) (-15 -3798 ((-665 (-577)) (-665 (-949)) (-665 (-577)) (-112))) (-15 -3892 ((-1297 (-577)) (-1297 (-577)) (-1297 (-577)) (-577))) (-15 -3892 ((-1297 (-577)) (-665 (-577)) (-1297 (-577)) (-577))) (-15 -1961 ((-577) (-577) (-577))) (-15 -1963 ((-665 (-577)) (-577) (-577) (-577))) (-15 -2350 ((-665 (-577)) (-577) (-577) (-577))) (-15 -2934 ((-665 (-577)) (-577) (-577) (-577)))) -((** (($ $ (-949)) 10 T ELT))) -(((-1141 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-949)))) (-1142)) (T -1141)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-949)))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (** (($ $ (-949)) 14 T ELT)) (* (($ $ $) 15 T ELT))) -(((-1142) (-141)) (T -1142)) -((* (*1 *1 *1 *1) (-4 *1 (-1142))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1142)) (-5 *2 (-949))))) -(-13 (-1130) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-949))))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-1516 (((-112) $) NIL (|has| |#3| (-23)) ELT)) (-1997 (($ (-949)) NIL (|has| |#3| (-1079)) ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-1658 (($ $ $) NIL (|has| |#3| (-814)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2221 (((-792)) NIL (|has| |#3| (-380)) ELT)) (-2589 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1130)) ELT)) (-3514 (((-577) $) NIL (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT) ((|#3| $) NIL (|has| |#3| (-1130)) ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-710 $)) NIL (|has| |#3| (-1079)) ELT)) (-4281 (((-3 $ "failed") $) NIL (|has| |#3| (-1079)) ELT)) (-2060 (($) NIL (|has| |#3| (-380)) ELT)) (-3448 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#3| $ (-577)) 12 T ELT)) (-2728 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL (|has| |#3| (-1079)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-4138 (((-665 |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#3| (-870)) ELT)) (-3437 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2553 (((-949) $) NIL (|has| |#3| (-380)) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#3| (-659 (-577))) (|has| |#3| (-1079))) ELT) (((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1079)) ELT) (((-710 |#3|) (-1297 $)) NIL (|has| |#3| (-1079)) ELT)) (-3384 (((-1188) $) NIL (|has| |#3| (-1130)) ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-2085 (($ (-949)) NIL (|has| |#3| (-380)) ELT)) (-4312 (((-1150) $) NIL (|has| |#3| (-1130)) ELT)) (-4188 ((|#3| $) NIL (|has| (-577) (-870)) ELT)) (-3482 (($ $ |#3|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT) (($ $ (-665 |#3|) (-665 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-3485 (((-665 |#3|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#3| $ (-577) |#3|) NIL T ELT) ((|#3| $ (-577)) NIL T ELT)) (-3511 ((|#3| $ $) NIL (|has| |#3| (-1079)) ELT)) (-2840 (($ (-1297 |#3|)) NIL T ELT)) (-2419 (((-135)) NIL (|has| |#3| (-375)) ELT)) (-2030 (($ $ (-792)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#3| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#3| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-2410 (((-1297 |#3|) $) NIL T ELT) (($ (-577)) NIL (-2229 (-12 (|has| |#3| (-1068 (-577))) (|has| |#3| (-1130))) (|has| |#3| (-1079))) ELT) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1068 (-420 (-577)))) (|has| |#3| (-1130))) ELT) (($ |#3|) NIL (|has| |#3| (-1130)) ELT) (((-885) $) NIL (|has| |#3| (-631 (-885))) ELT)) (-3234 (((-792)) NIL (|has| |#3| (-1079)) CONST)) (-2525 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2367 (($) NIL (|has| |#3| (-23)) CONST)) (-2378 (($) NIL (|has| |#3| (-1079)) CONST)) (-1675 (($ $ (-792)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1206)) NIL (-12 (|has| |#3| (-928 (-1206))) (|has| |#3| (-1079))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-1 |#3| |#3|) (-792)) NIL (|has| |#3| (-1079)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#3| (-870)) ELT)) (-2403 (((-112) $ $) 24 (|has| |#3| (-870)) ELT)) (-2494 (($ $ |#3|) NIL (|has| |#3| (-375)) ELT)) (-2483 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-2471 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-792)) NIL (|has| |#3| (-1079)) ELT) (($ $ (-949)) NIL (|has| |#3| (-1079)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1079)) ELT) (($ $ |#3|) NIL (|has| |#3| (-747)) ELT) (($ |#3| $) NIL (|has| |#3| (-747)) ELT) (($ (-577) $) NIL (|has| |#3| (-21)) ELT) (($ (-792) $) NIL (|has| |#3| (-23)) ELT) (($ (-949) $) NIL (|has| |#3| (-25)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1143 |#1| |#2| |#3|) (-244 |#1| |#3|) (-792) (-792) (-814)) (T -1143)) -NIL -(-244 |#1| |#3|) -((-2150 (((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 50 T ELT)) (-3100 (((-577) (-1270 |#2| |#1|)) 94 (|has| |#1| (-465)) ELT)) (-3953 (((-577) (-1270 |#2| |#1|)) 76 T ELT)) (-4239 (((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 58 T ELT)) (-2573 (((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 93 (|has| |#1| (-465)) ELT)) (-3220 (((-665 |#1|) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 61 T ELT)) (-1725 (((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|)) 75 T ELT))) -(((-1144 |#1| |#2|) (-10 -7 (-15 -2150 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -4239 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3220 ((-665 |#1|) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -1725 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3953 ((-577) (-1270 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2573 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3100 ((-577) (-1270 |#2| |#1|)))) |%noBranch|)) (-841) (-1206)) (T -1144)) -((-3100 (*1 *2 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-2573 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-1725 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5)))) (-3220 (*1 *2 *3 *3) (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 *4)) (-5 *1 (-1144 *4 *5)))) (-4239 (*1 *2 *3 *3) (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4)))) (-2150 (*1 *2 *3 *3) (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4))))) -(-10 -7 (-15 -2150 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -4239 ((-665 (-1270 |#2| |#1|)) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3220 ((-665 |#1|) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -1725 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3953 ((-577) (-1270 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2573 ((-577) (-1270 |#2| |#1|) (-1270 |#2| |#1|))) (-15 -3100 ((-577) (-1270 |#2| |#1|)))) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-2918 (($ (-519) (-1148)) 13 T ELT)) (-3383 (((-1148) $) 19 T ELT)) (-4105 (((-519) $) 16 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 26 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1145) (-13 (-1113) (-10 -8 (-15 -2918 ($ (-519) (-1148))) (-15 -4105 ((-519) $)) (-15 -3383 ((-1148) $))))) (T -1145)) -((-2918 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-1145)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1145)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1145))))) -(-13 (-1113) (-10 -8 (-15 -2918 ($ (-519) (-1148))) (-15 -4105 ((-519) $)) (-15 -3383 ((-1148) $)))) -((-4459 (((-3 (-577) "failed") |#2| (-1206) |#2| (-1188)) 19 T ELT) (((-3 (-577) "failed") |#2| (-1206) (-864 |#2|)) 17 T ELT) (((-3 (-577) "failed") |#2|) 60 T ELT))) -(((-1146 |#1| |#2|) (-10 -7 (-15 -4459 ((-3 (-577) "failed") |#2|)) (-15 -4459 ((-3 (-577) "failed") |#2| (-1206) (-864 |#2|))) (-15 -4459 ((-3 (-577) "failed") |#2| (-1206) |#2| (-1188)))) (-13 (-569) (-1068 (-577)) (-659 (-577)) (-465)) (-13 (-27) (-1232) (-443 |#1|))) (T -1146)) -((-4459 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-1188)) (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1146 *6 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))))) (-4459 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1146 *6 *3)))) (-4459 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1146 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4)))))) -(-10 -7 (-15 -4459 ((-3 (-577) "failed") |#2|)) (-15 -4459 ((-3 (-577) "failed") |#2| (-1206) (-864 |#2|))) (-15 -4459 ((-3 (-577) "failed") |#2| (-1206) |#2| (-1188)))) -((-4459 (((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)) (-1188)) 38 T ELT) (((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-864 (-420 (-980 |#1|)))) 33 T ELT) (((-3 (-577) "failed") (-420 (-980 |#1|))) 14 T ELT))) -(((-1147 |#1|) (-10 -7 (-15 -4459 ((-3 (-577) "failed") (-420 (-980 |#1|)))) (-15 -4459 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-864 (-420 (-980 |#1|))))) (-15 -4459 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)) (-1188)))) (-465)) (T -1147)) -((-4459 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1206)) (-5 *5 (-1188)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *6)))) (-4459 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 (-420 (-980 *6)))) (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *6)))) (-4459 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *4))))) -(-10 -7 (-15 -4459 ((-3 (-577) "failed") (-420 (-980 |#1|)))) (-15 -4459 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-864 (-420 (-980 |#1|))))) (-15 -4459 ((-3 (-577) "failed") (-420 (-980 |#1|)) (-1206) (-420 (-980 |#1|)) (-1188)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1892 (((-1211) $) 12 T ELT)) (-1845 (((-665 (-1211)) $) 14 T ELT)) (-3383 (($ (-665 (-1211)) (-1211)) 10 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 29 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 17 T ELT))) -(((-1148) (-13 (-1130) (-10 -8 (-15 -3383 ($ (-665 (-1211)) (-1211))) (-15 -1892 ((-1211) $)) (-15 -1845 ((-665 (-1211)) $))))) (T -1148)) -((-3383 (*1 *1 *2 *3) (-12 (-5 *2 (-665 (-1211))) (-5 *3 (-1211)) (-5 *1 (-1148)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1148)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1148))))) -(-13 (-1130) (-10 -8 (-15 -3383 ($ (-665 (-1211)) (-1211))) (-15 -1892 ((-1211) $)) (-15 -1845 ((-665 (-1211)) $)))) -((-1703 (((-327 (-577)) (-48)) 12 T ELT))) -(((-1149) (-10 -7 (-15 -1703 ((-327 (-577)) (-48))))) (T -1149)) -((-1703 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1149))))) -(-10 -7 (-15 -1703 ((-327 (-577)) (-48)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) 42 T ELT)) (-1516 (((-112) $) 70 T ELT)) (-2343 (($ $ $) 51 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 96 T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3198 (($ $ $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2865 (($ $ $ $) 80 T ELT)) (-4456 (($ $) NIL T ELT)) (-4240 (((-431 $) $) NIL T ELT)) (-3397 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) 81 T ELT)) (-4459 (((-577) $) NIL T ELT)) (-1886 (($ $ $) 77 T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL T ELT)) (-3152 (($ $ $) 64 T ELT)) (-1953 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 90 T ELT) (((-710 (-577)) (-710 $)) 30 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2751 (((-3 (-420 (-577)) "failed") $) NIL T ELT)) (-2748 (((-112) $) NIL T ELT)) (-3557 (((-420 (-577)) $) NIL T ELT)) (-2060 (($) 93 T ELT) (($ $) 94 T ELT)) (-3164 (($ $ $) 63 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL T ELT)) (-1632 (((-112) $) NIL T ELT)) (-3924 (($ $ $ $) NIL T ELT)) (-1642 (($ $ $) 91 T ELT)) (-2785 (((-112) $) NIL T ELT)) (-2283 (($ $ $) NIL T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL T ELT)) (-2331 (($ $ $) 50 T ELT)) (-2097 (((-112) $) 71 T ELT)) (-3356 (((-112) $) 69 T ELT)) (-2308 (($ $) 43 T ELT)) (-3651 (((-3 $ "failed") $) NIL T ELT)) (-1434 (((-112) $) 8 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2832 (($ $ $ $) 78 T ELT)) (-1344 (($ $ $) 73 T ELT) (($) 40 T CONST)) (-4167 (($ $ $) 72 T ELT) (($) 39 T CONST)) (-3692 (($ $) NIL T ELT)) (-2553 (((-949) $) 86 T ELT)) (-3490 (($ $) 76 T ELT)) (-2796 (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL T ELT) (((-710 (-577)) (-1297 $)) NIL T ELT)) (-2388 (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-2085 (($ (-949)) 85 T ELT)) (-1353 (($ $) 56 T ELT)) (-4312 (((-1150) $) 75 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL T ELT)) (-2420 (($ $ $) 67 T ELT) (($ (-665 $)) NIL T ELT)) (-2606 (($ $) NIL T ELT)) (-2799 (((-431 $) $) NIL T ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL T ELT)) (-2793 (((-112) $) NIL T ELT)) (-2442 (((-792) $) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 66 T ELT)) (-2030 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1686 (($ $) 57 T ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-577) $) 15 T ELT) (((-549) $) NIL T ELT) (((-916 (-577)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-228) $) NIL T ELT)) (-2410 (((-885) $) 33 T ELT) (($ (-577)) 92 T ELT) (($ $) NIL T ELT) (($ (-577)) 92 T ELT)) (-3234 (((-792)) NIL T CONST)) (-3254 (((-112) $ $) NIL T ELT)) (-3267 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3646 (($) 38 T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2319 (($ $ $) 48 T ELT)) (-2460 (($ $ $ $) 79 T ELT)) (-3385 (($ $) 68 T ELT)) (-3285 (($ $ $) 45 T ELT)) (-2367 (($) 36 T CONST)) (-1559 (($ $ $) 49 T ELT)) (-2378 (($) 37 T CONST)) (-2792 (((-1188) $) 24 T ELT) (((-1188) $ (-112)) 25 T ELT) (((-1302) (-843) $) 26 T ELT) (((-1302) (-843) $ (-112)) 27 T ELT)) (-1571 (($ $) 46 T ELT)) (-1675 (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-1548 (($ $ $) 47 T ELT)) (-2440 (((-112) $ $) 55 T ELT)) (-2415 (((-112) $ $) 53 T ELT)) (-2383 (((-112) $ $) 41 T ELT)) (-2428 (((-112) $ $) 54 T ELT)) (-2403 (((-112) $ $) 52 T ELT)) (-3272 (($ $ $) 44 T ELT)) (-2483 (($ $) 14 T ELT) (($ $ $) 59 T ELT)) (-2471 (($ $ $) 58 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 62 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 35 T ELT) (($ $ $) 60 T ELT) (($ (-577) $) 35 T ELT))) -(((-1150) (-13 (-558) (-865) (-113) (-682) (-849) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -2343 ($ $ $)) (-15 -1571 ($ $)) (-15 -1548 ($ $ $)) (-15 -1559 ($ $ $))))) (T -1150)) -((-2343 (*1 *1 *1 *1) (-5 *1 (-1150))) (-1571 (*1 *1 *1) (-5 *1 (-1150))) (-1548 (*1 *1 *1 *1) (-5 *1 (-1150))) (-1559 (*1 *1 *1 *1) (-5 *1 (-1150)))) -(-13 (-558) (-865) (-113) (-682) (-849) (-10 -8 (-6 -4486) (-6 -4491) (-6 -4487) (-15 -2343 ($ $ $)) (-15 -1571 ($ $)) (-15 -1548 ($ $ $)) (-15 -1559 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-635 #0=(-1212)) . T) ((-632 (-886)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1131) . T) ((-1248) . T)) +((-1691 ((|#1| |#1| (-1 (-578) |#1| |#1|)) 42 T ELT) ((|#1| |#1| (-1 (-112) |#1|)) 33 T ELT)) (-3817 (((-1303)) 21 T ELT)) (-3757 (((-666 |#1|)) 13 T ELT))) +(((-1115 |#1|) (-10 -7 (-15 -3817 ((-1303))) (-15 -3757 ((-666 |#1|))) (-15 -1691 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1691 (|#1| |#1| (-1 (-578) |#1| |#1|)))) (-134)) (T -1115)) +((-1691 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-578) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))) (-1691 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))) (-3757 (*1 *2) (-12 (-5 *2 (-666 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))) (-3817 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1115 *3)) (-4 *3 (-134))))) +(-10 -7 (-15 -3817 ((-1303))) (-15 -3757 ((-666 |#1|))) (-15 -1691 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1691 (|#1| |#1| (-1 (-578) |#1| |#1|)))) +((-4191 (($ (-109) $) 20 T ELT)) (-2003 (((-713 (-109)) (-520) $) 19 T ELT)) (-1696 (($) 7 T ELT)) (-4163 (($) 21 T ELT)) (-1802 (($) 22 T ELT)) (-2463 (((-666 (-178)) $) 10 T ELT)) (-2411 (((-886) $) 25 T ELT))) +(((-1116) (-13 (-632 (-886)) (-10 -8 (-15 -1696 ($)) (-15 -2463 ((-666 (-178)) $)) (-15 -2003 ((-713 (-109)) (-520) $)) (-15 -4191 ($ (-109) $)) (-15 -4163 ($)) (-15 -1802 ($))))) (T -1116)) +((-1696 (*1 *1) (-5 *1 (-1116))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-666 (-178))) (-5 *1 (-1116)))) (-2003 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1116)))) (-4191 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1116)))) (-4163 (*1 *1) (-5 *1 (-1116))) (-1802 (*1 *1) (-5 *1 (-1116)))) +(-13 (-632 (-886)) (-10 -8 (-15 -1696 ($)) (-15 -2463 ((-666 (-178)) $)) (-15 -2003 ((-713 (-109)) (-520) $)) (-15 -4191 ($ (-109) $)) (-15 -4163 ($)) (-15 -1802 ($)))) +((-2564 (((-1298 (-711 |#1|)) (-666 (-711 |#1|))) 45 T ELT) (((-1298 (-711 (-981 |#1|))) (-666 (-1207)) (-711 (-981 |#1|))) 75 T ELT) (((-1298 (-711 (-421 (-981 |#1|)))) (-666 (-1207)) (-711 (-421 (-981 |#1|)))) 92 T ELT)) (-1453 (((-1298 |#1|) (-711 |#1|) (-666 (-711 |#1|))) 39 T ELT))) +(((-1117 |#1|) (-10 -7 (-15 -2564 ((-1298 (-711 (-421 (-981 |#1|)))) (-666 (-1207)) (-711 (-421 (-981 |#1|))))) (-15 -2564 ((-1298 (-711 (-981 |#1|))) (-666 (-1207)) (-711 (-981 |#1|)))) (-15 -2564 ((-1298 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -1453 ((-1298 |#1|) (-711 |#1|) (-666 (-711 |#1|))))) (-376)) (T -1117)) +((-1453 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-1298 *5)) (-5 *1 (-1117 *5)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-666 (-711 *4))) (-4 *4 (-376)) (-5 *2 (-1298 (-711 *4))) (-5 *1 (-1117 *4)))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-1207))) (-4 *5 (-376)) (-5 *2 (-1298 (-711 (-981 *5)))) (-5 *1 (-1117 *5)) (-5 *4 (-711 (-981 *5))))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-1207))) (-4 *5 (-376)) (-5 *2 (-1298 (-711 (-421 (-981 *5))))) (-5 *1 (-1117 *5)) (-5 *4 (-711 (-421 (-981 *5))))))) +(-10 -7 (-15 -2564 ((-1298 (-711 (-421 (-981 |#1|)))) (-666 (-1207)) (-711 (-421 (-981 |#1|))))) (-15 -2564 ((-1298 (-711 (-981 |#1|))) (-666 (-1207)) (-711 (-981 |#1|)))) (-15 -2564 ((-1298 (-711 |#1|)) (-666 (-711 |#1|)))) (-15 -1453 ((-1298 |#1|) (-711 |#1|) (-666 (-711 |#1|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2018 (((-666 (-793)) $) NIL T ELT) (((-666 (-793)) $ (-1207)) NIL T ELT)) (-2452 (((-793) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-2949 (((-666 (-1119 (-1207))) $) NIL T ELT)) (-4420 (((-1203 $) $ (-1119 (-1207))) NIL T ELT) (((-1203 |#1|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-1119 (-1207)))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2082 (($ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-1119 (-1207)) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-1156 |#1| (-1207)) "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-1119 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1156 |#1| (-1207)) $) NIL T ELT)) (-2035 (($ $ $ (-1119 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1119 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-545 (-1119 (-1207))) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1119 (-1207)) (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1119 (-1207)) (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4059 (((-793) $ (-1207)) NIL T ELT) (((-793) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2936 (($ (-1203 |#1|) (-1119 (-1207))) NIL T ELT) (($ (-1203 $) (-1119 (-1207))) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-545 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-1119 (-1207))) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-1119 (-1207))) NIL T ELT)) (-3937 (((-545 (-1119 (-1207))) $) NIL T ELT) (((-793) $ (-1119 (-1207))) NIL T ELT) (((-666 (-793)) $ (-666 (-1119 (-1207)))) NIL T ELT)) (-2500 (($ (-1 (-545 (-1119 (-1207))) (-545 (-1119 (-1207)))) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1765 (((-1 $ (-793)) (-1207)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-4006 (((-3 (-1119 (-1207)) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2824 (((-1119 (-1207)) $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3548 (((-112) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-1119 (-1207))) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4348 (($ $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-1119 (-1207)) |#1|) NIL T ELT) (($ $ (-666 (-1119 (-1207))) (-666 |#1|)) NIL T ELT) (($ $ (-1119 (-1207)) $) NIL T ELT) (($ $ (-666 (-1119 (-1207))) (-666 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-666 (-1207)) (-666 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-666 (-1207)) (-666 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-3232 (($ $ (-1119 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 (-1119 (-1207))) (-666 (-793))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2352 (((-666 (-1207)) $) NIL T ELT)) (-3683 (((-545 (-1119 (-1207))) $) NIL T ELT) (((-793) $ (-1119 (-1207))) NIL T ELT) (((-666 (-793)) $ (-666 (-1119 (-1207)))) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1119 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1119 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1156 |#1| (-1207))) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-545 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-1119 (-1207))) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 (-1119 (-1207))) (-666 (-793))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-666 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1118 |#1|) (-13 (-262 |#1| (-1207) (-1119 (-1207)) (-545 (-1119 (-1207)))) (-1069 (-1156 |#1| (-1207)))) (-1080)) (T -1118)) +NIL +(-13 (-262 |#1| (-1207) (-1119 (-1207)) (-545 (-1119 (-1207)))) (-1069 (-1156 |#1| (-1207)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2452 (((-793) $) NIL T ELT)) (-3967 ((|#1| $) 10 T ELT)) (-2818 (((-3 |#1| "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT)) (-4059 (((-793) $) 11 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-1765 (($ |#1| (-793)) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2031 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1676 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 16 T ELT))) +(((-1119 |#1|) (-277 |#1|) (-871)) (T -1119)) +NIL +(-277 |#1|) +((-3611 (((-666 |#2|) (-1 |#2| |#1|) (-1125 |#1|)) 29 (|has| |#1| (-870)) ELT) (((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|)) 14 T ELT))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -3611 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (IF (|has| |#1| (-870)) (-15 -3611 ((-666 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) |%noBranch|)) (-1248) (-1248)) (T -1120)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-870)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-666 *6)) (-5 *1 (-1120 *5 *6)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1125 *6)) (-5 *1 (-1120 *5 *6))))) +(-10 -7 (-15 -3611 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (IF (|has| |#1| (-870)) (-15 -3611 ((-666 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2956 (((-666 (-1166)) $) 10 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1121) (-13 (-1114) (-10 -8 (-15 -2956 ((-666 (-1166)) $))))) (T -1121)) +((-2956 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-1121))))) +(-13 (-1114) (-10 -8 (-15 -2956 ((-666 (-1166)) $)))) +((-3611 (((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)) 19 T ELT))) +(((-1122 |#1| |#2|) (-10 -7 (-15 -3611 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)))) (-1248) (-1248)) (T -1122)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1123 *6)) (-5 *1 (-1122 *5 *6))))) +(-10 -7 (-15 -3611 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)))) +((-3213 (((-112) $ $) NIL (|has| (-1125 |#1|) (-1131)) ELT)) (-3967 (((-1207) $) NIL T ELT)) (-4228 (((-1125 |#1|) $) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| (-1125 |#1|) (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| (-1125 |#1|) (-1131)) ELT)) (-4018 (($ (-1207) (-1125 |#1|)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| (-1125 |#1|) (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| (-1125 |#1|) (-1131)) ELT)) (-2384 (((-112) $ $) NIL (|has| (-1125 |#1|) (-1131)) ELT))) +(((-1123 |#1|) (-13 (-1248) (-10 -8 (-15 -4018 ($ (-1207) (-1125 |#1|))) (-15 -3967 ((-1207) $)) (-15 -4228 ((-1125 |#1|) $)) (IF (|has| (-1125 |#1|) (-1131)) (-6 (-1131)) |%noBranch|))) (-1248)) (T -1123)) +((-4018 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1125 *4)) (-4 *4 (-1248)) (-5 *1 (-1123 *4)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1123 *3)) (-4 *3 (-1248)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1248))))) +(-13 (-1248) (-10 -8 (-15 -4018 ($ (-1207) (-1125 |#1|))) (-15 -3967 ((-1207) $)) (-15 -4228 ((-1125 |#1|) $)) (IF (|has| (-1125 |#1|) (-1131)) (-6 (-1131)) |%noBranch|))) +((-4228 (($ |#1| |#1|) 8 T ELT)) (-1685 ((|#1| $) 11 T ELT)) (-3322 ((|#1| $) 13 T ELT)) (-4055 (((-578) $) 9 T ELT)) (-4242 ((|#1| $) 10 T ELT)) (-4065 ((|#1| $) 12 T ELT)) (-3343 (($ |#1|) 6 T ELT)) (-3934 (($ |#1| |#1|) 15 T ELT)) (-2167 (($ $ (-578)) 14 T ELT))) +(((-1124 |#1|) (-142) (-1248)) (T -1124)) +((-3934 (*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-1124 *3)) (-4 *3 (-1248)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248)))) (-1685 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248)))) (-4242 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1248)) (-5 *2 (-578)))) (-4228 (*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248))))) +(-13 (-637 |t#1|) (-10 -8 (-15 -3934 ($ |t#1| |t#1|)) (-15 -2167 ($ $ (-578))) (-15 -3322 (|t#1| $)) (-15 -4065 (|t#1| $)) (-15 -1685 (|t#1| $)) (-15 -4242 (|t#1| $)) (-15 -4055 ((-578) $)) (-15 -4228 ($ |t#1| |t#1|)))) +(((-637 |#1|) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4228 (($ |#1| |#1|) 16 T ELT)) (-3611 (((-666 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-870)) ELT)) (-1685 ((|#1| $) 12 T ELT)) (-3322 ((|#1| $) 11 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4055 (((-578) $) 15 T ELT)) (-4242 ((|#1| $) 14 T ELT)) (-4065 ((|#1| $) 13 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4199 (((-666 |#1|) $) 44 (|has| |#1| (-870)) ELT) (((-666 |#1|) (-666 $)) 43 (|has| |#1| (-870)) ELT)) (-3343 (($ |#1|) 29 T ELT)) (-2411 (((-886) $) 28 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3934 (($ |#1| |#1|) 10 T ELT)) (-2167 (($ $ (-578)) 17 T ELT)) (-2384 (((-112) $ $) 22 (|has| |#1| (-1131)) ELT))) +(((-1125 |#1|) (-13 (-1124 |#1|) (-10 -7 (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-666 |#1|))) |%noBranch|))) (-1248)) (T -1125)) +NIL +(-13 (-1124 |#1|) (-10 -7 (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-666 |#1|))) |%noBranch|))) +((-4228 (($ |#1| |#1|) 8 T ELT)) (-3611 ((|#2| (-1 |#1| |#1|) $) 16 T ELT)) (-1685 ((|#1| $) 11 T ELT)) (-3322 ((|#1| $) 13 T ELT)) (-4055 (((-578) $) 9 T ELT)) (-4242 ((|#1| $) 10 T ELT)) (-4065 ((|#1| $) 12 T ELT)) (-4199 ((|#2| (-666 $)) 18 T ELT) ((|#2| $) 17 T ELT)) (-3343 (($ |#1|) 6 T ELT)) (-3934 (($ |#1| |#1|) 15 T ELT)) (-2167 (($ $ (-578)) 14 T ELT))) +(((-1126 |#1| |#2|) (-142) (-870) (-1180 |t#1|)) (T -1126)) +((-4199 (*1 *2 *3) (-12 (-5 *3 (-666 *1)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1180 *4)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1180 *3)))) (-3611 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1180 *4))))) +(-13 (-1124 |t#1|) (-10 -8 (-15 -4199 (|t#2| (-666 $))) (-15 -4199 (|t#2| $)) (-15 -3611 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-637 |#1|) . T) ((-1124 |#1|) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2757 (((-1166) $) 12 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4117 (((-666 (-1166)) $) 10 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1127) (-13 (-1114) (-10 -8 (-15 -4117 ((-666 (-1166)) $)) (-15 -2757 ((-1166) $))))) (T -1127)) +((-4117 (*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-1127)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1127))))) +(-13 (-1114) (-10 -8 (-15 -4117 ((-666 (-1166)) $)) (-15 -2757 ((-1166) $)))) +((-1340 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-4430 (($ $ $) 10 T ELT)) (-2867 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1128 |#1| |#2|) (-10 -8 (-15 -1340 (|#1| |#2| |#1|)) (-15 -1340 (|#1| |#1| |#2|)) (-15 -1340 (|#1| |#1| |#1|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2867 (|#1| |#1| |#1|))) (-1129 |#2|) (-1131)) (T -1128)) +NIL +(-10 -8 (-15 -1340 (|#1| |#2| |#1|)) (-15 -1340 (|#1| |#1| |#2|)) (-15 -1340 (|#1| |#1| |#1|)) (-15 -4430 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#2|)) (-15 -2867 (|#1| |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-1340 (($ $ $) 19 T ELT) (($ $ |#1|) 18 T ELT) (($ |#1| $) 17 T ELT)) (-4430 (($ $ $) 21 T ELT)) (-3954 (((-112) $ $) 20 T ELT)) (-1628 (((-112) $ (-793)) 36 T ELT)) (-1754 (($) 26 T ELT) (($ (-666 |#1|)) 25 T ELT)) (-4233 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 37 T CONST)) (-3776 (($ $) 60 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#1| $) 59 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4500)) ELT)) (-2729 (((-666 |#1|) $) 44 (|has| $ (-6 -4500)) ELT)) (-2930 (((-112) $ $) 29 T ELT)) (-2363 (((-112) $ (-793)) 35 T ELT)) (-1441 (((-666 |#1|) $) 45 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-1719 (((-112) $ (-793)) 34 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3457 (($ $ $) 24 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#1|) (-666 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 (-306 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 30 T ELT)) (-4186 (((-112) $) 33 T ELT)) (-1696 (($) 32 T ELT)) (-2867 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT)) (-4324 (((-793) |#1| $) 46 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 31 T ELT)) (-3343 (((-550) $) 61 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 52 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2869 (($) 28 T ELT) (($ (-666 |#1|)) 27 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-793) $) 38 (|has| $ (-6 -4500)) ELT))) +(((-1129 |#1|) (-142) (-1131)) (T -1129)) +((-2930 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-112)))) (-2869 (*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-2869 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) (-1754 (*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-1754 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) (-3457 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-2867 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-4430 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-3954 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-112)))) (-1340 (*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-1340 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) (-1340 (*1 *1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(-13 (-1131) (-153 |t#1|) (-10 -8 (-6 -4490) (-15 -2930 ((-112) $ $)) (-15 -2869 ($)) (-15 -2869 ($ (-666 |t#1|))) (-15 -1754 ($)) (-15 -1754 ($ (-666 |t#1|))) (-15 -3457 ($ $ $)) (-15 -2867 ($ $ $)) (-15 -2867 ($ $ |t#1|)) (-15 -4430 ($ $ $)) (-15 -3954 ((-112) $ $)) (-15 -1340 ($ $ $)) (-15 -1340 ($ $ |t#1|)) (-15 -1340 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-632 (-886)) . T) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) . T) ((-1248) . T)) +((-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 8 T ELT))) +(((-1130 |#1|) (-10 -8 (-15 -2617 ((-1189) |#1|)) (-15 -4313 ((-1151) |#1|))) (-1131)) (T -1130)) +NIL +(-10 -8 (-15 -2617 ((-1189) |#1|)) (-15 -4313 ((-1151) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-1131) (-142)) (T -1131)) +((-4313 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1151)))) (-2617 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1189))))) +(-13 (-102) (-632 (-886)) (-10 -8 (-15 -4313 ((-1151) $)) (-15 -2617 ((-1189) $)))) +(((-102) . T) ((-632 (-886)) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) 36 T ELT)) (-1534 (($ (-666 (-950))) 70 T ELT)) (-4016 (((-3 $ "failed") $ (-950) (-950)) 81 T ELT)) (-2062 (($) 40 T ELT)) (-1624 (((-112) (-950) $) 42 T ELT)) (-3193 (((-950) $) 64 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) 39 T ELT)) (-3204 (((-3 $ "failed") $ (-950)) 77 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4355 (((-1298 $)) 47 T ELT)) (-1890 (((-666 (-950)) $) 27 T ELT)) (-2957 (((-793) $ (-950) (-950)) 78 T ELT)) (-2411 (((-886) $) 32 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 24 T ELT))) +(((-1132 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3204 ((-3 $ "failed") $ (-950))) (-15 -4016 ((-3 $ "failed") $ (-950) (-950))) (-15 -1890 ((-666 (-950)) $)) (-15 -1534 ($ (-666 (-950)))) (-15 -4355 ((-1298 $))) (-15 -1624 ((-112) (-950) $)) (-15 -2957 ((-793) $ (-950) (-950))))) (-950) (-950)) (T -1132)) +((-3204 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-950)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4016 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-950)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950)))) (-4355 (*1 *2) (-12 (-5 *2 (-1298 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950)))) (-1624 (*1 *2 *3 *1) (-12 (-5 *3 (-950)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2957 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-950)) (-5 *2 (-793)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-381) (-10 -8 (-15 -3204 ((-3 $ "failed") $ (-950))) (-15 -4016 ((-3 $ "failed") $ (-950) (-950))) (-15 -1890 ((-666 (-950)) $)) (-15 -1534 ($ (-666 (-950)))) (-15 -4355 ((-1298 $))) (-15 -1624 ((-112) (-950) $)) (-15 -2957 ((-793) $ (-950) (-950))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3927 (($) NIL (|has| |#1| (-381)) ELT)) (-1340 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-4430 (($ $ $) 81 T ELT)) (-3954 (((-112) $ $) 82 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-1754 (($ (-666 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1589 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2631 (($ |#1| $) 74 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4500)) ELT)) (-2062 (($) NIL (|has| |#1| (-381)) ELT)) (-2729 (((-666 |#1|) $) 19 (|has| $ (-6 -4500)) ELT)) (-2930 (((-112) $ $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1345 ((|#1| $) 55 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3667 ((|#1| $) 53 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3193 (((-950) $) NIL (|has| |#1| (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3457 (($ $ $) 79 T ELT)) (-2743 ((|#1| $) 25 T ELT)) (-4328 (($ |#1| $) 69 T ELT)) (-2087 (($ (-950)) NIL (|has| |#1| (-381)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31 T ELT)) (-1994 ((|#1| $) 27 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 21 T ELT)) (-1696 (($) 11 T ELT)) (-2867 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1338 (($) NIL T ELT) (($ (-666 |#1|)) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 16 T ELT)) (-3343 (((-550) $) 50 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 62 T ELT)) (-2166 (($ $) NIL (|has| |#1| (-381)) ELT)) (-2411 (((-886) $) NIL T ELT)) (-3131 (((-793) $) NIL T ELT)) (-2869 (($ (-666 |#1|)) NIL T ELT) (($) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3764 (($ (-666 |#1|)) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 52 T ELT)) (-3226 (((-793) $) 10 (|has| $ (-6 -4500)) ELT))) +(((-1133 |#1|) (-439 |#1|) (-1131)) (T -1133)) +NIL +(-439 |#1|) +((-3213 (((-112) $ $) 7 T ELT)) (-2763 (((-112) $) 33 T ELT)) (-2068 ((|#2| $) 28 T ELT)) (-2476 (((-112) $) 34 T ELT)) (-1966 ((|#1| $) 29 T ELT)) (-4149 (((-112) $) 36 T ELT)) (-2896 (((-112) $) 38 T ELT)) (-2376 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2794 (((-112) $) 32 T ELT)) (-2088 ((|#3| $) 27 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2601 (((-112) $) 31 T ELT)) (-3243 ((|#4| $) 26 T ELT)) (-3922 ((|#5| $) 25 T ELT)) (-3505 (((-112) $ $) 39 T ELT)) (-2436 (($ $ (-578)) 41 T ELT) (($ $ (-666 (-578))) 40 T ELT)) (-2879 (((-666 $) $) 30 T ELT)) (-3343 (($ |#1|) 47 T ELT) (($ |#2|) 46 T ELT) (($ |#3|) 45 T ELT) (($ |#4|) 44 T ELT) (($ |#5|) 43 T ELT) (($ (-666 $)) 42 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2321 (($ $) 23 T ELT)) (-2871 (($ $) 24 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3641 (((-112) $) 37 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-578) $) 22 T ELT))) +(((-1134 |#1| |#2| |#3| |#4| |#5|) (-142) (-1131) (-1131) (-1131) (-1131) (-1131)) (T -1134)) +((-3505 (*1 *2 *1 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-2476 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112)))) (-2879 (*1 *2 *1) (-12 (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-666 *1)) (-4 *1 (-1134 *3 *4 *5 *6 *7)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *2 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *2 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *2)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) (-2871 (*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)))) (-2321 (*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-578))))) +(-13 (-1131) (-637 |t#1|) (-637 |t#2|) (-637 |t#3|) (-637 |t#4|) (-637 |t#4|) (-637 |t#5|) (-637 (-666 $)) (-298 (-578) $) (-298 (-666 (-578)) $) (-10 -8 (-15 -3505 ((-112) $ $)) (-15 -2896 ((-112) $)) (-15 -3641 ((-112) $)) (-15 -4149 ((-112) $)) (-15 -2376 ((-112) $)) (-15 -2476 ((-112) $)) (-15 -2763 ((-112) $)) (-15 -2794 ((-112) $)) (-15 -2601 ((-112) $)) (-15 -2879 ((-666 $) $)) (-15 -1966 (|t#1| $)) (-15 -2068 (|t#2| $)) (-15 -2088 (|t#3| $)) (-15 -3243 (|t#4| $)) (-15 -3922 (|t#5| $)) (-15 -2871 ($ $)) (-15 -2321 ($ $)) (-15 -3226 ((-578) $)))) +(((-102) . T) ((-632 (-886)) . T) ((-637 (-666 $)) . T) ((-637 |#1|) . T) ((-637 |#2|) . T) ((-637 |#3|) . T) ((-637 |#4|) . T) ((-637 |#5|) . T) ((-298 (-578) $) . T) ((-298 (-666 (-578)) $) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2763 (((-112) $) NIL T ELT)) (-2068 (((-1207) $) NIL T ELT)) (-2476 (((-112) $) NIL T ELT)) (-1966 (((-1189) $) NIL T ELT)) (-4149 (((-112) $) NIL T ELT)) (-2896 (((-112) $) NIL T ELT)) (-2376 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2794 (((-112) $) NIL T ELT)) (-2088 (((-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2601 (((-112) $) NIL T ELT)) (-3243 (((-229) $) NIL T ELT)) (-3922 (((-886) $) NIL T ELT)) (-3505 (((-112) $ $) NIL T ELT)) (-2436 (($ $ (-578)) NIL T ELT) (($ $ (-666 (-578))) NIL T ELT)) (-2879 (((-666 $) $) NIL T ELT)) (-3343 (($ (-1189)) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-886)) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2321 (($ $) NIL T ELT)) (-2871 (($ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3641 (((-112) $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3226 (((-578) $) NIL T ELT))) +(((-1135) (-1134 (-1189) (-1207) (-578) (-229) (-886))) (T -1135)) +NIL +(-1134 (-1189) (-1207) (-578) (-229) (-886)) +((-3213 (((-112) $ $) NIL T ELT)) (-2763 (((-112) $) 45 T ELT)) (-2068 ((|#2| $) 48 T ELT)) (-2476 (((-112) $) 20 T ELT)) (-1966 ((|#1| $) 21 T ELT)) (-4149 (((-112) $) 42 T ELT)) (-2896 (((-112) $) 14 T ELT)) (-2376 (((-112) $) 44 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2794 (((-112) $) 46 T ELT)) (-2088 ((|#3| $) 50 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2601 (((-112) $) 47 T ELT)) (-3243 ((|#4| $) 49 T ELT)) (-3922 ((|#5| $) 51 T ELT)) (-3505 (((-112) $ $) 41 T ELT)) (-2436 (($ $ (-578)) 62 T ELT) (($ $ (-666 (-578))) 64 T ELT)) (-2879 (((-666 $) $) 27 T ELT)) (-3343 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-666 $)) 52 T ELT)) (-2411 (((-886) $) 28 T ELT)) (-2321 (($ $) 26 T ELT)) (-2871 (($ $) 58 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3641 (((-112) $) 23 T ELT)) (-2384 (((-112) $ $) 40 T ELT)) (-3226 (((-578) $) 60 T ELT))) +(((-1136 |#1| |#2| |#3| |#4| |#5|) (-1134 |#1| |#2| |#3| |#4| |#5|) (-1131) (-1131) (-1131) (-1131) (-1131)) (T -1136)) +NIL +(-1134 |#1| |#2| |#3| |#4| |#5|) +((-1903 (((-1303) $) 22 T ELT)) (-3280 (($ (-1207) (-448) |#2|) 11 T ELT)) (-2411 (((-886) $) 16 T ELT))) +(((-1137 |#1| |#2|) (-13 (-409) (-10 -8 (-15 -3280 ($ (-1207) (-448) |#2|)))) (-1131) (-444 |#1|)) (T -1137)) +((-3280 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-448)) (-4 *5 (-1131)) (-5 *1 (-1137 *5 *4)) (-4 *4 (-444 *5))))) +(-13 (-409) (-10 -8 (-15 -3280 ($ (-1207) (-448) |#2|)))) +((-1443 (((-112) |#5| |#5|) 44 T ELT)) (-1871 (((-112) |#5| |#5|) 59 T ELT)) (-2498 (((-112) |#5| (-666 |#5|)) 82 T ELT) (((-112) |#5| |#5|) 68 T ELT)) (-2577 (((-112) (-666 |#4|) (-666 |#4|)) 65 T ELT)) (-3426 (((-112) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) 70 T ELT)) (-2032 (((-1303)) 32 T ELT)) (-1554 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-3811 (((-666 |#5|) (-666 |#5|)) 101 T ELT)) (-2015 (((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) 93 T ELT)) (-2075 (((-666 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|)))) (-666 |#4|) (-666 |#5|) (-112) (-112)) 123 T ELT)) (-4351 (((-112) |#5| |#5|) 53 T ELT)) (-2175 (((-3 (-112) "failed") |#5| |#5|) 78 T ELT)) (-3713 (((-112) (-666 |#4|) (-666 |#4|)) 64 T ELT)) (-2291 (((-112) (-666 |#4|) (-666 |#4|)) 66 T ELT)) (-3151 (((-112) (-666 |#4|) (-666 |#4|)) 67 T ELT)) (-2486 (((-3 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|))) "failed") (-666 |#4|) |#5| (-666 |#4|) (-112) (-112) (-112) (-112) (-112)) 118 T ELT)) (-1378 (((-666 |#5|) (-666 |#5|)) 49 T ELT))) +(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1554 ((-1303) (-1189) (-1189) (-1189))) (-15 -2032 ((-1303))) (-15 -1443 ((-112) |#5| |#5|)) (-15 -1378 ((-666 |#5|) (-666 |#5|))) (-15 -4351 ((-112) |#5| |#5|)) (-15 -1871 ((-112) |#5| |#5|)) (-15 -2577 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3713 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2291 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3151 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2498 ((-112) |#5| |#5|)) (-15 -2498 ((-112) |#5| (-666 |#5|))) (-15 -3811 ((-666 |#5|) (-666 |#5|))) (-15 -3426 ((-112) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -2015 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-15 -2075 ((-666 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|)))) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2486 ((-3 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|))) "failed") (-666 |#4|) |#5| (-666 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1138)) +((-2486 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| -3505 (-666 *9)) (|:| -4318 *4) (|:| |ineq| (-666 *9)))) (-5 *1 (-1138 *6 *7 *8 *9 *4)) (-5 *3 (-666 *9)) (-4 *4 (-1102 *6 *7 *8 *9)))) (-2075 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-666 *10)) (-5 *5 (-112)) (-4 *10 (-1102 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-666 (-2 (|:| -3505 (-666 *9)) (|:| -4318 *10) (|:| |ineq| (-666 *9))))) (-5 *1 (-1138 *6 *7 *8 *9 *10)) (-5 *3 (-666 *9)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-666 (-2 (|:| |val| (-666 *6)) (|:| -4318 *7)))) (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-3426 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *8)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1138 *5 *6 *7 *8 *3)))) (-2498 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2175 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3151 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2291 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2577 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-4351 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-1443 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2032 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1554 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(-10 -7 (-15 -1554 ((-1303) (-1189) (-1189) (-1189))) (-15 -2032 ((-1303))) (-15 -1443 ((-112) |#5| |#5|)) (-15 -1378 ((-666 |#5|) (-666 |#5|))) (-15 -4351 ((-112) |#5| |#5|)) (-15 -1871 ((-112) |#5| |#5|)) (-15 -2577 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3713 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2291 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -3151 ((-112) (-666 |#4|) (-666 |#4|))) (-15 -2175 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2498 ((-112) |#5| |#5|)) (-15 -2498 ((-112) |#5| (-666 |#5|))) (-15 -3811 ((-666 |#5|) (-666 |#5|))) (-15 -3426 ((-112) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -2015 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-15 -2075 ((-666 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|)))) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2486 ((-3 (-2 (|:| -3505 (-666 |#4|)) (|:| -4318 |#5|) (|:| |ineq| (-666 |#4|))) "failed") (-666 |#4|) |#5| (-666 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3297 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|) 108 T ELT)) (-2080 (((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#4| |#4| |#5|) 80 T ELT)) (-4283 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|) 102 T ELT)) (-2889 (((-666 |#5|) |#4| |#5|) 124 T ELT)) (-4480 (((-666 |#5|) |#4| |#5|) 131 T ELT)) (-3500 (((-666 |#5|) |#4| |#5|) 132 T ELT)) (-1574 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|) 109 T ELT)) (-3222 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|) 130 T ELT)) (-3740 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|) 47 T ELT) (((-112) |#4| |#5|) 55 T ELT)) (-1847 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#3| (-112)) 92 T ELT) (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52 T ELT)) (-1570 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|) 87 T ELT)) (-3434 (((-1303)) 36 T ELT)) (-3860 (((-1303)) 25 T ELT)) (-1809 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-4144 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT))) +(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4144 ((-1303) (-1189) (-1189) (-1189))) (-15 -3860 ((-1303))) (-15 -1809 ((-1303) (-1189) (-1189) (-1189))) (-15 -3434 ((-1303))) (-15 -2080 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -1847 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1847 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#3| (-112))) (-15 -1570 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -4283 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -3740 ((-112) |#4| |#5|)) (-15 -1574 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -2889 ((-666 |#5|) |#4| |#5|)) (-15 -3222 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -4480 ((-666 |#5|) |#4| |#5|)) (-15 -3740 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -3500 ((-666 |#5|) |#4| |#5|)) (-15 -3297 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1139)) +((-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3500 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3740 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4480 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3222 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2889 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1574 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3740 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4283 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1570 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) (-5 *5 (-112)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) (-5 *2 (-666 (-2 (|:| |val| *8) (|:| -4318 *9)))) (-5 *1 (-1139 *6 *7 *4 *8 *9)))) (-1847 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-2080 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3434 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1809 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3860 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-4144 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(-10 -7 (-15 -4144 ((-1303) (-1189) (-1189) (-1189))) (-15 -3860 ((-1303))) (-15 -1809 ((-1303) (-1189) (-1189) (-1189))) (-15 -3434 ((-1303))) (-15 -2080 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -1847 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1847 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) |#3| (-112))) (-15 -1570 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -4283 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#4| |#5|)) (-15 -3740 ((-112) |#4| |#5|)) (-15 -1574 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -2889 ((-666 |#5|) |#4| |#5|)) (-15 -3222 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -4480 ((-666 |#5|) |#4| |#5|)) (-15 -3740 ((-666 (-2 (|:| |val| (-112)) (|:| -4318 |#5|))) |#4| |#5|)) (-15 -3500 ((-666 |#5|) |#4| |#5|)) (-15 -3297 ((-666 (-2 (|:| |val| |#4|) (|:| -4318 |#5|))) |#4| |#5|))) +((-3213 (((-112) $ $) 7 T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) 86 T ELT)) (-3997 (((-666 $) (-666 |#4|)) 87 T ELT) (((-666 $) (-666 |#4|) (-112)) 112 T ELT)) (-2949 (((-666 |#3|) $) 34 T ELT)) (-3039 (((-112) $) 27 T ELT)) (-2774 (((-112) $) 18 (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-2596 ((|#4| |#4| $) 93 T ELT)) (-1457 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| $) 127 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1628 (((-112) $ (-793)) 45 T ELT)) (-4233 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3534 (($) 46 T CONST)) (-4147 (((-112) $) 23 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) 25 (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) 24 (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) 26 (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) 19 (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) 20 (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) 37 T ELT)) (-3516 (($ (-666 |#4|)) 36 T ELT)) (-4198 (((-3 $ "failed") $) 83 T ELT)) (-1707 ((|#4| |#4| $) 90 T ELT)) (-3776 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3069 ((|#4| |#4| $) 88 T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) 106 T ELT)) (-1434 (((-112) |#4| $) 137 T ELT)) (-2669 (((-112) |#4| $) 134 T ELT)) (-2762 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2729 (((-666 |#4|) $) 53 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-2537 ((|#3| $) 35 T ELT)) (-2363 (((-112) $ (-793)) 44 T ELT)) (-1441 (((-666 |#4|) $) 54 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3117 (((-666 |#3|) $) 33 T ELT)) (-1455 (((-112) |#3| $) 32 T ELT)) (-1719 (((-112) $ (-793)) 43 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1763 (((-3 |#4| (-666 $)) |#4| |#4| $) 129 T ELT)) (-3064 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| |#4| $) 128 T ELT)) (-2757 (((-3 |#4| "failed") $) 84 T ELT)) (-4044 (((-666 $) |#4| $) 130 T ELT)) (-3976 (((-3 (-112) (-666 $)) |#4| $) 133 T ELT)) (-1835 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3457 (((-666 $) |#4| $) 126 T ELT) (((-666 $) (-666 |#4|) $) 125 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 124 T ELT) (((-666 $) |#4| (-666 $)) 123 T ELT)) (-4064 (($ |#4| $) 118 T ELT) (($ (-666 |#4|) $) 117 T ELT)) (-1708 (((-666 |#4|) $) 108 T ELT)) (-3084 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-3494 ((|#4| |#4| $) 91 T ELT)) (-3151 (((-112) $ $) 111 T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-1922 ((|#4| |#4| $) 92 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4189 (((-3 |#4| "failed") $) 85 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2704 (($ $ |#4|) 78 T ELT) (((-666 $) |#4| $) 116 T ELT) (((-666 $) |#4| (-666 $)) 115 T ELT) (((-666 $) (-666 |#4|) $) 114 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 113 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) 39 T ELT)) (-4186 (((-112) $) 42 T ELT)) (-1696 (($) 41 T ELT)) (-3683 (((-793) $) 107 T ELT)) (-4324 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 40 T ELT)) (-3343 (((-550) $) 70 (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 61 T ELT)) (-1339 (($ $ |#3|) 29 T ELT)) (-2093 (($ $ |#3|) 31 T ELT)) (-2499 (($ $) 89 T ELT)) (-3102 (($ $ |#3|) 30 T ELT)) (-2411 (((-886) $) 12 T ELT) (((-666 |#4|) $) 38 T ELT)) (-2474 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) 99 T ELT)) (-2557 (((-666 $) |#4| $) 122 T ELT) (((-666 $) |#4| (-666 $)) 121 T ELT) (((-666 $) (-666 |#4|) $) 120 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 119 T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) 82 T ELT)) (-3091 (((-112) |#4| $) 136 T ELT)) (-2714 (((-112) |#3| $) 81 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-793) $) 47 (|has| $ (-6 -4500)) ELT))) +(((-1140 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1140)) +NIL +(-13 (-1102 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-632 (-666 |#4|)) . T) ((-632 (-886)) . T) ((-153 |#4|) . T) ((-633 (-550)) |has| |#4| (-633 (-550))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1241 |#1| |#2| |#3| |#4|) . T) ((-1248) . T)) +((-3897 (((-666 (-578)) (-578) (-578) (-578)) 38 T ELT)) (-1900 (((-666 (-578)) (-578) (-578) (-578)) 28 T ELT)) (-2326 (((-666 (-578)) (-578) (-578) (-578)) 33 T ELT)) (-2305 (((-578) (-578) (-578)) 21 T ELT)) (-4075 (((-1298 (-578)) (-666 (-578)) (-1298 (-578)) (-578)) 77 T ELT) (((-1298 (-578)) (-1298 (-578)) (-1298 (-578)) (-578)) 72 T ELT)) (-4356 (((-666 (-578)) (-666 (-950)) (-666 (-578)) (-112)) 54 T ELT)) (-2377 (((-711 (-578)) (-666 (-578)) (-666 (-578)) (-711 (-578))) 76 T ELT)) (-1911 (((-711 (-578)) (-666 (-950)) (-666 (-578))) 59 T ELT)) (-1764 (((-666 (-711 (-578))) (-666 (-950))) 65 T ELT)) (-2678 (((-666 (-578)) (-666 (-578)) (-666 (-578)) (-711 (-578))) 80 T ELT)) (-2056 (((-711 (-578)) (-666 (-578)) (-666 (-578)) (-666 (-578))) 90 T ELT))) +(((-1141) (-10 -7 (-15 -2056 ((-711 (-578)) (-666 (-578)) (-666 (-578)) (-666 (-578)))) (-15 -2678 ((-666 (-578)) (-666 (-578)) (-666 (-578)) (-711 (-578)))) (-15 -1764 ((-666 (-711 (-578))) (-666 (-950)))) (-15 -1911 ((-711 (-578)) (-666 (-950)) (-666 (-578)))) (-15 -2377 ((-711 (-578)) (-666 (-578)) (-666 (-578)) (-711 (-578)))) (-15 -4356 ((-666 (-578)) (-666 (-950)) (-666 (-578)) (-112))) (-15 -4075 ((-1298 (-578)) (-1298 (-578)) (-1298 (-578)) (-578))) (-15 -4075 ((-1298 (-578)) (-666 (-578)) (-1298 (-578)) (-578))) (-15 -2305 ((-578) (-578) (-578))) (-15 -2326 ((-666 (-578)) (-578) (-578) (-578))) (-15 -1900 ((-666 (-578)) (-578) (-578) (-578))) (-15 -3897 ((-666 (-578)) (-578) (-578) (-578))))) (T -1141)) +((-3897 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1141)) (-5 *3 (-578)))) (-1900 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1141)) (-5 *3 (-578)))) (-2326 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1141)) (-5 *3 (-578)))) (-2305 (*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1141)))) (-4075 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1298 (-578))) (-5 *3 (-666 (-578))) (-5 *4 (-578)) (-5 *1 (-1141)))) (-4075 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1298 (-578))) (-5 *3 (-578)) (-5 *1 (-1141)))) (-4356 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-666 (-578))) (-5 *3 (-666 (-950))) (-5 *4 (-112)) (-5 *1 (-1141)))) (-2377 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-711 (-578))) (-5 *3 (-666 (-578))) (-5 *1 (-1141)))) (-1911 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-950))) (-5 *4 (-666 (-578))) (-5 *2 (-711 (-578))) (-5 *1 (-1141)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-666 (-950))) (-5 *2 (-666 (-711 (-578)))) (-5 *1 (-1141)))) (-2678 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-666 (-578))) (-5 *3 (-711 (-578))) (-5 *1 (-1141)))) (-2056 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-666 (-578))) (-5 *2 (-711 (-578))) (-5 *1 (-1141))))) +(-10 -7 (-15 -2056 ((-711 (-578)) (-666 (-578)) (-666 (-578)) (-666 (-578)))) (-15 -2678 ((-666 (-578)) (-666 (-578)) (-666 (-578)) (-711 (-578)))) (-15 -1764 ((-666 (-711 (-578))) (-666 (-950)))) (-15 -1911 ((-711 (-578)) (-666 (-950)) (-666 (-578)))) (-15 -2377 ((-711 (-578)) (-666 (-578)) (-666 (-578)) (-711 (-578)))) (-15 -4356 ((-666 (-578)) (-666 (-950)) (-666 (-578)) (-112))) (-15 -4075 ((-1298 (-578)) (-1298 (-578)) (-1298 (-578)) (-578))) (-15 -4075 ((-1298 (-578)) (-666 (-578)) (-1298 (-578)) (-578))) (-15 -2305 ((-578) (-578) (-578))) (-15 -2326 ((-666 (-578)) (-578) (-578) (-578))) (-15 -1900 ((-666 (-578)) (-578) (-578) (-578))) (-15 -3897 ((-666 (-578)) (-578) (-578) (-578)))) +((** (($ $ (-950)) 10 T ELT))) +(((-1142 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-950)))) (-1143)) (T -1142)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-950)))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (** (($ $ (-950)) 14 T ELT)) (* (($ $ $) 15 T ELT))) +(((-1143) (-142)) (T -1143)) +((* (*1 *1 *1 *1) (-4 *1 (-1143))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-950))))) +(-13 (-1131) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-950))))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-3623 (((-112) $) NIL (|has| |#3| (-23)) ELT)) (-2695 (($ (-950)) NIL (|has| |#3| (-1080)) ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2424 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2222 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-2590 ((|#3| $ (-578) |#3|) NIL (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131))) ELT) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1131)) ELT)) (-3516 (((-578) $) NIL (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) ELT) (((-421 (-578)) $) NIL (-12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131))) ELT) ((|#3| $) NIL (|has| |#3| (-1131)) ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 $) (-1298 $)) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1080)) ELT)) (-3493 (((-3 $ "failed") $) NIL (|has| |#3| (-1080)) ELT)) (-2062 (($) NIL (|has| |#3| (-381)) ELT)) (-3450 ((|#3| $ (-578) |#3|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#3| $ (-578)) 12 T ELT)) (-2729 (((-666 |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL (|has| |#3| (-1080)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-1441 (((-666 |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3439 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3193 (((-950) $) NIL (|has| |#3| (-381)) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#3| (-660 (-578))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-1298 $) $) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-1298 $)) NIL (|has| |#3| (-1080)) ELT)) (-2617 (((-1189) $) NIL (|has| |#3| (-1131)) ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-2087 (($ (-950)) NIL (|has| |#3| (-381)) ELT)) (-4313 (((-1151) $) NIL (|has| |#3| (-1131)) ELT)) (-4189 ((|#3| $) NIL (|has| (-578) (-871)) ELT)) (-4291 (($ $ |#3|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-306 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT) (($ $ (-666 |#3|) (-666 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT)) (-4322 (((-666 |#3|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#3| $ (-578) |#3|) NIL T ELT) ((|#3| $ (-578)) NIL T ELT)) (-1406 ((|#3| $ $) NIL (|has| |#3| (-1080)) ELT)) (-2841 (($ (-1298 |#3|)) NIL T ELT)) (-4425 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-2031 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#3| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-2411 (((-1298 |#3|) $) NIL T ELT) (($ (-578)) NIL (-2230 (-12 (|has| |#3| (-1069 (-578))) (|has| |#3| (-1131))) (|has| |#3| (-1080))) ELT) (($ (-421 (-578))) NIL (-12 (|has| |#3| (-1069 (-421 (-578)))) (|has| |#3| (-1131))) ELT) (($ |#3|) NIL (|has| |#3| (-1131)) ELT) (((-886) $) NIL (|has| |#3| (-632 (-886))) ELT)) (-3753 (((-793)) NIL (|has| |#3| (-1080)) CONST)) (-2876 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2368 (($) NIL (|has| |#3| (-23)) CONST)) (-2379 (($) NIL (|has| |#3| (-1080)) CONST)) (-1676 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#3| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#3| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#3| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#3| (-871)) ELT)) (-2404 (((-112) $ $) 24 (|has| |#3| (-871)) ELT)) (-2495 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2484 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-2472 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-950)) NIL (|has| |#3| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1080)) ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ (-578) $) NIL (|has| |#3| (-21)) ELT) (($ (-793) $) NIL (|has| |#3| (-23)) ELT) (($ (-950) $) NIL (|has| |#3| (-25)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1144 |#1| |#2| |#3|) (-245 |#1| |#3|) (-793) (-793) (-815)) (T -1144)) +NIL +(-245 |#1| |#3|) +((-3727 (((-666 (-1271 |#2| |#1|)) (-1271 |#2| |#1|) (-1271 |#2| |#1|)) 50 T ELT)) (-1736 (((-578) (-1271 |#2| |#1|)) 94 (|has| |#1| (-466)) ELT)) (-3389 (((-578) (-1271 |#2| |#1|)) 76 T ELT)) (-3019 (((-666 (-1271 |#2| |#1|)) (-1271 |#2| |#1|) (-1271 |#2| |#1|)) 58 T ELT)) (-3417 (((-578) (-1271 |#2| |#1|) (-1271 |#2| |#1|)) 93 (|has| |#1| (-466)) ELT)) (-3600 (((-666 |#1|) (-1271 |#2| |#1|) (-1271 |#2| |#1|)) 61 T ELT)) (-1876 (((-578) (-1271 |#2| |#1|) (-1271 |#2| |#1|)) 75 T ELT))) +(((-1145 |#1| |#2|) (-10 -7 (-15 -3727 ((-666 (-1271 |#2| |#1|)) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -3019 ((-666 (-1271 |#2| |#1|)) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -3600 ((-666 |#1|) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -1876 ((-578) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -3389 ((-578) (-1271 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3417 ((-578) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -1736 ((-578) (-1271 |#2| |#1|)))) |%noBranch|)) (-842) (-1207)) (T -1145)) +((-1736 (*1 *2 *3) (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-578)) (-5 *1 (-1145 *4 *5)))) (-3417 (*1 *2 *3 *3) (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-578)) (-5 *1 (-1145 *4 *5)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-578)) (-5 *1 (-1145 *4 *5)))) (-1876 (*1 *2 *3 *3) (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-578)) (-5 *1 (-1145 *4 *5)))) (-3600 (*1 *2 *3 *3) (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-666 *4)) (-5 *1 (-1145 *4 *5)))) (-3019 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-666 (-1271 *5 *4))) (-5 *1 (-1145 *4 *5)) (-5 *3 (-1271 *5 *4)))) (-3727 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-666 (-1271 *5 *4))) (-5 *1 (-1145 *4 *5)) (-5 *3 (-1271 *5 *4))))) +(-10 -7 (-15 -3727 ((-666 (-1271 |#2| |#1|)) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -3019 ((-666 (-1271 |#2| |#1|)) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -3600 ((-666 |#1|) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -1876 ((-578) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -3389 ((-578) (-1271 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3417 ((-578) (-1271 |#2| |#1|) (-1271 |#2| |#1|))) (-15 -1736 ((-578) (-1271 |#2| |#1|)))) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-3721 (($ (-520) (-1149)) 13 T ELT)) (-3385 (((-1149) $) 19 T ELT)) (-4107 (((-520) $) 16 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 26 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1146) (-13 (-1114) (-10 -8 (-15 -3721 ($ (-520) (-1149))) (-15 -4107 ((-520) $)) (-15 -3385 ((-1149) $))))) (T -1146)) +((-3721 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1149)) (-5 *1 (-1146)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1146)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1146))))) +(-13 (-1114) (-10 -8 (-15 -3721 ($ (-520) (-1149))) (-15 -4107 ((-520) $)) (-15 -3385 ((-1149) $)))) +((-1490 (((-3 (-578) "failed") |#2| (-1207) |#2| (-1189)) 19 T ELT) (((-3 (-578) "failed") |#2| (-1207) (-865 |#2|)) 17 T ELT) (((-3 (-578) "failed") |#2|) 60 T ELT))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -1490 ((-3 (-578) "failed") |#2|)) (-15 -1490 ((-3 (-578) "failed") |#2| (-1207) (-865 |#2|))) (-15 -1490 ((-3 (-578) "failed") |#2| (-1207) |#2| (-1189)))) (-13 (-570) (-1069 (-578)) (-660 (-578)) (-466)) (-13 (-27) (-1233) (-444 |#1|))) (T -1147)) +((-1490 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-13 (-570) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-578)) (-5 *1 (-1147 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))))) (-1490 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-865 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) (-4 *6 (-13 (-570) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-578)) (-5 *1 (-1147 *6 *3)))) (-1490 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-570) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-578)) (-5 *1 (-1147 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4)))))) +(-10 -7 (-15 -1490 ((-3 (-578) "failed") |#2|)) (-15 -1490 ((-3 (-578) "failed") |#2| (-1207) (-865 |#2|))) (-15 -1490 ((-3 (-578) "failed") |#2| (-1207) |#2| (-1189)))) +((-1490 (((-3 (-578) "failed") (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|)) (-1189)) 38 T ELT) (((-3 (-578) "failed") (-421 (-981 |#1|)) (-1207) (-865 (-421 (-981 |#1|)))) 33 T ELT) (((-3 (-578) "failed") (-421 (-981 |#1|))) 14 T ELT))) +(((-1148 |#1|) (-10 -7 (-15 -1490 ((-3 (-578) "failed") (-421 (-981 |#1|)))) (-15 -1490 ((-3 (-578) "failed") (-421 (-981 |#1|)) (-1207) (-865 (-421 (-981 |#1|))))) (-15 -1490 ((-3 (-578) "failed") (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|)) (-1189)))) (-466)) (T -1148)) +((-1490 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-421 (-981 *6))) (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-466)) (-5 *2 (-578)) (-5 *1 (-1148 *6)))) (-1490 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-865 (-421 (-981 *6)))) (-5 *3 (-421 (-981 *6))) (-4 *6 (-466)) (-5 *2 (-578)) (-5 *1 (-1148 *6)))) (-1490 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-466)) (-5 *2 (-578)) (-5 *1 (-1148 *4))))) +(-10 -7 (-15 -1490 ((-3 (-578) "failed") (-421 (-981 |#1|)))) (-15 -1490 ((-3 (-578) "failed") (-421 (-981 |#1|)) (-1207) (-865 (-421 (-981 |#1|))))) (-15 -1490 ((-3 (-578) "failed") (-421 (-981 |#1|)) (-1207) (-421 (-981 |#1|)) (-1189)))) +((-3213 (((-112) $ $) NIL T ELT)) (-1893 (((-1212) $) 12 T ELT)) (-1846 (((-666 (-1212)) $) 14 T ELT)) (-3385 (($ (-666 (-1212)) (-1212)) 10 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 29 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 17 T ELT))) +(((-1149) (-13 (-1131) (-10 -8 (-15 -3385 ($ (-666 (-1212)) (-1212))) (-15 -1893 ((-1212) $)) (-15 -1846 ((-666 (-1212)) $))))) (T -1149)) +((-3385 (*1 *1 *2 *3) (-12 (-5 *2 (-666 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1149)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1149)))) (-1846 (*1 *2 *1) (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-1149))))) +(-13 (-1131) (-10 -8 (-15 -3385 ($ (-666 (-1212)) (-1212))) (-15 -1893 ((-1212) $)) (-15 -1846 ((-666 (-1212)) $)))) +((-1662 (((-328 (-578)) (-48)) 12 T ELT))) +(((-1150) (-10 -7 (-15 -1662 ((-328 (-578)) (-48))))) (T -1150)) +((-1662 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-328 (-578))) (-5 *1 (-1150))))) +(-10 -7 (-15 -1662 ((-328 (-578)) (-48)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) 42 T ELT)) (-3623 (((-112) $) 70 T ELT)) (-2344 (($ $ $) 51 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 96 T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-1452 (($ $ $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3267 (($ $ $ $) 80 T ELT)) (-1457 (($ $) NIL T ELT)) (-3034 (((-432 $) $) NIL T ELT)) (-2732 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) 81 T ELT)) (-1490 (((-578) $) NIL T ELT)) (-1887 (($ $ $) 77 T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL T ELT)) (-3154 (($ $ $) 64 T ELT)) (-2242 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 90 T ELT) (((-711 (-578)) (-711 $)) 30 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1514 (((-3 (-421 (-578)) "failed") $) NIL T ELT)) (-1474 (((-112) $) NIL T ELT)) (-3805 (((-421 (-578)) $) NIL T ELT)) (-2062 (($) 93 T ELT) (($ $) 94 T ELT)) (-3166 (($ $ $) 63 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL T ELT)) (-2159 (((-112) $) NIL T ELT)) (-3092 (($ $ $ $) NIL T ELT)) (-2256 (($ $ $) 91 T ELT)) (-3789 (((-112) $) NIL T ELT)) (-2492 (($ $ $) NIL T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL T ELT)) (-2332 (($ $ $) 50 T ELT)) (-4382 (((-112) $) 71 T ELT)) (-2382 (((-112) $) 69 T ELT)) (-2309 (($ $) 43 T ELT)) (-2204 (((-3 $ "failed") $) NIL T ELT)) (-1721 (((-112) $) 8 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-2931 (($ $ $ $) 78 T ELT)) (-1345 (($ $ $) 73 T ELT) (($) 40 T CONST)) (-3667 (($ $ $) 72 T ELT) (($) 39 T CONST)) (-3695 (($ $) NIL T ELT)) (-3193 (((-950) $) 86 T ELT)) (-3492 (($ $) 76 T ELT)) (-3908 (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL T ELT) (((-711 (-578)) (-1298 $)) NIL T ELT)) (-2389 (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-2199 (($) NIL T CONST)) (-2087 (($ (-950)) 85 T ELT)) (-1354 (($ $) 56 T ELT)) (-4313 (((-1151) $) 75 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL T ELT)) (-2421 (($ $ $) 67 T ELT) (($ (-666 $)) NIL T ELT)) (-2454 (($ $) NIL T ELT)) (-2800 (((-432 $) $) NIL T ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL T ELT)) (-3873 (((-112) $) NIL T ELT)) (-1449 (((-793) $) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 66 T ELT)) (-2031 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1687 (($ $) 57 T ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-578) $) 15 T ELT) (((-550) $) NIL T ELT) (((-917 (-578)) $) NIL T ELT) (((-392) $) NIL T ELT) (((-229) $) NIL T ELT)) (-2411 (((-886) $) 33 T ELT) (($ (-578)) 92 T ELT) (($ $) NIL T ELT) (($ (-578)) 92 T ELT)) (-3753 (((-793)) NIL T CONST)) (-3953 (((-112) $ $) NIL T ELT)) (-2776 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3648 (($) 38 T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2320 (($ $ $) 48 T ELT)) (-3559 (($ $ $ $) 79 T ELT)) (-2628 (($ $) 68 T ELT)) (-3287 (($ $ $) 45 T ELT)) (-2368 (($) 36 T CONST)) (-1561 (($ $ $) 49 T ELT)) (-2379 (($) 37 T CONST)) (-3859 (((-1189) $) 24 T ELT) (((-1189) $ (-112)) 25 T ELT) (((-1303) (-844) $) 26 T ELT) (((-1303) (-844) $ (-112)) 27 T ELT)) (-1572 (($ $) 46 T ELT)) (-1676 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1548 (($ $ $) 47 T ELT)) (-2441 (((-112) $ $) 55 T ELT)) (-2416 (((-112) $ $) 53 T ELT)) (-2384 (((-112) $ $) 41 T ELT)) (-2429 (((-112) $ $) 54 T ELT)) (-2404 (((-112) $ $) 52 T ELT)) (-3274 (($ $ $) 44 T ELT)) (-2484 (($ $) 14 T ELT) (($ $ $) 59 T ELT)) (-2472 (($ $ $) 58 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 62 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 35 T ELT) (($ $ $) 60 T ELT) (($ (-578) $) 35 T ELT))) +(((-1151) (-13 (-559) (-866) (-114) (-683) (-850) (-10 -8 (-6 -4487) (-6 -4492) (-6 -4488) (-15 -2344 ($ $ $)) (-15 -1572 ($ $)) (-15 -1548 ($ $ $)) (-15 -1561 ($ $ $))))) (T -1151)) +((-2344 (*1 *1 *1 *1) (-5 *1 (-1151))) (-1572 (*1 *1 *1) (-5 *1 (-1151))) (-1548 (*1 *1 *1 *1) (-5 *1 (-1151))) (-1561 (*1 *1 *1 *1) (-5 *1 (-1151)))) +(-13 (-559) (-866) (-114) (-683) (-850) (-10 -8 (-6 -4487) (-6 -4492) (-6 -4488) (-15 -2344 ($ $ $)) (-15 -1572 ($ $)) (-15 -1548 ($ $ $)) (-15 -1561 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2852 ((|#1| $) 45 T ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2762 (($) 7 T CONST)) (-3073 ((|#1| |#1| $) 47 T ELT)) (-2908 ((|#1| $) 46 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 40 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-3127 ((|#1| $) 42 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-3300 (((-792) $) 44 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) 43 T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1151 |#1|) (-141) (-1247)) (T -1151)) -((-3073 (*1 *2 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-2852 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4499) (-15 -3073 (|t#1| |t#1| $)) (-15 -2908 (|t#1| $)) (-15 -2852 (|t#1| $)) (-15 -3300 ((-792) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-1880 ((|#3| $) 87 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 50 T ELT)) (-3514 (((-577) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL T ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 $) (-1297 $)) 84 T ELT) (((-710 |#3|) (-710 $)) 76 T ELT)) (-2030 (($ $ (-1 |#3| |#3|) (-792)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-1747 ((|#3| $) 89 T ELT)) (-2413 ((|#4| $) 43 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 24 T ELT) (($ $ (-577)) 95 T ELT))) -(((-1152 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -1747 (|#3| |#1|)) (-15 -1880 (|#3| |#1|)) (-15 -2413 (|#4| |#1|)) (-15 -1953 ((-710 |#3|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2410 (|#1| |#3|)) (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -2410 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -2410 ((-885) |#1|))) (-1153 |#2| |#3| |#4| |#5|) (-792) (-1079) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1152)) -NIL -(-10 -8 (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -1747 (|#3| |#1|)) (-15 -1880 (|#3| |#1|)) (-15 -2413 (|#4| |#1|)) (-15 -1953 ((-710 |#3|) (-710 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 |#3|)) (|:| |vec| (-1297 |#3|))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 |#1|) (-1297 |#1|))) (-15 -1953 ((-710 (-577)) (-710 |#1|))) (-15 -2410 (|#1| |#3|)) (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2030 (|#1| |#1| (-1 |#3| |#3|) (-792))) (-15 -2410 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1880 ((|#2| $) 80 T ELT)) (-3387 (((-112) $) 124 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4405 (((-112) $) 122 T ELT)) (-2641 (((-112) $ (-792)) 114 T ELT)) (-2831 (($ |#2|) 83 T ELT)) (-2762 (($) 18 T CONST)) (-1433 (($ $) 141 (|has| |#2| (-318)) ELT)) (-2803 ((|#3| $ (-577)) 136 T ELT)) (-2817 (((-3 (-577) "failed") $) 99 (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) 96 (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) 93 T ELT)) (-3514 (((-577) $) 98 (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) 95 (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) 94 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 89 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 88 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 87 T ELT) (((-710 |#2|) (-710 $)) 86 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-792) $) 142 (|has| |#2| (-569)) ELT)) (-3381 ((|#2| $ (-577) (-577)) 134 T ELT)) (-2728 (((-665 |#2|) $) 107 (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-3309 (((-792) $) 143 (|has| |#2| (-569)) ELT)) (-4111 (((-665 |#4|) $) 144 (|has| |#2| (-569)) ELT)) (-3066 (((-792) $) 130 T ELT)) (-3080 (((-792) $) 131 T ELT)) (-1967 (((-112) $ (-792)) 115 T ELT)) (-3845 ((|#2| $) 75 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-2664 (((-577) $) 126 T ELT)) (-2988 (((-577) $) 128 T ELT)) (-4138 (((-665 |#2|) $) 106 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1707 (((-577) $) 127 T ELT)) (-2529 (((-577) $) 129 T ELT)) (-1868 (($ (-665 (-665 |#2|))) 121 T ELT)) (-3437 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2| |#2|) $ $) 138 T ELT) (($ (-1 |#2| |#2|) $) 112 T ELT)) (-1522 (((-665 (-665 |#2|)) $) 132 T ELT)) (-3417 (((-112) $ (-792)) 116 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 91 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 90 (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 85 T ELT) (((-710 |#2|) (-1297 $)) 84 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2566 (((-3 $ "failed") $) 74 (|has| |#2| (-375)) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3200 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) 103 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 102 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 100 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) 120 T ELT)) (-2392 (((-112) $) 117 T ELT)) (-3414 (($) 118 T ELT)) (-2435 ((|#2| $ (-577) (-577) |#2|) 135 T ELT) ((|#2| $ (-577) (-577)) 133 T ELT)) (-2030 (($ $ (-1 |#2| |#2|) (-792)) 57 T ELT) (($ $ (-1 |#2| |#2|)) 56 T ELT) (($ $) 47 (|has| |#2| (-238)) ELT) (($ $ (-792)) 45 (|has| |#2| (-238)) ELT) (($ $ (-1206)) 55 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 53 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 52 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 51 (|has| |#2| (-928 (-1206))) ELT)) (-1747 ((|#2| $) 79 T ELT)) (-4260 (($ (-665 |#2|)) 82 T ELT)) (-2101 (((-112) $) 123 T ELT)) (-2413 ((|#3| $) 81 T ELT)) (-2620 ((|#2| $) 76 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) 105 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 119 T ELT)) (-2397 ((|#4| $ (-577)) 137 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 97 (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) 92 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) 125 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1 |#2| |#2|) (-792)) 59 T ELT) (($ $ (-1 |#2| |#2|)) 58 T ELT) (($ $) 46 (|has| |#2| (-238)) ELT) (($ $ (-792)) 44 (|has| |#2| (-238)) ELT) (($ $ (-1206)) 54 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 50 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 49 (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 48 (|has| |#2| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#2|) 140 (|has| |#2| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 73 (|has| |#2| (-375)) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#2|) 146 T ELT) (($ |#2| $) 145 T ELT) ((|#4| $ |#4|) 78 T ELT) ((|#3| |#3| $) 77 T ELT)) (-3224 (((-792) $) 113 (|has| $ (-6 -4499)) ELT))) -(((-1153 |#1| |#2| |#3| |#4|) (-141) (-792) (-1079) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1153)) -((-2831 (*1 *1 *2) (-12 (-4 *2 (-1079)) (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-4260 (*1 *1 *2) (-12 (-5 *2 (-665 *4)) (-4 *4 (-1079)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1079)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1079)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1153 *3 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-2620 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) (-2566 (*1 *1 *1) (|partial| -12 (-4 *1 (-1153 *2 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-375))))) -(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1083 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-389 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-738 |t#2|)) |%noBranch|) (-15 -2831 ($ |t#2|)) (-15 -4260 ($ (-665 |t#2|))) (-15 -2413 (|t#3| $)) (-15 -1880 (|t#2| $)) (-15 -1747 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4501 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2620 (|t#2| $)) (-15 -3845 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-375)) (PROGN (-15 -2566 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4501 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-634 #0=(-420 (-577))) |has| |#2| (-1068 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-235 $) -2229 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) -2229 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-273 |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-389 |#2|) . T) ((-424 |#2|) . T) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-669 #1=(-577)) |has| |#2| (-659 (-577))) ((-669 |#2|) . T) ((-669 $) . T) ((-661 |#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-6 (-4501 "*")))) ((-659 #1#) |has| |#2| (-659 (-577))) ((-659 |#2|) . T) ((-738 |#2|) -2229 (|has| |#2| (-174)) (|has| |#2| (-6 (-4501 "*")))) ((-747) . T) ((-920 $ #2=(-1206)) -2229 (|has| |#2| (-928 (-1206))) (|has| |#2| (-926 (-1206)))) ((-926 (-1206)) |has| |#2| (-926 (-1206))) ((-928 #2#) -2229 (|has| |#2| (-928 (-1206))) (|has| |#2| (-926 (-1206)))) ((-1083 |#1| |#1| |#2| |#3| |#4|) . T) ((-1068 #0#) |has| |#2| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#2| (-1068 (-577))) ((-1068 |#2|) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-1662 ((|#4| |#4|) 81 T ELT)) (-3713 ((|#4| |#4|) 76 T ELT)) (-2522 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|))) |#4| |#3|) 91 T ELT)) (-2207 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-1907 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3713 (|#4| |#4|)) (-15 -1907 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1662 (|#4| |#4|)) (-15 -2207 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2522 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|))) |#4| |#3|))) (-318) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1154)) -((-2522 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) (-5 *1 (-1154 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3713 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(-10 -7 (-15 -3713 (|#4| |#4|)) (-15 -1907 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1662 (|#4| |#4|)) (-15 -2207 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2522 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2225 (-665 |#3|))) |#4| |#3|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 18 T ELT)) (-2948 (((-665 |#2|) $) 174 T ELT)) (-4419 (((-1202 $) $ |#2|) 60 T ELT) (((-1202 |#1|) $) 49 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 116 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 118 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 120 (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 |#2|)) 213 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) 167 T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3514 ((|#1| $) 165 T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) ((|#2| $) NIL T ELT)) (-3760 (($ $ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-3134 (($ $) 217 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) 90 T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT) (($ $ |#2|) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-544 |#2|) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#1| (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-2097 (((-112) $) 20 T ELT)) (-3641 (((-792) $) 30 T ELT)) (-2935 (($ (-1202 |#1|) |#2|) 54 T ELT) (($ (-1202 $) |#2|) 71 T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) 38 T ELT)) (-2925 (($ |#1| (-544 |#2|)) 78 T ELT) (($ $ |#2| (-792)) 58 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ |#2|) NIL T ELT)) (-3569 (((-544 |#2|) $) 205 T ELT) (((-792) $ |#2|) 206 T ELT) (((-665 (-792)) $ (-665 |#2|)) 207 T ELT)) (-4309 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-2505 (((-3 |#2| "failed") $) 177 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) 216 T ELT)) (-3109 ((|#1| $) 43 T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| |#2|) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) 39 T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 148 (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) 153 (|has| |#1| (-465)) ELT) (($ $ $) 138 (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-937)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-569)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-665 |#2|) (-665 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-665 |#2|) (-665 $)) 194 T ELT)) (-1611 (($ $ |#2|) NIL (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) 215 T ELT)) (-2776 (((-544 |#2|) $) 201 T ELT) (((-792) $ |#2|) 196 T ELT) (((-665 (-792)) $ (-665 |#2|)) 199 T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| |#1| (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#1| (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2091 ((|#1| $) 134 (|has| |#1| (-465)) ELT) (($ $ |#2|) 137 (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2410 (((-885) $) 159 T ELT) (($ (-577)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2929 (((-665 |#1|) $) 162 T ELT)) (-2778 ((|#1| $ (-544 |#2|)) 80 T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 87 T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) 123 (|has| |#1| (-569)) ELT)) (-2367 (($) 12 T CONST)) (-2378 (($) 14 T CONST)) (-1675 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2383 (((-112) $ $) 106 T ELT)) (-2494 (($ $ |#1|) 132 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-2471 (($ $ $) 55 T ELT)) (** (($ $ (-949)) 110 T ELT) (($ $ (-792)) 109 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1155 |#1| |#2|) (-977 |#1| (-544 |#2|) |#2|) (-1079) (-870)) (T -1155)) -NIL -(-977 |#1| (-544 |#2|) |#2|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 |#2|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1501 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1477 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1527 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1768 (((-980 |#1|) $ (-792)) NIL T ELT) (((-980 |#1|) $ (-792) (-792)) NIL T ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-792) $ |#2|) NIL T ELT) (((-792) $ |#2| (-792)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ $ (-665 |#2|) (-665 (-544 |#2|))) NIL T ELT) (($ $ |#2| (-544 |#2|)) NIL T ELT) (($ |#1| (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) 63 T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3863 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3491 (($ $ |#2|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1609 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4013 (($ $ (-792)) 16 T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3585 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (($ $ |#2| $) 106 T ELT) (($ $ (-665 |#2|) (-665 $)) 99 T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT)) (-2030 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-2776 (((-544 |#2|) $) NIL T ELT)) (-4444 (((-1 (-1187 |#3|) |#3|) (-665 |#2|) (-665 (-1187 |#3|))) 87 T ELT)) (-1540 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 18 T ELT)) (-2410 (((-885) $) 198 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-174)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-2778 ((|#1| $ (-544 |#2|)) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) ((|#3| $ (-792)) 43 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3501 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 52 T CONST)) (-2378 (($) 62 T CONST)) (-1675 (($ $ (-665 |#2|) (-665 (-792))) NIL T ELT) (($ $ |#2| (-792)) NIL T ELT) (($ $ (-665 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) 200 (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 66 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-420 (-577))) 117 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 115 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1156 |#1| |#2| |#3|) (-13 (-761 |#1| |#2|) (-10 -8 (-15 -2778 (|#3| $ (-792))) (-15 -2410 ($ |#2|)) (-15 -2410 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4444 ((-1 (-1187 |#3|) |#3|) (-665 |#2|) (-665 (-1187 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $ |#2| |#1|)) (-15 -1609 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1079) (-870) (-977 |#1| (-544 |#2|) |#2|)) (T -1156)) -((-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *2 (-977 *4 (-544 *5) *5)) (-5 *1 (-1156 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-870)))) (-2410 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-977 *3 (-544 *2) *2)))) (-2410 (*1 *1 *2) (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) (-4 *2 (-977 *3 (-544 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) (-4 *2 (-977 *3 (-544 *4) *4)))) (-4444 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1187 *7))) (-4 *6 (-870)) (-4 *7 (-977 *5 (-544 *6) *6)) (-4 *5 (-1079)) (-5 *2 (-1 (-1187 *7) *7)) (-5 *1 (-1156 *5 *6 *7)))) (-3491 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-977 *3 (-544 *2) *2)))) (-1609 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1156 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *1 (-1156 *4 *3 *5)) (-4 *5 (-977 *4 (-544 *3) *3))))) -(-13 (-761 |#1| |#2|) (-10 -8 (-15 -2778 (|#3| $ (-792))) (-15 -2410 ($ |#2|)) (-15 -2410 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4444 ((-1 (-1187 |#3|) |#3|) (-665 |#2|) (-665 (-1187 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $ |#2| |#1|)) (-15 -1609 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-4202 (((-665 $) (-665 |#4|)) 87 T ELT) (((-665 $) (-665 |#4|) (-112)) 112 T ELT)) (-2948 (((-665 |#3|) $) 34 T ELT)) (-3294 (((-112) $) 27 T ELT)) (-1567 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-1988 ((|#4| |#4| $) 93 T ELT)) (-4456 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| $) 127 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-2641 (((-112) $ (-792)) 45 T ELT)) (-4232 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2762 (($) 46 T CONST)) (-1760 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3514 (($ (-665 |#4|)) 36 T ELT)) (-4197 (((-3 $ "failed") $) 83 T ELT)) (-3415 ((|#4| |#4| $) 90 T ELT)) (-3860 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-2981 ((|#4| |#4| $) 88 T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) 106 T ELT)) (-3820 (((-112) |#4| $) 137 T ELT)) (-3389 (((-112) |#4| $) 134 T ELT)) (-1566 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2728 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1669 ((|#3| $) 35 T ELT)) (-1967 (((-112) $ (-792)) 44 T ELT)) (-4138 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2850 (((-665 |#3|) $) 33 T ELT)) (-2746 (((-112) |#3| $) 32 T ELT)) (-3417 (((-112) $ (-792)) 43 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2334 (((-3 |#4| (-665 $)) |#4| |#4| $) 129 T ELT)) (-2212 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| |#4| $) 128 T ELT)) (-2756 (((-3 |#4| "failed") $) 84 T ELT)) (-2510 (((-665 $) |#4| $) 130 T ELT)) (-2173 (((-3 (-112) (-665 $)) |#4| $) 133 T ELT)) (-4049 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3959 (((-665 $) |#4| $) 126 T ELT) (((-665 $) (-665 |#4|) $) 125 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 124 T ELT) (((-665 $) |#4| (-665 $)) 123 T ELT)) (-4213 (($ |#4| $) 118 T ELT) (($ (-665 |#4|) $) 117 T ELT)) (-2327 (((-665 |#4|) $) 108 T ELT)) (-2982 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1502 ((|#4| |#4| $) 91 T ELT)) (-2220 (((-112) $ $) 111 T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-4058 ((|#4| |#4| $) 92 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4188 (((-3 |#4| "failed") $) 85 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4013 (($ $ |#4|) 78 T ELT) (((-665 $) |#4| $) 116 T ELT) (((-665 $) |#4| (-665 $)) 115 T ELT) (((-665 $) (-665 |#4|) $) 114 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 113 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) 39 T ELT)) (-2392 (((-112) $) 42 T ELT)) (-3414 (($) 41 T ELT)) (-2776 (((-792) $) 107 T ELT)) (-4323 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 40 T ELT)) (-3341 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 61 T ELT)) (-1799 (($ $ |#3|) 29 T ELT)) (-3139 (($ $ |#3|) 31 T ELT)) (-3680 (($ $) 89 T ELT)) (-1600 (($ $ |#3|) 30 T ELT)) (-2410 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3050 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-1338 (((-665 $) |#4| $) 122 T ELT) (((-665 $) |#4| (-665 $)) 121 T ELT) (((-665 $) (-665 |#4|) $) 120 T ELT) (((-665 $) (-665 |#4|) (-665 $)) 119 T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) 82 T ELT)) (-2214 (((-112) |#4| $) 136 T ELT)) (-2306 (((-112) |#3| $) 81 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) -(((-1157 |#1| |#2| |#3| |#4|) (-141) (-465) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1157)) -NIL -(-13 (-1139 |t#1| |t#2| |t#3| |t#4|) (-805 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-805 |#1| |#2| |#3| |#4|) . T) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1101 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1139 |#1| |#2| |#3| |#4|) . T) ((-1240 |#1| |#2| |#3| |#4|) . T) ((-1247) . T)) -((-3766 (((-665 |#2|) |#1|) 15 T ELT)) (-3371 (((-665 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-665 |#2|) |#1|) 61 T ELT)) (-3722 (((-665 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-665 |#2|) |#1|) 59 T ELT)) (-3420 ((|#2| |#1|) 54 T ELT)) (-3467 (((-2 (|:| |solns| (-665 |#2|)) (|:| |maps| (-665 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-1745 (((-665 |#2|) |#2| |#2|) 42 T ELT) (((-665 |#2|) |#1|) 58 T ELT)) (-3711 (((-665 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-665 |#2|) |#1|) 60 T ELT)) (-2912 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-1454 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-1556 ((|#2| |#2| |#2|) 50 T ELT)) (-3878 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1158 |#1| |#2|) (-10 -7 (-15 -3766 ((-665 |#2|) |#1|)) (-15 -3420 (|#2| |#1|)) (-15 -3467 ((-2 (|:| |solns| (-665 |#2|)) (|:| |maps| (-665 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1745 ((-665 |#2|) |#1|)) (-15 -3722 ((-665 |#2|) |#1|)) (-15 -3711 ((-665 |#2|) |#1|)) (-15 -3371 ((-665 |#2|) |#1|)) (-15 -1745 ((-665 |#2|) |#2| |#2|)) (-15 -3722 ((-665 |#2|) |#2| |#2| |#2|)) (-15 -3711 ((-665 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3371 ((-665 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1556 (|#2| |#2| |#2|)) (-15 -1454 (|#2| |#2| |#2| |#2|)) (-15 -3878 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2912 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1273 |#2|) (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (T -1158)) -((-2912 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3878 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-1454 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-1556 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3371 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3711 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3722 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-1745 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3)))) (-3371 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-3711 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-3722 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-1745 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-2 (|:| |solns| (-665 *5)) (|:| |maps| (-665 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1158 *3 *5)) (-4 *3 (-1273 *5)))) (-3420 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -3766 ((-665 |#2|) |#1|)) (-15 -3420 (|#2| |#1|)) (-15 -3467 ((-2 (|:| |solns| (-665 |#2|)) (|:| |maps| (-665 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1745 ((-665 |#2|) |#1|)) (-15 -3722 ((-665 |#2|) |#1|)) (-15 -3711 ((-665 |#2|) |#1|)) (-15 -3371 ((-665 |#2|) |#1|)) (-15 -1745 ((-665 |#2|) |#2| |#2|)) (-15 -3722 ((-665 |#2|) |#2| |#2| |#2|)) (-15 -3711 ((-665 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3371 ((-665 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1556 (|#2| |#2| |#2|)) (-15 -1454 (|#2| |#2| |#2| |#2|)) (-15 -3878 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2912 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1400 (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|))))) 118 T ELT) (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206))) 117 T ELT) (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|)))) 115 T ELT) (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 113 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|)))) 97 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))) (-1206)) 98 T ELT) (((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|))) 92 T ELT) (((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)) (-1206)) 82 T ELT)) (-1493 (((-665 (-665 (-327 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 111 T ELT) (((-665 (-327 |#1|)) (-420 (-980 |#1|)) (-1206)) 54 T ELT)) (-3746 (((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-420 (-980 |#1|)) (-1206)) 122 T ELT) (((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206)) 121 T ELT))) -(((-1159 |#1|) (-10 -7 (-15 -1400 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -1400 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)))) (-15 -1400 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -1400 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -1493 ((-665 (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -1493 ((-665 (-665 (-327 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -3746 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -3746 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-420 (-980 |#1|)) (-1206)))) (-13 (-318) (-148))) (T -1159)) -((-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-327 *5)))) (-5 *1 (-1159 *5)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-327 *5))) (-5 *1 (-1159 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *4))))) (-5 *1 (-1159 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-305 (-420 (-980 *5))))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *4))))) (-5 *1 (-1159 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1159 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1159 *5)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) (-1400 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1159 *5))))) -(-10 -7 (-15 -1400 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)) (-1206))) (-15 -1400 ((-665 (-305 (-327 |#1|))) (-420 (-980 |#1|)))) (-15 -1400 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -1400 ((-665 (-305 (-327 |#1|))) (-305 (-420 (-980 |#1|))))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-420 (-980 |#1|))))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -1400 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -1493 ((-665 (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -1493 ((-665 (-665 (-327 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -3746 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -3746 ((-1195 (-665 (-327 |#1|)) (-665 (-305 (-327 |#1|)))) (-420 (-980 |#1|)) (-1206)))) -((-3168 (((-420 (-1202 (-327 |#1|))) (-1297 (-327 |#1|)) (-420 (-1202 (-327 |#1|))) (-577)) 36 T ELT)) (-2053 (((-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|)))) 48 T ELT))) -(((-1160 |#1|) (-10 -7 (-15 -2053 ((-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))))) (-15 -3168 ((-420 (-1202 (-327 |#1|))) (-1297 (-327 |#1|)) (-420 (-1202 (-327 |#1|))) (-577)))) (-569)) (T -1160)) -((-3168 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-420 (-1202 (-327 *5)))) (-5 *3 (-1297 (-327 *5))) (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1160 *5)))) (-2053 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-420 (-1202 (-327 *3)))) (-4 *3 (-569)) (-5 *1 (-1160 *3))))) -(-10 -7 (-15 -2053 ((-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))) (-420 (-1202 (-327 |#1|))))) (-15 -3168 ((-420 (-1202 (-327 |#1|))) (-1297 (-327 |#1|)) (-420 (-1202 (-327 |#1|))) (-577)))) -((-3766 (((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-327 |#1|))) (-665 (-1206))) 244 T ELT) (((-665 (-305 (-327 |#1|))) (-327 |#1|) (-1206)) 23 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1206)) 29 T ELT) (((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|))) 28 T ELT) (((-665 (-305 (-327 |#1|))) (-327 |#1|)) 24 T ELT))) -(((-1161 |#1|) (-10 -7 (-15 -3766 ((-665 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -3766 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -3766 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1206))) (-15 -3766 ((-665 (-305 (-327 |#1|))) (-327 |#1|) (-1206))) (-15 -3766 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-327 |#1|))) (-665 (-1206))))) (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (T -1161)) -((-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1206))) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1161 *5)) (-5 *3 (-665 (-305 (-327 *5)))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-327 *5)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) (-5 *3 (-305 (-327 *5))))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-305 (-327 *4))))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-327 *4))))) -(-10 -7 (-15 -3766 ((-665 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -3766 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -3766 ((-665 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1206))) (-15 -3766 ((-665 (-305 (-327 |#1|))) (-327 |#1|) (-1206))) (-15 -3766 ((-665 (-665 (-305 (-327 |#1|)))) (-665 (-305 (-327 |#1|))) (-665 (-1206))))) -((-2577 ((|#2| |#2|) 28 (|has| |#1| (-870)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25 T ELT)) (-3636 ((|#2| |#2|) 27 (|has| |#1| (-870)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22 T ELT))) -(((-1162 |#1| |#2|) (-10 -7 (-15 -3636 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2577 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-870)) (PROGN (-15 -3636 (|#2| |#2|)) (-15 -2577 (|#2| |#2|))) |%noBranch|)) (-1247) (-13 (-617 (-577) |#1|) (-10 -7 (-6 -4499) (-6 -4500)))) (T -1162)) -((-2577 (*1 *2 *2) (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500)))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500)))))) (-2577 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500)))))) (-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500))))))) -(-10 -7 (-15 -3636 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2577 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-870)) (PROGN (-15 -3636 (|#2| |#2|)) (-15 -2577 (|#2| |#2|))) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-1752 (((-1194 3 |#1|) $) 141 T ELT)) (-4203 (((-112) $) 101 T ELT)) (-1519 (($ $ (-665 (-971 |#1|))) 44 T ELT) (($ $ (-665 (-665 |#1|))) 104 T ELT) (($ (-665 (-971 |#1|))) 103 T ELT) (((-665 (-971 |#1|)) $) 102 T ELT)) (-3315 (((-112) $) 72 T ELT)) (-4414 (($ $ (-971 |#1|)) 76 T ELT) (($ $ (-665 |#1|)) 81 T ELT) (($ $ (-792)) 83 T ELT) (($ (-971 |#1|)) 77 T ELT) (((-971 |#1|) $) 75 T ELT)) (-3637 (((-2 (|:| -2686 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792))) $) 139 T ELT)) (-1621 (((-792) $) 53 T ELT)) (-1763 (((-792) $) 52 T ELT)) (-1983 (($ $ (-792) (-971 |#1|)) 67 T ELT)) (-2391 (((-112) $) 111 T ELT)) (-2810 (($ $ (-665 (-665 (-971 |#1|))) (-665 (-173)) (-173)) 118 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-665 (-173)) (-173)) 120 T ELT) (($ $ (-665 (-665 (-971 |#1|))) (-112) (-112)) 115 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-112) (-112)) 127 T ELT) (($ (-665 (-665 (-971 |#1|)))) 116 T ELT) (($ (-665 (-665 (-971 |#1|))) (-112) (-112)) 117 T ELT) (((-665 (-665 (-971 |#1|))) $) 114 T ELT)) (-2223 (($ (-665 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3345 (((-665 (-173)) $) 133 T ELT)) (-4045 (((-665 (-971 |#1|)) $) 130 T ELT)) (-3774 (((-665 (-665 (-173))) $) 132 T ELT)) (-2888 (((-665 (-665 (-665 (-971 |#1|)))) $) NIL T ELT)) (-3045 (((-665 (-665 (-665 (-792)))) $) 131 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3121 (((-792) $ (-665 (-971 |#1|))) 65 T ELT)) (-2699 (((-112) $) 84 T ELT)) (-4342 (($ $ (-665 (-971 |#1|))) 86 T ELT) (($ $ (-665 (-665 |#1|))) 92 T ELT) (($ (-665 (-971 |#1|))) 87 T ELT) (((-665 (-971 |#1|)) $) 85 T ELT)) (-4425 (($) 48 T ELT) (($ (-1194 3 |#1|)) 49 T ELT)) (-3978 (($ $) 63 T ELT)) (-4044 (((-665 $) $) 62 T ELT)) (-2341 (($ (-665 $)) 59 T ELT)) (-1714 (((-665 $) $) 61 T ELT)) (-2410 (((-885) $) 146 T ELT)) (-3144 (((-112) $) 94 T ELT)) (-3010 (($ $ (-665 (-971 |#1|))) 96 T ELT) (($ $ (-665 (-665 |#1|))) 99 T ELT) (($ (-665 (-971 |#1|))) 97 T ELT) (((-665 (-971 |#1|)) $) 95 T ELT)) (-1899 (($ $) 140 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1163 |#1|) (-1164 |#1|) (-1079)) (T -1163)) -NIL -(-1164 |#1|) -((-3211 (((-112) $ $) 7 T ELT)) (-1752 (((-1194 3 |#1|) $) 14 T ELT)) (-4203 (((-112) $) 30 T ELT)) (-1519 (($ $ (-665 (-971 |#1|))) 34 T ELT) (($ $ (-665 (-665 |#1|))) 33 T ELT) (($ (-665 (-971 |#1|))) 32 T ELT) (((-665 (-971 |#1|)) $) 31 T ELT)) (-3315 (((-112) $) 45 T ELT)) (-4414 (($ $ (-971 |#1|)) 50 T ELT) (($ $ (-665 |#1|)) 49 T ELT) (($ $ (-792)) 48 T ELT) (($ (-971 |#1|)) 47 T ELT) (((-971 |#1|) $) 46 T ELT)) (-3637 (((-2 (|:| -2686 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792))) $) 16 T ELT)) (-1621 (((-792) $) 59 T ELT)) (-1763 (((-792) $) 60 T ELT)) (-1983 (($ $ (-792) (-971 |#1|)) 51 T ELT)) (-2391 (((-112) $) 22 T ELT)) (-2810 (($ $ (-665 (-665 (-971 |#1|))) (-665 (-173)) (-173)) 29 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-665 (-173)) (-173)) 28 T ELT) (($ $ (-665 (-665 (-971 |#1|))) (-112) (-112)) 27 T ELT) (($ $ (-665 (-665 (-665 |#1|))) (-112) (-112)) 26 T ELT) (($ (-665 (-665 (-971 |#1|)))) 25 T ELT) (($ (-665 (-665 (-971 |#1|))) (-112) (-112)) 24 T ELT) (((-665 (-665 (-971 |#1|))) $) 23 T ELT)) (-2223 (($ (-665 $)) 58 T ELT) (($ $ $) 57 T ELT)) (-3345 (((-665 (-173)) $) 17 T ELT)) (-4045 (((-665 (-971 |#1|)) $) 21 T ELT)) (-3774 (((-665 (-665 (-173))) $) 18 T ELT)) (-2888 (((-665 (-665 (-665 (-971 |#1|)))) $) 19 T ELT)) (-3045 (((-665 (-665 (-665 (-792)))) $) 20 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-3121 (((-792) $ (-665 (-971 |#1|))) 52 T ELT)) (-2699 (((-112) $) 40 T ELT)) (-4342 (($ $ (-665 (-971 |#1|))) 44 T ELT) (($ $ (-665 (-665 |#1|))) 43 T ELT) (($ (-665 (-971 |#1|))) 42 T ELT) (((-665 (-971 |#1|)) $) 41 T ELT)) (-4425 (($) 62 T ELT) (($ (-1194 3 |#1|)) 61 T ELT)) (-3978 (($ $) 53 T ELT)) (-4044 (((-665 $) $) 54 T ELT)) (-2341 (($ (-665 $)) 56 T ELT)) (-1714 (((-665 $) $) 55 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-3144 (((-112) $) 35 T ELT)) (-3010 (($ $ (-665 (-971 |#1|))) 39 T ELT) (($ $ (-665 (-665 |#1|))) 38 T ELT) (($ (-665 (-971 |#1|))) 37 T ELT) (((-665 (-971 |#1|)) $) 36 T ELT)) (-1899 (($ $) 15 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-1164 |#1|) (-141) (-1079)) (T -1164)) -((-2410 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-885)))) (-4425 (*1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-4425 (*1 *1 *2) (-12 (-5 *2 (-1194 3 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-2223 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-1714 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)))) (-4044 (*1 *2 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)))) (-3978 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-3121 (*1 *2 *1 *3) (-12 (-5 *3 (-665 (-971 *4))) (-4 *1 (-1164 *4)) (-4 *4 (-1079)) (-5 *2 (-792)))) (-1983 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-971 *4)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-4414 (*1 *1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4414 (*1 *1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4414 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4414 (*1 *1 *2) (-12 (-5 *2 (-971 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-971 *3)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-4342 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4342 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-4342 (*1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-4342 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-3010 (*1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-2810 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-665 (-971 *5)))) (-5 *3 (-665 (-173))) (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) (-2810 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-665 (-173))) (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) (-2810 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-2810 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-112)) (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) (-2810 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 *3)))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) (-2810 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) (-4 *4 (-1079)) (-4 *1 (-1164 *4)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-971 *3)))))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-665 (-792))))))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-665 (-971 *3))))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-173)))))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-173))))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2686 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792)))))) (-1899 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-1194 3 *3))))) -(-13 (-1130) (-10 -8 (-15 -4425 ($)) (-15 -4425 ($ (-1194 3 |t#1|))) (-15 -1763 ((-792) $)) (-15 -1621 ((-792) $)) (-15 -2223 ($ (-665 $))) (-15 -2223 ($ $ $)) (-15 -2341 ($ (-665 $))) (-15 -1714 ((-665 $) $)) (-15 -4044 ((-665 $) $)) (-15 -3978 ($ $)) (-15 -3121 ((-792) $ (-665 (-971 |t#1|)))) (-15 -1983 ($ $ (-792) (-971 |t#1|))) (-15 -4414 ($ $ (-971 |t#1|))) (-15 -4414 ($ $ (-665 |t#1|))) (-15 -4414 ($ $ (-792))) (-15 -4414 ($ (-971 |t#1|))) (-15 -4414 ((-971 |t#1|) $)) (-15 -3315 ((-112) $)) (-15 -4342 ($ $ (-665 (-971 |t#1|)))) (-15 -4342 ($ $ (-665 (-665 |t#1|)))) (-15 -4342 ($ (-665 (-971 |t#1|)))) (-15 -4342 ((-665 (-971 |t#1|)) $)) (-15 -2699 ((-112) $)) (-15 -3010 ($ $ (-665 (-971 |t#1|)))) (-15 -3010 ($ $ (-665 (-665 |t#1|)))) (-15 -3010 ($ (-665 (-971 |t#1|)))) (-15 -3010 ((-665 (-971 |t#1|)) $)) (-15 -3144 ((-112) $)) (-15 -1519 ($ $ (-665 (-971 |t#1|)))) (-15 -1519 ($ $ (-665 (-665 |t#1|)))) (-15 -1519 ($ (-665 (-971 |t#1|)))) (-15 -1519 ((-665 (-971 |t#1|)) $)) (-15 -4203 ((-112) $)) (-15 -2810 ($ $ (-665 (-665 (-971 |t#1|))) (-665 (-173)) (-173))) (-15 -2810 ($ $ (-665 (-665 (-665 |t#1|))) (-665 (-173)) (-173))) (-15 -2810 ($ $ (-665 (-665 (-971 |t#1|))) (-112) (-112))) (-15 -2810 ($ $ (-665 (-665 (-665 |t#1|))) (-112) (-112))) (-15 -2810 ($ (-665 (-665 (-971 |t#1|))))) (-15 -2810 ($ (-665 (-665 (-971 |t#1|))) (-112) (-112))) (-15 -2810 ((-665 (-665 (-971 |t#1|))) $)) (-15 -2391 ((-112) $)) (-15 -4045 ((-665 (-971 |t#1|)) $)) (-15 -3045 ((-665 (-665 (-665 (-792)))) $)) (-15 -2888 ((-665 (-665 (-665 (-971 |t#1|)))) $)) (-15 -3774 ((-665 (-665 (-173))) $)) (-15 -3345 ((-665 (-173)) $)) (-15 -3637 ((-2 (|:| -2686 (-792)) (|:| |curves| (-792)) (|:| |polygons| (-792)) (|:| |constructs| (-792))) $)) (-15 -1899 ($ $)) (-15 -1752 ((-1194 3 |t#1|) $)) (-15 -2410 ((-885) $)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 184 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) 7 T ELT)) (-2354 (((-112) $ (|[\|\|]| (-537))) 19 T ELT) (((-112) $ (|[\|\|]| (-221))) 23 T ELT) (((-112) $ (|[\|\|]| (-697))) 27 T ELT) (((-112) $ (|[\|\|]| (-1307))) 31 T ELT) (((-112) $ (|[\|\|]| (-139))) 35 T ELT) (((-112) $ (|[\|\|]| (-618))) 39 T ELT) (((-112) $ (|[\|\|]| (-134))) 43 T ELT) (((-112) $ (|[\|\|]| (-1145))) 47 T ELT) (((-112) $ (|[\|\|]| (-96))) 51 T ELT) (((-112) $ (|[\|\|]| (-702))) 55 T ELT) (((-112) $ (|[\|\|]| (-530))) 59 T ELT) (((-112) $ (|[\|\|]| (-1096))) 63 T ELT) (((-112) $ (|[\|\|]| (-1308))) 67 T ELT) (((-112) $ (|[\|\|]| (-538))) 71 T ELT) (((-112) $ (|[\|\|]| (-1181))) 75 T ELT) (((-112) $ (|[\|\|]| (-155))) 79 T ELT) (((-112) $ (|[\|\|]| (-692))) 83 T ELT) (((-112) $ (|[\|\|]| (-322))) 87 T ELT) (((-112) $ (|[\|\|]| (-1066))) 91 T ELT) (((-112) $ (|[\|\|]| (-182))) 95 T ELT) (((-112) $ (|[\|\|]| (-1000))) 99 T ELT) (((-112) $ (|[\|\|]| (-1103))) 103 T ELT) (((-112) $ (|[\|\|]| (-1120))) 107 T ELT) (((-112) $ (|[\|\|]| (-1126))) 111 T ELT) (((-112) $ (|[\|\|]| (-644))) 115 T ELT) (((-112) $ (|[\|\|]| (-1196))) 119 T ELT) (((-112) $ (|[\|\|]| (-157))) 123 T ELT) (((-112) $ (|[\|\|]| (-138))) 127 T ELT) (((-112) $ (|[\|\|]| (-491))) 131 T ELT) (((-112) $ (|[\|\|]| (-605))) 135 T ELT) (((-112) $ (|[\|\|]| (-519))) 139 T ELT) (((-112) $ (|[\|\|]| (-1188))) 143 T ELT) (((-112) $ (|[\|\|]| (-577))) 147 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4031 (((-537) $) 20 T ELT) (((-221) $) 24 T ELT) (((-697) $) 28 T ELT) (((-1307) $) 32 T ELT) (((-139) $) 36 T ELT) (((-618) $) 40 T ELT) (((-134) $) 44 T ELT) (((-1145) $) 48 T ELT) (((-96) $) 52 T ELT) (((-702) $) 56 T ELT) (((-530) $) 60 T ELT) (((-1096) $) 64 T ELT) (((-1308) $) 68 T ELT) (((-538) $) 72 T ELT) (((-1181) $) 76 T ELT) (((-155) $) 80 T ELT) (((-692) $) 84 T ELT) (((-322) $) 88 T ELT) (((-1066) $) 92 T ELT) (((-182) $) 96 T ELT) (((-1000) $) 100 T ELT) (((-1103) $) 104 T ELT) (((-1120) $) 108 T ELT) (((-1126) $) 112 T ELT) (((-644) $) 116 T ELT) (((-1196) $) 120 T ELT) (((-157) $) 124 T ELT) (((-138) $) 128 T ELT) (((-491) $) 132 T ELT) (((-605) $) 136 T ELT) (((-519) $) 140 T ELT) (((-1188) $) 144 T ELT) (((-577) $) 148 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1165) (-1167)) (T -1165)) -NIL -(-1167) -((-3217 (((-665 (-1211)) (-1188)) 9 T ELT))) -(((-1166) (-10 -7 (-15 -3217 ((-665 (-1211)) (-1188))))) (T -1166)) -((-3217 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-1166))))) -(-10 -7 (-15 -3217 ((-665 (-1211)) (-1188)))) -((-3211 (((-112) $ $) 7 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-1211)) 17 T ELT) (((-1211) $) 16 T ELT)) (-2354 (((-112) $ (|[\|\|]| (-537))) 85 T ELT) (((-112) $ (|[\|\|]| (-221))) 83 T ELT) (((-112) $ (|[\|\|]| (-697))) 81 T ELT) (((-112) $ (|[\|\|]| (-1307))) 79 T ELT) (((-112) $ (|[\|\|]| (-139))) 77 T ELT) (((-112) $ (|[\|\|]| (-618))) 75 T ELT) (((-112) $ (|[\|\|]| (-134))) 73 T ELT) (((-112) $ (|[\|\|]| (-1145))) 71 T ELT) (((-112) $ (|[\|\|]| (-96))) 69 T ELT) (((-112) $ (|[\|\|]| (-702))) 67 T ELT) (((-112) $ (|[\|\|]| (-530))) 65 T ELT) (((-112) $ (|[\|\|]| (-1096))) 63 T ELT) (((-112) $ (|[\|\|]| (-1308))) 61 T ELT) (((-112) $ (|[\|\|]| (-538))) 59 T ELT) (((-112) $ (|[\|\|]| (-1181))) 57 T ELT) (((-112) $ (|[\|\|]| (-155))) 55 T ELT) (((-112) $ (|[\|\|]| (-692))) 53 T ELT) (((-112) $ (|[\|\|]| (-322))) 51 T ELT) (((-112) $ (|[\|\|]| (-1066))) 49 T ELT) (((-112) $ (|[\|\|]| (-182))) 47 T ELT) (((-112) $ (|[\|\|]| (-1000))) 45 T ELT) (((-112) $ (|[\|\|]| (-1103))) 43 T ELT) (((-112) $ (|[\|\|]| (-1120))) 41 T ELT) (((-112) $ (|[\|\|]| (-1126))) 39 T ELT) (((-112) $ (|[\|\|]| (-644))) 37 T ELT) (((-112) $ (|[\|\|]| (-1196))) 35 T ELT) (((-112) $ (|[\|\|]| (-157))) 33 T ELT) (((-112) $ (|[\|\|]| (-138))) 31 T ELT) (((-112) $ (|[\|\|]| (-491))) 29 T ELT) (((-112) $ (|[\|\|]| (-605))) 27 T ELT) (((-112) $ (|[\|\|]| (-519))) 25 T ELT) (((-112) $ (|[\|\|]| (-1188))) 23 T ELT) (((-112) $ (|[\|\|]| (-577))) 21 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-4031 (((-537) $) 84 T ELT) (((-221) $) 82 T ELT) (((-697) $) 80 T ELT) (((-1307) $) 78 T ELT) (((-139) $) 76 T ELT) (((-618) $) 74 T ELT) (((-134) $) 72 T ELT) (((-1145) $) 70 T ELT) (((-96) $) 68 T ELT) (((-702) $) 66 T ELT) (((-530) $) 64 T ELT) (((-1096) $) 62 T ELT) (((-1308) $) 60 T ELT) (((-538) $) 58 T ELT) (((-1181) $) 56 T ELT) (((-155) $) 54 T ELT) (((-692) $) 52 T ELT) (((-322) $) 50 T ELT) (((-1066) $) 48 T ELT) (((-182) $) 46 T ELT) (((-1000) $) 44 T ELT) (((-1103) $) 42 T ELT) (((-1120) $) 40 T ELT) (((-1126) $) 38 T ELT) (((-644) $) 36 T ELT) (((-1196) $) 34 T ELT) (((-157) $) 32 T ELT) (((-138) $) 30 T ELT) (((-491) $) 28 T ELT) (((-605) $) 26 T ELT) (((-519) $) 24 T ELT) (((-1188) $) 22 T ELT) (((-577) $) 20 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-1167) (-141)) (T -1167)) -((-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-537)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-221)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-697)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1307))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1307)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-139)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-618)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-134)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1145)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-96)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-702))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-702)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-530)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1096)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1308)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-538)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1181)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-155)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-692)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-322)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1066)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-182)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1000)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1103)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1120))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1120)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1126)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-644))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-644)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1196))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1196)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-157)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-138)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-491)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-605)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-519)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1188)))) (-2354 (*1 *2 *1 *3) (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-577))))) -(-13 (-1113) (-1292) (-10 -8 (-15 -2354 ((-112) $ (|[\|\|]| (-537)))) (-15 -4031 ((-537) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-221)))) (-15 -4031 ((-221) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-697)))) (-15 -4031 ((-697) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1307)))) (-15 -4031 ((-1307) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-139)))) (-15 -4031 ((-139) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-618)))) (-15 -4031 ((-618) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-134)))) (-15 -4031 ((-134) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1145)))) (-15 -4031 ((-1145) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-96)))) (-15 -4031 ((-96) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-702)))) (-15 -4031 ((-702) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-530)))) (-15 -4031 ((-530) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1096)))) (-15 -4031 ((-1096) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1308)))) (-15 -4031 ((-1308) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-538)))) (-15 -4031 ((-538) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1181)))) (-15 -4031 ((-1181) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-155)))) (-15 -4031 ((-155) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-692)))) (-15 -4031 ((-692) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-322)))) (-15 -4031 ((-322) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1066)))) (-15 -4031 ((-1066) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-182)))) (-15 -4031 ((-182) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1000)))) (-15 -4031 ((-1000) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1103)))) (-15 -4031 ((-1103) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1120)))) (-15 -4031 ((-1120) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1126)))) (-15 -4031 ((-1126) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-644)))) (-15 -4031 ((-644) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1196)))) (-15 -4031 ((-1196) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-157)))) (-15 -4031 ((-157) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-138)))) (-15 -4031 ((-138) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-491)))) (-15 -4031 ((-491) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-605)))) (-15 -4031 ((-605) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-519)))) (-15 -4031 ((-519) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-1188)))) (-15 -4031 ((-1188) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-577)))) (-15 -4031 ((-577) $)))) -(((-93) . T) ((-102) . T) ((-634 #0=(-1211)) . T) ((-631 (-885)) . T) ((-631 #0#) . T) ((-503 #0#) . T) ((-1130) . T) ((-1113) . T) ((-1247) . T) ((-1292) . T)) -((-1741 (((-1302) (-665 (-885))) 22 T ELT) (((-1302) (-885)) 21 T ELT)) (-3532 (((-1302) (-665 (-885))) 20 T ELT) (((-1302) (-885)) 19 T ELT)) (-1902 (((-1302) (-665 (-885))) 18 T ELT) (((-1302) (-885)) 10 T ELT) (((-1302) (-1188) (-885)) 16 T ELT))) -(((-1168) (-10 -7 (-15 -1902 ((-1302) (-1188) (-885))) (-15 -1902 ((-1302) (-885))) (-15 -3532 ((-1302) (-885))) (-15 -1741 ((-1302) (-885))) (-15 -1902 ((-1302) (-665 (-885)))) (-15 -3532 ((-1302) (-665 (-885)))) (-15 -1741 ((-1302) (-665 (-885)))))) (T -1168)) -((-1741 (*1 *2 *3) (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168))))) -(-10 -7 (-15 -1902 ((-1302) (-1188) (-885))) (-15 -1902 ((-1302) (-885))) (-15 -3532 ((-1302) (-885))) (-15 -1741 ((-1302) (-885))) (-15 -1902 ((-1302) (-665 (-885)))) (-15 -3532 ((-1302) (-665 (-885)))) (-15 -1741 ((-1302) (-665 (-885))))) -((-3992 (($ $ $) 10 T ELT)) (-4302 (($ $) 9 T ELT)) (-3591 (($ $ $) 13 T ELT)) (-2227 (($ $ $) 15 T ELT)) (-3639 (($ $ $) 12 T ELT)) (-3321 (($ $ $) 14 T ELT)) (-2058 (($ $) 17 T ELT)) (-2668 (($ $) 16 T ELT)) (-3385 (($ $) 6 T ELT)) (-2667 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3587 (($ $ $) 8 T ELT))) -(((-1169) (-141)) (T -1169)) -((-2058 (*1 *1 *1) (-4 *1 (-1169))) (-2668 (*1 *1 *1) (-4 *1 (-1169))) (-2227 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3321 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3591 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3639 (*1 *1 *1 *1) (-4 *1 (-1169))) (-2667 (*1 *1 *1 *1) (-4 *1 (-1169))) (-3992 (*1 *1 *1 *1) (-4 *1 (-1169))) (-4302 (*1 *1 *1) (-4 *1 (-1169))) (-3587 (*1 *1 *1 *1) (-4 *1 (-1169))) (-2667 (*1 *1 *1) (-4 *1 (-1169))) (-3385 (*1 *1 *1) (-4 *1 (-1169)))) -(-13 (-10 -8 (-15 -3385 ($ $)) (-15 -2667 ($ $)) (-15 -3587 ($ $ $)) (-15 -4302 ($ $)) (-15 -3992 ($ $ $)) (-15 -2667 ($ $ $)) (-15 -3639 ($ $ $)) (-15 -3591 ($ $ $)) (-15 -3321 ($ $ $)) (-15 -2227 ($ $ $)) (-15 -2668 ($ $)) (-15 -2058 ($ $)))) -((-3211 (((-112) $ $) 44 T ELT)) (-4119 ((|#1| $) 17 T ELT)) (-3295 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39 T ELT)) (-2501 (((-112) $) 19 T ELT)) (-3056 (($ $ |#1|) 30 T ELT)) (-3156 (($ $ (-112)) 32 T ELT)) (-3802 (($ $) 33 T ELT)) (-1578 (($ $ |#2|) 31 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1853 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2392 (((-112) $) 16 T ELT)) (-3414 (($) 13 T ELT)) (-3978 (($ $) 29 T ELT)) (-2422 (($ |#1| |#2| (-112)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -4317 |#2|))) 23 T ELT) (((-665 $) (-665 (-2 (|:| |val| |#1|) (|:| -4317 |#2|)))) 26 T ELT) (((-665 $) |#1| (-665 |#2|)) 28 T ELT)) (-2100 ((|#2| $) 18 T ELT)) (-2410 (((-885) $) 53 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 42 T ELT))) -(((-1170 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3414 ($)) (-15 -2392 ((-112) $)) (-15 -4119 (|#1| $)) (-15 -2100 (|#2| $)) (-15 -2501 ((-112) $)) (-15 -2422 ($ |#1| |#2| (-112))) (-15 -2422 ($ |#1| |#2|)) (-15 -2422 ($ (-2 (|:| |val| |#1|) (|:| -4317 |#2|)))) (-15 -2422 ((-665 $) (-665 (-2 (|:| |val| |#1|) (|:| -4317 |#2|))))) (-15 -2422 ((-665 $) |#1| (-665 |#2|))) (-15 -3978 ($ $)) (-15 -3056 ($ $ |#1|)) (-15 -1578 ($ $ |#2|)) (-15 -3156 ($ $ (-112))) (-15 -3802 ($ $)) (-15 -1853 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3295 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1130) (-34)) (-13 (-1130) (-34))) (T -1170)) -((-3414 (*1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-4119 (*1 *2 *1) (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *2 *3)) (-4 *3 (-13 (-1130) (-34))))) (-2100 (*1 *2 *1) (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1130) (-34))))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-2422 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2422 (*1 *1 *2 *3) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4317 *4))) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1170 *3 *4)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-665 (-2 (|:| |val| *4) (|:| -4317 *5)))) (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-665 (-1170 *4 *5))) (-5 *1 (-1170 *4 *5)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-665 *5)) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-665 (-1170 *3 *5))) (-5 *1 (-1170 *3 *5)) (-4 *3 (-13 (-1130) (-34))))) (-3978 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-3056 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-1578 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1130) (-34))) (-4 *2 (-13 (-1130) (-34))))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-1853 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1170 *5 *6)))) (-3295 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34)))))) -(-13 (-1130) (-10 -8 (-15 -3414 ($)) (-15 -2392 ((-112) $)) (-15 -4119 (|#1| $)) (-15 -2100 (|#2| $)) (-15 -2501 ((-112) $)) (-15 -2422 ($ |#1| |#2| (-112))) (-15 -2422 ($ |#1| |#2|)) (-15 -2422 ($ (-2 (|:| |val| |#1|) (|:| -4317 |#2|)))) (-15 -2422 ((-665 $) (-665 (-2 (|:| |val| |#1|) (|:| -4317 |#2|))))) (-15 -2422 ((-665 $) |#1| (-665 |#2|))) (-15 -3978 ($ $)) (-15 -3056 ($ $ |#1|)) (-15 -1578 ($ $ |#2|)) (-15 -3156 ($ $ (-112))) (-15 -3802 ($ $)) (-15 -1853 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3295 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-3211 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-4119 (((-1170 |#1| |#2|) $) 27 T ELT)) (-1947 (($ $) 91 T ELT)) (-3603 (((-112) (-1170 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100 T ELT)) (-3401 (($ $ $ (-665 (-1170 |#1| |#2|))) 108 T ELT) (($ $ $ (-665 (-1170 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4411 (((-1170 |#1| |#2|) $ (-1170 |#1| |#2|)) 46 (|has| $ (-6 -4500)) ELT)) (-2589 (((-1170 |#1| |#2|) $ "value" (-1170 |#1| |#2|)) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 44 (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2656 (((-665 (-2 (|:| |val| |#1|) (|:| -4317 |#2|))) $) 95 T ELT)) (-1991 (($ (-1170 |#1| |#2|) $) 42 T ELT)) (-2736 (($ (-1170 |#1| |#2|) $) 34 T ELT)) (-2728 (((-665 (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 54 T ELT)) (-2000 (((-112) (-1170 |#1| |#2|) $) 97 T ELT)) (-2975 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 (-1170 |#1| |#2|)) $) 58 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-1170 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-1170 |#1| |#2|) (-1130))) ELT)) (-3437 (($ (-1 (-1170 |#1| |#2|) (-1170 |#1| |#2|)) $) 50 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-1170 |#1| |#2|) (-1170 |#1| |#2|)) $) 49 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-1503 (((-665 (-1170 |#1| |#2|)) $) 56 T ELT)) (-1452 (((-112) $) 45 T ELT)) (-3384 (((-1188) $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-1582 (((-3 $ "failed") $) 89 T ELT)) (-2519 (((-112) (-1 (-112) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-1170 |#1| |#2|)))) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT) (($ $ (-305 (-1170 |#1| |#2|))) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT) (($ $ (-1170 |#1| |#2|) (-1170 |#1| |#2|)) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT) (($ $ (-665 (-1170 |#1| |#2|)) (-665 (-1170 |#1| |#2|))) NIL (-12 (|has| (-1170 |#1| |#2|) (-320 (-1170 |#1| |#2|))) (|has| (-1170 |#1| |#2|) (-1130))) ELT)) (-3674 (((-112) $ $) 53 T ELT)) (-2392 (((-112) $) 24 T ELT)) (-3414 (($) 26 T ELT)) (-2435 (((-1170 |#1| |#2|) $ "value") NIL T ELT)) (-1722 (((-577) $ $) NIL T ELT)) (-2110 (((-112) $) 47 T ELT)) (-4323 (((-792) (-1 (-112) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-1170 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-1170 |#1| |#2|) (-1130))) ELT)) (-3978 (($ $) 52 T ELT)) (-2422 (($ (-1170 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-665 $)) 13 T ELT) (($ |#1| |#2| (-665 (-1170 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-665 |#2|)) 18 T ELT)) (-4453 (((-665 |#2|) $) 96 T ELT)) (-2410 (((-885) $) 87 (|has| (-1170 |#1| |#2|) (-631 (-885))) ELT)) (-2421 (((-665 $) $) 31 T ELT)) (-3737 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-1835 (((-112) (-1 (-112) (-1170 |#1| |#2|)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 70 (|has| (-1170 |#1| |#2|) (-102)) ELT)) (-3224 (((-792) $) 64 (|has| $ (-6 -4499)) ELT))) -(((-1171 |#1| |#2|) (-13 (-1040 (-1170 |#1| |#2|)) (-10 -8 (-6 -4500) (-6 -4499) (-15 -1582 ((-3 $ "failed") $)) (-15 -1947 ($ $)) (-15 -2422 ($ (-1170 |#1| |#2|))) (-15 -2422 ($ |#1| |#2| (-665 $))) (-15 -2422 ($ |#1| |#2| (-665 (-1170 |#1| |#2|)))) (-15 -2422 ($ |#1| |#2| |#1| (-665 |#2|))) (-15 -4453 ((-665 |#2|) $)) (-15 -2656 ((-665 (-2 (|:| |val| |#1|) (|:| -4317 |#2|))) $)) (-15 -2000 ((-112) (-1170 |#1| |#2|) $)) (-15 -3603 ((-112) (-1170 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2736 ($ (-1170 |#1| |#2|) $)) (-15 -1991 ($ (-1170 |#1| |#2|) $)) (-15 -3401 ($ $ $ (-665 (-1170 |#1| |#2|)))) (-15 -3401 ($ $ $ (-665 (-1170 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1130) (-34)) (-13 (-1130) (-34))) (T -1171)) -((-1582 (*1 *1 *1) (|partial| -12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-1947 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-2422 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-665 (-1171 *2 *3))) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) (-2422 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-665 (-1170 *2 *3))) (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))) (-5 *1 (-1171 *2 *3)))) (-2422 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-665 *3)) (-4 *3 (-13 (-1130) (-34))) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))))) (-4453 (*1 *2 *1) (-12 (-5 *2 (-665 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))))) (-2000 (*1 *2 *3 *1) (-12 (-5 *3 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *4 *5)))) (-3603 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1170 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *5 *6)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-1991 (*1 *1 *2 *1) (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-3401 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-665 (-1170 *3 *4))) (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) (-3401 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-1170 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) (-5 *1 (-1171 *4 *5))))) -(-13 (-1040 (-1170 |#1| |#2|)) (-10 -8 (-6 -4500) (-6 -4499) (-15 -1582 ((-3 $ "failed") $)) (-15 -1947 ($ $)) (-15 -2422 ($ (-1170 |#1| |#2|))) (-15 -2422 ($ |#1| |#2| (-665 $))) (-15 -2422 ($ |#1| |#2| (-665 (-1170 |#1| |#2|)))) (-15 -2422 ($ |#1| |#2| |#1| (-665 |#2|))) (-15 -4453 ((-665 |#2|) $)) (-15 -2656 ((-665 (-2 (|:| |val| |#1|) (|:| -4317 |#2|))) $)) (-15 -2000 ((-112) (-1170 |#1| |#2|) $)) (-15 -3603 ((-112) (-1170 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2736 ($ (-1170 |#1| |#2|) $)) (-15 -1991 ($ (-1170 |#1| |#2|) $)) (-15 -3401 ($ $ $ (-665 (-1170 |#1| |#2|)))) (-15 -3401 ($ $ $ (-665 (-1170 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3439 (($ $) NIL T ELT)) (-1880 ((|#2| $) NIL T ELT)) (-3387 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3595 (($ (-710 |#2|)) 56 T ELT)) (-4405 (((-112) $) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2831 (($ |#2|) 14 T ELT)) (-2762 (($) NIL T CONST)) (-1433 (($ $) 69 (|has| |#2| (-318)) ELT)) (-2803 (((-246 |#1| |#2|) $ (-577)) 42 T ELT)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) ((|#2| $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) 83 T ELT)) (-1875 (((-792) $) 71 (|has| |#2| (-569)) ELT)) (-3381 ((|#2| $ (-577) (-577)) NIL T ELT)) (-2728 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3309 (((-792) $) 73 (|has| |#2| (-569)) ELT)) (-4111 (((-665 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-569)) ELT)) (-3066 (((-792) $) NIL T ELT)) (-3748 (($ |#2|) 25 T ELT)) (-3080 (((-792) $) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3845 ((|#2| $) 67 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-2664 (((-577) $) NIL T ELT)) (-2988 (((-577) $) NIL T ELT)) (-4138 (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1707 (((-577) $) NIL T ELT)) (-2529 (((-577) $) NIL T ELT)) (-1868 (($ (-665 (-665 |#2|))) 37 T ELT)) (-3437 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1522 (((-665 (-665 |#2|)) $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2566 (((-3 $ "failed") $) 80 (|has| |#2| (-375)) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2519 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ (-577) (-577) |#2|) NIL T ELT) ((|#2| $ (-577) (-577)) NIL T ELT)) (-2030 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-1747 ((|#2| $) NIL T ELT)) (-4260 (($ (-665 |#2|)) 50 T ELT)) (-2101 (((-112) $) NIL T ELT)) (-2413 (((-246 |#1| |#2|) $) NIL T ELT)) (-2620 ((|#2| $) 65 (|has| |#2| (-6 (-4501 "*"))) ELT)) (-4323 (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) 89 (|has| |#2| (-632 (-549))) ELT)) (-2397 (((-246 |#1| |#2|) $ (-577)) 44 T ELT)) (-2410 (((-885) $) 47 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (($ |#2|) NIL T ELT) (((-710 |#2|) $) 52 T ELT)) (-3234 (((-792)) 23 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3110 (((-112) $) NIL T ELT)) (-2367 (($) 16 T CONST)) (-2378 (($) 21 T CONST)) (-1675 (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-238)) ELT) (($ $ (-792)) NIL (|has| |#2| (-238)) ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 63 T ELT) (($ $ (-577)) 82 (|has| |#2| (-375)) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1172 |#1| |#2|) (-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-10 -8 (-15 -3748 ($ |#2|)) (-15 -3439 ($ $)) (-15 -3595 ($ (-710 |#2|))) (IF (|has| |#2| (-6 (-4501 "*"))) (-6 -4488) |%noBranch|) (IF (|has| |#2| (-6 (-4501 "*"))) (IF (|has| |#2| (-6 -4496)) (-6 -4496) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) (-792) (-1079)) (T -1172)) -((-3748 (*1 *1 *2) (-12 (-5 *1 (-1172 *3 *2)) (-14 *3 (-792)) (-4 *2 (-1079)))) (-3439 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-14 *2 (-792)) (-4 *3 (-1079)))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-710 *4)) (-4 *4 (-1079)) (-5 *1 (-1172 *3 *4)) (-14 *3 (-792))))) -(-13 (-1153 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-631 (-710 |#2|)) (-10 -8 (-15 -3748 ($ |#2|)) (-15 -3439 ($ $)) (-15 -3595 ($ (-710 |#2|))) (IF (|has| |#2| (-6 (-4501 "*"))) (-6 -4488) |%noBranch|) (IF (|has| |#2| (-6 (-4501 "*"))) (IF (|has| |#2| (-6 -4496)) (-6 -4496) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-632 (-549))) (-6 (-632 (-549))) |%noBranch|))) -((-1900 (($ $) 19 T ELT)) (-4458 (($ $ (-145)) 10 T ELT) (($ $ (-142)) 14 T ELT)) (-3613 (((-112) $ $) 24 T ELT)) (-3028 (($ $) 17 T ELT)) (-2435 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) (($ $ $) 31 T ELT)) (-2410 (($ (-145)) 29 T ELT) (((-885) $) NIL T ELT))) -(((-1173 |#1|) (-10 -8 (-15 -2410 ((-885) |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -4458 (|#1| |#1| (-142))) (-15 -4458 (|#1| |#1| (-145))) (-15 -2410 (|#1| (-145))) (-15 -3613 ((-112) |#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -3028 (|#1| |#1|)) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -2435 ((-145) |#1| (-577))) (-15 -2435 ((-145) |#1| (-577) (-145)))) (-1174)) (T -1173)) -NIL -(-10 -8 (-15 -2410 ((-885) |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -4458 (|#1| |#1| (-142))) (-15 -4458 (|#1| |#1| (-145))) (-15 -2410 (|#1| (-145))) (-15 -3613 ((-112) |#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -3028 (|#1| |#1|)) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -2435 ((-145) |#1| (-577))) (-15 -2435 ((-145) |#1| (-577) (-145)))) -((-3211 (((-112) $ $) 20 (|has| (-145) (-102)) ELT)) (-4280 (($ $) 123 T ELT)) (-1900 (($ $) 124 T ELT)) (-4458 (($ $ (-145)) 111 T ELT) (($ $ (-142)) 110 T ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3589 (((-112) $ $) 121 T ELT)) (-3564 (((-112) $ $ (-577)) 120 T ELT)) (-2574 (((-665 $) $ (-145)) 113 T ELT) (((-665 $) $ (-142)) 112 T ELT)) (-3047 (((-112) (-1 (-112) (-145) (-145)) $) 101 T ELT) (((-112) $) 95 (|has| (-145) (-870)) ELT)) (-1461 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| (-145) (-870)) (|has| $ (-6 -4500))) ELT)) (-2040 (($ (-1 (-112) (-145) (-145)) $) 102 T ELT) (($ $) 96 (|has| (-145) (-870)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 (((-145) $ (-577) (-145)) 53 (|has| $ (-6 -4500)) ELT) (((-145) $ (-1264 (-577)) (-145)) 60 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-2447 (($ $ (-145)) 107 T ELT) (($ $ (-142)) 106 T ELT)) (-3823 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 103 T ELT)) (-1803 (($ $ (-1264 (-577)) $) 117 T ELT)) (-3860 (($ $) 80 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ (-145) $) 79 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4499)) ELT)) (-2511 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4499)) ELT)) (-3448 (((-145) $ (-577) (-145)) 54 (|has| $ (-6 -4500)) ELT)) (-3381 (((-145) $ (-577)) 52 T ELT)) (-3613 (((-112) $ $) 122 T ELT)) (-3886 (((-577) (-1 (-112) (-145)) $) 100 T ELT) (((-577) (-145) $) 99 (|has| (-145) (-1130)) ELT) (((-577) (-145) $ (-577)) 98 (|has| (-145) (-1130)) ELT) (((-577) $ $ (-577)) 116 T ELT) (((-577) (-142) $ (-577)) 115 T ELT)) (-2728 (((-665 (-145)) $) 31 (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) (-145)) 70 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 85 (|has| (-145) (-870)) ELT)) (-2223 (($ (-1 (-112) (-145) (-145)) $ $) 104 T ELT) (($ $ $) 97 (|has| (-145) (-870)) ELT)) (-4138 (((-665 (-145)) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 86 (|has| (-145) (-870)) ELT)) (-4036 (((-112) $ $ (-145)) 118 T ELT)) (-4463 (((-792) $ $ (-145)) 119 T ELT)) (-3437 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-145) (-145)) $) 36 T ELT) (($ (-1 (-145) (-145) (-145)) $ $) 65 T ELT)) (-1480 (($ $) 125 T ELT)) (-3028 (($ $) 126 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-2457 (($ $ (-145)) 109 T ELT) (($ $ (-142)) 108 T ELT)) (-3384 (((-1188) $) 23 (|has| (-145) (-1130)) ELT)) (-4272 (($ (-145) $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| (-145) (-1130)) ELT)) (-4188 (((-145) $) 43 (|has| (-577) (-870)) ELT)) (-1520 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73 T ELT)) (-3482 (($ $ (-145)) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-145)))) 27 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) 26 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-145)) (-665 (-145))) 24 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-3485 (((-665 (-145)) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 (((-145) $ (-577) (-145)) 51 T ELT) (((-145) $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT) (($ $ $) 105 T ELT)) (-1704 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-4323 (((-792) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-145) $) 29 (-12 (|has| (-145) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1530 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 81 (|has| (-145) (-632 (-549))) ELT)) (-2422 (($ (-665 (-145))) 72 T ELT)) (-3702 (($ $ (-145)) 69 T ELT) (($ (-145) $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-2410 (($ (-145)) 114 T ELT) (((-885) $) 18 (|has| (-145) (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| (-145) (-102)) ELT)) (-1835 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) 87 (|has| (-145) (-870)) ELT)) (-2415 (((-112) $ $) 89 (|has| (-145) (-870)) ELT)) (-2383 (((-112) $ $) 19 (|has| (-145) (-102)) ELT)) (-2428 (((-112) $ $) 88 (|has| (-145) (-870)) ELT)) (-2403 (((-112) $ $) 90 (|has| (-145) (-870)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1174) (-141)) (T -1174)) -((-3028 (*1 *1 *1) (-4 *1 (-1174))) (-1480 (*1 *1 *1) (-4 *1 (-1174))) (-1900 (*1 *1 *1) (-4 *1 (-1174))) (-4280 (*1 *1 *1) (-4 *1 (-1174))) (-3613 (*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112)))) (-3589 (*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112)))) (-3564 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-577)) (-5 *2 (-112)))) (-4463 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-792)))) (-4036 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-112)))) (-1803 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-1264 (-577))))) (-3886 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577)))) (-3886 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577)) (-5 *3 (-142)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1174)))) (-2574 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-665 *1)) (-4 *1 (-1174)))) (-2574 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-665 *1)) (-4 *1 (-1174)))) (-4458 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145)))) (-4458 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) (-2457 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145)))) (-2457 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) (-2447 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145)))) (-2447 (*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) (-2435 (*1 *1 *1 *1) (-4 *1 (-1174)))) -(-13 (-19 (-145)) (-10 -8 (-15 -3028 ($ $)) (-15 -1480 ($ $)) (-15 -1900 ($ $)) (-15 -4280 ($ $)) (-15 -3613 ((-112) $ $)) (-15 -3589 ((-112) $ $)) (-15 -3564 ((-112) $ $ (-577))) (-15 -4463 ((-792) $ $ (-145))) (-15 -4036 ((-112) $ $ (-145))) (-15 -1803 ($ $ (-1264 (-577)) $)) (-15 -3886 ((-577) $ $ (-577))) (-15 -3886 ((-577) (-142) $ (-577))) (-15 -2410 ($ (-145))) (-15 -2574 ((-665 $) $ (-145))) (-15 -2574 ((-665 $) $ (-142))) (-15 -4458 ($ $ (-145))) (-15 -4458 ($ $ (-142))) (-15 -2457 ($ $ (-145))) (-15 -2457 ($ $ (-142))) (-15 -2447 ($ $ (-145))) (-15 -2447 ($ $ (-142))) (-15 -2435 ($ $ $)))) -(((-34) . T) ((-102) -2229 (|has| (-145) (-1130)) (|has| (-145) (-870)) (|has| (-145) (-102))) ((-631 (-885)) -2229 (|has| (-145) (-1130)) (|has| (-145) (-870)) (|has| (-145) (-631 (-885)))) ((-152 #0=(-145)) . T) ((-632 (-549)) |has| (-145) (-632 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ((-672 #0#) . T) ((-19 #0#) . T) ((-870) |has| (-145) (-870)) ((-873) |has| (-145) (-870)) ((-1130) -2229 (|has| (-145) (-1130)) (|has| (-145) (-870))) ((-1247) . T)) -((-2825 (((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-792)) 112 T ELT)) (-4024 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792)) 61 T ELT)) (-4211 (((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-792)) 97 T ELT)) (-2629 (((-792) (-665 |#4|) (-665 |#5|)) 30 T ELT)) (-3507 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792)) 63 T ELT) (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792) (-112)) 65 T ELT)) (-2622 (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112)) 84 T ELT) (((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112)) 85 T ELT)) (-3341 (((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) 90 T ELT)) (-2290 (((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|) 60 T ELT)) (-2311 (((-792) (-665 |#4|) (-665 |#5|)) 21 T ELT))) -(((-1175 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2311 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2629 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2290 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2825 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-792))) (-15 -3341 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -4211 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-792)))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3| |#4|)) (T -1175)) -((-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1139 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) (-5 *1 (-1175 *4 *5 *6 *7 *8)))) (-2825 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-665 *11)) (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -4317 *11)))))) (-5 *6 (-792)) (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -4317 *11)))) (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) (-4 *11 (-1139 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-5 *1 (-1175 *7 *8 *9 *10 *11)))) (-2622 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-2622 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-3507 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-3507 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) (-3507 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1175 *7 *8 *9 *3 *4)) (-4 *4 (-1139 *7 *8 *9 *3)))) (-4024 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-4024 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *3 (-1095 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) (-2290 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-665 *4)) (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3)))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2311 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2629 ((-792) (-665 |#4|) (-665 |#5|))) (-15 -2290 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -4024 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792) (-112))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5| (-792))) (-15 -3507 ((-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) |#4| |#5|)) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112))) (-15 -2622 ((-665 |#5|) (-665 |#4|) (-665 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2825 ((-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-665 |#4|) (-665 |#5|) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-2 (|:| |done| (-665 |#5|)) (|:| |todo| (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))))) (-792))) (-15 -3341 ((-1188) (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|)))) (-15 -4211 ((-1302) (-665 (-2 (|:| |val| (-665 |#4|)) (|:| -4317 |#5|))) (-792)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-4202 (((-665 $) (-665 |#4|)) 124 T ELT) (((-665 $) (-665 |#4|) (-112)) 125 T ELT) (((-665 $) (-665 |#4|) (-112) (-112)) 123 T ELT) (((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112)) 126 T ELT)) (-2948 (((-665 |#3|) $) NIL T ELT)) (-3294 (((-112) $) NIL T ELT)) (-1567 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1988 ((|#4| |#4| $) NIL T ELT)) (-4456 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| $) 97 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4232 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 75 T ELT)) (-2762 (($) NIL T CONST)) (-1760 (((-112) $) 29 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3514 (($ (-665 |#4|)) NIL T ELT)) (-4197 (((-3 $ "failed") $) 45 T ELT)) (-3415 ((|#4| |#4| $) 78 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-2736 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2981 ((|#4| |#4| $) NIL T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) NIL T ELT)) (-3820 (((-112) |#4| $) NIL T ELT)) (-3389 (((-112) |#4| $) NIL T ELT)) (-1566 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2371 (((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112)) 139 T ELT)) (-2728 (((-665 |#4|) $) 18 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1669 ((|#3| $) 38 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#4|) $) 19 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2850 (((-665 |#3|) $) NIL T ELT)) (-2746 (((-112) |#3| $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2334 (((-3 |#4| (-665 $)) |#4| |#4| $) NIL T ELT)) (-2212 (((-665 (-2 (|:| |val| |#4|) (|:| -4317 $))) |#4| |#4| $) 117 T ELT)) (-2756 (((-3 |#4| "failed") $) 42 T ELT)) (-2510 (((-665 $) |#4| $) 102 T ELT)) (-2173 (((-3 (-112) (-665 $)) |#4| $) NIL T ELT)) (-4049 (((-665 (-2 (|:| |val| (-112)) (|:| -4317 $))) |#4| $) 112 T ELT) (((-112) |#4| $) 65 T ELT)) (-3959 (((-665 $) |#4| $) 121 T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 122 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT)) (-1358 (((-665 $) (-665 |#4|) (-112) (-112) (-112)) 134 T ELT)) (-4213 (($ |#4| $) 88 T ELT) (($ (-665 |#4|) $) 89 T ELT) (((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87 T ELT)) (-2327 (((-665 |#4|) $) NIL T ELT)) (-2982 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1502 ((|#4| |#4| $) NIL T ELT)) (-2220 (((-112) $ $) NIL T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4058 ((|#4| |#4| $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-3 |#4| "failed") $) 40 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-4013 (($ $ |#4|) NIL T ELT) (((-665 $) |#4| $) 104 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) 99 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 17 T ELT)) (-3414 (($) 14 T ELT)) (-2776 (((-792) $) NIL T ELT)) (-4323 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 22 T ELT)) (-1799 (($ $ |#3|) 52 T ELT)) (-3139 (($ $ |#3|) 54 T ELT)) (-3680 (($ $) NIL T ELT)) (-1600 (($ $ |#3|) NIL T ELT)) (-2410 (((-885) $) 35 T ELT) (((-665 |#4|) $) 46 T ELT)) (-3050 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-1338 (((-665 $) |#4| $) 66 T ELT) (((-665 $) |#4| (-665 $)) NIL T ELT) (((-665 $) (-665 |#4|) $) NIL T ELT) (((-665 $) (-665 |#4|) (-665 $)) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) NIL T ELT)) (-2214 (((-112) |#4| $) NIL T ELT)) (-2306 (((-112) |#3| $) 74 T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1176 |#1| |#2| |#3| |#4|) (-13 (-1139 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4213 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1358 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -2371 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) (-465) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1176)) -((-4213 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *3))) (-5 *1 (-1176 *5 *6 *7 *3)) (-4 *3 (-1095 *5 *6 *7)))) (-4202 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-4202 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-1358 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) (-2371 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-665 *8)) (|:| |towers| (-665 (-1176 *5 *6 *7 *8))))) (-5 *1 (-1176 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) -(-13 (-1139 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4213 ((-665 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112))) (-15 -4202 ((-665 $) (-665 |#4|) (-112) (-112) (-112) (-112))) (-15 -1358 ((-665 $) (-665 |#4|) (-112) (-112) (-112))) (-15 -2371 ((-2 (|:| |val| (-665 |#4|)) (|:| |towers| (-665 $))) (-665 |#4|) (-112) (-112))))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2852 ((|#1| $) 37 T ELT)) (-2676 (($ (-665 |#1|)) 45 T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3073 ((|#1| |#1| $) 40 T ELT)) (-2908 ((|#1| $) 35 T ELT)) (-2728 (((-665 |#1|) $) 18 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-3398 ((|#1| $) 38 T ELT)) (-3795 (($ |#1| $) 41 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3127 ((|#1| $) 36 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 32 T ELT)) (-3414 (($) 43 T ELT)) (-3300 (((-792) $) 30 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 27 T ELT)) (-2410 (((-885) $) 14 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3236 (($ (-665 |#1|)) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 17 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 31 (|has| $ (-6 -4499)) ELT))) -(((-1177 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -2676 ($ (-665 |#1|))))) (-1247)) (T -1177)) -((-2676 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1177 *3))))) -(-13 (-1151 |#1|) (-10 -8 (-15 -2676 ($ (-665 |#1|))))) -((-2589 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) NIL T ELT) (($ $ "rest" $) NIL T ELT) ((|#2| $ "last" |#2|) NIL T ELT) ((|#2| $ (-1264 (-577)) |#2|) 53 T ELT) ((|#2| $ (-577) |#2|) 50 T ELT)) (-1631 (((-112) $) 12 T ELT)) (-3437 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4188 ((|#2| $) NIL T ELT) (($ $ (-792)) 17 T ELT)) (-3482 (($ $ |#2|) 49 T ELT)) (-2005 (((-112) $) 11 T ELT)) (-2435 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#2| $ "last") NIL T ELT) (($ $ (-1264 (-577))) 36 T ELT) ((|#2| $ (-577)) 26 T ELT) ((|#2| $ (-577) |#2|) NIL T ELT)) (-2872 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3702 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-665 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1178 |#1| |#2|) (-10 -8 (-15 -1631 ((-112) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -2589 (|#2| |#1| (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577))) (-15 -3482 (|#1| |#1| |#2|)) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -3702 (|#1| |#1| |#2|)) (-15 -3702 (|#1| (-665 |#1|))) (-15 -2589 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -2589 (|#2| |#1| "last" |#2|)) (-15 -2589 (|#1| |#1| "rest" |#1|)) (-15 -2589 (|#2| |#1| "first" |#2|)) (-15 -2872 (|#1| |#1| |#2|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2435 (|#2| |#1| "last")) (-15 -2435 (|#1| |#1| "rest")) (-15 -4188 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "first")) (-15 -4188 (|#2| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#1|)) (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -2435 (|#2| |#1| "value")) (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|))) (-1179 |#2|) (-1247)) (T -1178)) -NIL -(-10 -8 (-15 -1631 ((-112) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -2589 (|#2| |#1| (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577) |#2|)) (-15 -2435 (|#2| |#1| (-577))) (-15 -3482 (|#1| |#1| |#2|)) (-15 -2435 (|#1| |#1| (-1264 (-577)))) (-15 -3702 (|#1| |#1| |#2|)) (-15 -3702 (|#1| (-665 |#1|))) (-15 -2589 (|#2| |#1| (-1264 (-577)) |#2|)) (-15 -2589 (|#2| |#1| "last" |#2|)) (-15 -2589 (|#1| |#1| "rest" |#1|)) (-15 -2589 (|#2| |#1| "first" |#2|)) (-15 -2872 (|#1| |#1| |#2|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2435 (|#2| |#1| "last")) (-15 -2435 (|#1| |#1| "rest")) (-15 -4188 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "first")) (-15 -4188 (|#2| |#1|)) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#1|)) (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -2435 (|#2| |#1| "value")) (-15 -3437 (|#1| (-1 |#2| |#2|) |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-3932 ((|#1| $) 66 T ELT)) (-3840 (($ $) 68 T ELT)) (-3425 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-4306 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 119 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4499)) ELT)) (-3919 ((|#1| $) 67 T ELT)) (-2762 (($) 7 T CONST)) (-4197 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-3860 (($ $) 101 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4499)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3448 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 89 T ELT)) (-1631 (((-112) $) 85 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-3748 (($ (-792) |#1|) 111 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 97 (|has| (-577) (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 96 (|has| (-577) (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-4272 (($ $ $ (-577)) 118 T ELT) (($ |#1| $ (-577)) 117 T ELT)) (-3887 (((-665 (-577)) $) 94 T ELT)) (-1593 (((-112) (-577) $) 93 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-3482 (($ $ |#1|) 98 (|has| $ (-6 -4500)) ELT)) (-2005 (((-112) $) 86 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 92 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-577))) 110 T ELT) ((|#1| $ (-577)) 91 T ELT) ((|#1| $ (-577) |#1|) 90 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-1704 (($ $ (-1264 (-577))) 116 T ELT) (($ $ (-577)) 115 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-1751 (($ $) 63 T ELT)) (-4123 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) 64 T ELT)) (-3252 (($ $) 65 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 100 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 109 T ELT)) (-2872 (($ $ $) 62 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4500)) ELT)) (-3702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-665 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1179 |#1|) (-141) (-1247)) (T -1179)) -((-2005 (*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) -(-13 (-1285 |t#1|) (-672 |t#1|) (-10 -8 (-15 -2005 ((-112) $)) (-15 -1631 ((-112) $)))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T) ((-1285 |#1|) . T)) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-3425 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-3242 (((-665 |#1|) $) NIL T ELT)) (-2404 (((-112) |#1| $) NIL T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3887 (((-665 |#1|) $) NIL T ELT)) (-1593 (((-112) |#1| $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1180 |#1| |#2| |#3|) (-1223 |#1| |#2|) (-1130) (-1130) |#2|) (T -1180)) -NIL -(-1223 |#1| |#2|) -((-3211 (((-112) $ $) NIL T ELT)) (-1495 (((-712 (-1165)) $) 27 T ELT)) (-1354 (((-1165) $) 15 T ELT)) (-2242 (((-1165) $) 17 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3243 (((-519) $) 13 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 37 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1181) (-13 (-1113) (-10 -8 (-15 -3243 ((-519) $)) (-15 -2242 ((-1165) $)) (-15 -1495 ((-712 (-1165)) $)) (-15 -1354 ((-1165) $))))) (T -1181)) -((-3243 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1181)))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-712 (-1165))) (-5 *1 (-1181)))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181))))) -(-13 (-1113) (-10 -8 (-15 -3243 ((-519) $)) (-15 -2242 ((-1165) $)) (-15 -1495 ((-712 (-1165)) $)) (-15 -1354 ((-1165) $)))) -((-3211 (((-112) $ $) 7 T ELT)) (-3651 (((-3 $ "failed") $) 14 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2199 (($) 15 T CONST)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2383 (((-112) $ $) 8 T ELT))) -(((-1182) (-141)) (T -1182)) -((-2199 (*1 *1) (-4 *1 (-1182))) (-3651 (*1 *1 *1) (|partial| -4 *1 (-1182)))) -(-13 (-1130) (-10 -8 (-15 -2199 ($) -1528) (-15 -3651 ((-3 $ "failed") $)))) -(((-102) . T) ((-631 (-885)) . T) ((-1130) . T) ((-1247) . T)) -((-4152 (((-1187 |#1|) (-1187 |#1|)) 17 T ELT)) (-4307 (((-1187 |#1|) (-1187 |#1|)) 13 T ELT)) (-3566 (((-1187 |#1|) (-1187 |#1|) (-577) (-577)) 20 T ELT)) (-2015 (((-1187 |#1|) (-1187 |#1|)) 15 T ELT))) -(((-1183 |#1|) (-10 -7 (-15 -4307 ((-1187 |#1|) (-1187 |#1|))) (-15 -2015 ((-1187 |#1|) (-1187 |#1|))) (-15 -4152 ((-1187 |#1|) (-1187 |#1|))) (-15 -3566 ((-1187 |#1|) (-1187 |#1|) (-577) (-577)))) (-13 (-569) (-148))) (T -1183)) -((-3566 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1183 *4)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1183 *3)))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1183 *3)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1183 *3))))) -(-10 -7 (-15 -4307 ((-1187 |#1|) (-1187 |#1|))) (-15 -2015 ((-1187 |#1|) (-1187 |#1|))) (-15 -4152 ((-1187 |#1|) (-1187 |#1|))) (-15 -3566 ((-1187 |#1|) (-1187 |#1|) (-577) (-577)))) -((-3702 (((-1187 |#1|) (-1187 (-1187 |#1|))) 15 T ELT))) -(((-1184 |#1|) (-10 -7 (-15 -3702 ((-1187 |#1|) (-1187 (-1187 |#1|))))) (-1247)) (T -1184)) -((-3702 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1184 *4)) (-4 *4 (-1247))))) -(-10 -7 (-15 -3702 ((-1187 |#1|) (-1187 (-1187 |#1|))))) -((-2090 (((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)) 25 T ELT)) (-2511 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)) 26 T ELT)) (-3609 (((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|)) 16 T ELT))) -(((-1185 |#1| |#2|) (-10 -7 (-15 -3609 ((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|))) (-15 -2090 ((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|))) (-15 -2511 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)))) (-1247) (-1247)) (T -1185)) -((-2511 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1185 *5 *2)))) (-2090 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1187 *6)) (-4 *6 (-1247)) (-4 *3 (-1247)) (-5 *2 (-1187 *3)) (-5 *1 (-1185 *6 *3)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1187 *6)) (-5 *1 (-1185 *5 *6))))) -(-10 -7 (-15 -3609 ((-1187 |#2|) (-1 |#2| |#1|) (-1187 |#1|))) (-15 -2090 ((-1187 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|))) (-15 -2511 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1187 |#1|)))) -((-3609 (((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)) 21 T ELT))) -(((-1186 |#1| |#2| |#3|) (-10 -7 (-15 -3609 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)))) (-1247) (-1247) (-1247)) (T -1186)) -((-3609 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-1187 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) (-5 *1 (-1186 *6 *7 *8))))) -(-10 -7 (-15 -3609 ((-1187 |#3|) (-1 |#3| |#1| |#2|) (-1187 |#1|) (-1187 |#2|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) NIL T ELT)) (-3932 ((|#1| $) NIL T ELT)) (-3840 (($ $) 67 T ELT)) (-3425 (((-1302) $ (-577) (-577)) 99 (|has| $ (-6 -4500)) ELT)) (-2797 (($ $ (-577)) 128 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2611 (((-885) $) 56 (|has| |#1| (-1130)) ELT)) (-2713 (((-112)) 55 (|has| |#1| (-1130)) ELT)) (-4411 ((|#1| $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 115 (|has| $ (-6 -4500)) ELT) (($ $ (-577) $) 141 T ELT)) (-4306 ((|#1| $ |#1|) 125 (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) 120 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 124 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 112 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-577) |#1|) 77 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 80 T ELT)) (-3919 ((|#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3649 (($ $) 14 T ELT)) (-4197 (($ $) 40 T ELT) (($ $ (-792)) 111 T ELT)) (-1945 (((-112) (-665 |#1|) $) 134 (|has| |#1| (-1130)) ELT)) (-1678 (($ (-665 |#1|)) 130 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) 79 T ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-1631 (((-112) $) NIL T ELT)) (-2728 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2142 (((-1302) (-577) $) 140 (|has| |#1| (-1130)) ELT)) (-3076 (((-792) $) 137 T ELT)) (-4284 (((-665 $) $) NIL T ELT)) (-2975 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 85 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 89 T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-1503 (((-665 |#1|) $) NIL T ELT)) (-1452 (((-112) $) NIL T ELT)) (-4251 (($ $) 113 T ELT)) (-3697 (((-112) $) 13 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) NIL T ELT) (($ $ (-792)) NIL T ELT)) (-4272 (($ $ $ (-577)) NIL T ELT) (($ |#1| $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) 96 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4168 (($ (-1 |#1|)) 143 T ELT) (($ (-1 |#1| |#1|) |#1|) 144 T ELT)) (-3378 ((|#1| $) 10 T ELT)) (-4188 ((|#1| $) 39 T ELT) (($ $ (-792)) 65 T ELT)) (-2594 (((-2 (|:| |cycle?| (-112)) (|:| -4081 (-792)) (|:| |period| (-792))) (-792) $) 34 T ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4210 (($ (-1 (-112) |#1|) $) 145 T ELT)) (-4221 (($ (-1 (-112) |#1|) $) 146 T ELT)) (-3482 (($ $ |#1|) 90 (|has| $ (-6 -4500)) ELT)) (-4013 (($ $ (-577)) 45 T ELT)) (-2005 (((-112) $) 94 T ELT)) (-2405 (((-112) $) 12 T ELT)) (-1729 (((-112) $) 136 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 30 T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) 20 T ELT)) (-3414 (($) 60 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) ((|#1| $ (-577)) 75 T ELT) ((|#1| $ (-577) |#1|) NIL T ELT)) (-1722 (((-577) $ $) 64 T ELT)) (-1704 (($ $ (-1264 (-577))) NIL T ELT) (($ $ (-577)) NIL T ELT)) (-2685 (($ (-1 $)) 63 T ELT)) (-2110 (((-112) $) 91 T ELT)) (-1751 (($ $) 92 T ELT)) (-4123 (($ $) 116 (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 59 T ELT)) (-3341 (((-549) $) NIL (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 73 T ELT)) (-1797 (($ |#1| $) 114 T ELT)) (-2872 (($ $ $) 118 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 119 (|has| $ (-6 -4500)) ELT)) (-3702 (($ $ $) 101 T ELT) (($ |#1| $) 61 T ELT) (($ (-665 $)) 106 T ELT) (($ $ |#1|) 100 T ELT)) (-1470 (($ $) 66 T ELT)) (-2410 (($ (-665 |#1|)) 129 T ELT) (((-885) $) 57 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) NIL T ELT)) (-3737 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 132 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1187 |#1|) (-13 (-695 |#1|) (-634 (-665 |#1|)) (-10 -8 (-6 -4500) (-15 -1678 ($ (-665 |#1|))) (IF (|has| |#1| (-1130)) (-15 -1945 ((-112) (-665 |#1|) $)) |%noBranch|) (-15 -2594 ((-2 (|:| |cycle?| (-112)) (|:| -4081 (-792)) (|:| |period| (-792))) (-792) $)) (-15 -2685 ($ (-1 $))) (-15 -1797 ($ |#1| $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -2142 ((-1302) (-577) $)) (-15 -2611 ((-885) $)) (-15 -2713 ((-112)))) |%noBranch|) (-15 -1980 ($ $ (-577) $)) (-15 -4168 ($ (-1 |#1|))) (-15 -4168 ($ (-1 |#1| |#1|) |#1|)) (-15 -4210 ($ (-1 (-112) |#1|) $)) (-15 -4221 ($ (-1 (-112) |#1|) $)))) (-1247)) (T -1187)) -((-1678 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-4 *4 (-1247)) (-5 *2 (-112)) (-5 *1 (-1187 *4)))) (-2594 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4081 (-792)) (|:| |period| (-792)))) (-5 *1 (-1187 *4)) (-4 *4 (-1247)) (-5 *3 (-792)))) (-2685 (*1 *1 *2) (-12 (-5 *2 (-1 (-1187 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1247)))) (-1797 (*1 *1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-1247)))) (-2142 (*1 *2 *3 *1) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1187 *4)) (-4 *4 (-1130)) (-4 *4 (-1247)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) (-4 *3 (-1247)))) (-2713 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) (-4 *3 (-1247)))) (-1980 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1187 *3)) (-4 *3 (-1247)))) (-4168 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-4168 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-4210 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) (-4221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) -(-13 (-695 |#1|) (-634 (-665 |#1|)) (-10 -8 (-6 -4500) (-15 -1678 ($ (-665 |#1|))) (IF (|has| |#1| (-1130)) (-15 -1945 ((-112) (-665 |#1|) $)) |%noBranch|) (-15 -2594 ((-2 (|:| |cycle?| (-112)) (|:| -4081 (-792)) (|:| |period| (-792))) (-792) $)) (-15 -2685 ($ (-1 $))) (-15 -1797 ($ |#1| $)) (IF (|has| |#1| (-1130)) (PROGN (-15 -2142 ((-1302) (-577) $)) (-15 -2611 ((-885) $)) (-15 -2713 ((-112)))) |%noBranch|) (-15 -1980 ($ $ (-577) $)) (-15 -4168 ($ (-1 |#1|))) (-15 -4168 ($ (-1 |#1| |#1|) |#1|)) (-15 -4210 ($ (-1 (-112) |#1|) $)) (-15 -4221 ($ (-1 (-112) |#1|) $)))) -((-3211 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-4280 (($ $) NIL T ELT)) (-1900 (($ $) NIL T ELT)) (-4458 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3589 (((-112) $ $) NIL T ELT)) (-3564 (((-112) $ $ (-577)) NIL T ELT)) (-1965 (($ (-577)) 8 T ELT) (($ (-228)) 10 T ELT)) (-2574 (((-665 $) $ (-145)) NIL T ELT) (((-665 $) $ (-142)) NIL T ELT)) (-3047 (((-112) (-1 (-112) (-145) (-145)) $) NIL T ELT) (((-112) $) NIL (|has| (-145) (-870)) ELT)) (-1461 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-145) (-870))) ELT)) (-2040 (($ (-1 (-112) (-145) (-145)) $) NIL T ELT) (($ $) NIL (|has| (-145) (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4500)) ELT) (((-145) $ (-1264 (-577)) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-2447 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-1803 (($ $ (-1264 (-577)) $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-2736 (($ (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4499)) ELT) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-3381 (((-145) $ (-577)) NIL T ELT)) (-3613 (((-112) $ $) NIL T ELT)) (-3886 (((-577) (-1 (-112) (-145)) $) NIL T ELT) (((-577) (-145) $) NIL (|has| (-145) (-1130)) ELT) (((-577) (-145) $ (-577)) NIL (|has| (-145) (-1130)) ELT) (((-577) $ $ (-577)) NIL T ELT) (((-577) (-142) $ (-577)) NIL T ELT)) (-2728 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3748 (($ (-792) (-145)) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-2223 (($ (-1 (-112) (-145) (-145)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-4138 (((-665 (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1962 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| (-145) (-870)) ELT)) (-4036 (((-112) $ $ (-145)) NIL T ELT)) (-4463 (((-792) $ $ (-145)) NIL T ELT)) (-3437 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-145) (-145)) $) NIL T ELT) (($ (-1 (-145) (-145) (-145)) $ $) NIL T ELT)) (-1480 (($ $) NIL T ELT)) (-3028 (($ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-2457 (($ $ (-145)) NIL T ELT) (($ $ (-142)) NIL T ELT)) (-3384 (((-1188) $) NIL (|has| (-145) (-1130)) ELT)) (-4272 (($ (-145) $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| (-145) (-1130)) ELT)) (-4188 (((-145) $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL T ELT)) (-3482 (($ $ (-145)) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT) (($ $ (-665 (-145)) (-665 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-3485 (((-665 (-145)) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 (((-145) $ (-577) (-145)) NIL T ELT) (((-145) $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT) (($ $ $) NIL T ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-145) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-145) (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-145) (-632 (-549))) ELT)) (-2422 (($ (-665 (-145))) NIL T ELT)) (-3702 (($ $ (-145)) NIL T ELT) (($ (-145) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (($ (-145)) NIL T ELT) (((-885) $) NIL (|has| (-145) (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-1835 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4499)) ELT)) (-2792 (((-1188) $) 21 T ELT) (((-1188) $ (-112)) 23 T ELT) (((-1302) (-843) $) 24 T ELT) (((-1302) (-843) $ (-112)) 25 T ELT)) (-2440 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| (-145) (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| (-145) (-870)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1188) (-13 (-1174) (-849) (-10 -8 (-15 -1965 ($ (-577))) (-15 -1965 ($ (-228)))))) (T -1188)) -((-1965 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1188)))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1188))))) -(-13 (-1174) (-849) (-10 -8 (-15 -1965 ($ (-577))) (-15 -1965 ($ (-228))))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT)) (-3425 (((-1302) $ (-1188) (-1188)) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-1188) |#1|) NIL T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#1| "failed") (-1188) $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#1| "failed") (-1188) $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-1188) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-1188)) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-1188) $) NIL (|has| (-1188) (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130)) (|has| |#1| (-1130))) ELT)) (-3242 (((-665 (-1188)) $) NIL T ELT)) (-2404 (((-112) (-1188) $) NIL T ELT)) (-3398 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL T ELT)) (-3887 (((-665 (-1188)) $) NIL T ELT)) (-1593 (((-112) (-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130)) (|has| |#1| (-1130))) ELT)) (-4188 ((|#1| $) NIL (|has| (-1188) (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) "failed") (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL (-12 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-320 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-1188)) NIL T ELT) ((|#1| $ (-1188) |#1|) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-1130))) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-631 (-885))) (|has| |#1| (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1189 |#1|) (-13 (-1223 (-1188) |#1|) (-10 -7 (-6 -4499))) (-1130)) (T -1189)) -NIL -(-13 (-1223 (-1188) |#1|) (-10 -7 (-6 -4499))) -((-3665 (((-1187 |#1|) (-1187 |#1|)) 83 T ELT)) (-4281 (((-3 (-1187 |#1|) "failed") (-1187 |#1|)) 39 T ELT)) (-2666 (((-1187 |#1|) (-420 (-577)) (-1187 |#1|)) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4327 (((-1187 |#1|) |#1| (-1187 |#1|)) 139 (|has| |#1| (-375)) ELT)) (-4343 (((-1187 |#1|) (-1187 |#1|)) 97 T ELT)) (-1708 (((-1187 (-577)) (-577)) 63 T ELT)) (-3780 (((-1187 |#1|) (-1187 (-1187 |#1|))) 116 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3364 (((-1187 |#1|) (-577) (-577) (-1187 |#1|)) 102 T ELT)) (-1475 (((-1187 |#1|) |#1| (-577)) 51 T ELT)) (-3827 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 66 T ELT)) (-1849 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 136 (|has| |#1| (-375)) ELT)) (-4158 (((-1187 |#1|) |#1| (-1 (-1187 |#1|))) 115 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2197 (((-1187 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1187 |#1|))) 137 (|has| |#1| (-375)) ELT)) (-2640 (((-1187 |#1|) (-1187 |#1|)) 96 T ELT)) (-1718 (((-1187 |#1|) (-1187 |#1|)) 82 T ELT)) (-2409 (((-1187 |#1|) (-577) (-577) (-1187 |#1|)) 103 T ELT)) (-3491 (((-1187 |#1|) |#1| (-1187 |#1|)) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2163 (((-1187 (-577)) (-577)) 62 T ELT)) (-3623 (((-1187 |#1|) |#1|) 65 T ELT)) (-4080 (((-1187 |#1|) (-1187 |#1|) (-577) (-577)) 99 T ELT)) (-2871 (((-1187 |#1|) (-1 |#1| (-577)) (-1187 |#1|)) 72 T ELT)) (-3200 (((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|)) 37 T ELT)) (-2376 (((-1187 |#1|) (-1187 |#1|)) 98 T ELT)) (-3362 (((-1187 |#1|) (-1187 |#1|) |#1|) 77 T ELT)) (-3261 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-3287 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 78 T ELT)) (-2410 (((-1187 |#1|) |#1|) 73 T ELT)) (-1529 (((-1187 |#1|) (-1187 (-1187 |#1|))) 88 T ELT)) (-2494 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 38 T ELT)) (-2483 (((-1187 |#1|) (-1187 |#1|)) 21 T ELT) (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 23 T ELT)) (-2471 (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 17 T ELT)) (* (((-1187 |#1|) (-1187 |#1|) |#1|) 29 T ELT) (((-1187 |#1|) |#1| (-1187 |#1|)) 26 T ELT) (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 27 T ELT))) -(((-1190 |#1|) (-10 -7 (-15 -2471 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2483 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2483 ((-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3200 ((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|))) (-15 -2494 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4281 ((-3 (-1187 |#1|) "failed") (-1187 |#1|))) (-15 -1475 ((-1187 |#1|) |#1| (-577))) (-15 -2163 ((-1187 (-577)) (-577))) (-15 -1708 ((-1187 (-577)) (-577))) (-15 -3623 ((-1187 |#1|) |#1|)) (-15 -3827 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3261 ((-1187 |#1|) (-1187 |#1|))) (-15 -2871 ((-1187 |#1|) (-1 |#1| (-577)) (-1187 |#1|))) (-15 -2410 ((-1187 |#1|) |#1|)) (-15 -3362 ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3287 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -1718 ((-1187 |#1|) (-1187 |#1|))) (-15 -3665 ((-1187 |#1|) (-1187 |#1|))) (-15 -1529 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -2640 ((-1187 |#1|) (-1187 |#1|))) (-15 -4343 ((-1187 |#1|) (-1187 |#1|))) (-15 -2376 ((-1187 |#1|) (-1187 |#1|))) (-15 -4080 ((-1187 |#1|) (-1187 |#1|) (-577) (-577))) (-15 -3364 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (-15 -2409 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 -4158 ((-1187 |#1|) |#1| (-1 (-1187 |#1|)))) (-15 -3780 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -2666 ((-1187 |#1|) (-420 (-577)) (-1187 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -1849 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2197 ((-1187 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1187 |#1|)))) (-15 -4327 ((-1187 |#1|) |#1| (-1187 |#1|)))) |%noBranch|)) (-1079)) (T -1190)) -((-4327 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1187 *4))) (-4 *4 (-375)) (-4 *4 (-1079)) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)))) (-1849 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2666 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1079)) (-5 *3 (-420 (-577))) (-5 *1 (-1190 *4)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1187 *3))) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)))) (-3491 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2409 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-3364 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-4080 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-4343 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2640 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) (-4 *4 (-1079)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3287 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3362 (*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) (-2871 (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1079)) (-5 *1 (-1190 *4)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3827 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3623 (*1 *2 *3) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) (-1708 (*1 *2 *3) (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) (-5 *3 (-577)))) (-2163 (*1 *2 *3) (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) (-5 *3 (-577)))) (-1475 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) (-4281 (*1 *2 *2) (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2494 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-3200 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) (-2471 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) -(-10 -7 (-15 -2471 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2483 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2483 ((-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 * ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 * ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3200 ((-3 (-1187 |#1|) "failed") (-1187 |#1|) (-1187 |#1|))) (-15 -2494 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -4281 ((-3 (-1187 |#1|) "failed") (-1187 |#1|))) (-15 -1475 ((-1187 |#1|) |#1| (-577))) (-15 -2163 ((-1187 (-577)) (-577))) (-15 -1708 ((-1187 (-577)) (-577))) (-15 -3623 ((-1187 |#1|) |#1|)) (-15 -3827 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -3261 ((-1187 |#1|) (-1187 |#1|))) (-15 -2871 ((-1187 |#1|) (-1 |#1| (-577)) (-1187 |#1|))) (-15 -2410 ((-1187 |#1|) |#1|)) (-15 -3362 ((-1187 |#1|) (-1187 |#1|) |#1|)) (-15 -3287 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -1718 ((-1187 |#1|) (-1187 |#1|))) (-15 -3665 ((-1187 |#1|) (-1187 |#1|))) (-15 -1529 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -2640 ((-1187 |#1|) (-1187 |#1|))) (-15 -4343 ((-1187 |#1|) (-1187 |#1|))) (-15 -2376 ((-1187 |#1|) (-1187 |#1|))) (-15 -4080 ((-1187 |#1|) (-1187 |#1|) (-577) (-577))) (-15 -3364 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (-15 -2409 ((-1187 |#1|) (-577) (-577) (-1187 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ((-1187 |#1|) |#1| (-1187 |#1|))) (-15 -4158 ((-1187 |#1|) |#1| (-1 (-1187 |#1|)))) (-15 -3780 ((-1187 |#1|) (-1187 (-1187 |#1|)))) (-15 -2666 ((-1187 |#1|) (-420 (-577)) (-1187 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -1849 ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -2197 ((-1187 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1187 |#1|)))) (-15 -4327 ((-1187 |#1|) |#1| (-1187 |#1|)))) |%noBranch|)) -((-1501 (((-1187 |#1|) (-1187 |#1|)) 60 T ELT)) (-1371 (((-1187 |#1|) (-1187 |#1|)) 42 T ELT)) (-1477 (((-1187 |#1|) (-1187 |#1|)) 56 T ELT)) (-1348 (((-1187 |#1|) (-1187 |#1|)) 38 T ELT)) (-1527 (((-1187 |#1|) (-1187 |#1|)) 63 T ELT)) (-1391 (((-1187 |#1|) (-1187 |#1|)) 45 T ELT)) (-3863 (((-1187 |#1|) (-1187 |#1|)) 34 T ELT)) (-3585 (((-1187 |#1|) (-1187 |#1|)) 29 T ELT)) (-1540 (((-1187 |#1|) (-1187 |#1|)) 64 T ELT)) (-1402 (((-1187 |#1|) (-1187 |#1|)) 46 T ELT)) (-1515 (((-1187 |#1|) (-1187 |#1|)) 61 T ELT)) (-1381 (((-1187 |#1|) (-1187 |#1|)) 43 T ELT)) (-1489 (((-1187 |#1|) (-1187 |#1|)) 58 T ELT)) (-1360 (((-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-1575 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-1435 (((-1187 |#1|) (-1187 |#1|)) 50 T ELT)) (-1551 (((-1187 |#1|) (-1187 |#1|)) 66 T ELT)) (-1413 (((-1187 |#1|) (-1187 |#1|)) 48 T ELT)) (-1597 (((-1187 |#1|) (-1187 |#1|)) 71 T ELT)) (-1456 (((-1187 |#1|) (-1187 |#1|)) 53 T ELT)) (-3501 (((-1187 |#1|) (-1187 |#1|)) 72 T ELT)) (-1466 (((-1187 |#1|) (-1187 |#1|)) 54 T ELT)) (-1586 (((-1187 |#1|) (-1187 |#1|)) 70 T ELT)) (-1446 (((-1187 |#1|) (-1187 |#1|)) 52 T ELT)) (-1562 (((-1187 |#1|) (-1187 |#1|)) 69 T ELT)) (-1423 (((-1187 |#1|) (-1187 |#1|)) 51 T ELT)) (** (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 36 T ELT))) -(((-1191 |#1|) (-10 -7 (-15 -3585 ((-1187 |#1|) (-1187 |#1|))) (-15 -3863 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -1348 ((-1187 |#1|) (-1187 |#1|))) (-15 -1360 ((-1187 |#1|) (-1187 |#1|))) (-15 -1371 ((-1187 |#1|) (-1187 |#1|))) (-15 -1381 ((-1187 |#1|) (-1187 |#1|))) (-15 -1391 ((-1187 |#1|) (-1187 |#1|))) (-15 -1402 ((-1187 |#1|) (-1187 |#1|))) (-15 -1413 ((-1187 |#1|) (-1187 |#1|))) (-15 -1423 ((-1187 |#1|) (-1187 |#1|))) (-15 -1435 ((-1187 |#1|) (-1187 |#1|))) (-15 -1446 ((-1187 |#1|) (-1187 |#1|))) (-15 -1456 ((-1187 |#1|) (-1187 |#1|))) (-15 -1466 ((-1187 |#1|) (-1187 |#1|))) (-15 -1477 ((-1187 |#1|) (-1187 |#1|))) (-15 -1489 ((-1187 |#1|) (-1187 |#1|))) (-15 -1501 ((-1187 |#1|) (-1187 |#1|))) (-15 -1515 ((-1187 |#1|) (-1187 |#1|))) (-15 -1527 ((-1187 |#1|) (-1187 |#1|))) (-15 -1540 ((-1187 |#1|) (-1187 |#1|))) (-15 -1551 ((-1187 |#1|) (-1187 |#1|))) (-15 -1562 ((-1187 |#1|) (-1187 |#1|))) (-15 -1575 ((-1187 |#1|) (-1187 |#1|))) (-15 -1586 ((-1187 |#1|) (-1187 |#1|))) (-15 -1597 ((-1187 |#1|) (-1187 |#1|))) (-15 -3501 ((-1187 |#1|) (-1187 |#1|)))) (-38 (-420 (-577)))) (T -1191)) -((-3501 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1527 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1466 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1435 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1371 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1360 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-1348 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1191 *3))))) -(-10 -7 (-15 -3585 ((-1187 |#1|) (-1187 |#1|))) (-15 -3863 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -1348 ((-1187 |#1|) (-1187 |#1|))) (-15 -1360 ((-1187 |#1|) (-1187 |#1|))) (-15 -1371 ((-1187 |#1|) (-1187 |#1|))) (-15 -1381 ((-1187 |#1|) (-1187 |#1|))) (-15 -1391 ((-1187 |#1|) (-1187 |#1|))) (-15 -1402 ((-1187 |#1|) (-1187 |#1|))) (-15 -1413 ((-1187 |#1|) (-1187 |#1|))) (-15 -1423 ((-1187 |#1|) (-1187 |#1|))) (-15 -1435 ((-1187 |#1|) (-1187 |#1|))) (-15 -1446 ((-1187 |#1|) (-1187 |#1|))) (-15 -1456 ((-1187 |#1|) (-1187 |#1|))) (-15 -1466 ((-1187 |#1|) (-1187 |#1|))) (-15 -1477 ((-1187 |#1|) (-1187 |#1|))) (-15 -1489 ((-1187 |#1|) (-1187 |#1|))) (-15 -1501 ((-1187 |#1|) (-1187 |#1|))) (-15 -1515 ((-1187 |#1|) (-1187 |#1|))) (-15 -1527 ((-1187 |#1|) (-1187 |#1|))) (-15 -1540 ((-1187 |#1|) (-1187 |#1|))) (-15 -1551 ((-1187 |#1|) (-1187 |#1|))) (-15 -1562 ((-1187 |#1|) (-1187 |#1|))) (-15 -1575 ((-1187 |#1|) (-1187 |#1|))) (-15 -1586 ((-1187 |#1|) (-1187 |#1|))) (-15 -1597 ((-1187 |#1|) (-1187 |#1|))) (-15 -3501 ((-1187 |#1|) (-1187 |#1|)))) -((-1501 (((-1187 |#1|) (-1187 |#1|)) 102 T ELT)) (-1371 (((-1187 |#1|) (-1187 |#1|)) 61 T ELT)) (-1762 (((-2 (|:| -1477 (-1187 |#1|)) (|:| -1489 (-1187 |#1|))) (-1187 |#1|)) 98 T ELT)) (-1477 (((-1187 |#1|) (-1187 |#1|)) 99 T ELT)) (-1987 (((-2 (|:| -1348 (-1187 |#1|)) (|:| -1360 (-1187 |#1|))) (-1187 |#1|)) 54 T ELT)) (-1348 (((-1187 |#1|) (-1187 |#1|)) 55 T ELT)) (-1527 (((-1187 |#1|) (-1187 |#1|)) 104 T ELT)) (-1391 (((-1187 |#1|) (-1187 |#1|)) 68 T ELT)) (-3863 (((-1187 |#1|) (-1187 |#1|)) 40 T ELT)) (-3585 (((-1187 |#1|) (-1187 |#1|)) 37 T ELT)) (-1540 (((-1187 |#1|) (-1187 |#1|)) 105 T ELT)) (-1402 (((-1187 |#1|) (-1187 |#1|)) 69 T ELT)) (-1515 (((-1187 |#1|) (-1187 |#1|)) 103 T ELT)) (-1381 (((-1187 |#1|) (-1187 |#1|)) 64 T ELT)) (-1489 (((-1187 |#1|) (-1187 |#1|)) 100 T ELT)) (-1360 (((-1187 |#1|) (-1187 |#1|)) 56 T ELT)) (-1575 (((-1187 |#1|) (-1187 |#1|)) 113 T ELT)) (-1435 (((-1187 |#1|) (-1187 |#1|)) 88 T ELT)) (-1551 (((-1187 |#1|) (-1187 |#1|)) 107 T ELT)) (-1413 (((-1187 |#1|) (-1187 |#1|)) 84 T ELT)) (-1597 (((-1187 |#1|) (-1187 |#1|)) 117 T ELT)) (-1456 (((-1187 |#1|) (-1187 |#1|)) 92 T ELT)) (-3501 (((-1187 |#1|) (-1187 |#1|)) 119 T ELT)) (-1466 (((-1187 |#1|) (-1187 |#1|)) 94 T ELT)) (-1586 (((-1187 |#1|) (-1187 |#1|)) 115 T ELT)) (-1446 (((-1187 |#1|) (-1187 |#1|)) 90 T ELT)) (-1562 (((-1187 |#1|) (-1187 |#1|)) 109 T ELT)) (-1423 (((-1187 |#1|) (-1187 |#1|)) 86 T ELT)) (** (((-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) 41 T ELT))) -(((-1192 |#1|) (-10 -7 (-15 -3585 ((-1187 |#1|) (-1187 |#1|))) (-15 -3863 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -1987 ((-2 (|:| -1348 (-1187 |#1|)) (|:| -1360 (-1187 |#1|))) (-1187 |#1|))) (-15 -1348 ((-1187 |#1|) (-1187 |#1|))) (-15 -1360 ((-1187 |#1|) (-1187 |#1|))) (-15 -1371 ((-1187 |#1|) (-1187 |#1|))) (-15 -1381 ((-1187 |#1|) (-1187 |#1|))) (-15 -1391 ((-1187 |#1|) (-1187 |#1|))) (-15 -1402 ((-1187 |#1|) (-1187 |#1|))) (-15 -1413 ((-1187 |#1|) (-1187 |#1|))) (-15 -1423 ((-1187 |#1|) (-1187 |#1|))) (-15 -1435 ((-1187 |#1|) (-1187 |#1|))) (-15 -1446 ((-1187 |#1|) (-1187 |#1|))) (-15 -1456 ((-1187 |#1|) (-1187 |#1|))) (-15 -1466 ((-1187 |#1|) (-1187 |#1|))) (-15 -1762 ((-2 (|:| -1477 (-1187 |#1|)) (|:| -1489 (-1187 |#1|))) (-1187 |#1|))) (-15 -1477 ((-1187 |#1|) (-1187 |#1|))) (-15 -1489 ((-1187 |#1|) (-1187 |#1|))) (-15 -1501 ((-1187 |#1|) (-1187 |#1|))) (-15 -1515 ((-1187 |#1|) (-1187 |#1|))) (-15 -1527 ((-1187 |#1|) (-1187 |#1|))) (-15 -1540 ((-1187 |#1|) (-1187 |#1|))) (-15 -1551 ((-1187 |#1|) (-1187 |#1|))) (-15 -1562 ((-1187 |#1|) (-1187 |#1|))) (-15 -1575 ((-1187 |#1|) (-1187 |#1|))) (-15 -1586 ((-1187 |#1|) (-1187 |#1|))) (-15 -1597 ((-1187 |#1|) (-1187 |#1|))) (-15 -3501 ((-1187 |#1|) (-1187 |#1|)))) (-38 (-420 (-577)))) (T -1192)) -((-3501 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1527 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1762 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -1477 (-1187 *4)) (|:| -1489 (-1187 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4)))) (-1466 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1435 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1371 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1360 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1348 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-1987 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -1348 (-1187 *4)) (|:| -1360 (-1187 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1192 *3))))) -(-10 -7 (-15 -3585 ((-1187 |#1|) (-1187 |#1|))) (-15 -3863 ((-1187 |#1|) (-1187 |#1|))) (-15 ** ((-1187 |#1|) (-1187 |#1|) (-1187 |#1|))) (-15 -1987 ((-2 (|:| -1348 (-1187 |#1|)) (|:| -1360 (-1187 |#1|))) (-1187 |#1|))) (-15 -1348 ((-1187 |#1|) (-1187 |#1|))) (-15 -1360 ((-1187 |#1|) (-1187 |#1|))) (-15 -1371 ((-1187 |#1|) (-1187 |#1|))) (-15 -1381 ((-1187 |#1|) (-1187 |#1|))) (-15 -1391 ((-1187 |#1|) (-1187 |#1|))) (-15 -1402 ((-1187 |#1|) (-1187 |#1|))) (-15 -1413 ((-1187 |#1|) (-1187 |#1|))) (-15 -1423 ((-1187 |#1|) (-1187 |#1|))) (-15 -1435 ((-1187 |#1|) (-1187 |#1|))) (-15 -1446 ((-1187 |#1|) (-1187 |#1|))) (-15 -1456 ((-1187 |#1|) (-1187 |#1|))) (-15 -1466 ((-1187 |#1|) (-1187 |#1|))) (-15 -1762 ((-2 (|:| -1477 (-1187 |#1|)) (|:| -1489 (-1187 |#1|))) (-1187 |#1|))) (-15 -1477 ((-1187 |#1|) (-1187 |#1|))) (-15 -1489 ((-1187 |#1|) (-1187 |#1|))) (-15 -1501 ((-1187 |#1|) (-1187 |#1|))) (-15 -1515 ((-1187 |#1|) (-1187 |#1|))) (-15 -1527 ((-1187 |#1|) (-1187 |#1|))) (-15 -1540 ((-1187 |#1|) (-1187 |#1|))) (-15 -1551 ((-1187 |#1|) (-1187 |#1|))) (-15 -1562 ((-1187 |#1|) (-1187 |#1|))) (-15 -1575 ((-1187 |#1|) (-1187 |#1|))) (-15 -1586 ((-1187 |#1|) (-1187 |#1|))) (-15 -1597 ((-1187 |#1|) (-1187 |#1|))) (-15 -3501 ((-1187 |#1|) (-1187 |#1|)))) -((-2487 (((-986 |#2|) |#2| |#2|) 50 T ELT)) (-3008 ((|#2| |#2| |#1|) 19 (|has| |#1| (-318)) ELT))) -(((-1193 |#1| |#2|) (-10 -7 (-15 -2487 ((-986 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -3008 (|#2| |#2| |#1|)) |%noBranch|)) (-569) (-1273 |#1|)) (T -1193)) -((-3008 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1193 *3 *2)) (-4 *2 (-1273 *3)))) (-2487 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-986 *3)) (-5 *1 (-1193 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -2487 ((-986 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -3008 (|#2| |#2| |#1|)) |%noBranch|)) -((-3211 (((-112) $ $) NIL T ELT)) (-3977 (($ $ (-665 (-792))) 79 T ELT)) (-1752 (($) 33 T ELT)) (-3893 (($ $) 51 T ELT)) (-1778 (((-665 $) $) 60 T ELT)) (-2093 (((-112) $) 19 T ELT)) (-4298 (((-665 (-971 |#2|)) $) 86 T ELT)) (-4276 (($ $) 80 T ELT)) (-4116 (((-792) $) 47 T ELT)) (-3748 (($) 32 T ELT)) (-1897 (($ $ (-665 (-792)) (-971 |#2|)) 72 T ELT) (($ $ (-665 (-792)) (-792)) 73 T ELT) (($ $ (-792) (-971 |#2|)) 75 T ELT)) (-2223 (($ $ $) 57 T ELT) (($ (-665 $)) 59 T ELT)) (-4112 (((-792) $) 87 T ELT)) (-1452 (((-112) $) 15 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2794 (((-112) $) 22 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1359 (((-173) $) 85 T ELT)) (-1542 (((-971 |#2|) $) 81 T ELT)) (-3720 (((-792) $) 82 T ELT)) (-1877 (((-112) $) 84 T ELT)) (-3673 (($ $ (-665 (-792)) (-173)) 78 T ELT)) (-4291 (($ $) 52 T ELT)) (-2410 (((-885) $) 99 T ELT)) (-1612 (($ $ (-665 (-792)) (-112)) 77 T ELT)) (-2421 (((-665 $) $) 11 T ELT)) (-2843 (($ $ (-792)) 46 T ELT)) (-2423 (($ $) 43 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2468 (($ $ $ (-971 |#2|) (-792)) 68 T ELT)) (-1737 (($ $ (-971 |#2|)) 67 T ELT)) (-3726 (($ $ (-665 (-792)) (-971 |#2|)) 66 T ELT) (($ $ (-665 (-792)) (-792)) 70 T ELT) (((-792) $ (-971 |#2|)) 71 T ELT)) (-2383 (((-112) $ $) 92 T ELT))) -(((-1194 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -1452 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -2794 ((-112) $)) (-15 -3748 ($)) (-15 -1752 ($)) (-15 -2423 ($ $)) (-15 -2843 ($ $ (-792))) (-15 -2421 ((-665 $) $)) (-15 -4116 ((-792) $)) (-15 -3893 ($ $)) (-15 -4291 ($ $)) (-15 -2223 ($ $ $)) (-15 -2223 ($ (-665 $))) (-15 -1778 ((-665 $) $)) (-15 -3726 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -1737 ($ $ (-971 |#2|))) (-15 -2468 ($ $ $ (-971 |#2|) (-792))) (-15 -1897 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -3726 ($ $ (-665 (-792)) (-792))) (-15 -1897 ($ $ (-665 (-792)) (-792))) (-15 -3726 ((-792) $ (-971 |#2|))) (-15 -1897 ($ $ (-792) (-971 |#2|))) (-15 -1612 ($ $ (-665 (-792)) (-112))) (-15 -3673 ($ $ (-665 (-792)) (-173))) (-15 -3977 ($ $ (-665 (-792)))) (-15 -1542 ((-971 |#2|) $)) (-15 -3720 ((-792) $)) (-15 -1877 ((-112) $)) (-15 -1359 ((-173) $)) (-15 -4112 ((-792) $)) (-15 -4276 ($ $)) (-15 -4298 ((-665 (-971 |#2|)) $)))) (-949) (-1079)) (T -1194)) -((-1452 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3748 (*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-1752 (*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-2423 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3893 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-2223 (*1 *1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3726 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-1737 (*1 *1 *1 *2) (-12 (-5 *2 (-971 *4)) (-4 *4 (-1079)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)))) (-2468 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-971 *5)) (-5 *3 (-792)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-1897 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-3726 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-1897 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-3726 (*1 *2 *1 *3) (-12 (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *2 (-792)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-1897 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) (-1612 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-112)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-3673 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-665 (-792))) (-5 *3 (-173)) (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)) (-4 *5 (-1079)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-971 *4)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079)))) (-4276 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-665 (-971 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) (-4 *4 (-1079))))) -(-13 (-1130) (-10 -8 (-15 -1452 ((-112) $)) (-15 -2093 ((-112) $)) (-15 -2794 ((-112) $)) (-15 -3748 ($)) (-15 -1752 ($)) (-15 -2423 ($ $)) (-15 -2843 ($ $ (-792))) (-15 -2421 ((-665 $) $)) (-15 -4116 ((-792) $)) (-15 -3893 ($ $)) (-15 -4291 ($ $)) (-15 -2223 ($ $ $)) (-15 -2223 ($ (-665 $))) (-15 -1778 ((-665 $) $)) (-15 -3726 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -1737 ($ $ (-971 |#2|))) (-15 -2468 ($ $ $ (-971 |#2|) (-792))) (-15 -1897 ($ $ (-665 (-792)) (-971 |#2|))) (-15 -3726 ($ $ (-665 (-792)) (-792))) (-15 -1897 ($ $ (-665 (-792)) (-792))) (-15 -3726 ((-792) $ (-971 |#2|))) (-15 -1897 ($ $ (-792) (-971 |#2|))) (-15 -1612 ($ $ (-665 (-792)) (-112))) (-15 -3673 ($ $ (-665 (-792)) (-173))) (-15 -3977 ($ $ (-665 (-792)))) (-15 -1542 ((-971 |#2|) $)) (-15 -3720 ((-792) $)) (-15 -1877 ((-112) $)) (-15 -1359 ((-173) $)) (-15 -4112 ((-792) $)) (-15 -4276 ($ $)) (-15 -4298 ((-665 (-971 |#2|)) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3664 ((|#2| $) 11 T ELT)) (-3653 ((|#1| $) 10 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2422 (($ |#1| |#2|) 9 T ELT)) (-2410 (((-885) $) 16 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1195 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -2422 ($ |#1| |#2|)) (-15 -3653 (|#1| $)) (-15 -3664 (|#2| $)))) (-1130) (-1130)) (T -1195)) -((-2422 (*1 *1 *2 *3) (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3653 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-1130)))) (-3664 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1130))))) -(-13 (-1130) (-10 -8 (-15 -2422 ($ |#1| |#2|)) (-15 -3653 (|#1| $)) (-15 -3664 (|#2| $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-2183 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1196) (-13 (-1113) (-10 -8 (-15 -2183 ((-1165) $))))) (T -1196)) -((-2183 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1196))))) -(-13 (-1113) (-10 -8 (-15 -2183 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 (((-1204 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 11 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3913 (($ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-4244 (((-112) $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-4083 (($ $ (-577)) NIL T ELT) (($ $ (-577) (-577)) 75 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL T ELT)) (-3724 (((-1204 |#1| |#2| |#3|) $) 42 T ELT)) (-1407 (((-3 (-1204 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-3002 (((-1204 |#1| |#2| |#3|) $) 33 T ELT)) (-1501 (($ $) 116 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) 112 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4459 (((-577) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL T ELT)) (-1527 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-1204 |#1| |#2| |#3|) "failed") $) 34 T ELT) (((-3 (-1206) "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3514 (((-1204 |#1| |#2| |#3|) $) 140 T ELT) (((-1206) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-577) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3931 (($ $) 37 T ELT) (($ (-577) $) 38 T ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-1204 |#1| |#2| |#3|)) (-710 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-1204 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1204 |#1| |#2| |#3|)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4281 (((-3 $ "failed") $) 54 T ELT)) (-4190 (((-420 (-980 |#1|)) $ (-577)) 74 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 76 (|has| |#1| (-569)) ELT)) (-2060 (($) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2785 (((-112) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2741 (((-112) $) 28 T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-910 (-577))) (|has| |#1| (-375))) ELT)) (-3890 (((-577) $) NIL T ELT) (((-577) $ (-577)) 26 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2518 (((-1204 |#1| |#2| |#3|) $) 44 (|has| |#1| (-375)) ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3651 (((-3 $ "failed") $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) ELT)) (-1434 (((-112) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2393 (($ $ (-949)) NIL T ELT)) (-4195 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-577)) 19 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-1344 (($ $ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-4167 (($ $ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)) ELT)) (-3863 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2796 (((-710 (-1204 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-1204 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1204 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3016 (($ (-577) (-1204 |#1| |#2| |#3|)) 36 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3491 (($ $) 79 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 80 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2199 (($) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2687 (($ $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-2136 (((-1204 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-577)) 158 T ELT)) (-3200 (((-3 $ "failed") $ $) 55 (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3585 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) (-1204 |#1| |#2| |#3|)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-527 (-1206) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 (-1204 |#1| |#2| |#3|))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-527 (-1206) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 (-1204 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-305 (-1204 |#1| |#2| |#3|))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1204 |#1| |#2| |#3|)) (-665 (-1204 |#1| |#2| |#3|))) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-320 (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-577)) NIL T ELT) (($ $ $) 61 (|has| (-577) (-1142)) ELT) (($ $ (-1204 |#1| |#2| |#3|)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-297 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) 57 T ELT) (($ $) 56 (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-2430 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2528 (((-1204 |#1| |#2| |#3|) $) 46 (|has| |#1| (-375)) ELT)) (-2776 (((-577) $) 43 T ELT)) (-1540 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 118 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 114 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3341 (((-549) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-632 (-549))) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-228) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) 162 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1204 |#1| |#2| |#3|)) 30 T ELT) (($ (-1293 |#2|)) 25 T ELT) (($ (-1206)) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT) (($ (-420 (-577))) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-2778 ((|#1| $ (-577)) 77 T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) 12 T ELT)) (-1465 (((-1204 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-1551 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 108 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 110 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3385 (($ $) NIL (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2367 (($) 21 T CONST)) (-2378 (($) 16 T CONST)) (-1675 (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) NIL T ELT) (($ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-2440 (((-112) $ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2415 (((-112) $ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2403 (((-112) $ $) NIL (-2229 (-12 (|has| (-1204 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1204 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 49 (|has| |#1| (-375)) ELT) (($ (-1204 |#1| |#2| |#3|) (-1204 |#1| |#2| |#3|)) 50 (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 23 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 60 T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1204 |#1| |#2| |#3|)) 48 (|has| |#1| (-375)) ELT) (($ (-1204 |#1| |#2| |#3|) $) 47 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1197 |#1| |#2| |#3|) (-13 (-1259 |#1| (-1204 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1197)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(-13 (-1259 |#1| (-1204 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) -((-1954 ((|#2| |#2| (-1122 |#2|)) 26 T ELT) ((|#2| |#2| (-1206)) 28 T ELT))) -(((-1198 |#1| |#2|) (-10 -7 (-15 -1954 (|#2| |#2| (-1206))) (-15 -1954 (|#2| |#2| (-1122 |#2|)))) (-13 (-569) (-1068 (-577)) (-659 (-577))) (-13 (-443 |#1|) (-161) (-27) (-1232))) (T -1198)) -((-1954 (*1 *2 *2 *3) (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232))) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1198 *4 *2)))) (-1954 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232)))))) -(-10 -7 (-15 -1954 (|#2| |#2| (-1206))) (-15 -1954 (|#2| |#2| (-1122 |#2|)))) -((-1954 (((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1122 (-420 (-980 |#1|)))) 31 T ELT) (((-420 (-980 |#1|)) (-980 |#1|) (-1122 (-980 |#1|))) 44 T ELT) (((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1206)) 33 T ELT) (((-420 (-980 |#1|)) (-980 |#1|) (-1206)) 36 T ELT))) -(((-1199 |#1|) (-10 -7 (-15 -1954 ((-420 (-980 |#1|)) (-980 |#1|) (-1206))) (-15 -1954 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -1954 ((-420 (-980 |#1|)) (-980 |#1|) (-1122 (-980 |#1|)))) (-15 -1954 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1122 (-420 (-980 |#1|)))))) (-13 (-569) (-1068 (-577)))) (T -1199)) -((-1954 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-3 *3 (-327 *5))) (-5 *1 (-1199 *5)))) (-1954 (*1 *2 *3 *4) (-12 (-5 *4 (-1122 (-980 *5))) (-5 *3 (-980 *5)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 *3)) (-5 *1 (-1199 *5)))) (-1954 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-3 (-420 (-980 *5)) (-327 *5))) (-5 *1 (-1199 *5)) (-5 *3 (-420 (-980 *5))))) (-1954 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 (-980 *5))) (-5 *1 (-1199 *5)) (-5 *3 (-980 *5))))) -(-10 -7 (-15 -1954 ((-420 (-980 |#1|)) (-980 |#1|) (-1206))) (-15 -1954 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1206))) (-15 -1954 ((-420 (-980 |#1|)) (-980 |#1|) (-1122 (-980 |#1|)))) (-15 -1954 ((-3 (-420 (-980 |#1|)) (-327 |#1|)) (-420 (-980 |#1|)) (-1122 (-420 (-980 |#1|)))))) -((-3609 (((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 13 T ELT))) -(((-1200 |#1| |#2|) (-10 -7 (-15 -3609 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)))) (-1079) (-1079)) (T -1200)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-5 *2 (-1202 *6)) (-5 *1 (-1200 *5 *6))))) -(-10 -7 (-15 -3609 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)))) -((-4240 (((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))) 51 T ELT)) (-2799 (((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))) 52 T ELT))) -(((-1201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|)))) (-15 -4240 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))))) (-814) (-870) (-465) (-977 |#3| |#1| |#2|)) (T -1201)) -((-4240 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7))))) (-2799 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7)))))) -(-10 -7 (-15 -2799 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|)))) (-15 -4240 ((-431 (-1202 (-420 |#4|))) (-1202 (-420 |#4|))))) -((-3211 (((-112) $ $) 171 T ELT)) (-1516 (((-112) $) 43 T ELT)) (-2535 (((-1297 |#1|) $ (-792)) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-4052 (($ (-1202 |#1|)) NIL T ELT)) (-4419 (((-1202 $) $ (-1112)) 82 T ELT) (((-1202 |#1|) $) 71 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) 164 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2907 (($ $ $) 158 (|has| |#1| (-569)) ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 95 (|has| |#1| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 115 (|has| |#1| (-937)) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-2478 (($ $ (-792)) 61 T ELT)) (-2485 (($ $ (-792)) 63 T ELT)) (-1778 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3514 ((|#1| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT)) (-3760 (($ $ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $ $) 160 (|has| |#1| (-174)) ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) 80 T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#1|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2425 (($ $ $) 131 T ELT)) (-4435 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3536 (((-2 (|:| -2671 |#1|) (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-3008 (($ $) 165 (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-792) $) 69 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3771 (((-885) $ (-885)) 148 T ELT)) (-3890 (((-792) $ $) NIL (|has| |#1| (-569)) ELT)) (-2097 (((-112) $) 48 T ELT)) (-3641 (((-792) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-2935 (($ (-1202 |#1|) (-1112)) 73 T ELT) (($ (-1202 $) (-1112)) 89 T ELT)) (-2393 (($ $ (-792)) 51 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) 87 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 153 T ELT)) (-3569 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4309 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3728 (((-1202 |#1|) $) NIL T ELT)) (-2505 (((-3 (-1112) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-710 |#1|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) 76 T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) NIL (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3691 (((-2 (|:| -1636 $) (|:| -4369 $)) $ (-792)) 60 T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-1112)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2199 (($) NIL (|has| |#1| (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) 50 T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 103 (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-465)) ELT) (($ $ $) 167 (|has| |#1| (-465)) ELT)) (-2726 (($ $ (-792) |#1| $) 123 T ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 101 (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 100 (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) 108 (|has| |#1| (-937)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 124 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#1|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ |#1|) 150 T ELT) (($ $ $) 151 T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)) ELT)) (-1616 (((-3 $ "failed") $ (-792)) 54 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 172 (|has| |#1| (-375)) ELT)) (-1611 (($ $ (-1112)) NIL (|has| |#1| (-174)) ELT) ((|#1| $) 156 (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2776 (((-792) $) 78 T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) 162 (|has| |#1| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2341 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)) ELT)) (-2410 (((-885) $) 149 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1112)) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) 41 (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) 17 T CONST)) (-2378 (($) 19 T CONST)) (-1675 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#1| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) 120 T ELT)) (-2494 (($ $ |#1|) 173 (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 90 T ELT)) (** (($ $ (-949)) 14 T ELT) (($ $ (-792)) 12 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 129 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1202 |#1|) (-13 (-1273 |#1|) (-10 -8 (-15 -3771 ((-885) $ (-885))) (-15 -2726 ($ $ (-792) |#1| $)))) (-1079)) (T -1202)) -((-3771 (*1 *2 *1 *2) (-12 (-5 *2 (-885)) (-5 *1 (-1202 *3)) (-4 *3 (-1079)))) (-2726 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1202 *3)) (-4 *3 (-1079))))) -(-13 (-1273 |#1|) (-10 -8 (-15 -3771 ((-885) $ (-885))) (-15 -2726 ($ $ (-792) |#1| $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 11 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-1501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1527 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-1197 |#1| |#2| |#3|) "failed") $) 33 T ELT) (((-3 (-1204 |#1| |#2| |#3|) "failed") $) 36 T ELT)) (-3514 (((-1197 |#1| |#2| |#3|) $) NIL T ELT) (((-1204 |#1| |#2| |#3|) $) NIL T ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-4345 (((-420 (-577)) $) 59 T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3029 (($ (-420 (-577)) (-1197 |#1| |#2| |#3|)) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-420 (-577))) 20 T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3863 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2791 (((-1197 |#1| |#2| |#3|) $) 41 T ELT)) (-3281 (((-3 (-1197 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3016 (((-1197 |#1| |#2| |#3|) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3491 (($ $) 39 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-420 (-577))) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3585 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) 38 T ELT)) (-2776 (((-420 (-577)) $) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) 62 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1197 |#1| |#2| |#3|)) 30 T ELT) (($ (-1204 |#1| |#2| |#3|)) 31 T ELT) (($ (-1293 |#2|)) 26 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-420 (-577))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 22 T CONST)) (-2378 (($) 16 T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 24 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1203 |#1| |#2| |#3|) (-13 (-1280 |#1| (-1197 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1204 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1203)) -((-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1203 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(-13 (-1280 |#1| (-1197 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1204 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 129 T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 119 T ELT)) (-2548 (((-1270 |#2| |#1|) $ (-792)) 69 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-792)) 85 T ELT) (($ $ (-792) (-792)) 82 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|))) $) 105 T ELT)) (-1501 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1477 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1187 |#1|)) 113 T ELT)) (-1527 (($ $) 177 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 25 T ELT)) (-1882 (($ $) 28 T ELT)) (-1768 (((-980 |#1|) $ (-792)) 81 T ELT) (((-980 |#1|) $ (-792) (-792)) 83 T ELT)) (-2741 (((-112) $) 124 T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-792) $) 126 T ELT) (((-792) $ (-792)) 128 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) NIL T ELT)) (-4195 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) 13 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3863 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3491 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4013 (($ $ (-792)) 15 T ELT)) (-3200 (((-3 $ "failed") $ $) 26 (|has| |#1| (-569)) ELT)) (-3585 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-792)))) ELT)) (-2435 ((|#1| $ (-792)) 122 T ELT) (($ $ $) 132 (|has| (-792) (-1142)) ELT)) (-2030 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) 31 T ELT)) (-2776 (((-792) $) NIL T ELT)) (-1540 (($ $) 179 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) 206 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 130 (|has| |#1| (-174)) ELT) (($ (-1270 |#2| |#1|)) 55 T ELT) (($ (-1293 |#2|)) 36 T ELT)) (-2929 (((-1187 |#1|) $) 101 T ELT)) (-2778 ((|#1| $ (-792)) 121 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) 58 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 165 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-792)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 167 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 163 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 17 T CONST)) (-2378 (($) 20 T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-2471 (($ $ $) 35 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-375)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1204 |#1| |#2| |#3|) (-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1270 |#2| |#1|))) (-15 -2548 ((-1270 |#2| |#1|) $ (-792))) (-15 -2410 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1204)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-1204 *3 *4 *5)))) (-2548 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1204 *4 *5 *6)) (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1270 |#2| |#1|))) (-15 -2548 ((-1270 |#2| |#1|) $ (-792))) (-15 -2410 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) -((-2410 (((-885) $) 33 T ELT) (($ (-1206)) 35 T ELT)) (-2229 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-2218 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3370 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-3357 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-3347 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-3335 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-1544 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) -(((-1205) (-13 (-631 (-885)) (-10 -8 (-15 -2410 ($ (-1206))) (-15 -3370 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3347 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3357 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3335 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2229 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -1544 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2218 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2218 ($ $))))) (T -1205)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1205)))) (-3370 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-3347 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-3357 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-3335 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-2229 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-1544 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-2218 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) (-5 *1 (-1205)))) (-2218 (*1 *1 *1) (-5 *1 (-1205)))) -(-13 (-631 (-885)) (-10 -8 (-15 -2410 ($ (-1206))) (-15 -3370 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3347 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3357 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3335 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2229 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -1544 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2218 ($ (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2218 ($ $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3759 (($ $ (-665 (-885))) 62 T ELT)) (-3670 (($ $ (-665 (-885))) 60 T ELT)) (-1965 (((-1188) $) 101 T ELT)) (-3499 (((-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885)))) $) 108 T ELT)) (-3221 (((-112) $) 23 T ELT)) (-3419 (($ $ (-665 (-665 (-885)))) 59 T ELT) (($ $ (-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885))))) 99 T ELT)) (-2762 (($) 163 T CONST)) (-2705 (((-1302)) 135 T ELT)) (-2244 (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 69 T ELT) (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 76 T ELT)) (-3748 (($) 122 T ELT) (($ $) 131 T ELT)) (-4105 (($ $) 100 T ELT)) (-1344 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL T ELT)) (-2605 (((-665 $) $) 136 T ELT)) (-3384 (((-1188) $) 114 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2435 (($ $ (-665 (-885))) 61 T ELT)) (-3341 (((-549) $) 48 T ELT) (((-1206) $) 49 T ELT) (((-916 (-577)) $) 80 T ELT) (((-916 (-391)) $) 78 T ELT)) (-2410 (((-885) $) 55 T ELT) (($ (-1188)) 50 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3358 (($ $ (-665 (-885))) 63 T ELT)) (-2792 (((-1188) $) 34 T ELT) (((-1188) $ (-112)) 35 T ELT) (((-1302) (-843) $) 36 T ELT) (((-1302) (-843) $ (-112)) 37 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 51 T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) 52 T ELT))) -(((-1206) (-13 (-870) (-632 (-549)) (-849) (-632 (-1206)) (-634 (-1188)) (-632 (-916 (-577))) (-632 (-916 (-391))) (-910 (-577)) (-910 (-391)) (-10 -8 (-15 -3748 ($)) (-15 -3748 ($ $)) (-15 -2705 ((-1302))) (-15 -4105 ($ $)) (-15 -3221 ((-112) $)) (-15 -3499 ((-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885)))) $)) (-15 -3419 ($ $ (-665 (-665 (-885))))) (-15 -3419 ($ $ (-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885)))))) (-15 -3670 ($ $ (-665 (-885)))) (-15 -3759 ($ $ (-665 (-885)))) (-15 -3358 ($ $ (-665 (-885)))) (-15 -2435 ($ $ (-665 (-885)))) (-15 -1965 ((-1188) $)) (-15 -2605 ((-665 $) $)) (-15 -2762 ($) -1528)))) (T -1206)) -((-3748 (*1 *1) (-5 *1 (-1206))) (-3748 (*1 *1 *1) (-5 *1 (-1206))) (-2705 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1206)))) (-4105 (*1 *1 *1) (-5 *1 (-1206))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885))))) (-5 *1 (-1206)))) (-3419 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-1206)))) (-3419 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885))))) (-5 *1 (-1206)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-3358 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1206)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1206)))) (-2762 (*1 *1) (-5 *1 (-1206)))) -(-13 (-870) (-632 (-549)) (-849) (-632 (-1206)) (-634 (-1188)) (-632 (-916 (-577))) (-632 (-916 (-391))) (-910 (-577)) (-910 (-391)) (-10 -8 (-15 -3748 ($)) (-15 -3748 ($ $)) (-15 -2705 ((-1302))) (-15 -4105 ($ $)) (-15 -3221 ((-112) $)) (-15 -3499 ((-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885)))) $)) (-15 -3419 ($ $ (-665 (-665 (-885))))) (-15 -3419 ($ $ (-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) (|:| |args| (-665 (-885)))))) (-15 -3670 ($ $ (-665 (-885)))) (-15 -3759 ($ $ (-665 (-885)))) (-15 -3358 ($ $ (-665 (-885)))) (-15 -2435 ($ $ (-665 (-885)))) (-15 -1965 ((-1188) $)) (-15 -2605 ((-665 $) $)) (-15 -2762 ($) -1528))) -((-1859 (((-1297 |#1|) |#1| (-949)) 18 T ELT) (((-1297 |#1|) (-665 |#1|)) 25 T ELT))) -(((-1207 |#1|) (-10 -7 (-15 -1859 ((-1297 |#1|) (-665 |#1|))) (-15 -1859 ((-1297 |#1|) |#1| (-949)))) (-1079)) (T -1207)) -((-1859 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-1297 *3)) (-5 *1 (-1207 *3)) (-4 *3 (-1079)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)) (-5 *1 (-1207 *4))))) -(-10 -7 (-15 -1859 ((-1297 |#1|) (-665 |#1|))) (-15 -1859 ((-1297 |#1|) |#1| (-949)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3514 (((-577) $) NIL (|has| |#1| (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| |#1| (-1068 (-420 (-577)))) ELT) ((|#1| $) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3008 (($ $) NIL (|has| |#1| (-465)) ELT)) (-4313 (($ $ |#1| (-1001) $) NIL T ELT)) (-2097 (((-112) $) 17 T ELT)) (-3641 (((-792) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-1001)) NIL T ELT)) (-3569 (((-1001) $) NIL T ELT)) (-4309 (($ (-1 (-1001) (-1001)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-2726 (($ $ (-1001) |#1| $) NIL (-12 (|has| (-1001) (-132)) (|has| |#1| (-569))) ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2776 (((-1001) $) NIL T ELT)) (-2091 ((|#1| $) NIL (|has| |#1| (-465)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1068 (-420 (-577))))) ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-1001)) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2367 (($) 10 T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 21 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1208 |#1|) (-13 (-337 |#1| (-1001)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-1001) (-132)) (-15 -2726 ($ $ (-1001) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) (-1079)) (T -1208)) -((-2726 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-1001)) (-4 *2 (-132)) (-5 *1 (-1208 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) -(-13 (-337 |#1| (-1001)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-1001) (-132)) (-15 -2726 ($ $ (-1001) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) -((-1691 (((-1210) (-1206) $) 25 T ELT)) (-4106 (($) 29 T ELT)) (-1535 (((-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-1206) $) 22 T ELT)) (-2281 (((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -2892 "void")) $) 41 T ELT) (((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) 42 T ELT) (((-1302) (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) 43 T ELT)) (-1869 (((-1302) (-1206)) 58 T ELT)) (-2357 (((-1302) (-1206) $) 55 T ELT) (((-1302) (-1206)) 56 T ELT) (((-1302)) 57 T ELT)) (-4082 (((-1302) (-1206)) 37 T ELT)) (-4294 (((-1206)) 36 T ELT)) (-3414 (($) 34 T ELT)) (-4155 (((-450) (-1206) (-450) (-1206) $) 45 T ELT) (((-450) (-665 (-1206)) (-450) (-1206) $) 49 T ELT) (((-450) (-1206) (-450)) 46 T ELT) (((-450) (-1206) (-450) (-1206)) 50 T ELT)) (-4185 (((-1206)) 35 T ELT)) (-2410 (((-885) $) 28 T ELT)) (-1417 (((-1302)) 30 T ELT) (((-1302) (-1206)) 33 T ELT)) (-3219 (((-665 (-1206)) (-1206) $) 24 T ELT)) (-3215 (((-1302) (-1206) (-665 (-1206)) $) 38 T ELT) (((-1302) (-1206) (-665 (-1206))) 39 T ELT) (((-1302) (-665 (-1206))) 40 T ELT))) -(((-1209) (-13 (-631 (-885)) (-10 -8 (-15 -4106 ($)) (-15 -1417 ((-1302))) (-15 -1417 ((-1302) (-1206))) (-15 -4155 ((-450) (-1206) (-450) (-1206) $)) (-15 -4155 ((-450) (-665 (-1206)) (-450) (-1206) $)) (-15 -4155 ((-450) (-1206) (-450))) (-15 -4155 ((-450) (-1206) (-450) (-1206))) (-15 -4082 ((-1302) (-1206))) (-15 -4185 ((-1206))) (-15 -4294 ((-1206))) (-15 -3215 ((-1302) (-1206) (-665 (-1206)) $)) (-15 -3215 ((-1302) (-1206) (-665 (-1206)))) (-15 -3215 ((-1302) (-665 (-1206)))) (-15 -2281 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -2892 "void")) $)) (-15 -2281 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -2892 "void")))) (-15 -2281 ((-1302) (-3 (|:| |fst| (-447)) (|:| -2892 "void")))) (-15 -2357 ((-1302) (-1206) $)) (-15 -2357 ((-1302) (-1206))) (-15 -2357 ((-1302))) (-15 -1869 ((-1302) (-1206))) (-15 -3414 ($)) (-15 -1535 ((-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-1206) $)) (-15 -3219 ((-665 (-1206)) (-1206) $)) (-15 -1691 ((-1210) (-1206) $))))) (T -1209)) -((-4106 (*1 *1) (-5 *1 (-1209))) (-1417 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-4155 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) (-4155 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *4 (-1206)) (-5 *1 (-1209)))) (-4155 (*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) (-4155 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-4185 (*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209)))) (-4294 (*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209)))) (-3215 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2281 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1206)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2357 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-2357 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) (-3414 (*1 *1) (-5 *1 (-1209))) (-1535 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *1 (-1209)))) (-3219 (*1 *2 *3 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1209)) (-5 *3 (-1206)))) (-1691 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1210)) (-5 *1 (-1209))))) -(-13 (-631 (-885)) (-10 -8 (-15 -4106 ($)) (-15 -1417 ((-1302))) (-15 -1417 ((-1302) (-1206))) (-15 -4155 ((-450) (-1206) (-450) (-1206) $)) (-15 -4155 ((-450) (-665 (-1206)) (-450) (-1206) $)) (-15 -4155 ((-450) (-1206) (-450))) (-15 -4155 ((-450) (-1206) (-450) (-1206))) (-15 -4082 ((-1302) (-1206))) (-15 -4185 ((-1206))) (-15 -4294 ((-1206))) (-15 -3215 ((-1302) (-1206) (-665 (-1206)) $)) (-15 -3215 ((-1302) (-1206) (-665 (-1206)))) (-15 -3215 ((-1302) (-665 (-1206)))) (-15 -2281 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -2892 "void")) $)) (-15 -2281 ((-1302) (-1206) (-3 (|:| |fst| (-447)) (|:| -2892 "void")))) (-15 -2281 ((-1302) (-3 (|:| |fst| (-447)) (|:| -2892 "void")))) (-15 -2357 ((-1302) (-1206) $)) (-15 -2357 ((-1302) (-1206))) (-15 -2357 ((-1302))) (-15 -1869 ((-1302) (-1206))) (-15 -3414 ($)) (-15 -1535 ((-3 (|:| |fst| (-447)) (|:| -2892 "void")) (-1206) $)) (-15 -3219 ((-665 (-1206)) (-1206) $)) (-15 -1691 ((-1210) (-1206) $)))) -((-4241 (((-665 (-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) $) 66 T ELT)) (-1549 (((-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))) (-447) $) 47 T ELT)) (-1856 (($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-450))))) 17 T ELT)) (-1869 (((-1302) $) 73 T ELT)) (-1594 (((-665 (-1206)) $) 22 T ELT)) (-2931 (((-1134) $) 60 T ELT)) (-2028 (((-450) (-1206) $) 27 T ELT)) (-3577 (((-665 (-1206)) $) 30 T ELT)) (-3414 (($) 19 T ELT)) (-4155 (((-450) (-665 (-1206)) (-450) $) 25 T ELT) (((-450) (-1206) (-450) $) 24 T ELT)) (-2410 (((-885) $) 9 T ELT) (((-1219 (-1206) (-450)) $) 13 T ELT))) -(((-1210) (-13 (-631 (-885)) (-10 -8 (-15 -2410 ((-1219 (-1206) (-450)) $)) (-15 -3414 ($)) (-15 -4155 ((-450) (-665 (-1206)) (-450) $)) (-15 -4155 ((-450) (-1206) (-450) $)) (-15 -2028 ((-450) (-1206) $)) (-15 -1594 ((-665 (-1206)) $)) (-15 -1549 ((-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))) (-447) $)) (-15 -3577 ((-665 (-1206)) $)) (-15 -4241 ((-665 (-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) $)) (-15 -2931 ((-1134) $)) (-15 -1869 ((-1302) $)) (-15 -1856 ($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-450))))))))) (T -1210)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-1219 (-1206) (-450))) (-5 *1 (-1210)))) (-3414 (*1 *1) (-5 *1 (-1210))) (-4155 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *1 (-1210)))) (-4155 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1210)))) (-2028 (*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-450)) (-5 *1 (-1210)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210)))) (-1549 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) (-5 *1 (-1210)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))))) (-5 *1 (-1210)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1210)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1210)))) (-1856 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-450))))) (-5 *1 (-1210))))) -(-13 (-631 (-885)) (-10 -8 (-15 -2410 ((-1219 (-1206) (-450)) $)) (-15 -3414 ($)) (-15 -4155 ((-450) (-665 (-1206)) (-450) $)) (-15 -4155 ((-450) (-1206) (-450) $)) (-15 -2028 ((-450) (-1206) $)) (-15 -1594 ((-665 (-1206)) $)) (-15 -1549 ((-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))) (-447) $)) (-15 -3577 ((-665 (-1206)) $)) (-15 -4241 ((-665 (-665 (-3 (|:| -4105 (-1206)) (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) $)) (-15 -2931 ((-1134) $)) (-15 -1869 ((-1302) $)) (-15 -1856 ($ (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-450)))))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2817 (((-3 (-577) "failed") $) 29 T ELT) (((-3 (-228) "failed") $) 35 T ELT) (((-3 (-519) "failed") $) 43 T ELT) (((-3 (-1188) "failed") $) 47 T ELT)) (-3514 (((-577) $) 30 T ELT) (((-228) $) 36 T ELT) (((-519) $) 40 T ELT) (((-1188) $) 48 T ELT)) (-3340 (((-112) $) 53 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2677 (((-3 (-577) (-228) (-519) (-1188) $) $) 55 T ELT)) (-2304 (((-665 $) $) 57 T ELT)) (-3341 (((-1134) $) 24 T ELT) (($ (-1134)) 25 T ELT)) (-3391 (((-112) $) 56 T ELT)) (-2410 (((-885) $) 23 T ELT) (($ (-577)) 26 T ELT) (($ (-228)) 32 T ELT) (($ (-519)) 38 T ELT) (($ (-1188)) 44 T ELT) (((-549) $) 59 T ELT) (((-577) $) 31 T ELT) (((-228) $) 37 T ELT) (((-519) $) 41 T ELT) (((-1188) $) 49 T ELT)) (-2354 (((-112) $ (|[\|\|]| (-577))) 10 T ELT) (((-112) $ (|[\|\|]| (-228))) 13 T ELT) (((-112) $ (|[\|\|]| (-519))) 19 T ELT) (((-112) $ (|[\|\|]| (-1188))) 16 T ELT)) (-3838 (($ (-519) (-665 $)) 51 T ELT) (($ $ (-665 $)) 52 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4031 (((-577) $) 27 T ELT) (((-228) $) 33 T ELT) (((-519) $) 39 T ELT) (((-1188) $) 45 T ELT)) (-2383 (((-112) $ $) 7 T ELT))) -(((-1211) (-13 (-1292) (-1130) (-1068 (-577)) (-1068 (-228)) (-1068 (-519)) (-1068 (-1188)) (-631 (-549)) (-10 -8 (-15 -3341 ((-1134) $)) (-15 -3341 ($ (-1134))) (-15 -2410 ((-577) $)) (-15 -4031 ((-577) $)) (-15 -2410 ((-228) $)) (-15 -4031 ((-228) $)) (-15 -2410 ((-519) $)) (-15 -4031 ((-519) $)) (-15 -2410 ((-1188) $)) (-15 -4031 ((-1188) $)) (-15 -3838 ($ (-519) (-665 $))) (-15 -3838 ($ $ (-665 $))) (-15 -3340 ((-112) $)) (-15 -2677 ((-3 (-577) (-228) (-519) (-1188) $) $)) (-15 -2304 ((-665 $) $)) (-15 -3391 ((-112) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-577)))) (-15 -2354 ((-112) $ (|[\|\|]| (-228)))) (-15 -2354 ((-112) $ (|[\|\|]| (-519)))) (-15 -2354 ((-112) $ (|[\|\|]| (-1188))))))) (T -1211)) -((-3341 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-665 (-1211))) (-5 *1 (-1211)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1188) (-1211))) (-5 *1 (-1211)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1211)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1211)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1211)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-1211))))) -(-13 (-1292) (-1130) (-1068 (-577)) (-1068 (-228)) (-1068 (-519)) (-1068 (-1188)) (-631 (-549)) (-10 -8 (-15 -3341 ((-1134) $)) (-15 -3341 ($ (-1134))) (-15 -2410 ((-577) $)) (-15 -4031 ((-577) $)) (-15 -2410 ((-228) $)) (-15 -4031 ((-228) $)) (-15 -2410 ((-519) $)) (-15 -4031 ((-519) $)) (-15 -2410 ((-1188) $)) (-15 -4031 ((-1188) $)) (-15 -3838 ($ (-519) (-665 $))) (-15 -3838 ($ $ (-665 $))) (-15 -3340 ((-112) $)) (-15 -2677 ((-3 (-577) (-228) (-519) (-1188) $) $)) (-15 -2304 ((-665 $) $)) (-15 -3391 ((-112) $)) (-15 -2354 ((-112) $ (|[\|\|]| (-577)))) (-15 -2354 ((-112) $ (|[\|\|]| (-228)))) (-15 -2354 ((-112) $ (|[\|\|]| (-519)))) (-15 -2354 ((-112) $ (|[\|\|]| (-1188)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-2221 (((-792)) 22 T ELT)) (-2762 (($) 12 T CONST)) (-2060 (($) 26 T ELT)) (-1344 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-4167 (($ $ $) NIL T ELT) (($) 20 T CONST)) (-2553 (((-949) $) 24 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) 23 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT))) -(((-1212 |#1|) (-13 (-865) (-10 -8 (-15 -2762 ($) -1528))) (-949)) (T -1212)) -((-2762 (*1 *1) (-12 (-5 *1 (-1212 *2)) (-14 *2 (-949))))) -(-13 (-865) (-10 -8 (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-2853 ((|#1| $) 45 T ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-3534 (($) 7 T CONST)) (-2694 ((|#1| |#1| $) 47 T ELT)) (-3604 ((|#1| $) 46 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 40 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-1994 ((|#1| $) 42 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-3302 (((-793) $) 44 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) 43 T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1152 |#1|) (-142) (-1248)) (T -1152)) +((-2694 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1248)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1248)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1248)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1248)) (-5 *2 (-793))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4500) (-15 -2694 (|t#1| |t#1| $)) (-15 -3604 (|t#1| $)) (-15 -2853 (|t#1| $)) (-15 -3302 ((-793) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-1881 ((|#3| $) 87 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 50 T ELT)) (-3516 (((-578) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL T ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL T ELT) (((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 $) (-1298 $)) 84 T ELT) (((-711 |#3|) (-711 $)) 76 T ELT)) (-2031 (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-4042 ((|#3| $) 89 T ELT)) (-4370 ((|#4| $) 43 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 24 T ELT) (($ $ (-578)) 95 T ELT))) +(((-1153 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -4042 (|#3| |#1|)) (-15 -1881 (|#3| |#1|)) (-15 -4370 (|#4| |#1|)) (-15 -2242 ((-711 |#3|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2411 (|#1| |#3|)) (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -3516 (|#3| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -2411 (|#1| (-578))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950))) (-15 -2411 ((-886) |#1|))) (-1154 |#2| |#3| |#4| |#5|) (-793) (-1080) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1153)) +NIL +(-10 -8 (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 ** (|#1| |#1| (-578))) (-15 -4042 (|#3| |#1|)) (-15 -1881 (|#3| |#1|)) (-15 -4370 (|#4| |#1|)) (-15 -2242 ((-711 |#3|) (-711 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 |#3|)) (|:| |vec| (-1298 |#3|))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 |#1|) (-1298 |#1|))) (-15 -2242 ((-711 (-578)) (-711 |#1|))) (-15 -2411 (|#1| |#3|)) (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -3516 (|#3| |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2031 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -2411 (|#1| (-578))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-1881 ((|#2| $) 80 T ELT)) (-2648 (((-112) $) 124 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2214 (((-112) $) 122 T ELT)) (-1628 (((-112) $ (-793)) 114 T ELT)) (-2921 (($ |#2|) 83 T ELT)) (-3534 (($) 18 T CONST)) (-1612 (($ $) 141 (|has| |#2| (-319)) ELT)) (-3978 ((|#3| $ (-578)) 136 T ELT)) (-2818 (((-3 (-578) "failed") $) 99 (|has| |#2| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) 96 (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 |#2| "failed") $) 93 T ELT)) (-3516 (((-578) $) 98 (|has| |#2| (-1069 (-578))) ELT) (((-421 (-578)) $) 95 (|has| |#2| (-1069 (-421 (-578)))) ELT) ((|#2| $) 94 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 89 (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 88 (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) 87 T ELT) (((-711 |#2|) (-711 $)) 86 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1875 (((-793) $) 142 (|has| |#2| (-570)) ELT)) (-3382 ((|#2| $ (-578) (-578)) 134 T ELT)) (-2729 (((-666 |#2|) $) 107 (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-3199 (((-793) $) 143 (|has| |#2| (-570)) ELT)) (-4342 (((-666 |#4|) $) 144 (|has| |#2| (-570)) ELT)) (-3068 (((-793) $) 130 T ELT)) (-3082 (((-793) $) 131 T ELT)) (-2363 (((-112) $ (-793)) 115 T ELT)) (-3627 ((|#2| $) 75 (|has| |#2| (-6 (-4502 "*"))) ELT)) (-1850 (((-578) $) 126 T ELT)) (-3156 (((-578) $) 128 T ELT)) (-1441 (((-666 |#2|) $) 106 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT)) (-1694 (((-578) $) 127 T ELT)) (-2915 (((-578) $) 129 T ELT)) (-1869 (($ (-666 (-666 |#2|))) 121 T ELT)) (-3439 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2| |#2|) $ $) 138 T ELT) (($ (-1 |#2| |#2|) $) 112 T ELT)) (-3692 (((-666 (-666 |#2|)) $) 132 T ELT)) (-1719 (((-112) $ (-793)) 116 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 91 (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 90 (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) 85 T ELT) (((-711 |#2|) (-1298 $)) 84 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3335 (((-3 $ "failed") $) 74 (|has| |#2| (-376)) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3202 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) 103 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) 102 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) 100 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) 120 T ELT)) (-4186 (((-112) $) 117 T ELT)) (-1696 (($) 118 T ELT)) (-2436 ((|#2| $ (-578) (-578) |#2|) 135 T ELT) ((|#2| $ (-578) (-578)) 133 T ELT)) (-2031 (($ $ (-1 |#2| |#2|) (-793)) 57 T ELT) (($ $ (-1 |#2| |#2|)) 56 T ELT) (($ $) 47 (|has| |#2| (-239)) ELT) (($ $ (-793)) 45 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 55 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 53 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 52 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 51 (|has| |#2| (-929 (-1207))) ELT)) (-4042 ((|#2| $) 79 T ELT)) (-3266 (($ (-666 |#2|)) 82 T ELT)) (-4415 (((-112) $) 123 T ELT)) (-4370 ((|#3| $) 81 T ELT)) (-2598 ((|#2| $) 76 (|has| |#2| (-6 (-4502 "*"))) ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) 105 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 119 T ELT)) (-4240 ((|#4| $ (-578)) 137 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 97 (|has| |#2| (-1069 (-421 (-578)))) ELT) (($ |#2|) 92 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) 125 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1 |#2| |#2|) (-793)) 59 T ELT) (($ $ (-1 |#2| |#2|)) 58 T ELT) (($ $) 46 (|has| |#2| (-239)) ELT) (($ $ (-793)) 44 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 54 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 50 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 49 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 48 (|has| |#2| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#2|) 140 (|has| |#2| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 73 (|has| |#2| (-376)) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#2|) 146 T ELT) (($ |#2| $) 145 T ELT) ((|#4| $ |#4|) 78 T ELT) ((|#3| |#3| $) 77 T ELT)) (-3226 (((-793) $) 113 (|has| $ (-6 -4500)) ELT))) +(((-1154 |#1| |#2| |#3| |#4|) (-142) (-793) (-1080) (-245 |t#1| |t#2|) (-245 |t#1| |t#2|)) (T -1154)) +((-2921 (*1 *1 *2) (-12 (-4 *2 (-1080)) (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-666 *4)) (-4 *4 (-1080)) (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-2598 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080)))) (-3335 (*1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376))))) +(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1084 |t#1| |t#1| |t#2| |t#3| |t#4|) (-425 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (-15 -2921 ($ |t#2|)) (-15 -3266 ($ (-666 |t#2|))) (-15 -4370 (|t#3| $)) (-15 -1881 (|t#2| $)) (-15 -4042 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4502 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2598 (|t#2| $)) (-15 -3627 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -3335 ((-3 $ "failed") $)) (-15 ** ($ $ (-578)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4502 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 #0=(-421 (-578))) |has| |#2| (-1069 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#2|) . T) ((-632 (-886)) . T) ((-236 $) -2230 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -2230 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-390 |#2|) . T) ((-425 |#2|) . T) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-668 (-578)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 #1=(-578)) |has| |#2| (-660 (-578))) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-6 (-4502 "*")))) ((-660 #1#) |has| |#2| (-660 (-578))) ((-660 |#2|) . T) ((-739 |#2|) -2230 (|has| |#2| (-175)) (|has| |#2| (-6 (-4502 "*")))) ((-748) . T) ((-921 $ #2=(-1207)) -2230 (|has| |#2| (-929 (-1207))) (|has| |#2| (-927 (-1207)))) ((-927 (-1207)) |has| |#2| (-927 (-1207))) ((-929 #2#) -2230 (|has| |#2| (-929 (-1207))) (|has| |#2| (-927 (-1207)))) ((-1084 |#1| |#1| |#2| |#3| |#4|) . T) ((-1069 #0#) |has| |#2| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#2| (-1069 (-578))) ((-1069 |#2|) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-2467 ((|#4| |#4|) 81 T ELT)) (-1616 ((|#4| |#4|) 76 T ELT)) (-2844 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|))) |#4| |#3|) 91 T ELT)) (-3010 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3030 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1616 (|#4| |#4|)) (-15 -3030 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2467 (|#4| |#4|)) (-15 -3010 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2844 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|))) |#4| |#3|))) (-319) (-386 |#1|) (-386 |#1|) (-709 |#1| |#2| |#3|)) (T -1155)) +((-2844 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-386 *5)) (-4 *4 (-386 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) (-5 *1 (-1155 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4)))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-2467 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-3030 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(-10 -7 (-15 -1616 (|#4| |#4|)) (-15 -3030 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2467 (|#4| |#4|)) (-15 -3010 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2844 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3198 (-666 |#3|))) |#4| |#3|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 18 T ELT)) (-2949 (((-666 |#2|) $) 174 T ELT)) (-4420 (((-1203 $) $ |#2|) 60 T ELT) (((-1203 |#1|) $) 49 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 116 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 118 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 120 (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 |#2|)) 213 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) 167 T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3516 ((|#1| $) 165 T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) ((|#2| $) NIL T ELT)) (-2035 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-3136 (($ $) 217 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) 90 T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| |#1| (-911 (-392))) (|has| |#2| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| |#1| (-911 (-578))) (|has| |#2| (-911 (-578)))) ELT)) (-4382 (((-112) $) 20 T ELT)) (-3380 (((-793) $) 30 T ELT)) (-2936 (($ (-1203 |#1|) |#2|) 54 T ELT) (($ (-1203 $) |#2|) 71 T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) 38 T ELT)) (-2925 (($ |#1| (-545 |#2|)) 78 T ELT) (($ $ |#2| (-793)) 58 T ELT) (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ |#2|) NIL T ELT)) (-3937 (((-545 |#2|) $) 205 T ELT) (((-793) $ |#2|) 206 T ELT) (((-666 (-793)) $ (-666 |#2|)) 207 T ELT)) (-2500 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-4006 (((-3 |#2| "failed") $) 177 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) 216 T ELT)) (-3110 ((|#1| $) 43 T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| |#2|) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) 39 T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 148 (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) 153 (|has| |#1| (-466)) ELT) (($ $ $) 138 (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-938)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-570)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-666 |#2|) (-666 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-666 |#2|) (-666 $)) 194 T ELT)) (-3232 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|)) NIL T ELT) (($ $ |#2|) 215 T ELT)) (-3683 (((-545 |#2|) $) 201 T ELT) (((-793) $ |#2|) 196 T ELT) (((-666 (-793)) $ (-666 |#2|)) 199 T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| |#1| (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| |#1| (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| |#1| (-633 (-550))) (|has| |#2| (-633 (-550)))) ELT)) (-4325 ((|#1| $) 134 (|has| |#1| (-466)) ELT) (($ $ |#2|) 137 (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-2411 (((-886) $) 159 T ELT) (($ (-578)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3839 (((-666 |#1|) $) 162 T ELT)) (-3708 ((|#1| $ (-545 |#2|)) 80 T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 87 T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) 123 (|has| |#1| (-570)) ELT)) (-2368 (($) 12 T CONST)) (-2379 (($) 14 T CONST)) (-1676 (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2384 (((-112) $ $) 106 T ELT)) (-2495 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-2472 (($ $ $) 55 T ELT)) (** (($ $ (-950)) 110 T ELT) (($ $ (-793)) 109 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1156 |#1| |#2|) (-978 |#1| (-545 |#2|) |#2|) (-1080) (-871)) (T -1156)) +NIL +(-978 |#1| (-545 |#2|) |#2|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 |#2|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-1502 (($ $) 152 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 128 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1478 (($ $) 148 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 124 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1528 (($ $) 156 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 132 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1769 (((-981 |#1|) $ (-793)) NIL T ELT) (((-981 |#1|) $ (-793) (-793)) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-793) $ |#2|) NIL T ELT) (((-793) $ |#2| (-793)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ $ (-666 |#2|) (-666 (-545 |#2|))) NIL T ELT) (($ $ |#2| (-545 |#2|)) NIL T ELT) (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 63 T ELT) (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3864 (($ $) 122 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4371 (($ $ |#2|) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3208 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2704 (($ $ (-793)) 16 T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3587 (($ $) 120 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (($ $ |#2| $) 106 T ELT) (($ $ (-666 |#2|) (-666 $)) 99 T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT)) (-2031 (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-3683 (((-545 |#2|) $) NIL T ELT)) (-1360 (((-1 (-1188 |#3|) |#3|) (-666 |#2|) (-666 (-1188 |#3|))) 87 T ELT)) (-1541 (($ $) 158 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 154 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 130 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 150 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 126 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 18 T ELT)) (-2411 (((-886) $) 198 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3708 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT) ((|#3| $ (-793)) 43 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) 164 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 140 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 136 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 168 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 144 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3502 (($ $) 170 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 146 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 166 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 142 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 162 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 138 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 52 T CONST)) (-2379 (($) 62 T CONST)) (-1676 (($ $ (-666 |#2|) (-666 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-666 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 66 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 112 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-578))) 117 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) 115 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1157 |#1| |#2| |#3|) (-13 (-762 |#1| |#2|) (-10 -8 (-15 -3708 (|#3| $ (-793))) (-15 -2411 ($ |#2|)) (-15 -2411 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1360 ((-1 (-1188 |#3|) |#3|) (-666 |#2|) (-666 (-1188 |#3|)))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $ |#2| |#1|)) (-15 -3208 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1080) (-871) (-978 |#1| (-545 |#2|) |#2|)) (T -1157)) +((-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-978 *4 (-545 *5) *5)) (-5 *1 (-1157 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-2411 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-978 *3 (-545 *2) *2)))) (-2411 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) (-4 *2 (-978 *3 (-545 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) (-4 *2 (-978 *3 (-545 *4) *4)))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 (-1188 *7))) (-4 *6 (-871)) (-4 *7 (-978 *5 (-545 *6) *6)) (-4 *5 (-1080)) (-5 *2 (-1 (-1188 *7) *7)) (-5 *1 (-1157 *5 *6 *7)))) (-4371 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-978 *3 (-545 *2) *2)))) (-3208 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1157 *4 *3 *5))) (-4 *4 (-38 (-421 (-578)))) (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *1 (-1157 *4 *3 *5)) (-4 *5 (-978 *4 (-545 *3) *3))))) +(-13 (-762 |#1| |#2|) (-10 -8 (-15 -3708 (|#3| $ (-793))) (-15 -2411 ($ |#2|)) (-15 -2411 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1360 ((-1 (-1188 |#3|) |#3|) (-666 |#2|) (-666 (-1188 |#3|)))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $ |#2| |#1|)) (-15 -3208 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3213 (((-112) $ $) 7 T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) 86 T ELT)) (-3997 (((-666 $) (-666 |#4|)) 87 T ELT) (((-666 $) (-666 |#4|) (-112)) 112 T ELT)) (-2949 (((-666 |#3|) $) 34 T ELT)) (-3039 (((-112) $) 27 T ELT)) (-2774 (((-112) $) 18 (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-2596 ((|#4| |#4| $) 93 T ELT)) (-1457 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| $) 127 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1628 (((-112) $ (-793)) 45 T ELT)) (-4233 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3534 (($) 46 T CONST)) (-4147 (((-112) $) 23 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) 25 (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) 24 (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) 26 (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) 19 (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) 20 (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) 37 T ELT)) (-3516 (($ (-666 |#4|)) 36 T ELT)) (-4198 (((-3 $ "failed") $) 83 T ELT)) (-1707 ((|#4| |#4| $) 90 T ELT)) (-3776 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3069 ((|#4| |#4| $) 88 T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) 106 T ELT)) (-1434 (((-112) |#4| $) 137 T ELT)) (-2669 (((-112) |#4| $) 134 T ELT)) (-2762 (((-112) |#4| $) 138 T ELT) (((-112) $) 135 T ELT)) (-2729 (((-666 |#4|) $) 53 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-2537 ((|#3| $) 35 T ELT)) (-2363 (((-112) $ (-793)) 44 T ELT)) (-1441 (((-666 |#4|) $) 54 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3117 (((-666 |#3|) $) 33 T ELT)) (-1455 (((-112) |#3| $) 32 T ELT)) (-1719 (((-112) $ (-793)) 43 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-1763 (((-3 |#4| (-666 $)) |#4| |#4| $) 129 T ELT)) (-3064 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| |#4| $) 128 T ELT)) (-2757 (((-3 |#4| "failed") $) 84 T ELT)) (-4044 (((-666 $) |#4| $) 130 T ELT)) (-3976 (((-3 (-112) (-666 $)) |#4| $) 133 T ELT)) (-1835 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) |#4| $) 132 T ELT) (((-112) |#4| $) 131 T ELT)) (-3457 (((-666 $) |#4| $) 126 T ELT) (((-666 $) (-666 |#4|) $) 125 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 124 T ELT) (((-666 $) |#4| (-666 $)) 123 T ELT)) (-4064 (($ |#4| $) 118 T ELT) (($ (-666 |#4|) $) 117 T ELT)) (-1708 (((-666 |#4|) $) 108 T ELT)) (-3084 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-3494 ((|#4| |#4| $) 91 T ELT)) (-3151 (((-112) $ $) 111 T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-1922 ((|#4| |#4| $) 92 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4189 (((-3 |#4| "failed") $) 85 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2704 (($ $ |#4|) 78 T ELT) (((-666 $) |#4| $) 116 T ELT) (((-666 $) |#4| (-666 $)) 115 T ELT) (((-666 $) (-666 |#4|) $) 114 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 113 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) 39 T ELT)) (-4186 (((-112) $) 42 T ELT)) (-1696 (($) 41 T ELT)) (-3683 (((-793) $) 107 T ELT)) (-4324 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 40 T ELT)) (-3343 (((-550) $) 70 (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 61 T ELT)) (-1339 (($ $ |#3|) 29 T ELT)) (-2093 (($ $ |#3|) 31 T ELT)) (-2499 (($ $) 89 T ELT)) (-3102 (($ $ |#3|) 30 T ELT)) (-2411 (((-886) $) 12 T ELT) (((-666 |#4|) $) 38 T ELT)) (-2474 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) 99 T ELT)) (-2557 (((-666 $) |#4| $) 122 T ELT) (((-666 $) |#4| (-666 $)) 121 T ELT) (((-666 $) (-666 |#4|) $) 120 T ELT) (((-666 $) (-666 |#4|) (-666 $)) 119 T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) 82 T ELT)) (-3091 (((-112) |#4| $) 136 T ELT)) (-2714 (((-112) |#3| $) 81 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-793) $) 47 (|has| $ (-6 -4500)) ELT))) +(((-1158 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1158)) +NIL +(-13 (-1140 |t#1| |t#2| |t#3| |t#4|) (-806 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-632 (-666 |#4|)) . T) ((-632 (-886)) . T) ((-153 |#4|) . T) ((-633 (-550)) |has| |#4| (-633 (-550))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-806 |#1| |#2| |#3| |#4|) . T) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1140 |#1| |#2| |#3| |#4|) . T) ((-1241 |#1| |#2| |#3| |#4|) . T) ((-1248) . T)) +((-2096 (((-666 |#2|) |#1|) 15 T ELT)) (-2517 (((-666 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-666 |#2|) |#1|) 61 T ELT)) (-1715 (((-666 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-666 |#2|) |#1|) 59 T ELT)) (-1742 ((|#2| |#1|) 54 T ELT)) (-4141 (((-2 (|:| |solns| (-666 |#2|)) (|:| |maps| (-666 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-1748 (((-666 |#2|) |#2| |#2|) 42 T ELT) (((-666 |#2|) |#1|) 58 T ELT)) (-1595 (((-666 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-666 |#2|) |#1|) 60 T ELT)) (-3653 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3000 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3987 ((|#2| |#2| |#2|) 50 T ELT)) (-3946 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1159 |#1| |#2|) (-10 -7 (-15 -2096 ((-666 |#2|) |#1|)) (-15 -1742 (|#2| |#1|)) (-15 -4141 ((-2 (|:| |solns| (-666 |#2|)) (|:| |maps| (-666 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1748 ((-666 |#2|) |#1|)) (-15 -1715 ((-666 |#2|) |#1|)) (-15 -1595 ((-666 |#2|) |#1|)) (-15 -2517 ((-666 |#2|) |#1|)) (-15 -1748 ((-666 |#2|) |#2| |#2|)) (-15 -1715 ((-666 |#2|) |#2| |#2| |#2|)) (-15 -1595 ((-666 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2517 ((-666 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3987 (|#2| |#2| |#2|)) (-15 -3000 (|#2| |#2| |#2| |#2|)) (-15 -3946 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3653 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1274 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (T -1159)) +((-3653 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2)))) (-3946 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2)))) (-3000 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2)))) (-3987 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2)))) (-2517 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3)))) (-1595 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3)))) (-1715 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3)))) (-1748 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3)))) (-2517 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) (-1595 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) (-1715 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-2 (|:| |solns| (-666 *5)) (|:| |maps| (-666 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-1274 *5)))) (-1742 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2)))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -2096 ((-666 |#2|) |#1|)) (-15 -1742 (|#2| |#1|)) (-15 -4141 ((-2 (|:| |solns| (-666 |#2|)) (|:| |maps| (-666 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1748 ((-666 |#2|) |#1|)) (-15 -1715 ((-666 |#2|) |#1|)) (-15 -1595 ((-666 |#2|) |#1|)) (-15 -2517 ((-666 |#2|) |#1|)) (-15 -1748 ((-666 |#2|) |#2| |#2|)) (-15 -1715 ((-666 |#2|) |#2| |#2| |#2|)) (-15 -1595 ((-666 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2517 ((-666 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3987 (|#2| |#2| |#2|)) (-15 -3000 (|#2| |#2| |#2| |#2|)) (-15 -3946 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3653 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3847 (((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-421 (-981 |#1|))))) 118 T ELT) (((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-421 (-981 |#1|)))) (-666 (-1207))) 117 T ELT) (((-666 (-666 (-306 (-328 |#1|)))) (-666 (-421 (-981 |#1|)))) 115 T ELT) (((-666 (-666 (-306 (-328 |#1|)))) (-666 (-421 (-981 |#1|))) (-666 (-1207))) 113 T ELT) (((-666 (-306 (-328 |#1|))) (-306 (-421 (-981 |#1|)))) 97 T ELT) (((-666 (-306 (-328 |#1|))) (-306 (-421 (-981 |#1|))) (-1207)) 98 T ELT) (((-666 (-306 (-328 |#1|))) (-421 (-981 |#1|))) 92 T ELT) (((-666 (-306 (-328 |#1|))) (-421 (-981 |#1|)) (-1207)) 82 T ELT)) (-3420 (((-666 (-666 (-328 |#1|))) (-666 (-421 (-981 |#1|))) (-666 (-1207))) 111 T ELT) (((-666 (-328 |#1|)) (-421 (-981 |#1|)) (-1207)) 54 T ELT)) (-1938 (((-1196 (-666 (-328 |#1|)) (-666 (-306 (-328 |#1|)))) (-421 (-981 |#1|)) (-1207)) 122 T ELT) (((-1196 (-666 (-328 |#1|)) (-666 (-306 (-328 |#1|)))) (-306 (-421 (-981 |#1|))) (-1207)) 121 T ELT))) +(((-1160 |#1|) (-10 -7 (-15 -3847 ((-666 (-306 (-328 |#1|))) (-421 (-981 |#1|)) (-1207))) (-15 -3847 ((-666 (-306 (-328 |#1|))) (-421 (-981 |#1|)))) (-15 -3847 ((-666 (-306 (-328 |#1|))) (-306 (-421 (-981 |#1|))) (-1207))) (-15 -3847 ((-666 (-306 (-328 |#1|))) (-306 (-421 (-981 |#1|))))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-421 (-981 |#1|))))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-421 (-981 |#1|)))) (-666 (-1207)))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-421 (-981 |#1|)))))) (-15 -3420 ((-666 (-328 |#1|)) (-421 (-981 |#1|)) (-1207))) (-15 -3420 ((-666 (-666 (-328 |#1|))) (-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -1938 ((-1196 (-666 (-328 |#1|)) (-666 (-306 (-328 |#1|)))) (-306 (-421 (-981 |#1|))) (-1207))) (-15 -1938 ((-1196 (-666 (-328 |#1|)) (-666 (-306 (-328 |#1|)))) (-421 (-981 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -1160)) +((-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-666 (-328 *5)) (-666 (-306 (-328 *5))))) (-5 *1 (-1160 *5)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-306 (-421 (-981 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-666 (-328 *5)) (-666 (-306 (-328 *5))))) (-5 *1 (-1160 *5)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-328 *5)))) (-5 *1 (-1160 *5)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-328 *5))) (-5 *1 (-1160 *5)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-666 (-306 (-421 (-981 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *4))))) (-5 *1 (-1160 *4)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-306 (-421 (-981 *5))))) (-5 *4 (-666 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *5))))) (-5 *1 (-1160 *5)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-666 (-421 (-981 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *4))))) (-5 *1 (-1160 *4)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *5))))) (-5 *1 (-1160 *5)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-306 (-421 (-981 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1160 *4)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-306 (-421 (-981 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-306 (-328 *5)))) (-5 *1 (-1160 *5)))) (-3847 (*1 *2 *3) (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1160 *4)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-306 (-328 *5)))) (-5 *1 (-1160 *5))))) +(-10 -7 (-15 -3847 ((-666 (-306 (-328 |#1|))) (-421 (-981 |#1|)) (-1207))) (-15 -3847 ((-666 (-306 (-328 |#1|))) (-421 (-981 |#1|)))) (-15 -3847 ((-666 (-306 (-328 |#1|))) (-306 (-421 (-981 |#1|))) (-1207))) (-15 -3847 ((-666 (-306 (-328 |#1|))) (-306 (-421 (-981 |#1|))))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-421 (-981 |#1|))))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-421 (-981 |#1|)))) (-666 (-1207)))) (-15 -3847 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-421 (-981 |#1|)))))) (-15 -3420 ((-666 (-328 |#1|)) (-421 (-981 |#1|)) (-1207))) (-15 -3420 ((-666 (-666 (-328 |#1|))) (-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -1938 ((-1196 (-666 (-328 |#1|)) (-666 (-306 (-328 |#1|)))) (-306 (-421 (-981 |#1|))) (-1207))) (-15 -1938 ((-1196 (-666 (-328 |#1|)) (-666 (-306 (-328 |#1|)))) (-421 (-981 |#1|)) (-1207)))) +((-4326 (((-421 (-1203 (-328 |#1|))) (-1298 (-328 |#1|)) (-421 (-1203 (-328 |#1|))) (-578)) 36 T ELT)) (-2033 (((-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|)))) 48 T ELT))) +(((-1161 |#1|) (-10 -7 (-15 -2033 ((-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))))) (-15 -4326 ((-421 (-1203 (-328 |#1|))) (-1298 (-328 |#1|)) (-421 (-1203 (-328 |#1|))) (-578)))) (-570)) (T -1161)) +((-4326 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-421 (-1203 (-328 *5)))) (-5 *3 (-1298 (-328 *5))) (-5 *4 (-578)) (-4 *5 (-570)) (-5 *1 (-1161 *5)))) (-2033 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-421 (-1203 (-328 *3)))) (-4 *3 (-570)) (-5 *1 (-1161 *3))))) +(-10 -7 (-15 -2033 ((-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))) (-421 (-1203 (-328 |#1|))))) (-15 -4326 ((-421 (-1203 (-328 |#1|))) (-1298 (-328 |#1|)) (-421 (-1203 (-328 |#1|))) (-578)))) +((-2096 (((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-328 |#1|))) (-666 (-1207))) 244 T ELT) (((-666 (-306 (-328 |#1|))) (-328 |#1|) (-1207)) 23 T ELT) (((-666 (-306 (-328 |#1|))) (-306 (-328 |#1|)) (-1207)) 29 T ELT) (((-666 (-306 (-328 |#1|))) (-306 (-328 |#1|))) 28 T ELT) (((-666 (-306 (-328 |#1|))) (-328 |#1|)) 24 T ELT))) +(((-1162 |#1|) (-10 -7 (-15 -2096 ((-666 (-306 (-328 |#1|))) (-328 |#1|))) (-15 -2096 ((-666 (-306 (-328 |#1|))) (-306 (-328 |#1|)))) (-15 -2096 ((-666 (-306 (-328 |#1|))) (-306 (-328 |#1|)) (-1207))) (-15 -2096 ((-666 (-306 (-328 |#1|))) (-328 |#1|) (-1207))) (-15 -2096 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-328 |#1|))) (-666 (-1207))))) (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (T -1162)) +((-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-1207))) (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *5))))) (-5 *1 (-1162 *5)) (-5 *3 (-666 (-306 (-328 *5)))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-666 (-306 (-328 *5)))) (-5 *1 (-1162 *5)) (-5 *3 (-328 *5)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-666 (-306 (-328 *5)))) (-5 *1 (-1162 *5)) (-5 *3 (-306 (-328 *5))))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-306 (-328 *4))))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-328 *4))))) +(-10 -7 (-15 -2096 ((-666 (-306 (-328 |#1|))) (-328 |#1|))) (-15 -2096 ((-666 (-306 (-328 |#1|))) (-306 (-328 |#1|)))) (-15 -2096 ((-666 (-306 (-328 |#1|))) (-306 (-328 |#1|)) (-1207))) (-15 -2096 ((-666 (-306 (-328 |#1|))) (-328 |#1|) (-1207))) (-15 -2096 ((-666 (-666 (-306 (-328 |#1|)))) (-666 (-306 (-328 |#1|))) (-666 (-1207))))) +((-2183 ((|#2| |#2|) 28 (|has| |#1| (-871)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25 T ELT)) (-3334 ((|#2| |#2|) 27 (|has| |#1| (-871)) ELT) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22 T ELT))) +(((-1163 |#1| |#2|) (-10 -7 (-15 -3334 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2183 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-871)) (PROGN (-15 -3334 (|#2| |#2|)) (-15 -2183 (|#2| |#2|))) |%noBranch|)) (-1248) (-13 (-618 (-578) |#1|) (-10 -7 (-6 -4500) (-6 -4501)))) (T -1163)) +((-2183 (*1 *2 *2) (-12 (-4 *3 (-871)) (-4 *3 (-1248)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-618 (-578) *3) (-10 -7 (-6 -4500) (-6 -4501)))))) (-3334 (*1 *2 *2) (-12 (-4 *3 (-871)) (-4 *3 (-1248)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-618 (-578) *3) (-10 -7 (-6 -4500) (-6 -4501)))))) (-2183 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-1163 *4 *2)) (-4 *2 (-13 (-618 (-578) *4) (-10 -7 (-6 -4500) (-6 -4501)))))) (-3334 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-1163 *4 *2)) (-4 *2 (-13 (-618 (-578) *4) (-10 -7 (-6 -4500) (-6 -4501))))))) +(-10 -7 (-15 -3334 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2183 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-871)) (PROGN (-15 -3334 (|#2| |#2|)) (-15 -2183 (|#2| |#2|))) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-4085 (((-1195 3 |#1|) $) 141 T ELT)) (-4007 (((-112) $) 101 T ELT)) (-3657 (($ $ (-666 (-972 |#1|))) 44 T ELT) (($ $ (-666 (-666 |#1|))) 104 T ELT) (($ (-666 (-972 |#1|))) 103 T ELT) (((-666 (-972 |#1|)) $) 102 T ELT)) (-3271 (((-112) $) 72 T ELT)) (-4414 (($ $ (-972 |#1|)) 76 T ELT) (($ $ (-666 |#1|)) 81 T ELT) (($ $ (-793)) 83 T ELT) (($ (-972 |#1|)) 77 T ELT) (((-972 |#1|) $) 75 T ELT)) (-3639 (((-2 (|:| -2046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 139 T ELT)) (-3327 (((-793) $) 53 T ELT)) (-4174 (((-793) $) 52 T ELT)) (-2542 (($ $ (-793) (-972 |#1|)) 67 T ELT)) (-4176 (((-112) $) 111 T ELT)) (-4031 (($ $ (-666 (-666 (-972 |#1|))) (-666 (-174)) (-174)) 118 T ELT) (($ $ (-666 (-666 (-666 |#1|))) (-666 (-174)) (-174)) 120 T ELT) (($ $ (-666 (-666 (-972 |#1|))) (-112) (-112)) 115 T ELT) (($ $ (-666 (-666 (-666 |#1|))) (-112) (-112)) 127 T ELT) (($ (-666 (-666 (-972 |#1|)))) 116 T ELT) (($ (-666 (-666 (-972 |#1|))) (-112) (-112)) 117 T ELT) (((-666 (-666 (-972 |#1|))) $) 114 T ELT)) (-3176 (($ (-666 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-2269 (((-666 (-174)) $) 133 T ELT)) (-4046 (((-666 (-972 |#1|)) $) 130 T ELT)) (-2157 (((-666 (-666 (-174))) $) 132 T ELT)) (-3403 (((-666 (-666 (-666 (-972 |#1|)))) $) NIL T ELT)) (-2418 (((-666 (-666 (-666 (-793)))) $) 131 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1936 (((-793) $ (-666 (-972 |#1|))) 65 T ELT)) (-4137 (((-112) $) 84 T ELT)) (-2825 (($ $ (-666 (-972 |#1|))) 86 T ELT) (($ $ (-666 (-666 |#1|))) 92 T ELT) (($ (-666 (-972 |#1|))) 87 T ELT) (((-666 (-972 |#1|)) $) 85 T ELT)) (-4319 (($) 48 T ELT) (($ (-1195 3 |#1|)) 49 T ELT)) (-3979 (($ $) 63 T ELT)) (-1797 (((-666 $) $) 62 T ELT)) (-1825 (($ (-666 $)) 59 T ELT)) (-1761 (((-666 $) $) 61 T ELT)) (-2411 (((-886) $) 146 T ELT)) (-4110 (((-112) $) 94 T ELT)) (-2132 (($ $ (-666 (-972 |#1|))) 96 T ELT) (($ $ (-666 (-666 |#1|))) 99 T ELT) (($ (-666 (-972 |#1|))) 97 T ELT) (((-666 (-972 |#1|)) $) 95 T ELT)) (-2947 (($ $) 140 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1164 |#1|) (-1165 |#1|) (-1080)) (T -1164)) +NIL +(-1165 |#1|) +((-3213 (((-112) $ $) 7 T ELT)) (-4085 (((-1195 3 |#1|) $) 14 T ELT)) (-4007 (((-112) $) 30 T ELT)) (-3657 (($ $ (-666 (-972 |#1|))) 34 T ELT) (($ $ (-666 (-666 |#1|))) 33 T ELT) (($ (-666 (-972 |#1|))) 32 T ELT) (((-666 (-972 |#1|)) $) 31 T ELT)) (-3271 (((-112) $) 45 T ELT)) (-4414 (($ $ (-972 |#1|)) 50 T ELT) (($ $ (-666 |#1|)) 49 T ELT) (($ $ (-793)) 48 T ELT) (($ (-972 |#1|)) 47 T ELT) (((-972 |#1|) $) 46 T ELT)) (-3639 (((-2 (|:| -2046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 16 T ELT)) (-3327 (((-793) $) 59 T ELT)) (-4174 (((-793) $) 60 T ELT)) (-2542 (($ $ (-793) (-972 |#1|)) 51 T ELT)) (-4176 (((-112) $) 22 T ELT)) (-4031 (($ $ (-666 (-666 (-972 |#1|))) (-666 (-174)) (-174)) 29 T ELT) (($ $ (-666 (-666 (-666 |#1|))) (-666 (-174)) (-174)) 28 T ELT) (($ $ (-666 (-666 (-972 |#1|))) (-112) (-112)) 27 T ELT) (($ $ (-666 (-666 (-666 |#1|))) (-112) (-112)) 26 T ELT) (($ (-666 (-666 (-972 |#1|)))) 25 T ELT) (($ (-666 (-666 (-972 |#1|))) (-112) (-112)) 24 T ELT) (((-666 (-666 (-972 |#1|))) $) 23 T ELT)) (-3176 (($ (-666 $)) 58 T ELT) (($ $ $) 57 T ELT)) (-2269 (((-666 (-174)) $) 17 T ELT)) (-4046 (((-666 (-972 |#1|)) $) 21 T ELT)) (-2157 (((-666 (-666 (-174))) $) 18 T ELT)) (-3403 (((-666 (-666 (-666 (-972 |#1|)))) $) 19 T ELT)) (-2418 (((-666 (-666 (-666 (-793)))) $) 20 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1936 (((-793) $ (-666 (-972 |#1|))) 52 T ELT)) (-4137 (((-112) $) 40 T ELT)) (-2825 (($ $ (-666 (-972 |#1|))) 44 T ELT) (($ $ (-666 (-666 |#1|))) 43 T ELT) (($ (-666 (-972 |#1|))) 42 T ELT) (((-666 (-972 |#1|)) $) 41 T ELT)) (-4319 (($) 62 T ELT) (($ (-1195 3 |#1|)) 61 T ELT)) (-3979 (($ $) 53 T ELT)) (-1797 (((-666 $) $) 54 T ELT)) (-1825 (($ (-666 $)) 56 T ELT)) (-1761 (((-666 $) $) 55 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-4110 (((-112) $) 35 T ELT)) (-2132 (($ $ (-666 (-972 |#1|))) 39 T ELT) (($ $ (-666 (-666 |#1|))) 38 T ELT) (($ (-666 (-972 |#1|))) 37 T ELT) (((-666 (-972 |#1|)) $) 36 T ELT)) (-2947 (($ $) 15 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-1165 |#1|) (-142) (-1080)) (T -1165)) +((-2411 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-886)))) (-4319 (*1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-4319 (*1 *1 *2) (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3176 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3176 (*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-1761 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-666 *1)) (-4 *1 (-1165 *3)))) (-1797 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-666 *1)) (-4 *1 (-1165 *3)))) (-3979 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-1936 (*1 *2 *1 *3) (-12 (-5 *3 (-666 (-972 *4))) (-4 *1 (-1165 *4)) (-4 *4 (-1080)) (-5 *2 (-793)))) (-2542 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-972 *4)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-4414 (*1 *1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4414 (*1 *1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4414 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4414 (*1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-972 *3)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2825 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-666 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3))))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112)))) (-2132 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2132 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-666 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3))))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112)))) (-3657 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3657 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-666 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3))))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112)))) (-4031 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-666 (-666 (-972 *5)))) (-5 *3 (-666 (-174))) (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))) (-4031 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-666 (-666 (-666 *5)))) (-5 *3 (-666 (-174))) (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))) (-4031 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-666 (-666 (-972 *4)))) (-5 *3 (-112)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-4031 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-666 (-666 (-666 *4)))) (-5 *3 (-112)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-4031 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-972 *3)))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-4031 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-666 (-666 (-972 *4)))) (-5 *3 (-112)) (-4 *4 (-1080)) (-4 *1 (-1165 *4)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-666 (-972 *3)))))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112)))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3))))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-666 (-666 (-793))))))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-666 (-666 (-972 *3))))))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-666 (-174)))))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-174))))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793)))))) (-2947 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-1195 3 *3))))) +(-13 (-1131) (-10 -8 (-15 -4319 ($)) (-15 -4319 ($ (-1195 3 |t#1|))) (-15 -4174 ((-793) $)) (-15 -3327 ((-793) $)) (-15 -3176 ($ (-666 $))) (-15 -3176 ($ $ $)) (-15 -1825 ($ (-666 $))) (-15 -1761 ((-666 $) $)) (-15 -1797 ((-666 $) $)) (-15 -3979 ($ $)) (-15 -1936 ((-793) $ (-666 (-972 |t#1|)))) (-15 -2542 ($ $ (-793) (-972 |t#1|))) (-15 -4414 ($ $ (-972 |t#1|))) (-15 -4414 ($ $ (-666 |t#1|))) (-15 -4414 ($ $ (-793))) (-15 -4414 ($ (-972 |t#1|))) (-15 -4414 ((-972 |t#1|) $)) (-15 -3271 ((-112) $)) (-15 -2825 ($ $ (-666 (-972 |t#1|)))) (-15 -2825 ($ $ (-666 (-666 |t#1|)))) (-15 -2825 ($ (-666 (-972 |t#1|)))) (-15 -2825 ((-666 (-972 |t#1|)) $)) (-15 -4137 ((-112) $)) (-15 -2132 ($ $ (-666 (-972 |t#1|)))) (-15 -2132 ($ $ (-666 (-666 |t#1|)))) (-15 -2132 ($ (-666 (-972 |t#1|)))) (-15 -2132 ((-666 (-972 |t#1|)) $)) (-15 -4110 ((-112) $)) (-15 -3657 ($ $ (-666 (-972 |t#1|)))) (-15 -3657 ($ $ (-666 (-666 |t#1|)))) (-15 -3657 ($ (-666 (-972 |t#1|)))) (-15 -3657 ((-666 (-972 |t#1|)) $)) (-15 -4007 ((-112) $)) (-15 -4031 ($ $ (-666 (-666 (-972 |t#1|))) (-666 (-174)) (-174))) (-15 -4031 ($ $ (-666 (-666 (-666 |t#1|))) (-666 (-174)) (-174))) (-15 -4031 ($ $ (-666 (-666 (-972 |t#1|))) (-112) (-112))) (-15 -4031 ($ $ (-666 (-666 (-666 |t#1|))) (-112) (-112))) (-15 -4031 ($ (-666 (-666 (-972 |t#1|))))) (-15 -4031 ($ (-666 (-666 (-972 |t#1|))) (-112) (-112))) (-15 -4031 ((-666 (-666 (-972 |t#1|))) $)) (-15 -4176 ((-112) $)) (-15 -4046 ((-666 (-972 |t#1|)) $)) (-15 -2418 ((-666 (-666 (-666 (-793)))) $)) (-15 -3403 ((-666 (-666 (-666 (-972 |t#1|)))) $)) (-15 -2157 ((-666 (-666 (-174))) $)) (-15 -2269 ((-666 (-174)) $)) (-15 -3639 ((-2 (|:| -2046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $)) (-15 -2947 ($ $)) (-15 -4085 ((-1195 3 |t#1|) $)) (-15 -2411 ((-886) $)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 184 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) 7 T ELT)) (-2355 (((-112) $ (|[\|\|]| (-538))) 19 T ELT) (((-112) $ (|[\|\|]| (-222))) 23 T ELT) (((-112) $ (|[\|\|]| (-698))) 27 T ELT) (((-112) $ (|[\|\|]| (-1308))) 31 T ELT) (((-112) $ (|[\|\|]| (-140))) 35 T ELT) (((-112) $ (|[\|\|]| (-619))) 39 T ELT) (((-112) $ (|[\|\|]| (-135))) 43 T ELT) (((-112) $ (|[\|\|]| (-1146))) 47 T ELT) (((-112) $ (|[\|\|]| (-96))) 51 T ELT) (((-112) $ (|[\|\|]| (-703))) 55 T ELT) (((-112) $ (|[\|\|]| (-531))) 59 T ELT) (((-112) $ (|[\|\|]| (-1097))) 63 T ELT) (((-112) $ (|[\|\|]| (-1309))) 67 T ELT) (((-112) $ (|[\|\|]| (-539))) 71 T ELT) (((-112) $ (|[\|\|]| (-1182))) 75 T ELT) (((-112) $ (|[\|\|]| (-156))) 79 T ELT) (((-112) $ (|[\|\|]| (-693))) 83 T ELT) (((-112) $ (|[\|\|]| (-323))) 87 T ELT) (((-112) $ (|[\|\|]| (-1067))) 91 T ELT) (((-112) $ (|[\|\|]| (-183))) 95 T ELT) (((-112) $ (|[\|\|]| (-1001))) 99 T ELT) (((-112) $ (|[\|\|]| (-1104))) 103 T ELT) (((-112) $ (|[\|\|]| (-1121))) 107 T ELT) (((-112) $ (|[\|\|]| (-1127))) 111 T ELT) (((-112) $ (|[\|\|]| (-645))) 115 T ELT) (((-112) $ (|[\|\|]| (-1197))) 119 T ELT) (((-112) $ (|[\|\|]| (-158))) 123 T ELT) (((-112) $ (|[\|\|]| (-139))) 127 T ELT) (((-112) $ (|[\|\|]| (-492))) 131 T ELT) (((-112) $ (|[\|\|]| (-606))) 135 T ELT) (((-112) $ (|[\|\|]| (-520))) 139 T ELT) (((-112) $ (|[\|\|]| (-1189))) 143 T ELT) (((-112) $ (|[\|\|]| (-578))) 147 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4032 (((-538) $) 20 T ELT) (((-222) $) 24 T ELT) (((-698) $) 28 T ELT) (((-1308) $) 32 T ELT) (((-140) $) 36 T ELT) (((-619) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1146) $) 48 T ELT) (((-96) $) 52 T ELT) (((-703) $) 56 T ELT) (((-531) $) 60 T ELT) (((-1097) $) 64 T ELT) (((-1309) $) 68 T ELT) (((-539) $) 72 T ELT) (((-1182) $) 76 T ELT) (((-156) $) 80 T ELT) (((-693) $) 84 T ELT) (((-323) $) 88 T ELT) (((-1067) $) 92 T ELT) (((-183) $) 96 T ELT) (((-1001) $) 100 T ELT) (((-1104) $) 104 T ELT) (((-1121) $) 108 T ELT) (((-1127) $) 112 T ELT) (((-645) $) 116 T ELT) (((-1197) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-492) $) 132 T ELT) (((-606) $) 136 T ELT) (((-520) $) 140 T ELT) (((-1189) $) 144 T ELT) (((-578) $) 148 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1166) (-1168)) (T -1166)) +NIL +(-1168) +((-3219 (((-666 (-1212)) (-1189)) 9 T ELT))) +(((-1167) (-10 -7 (-15 -3219 ((-666 (-1212)) (-1189))))) (T -1167)) +((-3219 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-666 (-1212))) (-5 *1 (-1167))))) +(-10 -7 (-15 -3219 ((-666 (-1212)) (-1189)))) +((-3213 (((-112) $ $) 7 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-2355 (((-112) $ (|[\|\|]| (-538))) 85 T ELT) (((-112) $ (|[\|\|]| (-222))) 83 T ELT) (((-112) $ (|[\|\|]| (-698))) 81 T ELT) (((-112) $ (|[\|\|]| (-1308))) 79 T ELT) (((-112) $ (|[\|\|]| (-140))) 77 T ELT) (((-112) $ (|[\|\|]| (-619))) 75 T ELT) (((-112) $ (|[\|\|]| (-135))) 73 T ELT) (((-112) $ (|[\|\|]| (-1146))) 71 T ELT) (((-112) $ (|[\|\|]| (-96))) 69 T ELT) (((-112) $ (|[\|\|]| (-703))) 67 T ELT) (((-112) $ (|[\|\|]| (-531))) 65 T ELT) (((-112) $ (|[\|\|]| (-1097))) 63 T ELT) (((-112) $ (|[\|\|]| (-1309))) 61 T ELT) (((-112) $ (|[\|\|]| (-539))) 59 T ELT) (((-112) $ (|[\|\|]| (-1182))) 57 T ELT) (((-112) $ (|[\|\|]| (-156))) 55 T ELT) (((-112) $ (|[\|\|]| (-693))) 53 T ELT) (((-112) $ (|[\|\|]| (-323))) 51 T ELT) (((-112) $ (|[\|\|]| (-1067))) 49 T ELT) (((-112) $ (|[\|\|]| (-183))) 47 T ELT) (((-112) $ (|[\|\|]| (-1001))) 45 T ELT) (((-112) $ (|[\|\|]| (-1104))) 43 T ELT) (((-112) $ (|[\|\|]| (-1121))) 41 T ELT) (((-112) $ (|[\|\|]| (-1127))) 39 T ELT) (((-112) $ (|[\|\|]| (-645))) 37 T ELT) (((-112) $ (|[\|\|]| (-1197))) 35 T ELT) (((-112) $ (|[\|\|]| (-158))) 33 T ELT) (((-112) $ (|[\|\|]| (-139))) 31 T ELT) (((-112) $ (|[\|\|]| (-492))) 29 T ELT) (((-112) $ (|[\|\|]| (-606))) 27 T ELT) (((-112) $ (|[\|\|]| (-520))) 25 T ELT) (((-112) $ (|[\|\|]| (-1189))) 23 T ELT) (((-112) $ (|[\|\|]| (-578))) 21 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-4032 (((-538) $) 84 T ELT) (((-222) $) 82 T ELT) (((-698) $) 80 T ELT) (((-1308) $) 78 T ELT) (((-140) $) 76 T ELT) (((-619) $) 74 T ELT) (((-135) $) 72 T ELT) (((-1146) $) 70 T ELT) (((-96) $) 68 T ELT) (((-703) $) 66 T ELT) (((-531) $) 64 T ELT) (((-1097) $) 62 T ELT) (((-1309) $) 60 T ELT) (((-539) $) 58 T ELT) (((-1182) $) 56 T ELT) (((-156) $) 54 T ELT) (((-693) $) 52 T ELT) (((-323) $) 50 T ELT) (((-1067) $) 48 T ELT) (((-183) $) 46 T ELT) (((-1001) $) 44 T ELT) (((-1104) $) 42 T ELT) (((-1121) $) 40 T ELT) (((-1127) $) 38 T ELT) (((-645) $) 36 T ELT) (((-1197) $) 34 T ELT) (((-158) $) 32 T ELT) (((-139) $) 30 T ELT) (((-492) $) 28 T ELT) (((-606) $) 26 T ELT) (((-520) $) 24 T ELT) (((-1189) $) 22 T ELT) (((-578) $) 20 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-1168) (-142)) (T -1168)) +((-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-538)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-222)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-698)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1308)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-140)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-619)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-135)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1146))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1146)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-96)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-703)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-531)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1097)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1309)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-539)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1182)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-156)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-693)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-323))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-323)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1067)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-183)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1001)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1104)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1121)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1127)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-645)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1197)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-158)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-139)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-492)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-606)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-520)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1189)))) (-2355 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-578))) (-5 *2 (-112)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-578))))) +(-13 (-1114) (-1293) (-10 -8 (-15 -2355 ((-112) $ (|[\|\|]| (-538)))) (-15 -4032 ((-538) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-222)))) (-15 -4032 ((-222) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-698)))) (-15 -4032 ((-698) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1308)))) (-15 -4032 ((-1308) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-140)))) (-15 -4032 ((-140) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-619)))) (-15 -4032 ((-619) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-135)))) (-15 -4032 ((-135) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1146)))) (-15 -4032 ((-1146) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-96)))) (-15 -4032 ((-96) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-703)))) (-15 -4032 ((-703) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-531)))) (-15 -4032 ((-531) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1097)))) (-15 -4032 ((-1097) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1309)))) (-15 -4032 ((-1309) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-539)))) (-15 -4032 ((-539) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1182)))) (-15 -4032 ((-1182) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-156)))) (-15 -4032 ((-156) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-693)))) (-15 -4032 ((-693) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-323)))) (-15 -4032 ((-323) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1067)))) (-15 -4032 ((-1067) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-183)))) (-15 -4032 ((-183) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1001)))) (-15 -4032 ((-1001) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1104)))) (-15 -4032 ((-1104) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1121)))) (-15 -4032 ((-1121) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1127)))) (-15 -4032 ((-1127) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-645)))) (-15 -4032 ((-645) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1197)))) (-15 -4032 ((-1197) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-158)))) (-15 -4032 ((-158) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-139)))) (-15 -4032 ((-139) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-492)))) (-15 -4032 ((-492) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-606)))) (-15 -4032 ((-606) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-520)))) (-15 -4032 ((-520) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-1189)))) (-15 -4032 ((-1189) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-578)))) (-15 -4032 ((-578) $)))) +(((-93) . T) ((-102) . T) ((-635 #0=(-1212)) . T) ((-632 (-886)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1131) . T) ((-1114) . T) ((-1248) . T) ((-1293) . T)) +((-2017 (((-1303) (-666 (-886))) 22 T ELT) (((-1303) (-886)) 21 T ELT)) (-3538 (((-1303) (-666 (-886))) 20 T ELT) (((-1303) (-886)) 19 T ELT)) (-1903 (((-1303) (-666 (-886))) 18 T ELT) (((-1303) (-886)) 10 T ELT) (((-1303) (-1189) (-886)) 16 T ELT))) +(((-1169) (-10 -7 (-15 -1903 ((-1303) (-1189) (-886))) (-15 -1903 ((-1303) (-886))) (-15 -3538 ((-1303) (-886))) (-15 -2017 ((-1303) (-886))) (-15 -1903 ((-1303) (-666 (-886)))) (-15 -3538 ((-1303) (-666 (-886)))) (-15 -2017 ((-1303) (-666 (-886)))))) (T -1169)) +((-2017 (*1 *2 *3) (-12 (-5 *3 (-666 (-886))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-666 (-886))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-666 (-886))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169))))) +(-10 -7 (-15 -1903 ((-1303) (-1189) (-886))) (-15 -1903 ((-1303) (-886))) (-15 -3538 ((-1303) (-886))) (-15 -2017 ((-1303) (-886))) (-15 -1903 ((-1303) (-666 (-886)))) (-15 -3538 ((-1303) (-666 (-886)))) (-15 -2017 ((-1303) (-666 (-886))))) +((-2482 (($ $ $) 10 T ELT)) (-2422 (($ $) 9 T ELT)) (-2833 (($ $ $) 13 T ELT)) (-3223 (($ $ $) 15 T ELT)) (-3358 (($ $ $) 12 T ELT)) (-3317 (($ $ $) 14 T ELT)) (-2084 (($ $) 17 T ELT)) (-1897 (($ $) 16 T ELT)) (-2628 (($ $) 6 T ELT)) (-1885 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-2799 (($ $ $) 8 T ELT))) +(((-1170) (-142)) (T -1170)) +((-2084 (*1 *1 *1) (-4 *1 (-1170))) (-1897 (*1 *1 *1) (-4 *1 (-1170))) (-3223 (*1 *1 *1 *1) (-4 *1 (-1170))) (-3317 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2833 (*1 *1 *1 *1) (-4 *1 (-1170))) (-3358 (*1 *1 *1 *1) (-4 *1 (-1170))) (-1885 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2482 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2422 (*1 *1 *1) (-4 *1 (-1170))) (-2799 (*1 *1 *1 *1) (-4 *1 (-1170))) (-1885 (*1 *1 *1) (-4 *1 (-1170))) (-2628 (*1 *1 *1) (-4 *1 (-1170)))) +(-13 (-10 -8 (-15 -2628 ($ $)) (-15 -1885 ($ $)) (-15 -2799 ($ $ $)) (-15 -2422 ($ $)) (-15 -2482 ($ $ $)) (-15 -1885 ($ $ $)) (-15 -3358 ($ $ $)) (-15 -2833 ($ $ $)) (-15 -3317 ($ $ $)) (-15 -3223 ($ $ $)) (-15 -1897 ($ $)) (-15 -2084 ($ $)))) +((-3213 (((-112) $ $) 44 T ELT)) (-4120 ((|#1| $) 17 T ELT)) (-3052 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39 T ELT)) (-3960 (((-112) $) 19 T ELT)) (-2532 (($ $ |#1|) 30 T ELT)) (-4214 (($ $ (-112)) 32 T ELT)) (-4396 (($ $) 33 T ELT)) (-2870 (($ $ |#2|) 31 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3862 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4186 (((-112) $) 16 T ELT)) (-1696 (($) 13 T ELT)) (-3979 (($ $) 29 T ELT)) (-2423 (($ |#1| |#2| (-112)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -4318 |#2|))) 23 T ELT) (((-666 $) (-666 (-2 (|:| |val| |#1|) (|:| -4318 |#2|)))) 26 T ELT) (((-666 $) |#1| (-666 |#2|)) 28 T ELT)) (-2101 ((|#2| $) 18 T ELT)) (-2411 (((-886) $) 53 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 42 T ELT))) +(((-1171 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -1696 ($)) (-15 -4186 ((-112) $)) (-15 -4120 (|#1| $)) (-15 -2101 (|#2| $)) (-15 -3960 ((-112) $)) (-15 -2423 ($ |#1| |#2| (-112))) (-15 -2423 ($ |#1| |#2|)) (-15 -2423 ($ (-2 (|:| |val| |#1|) (|:| -4318 |#2|)))) (-15 -2423 ((-666 $) (-666 (-2 (|:| |val| |#1|) (|:| -4318 |#2|))))) (-15 -2423 ((-666 $) |#1| (-666 |#2|))) (-15 -3979 ($ $)) (-15 -2532 ($ $ |#1|)) (-15 -2870 ($ $ |#2|)) (-15 -4214 ($ $ (-112))) (-15 -4396 ($ $)) (-15 -3862 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3052 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1131) (-34)) (-13 (-1131) (-34))) (T -1171)) +((-1696 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-4120 (*1 *2 *1) (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1171 *2 *3)) (-4 *3 (-13 (-1131) (-34))))) (-2101 (*1 *2 *1) (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1131) (-34))))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-2423 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-2423 (*1 *1 *2 *3) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4318 *4))) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *4)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-666 (-2 (|:| |val| *4) (|:| -4318 *5)))) (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-666 (-1171 *4 *5))) (-5 *1 (-1171 *4 *5)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-666 *5)) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-666 (-1171 *3 *5))) (-5 *1 (-1171 *3 *5)) (-4 *3 (-13 (-1131) (-34))))) (-3979 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-2532 (*1 *1 *1 *2) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-2870 (*1 *1 *1 *2) (-12 (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1131) (-34))) (-4 *2 (-13 (-1131) (-34))))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-4396 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-3862 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *5 *6)))) (-3052 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *4 *5)) (-4 *4 (-13 (-1131) (-34)))))) +(-13 (-1131) (-10 -8 (-15 -1696 ($)) (-15 -4186 ((-112) $)) (-15 -4120 (|#1| $)) (-15 -2101 (|#2| $)) (-15 -3960 ((-112) $)) (-15 -2423 ($ |#1| |#2| (-112))) (-15 -2423 ($ |#1| |#2|)) (-15 -2423 ($ (-2 (|:| |val| |#1|) (|:| -4318 |#2|)))) (-15 -2423 ((-666 $) (-666 (-2 (|:| |val| |#1|) (|:| -4318 |#2|))))) (-15 -2423 ((-666 $) |#1| (-666 |#2|))) (-15 -3979 ($ $)) (-15 -2532 ($ $ |#1|)) (-15 -2870 ($ $ |#2|)) (-15 -4214 ($ $ (-112))) (-15 -4396 ($ $)) (-15 -3862 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3052 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3213 (((-112) $ $) NIL (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-4120 (((-1171 |#1| |#2|) $) 27 T ELT)) (-2192 (($ $) 91 T ELT)) (-2971 (((-112) (-1171 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100 T ELT)) (-1579 (($ $ $ (-666 (-1171 |#1| |#2|))) 108 T ELT) (($ $ $ (-666 (-1171 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4227 (((-1171 |#1| |#2|) $ (-1171 |#1| |#2|)) 46 (|has| $ (-6 -4501)) ELT)) (-2590 (((-1171 |#1| |#2|) $ "value" (-1171 |#1| |#2|)) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 44 (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2657 (((-666 (-2 (|:| |val| |#1|) (|:| -4318 |#2|))) $) 95 T ELT)) (-2631 (($ (-1171 |#1| |#2|) $) 42 T ELT)) (-2737 (($ (-1171 |#1| |#2|) $) 34 T ELT)) (-2729 (((-666 (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 54 T ELT)) (-1523 (((-112) (-1171 |#1| |#2|) $) 97 T ELT)) (-2989 (((-112) $ $) NIL (|has| (-1171 |#1| |#2|) (-1131)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 (-1171 |#1| |#2|)) $) 58 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-1171 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-1171 |#1| |#2|) (-1131))) ELT)) (-3439 (($ (-1 (-1171 |#1| |#2|) (-1171 |#1| |#2|)) $) 50 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-1171 |#1| |#2|) (-1171 |#1| |#2|)) $) 49 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-1504 (((-666 (-1171 |#1| |#2|)) $) 56 T ELT)) (-3821 (((-112) $) 45 T ELT)) (-2617 (((-1189) $) NIL (|has| (-1171 |#1| |#2|) (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| (-1171 |#1| |#2|) (-1131)) ELT)) (-2906 (((-3 $ "failed") $) 89 T ELT)) (-2808 (((-112) (-1 (-112) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-1171 |#1| |#2|)))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1131))) ELT) (($ $ (-306 (-1171 |#1| |#2|))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1131))) ELT) (($ $ (-1171 |#1| |#2|) (-1171 |#1| |#2|)) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1131))) ELT) (($ $ (-666 (-1171 |#1| |#2|)) (-666 (-1171 |#1| |#2|))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1131))) ELT)) (-2428 (((-112) $ $) 53 T ELT)) (-4186 (((-112) $) 24 T ELT)) (-1696 (($) 26 T ELT)) (-2436 (((-1171 |#1| |#2|) $ "value") NIL T ELT)) (-1842 (((-578) $ $) NIL T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4324 (((-793) (-1 (-112) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-1171 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-1171 |#1| |#2|) (-1131))) ELT)) (-3979 (($ $) 52 T ELT)) (-2423 (($ (-1171 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-666 $)) 13 T ELT) (($ |#1| |#2| (-666 (-1171 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-666 |#2|)) 18 T ELT)) (-4454 (((-666 |#2|) $) 96 T ELT)) (-2411 (((-886) $) 87 (|has| (-1171 |#1| |#2|) (-632 (-886))) ELT)) (-4435 (((-666 $) $) 31 T ELT)) (-1849 (((-112) $ $) NIL (|has| (-1171 |#1| |#2|) (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-3673 (((-112) (-1 (-112) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 70 (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-3226 (((-793) $) 64 (|has| $ (-6 -4500)) ELT))) +(((-1172 |#1| |#2|) (-13 (-1041 (-1171 |#1| |#2|)) (-10 -8 (-6 -4501) (-6 -4500) (-15 -2906 ((-3 $ "failed") $)) (-15 -2192 ($ $)) (-15 -2423 ($ (-1171 |#1| |#2|))) (-15 -2423 ($ |#1| |#2| (-666 $))) (-15 -2423 ($ |#1| |#2| (-666 (-1171 |#1| |#2|)))) (-15 -2423 ($ |#1| |#2| |#1| (-666 |#2|))) (-15 -4454 ((-666 |#2|) $)) (-15 -2657 ((-666 (-2 (|:| |val| |#1|) (|:| -4318 |#2|))) $)) (-15 -1523 ((-112) (-1171 |#1| |#2|) $)) (-15 -2971 ((-112) (-1171 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2737 ($ (-1171 |#1| |#2|) $)) (-15 -2631 ($ (-1171 |#1| |#2|) $)) (-15 -1579 ($ $ $ (-666 (-1171 |#1| |#2|)))) (-15 -1579 ($ $ $ (-666 (-1171 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1131) (-34)) (-13 (-1131) (-34))) (T -1172)) +((-2906 (*1 *1 *1) (|partial| -12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-2192 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4)))) (-2423 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-666 (-1172 *2 *3))) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) (-2423 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-666 (-1171 *2 *3))) (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))) (-5 *1 (-1172 *2 *3)))) (-2423 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-666 *3)) (-4 *3 (-13 (-1131) (-34))) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1131) (-34))))) (-4454 (*1 *2 *1) (-12 (-5 *2 (-666 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))))) (-1523 (*1 *2 *3 *1) (-12 (-5 *3 (-1171 *4 *5)) (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-112)) (-5 *1 (-1172 *4 *5)))) (-2971 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1171 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) (-5 *2 (-112)) (-5 *1 (-1172 *5 *6)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4)))) (-2631 (*1 *1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4)))) (-1579 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-666 (-1171 *3 *4))) (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4)))) (-1579 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-1171 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) (-5 *1 (-1172 *4 *5))))) +(-13 (-1041 (-1171 |#1| |#2|)) (-10 -8 (-6 -4501) (-6 -4500) (-15 -2906 ((-3 $ "failed") $)) (-15 -2192 ($ $)) (-15 -2423 ($ (-1171 |#1| |#2|))) (-15 -2423 ($ |#1| |#2| (-666 $))) (-15 -2423 ($ |#1| |#2| (-666 (-1171 |#1| |#2|)))) (-15 -2423 ($ |#1| |#2| |#1| (-666 |#2|))) (-15 -4454 ((-666 |#2|) $)) (-15 -2657 ((-666 (-2 (|:| |val| |#1|) (|:| -4318 |#2|))) $)) (-15 -1523 ((-112) (-1171 |#1| |#2|) $)) (-15 -2971 ((-112) (-1171 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2737 ($ (-1171 |#1| |#2|) $)) (-15 -2631 ($ (-1171 |#1| |#2|) $)) (-15 -1579 ($ $ $ (-666 (-1171 |#1| |#2|)))) (-15 -1579 ($ $ $ (-666 (-1171 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-1921 (($ $) NIL T ELT)) (-1881 ((|#2| $) NIL T ELT)) (-2648 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2880 (($ (-711 |#2|)) 56 T ELT)) (-2214 (((-112) $) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2921 (($ |#2|) 14 T ELT)) (-3534 (($) NIL T CONST)) (-1612 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3978 (((-247 |#1| |#2|) $ (-578)) 42 T ELT)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) ((|#2| $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) 83 T ELT)) (-1875 (((-793) $) 71 (|has| |#2| (-570)) ELT)) (-3382 ((|#2| $ (-578) (-578)) NIL T ELT)) (-2729 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3199 (((-793) $) 73 (|has| |#2| (-570)) ELT)) (-4342 (((-666 (-247 |#1| |#2|)) $) 77 (|has| |#2| (-570)) ELT)) (-3068 (((-793) $) NIL T ELT)) (-3749 (($ |#2|) 25 T ELT)) (-3082 (((-793) $) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-3627 ((|#2| $) 67 (|has| |#2| (-6 (-4502 "*"))) ELT)) (-1850 (((-578) $) NIL T ELT)) (-3156 (((-578) $) NIL T ELT)) (-1441 (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-1694 (((-578) $) NIL T ELT)) (-2915 (((-578) $) NIL T ELT)) (-1869 (($ (-666 (-666 |#2|))) 37 T ELT)) (-3439 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3692 (((-666 (-666 |#2|)) $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3335 (((-3 $ "failed") $) 80 (|has| |#2| (-376)) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT)) (-2808 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ (-578) (-578) |#2|) NIL T ELT) ((|#2| $ (-578) (-578)) NIL T ELT)) (-2031 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-4042 ((|#2| $) NIL T ELT)) (-3266 (($ (-666 |#2|)) 50 T ELT)) (-4415 (((-112) $) NIL T ELT)) (-4370 (((-247 |#1| |#2|) $) NIL T ELT)) (-2598 ((|#2| $) 65 (|has| |#2| (-6 (-4502 "*"))) ELT)) (-4324 (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) 89 (|has| |#2| (-633 (-550))) ELT)) (-4240 (((-247 |#1| |#2|) $ (-578)) 44 T ELT)) (-2411 (((-886) $) 47 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) 52 T ELT)) (-3753 (((-793)) 23 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1828 (((-112) $) NIL T ELT)) (-2368 (($) 16 T CONST)) (-2379 (($) 21 T CONST)) (-1676 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 63 T ELT) (($ $ (-578)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-247 |#1| |#2|) $ (-247 |#1| |#2|)) 59 T ELT) (((-247 |#1| |#2|) (-247 |#1| |#2|) $) 61 T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1173 |#1| |#2|) (-13 (-1154 |#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -3749 ($ |#2|)) (-15 -1921 ($ $)) (-15 -2880 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4502 "*"))) (-6 -4489) |%noBranch|) (IF (|has| |#2| (-6 (-4502 "*"))) (IF (|has| |#2| (-6 -4497)) (-6 -4497) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|))) (-793) (-1080)) (T -1173)) +((-3749 (*1 *1 *2) (-12 (-5 *1 (-1173 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1080)))) (-1921 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1080)))) (-2880 (*1 *1 *2) (-12 (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-793))))) +(-13 (-1154 |#1| |#2| (-247 |#1| |#2|) (-247 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -3749 ($ |#2|)) (-15 -1921 ($ $)) (-15 -2880 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4502 "*"))) (-6 -4489) |%noBranch|) (IF (|has| |#2| (-6 (-4502 "*"))) (IF (|has| |#2| (-6 -4497)) (-6 -4497) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-550))) (-6 (-633 (-550))) |%noBranch|))) +((-2959 (($ $) 19 T ELT)) (-1477 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3615 (((-112) $ $) 24 T ELT)) (-2283 (($ $) 17 T ELT)) (-2436 (((-146) $ (-578) (-146)) NIL T ELT) (((-146) $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT) (($ $ $) 31 T ELT)) (-2411 (($ (-146)) 29 T ELT) (((-886) $) NIL T ELT))) +(((-1174 |#1|) (-10 -8 (-15 -2411 ((-886) |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -1477 (|#1| |#1| (-143))) (-15 -1477 (|#1| |#1| (-146))) (-15 -2411 (|#1| (-146))) (-15 -3615 ((-112) |#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -2283 (|#1| |#1|)) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -2436 ((-146) |#1| (-578))) (-15 -2436 ((-146) |#1| (-578) (-146)))) (-1175)) (T -1174)) +NIL +(-10 -8 (-15 -2411 ((-886) |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -1477 (|#1| |#1| (-143))) (-15 -1477 (|#1| |#1| (-146))) (-15 -2411 (|#1| (-146))) (-15 -3615 ((-112) |#1| |#1|)) (-15 -2959 (|#1| |#1|)) (-15 -2283 (|#1| |#1|)) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -2436 ((-146) |#1| (-578))) (-15 -2436 ((-146) |#1| (-578) (-146)))) +((-3213 (((-112) $ $) 20 (|has| (-146) (-102)) ELT)) (-3482 (($ $) 123 T ELT)) (-2959 (($ $) 124 T ELT)) (-1477 (($ $ (-146)) 111 T ELT) (($ $ (-143)) 110 T ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-3591 (((-112) $ $) 121 T ELT)) (-3566 (((-112) $ $ (-578)) 120 T ELT)) (-3427 (((-666 $) $ (-146)) 113 T ELT) (((-666 $) $ (-143)) 112 T ELT)) (-2442 (((-112) (-1 (-112) (-146) (-146)) $) 101 T ELT) (((-112) $) 95 (|has| (-146) (-871)) ELT)) (-4101 (($ (-1 (-112) (-146) (-146)) $) 92 (|has| $ (-6 -4501)) ELT) (($ $) 91 (-12 (|has| (-146) (-871)) (|has| $ (-6 -4501))) ELT)) (-2042 (($ (-1 (-112) (-146) (-146)) $) 102 T ELT) (($ $) 96 (|has| (-146) (-871)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 (((-146) $ (-578) (-146)) 53 (|has| $ (-6 -4501)) ELT) (((-146) $ (-1265 (-578)) (-146)) 60 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) (-146)) $) 77 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-2448 (($ $ (-146)) 107 T ELT) (($ $ (-143)) 106 T ELT)) (-1464 (($ $) 93 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 103 T ELT)) (-1383 (($ $ (-1265 (-578)) $) 117 T ELT)) (-3776 (($ $) 80 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ (-146) $) 79 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) (-146)) $) 76 (|has| $ (-6 -4500)) ELT)) (-2512 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 78 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4500))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 75 (|has| $ (-6 -4500)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 74 (|has| $ (-6 -4500)) ELT)) (-3450 (((-146) $ (-578) (-146)) 54 (|has| $ (-6 -4501)) ELT)) (-3382 (((-146) $ (-578)) 52 T ELT)) (-3615 (((-112) $ $) 122 T ELT)) (-3887 (((-578) (-1 (-112) (-146)) $) 100 T ELT) (((-578) (-146) $) 99 (|has| (-146) (-1131)) ELT) (((-578) (-146) $ (-578)) 98 (|has| (-146) (-1131)) ELT) (((-578) $ $ (-578)) 116 T ELT) (((-578) (-143) $ (-578)) 115 T ELT)) (-2729 (((-666 (-146)) $) 31 (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) (-146)) 70 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 85 (|has| (-146) (-871)) ELT)) (-3176 (($ (-1 (-112) (-146) (-146)) $ $) 104 T ELT) (($ $ $) 97 (|has| (-146) (-871)) ELT)) (-1441 (((-666 (-146)) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-146) $) 28 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 86 (|has| (-146) (-871)) ELT)) (-4037 (((-112) $ $ (-146)) 118 T ELT)) (-4464 (((-793) $ $ (-146)) 119 T ELT)) (-3439 (($ (-1 (-146) (-146)) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-146) (-146)) $) 36 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 65 T ELT)) (-3054 (($ $) 125 T ELT)) (-2283 (($ $) 126 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2458 (($ $ (-146)) 109 T ELT) (($ $ (-143)) 108 T ELT)) (-2617 (((-1189) $) 23 (|has| (-146) (-1131)) ELT)) (-4273 (($ (-146) $ (-578)) 62 T ELT) (($ $ $ (-578)) 61 T ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| (-146) (-1131)) ELT)) (-4189 (((-146) $) 43 (|has| (-578) (-871)) ELT)) (-3668 (((-3 (-146) "failed") (-1 (-112) (-146)) $) 73 T ELT)) (-4291 (($ $ (-146)) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) (-146)) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-146)))) 27 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-306 (-146))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-666 (-146)) (-666 (-146))) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) (-146) $) 46 (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-4322 (((-666 (-146)) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 (((-146) $ (-578) (-146)) 51 T ELT) (((-146) $ (-578)) 50 T ELT) (($ $ (-1265 (-578))) 71 T ELT) (($ $ $) 105 T ELT)) (-1705 (($ $ (-578)) 64 T ELT) (($ $ (-1265 (-578))) 63 T ELT)) (-4324 (((-793) (-1 (-112) (-146)) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) (-146) $) 29 (-12 (|has| (-146) (-1131)) (|has| $ (-6 -4500))) ELT)) (-3751 (($ $ $ (-578)) 94 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 81 (|has| (-146) (-633 (-550))) ELT)) (-2423 (($ (-666 (-146))) 72 T ELT)) (-3703 (($ $ (-146)) 69 T ELT) (($ (-146) $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-666 $)) 66 T ELT)) (-2411 (($ (-146)) 114 T ELT) (((-886) $) 18 (|has| (-146) (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| (-146) (-102)) ELT)) (-3673 (((-112) (-1 (-112) (-146)) $) 34 (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) 87 (|has| (-146) (-871)) ELT)) (-2416 (((-112) $ $) 89 (|has| (-146) (-871)) ELT)) (-2384 (((-112) $ $) 19 (|has| (-146) (-102)) ELT)) (-2429 (((-112) $ $) 88 (|has| (-146) (-871)) ELT)) (-2404 (((-112) $ $) 90 (|has| (-146) (-871)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1175) (-142)) (T -1175)) +((-2283 (*1 *1 *1) (-4 *1 (-1175))) (-3054 (*1 *1 *1) (-4 *1 (-1175))) (-2959 (*1 *1 *1) (-4 *1 (-1175))) (-3482 (*1 *1 *1) (-4 *1 (-1175))) (-3615 (*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-112)))) (-3591 (*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-112)))) (-3566 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-578)) (-5 *2 (-112)))) (-4464 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-793)))) (-4037 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-112)))) (-1383 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-1265 (-578))))) (-3887 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-578)))) (-3887 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-578)) (-5 *3 (-143)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1175)))) (-3427 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-666 *1)) (-4 *1 (-1175)))) (-3427 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-666 *1)) (-4 *1 (-1175)))) (-1477 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-1477 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-2458 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-2458 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-2448 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-2448 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-2436 (*1 *1 *1 *1) (-4 *1 (-1175)))) +(-13 (-19 (-146)) (-10 -8 (-15 -2283 ($ $)) (-15 -3054 ($ $)) (-15 -2959 ($ $)) (-15 -3482 ($ $)) (-15 -3615 ((-112) $ $)) (-15 -3591 ((-112) $ $)) (-15 -3566 ((-112) $ $ (-578))) (-15 -4464 ((-793) $ $ (-146))) (-15 -4037 ((-112) $ $ (-146))) (-15 -1383 ($ $ (-1265 (-578)) $)) (-15 -3887 ((-578) $ $ (-578))) (-15 -3887 ((-578) (-143) $ (-578))) (-15 -2411 ($ (-146))) (-15 -3427 ((-666 $) $ (-146))) (-15 -3427 ((-666 $) $ (-143))) (-15 -1477 ($ $ (-146))) (-15 -1477 ($ $ (-143))) (-15 -2458 ($ $ (-146))) (-15 -2458 ($ $ (-143))) (-15 -2448 ($ $ (-146))) (-15 -2448 ($ $ (-143))) (-15 -2436 ($ $ $)))) +(((-34) . T) ((-102) -2230 (|has| (-146) (-1131)) (|has| (-146) (-871)) (|has| (-146) (-102))) ((-632 (-886)) -2230 (|has| (-146) (-1131)) (|has| (-146) (-871)) (|has| (-146) (-632 (-886)))) ((-153 #0=(-146)) . T) ((-633 (-550)) |has| (-146) (-633 (-550))) ((-298 #1=(-578) #0#) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #1# #0#) . T) ((-321 #0#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ((-386 #0#) . T) ((-503 #0#) . T) ((-618 #1# #0#) . T) ((-528 #0# #0#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ((-673 #0#) . T) ((-19 #0#) . T) ((-871) |has| (-146) (-871)) ((-874) |has| (-146) (-871)) ((-1131) -2230 (|has| (-146) (-1131)) (|has| (-146) (-871))) ((-1248) . T)) +((-2852 (((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 |#4|) (-666 |#5|) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-793)) 112 T ELT)) (-2805 (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793)) 61 T ELT)) (-4212 (((-1303) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-793)) 97 T ELT)) (-2697 (((-793) (-666 |#4|) (-666 |#5|)) 30 T ELT)) (-1364 (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793)) 63 T ELT) (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793) (-112)) 65 T ELT)) (-2623 (((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112) (-112) (-112) (-112)) 84 T ELT) (((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112)) 85 T ELT)) (-3343 (((-1189) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) 90 T ELT)) (-2571 (((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|) 60 T ELT)) (-1556 (((-793) (-666 |#4|) (-666 |#5|)) 21 T ELT))) +(((-1176 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1556 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2697 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2571 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793) (-112))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2852 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 |#4|) (-666 |#5|) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-793))) (-15 -3343 ((-1189) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -4212 ((-1303) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-793)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3| |#4|)) (T -1176)) +((-4212 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1140 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) (-5 *1 (-1176 *4 *5 *6 *7 *8)))) (-2852 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-666 *11)) (|:| |todo| (-666 (-2 (|:| |val| *3) (|:| -4318 *11)))))) (-5 *6 (-793)) (-5 *2 (-666 (-2 (|:| |val| (-666 *10)) (|:| -4318 *11)))) (-5 *3 (-666 *10)) (-5 *4 (-666 *11)) (-4 *10 (-1096 *7 *8 *9)) (-4 *11 (-1140 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-5 *1 (-1176 *7 *8 *9 *10 *11)))) (-2623 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-2623 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-1364 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-1364 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) (-1364 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-112)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1176 *7 *8 *9 *3 *4)) (-4 *4 (-1140 *7 *8 *9 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) (-2571 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-666 *4)) (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-1556 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1556 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2697 ((-793) (-666 |#4|) (-666 |#5|))) (-15 -2571 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -2805 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793) (-112))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5| (-793))) (-15 -1364 ((-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) |#4| |#5|)) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112))) (-15 -2623 ((-666 |#5|) (-666 |#4|) (-666 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2852 ((-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-666 |#4|) (-666 |#5|) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-2 (|:| |done| (-666 |#5|)) (|:| |todo| (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))))) (-793))) (-15 -3343 ((-1189) (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|)))) (-15 -4212 ((-1303) (-666 (-2 (|:| |val| (-666 |#4|)) (|:| -4318 |#5|))) (-793)))) +((-3213 (((-112) $ $) NIL T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) NIL T ELT)) (-3997 (((-666 $) (-666 |#4|)) 124 T ELT) (((-666 $) (-666 |#4|) (-112)) 125 T ELT) (((-666 $) (-666 |#4|) (-112) (-112)) 123 T ELT) (((-666 $) (-666 |#4|) (-112) (-112) (-112) (-112)) 126 T ELT)) (-2949 (((-666 |#3|) $) NIL T ELT)) (-3039 (((-112) $) NIL T ELT)) (-2774 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2596 ((|#4| |#4| $) NIL T ELT)) (-1457 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| $) 97 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4233 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) 75 T ELT)) (-3534 (($) NIL T CONST)) (-4147 (((-112) $) 29 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) NIL T ELT)) (-3516 (($ (-666 |#4|)) NIL T ELT)) (-4198 (((-3 $ "failed") $) 45 T ELT)) (-1707 ((|#4| |#4| $) 78 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-2737 (($ |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3069 ((|#4| |#4| $) NIL T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) NIL T ELT)) (-1434 (((-112) |#4| $) NIL T ELT)) (-2669 (((-112) |#4| $) NIL T ELT)) (-2762 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2059 (((-2 (|:| |val| (-666 |#4|)) (|:| |towers| (-666 $))) (-666 |#4|) (-112) (-112)) 139 T ELT)) (-2729 (((-666 |#4|) $) 18 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2537 ((|#3| $) 38 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#4|) $) 19 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3117 (((-666 |#3|) $) NIL T ELT)) (-1455 (((-112) |#3| $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1763 (((-3 |#4| (-666 $)) |#4| |#4| $) NIL T ELT)) (-3064 (((-666 (-2 (|:| |val| |#4|) (|:| -4318 $))) |#4| |#4| $) 117 T ELT)) (-2757 (((-3 |#4| "failed") $) 42 T ELT)) (-4044 (((-666 $) |#4| $) 102 T ELT)) (-3976 (((-3 (-112) (-666 $)) |#4| $) NIL T ELT)) (-1835 (((-666 (-2 (|:| |val| (-112)) (|:| -4318 $))) |#4| $) 112 T ELT) (((-112) |#4| $) 65 T ELT)) (-3457 (((-666 $) |#4| $) 121 T ELT) (((-666 $) (-666 |#4|) $) NIL T ELT) (((-666 $) (-666 |#4|) (-666 $)) 122 T ELT) (((-666 $) |#4| (-666 $)) NIL T ELT)) (-2720 (((-666 $) (-666 |#4|) (-112) (-112) (-112)) 134 T ELT)) (-4064 (($ |#4| $) 88 T ELT) (($ (-666 |#4|) $) 89 T ELT) (((-666 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87 T ELT)) (-1708 (((-666 |#4|) $) NIL T ELT)) (-3084 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3494 ((|#4| |#4| $) NIL T ELT)) (-3151 (((-112) $ $) NIL T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1922 ((|#4| |#4| $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-3 |#4| "failed") $) 40 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-2704 (($ $ |#4|) NIL T ELT) (((-666 $) |#4| $) 104 T ELT) (((-666 $) |#4| (-666 $)) NIL T ELT) (((-666 $) (-666 |#4|) $) NIL T ELT) (((-666 $) (-666 |#4|) (-666 $)) 99 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 17 T ELT)) (-1696 (($) 14 T ELT)) (-3683 (((-793) $) NIL T ELT)) (-4324 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (((-793) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) NIL (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 22 T ELT)) (-1339 (($ $ |#3|) 52 T ELT)) (-2093 (($ $ |#3|) 54 T ELT)) (-2499 (($ $) NIL T ELT)) (-3102 (($ $ |#3|) NIL T ELT)) (-2411 (((-886) $) 35 T ELT) (((-666 |#4|) $) 46 T ELT)) (-2474 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) NIL T ELT)) (-2557 (((-666 $) |#4| $) 66 T ELT) (((-666 $) |#4| (-666 $)) NIL T ELT) (((-666 $) (-666 |#4|) $) NIL T ELT) (((-666 $) (-666 |#4|) (-666 $)) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) NIL T ELT)) (-3091 (((-112) |#4| $) NIL T ELT)) (-2714 (((-112) |#3| $) 74 T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1177 |#1| |#2| |#3| |#4|) (-13 (-1140 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4064 ((-666 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112) (-112) (-112))) (-15 -2720 ((-666 $) (-666 |#4|) (-112) (-112) (-112))) (-15 -2059 ((-2 (|:| |val| (-666 |#4|)) (|:| |towers| (-666 $))) (-666 |#4|) (-112) (-112))))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1177)) +((-4064 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1177 *5 *6 *7 *3))) (-5 *1 (-1177 *5 *6 *7 *3)) (-4 *3 (-1096 *5 *6 *7)))) (-3997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-3997 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-2720 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-2059 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-666 *8)) (|:| |towers| (-666 (-1177 *5 *6 *7 *8))))) (-5 *1 (-1177 *5 *6 *7 *8)) (-5 *3 (-666 *8))))) +(-13 (-1140 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4064 ((-666 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112))) (-15 -3997 ((-666 $) (-666 |#4|) (-112) (-112) (-112) (-112))) (-15 -2720 ((-666 $) (-666 |#4|) (-112) (-112) (-112))) (-15 -2059 ((-2 (|:| |val| (-666 |#4|)) (|:| |towers| (-666 $))) (-666 |#4|) (-112) (-112))))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2853 ((|#1| $) 37 T ELT)) (-2677 (($ (-666 |#1|)) 45 T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2694 ((|#1| |#1| $) 40 T ELT)) (-3604 ((|#1| $) 35 T ELT)) (-2729 (((-666 |#1|) $) 18 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2743 ((|#1| $) 38 T ELT)) (-4328 (($ |#1| $) 41 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-1994 ((|#1| $) 36 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 32 T ELT)) (-1696 (($) 43 T ELT)) (-3302 (((-793) $) 30 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 27 T ELT)) (-2411 (((-886) $) 14 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3764 (($ (-666 |#1|)) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 17 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 31 (|has| $ (-6 -4500)) ELT))) +(((-1178 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -2677 ($ (-666 |#1|))))) (-1248)) (T -1178)) +((-2677 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-1178 *3))))) +(-13 (-1152 |#1|) (-10 -8 (-15 -2677 ($ (-666 |#1|))))) +((-2590 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) NIL T ELT) (($ $ "rest" $) NIL T ELT) ((|#2| $ "last" |#2|) NIL T ELT) ((|#2| $ (-1265 (-578)) |#2|) 53 T ELT) ((|#2| $ (-578) |#2|) 50 T ELT)) (-2149 (((-112) $) 12 T ELT)) (-3439 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4189 ((|#2| $) NIL T ELT) (($ $ (-793)) 17 T ELT)) (-4291 (($ $ |#2|) 49 T ELT)) (-1583 (((-112) $) 11 T ELT)) (-2436 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#2| $ "last") NIL T ELT) (($ $ (-1265 (-578))) 36 T ELT) ((|#2| $ (-578)) 26 T ELT) ((|#2| $ (-578) |#2|) NIL T ELT)) (-3342 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3703 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-666 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1179 |#1| |#2|) (-10 -8 (-15 -2149 ((-112) |#1|)) (-15 -1583 ((-112) |#1|)) (-15 -2590 (|#2| |#1| (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -3703 (|#1| |#1| |#2|)) (-15 -3703 (|#1| (-666 |#1|))) (-15 -2590 (|#2| |#1| (-1265 (-578)) |#2|)) (-15 -2590 (|#2| |#1| "last" |#2|)) (-15 -2590 (|#1| |#1| "rest" |#1|)) (-15 -2590 (|#2| |#1| "first" |#2|)) (-15 -3342 (|#1| |#1| |#2|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "last")) (-15 -2436 (|#1| |#1| "rest")) (-15 -4189 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "first")) (-15 -4189 (|#2| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -2436 (|#2| |#1| "value")) (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|))) (-1180 |#2|) (-1248)) (T -1179)) +NIL +(-10 -8 (-15 -2149 ((-112) |#1|)) (-15 -1583 ((-112) |#1|)) (-15 -2590 (|#2| |#1| (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578) |#2|)) (-15 -2436 (|#2| |#1| (-578))) (-15 -4291 (|#1| |#1| |#2|)) (-15 -2436 (|#1| |#1| (-1265 (-578)))) (-15 -3703 (|#1| |#1| |#2|)) (-15 -3703 (|#1| (-666 |#1|))) (-15 -2590 (|#2| |#1| (-1265 (-578)) |#2|)) (-15 -2590 (|#2| |#1| "last" |#2|)) (-15 -2590 (|#1| |#1| "rest" |#1|)) (-15 -2590 (|#2| |#1| "first" |#2|)) (-15 -3342 (|#1| |#1| |#2|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "last")) (-15 -2436 (|#1| |#1| "rest")) (-15 -4189 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "first")) (-15 -4189 (|#2| |#1|)) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -2436 (|#2| |#1| "value")) (-15 -3439 (|#1| (-1 |#2| |#2|) |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-3933 ((|#1| $) 66 T ELT)) (-3841 (($ $) 68 T ELT)) (-1794 (((-1303) $ (-578) (-578)) 99 (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) 53 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 57 (|has| $ (-6 -4501)) ELT)) (-2466 ((|#1| $ |#1|) 55 (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) 59 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 119 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-578) |#1|) 88 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4500)) ELT)) (-3920 ((|#1| $) 67 T ELT)) (-3534 (($) 7 T CONST)) (-4198 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3776 (($ $) 101 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4500)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3450 ((|#1| $ (-578) |#1|) 87 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 89 T ELT)) (-2149 (((-112) $) 85 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-3749 (($ (-793) |#1|) 111 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 97 (|has| (-578) (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 96 (|has| (-578) (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-4273 (($ $ $ (-578)) 118 T ELT) (($ |#1| $ (-578)) 117 T ELT)) (-4030 (((-666 (-578)) $) 94 T ELT)) (-3023 (((-112) (-578) $) 93 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108 T ELT)) (-4291 (($ $ |#1|) 98 (|has| $ (-6 -4501)) ELT)) (-1583 (((-112) $) 86 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 92 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1265 (-578))) 110 T ELT) ((|#1| $ (-578)) 91 T ELT) ((|#1| $ (-578) |#1|) 90 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-1705 (($ $ (-1265 (-578))) 116 T ELT) (($ $ (-578)) 115 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4076 (($ $) 63 T ELT)) (-4436 (($ $) 60 (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) 64 T ELT)) (-3931 (($ $) 65 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 100 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 109 T ELT)) (-3342 (($ $ $) 62 (|has| $ (-6 -4501)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4501)) ELT)) (-3703 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-666 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1180 |#1|) (-142) (-1248)) (T -1180)) +((-1583 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1248)) (-5 *2 (-112))))) +(-13 (-1286 |t#1|) (-673 |t#1|) (-10 -8 (-15 -1583 ((-112) $)) (-15 -2149 ((-112) $)))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-1041 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1248) . T) ((-1286 |#1|) . T)) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-1794 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-3244 (((-666 |#1|) $) NIL T ELT)) (-4300 (((-112) |#1| $) NIL T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4030 (((-666 |#1|) $) NIL T ELT)) (-3023 (((-112) |#1| $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1181 |#1| |#2| |#3|) (-1224 |#1| |#2|) (-1131) (-1131) |#2|) (T -1181)) +NIL +(-1224 |#1| |#2|) +((-3213 (((-112) $ $) NIL T ELT)) (-3441 (((-713 (-1166)) $) 27 T ELT)) (-1355 (((-1166) $) 15 T ELT)) (-3363 (((-1166) $) 17 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3820 (((-520) $) 13 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 37 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1182) (-13 (-1114) (-10 -8 (-15 -3820 ((-520) $)) (-15 -3363 ((-1166) $)) (-15 -3441 ((-713 (-1166)) $)) (-15 -1355 ((-1166) $))))) (T -1182)) +((-3820 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1182)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1182)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-713 (-1166))) (-5 *1 (-1182)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1182))))) +(-13 (-1114) (-10 -8 (-15 -3820 ((-520) $)) (-15 -3363 ((-1166) $)) (-15 -3441 ((-713 (-1166)) $)) (-15 -1355 ((-1166) $)))) +((-3213 (((-112) $ $) 7 T ELT)) (-2204 (((-3 $ "failed") $) 14 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2199 (($) 15 T CONST)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2384 (((-112) $ $) 8 T ELT))) +(((-1183) (-142)) (T -1183)) +((-2199 (*1 *1) (-4 *1 (-1183))) (-2204 (*1 *1 *1) (|partial| -4 *1 (-1183)))) +(-13 (-1131) (-10 -8 (-15 -2199 ($) -1529) (-15 -2204 ((-3 $ "failed") $)))) +(((-102) . T) ((-632 (-886)) . T) ((-1131) . T) ((-1248) . T)) +((-1591 (((-1188 |#1|) (-1188 |#1|)) 17 T ELT)) (-2478 (((-1188 |#1|) (-1188 |#1|)) 13 T ELT)) (-3900 (((-1188 |#1|) (-1188 |#1|) (-578) (-578)) 20 T ELT)) (-1689 (((-1188 |#1|) (-1188 |#1|)) 15 T ELT))) +(((-1184 |#1|) (-10 -7 (-15 -2478 ((-1188 |#1|) (-1188 |#1|))) (-15 -1689 ((-1188 |#1|) (-1188 |#1|))) (-15 -1591 ((-1188 |#1|) (-1188 |#1|))) (-15 -3900 ((-1188 |#1|) (-1188 |#1|) (-578) (-578)))) (-13 (-570) (-149))) (T -1184)) +((-3900 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-13 (-570) (-149))) (-5 *1 (-1184 *4)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-570) (-149))) (-5 *1 (-1184 *3)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-570) (-149))) (-5 *1 (-1184 *3)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-570) (-149))) (-5 *1 (-1184 *3))))) +(-10 -7 (-15 -2478 ((-1188 |#1|) (-1188 |#1|))) (-15 -1689 ((-1188 |#1|) (-1188 |#1|))) (-15 -1591 ((-1188 |#1|) (-1188 |#1|))) (-15 -3900 ((-1188 |#1|) (-1188 |#1|) (-578) (-578)))) +((-3703 (((-1188 |#1|) (-1188 (-1188 |#1|))) 15 T ELT))) +(((-1185 |#1|) (-10 -7 (-15 -3703 ((-1188 |#1|) (-1188 (-1188 |#1|))))) (-1248)) (T -1185)) +((-3703 (*1 *2 *3) (-12 (-5 *3 (-1188 (-1188 *4))) (-5 *2 (-1188 *4)) (-5 *1 (-1185 *4)) (-4 *4 (-1248))))) +(-10 -7 (-15 -3703 ((-1188 |#1|) (-1188 (-1188 |#1|))))) +((-4315 (((-1188 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1188 |#1|)) 25 T ELT)) (-2512 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1188 |#1|)) 26 T ELT)) (-3611 (((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|)) 16 T ELT))) +(((-1186 |#1| |#2|) (-10 -7 (-15 -3611 ((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|))) (-15 -4315 ((-1188 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1188 |#1|))) (-15 -2512 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1188 |#1|)))) (-1248) (-1248)) (T -1186)) +((-2512 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1188 *5)) (-4 *5 (-1248)) (-4 *2 (-1248)) (-5 *1 (-1186 *5 *2)))) (-4315 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1188 *6)) (-4 *6 (-1248)) (-4 *3 (-1248)) (-5 *2 (-1188 *3)) (-5 *1 (-1186 *6 *3)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1188 *6)) (-5 *1 (-1186 *5 *6))))) +(-10 -7 (-15 -3611 ((-1188 |#2|) (-1 |#2| |#1|) (-1188 |#1|))) (-15 -4315 ((-1188 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1188 |#1|))) (-15 -2512 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1188 |#1|)))) +((-3611 (((-1188 |#3|) (-1 |#3| |#1| |#2|) (-1188 |#1|) (-1188 |#2|)) 21 T ELT))) +(((-1187 |#1| |#2| |#3|) (-10 -7 (-15 -3611 ((-1188 |#3|) (-1 |#3| |#1| |#2|) (-1188 |#1|) (-1188 |#2|)))) (-1248) (-1248) (-1248)) (T -1187)) +((-3611 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1188 *6)) (-5 *5 (-1188 *7)) (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-1188 *8)) (-5 *1 (-1187 *6 *7 *8))))) +(-10 -7 (-15 -3611 ((-1188 |#3|) (-1 |#3| |#1| |#2|) (-1188 |#1|) (-1188 |#2|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) NIL T ELT)) (-3933 ((|#1| $) NIL T ELT)) (-3841 (($ $) 67 T ELT)) (-1794 (((-1303) $ (-578) (-578)) 99 (|has| $ (-6 -4501)) ELT)) (-3919 (($ $ (-578)) 128 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2510 (((-886) $) 56 (|has| |#1| (-1131)) ELT)) (-4277 (((-112)) 55 (|has| |#1| (-1131)) ELT)) (-4227 ((|#1| $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 115 (|has| $ (-6 -4501)) ELT) (($ $ (-578) $) 141 T ELT)) (-2466 ((|#1| $ |#1|) 125 (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) 120 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) 124 (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 112 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-578) |#1|) 77 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 80 T ELT)) (-3920 ((|#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2182 (($ $) 14 T ELT)) (-4198 (($ $) 40 T ELT) (($ $ (-793)) 111 T ELT)) (-2174 (((-112) (-666 |#1|) $) 134 (|has| |#1| (-1131)) ELT)) (-2626 (($ (-666 |#1|)) 130 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) 79 T ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-2149 (((-112) $) NIL T ELT)) (-2729 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2143 (((-1303) (-578) $) 140 (|has| |#1| (-1131)) ELT)) (-1522 (((-793) $) 137 T ELT)) (-3528 (((-666 $) $) NIL T ELT)) (-2989 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 85 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 89 T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-1504 (((-666 |#1|) $) NIL T ELT)) (-3821 (((-112) $) NIL T ELT)) (-3172 (($ $) 113 T ELT)) (-2652 (((-112) $) 13 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4273 (($ $ $ (-578)) NIL T ELT) (($ |#1| $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) 96 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4169 (($ (-1 |#1|)) 143 T ELT) (($ (-1 |#1| |#1|) |#1|) 144 T ELT)) (-2570 ((|#1| $) 10 T ELT)) (-4189 ((|#1| $) 39 T ELT) (($ $ (-793)) 65 T ELT)) (-2327 (((-2 (|:| |cycle?| (-112)) (|:| -4082 (-793)) (|:| |period| (-793))) (-793) $) 34 T ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4211 (($ (-1 (-112) |#1|) $) 145 T ELT)) (-4222 (($ (-1 (-112) |#1|) $) 146 T ELT)) (-4291 (($ $ |#1|) 90 (|has| $ (-6 -4501)) ELT)) (-2704 (($ $ (-578)) 45 T ELT)) (-1583 (((-112) $) 94 T ELT)) (-4311 (((-112) $) 12 T ELT)) (-1909 (((-112) $) 136 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 30 T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) 20 T ELT)) (-1696 (($) 60 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT) ((|#1| $ (-578)) 75 T ELT) ((|#1| $ (-578) |#1|) NIL T ELT)) (-1842 (((-578) $ $) 64 T ELT)) (-1705 (($ $ (-1265 (-578))) NIL T ELT) (($ $ (-578)) NIL T ELT)) (-2034 (($ (-1 $)) 63 T ELT)) (-1368 (((-112) $) 91 T ELT)) (-4076 (($ $) 92 T ELT)) (-4436 (($ $) 116 (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) NIL T ELT)) (-3931 (($ $) NIL T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 59 T ELT)) (-3343 (((-550) $) NIL (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 73 T ELT)) (-1798 (($ |#1| $) 114 T ELT)) (-3342 (($ $ $) 118 (|has| $ (-6 -4501)) ELT) (($ $ |#1|) 119 (|has| $ (-6 -4501)) ELT)) (-3703 (($ $ $) 101 T ELT) (($ |#1| $) 61 T ELT) (($ (-666 $)) 106 T ELT) (($ $ |#1|) 100 T ELT)) (-2117 (($ $) 66 T ELT)) (-2411 (($ (-666 |#1|)) 129 T ELT) (((-886) $) 57 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) NIL T ELT)) (-1849 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 132 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1188 |#1|) (-13 (-696 |#1|) (-635 (-666 |#1|)) (-10 -8 (-6 -4501) (-15 -2626 ($ (-666 |#1|))) (IF (|has| |#1| (-1131)) (-15 -2174 ((-112) (-666 |#1|) $)) |%noBranch|) (-15 -2327 ((-2 (|:| |cycle?| (-112)) (|:| -4082 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -2034 ($ (-1 $))) (-15 -1798 ($ |#1| $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -2143 ((-1303) (-578) $)) (-15 -2510 ((-886) $)) (-15 -4277 ((-112)))) |%noBranch|) (-15 -2509 ($ $ (-578) $)) (-15 -4169 ($ (-1 |#1|))) (-15 -4169 ($ (-1 |#1| |#1|) |#1|)) (-15 -4211 ($ (-1 (-112) |#1|) $)) (-15 -4222 ($ (-1 (-112) |#1|) $)))) (-1248)) (T -1188)) +((-2626 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3)))) (-2174 (*1 *2 *3 *1) (-12 (-5 *3 (-666 *4)) (-4 *4 (-1131)) (-4 *4 (-1248)) (-5 *2 (-112)) (-5 *1 (-1188 *4)))) (-2327 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4082 (-793)) (|:| |period| (-793)))) (-5 *1 (-1188 *4)) (-4 *4 (-1248)) (-5 *3 (-793)))) (-2034 (*1 *1 *2) (-12 (-5 *2 (-1 (-1188 *3))) (-5 *1 (-1188 *3)) (-4 *3 (-1248)))) (-1798 (*1 *1 *2 *1) (-12 (-5 *1 (-1188 *2)) (-4 *2 (-1248)))) (-2143 (*1 *2 *3 *1) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1188 *4)) (-4 *4 (-1131)) (-4 *4 (-1248)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1188 *3)) (-4 *3 (-1131)) (-4 *3 (-1248)))) (-4277 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1188 *3)) (-4 *3 (-1131)) (-4 *3 (-1248)))) (-2509 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1188 *3)) (-4 *3 (-1248)))) (-4169 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3)))) (-4169 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3)))) (-4211 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3)))) (-4222 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3))))) +(-13 (-696 |#1|) (-635 (-666 |#1|)) (-10 -8 (-6 -4501) (-15 -2626 ($ (-666 |#1|))) (IF (|has| |#1| (-1131)) (-15 -2174 ((-112) (-666 |#1|) $)) |%noBranch|) (-15 -2327 ((-2 (|:| |cycle?| (-112)) (|:| -4082 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -2034 ($ (-1 $))) (-15 -1798 ($ |#1| $)) (IF (|has| |#1| (-1131)) (PROGN (-15 -2143 ((-1303) (-578) $)) (-15 -2510 ((-886) $)) (-15 -4277 ((-112)))) |%noBranch|) (-15 -2509 ($ $ (-578) $)) (-15 -4169 ($ (-1 |#1|))) (-15 -4169 ($ (-1 |#1| |#1|) |#1|)) (-15 -4211 ($ (-1 (-112) |#1|) $)) (-15 -4222 ($ (-1 (-112) |#1|) $)))) +((-3213 (((-112) $ $) NIL (|has| (-146) (-102)) ELT)) (-3482 (($ $) NIL T ELT)) (-2959 (($ $) NIL T ELT)) (-1477 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3591 (((-112) $ $) NIL T ELT)) (-3566 (((-112) $ $ (-578)) NIL T ELT)) (-1966 (($ (-578)) 8 T ELT) (($ (-229)) 10 T ELT)) (-3427 (((-666 $) $ (-146)) NIL T ELT) (((-666 $) $ (-143)) NIL T ELT)) (-2442 (((-112) (-1 (-112) (-146) (-146)) $) NIL T ELT) (((-112) $) NIL (|has| (-146) (-871)) ELT)) (-4101 (($ (-1 (-112) (-146) (-146)) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| (-146) (-871))) ELT)) (-2042 (($ (-1 (-112) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 (((-146) $ (-578) (-146)) NIL (|has| $ (-6 -4501)) ELT) (((-146) $ (-1265 (-578)) (-146)) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-2448 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-1383 (($ $ (-1265 (-578)) $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-2737 (($ (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT) (($ (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4500)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 (((-146) $ (-578) (-146)) NIL (|has| $ (-6 -4501)) ELT)) (-3382 (((-146) $ (-578)) NIL T ELT)) (-3615 (((-112) $ $) NIL T ELT)) (-3887 (((-578) (-1 (-112) (-146)) $) NIL T ELT) (((-578) (-146) $) NIL (|has| (-146) (-1131)) ELT) (((-578) (-146) $ (-578)) NIL (|has| (-146) (-1131)) ELT) (((-578) $ $ (-578)) NIL T ELT) (((-578) (-143) $ (-578)) NIL T ELT)) (-2729 (((-666 (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3749 (($ (-793) (-146)) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3176 (($ (-1 (-112) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-1441 (((-666 (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-2316 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-4037 (((-112) $ $ (-146)) NIL T ELT)) (-4464 (((-793) $ $ (-146)) NIL T ELT)) (-3439 (($ (-1 (-146) (-146)) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3054 (($ $) NIL T ELT)) (-2283 (($ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2458 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2617 (((-1189) $) NIL (|has| (-146) (-1131)) ELT)) (-4273 (($ (-146) $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| (-146) (-1131)) ELT)) (-4189 (((-146) $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 (-146) "failed") (-1 (-112) (-146)) $) NIL T ELT)) (-4291 (($ $ (-146)) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-306 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT) (($ $ (-666 (-146)) (-666 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-4322 (((-666 (-146)) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 (((-146) $ (-578) (-146)) NIL T ELT) (((-146) $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT) (($ $ $) NIL T ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-146) (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-146) (-633 (-550))) ELT)) (-2423 (($ (-666 (-146))) NIL T ELT)) (-3703 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (($ (-146)) NIL T ELT) (((-886) $) NIL (|has| (-146) (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| (-146) (-102)) ELT)) (-3673 (((-112) (-1 (-112) (-146)) $) NIL (|has| $ (-6 -4500)) ELT)) (-3859 (((-1189) $) 21 T ELT) (((-1189) $ (-112)) 23 T ELT) (((-1303) (-844) $) 24 T ELT) (((-1303) (-844) $ (-112)) 25 T ELT)) (-2441 (((-112) $ $) NIL (|has| (-146) (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| (-146) (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| (-146) (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| (-146) (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| (-146) (-871)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1189) (-13 (-1175) (-850) (-10 -8 (-15 -1966 ($ (-578))) (-15 -1966 ($ (-229)))))) (T -1189)) +((-1966 (*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1189)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189))))) +(-13 (-1175) (-850) (-10 -8 (-15 -1966 ($ (-578))) (-15 -1966 ($ (-229))))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT)) (-1794 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-1189) |#1|) NIL T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#1| "failed") (-1189) $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#1| "failed") (-1189) $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-1189)) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131)) (|has| |#1| (-1131))) ELT)) (-3244 (((-666 (-1189)) $) NIL T ELT)) (-4300 (((-112) (-1189) $) NIL T ELT)) (-2743 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL T ELT)) (-4030 (((-666 (-1189)) $) NIL T ELT)) (-3023 (((-112) (-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131)) (|has| |#1| (-1131))) ELT)) (-4189 ((|#1| $) NIL (|has| (-1189) (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) "failed") (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL (-12 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-321 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-1189)) NIL T ELT) ((|#1| $ (-1189) |#1|) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-1131))) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-632 (-886))) (|has| |#1| (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 (-1189)) (|:| -2754 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1190 |#1|) (-13 (-1224 (-1189) |#1|) (-10 -7 (-6 -4500))) (-1131)) (T -1190)) +NIL +(-13 (-1224 (-1189) |#1|) (-10 -7 (-6 -4500))) +((-2328 (((-1188 |#1|) (-1188 |#1|)) 83 T ELT)) (-3493 (((-3 (-1188 |#1|) "failed") (-1188 |#1|)) 39 T ELT)) (-1873 (((-1188 |#1|) (-421 (-578)) (-1188 |#1|)) 133 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2666 (((-1188 |#1|) |#1| (-1188 |#1|)) 139 (|has| |#1| (-376)) ELT)) (-2835 (((-1188 |#1|) (-1188 |#1|)) 97 T ELT)) (-1706 (((-1188 (-578)) (-578)) 63 T ELT)) (-4173 (((-1188 |#1|) (-1188 (-1188 |#1|))) 116 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2450 (((-1188 |#1|) (-578) (-578) (-1188 |#1|)) 102 T ELT)) (-1476 (((-1188 |#1|) |#1| (-578)) 51 T ELT)) (-1500 (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 66 T ELT)) (-3813 (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 136 (|has| |#1| (-376)) ELT)) (-3571 (((-1188 |#1|) |#1| (-1 (-1188 |#1|))) 115 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2907 (((-1188 |#1|) (-1 |#1| (-578)) |#1| (-1 (-1188 |#1|))) 137 (|has| |#1| (-376)) ELT)) (-1617 (((-1188 |#1|) (-1188 |#1|)) 96 T ELT)) (-1804 (((-1188 |#1|) (-1188 |#1|)) 82 T ELT)) (-4341 (((-1188 |#1|) (-578) (-578) (-1188 |#1|)) 103 T ELT)) (-4371 (((-1188 |#1|) |#1| (-1188 |#1|)) 112 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3871 (((-1188 (-578)) (-578)) 62 T ELT)) (-3625 (((-1188 |#1|) |#1|) 65 T ELT)) (-2120 (((-1188 |#1|) (-1188 |#1|) (-578) (-578)) 99 T ELT)) (-3331 (((-1188 |#1|) (-1 |#1| (-578)) (-1188 |#1|)) 72 T ELT)) (-3202 (((-3 (-1188 |#1|) "failed") (-1188 |#1|) (-1188 |#1|)) 37 T ELT)) (-2100 (((-1188 |#1|) (-1188 |#1|)) 98 T ELT)) (-3364 (((-1188 |#1|) (-1188 |#1|) |#1|) 77 T ELT)) (-4019 (((-1188 |#1|) (-1188 |#1|)) 68 T ELT)) (-2954 (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 78 T ELT)) (-2411 (((-1188 |#1|) |#1|) 73 T ELT)) (-3738 (((-1188 |#1|) (-1188 (-1188 |#1|))) 88 T ELT)) (-2495 (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 38 T ELT)) (-2484 (((-1188 |#1|) (-1188 |#1|)) 21 T ELT) (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 23 T ELT)) (-2472 (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 17 T ELT)) (* (((-1188 |#1|) (-1188 |#1|) |#1|) 29 T ELT) (((-1188 |#1|) |#1| (-1188 |#1|)) 26 T ELT) (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 27 T ELT))) +(((-1191 |#1|) (-10 -7 (-15 -2472 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2484 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2484 ((-1188 |#1|) (-1188 |#1|))) (-15 * ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 * ((-1188 |#1|) |#1| (-1188 |#1|))) (-15 * ((-1188 |#1|) (-1188 |#1|) |#1|)) (-15 -3202 ((-3 (-1188 |#1|) "failed") (-1188 |#1|) (-1188 |#1|))) (-15 -2495 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -3493 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -1476 ((-1188 |#1|) |#1| (-578))) (-15 -3871 ((-1188 (-578)) (-578))) (-15 -1706 ((-1188 (-578)) (-578))) (-15 -3625 ((-1188 |#1|) |#1|)) (-15 -1500 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -4019 ((-1188 |#1|) (-1188 |#1|))) (-15 -3331 ((-1188 |#1|) (-1 |#1| (-578)) (-1188 |#1|))) (-15 -2411 ((-1188 |#1|) |#1|)) (-15 -3364 ((-1188 |#1|) (-1188 |#1|) |#1|)) (-15 -2954 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -1804 ((-1188 |#1|) (-1188 |#1|))) (-15 -2328 ((-1188 |#1|) (-1188 |#1|))) (-15 -3738 ((-1188 |#1|) (-1188 (-1188 |#1|)))) (-15 -1617 ((-1188 |#1|) (-1188 |#1|))) (-15 -2835 ((-1188 |#1|) (-1188 |#1|))) (-15 -2100 ((-1188 |#1|) (-1188 |#1|))) (-15 -2120 ((-1188 |#1|) (-1188 |#1|) (-578) (-578))) (-15 -2450 ((-1188 |#1|) (-578) (-578) (-1188 |#1|))) (-15 -4341 ((-1188 |#1|) (-578) (-578) (-1188 |#1|))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ((-1188 |#1|) |#1| (-1188 |#1|))) (-15 -3571 ((-1188 |#1|) |#1| (-1 (-1188 |#1|)))) (-15 -4173 ((-1188 |#1|) (-1188 (-1188 |#1|)))) (-15 -1873 ((-1188 |#1|) (-421 (-578)) (-1188 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3813 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2907 ((-1188 |#1|) (-1 |#1| (-578)) |#1| (-1 (-1188 |#1|)))) (-15 -2666 ((-1188 |#1|) |#1| (-1188 |#1|)))) |%noBranch|)) (-1080)) (T -1191)) +((-2666 (*1 *2 *3 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-578))) (-5 *5 (-1 (-1188 *4))) (-4 *4 (-376)) (-4 *4 (-1080)) (-5 *2 (-1188 *4)) (-5 *1 (-1191 *4)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-1188 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1080)) (-5 *3 (-421 (-578))) (-5 *1 (-1191 *4)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-1188 (-1188 *4))) (-5 *2 (-1188 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-38 (-421 (-578)))) (-4 *4 (-1080)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1188 *3))) (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)))) (-4371 (*1 *2 *3 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-4341 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-2450 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-2120 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2835 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-1188 (-1188 *4))) (-5 *2 (-1188 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-1080)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1804 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2954 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-3331 (*1 *2 *3 *2) (-12 (-5 *2 (-1188 *4)) (-5 *3 (-1 *4 (-578))) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1500 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3625 (*1 *2 *3) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-1706 (*1 *2 *3) (-12 (-5 *2 (-1188 (-578))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) (-5 *3 (-578)))) (-3871 (*1 *2 *3) (-12 (-5 *2 (-1188 (-578))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) (-5 *3 (-578)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *4 (-578)) (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-3493 (*1 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2495 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3202 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2484 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2472 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))) +(-10 -7 (-15 -2472 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2484 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2484 ((-1188 |#1|) (-1188 |#1|))) (-15 * ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 * ((-1188 |#1|) |#1| (-1188 |#1|))) (-15 * ((-1188 |#1|) (-1188 |#1|) |#1|)) (-15 -3202 ((-3 (-1188 |#1|) "failed") (-1188 |#1|) (-1188 |#1|))) (-15 -2495 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -3493 ((-3 (-1188 |#1|) "failed") (-1188 |#1|))) (-15 -1476 ((-1188 |#1|) |#1| (-578))) (-15 -3871 ((-1188 (-578)) (-578))) (-15 -1706 ((-1188 (-578)) (-578))) (-15 -3625 ((-1188 |#1|) |#1|)) (-15 -1500 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -4019 ((-1188 |#1|) (-1188 |#1|))) (-15 -3331 ((-1188 |#1|) (-1 |#1| (-578)) (-1188 |#1|))) (-15 -2411 ((-1188 |#1|) |#1|)) (-15 -3364 ((-1188 |#1|) (-1188 |#1|) |#1|)) (-15 -2954 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -1804 ((-1188 |#1|) (-1188 |#1|))) (-15 -2328 ((-1188 |#1|) (-1188 |#1|))) (-15 -3738 ((-1188 |#1|) (-1188 (-1188 |#1|)))) (-15 -1617 ((-1188 |#1|) (-1188 |#1|))) (-15 -2835 ((-1188 |#1|) (-1188 |#1|))) (-15 -2100 ((-1188 |#1|) (-1188 |#1|))) (-15 -2120 ((-1188 |#1|) (-1188 |#1|) (-578) (-578))) (-15 -2450 ((-1188 |#1|) (-578) (-578) (-1188 |#1|))) (-15 -4341 ((-1188 |#1|) (-578) (-578) (-1188 |#1|))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ((-1188 |#1|) |#1| (-1188 |#1|))) (-15 -3571 ((-1188 |#1|) |#1| (-1 (-1188 |#1|)))) (-15 -4173 ((-1188 |#1|) (-1188 (-1188 |#1|)))) (-15 -1873 ((-1188 |#1|) (-421 (-578)) (-1188 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3813 ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2907 ((-1188 |#1|) (-1 |#1| (-578)) |#1| (-1 (-1188 |#1|)))) (-15 -2666 ((-1188 |#1|) |#1| (-1188 |#1|)))) |%noBranch|)) +((-1502 (((-1188 |#1|) (-1188 |#1|)) 60 T ELT)) (-1372 (((-1188 |#1|) (-1188 |#1|)) 42 T ELT)) (-1478 (((-1188 |#1|) (-1188 |#1|)) 56 T ELT)) (-1349 (((-1188 |#1|) (-1188 |#1|)) 38 T ELT)) (-1528 (((-1188 |#1|) (-1188 |#1|)) 63 T ELT)) (-1392 (((-1188 |#1|) (-1188 |#1|)) 45 T ELT)) (-3864 (((-1188 |#1|) (-1188 |#1|)) 34 T ELT)) (-3587 (((-1188 |#1|) (-1188 |#1|)) 29 T ELT)) (-1541 (((-1188 |#1|) (-1188 |#1|)) 64 T ELT)) (-1403 (((-1188 |#1|) (-1188 |#1|)) 46 T ELT)) (-1515 (((-1188 |#1|) (-1188 |#1|)) 61 T ELT)) (-1382 (((-1188 |#1|) (-1188 |#1|)) 43 T ELT)) (-1489 (((-1188 |#1|) (-1188 |#1|)) 58 T ELT)) (-1361 (((-1188 |#1|) (-1188 |#1|)) 40 T ELT)) (-1576 (((-1188 |#1|) (-1188 |#1|)) 68 T ELT)) (-1436 (((-1188 |#1|) (-1188 |#1|)) 50 T ELT)) (-1552 (((-1188 |#1|) (-1188 |#1|)) 66 T ELT)) (-1414 (((-1188 |#1|) (-1188 |#1|)) 48 T ELT)) (-1598 (((-1188 |#1|) (-1188 |#1|)) 71 T ELT)) (-1456 (((-1188 |#1|) (-1188 |#1|)) 53 T ELT)) (-3502 (((-1188 |#1|) (-1188 |#1|)) 72 T ELT)) (-1467 (((-1188 |#1|) (-1188 |#1|)) 54 T ELT)) (-1587 (((-1188 |#1|) (-1188 |#1|)) 70 T ELT)) (-1447 (((-1188 |#1|) (-1188 |#1|)) 52 T ELT)) (-1564 (((-1188 |#1|) (-1188 |#1|)) 69 T ELT)) (-1424 (((-1188 |#1|) (-1188 |#1|)) 51 T ELT)) (** (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 36 T ELT))) +(((-1192 |#1|) (-10 -7 (-15 -3587 ((-1188 |#1|) (-1188 |#1|))) (-15 -3864 ((-1188 |#1|) (-1188 |#1|))) (-15 ** ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -1349 ((-1188 |#1|) (-1188 |#1|))) (-15 -1361 ((-1188 |#1|) (-1188 |#1|))) (-15 -1372 ((-1188 |#1|) (-1188 |#1|))) (-15 -1382 ((-1188 |#1|) (-1188 |#1|))) (-15 -1392 ((-1188 |#1|) (-1188 |#1|))) (-15 -1403 ((-1188 |#1|) (-1188 |#1|))) (-15 -1414 ((-1188 |#1|) (-1188 |#1|))) (-15 -1424 ((-1188 |#1|) (-1188 |#1|))) (-15 -1436 ((-1188 |#1|) (-1188 |#1|))) (-15 -1447 ((-1188 |#1|) (-1188 |#1|))) (-15 -1456 ((-1188 |#1|) (-1188 |#1|))) (-15 -1467 ((-1188 |#1|) (-1188 |#1|))) (-15 -1478 ((-1188 |#1|) (-1188 |#1|))) (-15 -1489 ((-1188 |#1|) (-1188 |#1|))) (-15 -1502 ((-1188 |#1|) (-1188 |#1|))) (-15 -1515 ((-1188 |#1|) (-1188 |#1|))) (-15 -1528 ((-1188 |#1|) (-1188 |#1|))) (-15 -1541 ((-1188 |#1|) (-1188 |#1|))) (-15 -1552 ((-1188 |#1|) (-1188 |#1|))) (-15 -1564 ((-1188 |#1|) (-1188 |#1|))) (-15 -1576 ((-1188 |#1|) (-1188 |#1|))) (-15 -1587 ((-1188 |#1|) (-1188 |#1|))) (-15 -1598 ((-1188 |#1|) (-1188 |#1|))) (-15 -3502 ((-1188 |#1|) (-1188 |#1|)))) (-38 (-421 (-578)))) (T -1192)) +((-3502 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1598 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1541 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1528 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1414 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1372 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1361 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3))))) +(-10 -7 (-15 -3587 ((-1188 |#1|) (-1188 |#1|))) (-15 -3864 ((-1188 |#1|) (-1188 |#1|))) (-15 ** ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -1349 ((-1188 |#1|) (-1188 |#1|))) (-15 -1361 ((-1188 |#1|) (-1188 |#1|))) (-15 -1372 ((-1188 |#1|) (-1188 |#1|))) (-15 -1382 ((-1188 |#1|) (-1188 |#1|))) (-15 -1392 ((-1188 |#1|) (-1188 |#1|))) (-15 -1403 ((-1188 |#1|) (-1188 |#1|))) (-15 -1414 ((-1188 |#1|) (-1188 |#1|))) (-15 -1424 ((-1188 |#1|) (-1188 |#1|))) (-15 -1436 ((-1188 |#1|) (-1188 |#1|))) (-15 -1447 ((-1188 |#1|) (-1188 |#1|))) (-15 -1456 ((-1188 |#1|) (-1188 |#1|))) (-15 -1467 ((-1188 |#1|) (-1188 |#1|))) (-15 -1478 ((-1188 |#1|) (-1188 |#1|))) (-15 -1489 ((-1188 |#1|) (-1188 |#1|))) (-15 -1502 ((-1188 |#1|) (-1188 |#1|))) (-15 -1515 ((-1188 |#1|) (-1188 |#1|))) (-15 -1528 ((-1188 |#1|) (-1188 |#1|))) (-15 -1541 ((-1188 |#1|) (-1188 |#1|))) (-15 -1552 ((-1188 |#1|) (-1188 |#1|))) (-15 -1564 ((-1188 |#1|) (-1188 |#1|))) (-15 -1576 ((-1188 |#1|) (-1188 |#1|))) (-15 -1587 ((-1188 |#1|) (-1188 |#1|))) (-15 -1598 ((-1188 |#1|) (-1188 |#1|))) (-15 -3502 ((-1188 |#1|) (-1188 |#1|)))) +((-1502 (((-1188 |#1|) (-1188 |#1|)) 102 T ELT)) (-1372 (((-1188 |#1|) (-1188 |#1|)) 61 T ELT)) (-4165 (((-2 (|:| -1478 (-1188 |#1|)) (|:| -1489 (-1188 |#1|))) (-1188 |#1|)) 98 T ELT)) (-1478 (((-1188 |#1|) (-1188 |#1|)) 99 T ELT)) (-2584 (((-2 (|:| -1349 (-1188 |#1|)) (|:| -1361 (-1188 |#1|))) (-1188 |#1|)) 54 T ELT)) (-1349 (((-1188 |#1|) (-1188 |#1|)) 55 T ELT)) (-1528 (((-1188 |#1|) (-1188 |#1|)) 104 T ELT)) (-1392 (((-1188 |#1|) (-1188 |#1|)) 68 T ELT)) (-3864 (((-1188 |#1|) (-1188 |#1|)) 40 T ELT)) (-3587 (((-1188 |#1|) (-1188 |#1|)) 37 T ELT)) (-1541 (((-1188 |#1|) (-1188 |#1|)) 105 T ELT)) (-1403 (((-1188 |#1|) (-1188 |#1|)) 69 T ELT)) (-1515 (((-1188 |#1|) (-1188 |#1|)) 103 T ELT)) (-1382 (((-1188 |#1|) (-1188 |#1|)) 64 T ELT)) (-1489 (((-1188 |#1|) (-1188 |#1|)) 100 T ELT)) (-1361 (((-1188 |#1|) (-1188 |#1|)) 56 T ELT)) (-1576 (((-1188 |#1|) (-1188 |#1|)) 113 T ELT)) (-1436 (((-1188 |#1|) (-1188 |#1|)) 88 T ELT)) (-1552 (((-1188 |#1|) (-1188 |#1|)) 107 T ELT)) (-1414 (((-1188 |#1|) (-1188 |#1|)) 84 T ELT)) (-1598 (((-1188 |#1|) (-1188 |#1|)) 117 T ELT)) (-1456 (((-1188 |#1|) (-1188 |#1|)) 92 T ELT)) (-3502 (((-1188 |#1|) (-1188 |#1|)) 119 T ELT)) (-1467 (((-1188 |#1|) (-1188 |#1|)) 94 T ELT)) (-1587 (((-1188 |#1|) (-1188 |#1|)) 115 T ELT)) (-1447 (((-1188 |#1|) (-1188 |#1|)) 90 T ELT)) (-1564 (((-1188 |#1|) (-1188 |#1|)) 109 T ELT)) (-1424 (((-1188 |#1|) (-1188 |#1|)) 86 T ELT)) (** (((-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) 41 T ELT))) +(((-1193 |#1|) (-10 -7 (-15 -3587 ((-1188 |#1|) (-1188 |#1|))) (-15 -3864 ((-1188 |#1|) (-1188 |#1|))) (-15 ** ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2584 ((-2 (|:| -1349 (-1188 |#1|)) (|:| -1361 (-1188 |#1|))) (-1188 |#1|))) (-15 -1349 ((-1188 |#1|) (-1188 |#1|))) (-15 -1361 ((-1188 |#1|) (-1188 |#1|))) (-15 -1372 ((-1188 |#1|) (-1188 |#1|))) (-15 -1382 ((-1188 |#1|) (-1188 |#1|))) (-15 -1392 ((-1188 |#1|) (-1188 |#1|))) (-15 -1403 ((-1188 |#1|) (-1188 |#1|))) (-15 -1414 ((-1188 |#1|) (-1188 |#1|))) (-15 -1424 ((-1188 |#1|) (-1188 |#1|))) (-15 -1436 ((-1188 |#1|) (-1188 |#1|))) (-15 -1447 ((-1188 |#1|) (-1188 |#1|))) (-15 -1456 ((-1188 |#1|) (-1188 |#1|))) (-15 -1467 ((-1188 |#1|) (-1188 |#1|))) (-15 -4165 ((-2 (|:| -1478 (-1188 |#1|)) (|:| -1489 (-1188 |#1|))) (-1188 |#1|))) (-15 -1478 ((-1188 |#1|) (-1188 |#1|))) (-15 -1489 ((-1188 |#1|) (-1188 |#1|))) (-15 -1502 ((-1188 |#1|) (-1188 |#1|))) (-15 -1515 ((-1188 |#1|) (-1188 |#1|))) (-15 -1528 ((-1188 |#1|) (-1188 |#1|))) (-15 -1541 ((-1188 |#1|) (-1188 |#1|))) (-15 -1552 ((-1188 |#1|) (-1188 |#1|))) (-15 -1564 ((-1188 |#1|) (-1188 |#1|))) (-15 -1576 ((-1188 |#1|) (-1188 |#1|))) (-15 -1587 ((-1188 |#1|) (-1188 |#1|))) (-15 -1598 ((-1188 |#1|) (-1188 |#1|))) (-15 -3502 ((-1188 |#1|) (-1188 |#1|)))) (-38 (-421 (-578)))) (T -1193)) +((-3502 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1598 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1541 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1528 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1515 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-4165 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-578)))) (-5 *2 (-2 (|:| -1478 (-1188 *4)) (|:| -1489 (-1188 *4)))) (-5 *1 (-1193 *4)) (-5 *3 (-1188 *4)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1447 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1414 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1372 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1361 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-2584 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-578)))) (-5 *2 (-2 (|:| -1349 (-1188 *4)) (|:| -1361 (-1188 *4)))) (-5 *1 (-1193 *4)) (-5 *3 (-1188 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1193 *3))))) +(-10 -7 (-15 -3587 ((-1188 |#1|) (-1188 |#1|))) (-15 -3864 ((-1188 |#1|) (-1188 |#1|))) (-15 ** ((-1188 |#1|) (-1188 |#1|) (-1188 |#1|))) (-15 -2584 ((-2 (|:| -1349 (-1188 |#1|)) (|:| -1361 (-1188 |#1|))) (-1188 |#1|))) (-15 -1349 ((-1188 |#1|) (-1188 |#1|))) (-15 -1361 ((-1188 |#1|) (-1188 |#1|))) (-15 -1372 ((-1188 |#1|) (-1188 |#1|))) (-15 -1382 ((-1188 |#1|) (-1188 |#1|))) (-15 -1392 ((-1188 |#1|) (-1188 |#1|))) (-15 -1403 ((-1188 |#1|) (-1188 |#1|))) (-15 -1414 ((-1188 |#1|) (-1188 |#1|))) (-15 -1424 ((-1188 |#1|) (-1188 |#1|))) (-15 -1436 ((-1188 |#1|) (-1188 |#1|))) (-15 -1447 ((-1188 |#1|) (-1188 |#1|))) (-15 -1456 ((-1188 |#1|) (-1188 |#1|))) (-15 -1467 ((-1188 |#1|) (-1188 |#1|))) (-15 -4165 ((-2 (|:| -1478 (-1188 |#1|)) (|:| -1489 (-1188 |#1|))) (-1188 |#1|))) (-15 -1478 ((-1188 |#1|) (-1188 |#1|))) (-15 -1489 ((-1188 |#1|) (-1188 |#1|))) (-15 -1502 ((-1188 |#1|) (-1188 |#1|))) (-15 -1515 ((-1188 |#1|) (-1188 |#1|))) (-15 -1528 ((-1188 |#1|) (-1188 |#1|))) (-15 -1541 ((-1188 |#1|) (-1188 |#1|))) (-15 -1552 ((-1188 |#1|) (-1188 |#1|))) (-15 -1564 ((-1188 |#1|) (-1188 |#1|))) (-15 -1576 ((-1188 |#1|) (-1188 |#1|))) (-15 -1587 ((-1188 |#1|) (-1188 |#1|))) (-15 -1598 ((-1188 |#1|) (-1188 |#1|))) (-15 -3502 ((-1188 |#1|) (-1188 |#1|)))) +((-3815 (((-987 |#2|) |#2| |#2|) 50 T ELT)) (-2111 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT))) +(((-1194 |#1| |#2|) (-10 -7 (-15 -3815 ((-987 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -2111 (|#2| |#2| |#1|)) |%noBranch|)) (-570) (-1274 |#1|)) (T -1194)) +((-2111 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-570)) (-5 *1 (-1194 *3 *2)) (-4 *2 (-1274 *3)))) (-3815 (*1 *2 *3 *3) (-12 (-4 *4 (-570)) (-5 *2 (-987 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -3815 ((-987 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -2111 (|#2| |#2| |#1|)) |%noBranch|)) +((-3213 (((-112) $ $) NIL T ELT)) (-2348 (($ $ (-666 (-793))) 79 T ELT)) (-4085 (($) 33 T ELT)) (-4084 (($ $) 51 T ELT)) (-4299 (((-666 $) $) 60 T ELT)) (-4344 (((-112) $) 19 T ELT)) (-2390 (((-666 (-972 |#2|)) $) 86 T ELT)) (-3440 (($ $) 80 T ELT)) (-4372 (((-793) $) 47 T ELT)) (-3749 (($) 32 T ELT)) (-2924 (($ $ (-666 (-793)) (-972 |#2|)) 72 T ELT) (($ $ (-666 (-793)) (-793)) 73 T ELT) (($ $ (-793) (-972 |#2|)) 75 T ELT)) (-3176 (($ $ $) 57 T ELT) (($ (-666 $)) 59 T ELT)) (-4113 (((-793) $) 87 T ELT)) (-3821 (((-112) $) 15 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3884 (((-112) $) 22 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2731 (((-174) $) 85 T ELT)) (-3856 (((-972 |#2|) $) 81 T ELT)) (-1692 (((-793) $) 82 T ELT)) (-2756 (((-112) $) 84 T ELT)) (-2420 (($ $ (-666 (-793)) (-174)) 78 T ELT)) (-2319 (($ $) 52 T ELT)) (-2411 (((-886) $) 99 T ELT)) (-3245 (($ $ (-666 (-793)) (-112)) 77 T ELT)) (-4435 (((-666 $) $) 11 T ELT)) (-3041 (($ $ (-793)) 46 T ELT)) (-4445 (($ $) 43 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3654 (($ $ $ (-972 |#2|) (-793)) 68 T ELT)) (-1981 (($ $ (-972 |#2|)) 67 T ELT)) (-1758 (($ $ (-666 (-793)) (-972 |#2|)) 66 T ELT) (($ $ (-666 (-793)) (-793)) 70 T ELT) (((-793) $ (-972 |#2|)) 71 T ELT)) (-2384 (((-112) $ $) 92 T ELT))) +(((-1195 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -3821 ((-112) $)) (-15 -4344 ((-112) $)) (-15 -3884 ((-112) $)) (-15 -3749 ($)) (-15 -4085 ($)) (-15 -4445 ($ $)) (-15 -3041 ($ $ (-793))) (-15 -4435 ((-666 $) $)) (-15 -4372 ((-793) $)) (-15 -4084 ($ $)) (-15 -2319 ($ $)) (-15 -3176 ($ $ $)) (-15 -3176 ($ (-666 $))) (-15 -4299 ((-666 $) $)) (-15 -1758 ($ $ (-666 (-793)) (-972 |#2|))) (-15 -1981 ($ $ (-972 |#2|))) (-15 -3654 ($ $ $ (-972 |#2|) (-793))) (-15 -2924 ($ $ (-666 (-793)) (-972 |#2|))) (-15 -1758 ($ $ (-666 (-793)) (-793))) (-15 -2924 ($ $ (-666 (-793)) (-793))) (-15 -1758 ((-793) $ (-972 |#2|))) (-15 -2924 ($ $ (-793) (-972 |#2|))) (-15 -3245 ($ $ (-666 (-793)) (-112))) (-15 -2420 ($ $ (-666 (-793)) (-174))) (-15 -2348 ($ $ (-666 (-793)))) (-15 -3856 ((-972 |#2|) $)) (-15 -1692 ((-793) $)) (-15 -2756 ((-112) $)) (-15 -2731 ((-174) $)) (-15 -4113 ((-793) $)) (-15 -3440 ($ $)) (-15 -2390 ((-666 (-972 |#2|)) $)))) (-950) (-1080)) (T -1195)) +((-3821 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-3749 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) (-4085 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) (-4445 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) (-3041 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-4435 (*1 *2 *1) (-12 (-5 *2 (-666 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-4084 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) (-2319 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) (-3176 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) (-3176 (*1 *1 *2) (-12 (-5 *2 (-666 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-4299 (*1 *2 *1) (-12 (-5 *2 (-666 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-1758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)))) (-1981 (*1 *1 *1 *2) (-12 (-5 *2 (-972 *4)) (-4 *4 (-1080)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)))) (-3654 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-972 *5)) (-5 *3 (-793)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)))) (-2924 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)))) (-1758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)) (-4 *5 (-1080)))) (-2924 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)) (-4 *5 (-1080)))) (-1758 (*1 *2 *1 *3) (-12 (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *2 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)))) (-2924 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)))) (-3245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-793))) (-5 *3 (-112)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)) (-4 *5 (-1080)))) (-2420 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-666 (-793))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)) (-4 *5 (-1080)))) (-2348 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-793))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-972 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080)))) (-3440 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-666 (-972 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) (-4 *4 (-1080))))) +(-13 (-1131) (-10 -8 (-15 -3821 ((-112) $)) (-15 -4344 ((-112) $)) (-15 -3884 ((-112) $)) (-15 -3749 ($)) (-15 -4085 ($)) (-15 -4445 ($ $)) (-15 -3041 ($ $ (-793))) (-15 -4435 ((-666 $) $)) (-15 -4372 ((-793) $)) (-15 -4084 ($ $)) (-15 -2319 ($ $)) (-15 -3176 ($ $ $)) (-15 -3176 ($ (-666 $))) (-15 -4299 ((-666 $) $)) (-15 -1758 ($ $ (-666 (-793)) (-972 |#2|))) (-15 -1981 ($ $ (-972 |#2|))) (-15 -3654 ($ $ $ (-972 |#2|) (-793))) (-15 -2924 ($ $ (-666 (-793)) (-972 |#2|))) (-15 -1758 ($ $ (-666 (-793)) (-793))) (-15 -2924 ($ $ (-666 (-793)) (-793))) (-15 -1758 ((-793) $ (-972 |#2|))) (-15 -2924 ($ $ (-793) (-972 |#2|))) (-15 -3245 ($ $ (-666 (-793)) (-112))) (-15 -2420 ($ $ (-666 (-793)) (-174))) (-15 -2348 ($ $ (-666 (-793)))) (-15 -3856 ((-972 |#2|) $)) (-15 -1692 ((-793) $)) (-15 -2756 ((-112) $)) (-15 -2731 ((-174) $)) (-15 -4113 ((-793) $)) (-15 -3440 ($ $)) (-15 -2390 ((-666 (-972 |#2|)) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3666 ((|#2| $) 11 T ELT)) (-3655 ((|#1| $) 10 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2423 (($ |#1| |#2|) 9 T ELT)) (-2411 (((-886) $) 16 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1196 |#1| |#2|) (-13 (-1131) (-10 -8 (-15 -2423 ($ |#1| |#2|)) (-15 -3655 (|#1| $)) (-15 -3666 (|#2| $)))) (-1131) (-1131)) (T -1196)) +((-2423 (*1 *1 *2 *3) (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3655 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1131)))) (-3666 (*1 *2 *1) (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1131))))) +(-13 (-1131) (-10 -8 (-15 -2423 ($ |#1| |#2|)) (-15 -3655 (|#1| $)) (-15 -3666 (|#2| $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2184 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1197) (-13 (-1114) (-10 -8 (-15 -2184 ((-1166) $))))) (T -1197)) +((-2184 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1197))))) +(-13 (-1114) (-10 -8 (-15 -2184 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 11 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-2987 (($ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-3087 (((-112) $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-2140 (($ $ (-578)) NIL T ELT) (($ $ (-578) (-578)) 75 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $) NIL T ELT)) (-1738 (((-1205 |#1| |#2| |#3|) $) 42 T ELT)) (-4251 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-3004 (((-1205 |#1| |#2| |#3|) $) 33 T ELT)) (-1502 (($ $) 116 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 92 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) 112 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 88 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1490 (((-578) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|)))) NIL T ELT)) (-1528 (($ $) 120 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 96 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 34 T ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-3 (-578) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT)) (-3516 (((-1205 |#1| |#2| |#3|) $) 140 T ELT) (((-1207) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-421 (-578)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-578) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT)) (-3178 (($ $) 37 T ELT) (($ (-578) $) 38 T ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-1205 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1298 (-1205 |#1| |#2| |#3|)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-711 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3493 (((-3 $ "failed") $) 54 T ELT)) (-3879 (((-421 (-981 |#1|)) $ (-578)) 74 (|has| |#1| (-570)) ELT) (((-421 (-981 |#1|)) $ (-578) (-578)) 76 (|has| |#1| (-570)) ELT)) (-2062 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-3789 (((-112) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-1401 (((-112) $) 28 T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-911 (-392))) (|has| |#1| (-376))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-911 (-578))) (|has| |#1| (-376))) ELT)) (-4059 (((-578) $) NIL T ELT) (((-578) $ (-578)) 26 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2519 (((-1205 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2204 (((-3 $ "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1183)) (|has| |#1| (-376))) ELT)) (-1721 (((-112) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4196 (($ $ (-950)) NIL T ELT)) (-3939 (($ (-1 |#1| (-578)) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-578)) 19 T ELT) (($ $ (-1113) (-578)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-578))) NIL T ELT)) (-1345 (($ $ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-3667 (($ $ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-3864 (($ $) 81 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3908 (((-711 (-1205 |#1| |#2| |#3|)) (-1298 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1298 (-1205 |#1| |#2| |#3|)))) (-1298 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-1298 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (($ (-578) (-1205 |#1| |#2| |#3|)) 36 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 79 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 80 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2199 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1183)) (|has| |#1| (-376))) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2055 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3575 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-578)) 158 T ELT)) (-3202 (((-3 $ "failed") $ $) 55 (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3587 (($ $) 82 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-578)))) ELT) (($ $ (-1207) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-528 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1207)) (-666 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-528 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-306 (-1205 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-306 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1205 |#1| |#2| |#3|)) (-666 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-578)) NIL T ELT) (($ $ $) 61 (|has| (-578) (-1143)) ELT) (($ $ (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-298 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 57 T ELT) (($ $) 56 (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-1363 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2530 (((-1205 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-3683 (((-578) $) 43 T ELT)) (-1541 (($ $) 122 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 98 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 118 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 94 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 114 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 90 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3343 (((-550) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-550))) (|has| |#1| (-376))) ELT) (((-392) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-376))) ELT) (((-917 (-392)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-917 (-392)))) (|has| |#1| (-376))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-917 (-578)))) (|has| |#1| (-376))) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) 162 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1205 |#1| |#2| |#3|)) 30 T ELT) (($ (-1294 |#2|)) 25 T ELT) (($ (-1207)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT) (($ (-421 (-578))) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-578))))) ELT)) (-3708 ((|#1| $ (-578)) 77 T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) 12 T ELT)) (-1585 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) 128 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 104 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-1552 (($ $) 124 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 100 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 132 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 108 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-578)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 110 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 130 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 106 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 126 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 102 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2628 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2368 (($) 21 T CONST)) (-2379 (($) 16 T CONST)) (-1676 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2441 (((-112) $ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2416 (((-112) $ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2404 (((-112) $ $) NIL (-2230 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 23 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 60 T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 137 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1205 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1198 |#1| |#2| |#3|) (-13 (-1260 |#1| (-1205 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1198)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(-13 (-1260 |#1| (-1205 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) +((-1955 ((|#2| |#2| (-1123 |#2|)) 26 T ELT) ((|#2| |#2| (-1207)) 28 T ELT))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -1955 (|#2| |#2| (-1207))) (-15 -1955 (|#2| |#2| (-1123 |#2|)))) (-13 (-570) (-1069 (-578)) (-660 (-578))) (-13 (-444 |#1|) (-162) (-27) (-1233))) (T -1199)) +((-1955 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-444 *4) (-162) (-27) (-1233))) (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1199 *4 *2)))) (-1955 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-444 *4) (-162) (-27) (-1233)))))) +(-10 -7 (-15 -1955 (|#2| |#2| (-1207))) (-15 -1955 (|#2| |#2| (-1123 |#2|)))) +((-1955 (((-3 (-421 (-981 |#1|)) (-328 |#1|)) (-421 (-981 |#1|)) (-1123 (-421 (-981 |#1|)))) 31 T ELT) (((-421 (-981 |#1|)) (-981 |#1|) (-1123 (-981 |#1|))) 44 T ELT) (((-3 (-421 (-981 |#1|)) (-328 |#1|)) (-421 (-981 |#1|)) (-1207)) 33 T ELT) (((-421 (-981 |#1|)) (-981 |#1|) (-1207)) 36 T ELT))) +(((-1200 |#1|) (-10 -7 (-15 -1955 ((-421 (-981 |#1|)) (-981 |#1|) (-1207))) (-15 -1955 ((-3 (-421 (-981 |#1|)) (-328 |#1|)) (-421 (-981 |#1|)) (-1207))) (-15 -1955 ((-421 (-981 |#1|)) (-981 |#1|) (-1123 (-981 |#1|)))) (-15 -1955 ((-3 (-421 (-981 |#1|)) (-328 |#1|)) (-421 (-981 |#1|)) (-1123 (-421 (-981 |#1|)))))) (-13 (-570) (-1069 (-578)))) (T -1200)) +((-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-421 (-981 *5)))) (-5 *3 (-421 (-981 *5))) (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-3 *3 (-328 *5))) (-5 *1 (-1200 *5)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-981 *5))) (-5 *3 (-981 *5)) (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-421 *3)) (-5 *1 (-1200 *5)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-3 (-421 (-981 *5)) (-328 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-421 (-981 *5))))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-421 (-981 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-981 *5))))) +(-10 -7 (-15 -1955 ((-421 (-981 |#1|)) (-981 |#1|) (-1207))) (-15 -1955 ((-3 (-421 (-981 |#1|)) (-328 |#1|)) (-421 (-981 |#1|)) (-1207))) (-15 -1955 ((-421 (-981 |#1|)) (-981 |#1|) (-1123 (-981 |#1|)))) (-15 -1955 ((-3 (-421 (-981 |#1|)) (-328 |#1|)) (-421 (-981 |#1|)) (-1123 (-421 (-981 |#1|)))))) +((-3611 (((-1203 |#2|) (-1 |#2| |#1|) (-1203 |#1|)) 13 T ELT))) +(((-1201 |#1| |#2|) (-10 -7 (-15 -3611 ((-1203 |#2|) (-1 |#2| |#1|) (-1203 |#1|)))) (-1080) (-1080)) (T -1201)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-1203 *6)) (-5 *1 (-1201 *5 *6))))) +(-10 -7 (-15 -3611 ((-1203 |#2|) (-1 |#2| |#1|) (-1203 |#1|)))) +((-3034 (((-432 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))) 51 T ELT)) (-2800 (((-432 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))) 52 T ELT))) +(((-1202 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-432 (-1203 (-421 |#4|))) (-1203 (-421 |#4|)))) (-15 -3034 ((-432 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))))) (-815) (-871) (-466) (-978 |#3| |#1| |#2|)) (T -1202)) +((-3034 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-432 (-1203 (-421 *7)))) (-5 *1 (-1202 *4 *5 *6 *7)) (-5 *3 (-1203 (-421 *7))))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-432 (-1203 (-421 *7)))) (-5 *1 (-1202 *4 *5 *6 *7)) (-5 *3 (-1203 (-421 *7)))))) +(-10 -7 (-15 -2800 ((-432 (-1203 (-421 |#4|))) (-1203 (-421 |#4|)))) (-15 -3034 ((-432 (-1203 (-421 |#4|))) (-1203 (-421 |#4|))))) +((-3213 (((-112) $ $) 171 T ELT)) (-3623 (((-112) $) 43 T ELT)) (-2981 (((-1298 |#1|) $ (-793)) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-1868 (($ (-1203 |#1|)) NIL T ELT)) (-4420 (((-1203 $) $ (-1113)) 82 T ELT) (((-1203 |#1|) $) 71 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) 164 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-1113))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3594 (($ $ $) 158 (|has| |#1| (-570)) ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 95 (|has| |#1| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 115 (|has| |#1| (-938)) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-3734 (($ $ (-793)) 61 T ELT)) (-3794 (($ $ (-793)) 63 T ELT)) (-4299 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3516 ((|#1| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-1113) $) NIL T ELT)) (-2035 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 160 (|has| |#1| (-175)) ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) 80 T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4467 (($ $ $) 131 T ELT)) (-4407 (($ $ $) NIL (|has| |#1| (-570)) ELT)) (-3580 (((-2 (|:| -2672 |#1|) (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-570)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2111 (($ $) 165 (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-793) $) 69 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1113) (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1113) (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-2135 (((-886) $ (-886)) 148 T ELT)) (-4059 (((-793) $ $) NIL (|has| |#1| (-570)) ELT)) (-4382 (((-112) $) 48 T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#1| (-1183)) ELT)) (-2936 (($ (-1203 |#1|) (-1113)) 73 T ELT) (($ (-1203 $) (-1113)) 89 T ELT)) (-4196 (($ $ (-793)) 51 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) 87 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 153 T ELT)) (-3937 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-2500 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1781 (((-1203 |#1|) $) NIL T ELT)) (-4006 (((-3 (-1113) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) NIL T ELT) (((-711 |#1|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) 76 T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2599 (((-2 (|:| -2196 $) (|:| -1886 $)) $ (-793)) 60 T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-1113)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2199 (($) NIL (|has| |#1| (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) 50 T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 103 (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 167 (|has| |#1| (-466)) ELT)) (-4406 (($ $ (-793) |#1| $) 123 T ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 101 (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 100 (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) 108 (|has| |#1| (-938)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 124 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-666 (-1113)) (-666 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-666 (-1113)) (-666 $)) NIL T ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ |#1|) 150 T ELT) (($ $ $) 151 T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-570)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-570)) ELT)) (-3293 (((-3 $ "failed") $ (-793)) 54 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 172 (|has| |#1| (-376)) ELT)) (-3232 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 156 (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3683 (((-793) $) 78 T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-1113) (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) 162 (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-1825 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-570)) ELT)) (-2411 (((-886) $) 149 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1113)) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) 41 (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) 17 T CONST)) (-2379 (($) 19 T CONST)) (-1676 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) 120 T ELT)) (-2495 (($ $ |#1|) 173 (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 90 T ELT)) (** (($ $ (-950)) 14 T ELT) (($ $ (-793)) 12 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 129 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1203 |#1|) (-13 (-1274 |#1|) (-10 -8 (-15 -2135 ((-886) $ (-886))) (-15 -4406 ($ $ (-793) |#1| $)))) (-1080)) (T -1203)) +((-2135 (*1 *2 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1203 *3)) (-4 *3 (-1080)))) (-4406 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1203 *3)) (-4 *3 (-1080))))) +(-13 (-1274 |#1|) (-10 -8 (-15 -2135 ((-886) $ (-886))) (-15 -4406 ($ $ (-793) |#1| $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 11 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-421 (-578))) NIL T ELT) (($ $ (-421 (-578)) (-421 (-578))) NIL T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|))) $) NIL T ELT)) (-1502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|)))) NIL T ELT)) (-1528 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-1198 |#1| |#2| |#3|) "failed") $) 33 T ELT) (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 36 T ELT)) (-3516 (((-1198 |#1| |#2| |#3|) $) NIL T ELT) (((-1205 |#1| |#2| |#3|) $) NIL T ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2858 (((-421 (-578)) $) 59 T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3031 (($ (-421 (-578)) (-1198 |#1| |#2| |#3|)) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-421 (-578)) $) NIL T ELT) (((-421 (-578)) $ (-421 (-578))) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-421 (-578))) 20 T ELT) (($ $ (-1113) (-421 (-578))) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-421 (-578)))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3864 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3848 (((-1198 |#1| |#2| |#3|) $) 41 T ELT)) (-2908 (((-3 (-1198 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3018 (((-1198 |#1| |#2| |#3|) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 39 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-421 (-578))) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-421 (-578))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-578)) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-3683 (((-421 (-578)) $) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) 62 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1198 |#1| |#2| |#3|)) 30 T ELT) (($ (-1205 |#1| |#2| |#3|)) 31 T ELT) (($ (-1294 |#2|)) 26 T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-421 (-578))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-421 (-578))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 22 T CONST)) (-2379 (($) 16 T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 24 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1204 |#1| |#2| |#3|) (-13 (-1281 |#1| (-1198 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1205 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1204)) +((-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(-13 (-1281 |#1| (-1198 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1205 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 129 T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 119 T ELT)) (-3147 (((-1271 |#2| |#1|) $ (-793)) 69 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-793)) 85 T ELT) (($ $ (-793) (-793)) 82 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 105 T ELT)) (-1502 (($ $) 173 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 149 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1478 (($ $) 169 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 145 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1188 |#1|)) 113 T ELT)) (-1528 (($ $) 177 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 153 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 25 T ELT)) (-2790 (($ $) 28 T ELT)) (-1769 (((-981 |#1|) $ (-793)) 81 T ELT) (((-981 |#1|) $ (-793) (-793)) 83 T ELT)) (-1401 (((-112) $) 124 T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-793) $) 126 T ELT) (((-793) $ (-793)) 128 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) NIL T ELT)) (-3939 (($ (-1 |#1| (-578)) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) 13 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3864 (($ $) 135 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4371 (($ $) 133 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2704 (($ $ (-793)) 15 T ELT)) (-3202 (((-3 $ "failed") $ $) 26 (|has| |#1| (-570)) ELT)) (-3587 (($ $) 137 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-2436 ((|#1| $ (-793)) 122 T ELT) (($ $ $) 132 (|has| (-793) (-1143)) ELT)) (-2031 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) 31 T ELT)) (-3683 (((-793) $) NIL T ELT)) (-1541 (($ $) 179 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 155 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 175 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 151 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 171 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 147 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) 206 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1271 |#2| |#1|)) 55 T ELT) (($ (-1294 |#2|)) 36 T ELT)) (-3839 (((-1188 |#1|) $) 101 T ELT)) (-3708 ((|#1| $ (-793)) 121 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) 58 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) 185 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 161 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) 181 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 157 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 189 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 165 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-793)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 191 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 167 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 187 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 163 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 183 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 159 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 17 T CONST)) (-2379 (($) 20 T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-2472 (($ $ $) 35 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 141 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1205 |#1| |#2| |#3|) (-13 (-1289 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1271 |#2| |#1|))) (-15 -3147 ((-1271 |#2| |#1|) $ (-793))) (-15 -2411 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1205)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1271 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1205 *3 *4 *5)))) (-3147 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1271 *5 *4)) (-5 *1 (-1205 *4 *5 *6)) (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(-13 (-1289 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1271 |#2| |#1|))) (-15 -3147 ((-1271 |#2| |#1|) $ (-793))) (-15 -2411 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) +((-2411 (((-886) $) 33 T ELT) (($ (-1207)) 35 T ELT)) (-2230 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 46 T ELT)) (-2219 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3372 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 41 T ELT)) (-3360 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 43 T ELT)) (-3349 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 42 T ELT)) (-3336 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 44 T ELT)) (-1545 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $))) 45 T ELT))) +(((-1206) (-13 (-632 (-886)) (-10 -8 (-15 -2411 ($ (-1207))) (-15 -3372 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -3349 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -3360 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -3336 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -2230 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -1545 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -2219 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -2219 ($ $))))) (T -1206)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206)))) (-3372 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-3349 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-3360 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-3336 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2230 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-1545 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2219 (*1 *1 *1) (-5 *1 (-1206)))) +(-13 (-632 (-886)) (-10 -8 (-15 -2411 ($ (-1207))) (-15 -3372 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -3349 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -3360 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -3336 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -2230 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -1545 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)) (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -2219 ($ (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) (|:| CF (-328 (-172 (-392)))) (|:| |switch| $)))) (-15 -2219 ($ $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2025 (($ $ (-666 (-886))) 62 T ELT)) (-2388 (($ $ (-666 (-886))) 60 T ELT)) (-1966 (((-1189) $) 101 T ELT)) (-3501 (((-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886)))) $) 108 T ELT)) (-3612 (((-112) $) 23 T ELT)) (-3421 (($ $ (-666 (-666 (-886)))) 59 T ELT) (($ $ (-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886))))) 99 T ELT)) (-3534 (($) 163 T CONST)) (-4193 (((-1303)) 135 T ELT)) (-3386 (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 69 T ELT) (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 76 T ELT)) (-3749 (($) 122 T ELT) (($ $) 131 T ELT)) (-4107 (($ $) 100 T ELT)) (-1345 (($ $ $) NIL T ELT)) (-3667 (($ $ $) NIL T ELT)) (-2606 (((-666 $) $) 136 T ELT)) (-2617 (((-1189) $) 114 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2436 (($ $ (-666 (-886))) 61 T ELT)) (-3343 (((-550) $) 48 T ELT) (((-1207) $) 49 T ELT) (((-917 (-578)) $) 80 T ELT) (((-917 (-392)) $) 78 T ELT)) (-2411 (((-886) $) 55 T ELT) (($ (-1189)) 50 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2393 (($ $ (-666 (-886))) 63 T ELT)) (-3859 (((-1189) $) 34 T ELT) (((-1189) $ (-112)) 35 T ELT) (((-1303) (-844) $) 36 T ELT) (((-1303) (-844) $ (-112)) 37 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 51 T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) 52 T ELT))) +(((-1207) (-13 (-871) (-633 (-550)) (-850) (-633 (-1207)) (-635 (-1189)) (-633 (-917 (-578))) (-633 (-917 (-392))) (-911 (-578)) (-911 (-392)) (-10 -8 (-15 -3749 ($)) (-15 -3749 ($ $)) (-15 -4193 ((-1303))) (-15 -4107 ($ $)) (-15 -3612 ((-112) $)) (-15 -3501 ((-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886)))) $)) (-15 -3421 ($ $ (-666 (-666 (-886))))) (-15 -3421 ($ $ (-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886)))))) (-15 -2388 ($ $ (-666 (-886)))) (-15 -2025 ($ $ (-666 (-886)))) (-15 -2393 ($ $ (-666 (-886)))) (-15 -2436 ($ $ (-666 (-886)))) (-15 -1966 ((-1189) $)) (-15 -2606 ((-666 $) $)) (-15 -3534 ($) -1529)))) (T -1207)) +((-3749 (*1 *1) (-5 *1 (-1207))) (-3749 (*1 *1 *1) (-5 *1 (-1207))) (-4193 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207)))) (-4107 (*1 *1 *1) (-5 *1 (-1207))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886))))) (-5 *1 (-1207)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-666 (-886)))) (-5 *1 (-1207)))) (-3421 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886))))) (-5 *1 (-1207)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1207)))) (-3534 (*1 *1) (-5 *1 (-1207)))) +(-13 (-871) (-633 (-550)) (-850) (-633 (-1207)) (-635 (-1189)) (-633 (-917 (-578))) (-633 (-917 (-392))) (-911 (-578)) (-911 (-392)) (-10 -8 (-15 -3749 ($)) (-15 -3749 ($ $)) (-15 -4193 ((-1303))) (-15 -4107 ($ $)) (-15 -3612 ((-112) $)) (-15 -3501 ((-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886)))) $)) (-15 -3421 ($ $ (-666 (-666 (-886))))) (-15 -3421 ($ $ (-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) (|:| |args| (-666 (-886)))))) (-15 -2388 ($ $ (-666 (-886)))) (-15 -2025 ($ $ (-666 (-886)))) (-15 -2393 ($ $ (-666 (-886)))) (-15 -2436 ($ $ (-666 (-886)))) (-15 -1966 ((-1189) $)) (-15 -2606 ((-666 $) $)) (-15 -3534 ($) -1529))) +((-3898 (((-1298 |#1|) |#1| (-950)) 18 T ELT) (((-1298 |#1|) (-666 |#1|)) 25 T ELT))) +(((-1208 |#1|) (-10 -7 (-15 -3898 ((-1298 |#1|) (-666 |#1|))) (-15 -3898 ((-1298 |#1|) |#1| (-950)))) (-1080)) (T -1208)) +((-3898 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-5 *2 (-1298 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1080)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-1080)) (-5 *2 (-1298 *4)) (-5 *1 (-1208 *4))))) +(-10 -7 (-15 -3898 ((-1298 |#1|) (-666 |#1|))) (-15 -3898 ((-1298 |#1|) |#1| (-950)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3516 (((-578) $) NIL (|has| |#1| (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| |#1| (-1069 (-421 (-578)))) ELT) ((|#1| $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2111 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2535 (($ $ |#1| (-1002) $) NIL T ELT)) (-4382 (((-112) $) 17 T ELT)) (-3380 (((-793) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-1002)) NIL T ELT)) (-3937 (((-1002) $) NIL T ELT)) (-2500 (($ (-1 (-1002) (-1002)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#1| $) NIL T ELT)) (-4406 (($ $ (-1002) |#1| $) NIL (-12 (|has| (-1002) (-133)) (|has| |#1| (-570))) ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-570)) ELT)) (-3683 (((-1002) $) NIL T ELT)) (-4325 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ |#1|) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-1069 (-421 (-578))))) ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-1002)) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2368 (($) 10 T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 21 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1209 |#1|) (-13 (-338 |#1| (-1002)) (-10 -8 (IF (|has| |#1| (-570)) (IF (|has| (-1002) (-133)) (-15 -4406 ($ $ (-1002) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|))) (-1080)) (T -1209)) +((-4406 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-1002)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-570)) (-4 *3 (-1080))))) +(-13 (-338 |#1| (-1002)) (-10 -8 (IF (|has| |#1| (-570)) (IF (|has| (-1002) (-133)) (-15 -4406 ($ $ (-1002) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|))) +((-1542 (((-1211) (-1207) $) 25 T ELT)) (-4292 (($) 29 T ELT)) (-3796 (((-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-1207) $) 22 T ELT)) (-2469 (((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -2893 "void")) $) 41 T ELT) (((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) 42 T ELT) (((-1303) (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) 43 T ELT)) (-3993 (((-1303) (-1207)) 58 T ELT)) (-1964 (((-1303) (-1207) $) 55 T ELT) (((-1303) (-1207)) 56 T ELT) (((-1303)) 57 T ELT)) (-2131 (((-1303) (-1207)) 37 T ELT)) (-2343 (((-1207)) 36 T ELT)) (-1696 (($) 34 T ELT)) (-4156 (((-451) (-1207) (-451) (-1207) $) 45 T ELT) (((-451) (-666 (-1207)) (-451) (-1207) $) 49 T ELT) (((-451) (-1207) (-451)) 46 T ELT) (((-451) (-1207) (-451) (-1207)) 50 T ELT)) (-3842 (((-1207)) 35 T ELT)) (-2411 (((-886) $) 28 T ELT)) (-3573 (((-1303)) 30 T ELT) (((-1303) (-1207)) 33 T ELT)) (-3589 (((-666 (-1207)) (-1207) $) 24 T ELT)) (-3553 (((-1303) (-1207) (-666 (-1207)) $) 38 T ELT) (((-1303) (-1207) (-666 (-1207))) 39 T ELT) (((-1303) (-666 (-1207))) 40 T ELT))) +(((-1210) (-13 (-632 (-886)) (-10 -8 (-15 -4292 ($)) (-15 -3573 ((-1303))) (-15 -3573 ((-1303) (-1207))) (-15 -4156 ((-451) (-1207) (-451) (-1207) $)) (-15 -4156 ((-451) (-666 (-1207)) (-451) (-1207) $)) (-15 -4156 ((-451) (-1207) (-451))) (-15 -4156 ((-451) (-1207) (-451) (-1207))) (-15 -2131 ((-1303) (-1207))) (-15 -3842 ((-1207))) (-15 -2343 ((-1207))) (-15 -3553 ((-1303) (-1207) (-666 (-1207)) $)) (-15 -3553 ((-1303) (-1207) (-666 (-1207)))) (-15 -3553 ((-1303) (-666 (-1207)))) (-15 -2469 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -2893 "void")) $)) (-15 -2469 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -2893 "void")))) (-15 -2469 ((-1303) (-3 (|:| |fst| (-448)) (|:| -2893 "void")))) (-15 -1964 ((-1303) (-1207) $)) (-15 -1964 ((-1303) (-1207))) (-15 -1964 ((-1303))) (-15 -3993 ((-1303) (-1207))) (-15 -1696 ($)) (-15 -3796 ((-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-1207) $)) (-15 -3589 ((-666 (-1207)) (-1207) $)) (-15 -1542 ((-1211) (-1207) $))))) (T -1210)) +((-4292 (*1 *1) (-5 *1 (-1210))) (-3573 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4156 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4156 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-451)) (-5 *3 (-666 (-1207))) (-5 *4 (-1207)) (-5 *1 (-1210)))) (-4156 (*1 *2 *3 *2) (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4156 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3842 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-2343 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-3553 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3553 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2469 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-1964 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-1964 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-1696 (*1 *1) (-5 *1 (-1210))) (-3796 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *1 (-1210)))) (-3589 (*1 *2 *3 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207)))) (-1542 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210))))) +(-13 (-632 (-886)) (-10 -8 (-15 -4292 ($)) (-15 -3573 ((-1303))) (-15 -3573 ((-1303) (-1207))) (-15 -4156 ((-451) (-1207) (-451) (-1207) $)) (-15 -4156 ((-451) (-666 (-1207)) (-451) (-1207) $)) (-15 -4156 ((-451) (-1207) (-451))) (-15 -4156 ((-451) (-1207) (-451) (-1207))) (-15 -2131 ((-1303) (-1207))) (-15 -3842 ((-1207))) (-15 -2343 ((-1207))) (-15 -3553 ((-1303) (-1207) (-666 (-1207)) $)) (-15 -3553 ((-1303) (-1207) (-666 (-1207)))) (-15 -3553 ((-1303) (-666 (-1207)))) (-15 -2469 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -2893 "void")) $)) (-15 -2469 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -2893 "void")))) (-15 -2469 ((-1303) (-3 (|:| |fst| (-448)) (|:| -2893 "void")))) (-15 -1964 ((-1303) (-1207) $)) (-15 -1964 ((-1303) (-1207))) (-15 -1964 ((-1303))) (-15 -3993 ((-1303) (-1207))) (-15 -1696 ($)) (-15 -3796 ((-3 (|:| |fst| (-448)) (|:| -2893 "void")) (-1207) $)) (-15 -3589 ((-666 (-1207)) (-1207) $)) (-15 -1542 ((-1211) (-1207) $)))) +((-3048 (((-666 (-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578))))))))) $) 66 T ELT)) (-3916 (((-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578)))))))) (-448) $) 47 T ELT)) (-1857 (($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-451))))) 17 T ELT)) (-3993 (((-1303) $) 73 T ELT)) (-3037 (((-666 (-1207)) $) 22 T ELT)) (-3863 (((-1135) $) 60 T ELT)) (-1819 (((-451) (-1207) $) 27 T ELT)) (-4026 (((-666 (-1207)) $) 30 T ELT)) (-1696 (($) 19 T ELT)) (-4156 (((-451) (-666 (-1207)) (-451) $) 25 T ELT) (((-451) (-1207) (-451) $) 24 T ELT)) (-2411 (((-886) $) 9 T ELT) (((-1220 (-1207) (-451)) $) 13 T ELT))) +(((-1211) (-13 (-632 (-886)) (-10 -8 (-15 -2411 ((-1220 (-1207) (-451)) $)) (-15 -1696 ($)) (-15 -4156 ((-451) (-666 (-1207)) (-451) $)) (-15 -4156 ((-451) (-1207) (-451) $)) (-15 -1819 ((-451) (-1207) $)) (-15 -3037 ((-666 (-1207)) $)) (-15 -3916 ((-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578)))))))) (-448) $)) (-15 -4026 ((-666 (-1207)) $)) (-15 -3048 ((-666 (-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578))))))))) $)) (-15 -3863 ((-1135) $)) (-15 -3993 ((-1303) $)) (-15 -1857 ($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-451))))))))) (T -1211)) +((-2411 (*1 *2 *1) (-12 (-5 *2 (-1220 (-1207) (-451))) (-5 *1 (-1211)))) (-1696 (*1 *1) (-5 *1 (-1211))) (-4156 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-451)) (-5 *3 (-666 (-1207))) (-5 *1 (-1211)))) (-4156 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1211)))) (-1819 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-451)) (-5 *1 (-1211)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1211)))) (-3916 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578))))))))) (-5 *1 (-1211)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1211)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-666 (-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578)))))))))) (-5 *1 (-1211)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1211)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211)))) (-1857 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-451))))) (-5 *1 (-1211))))) +(-13 (-632 (-886)) (-10 -8 (-15 -2411 ((-1220 (-1207) (-451)) $)) (-15 -1696 ($)) (-15 -4156 ((-451) (-666 (-1207)) (-451) $)) (-15 -4156 ((-451) (-1207) (-451) $)) (-15 -1819 ((-451) (-1207) $)) (-15 -3037 ((-666 (-1207)) $)) (-15 -3916 ((-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578)))))))) (-448) $)) (-15 -4026 ((-666 (-1207)) $)) (-15 -3048 ((-666 (-666 (-3 (|:| -4107 (-1207)) (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578))))))))) $)) (-15 -3863 ((-1135) $)) (-15 -3993 ((-1303) $)) (-15 -1857 ($ (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-451)))))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2818 (((-3 (-578) "failed") $) 29 T ELT) (((-3 (-229) "failed") $) 35 T ELT) (((-3 (-520) "failed") $) 43 T ELT) (((-3 (-1189) "failed") $) 47 T ELT)) (-3516 (((-578) $) 30 T ELT) (((-229) $) 36 T ELT) (((-520) $) 40 T ELT) (((-1189) $) 48 T ELT)) (-2228 (((-112) $) 53 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1959 (((-3 (-578) (-229) (-520) (-1189) $) $) 55 T ELT)) (-2692 (((-666 $) $) 57 T ELT)) (-3343 (((-1135) $) 24 T ELT) (($ (-1135)) 25 T ELT)) (-2691 (((-112) $) 56 T ELT)) (-2411 (((-886) $) 23 T ELT) (($ (-578)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-520)) 38 T ELT) (($ (-1189)) 44 T ELT) (((-550) $) 59 T ELT) (((-578) $) 31 T ELT) (((-229) $) 37 T ELT) (((-520) $) 41 T ELT) (((-1189) $) 49 T ELT)) (-2355 (((-112) $ (|[\|\|]| (-578))) 10 T ELT) (((-112) $ (|[\|\|]| (-229))) 13 T ELT) (((-112) $ (|[\|\|]| (-520))) 19 T ELT) (((-112) $ (|[\|\|]| (-1189))) 16 T ELT)) (-3555 (($ (-520) (-666 $)) 51 T ELT) (($ $ (-666 $)) 52 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-4032 (((-578) $) 27 T ELT) (((-229) $) 33 T ELT) (((-520) $) 39 T ELT) (((-1189) $) 45 T ELT)) (-2384 (((-112) $ $) 7 T ELT))) +(((-1212) (-13 (-1293) (-1131) (-1069 (-578)) (-1069 (-229)) (-1069 (-520)) (-1069 (-1189)) (-632 (-550)) (-10 -8 (-15 -3343 ((-1135) $)) (-15 -3343 ($ (-1135))) (-15 -2411 ((-578) $)) (-15 -4032 ((-578) $)) (-15 -2411 ((-229) $)) (-15 -4032 ((-229) $)) (-15 -2411 ((-520) $)) (-15 -4032 ((-520) $)) (-15 -2411 ((-1189) $)) (-15 -4032 ((-1189) $)) (-15 -3555 ($ (-520) (-666 $))) (-15 -3555 ($ $ (-666 $))) (-15 -2228 ((-112) $)) (-15 -1959 ((-3 (-578) (-229) (-520) (-1189) $) $)) (-15 -2692 ((-666 $) $)) (-15 -2691 ((-112) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-578)))) (-15 -2355 ((-112) $ (|[\|\|]| (-229)))) (-15 -2355 ((-112) $ (|[\|\|]| (-520)))) (-15 -2355 ((-112) $ (|[\|\|]| (-1189))))))) (T -1212)) +((-3343 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1212)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1212)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1212)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1212)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-3555 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-666 (-1212))) (-5 *1 (-1212)))) (-3555 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-1212)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-3 (-578) (-229) (-520) (-1189) (-1212))) (-5 *1 (-1212)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-1212)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-578))) (-5 *2 (-112)) (-5 *1 (-1212)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-112)) (-5 *1 (-1212)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)) (-5 *1 (-1212)))) (-2355 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-112)) (-5 *1 (-1212))))) +(-13 (-1293) (-1131) (-1069 (-578)) (-1069 (-229)) (-1069 (-520)) (-1069 (-1189)) (-632 (-550)) (-10 -8 (-15 -3343 ((-1135) $)) (-15 -3343 ($ (-1135))) (-15 -2411 ((-578) $)) (-15 -4032 ((-578) $)) (-15 -2411 ((-229) $)) (-15 -4032 ((-229) $)) (-15 -2411 ((-520) $)) (-15 -4032 ((-520) $)) (-15 -2411 ((-1189) $)) (-15 -4032 ((-1189) $)) (-15 -3555 ($ (-520) (-666 $))) (-15 -3555 ($ $ (-666 $))) (-15 -2228 ((-112) $)) (-15 -1959 ((-3 (-578) (-229) (-520) (-1189) $) $)) (-15 -2692 ((-666 $) $)) (-15 -2691 ((-112) $)) (-15 -2355 ((-112) $ (|[\|\|]| (-578)))) (-15 -2355 ((-112) $ (|[\|\|]| (-229)))) (-15 -2355 ((-112) $ (|[\|\|]| (-520)))) (-15 -2355 ((-112) $ (|[\|\|]| (-1189)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2222 (((-793)) 22 T ELT)) (-3534 (($) 12 T CONST)) (-2062 (($) 26 T ELT)) (-1345 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-3667 (($ $ $) NIL T ELT) (($) 20 T CONST)) (-3193 (((-950) $) 24 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) 23 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT))) +(((-1213 |#1|) (-13 (-866) (-10 -8 (-15 -3534 ($) -1529))) (-950)) (T -1213)) +((-3534 (*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-950))))) +(-13 (-866) (-10 -8 (-15 -3534 ($) -1529))) ((|Integer|) (|%not| (|%ilt| @1 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) 25 T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) 19 T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) 12 T CONST)) (-4167 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-1866 (($ $ $) 21 T ELT)) (-1854 (($ $ $) 20 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) 23 T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) 22 T ELT))) -(((-1213 |#1|) (-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528))) (-949)) (T -1213)) -((-1854 (*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) (-1866 (*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) (-2762 (*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949))))) -(-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) 25 T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) 19 T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) 12 T CONST)) (-3667 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-1867 (($ $ $) 21 T ELT)) (-1855 (($ $ $) 20 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) 23 T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) 22 T ELT))) +(((-1214 |#1|) (-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529))) (-950)) (T -1214)) +((-1855 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-950)))) (-1867 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-950)))) (-3534 (*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-950))))) +(-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529))) ((|NonNegativeInteger|) (|%not| (|%ilt| @1 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 9 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 7 T ELT))) -(((-1214) (-1130)) (T -1214)) -NIL -(-1130) -((-2105 (((-665 (-665 (-980 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 69 T ELT)) (-3766 (((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|)))) 80 T ELT) (((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|))) 76 T ELT) (((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206)) 81 T ELT) (((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206)) 75 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|))))) 106 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|)))) 105 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206))) 107 T ELT) (((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))) (-665 (-1206))) 104 T ELT))) -(((-1215 |#1|) (-10 -7 (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))))) (-15 -2105 ((-665 (-665 (-980 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))))) (-569)) (T -1215)) -((-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-980 *5)))) (-5 *1 (-1215 *5)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) (-5 *1 (-1215 *4)) (-5 *3 (-305 (-420 (-980 *4)))))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) (-5 *1 (-1215 *4)) (-5 *3 (-420 (-980 *4))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) (-5 *3 (-305 (-420 (-980 *5)))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1206)) (-4 *5 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) (-5 *3 (-420 (-980 *5))))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-1215 *4)) (-5 *3 (-665 (-305 (-420 (-980 *4))))))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-1215 *4)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-1215 *5)) (-5 *3 (-665 (-305 (-420 (-980 *5))))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-1215 *5))))) -(-10 -7 (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))) (-665 (-1206)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))) (-665 (-1206)))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-420 (-980 |#1|))))) (-15 -3766 ((-665 (-665 (-305 (-420 (-980 |#1|))))) (-665 (-305 (-420 (-980 |#1|)))))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)) (-1206))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))) (-1206))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-420 (-980 |#1|)))) (-15 -3766 ((-665 (-305 (-420 (-980 |#1|)))) (-305 (-420 (-980 |#1|))))) (-15 -2105 ((-665 (-665 (-980 |#1|))) (-665 (-420 (-980 |#1|))) (-665 (-1206))))) -((-3333 (((-1188)) 7 T ELT)) (-2905 (((-1188)) 11 T CONST)) (-2297 (((-1302) (-1188)) 13 T ELT)) (-4250 (((-1188)) 8 T CONST)) (-3716 (((-131)) 10 T CONST))) -(((-1216) (-13 (-1247) (-10 -7 (-15 -3333 ((-1188))) (-15 -4250 ((-1188)) -1528) (-15 -3716 ((-131)) -1528) (-15 -2905 ((-1188)) -1528) (-15 -2297 ((-1302) (-1188)))))) (T -1216)) -((-3333 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216)))) (-4250 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216)))) (-3716 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1216)))) (-2905 (*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1216))))) -(-13 (-1247) (-10 -7 (-15 -3333 ((-1188))) (-15 -4250 ((-1188)) -1528) (-15 -3716 ((-131)) -1528) (-15 -2905 ((-1188)) -1528) (-15 -2297 ((-1302) (-1188))))) -((-2789 (((-665 (-665 |#1|)) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|)))) 56 T ELT)) (-4479 (((-665 (-665 (-665 |#1|))) (-665 (-665 |#1|))) 38 T ELT)) (-4461 (((-1218 (-665 |#1|)) (-665 |#1|)) 49 T ELT)) (-3630 (((-665 (-665 |#1|)) (-665 |#1|)) 45 T ELT)) (-2482 (((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 (-665 (-665 |#1|)))) 53 T ELT)) (-4430 (((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 |#1|) (-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|)))) 52 T ELT)) (-3455 (((-665 (-665 |#1|)) (-665 (-665 |#1|))) 43 T ELT)) (-2566 (((-665 |#1|) (-665 |#1|)) 46 T ELT)) (-2775 (((-665 (-665 (-665 |#1|))) (-665 |#1|) (-665 (-665 (-665 |#1|)))) 32 T ELT)) (-3421 (((-665 (-665 (-665 |#1|))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 (-665 |#1|)))) 29 T ELT)) (-2575 (((-2 (|:| |fs| (-112)) (|:| |sd| (-665 |#1|)) (|:| |td| (-665 (-665 |#1|)))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 |#1|))) 24 T ELT)) (-2844 (((-665 (-665 |#1|)) (-665 (-665 (-665 |#1|)))) 58 T ELT)) (-3068 (((-665 (-665 |#1|)) (-1218 (-665 |#1|))) 60 T ELT))) -(((-1217 |#1|) (-10 -7 (-15 -2575 ((-2 (|:| |fs| (-112)) (|:| |sd| (-665 |#1|)) (|:| |td| (-665 (-665 |#1|)))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 |#1|)))) (-15 -3421 ((-665 (-665 (-665 |#1|))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -2775 ((-665 (-665 (-665 |#1|))) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -2789 ((-665 (-665 |#1|)) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -2844 ((-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -3068 ((-665 (-665 |#1|)) (-1218 (-665 |#1|)))) (-15 -4479 ((-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)))) (-15 -4461 ((-1218 (-665 |#1|)) (-665 |#1|))) (-15 -3455 ((-665 (-665 |#1|)) (-665 (-665 |#1|)))) (-15 -3630 ((-665 (-665 |#1|)) (-665 |#1|))) (-15 -2566 ((-665 |#1|) (-665 |#1|))) (-15 -4430 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 |#1|) (-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))))) (-15 -2482 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 (-665 (-665 |#1|)))))) (-870)) (T -1217)) -((-2482 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-2 (|:| |f1| (-665 *4)) (|:| |f2| (-665 (-665 (-665 *4)))) (|:| |f3| (-665 (-665 *4))) (|:| |f4| (-665 (-665 (-665 *4)))))) (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 (-665 *4)))))) (-4430 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-870)) (-5 *3 (-665 *6)) (-5 *5 (-665 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-665 *5)) (|:| |f3| *5) (|:| |f4| (-665 *5)))) (-5 *1 (-1217 *6)) (-5 *4 (-665 *5)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-1217 *3)))) (-3630 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)) (-5 *3 (-665 *4)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-870)) (-5 *1 (-1217 *3)))) (-4461 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-1218 (-665 *4))) (-5 *1 (-1217 *4)) (-5 *3 (-665 *4)))) (-4479 (*1 *2 *3) (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 (-665 *4)))) (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 *4))))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1218 (-665 *4))) (-4 *4 (-870)) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)) (-4 *4 (-870)))) (-2789 (*1 *2 *2 *3) (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) (-4 *4 (-870)) (-5 *1 (-1217 *4)))) (-2775 (*1 *2 *3 *2) (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-665 *4)) (-4 *4 (-870)) (-5 *1 (-1217 *4)))) (-3421 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-665 *5)) (-4 *5 (-870)) (-5 *1 (-1217 *5)))) (-2575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-870)) (-5 *4 (-665 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-665 *4)))) (-5 *1 (-1217 *6)) (-5 *5 (-665 *4))))) -(-10 -7 (-15 -2575 ((-2 (|:| |fs| (-112)) (|:| |sd| (-665 |#1|)) (|:| |td| (-665 (-665 |#1|)))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 |#1|)))) (-15 -3421 ((-665 (-665 (-665 |#1|))) (-1 (-112) |#1| |#1|) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -2775 ((-665 (-665 (-665 |#1|))) (-665 |#1|) (-665 (-665 (-665 |#1|))))) (-15 -2789 ((-665 (-665 |#1|)) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -2844 ((-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))))) (-15 -3068 ((-665 (-665 |#1|)) (-1218 (-665 |#1|)))) (-15 -4479 ((-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)))) (-15 -4461 ((-1218 (-665 |#1|)) (-665 |#1|))) (-15 -3455 ((-665 (-665 |#1|)) (-665 (-665 |#1|)))) (-15 -3630 ((-665 (-665 |#1|)) (-665 |#1|))) (-15 -2566 ((-665 |#1|) (-665 |#1|))) (-15 -4430 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 |#1|) (-665 (-665 (-665 |#1|))) (-665 (-665 |#1|)) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))) (-665 (-665 (-665 |#1|))))) (-15 -2482 ((-2 (|:| |f1| (-665 |#1|)) (|:| |f2| (-665 (-665 (-665 |#1|)))) (|:| |f3| (-665 (-665 |#1|))) (|:| |f4| (-665 (-665 (-665 |#1|))))) (-665 (-665 (-665 |#1|)))))) -((-2465 (($ (-665 (-665 |#1|))) 10 T ELT)) (-1522 (((-665 (-665 |#1|)) $) 11 T ELT)) (-2410 (((-885) $) 33 T ELT))) -(((-1218 |#1|) (-10 -8 (-15 -2465 ($ (-665 (-665 |#1|)))) (-15 -1522 ((-665 (-665 |#1|)) $)) (-15 -2410 ((-885) $))) (-1130)) (T -1218)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1218 *3)) (-4 *3 (-1130)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 *3))) (-5 *1 (-1218 *3)) (-4 *3 (-1130)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-1218 *3))))) -(-10 -8 (-15 -2465 ($ (-665 (-665 |#1|)))) (-15 -1522 ((-665 (-665 |#1|)) $)) (-15 -2410 ((-885) $))) -((-3211 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3735 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-3425 (((-1302) $ |#1| |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-1962 ((|#1| $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-3242 (((-665 |#1|) $) NIL T ELT)) (-2404 (((-112) |#1| $) NIL T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-3887 (((-665 |#1|) $) NIL T ELT)) (-1593 (((-112) |#1| $) NIL T ELT)) (-4312 (((-1150) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| |#2| (-1130))) ELT)) (-4188 ((|#2| $) NIL (|has| |#1| (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL T ELT)) (-3482 (($ $ |#2|) NIL (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-2427 (($) NIL T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) NIL (-12 (|has| $ (-6 -4499)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (((-792) |#2| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT) (((-792) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-2410 (((-885) $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885))) (|has| |#2| (-631 (-885)))) ELT)) (-2525 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) NIL T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) NIL (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) NIL (-2229 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1219 |#1| |#2|) (-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) (-1130) (-1130)) (T -1219)) -NIL -(-13 (-1223 |#1| |#2|) (-10 -7 (-6 -4499))) -((-3211 (((-112) $ $) NIL T ELT)) (-4396 (($ |#1| (-55)) 10 T ELT)) (-4105 ((|#1| $) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4450 (((-112) $ |#1|) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3089 (((-55) $) 14 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1220 |#1|) (-13 (-856 |#1|) (-10 -8 (-15 -4396 ($ |#1| (-55))))) (-1130)) (T -1220)) -((-4396 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1220 *2)) (-4 *2 (-1130))))) -(-13 (-856 |#1|) (-10 -8 (-15 -4396 ($ |#1| (-55))))) -((-4380 ((|#1| (-665 |#1|)) 46 T ELT)) (-2426 ((|#1| |#1| (-577)) 24 T ELT)) (-1867 (((-1202 |#1|) |#1| (-949)) 20 T ELT))) -(((-1221 |#1|) (-10 -7 (-15 -4380 (|#1| (-665 |#1|))) (-15 -1867 ((-1202 |#1|) |#1| (-949))) (-15 -2426 (|#1| |#1| (-577)))) (-375)) (T -1221)) -((-2426 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1221 *2)) (-4 *2 (-375)))) (-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-949)) (-5 *2 (-1202 *3)) (-5 *1 (-1221 *3)) (-4 *3 (-375)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-1221 *2)) (-4 *2 (-375))))) -(-10 -7 (-15 -4380 (|#1| (-665 |#1|))) (-15 -1867 ((-1202 |#1|) |#1| (-949))) (-15 -2426 (|#1| |#1| (-577)))) -((-3735 (($) 10 T ELT) (($ (-665 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)))) 14 T ELT)) (-1991 (($ (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) $) 67 T ELT) (($ (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) 39 T ELT) (((-665 |#3|) $) 41 T ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-3398 (((-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) $) 60 T ELT)) (-3795 (($ (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) $) 16 T ELT)) (-3887 (((-665 |#2|) $) 19 T ELT)) (-1593 (((-112) |#2| $) 65 T ELT)) (-1520 (((-3 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) "failed") (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) 64 T ELT)) (-3127 (((-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) $) 69 T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 73 T ELT)) (-3485 (((-665 |#3|) $) 43 T ELT)) (-2435 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) NIL T ELT) (((-792) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) $) NIL T ELT) (((-792) |#3| $) NIL T ELT) (((-792) (-1 (-112) |#3|) $) 79 T ELT)) (-2410 (((-885) $) 27 T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 71 T ELT)) (-2383 (((-112) $ $) 51 T ELT))) -(((-1222 |#1| |#2| |#3|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3609 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3735 (|#1| (-665 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))))) (-15 -3735 (|#1|)) (-15 -3609 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3437 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4323 ((-792) (-1 (-112) |#3|) |#1|)) (-15 -2728 ((-665 |#3|) |#1|)) (-15 -4323 ((-792) |#3| |#1|)) (-15 -2435 (|#3| |#1| |#2| |#3|)) (-15 -2435 (|#3| |#1| |#2|)) (-15 -3485 ((-665 |#3|) |#1|)) (-15 -1593 ((-112) |#2| |#1|)) (-15 -3887 ((-665 |#2|) |#1|)) (-15 -1991 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1991 (|#1| (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -1991 (|#1| (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -1520 ((-3 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) "failed") (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -3398 ((-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -3795 (|#1| (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -3127 ((-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -4323 ((-792) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -2728 ((-665 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -4323 ((-792) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -2519 ((-112) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -1835 ((-112) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -3437 (|#1| (-1 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -3609 (|#1| (-1 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|))) (-1223 |#2| |#3|) (-1130) (-1130)) (T -1222)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2410 ((-885) |#1|)) (-15 -3609 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3735 (|#1| (-665 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))))) (-15 -3735 (|#1|)) (-15 -3609 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3437 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1835 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2519 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4323 ((-792) (-1 (-112) |#3|) |#1|)) (-15 -2728 ((-665 |#3|) |#1|)) (-15 -4323 ((-792) |#3| |#1|)) (-15 -2435 (|#3| |#1| |#2| |#3|)) (-15 -2435 (|#3| |#1| |#2|)) (-15 -3485 ((-665 |#3|) |#1|)) (-15 -1593 ((-112) |#2| |#1|)) (-15 -3887 ((-665 |#2|) |#1|)) (-15 -1991 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1991 (|#1| (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -1991 (|#1| (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -1520 ((-3 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) "failed") (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -3398 ((-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -3795 (|#1| (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -3127 ((-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -4323 ((-792) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) |#1|)) (-15 -2728 ((-665 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -4323 ((-792) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -2519 ((-112) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -1835 ((-112) (-1 (-112) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -3437 (|#1| (-1 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|)) (-15 -3609 (|#1| (-1 (-2 (|:| -3171 |#2|) (|:| -2753 |#3|)) (-2 (|:| -3171 |#2|) (|:| -2753 |#3|))) |#1|))) -((-3211 (((-112) $ $) 20 (-2229 (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ELT)) (-3735 (($) 73 T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 72 T ELT)) (-3425 (((-1302) $ |#1| |#1|) 100 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#2| $ |#1| |#2|) 74 T ELT)) (-3402 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 46 (|has| $ (-6 -4499)) ELT)) (-4232 (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 56 (|has| $ (-6 -4499)) ELT)) (-3255 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2762 (($) 7 T CONST)) (-3860 (($ $) 59 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT)) (-1991 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 48 (|has| $ (-6 -4499)) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 47 (|has| $ (-6 -4499)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-2736 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 55 (|has| $ (-6 -4499)) ELT)) (-2511 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 57 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 54 (|has| $ (-6 -4499)) ELT) (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 53 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#2| $ |#1|) 89 T ELT)) (-2728 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 31 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 80 (|has| $ (-6 -4499)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 ((|#1| $) 97 (|has| |#1| (-870)) ELT)) (-4138 (((-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 30 (|has| $ (-6 -4499)) ELT) (((-665 |#2|) $) 81 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 ((|#1| $) 96 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 35 (|has| $ (-6 -4500)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3384 (((-1188) $) 23 (-2229 (|has| |#2| (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-3242 (((-665 |#1|) $) 64 T ELT)) (-2404 (((-112) |#1| $) 65 T ELT)) (-3398 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 40 T ELT)) (-3795 (($ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 41 T ELT)) (-3887 (((-665 |#1|) $) 94 T ELT)) (-1593 (((-112) |#1| $) 93 T ELT)) (-4312 (((-1150) $) 22 (-2229 (|has| |#2| (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT)) (-4188 ((|#2| $) 98 (|has| |#1| (-870)) ELT)) (-1520 (((-3 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) "failed") (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 52 T ELT)) (-3482 (($ $ |#2|) 99 (|has| $ (-6 -4500)) ELT)) (-3127 (((-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 42 T ELT)) (-2519 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 33 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))))) 27 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-305 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 26 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) 25 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 24 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT) (($ $ (-665 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4499)) (|has| |#2| (-1130))) ELT)) (-3485 (((-665 |#2|) $) 92 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT)) (-2427 (($) 50 T ELT) (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 49 T ELT)) (-4323 (((-792) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) |#2| $) 82 (-12 (|has| |#2| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 60 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ELT)) (-2422 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 51 T ELT)) (-2410 (((-885) $) 18 (-2229 (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885)))) ELT)) (-2525 (((-112) $ $) 21 (-2229 (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ELT)) (-3236 (($ (-665 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) 43 T ELT)) (-1835 (((-112) (-1 (-112) (-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) $) 34 (|has| $ (-6 -4499)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (-2229 (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1223 |#1| |#2|) (-141) (-1130) (-1130)) (T -1223)) -((-2589 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1223 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-3735 (*1 *1) (-12 (-4 *1 (-1223 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3735 (*1 *1 *2) (-12 (-5 *2 (-665 (-2 (|:| -3171 *3) (|:| -2753 *4)))) (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *1 (-1223 *3 *4)))) (-3609 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1223 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) -(-13 (-628 |t#1| |t#2|) (-617 |t#1| |t#2|) (-10 -8 (-15 -2589 (|t#2| $ |t#1| |t#2|)) (-15 -3735 ($)) (-15 -3735 ($ (-665 (-2 (|:| -3171 |t#1|) (|:| -2753 |t#2|))))) (-15 -3609 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3171 |#1|) (|:| -2753 |#2|))) . T) ((-102) -2229 (|has| |#2| (-1130)) (|has| |#2| (-102)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-102))) ((-631 (-885)) -2229 (|has| |#2| (-1130)) (|has| |#2| (-631 (-885))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-631 (-885)))) ((-152 #0#) . T) ((-632 (-549)) |has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-632 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 #0#) -12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-502 #0#) . T) ((-502 |#2|) . T) ((-617 |#1| |#2|) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-320 (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)))) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1130))) ((-628 |#1| |#2|) . T) ((-1130) -2229 (|has| |#2| (-1130)) (|has| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (-1130))) ((-1247) . T)) -((-1755 (((-112)) 29 T ELT)) (-3136 (((-1302) (-1188)) 31 T ELT)) (-4282 (((-112)) 41 T ELT)) (-3112 (((-1302)) 39 T ELT)) (-3299 (((-1302) (-1188) (-1188)) 30 T ELT)) (-3847 (((-112)) 42 T ELT)) (-3795 (((-1302) |#1| |#2|) 53 T ELT)) (-3052 (((-1302)) 26 T ELT)) (-1684 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-2148 (((-1302)) 40 T ELT))) -(((-1224 |#1| |#2|) (-10 -7 (-15 -3052 ((-1302))) (-15 -3299 ((-1302) (-1188) (-1188))) (-15 -3136 ((-1302) (-1188))) (-15 -3112 ((-1302))) (-15 -2148 ((-1302))) (-15 -1755 ((-112))) (-15 -4282 ((-112))) (-15 -3847 ((-112))) (-15 -1684 ((-3 |#2| "failed") |#1|)) (-15 -3795 ((-1302) |#1| |#2|))) (-1130) (-1130)) (T -1224)) -((-3795 (*1 *2 *3 *4) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-1684 (*1 *2 *3) (|partial| -12 (-4 *2 (-1130)) (-5 *1 (-1224 *3 *2)) (-4 *3 (-1130)))) (-3847 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-4282 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-1755 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-2148 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-3112 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)))) (-3299 (*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)))) (-3052 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) -(-10 -7 (-15 -3052 ((-1302))) (-15 -3299 ((-1302) (-1188) (-1188))) (-15 -3136 ((-1302) (-1188))) (-15 -3112 ((-1302))) (-15 -2148 ((-1302))) (-15 -1755 ((-112))) (-15 -4282 ((-112))) (-15 -3847 ((-112))) (-15 -1684 ((-3 |#2| "failed") |#1|)) (-15 -3795 ((-1302) |#1| |#2|))) -((-1941 (((-1188) (-1188)) 22 T ELT)) (-2531 (((-52) (-1188)) 25 T ELT))) -(((-1225) (-10 -7 (-15 -2531 ((-52) (-1188))) (-15 -1941 ((-1188) (-1188))))) (T -1225)) -((-1941 (*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1225)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-1225))))) -(-10 -7 (-15 -2531 ((-52) (-1188))) (-15 -1941 ((-1188) (-1188)))) -((-2410 (((-1227) |#1|) 11 T ELT))) -(((-1226 |#1|) (-10 -7 (-15 -2410 ((-1227) |#1|))) (-1130)) (T -1226)) -((-2410 (*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1226 *3)) (-4 *3 (-1130))))) -(-10 -7 (-15 -2410 ((-1227) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3453 (((-665 (-1188)) $) 39 T ELT)) (-1931 (((-665 (-1188)) $ (-665 (-1188))) 42 T ELT)) (-3003 (((-665 (-1188)) $ (-665 (-1188))) 41 T ELT)) (-1966 (((-665 (-1188)) $ (-665 (-1188))) 43 T ELT)) (-3151 (((-665 (-1188)) $) 38 T ELT)) (-3748 (($) 28 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2282 (((-665 (-1188)) $) 40 T ELT)) (-1646 (((-1302) $ (-577)) 35 T ELT) (((-1302) $) 36 T ELT)) (-3341 (($ (-885) (-577)) 33 T ELT) (($ (-885) (-577) (-885)) NIL T ELT)) (-2410 (((-885) $) 49 T ELT) (($ (-885)) 32 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1227) (-13 (-1130) (-634 (-885)) (-10 -8 (-15 -3341 ($ (-885) (-577))) (-15 -3341 ($ (-885) (-577) (-885))) (-15 -1646 ((-1302) $ (-577))) (-15 -1646 ((-1302) $)) (-15 -2282 ((-665 (-1188)) $)) (-15 -3453 ((-665 (-1188)) $)) (-15 -3748 ($)) (-15 -3151 ((-665 (-1188)) $)) (-15 -1966 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1931 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -3003 ((-665 (-1188)) $ (-665 (-1188))))))) (T -1227)) -((-3341 (*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) (-3341 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) (-1646 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1227)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1227)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-3748 (*1 *1) (-5 *1 (-1227))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-1966 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-1931 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227)))) (-3003 (*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) -(-13 (-1130) (-634 (-885)) (-10 -8 (-15 -3341 ($ (-885) (-577))) (-15 -3341 ($ (-885) (-577) (-885))) (-15 -1646 ((-1302) $ (-577))) (-15 -1646 ((-1302) $)) (-15 -2282 ((-665 (-1188)) $)) (-15 -3453 ((-665 (-1188)) $)) (-15 -3748 ($)) (-15 -3151 ((-665 (-1188)) $)) (-15 -1966 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -1931 ((-665 (-1188)) $ (-665 (-1188)))) (-15 -3003 ((-665 (-1188)) $ (-665 (-1188)))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1651 (((-1188) $ (-1188)) 17 T ELT) (((-1188) $) 16 T ELT)) (-3456 (((-1188) $ (-1188)) 15 T ELT)) (-4216 (($ $ (-1188)) NIL T ELT)) (-2265 (((-3 (-1188) "failed") $) 11 T ELT)) (-1623 (((-1188) $) 8 T ELT)) (-2130 (((-3 (-1188) "failed") $) 12 T ELT)) (-2607 (((-1188) $) 9 T ELT)) (-2258 (($ (-401)) NIL T ELT) (($ (-401) (-1188)) NIL T ELT)) (-4105 (((-401) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-1368 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2201 (((-112) $) 21 T ELT)) (-2410 (((-885) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1228) (-13 (-376 (-401) (-1188)) (-10 -8 (-15 -1651 ((-1188) $ (-1188))) (-15 -1651 ((-1188) $)) (-15 -1623 ((-1188) $)) (-15 -2265 ((-3 (-1188) "failed") $)) (-15 -2130 ((-3 (-1188) "failed") $)) (-15 -2201 ((-112) $))))) (T -1228)) -((-1651 (*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-2265 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-2130 (*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228))))) -(-13 (-376 (-401) (-1188)) (-10 -8 (-15 -1651 ((-1188) $ (-1188))) (-15 -1651 ((-1188) $)) (-15 -1623 ((-1188) $)) (-15 -2265 ((-3 (-1188) "failed") $)) (-15 -2130 ((-3 (-1188) "failed") $)) (-15 -2201 ((-112) $)))) -((-4459 (((-3 (-577) "failed") |#1|) 19 T ELT)) (-3877 (((-3 (-577) "failed") |#1|) 14 T ELT)) (-3903 (((-577) (-1188)) 33 T ELT))) -(((-1229 |#1|) (-10 -7 (-15 -4459 ((-3 (-577) "failed") |#1|)) (-15 -3877 ((-3 (-577) "failed") |#1|)) (-15 -3903 ((-577) (-1188)))) (-1079)) (T -1229)) -((-3903 (*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-1229 *4)) (-4 *4 (-1079)))) (-3877 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079)))) (-4459 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079))))) -(-10 -7 (-15 -4459 ((-3 (-577) "failed") |#1|)) (-15 -3877 ((-3 (-577) "failed") |#1|)) (-15 -3903 ((-577) (-1188)))) -((-2565 (((-1163 (-228))) 9 T ELT))) -(((-1230) (-10 -7 (-15 -2565 ((-1163 (-228)))))) (T -1230)) -((-2565 (*1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1230))))) -(-10 -7 (-15 -2565 ((-1163 (-228))))) -((-2549 (($) 12 T ELT)) (-1575 (($ $) 36 T ELT)) (-1551 (($ $) 34 T ELT)) (-1413 (($ $) 26 T ELT)) (-1597 (($ $) 18 T ELT)) (-3501 (($ $) 16 T ELT)) (-1586 (($ $) 20 T ELT)) (-1446 (($ $) 31 T ELT)) (-1562 (($ $) 35 T ELT)) (-1423 (($ $) 30 T ELT))) -(((-1231 |#1|) (-10 -8 (-15 -2549 (|#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1423 (|#1| |#1|))) (-1232)) (T -1231)) -NIL -(-10 -8 (-15 -2549 (|#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1423 (|#1| |#1|))) -((-1501 (($ $) 26 T ELT)) (-1371 (($ $) 11 T ELT)) (-1477 (($ $) 27 T ELT)) (-1348 (($ $) 10 T ELT)) (-1527 (($ $) 28 T ELT)) (-1391 (($ $) 9 T ELT)) (-2549 (($) 16 T ELT)) (-3863 (($ $) 19 T ELT)) (-3585 (($ $) 18 T ELT)) (-1540 (($ $) 29 T ELT)) (-1402 (($ $) 8 T ELT)) (-1515 (($ $) 30 T ELT)) (-1381 (($ $) 7 T ELT)) (-1489 (($ $) 31 T ELT)) (-1360 (($ $) 6 T ELT)) (-1575 (($ $) 20 T ELT)) (-1435 (($ $) 32 T ELT)) (-1551 (($ $) 21 T ELT)) (-1413 (($ $) 33 T ELT)) (-1597 (($ $) 22 T ELT)) (-1456 (($ $) 34 T ELT)) (-3501 (($ $) 23 T ELT)) (-1466 (($ $) 35 T ELT)) (-1586 (($ $) 24 T ELT)) (-1446 (($ $) 36 T ELT)) (-1562 (($ $) 25 T ELT)) (-1423 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1232) (-141)) (T -1232)) -((-2549 (*1 *1) (-4 *1 (-1232)))) -(-13 (-1235) (-95) (-506) (-35) (-295) (-10 -8 (-15 -2549 ($)))) -(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-1235) . T)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 19 T ELT)) (-3902 (($ |#1| (-665 $)) 28 T ELT) (($ (-665 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-2641 (((-112) $ (-792)) 72 T ELT)) (-4411 ((|#1| $ |#1|) 14 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 13 (|has| $ (-6 -4500)) ELT)) (-2762 (($) NIL T CONST)) (-2728 (((-665 |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 64 T ELT)) (-2975 (((-112) $ $) 50 (|has| |#1| (-1130)) ELT)) (-1967 (((-112) $ (-792)) 62 T ELT)) (-4138 (((-665 |#1|) $) 78 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3417 (((-112) $ (-792)) 60 T ELT)) (-1503 (((-665 |#1|) $) 55 T ELT)) (-1452 (((-112) $) 53 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 107 T ELT)) (-2392 (((-112) $) 9 T ELT)) (-3414 (($) 10 T ELT)) (-2435 ((|#1| $ "value") NIL T ELT)) (-1722 (((-577) $ $) 48 T ELT)) (-2739 (((-665 $) $) 89 T ELT)) (-3975 (((-112) $ $) 110 T ELT)) (-1830 (((-665 $) $) 105 T ELT)) (-2398 (($ $) 106 T ELT)) (-2110 (((-112) $) 84 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 17 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3978 (($ $) 88 T ELT)) (-2410 (((-885) $) 91 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 12 T ELT)) (-3737 (((-112) $ $) 39 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 37 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 58 (|has| $ (-6 -4499)) ELT))) -(((-1233 |#1|) (-13 (-1040 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3902 ($ |#1| (-665 $))) (-15 -3902 ($ (-665 |#1|))) (-15 -3902 ($ |#1|)) (-15 -2110 ((-112) $)) (-15 -2398 ($ $)) (-15 -1830 ((-665 $) $)) (-15 -3975 ((-112) $ $)) (-15 -2739 ((-665 $) $)))) (-1130)) (T -1233)) -((-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130)))) (-3902 (*1 *1 *2 *3) (-12 (-5 *3 (-665 (-1233 *2))) (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) (-3902 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1233 *3)))) (-3902 (*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130)))) (-3975 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) -(-13 (-1040 |#1|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -3902 ($ |#1| (-665 $))) (-15 -3902 ($ (-665 |#1|))) (-15 -3902 ($ |#1|)) (-15 -2110 ((-112) $)) (-15 -2398 ($ $)) (-15 -1830 ((-665 $) $)) (-15 -3975 ((-112) $ $)) (-15 -2739 ((-665 $) $)))) -((-1371 (($ $) 15 T ELT)) (-1391 (($ $) 12 T ELT)) (-1402 (($ $) 10 T ELT)) (-1381 (($ $) 17 T ELT))) -(((-1234 |#1|) (-10 -8 (-15 -1381 (|#1| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1371 (|#1| |#1|))) (-1235)) (T -1234)) -NIL -(-10 -8 (-15 -1381 (|#1| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1371 (|#1| |#1|))) -((-1371 (($ $) 11 T ELT)) (-1348 (($ $) 10 T ELT)) (-1391 (($ $) 9 T ELT)) (-1402 (($ $) 8 T ELT)) (-1381 (($ $) 7 T ELT)) (-1360 (($ $) 6 T ELT))) -(((-1235) (-141)) (T -1235)) -((-1371 (*1 *1 *1) (-4 *1 (-1235))) (-1348 (*1 *1 *1) (-4 *1 (-1235))) (-1391 (*1 *1 *1) (-4 *1 (-1235))) (-1402 (*1 *1 *1) (-4 *1 (-1235))) (-1381 (*1 *1 *1) (-4 *1 (-1235))) (-1360 (*1 *1 *1) (-4 *1 (-1235)))) -(-13 (-10 -8 (-15 -1360 ($ $)) (-15 -1381 ($ $)) (-15 -1402 ($ $)) (-15 -1391 ($ $)) (-15 -1348 ($ $)) (-15 -1371 ($ $)))) -((-1862 ((|#2| |#2|) 98 T ELT)) (-1428 (((-112) |#2|) 29 T ELT)) (-2821 ((|#2| |#2|) 33 T ELT)) (-2833 ((|#2| |#2|) 35 T ELT)) (-3230 ((|#2| |#2| (-1206)) 92 T ELT) ((|#2| |#2|) 93 T ELT)) (-1437 (((-171 |#2|) |#2|) 31 T ELT)) (-3434 ((|#2| |#2| (-1206)) 94 T ELT) ((|#2| |#2|) 95 T ELT))) -(((-1236 |#1| |#2|) (-10 -7 (-15 -3230 (|#2| |#2|)) (-15 -3230 (|#2| |#2| (-1206))) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1206))) (-15 -1862 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -2833 (|#2| |#2|)) (-15 -1428 ((-112) |#2|)) (-15 -1437 ((-171 |#2|) |#2|))) (-13 (-465) (-1068 (-577)) (-659 (-577))) (-13 (-27) (-1232) (-443 |#1|))) (T -1236)) -((-1437 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-171 *3)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) (-2833 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-3434 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) (-3230 (*1 *2 *2 *3) (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) (-3230 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) -(-10 -7 (-15 -3230 (|#2| |#2|)) (-15 -3230 (|#2| |#2| (-1206))) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1206))) (-15 -1862 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -2833 (|#2| |#2|)) (-15 -1428 ((-112) |#2|)) (-15 -1437 ((-171 |#2|) |#2|))) -((-2866 ((|#4| |#4| |#1|) 31 T ELT)) (-3023 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1237 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2866 (|#4| |#4| |#1|)) (-15 -3023 (|#4| |#4| |#1|))) (-569) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1237)) -((-3023 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2866 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(-10 -7 (-15 -2866 (|#4| |#4| |#1|)) (-15 -3023 (|#4| |#4| |#1|))) -((-1505 ((|#2| |#2|) 148 T ELT)) (-2302 ((|#2| |#2|) 145 T ELT)) (-3610 ((|#2| |#2|) 136 T ELT)) (-2473 ((|#2| |#2|) 133 T ELT)) (-2095 ((|#2| |#2|) 141 T ELT)) (-2997 ((|#2| |#2|) 129 T ELT)) (-3791 ((|#2| |#2|) 44 T ELT)) (-3505 ((|#2| |#2|) 105 T ELT)) (-1703 ((|#2| |#2|) 88 T ELT)) (-3657 ((|#2| |#2|) 143 T ELT)) (-3733 ((|#2| |#2|) 131 T ELT)) (-4364 ((|#2| |#2|) 153 T ELT)) (-2550 ((|#2| |#2|) 151 T ELT)) (-2773 ((|#2| |#2|) 152 T ELT)) (-3157 ((|#2| |#2|) 150 T ELT)) (-3432 ((|#2| |#2|) 163 T ELT)) (-3064 ((|#2| |#2|) 30 (-12 (|has| |#2| (-632 (-916 |#1|))) (|has| |#2| (-910 |#1|)) (|has| |#1| (-632 (-916 |#1|))) (|has| |#1| (-910 |#1|))) ELT)) (-3327 ((|#2| |#2|) 89 T ELT)) (-4362 ((|#2| |#2|) 154 T ELT)) (-4198 ((|#2| |#2|) 155 T ELT)) (-3853 ((|#2| |#2|) 142 T ELT)) (-1482 ((|#2| |#2|) 130 T ELT)) (-2059 ((|#2| |#2|) 149 T ELT)) (-4047 ((|#2| |#2|) 147 T ELT)) (-1558 ((|#2| |#2|) 137 T ELT)) (-3596 ((|#2| |#2|) 135 T ELT)) (-3841 ((|#2| |#2|) 139 T ELT)) (-1757 ((|#2| |#2|) 127 T ELT))) -(((-1238 |#1| |#2|) (-10 -7 (-15 -4198 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -3432 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -2997 (|#2| |#2|)) (-15 -2095 (|#2| |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -2550 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -4364 (|#2| |#2|)) (IF (|has| |#1| (-910 |#1|)) (IF (|has| |#1| (-632 (-916 |#1|))) (IF (|has| |#2| (-632 (-916 |#1|))) (IF (|has| |#2| (-910 |#1|)) (-15 -3064 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-465) (-13 (-443 |#1|) (-1232))) (T -1238)) -((-3064 (*1 *2 *2) (-12 (-4 *3 (-632 (-916 *3))) (-4 *3 (-910 *3)) (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-632 (-916 *3))) (-4 *2 (-910 *3)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4364 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2773 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2550 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3596 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2095 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2997 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3733 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4362 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3327 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-3432 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232))))) (-4198 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-443 *3) (-1232)))))) -(-10 -7 (-15 -4198 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -3432 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -3327 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3733 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -2997 (|#2| |#2|)) (-15 -2095 (|#2| |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -2550 (|#2| |#2|)) (-15 -2773 (|#2| |#2|)) (-15 -4364 (|#2| |#2|)) (IF (|has| |#1| (-910 |#1|)) (IF (|has| |#1| (-632 (-916 |#1|))) (IF (|has| |#2| (-632 (-916 |#1|))) (IF (|has| |#2| (-910 |#1|)) (-15 -3064 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1790 (((-112) |#5| $) 68 T ELT) (((-112) $) 110 T ELT)) (-1988 ((|#5| |#5| $) 83 T ELT)) (-4232 (($ (-1 (-112) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 127 T ELT)) (-3480 (((-665 |#5|) (-665 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81 T ELT)) (-2817 (((-3 $ "failed") (-665 |#5|)) 135 T ELT)) (-4197 (((-3 $ "failed") $) 120 T ELT)) (-3415 ((|#5| |#5| $) 102 T ELT)) (-4002 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36 T ELT)) (-2981 ((|#5| |#5| $) 106 T ELT)) (-2511 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77 T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#5|)) (|:| -2258 (-665 |#5|))) $) 63 T ELT)) (-4424 (((-112) |#5| $) 66 T ELT) (((-112) $) 111 T ELT)) (-1669 ((|#4| $) 116 T ELT)) (-2756 (((-3 |#5| "failed") $) 118 T ELT)) (-2327 (((-665 |#5|) $) 55 T ELT)) (-2982 (((-112) |#5| $) 75 T ELT) (((-112) $) 115 T ELT)) (-1502 ((|#5| |#5| $) 89 T ELT)) (-2220 (((-112) $ $) 29 T ELT)) (-2624 (((-112) |#5| $) 71 T ELT) (((-112) $) 113 T ELT)) (-4058 ((|#5| |#5| $) 86 T ELT)) (-4188 (((-3 |#5| "failed") $) 117 T ELT)) (-4013 (($ $ |#5|) 136 T ELT)) (-2776 (((-792) $) 60 T ELT)) (-2422 (($ (-665 |#5|)) 133 T ELT)) (-1799 (($ $ |#4|) 131 T ELT)) (-3139 (($ $ |#4|) 129 T ELT)) (-3680 (($ $) 128 T ELT)) (-2410 (((-885) $) NIL T ELT) (((-665 |#5|) $) 121 T ELT)) (-3050 (((-792) $) 140 T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51 T ELT)) (-3441 (((-112) $ (-1 (-112) |#5| (-665 |#5|))) 108 T ELT)) (-1801 (((-665 |#4|) $) 123 T ELT)) (-2306 (((-112) |#4| $) 126 T ELT)) (-2383 (((-112) $ $) 20 T ELT))) -(((-1239 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3050 ((-792) |#1|)) (-15 -4013 (|#1| |#1| |#5|)) (-15 -4232 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2306 ((-112) |#4| |#1|)) (-15 -1801 ((-665 |#4|) |#1|)) (-15 -4197 ((-3 |#1| "failed") |#1|)) (-15 -2756 ((-3 |#5| "failed") |#1|)) (-15 -4188 ((-3 |#5| "failed") |#1|)) (-15 -2981 (|#5| |#5| |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -3415 (|#5| |#5| |#1|)) (-15 -1502 (|#5| |#5| |#1|)) (-15 -4058 (|#5| |#5| |#1|)) (-15 -1988 (|#5| |#5| |#1|)) (-15 -3480 ((-665 |#5|) (-665 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2511 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2982 ((-112) |#1|)) (-15 -2624 ((-112) |#1|)) (-15 -1790 ((-112) |#1|)) (-15 -3441 ((-112) |#1| (-1 (-112) |#5| (-665 |#5|)))) (-15 -2982 ((-112) |#5| |#1|)) (-15 -2624 ((-112) |#5| |#1|)) (-15 -1790 ((-112) |#5| |#1|)) (-15 -4002 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4424 ((-112) |#1|)) (-15 -4424 ((-112) |#5| |#1|)) (-15 -3717 ((-2 (|:| -1624 (-665 |#5|)) (|:| -2258 (-665 |#5|))) |#1|)) (-15 -2776 ((-792) |#1|)) (-15 -2327 ((-665 |#5|) |#1|)) (-15 -4003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2852 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2852 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2220 ((-112) |#1| |#1|)) (-15 -1799 (|#1| |#1| |#4|)) (-15 -3139 (|#1| |#1| |#4|)) (-15 -1669 (|#4| |#1|)) (-15 -2817 ((-3 |#1| "failed") (-665 |#5|))) (-15 -2410 ((-665 |#5|) |#1|)) (-15 -2422 (|#1| (-665 |#5|))) (-15 -2511 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2511 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4232 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2511 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) (-1240 |#2| |#3| |#4| |#5|) (-569) (-814) (-870) (-1095 |#2| |#3| |#4|)) (T -1239)) -NIL -(-10 -8 (-15 -3050 ((-792) |#1|)) (-15 -4013 (|#1| |#1| |#5|)) (-15 -4232 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2306 ((-112) |#4| |#1|)) (-15 -1801 ((-665 |#4|) |#1|)) (-15 -4197 ((-3 |#1| "failed") |#1|)) (-15 -2756 ((-3 |#5| "failed") |#1|)) (-15 -4188 ((-3 |#5| "failed") |#1|)) (-15 -2981 (|#5| |#5| |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -3415 (|#5| |#5| |#1|)) (-15 -1502 (|#5| |#5| |#1|)) (-15 -4058 (|#5| |#5| |#1|)) (-15 -1988 (|#5| |#5| |#1|)) (-15 -3480 ((-665 |#5|) (-665 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2511 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2982 ((-112) |#1|)) (-15 -2624 ((-112) |#1|)) (-15 -1790 ((-112) |#1|)) (-15 -3441 ((-112) |#1| (-1 (-112) |#5| (-665 |#5|)))) (-15 -2982 ((-112) |#5| |#1|)) (-15 -2624 ((-112) |#5| |#1|)) (-15 -1790 ((-112) |#5| |#1|)) (-15 -4002 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4424 ((-112) |#1|)) (-15 -4424 ((-112) |#5| |#1|)) (-15 -3717 ((-2 (|:| -1624 (-665 |#5|)) (|:| -2258 (-665 |#5|))) |#1|)) (-15 -2776 ((-792) |#1|)) (-15 -2327 ((-665 |#5|) |#1|)) (-15 -4003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2852 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4003 ((-3 (-2 (|:| |bas| |#1|) (|:| -2852 (-665 |#5|))) "failed") (-665 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2220 ((-112) |#1| |#1|)) (-15 -1799 (|#1| |#1| |#4|)) (-15 -3139 (|#1| |#1| |#4|)) (-15 -1669 (|#4| |#1|)) (-15 -2817 ((-3 |#1| "failed") (-665 |#5|))) (-15 -2410 ((-665 |#5|) |#1|)) (-15 -2422 (|#1| (-665 |#5|))) (-15 -2511 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2511 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4232 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2511 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2410 ((-885) |#1|)) (-15 -2383 ((-112) |#1| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) 86 T ELT)) (-4202 (((-665 $) (-665 |#4|)) 87 T ELT)) (-2948 (((-665 |#3|) $) 34 T ELT)) (-3294 (((-112) $) 27 T ELT)) (-1567 (((-112) $) 18 (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-1988 ((|#4| |#4| $) 93 T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-2641 (((-112) $ (-792)) 45 T ELT)) (-4232 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2762 (($) 46 T CONST)) (-1760 (((-112) $) 23 (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) 25 (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) 24 (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) 26 (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) 19 (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) 20 (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) 37 T ELT)) (-3514 (($ (-665 |#4|)) 36 T ELT)) (-4197 (((-3 $ "failed") $) 83 T ELT)) (-3415 ((|#4| |#4| $) 90 T ELT)) (-3860 (($ $) 69 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#4| $) 68 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-2981 ((|#4| |#4| $) 88 T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) 106 T ELT)) (-2728 (((-665 |#4|) $) 53 (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-1669 ((|#3| $) 35 T ELT)) (-1967 (((-112) $ (-792)) 44 T ELT)) (-4138 (((-665 |#4|) $) 54 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2850 (((-665 |#3|) $) 33 T ELT)) (-2746 (((-112) |#3| $) 32 T ELT)) (-3417 (((-112) $ (-792)) 43 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-2756 (((-3 |#4| "failed") $) 84 T ELT)) (-2327 (((-665 |#4|) $) 108 T ELT)) (-2982 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-1502 ((|#4| |#4| $) 91 T ELT)) (-2220 (((-112) $ $) 111 T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-4058 ((|#4| |#4| $) 92 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4188 (((-3 |#4| "failed") $) 85 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-3276 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4013 (($ $ |#4|) 78 T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) 39 T ELT)) (-2392 (((-112) $) 42 T ELT)) (-3414 (($) 41 T ELT)) (-2776 (((-792) $) 107 T ELT)) (-4323 (((-792) |#4| $) 55 (-12 (|has| |#4| (-1130)) (|has| $ (-6 -4499))) ELT) (((-792) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) 40 T ELT)) (-3341 (((-549) $) 70 (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) 61 T ELT)) (-1799 (($ $ |#3|) 29 T ELT)) (-3139 (($ $ |#3|) 31 T ELT)) (-3680 (($ $) 89 T ELT)) (-1600 (($ $ |#3|) 30 T ELT)) (-2410 (((-885) $) 12 T ELT) (((-665 |#4|) $) 38 T ELT)) (-3050 (((-792) $) 77 (|has| |#3| (-380)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) 99 T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) 82 T ELT)) (-2306 (((-112) |#3| $) 81 T ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-3224 (((-792) $) 47 (|has| $ (-6 -4499)) ELT))) -(((-1240 |#1| |#2| |#3| |#4|) (-141) (-569) (-814) (-870) (-1095 |t#1| |t#2| |t#3|)) (T -1240)) -((-2220 (*1 *2 *1 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-4003 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2852 (-665 *8)))) (-5 *3 (-665 *8)) (-4 *1 (-1240 *5 *6 *7 *8)))) (-4003 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2852 (-665 *9)))) (-5 *3 (-665 *9)) (-4 *1 (-1240 *6 *7 *8 *9)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *6)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-792)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-2 (|:| -1624 (-665 *6)) (|:| -2258 (-665 *6)))))) (-4424 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-4424 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-4002 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1240 *5 *6 *7 *3)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)))) (-1790 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2624 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-2982 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-665 *7))) (-4 *1 (-1240 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) (-2511 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1240 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *2 (-1095 *5 *6 *7)))) (-3480 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1240 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)))) (-1988 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4058 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-1502 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-3415 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-3680 (*1 *1 *1) (-12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) (-2981 (*1 *2 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4202 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) (-4 *1 (-1240 *4 *5 *6 *7)))) (-1872 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-665 (-2 (|:| -1624 *1) (|:| -2258 (-665 *7))))) (-5 *3 (-665 *7)) (-4 *1 (-1240 *4 *5 *6 *7)))) (-4188 (*1 *2 *1) (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-2756 (*1 *2 *1) (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4197 (*1 *1 *1) (|partial| -12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) (-2306 (*1 *2 *3 *1) (-12 (-4 *1 (-1240 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112)))) (-4232 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1240 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *3 (-870)) (-4 *2 (-1095 *4 *5 *3)))) (-3276 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *5 (-380)) (-5 *2 (-792))))) -(-13 (-1006 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4499) (-6 -4500) (-15 -2220 ((-112) $ $)) (-15 -4003 ((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |t#4|))) "failed") (-665 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4003 ((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |t#4|))) "failed") (-665 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2327 ((-665 |t#4|) $)) (-15 -2776 ((-792) $)) (-15 -3717 ((-2 (|:| -1624 (-665 |t#4|)) (|:| -2258 (-665 |t#4|))) $)) (-15 -4424 ((-112) |t#4| $)) (-15 -4424 ((-112) $)) (-15 -4002 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1790 ((-112) |t#4| $)) (-15 -2624 ((-112) |t#4| $)) (-15 -2982 ((-112) |t#4| $)) (-15 -3441 ((-112) $ (-1 (-112) |t#4| (-665 |t#4|)))) (-15 -1790 ((-112) $)) (-15 -2624 ((-112) $)) (-15 -2982 ((-112) $)) (-15 -2511 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3480 ((-665 |t#4|) (-665 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1988 (|t#4| |t#4| $)) (-15 -4058 (|t#4| |t#4| $)) (-15 -1502 (|t#4| |t#4| $)) (-15 -3415 (|t#4| |t#4| $)) (-15 -3680 ($ $)) (-15 -2981 (|t#4| |t#4| $)) (-15 -4202 ((-665 $) (-665 |t#4|))) (-15 -1872 ((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |t#4|)))) (-665 |t#4|))) (-15 -4188 ((-3 |t#4| "failed") $)) (-15 -2756 ((-3 |t#4| "failed") $)) (-15 -4197 ((-3 $ "failed") $)) (-15 -1801 ((-665 |t#3|) $)) (-15 -2306 ((-112) |t#3| $)) (-15 -4232 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3276 ((-3 $ "failed") $ |t#4|)) (-15 -4013 ($ $ |t#4|)) (IF (|has| |t#3| (-380)) (-15 -3050 ((-792) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-631 (-665 |#4|)) . T) ((-631 (-885)) . T) ((-152 |#4|) . T) ((-632 (-549)) |has| |#4| (-632 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ((-1006 |#1| |#2| |#3| |#4|) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1206)) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1477 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1527 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1768 (((-980 |#1|) $ (-792)) 17 T ELT) (((-980 |#1|) $ (-792) (-792)) NIL T ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-792) $ (-1206)) NIL T ELT) (((-792) $ (-1206) (-792)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ $ (-665 (-1206)) (-665 (-544 (-1206)))) NIL T ELT) (($ $ (-1206) (-544 (-1206))) NIL T ELT) (($ |#1| (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3863 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3491 (($ $ (-1206)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1609 (($ (-1 $) (-1206) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4013 (($ $ (-792)) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3585 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (($ $ (-1206) $) NIL T ELT) (($ $ (-665 (-1206)) (-665 $)) NIL T ELT) (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT)) (-2030 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-2776 (((-544 (-1206)) $) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-1206)) NIL T ELT) (($ (-980 |#1|)) NIL T ELT)) (-2778 ((|#1| $ (-544 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (((-980 |#1|) $ (-792)) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-1675 (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1241 |#1|) (-13 (-761 |#1| (-1206)) (-10 -8 (-15 -2778 ((-980 |#1|) $ (-792))) (-15 -2410 ($ (-1206))) (-15 -2410 ($ (-980 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $ (-1206) |#1|)) (-15 -1609 ($ (-1 $) (-1206) |#1|))) |%noBranch|))) (-1079)) (T -1241)) -((-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-980 *4)) (-5 *1 (-1241 *4)) (-4 *4 (-1079)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-1079)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-5 *1 (-1241 *3)))) (-3491 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)))) (-1609 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1241 *4))) (-5 *3 (-1206)) (-5 *1 (-1241 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079))))) -(-13 (-761 |#1| (-1206)) (-10 -8 (-15 -2778 ((-980 |#1|) $ (-792))) (-15 -2410 ($ (-1206))) (-15 -2410 ($ (-980 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $ (-1206) |#1|)) (-15 -1609 ($ (-1 $) (-1206) |#1|))) |%noBranch|))) -((-4266 (($ |#1| (-665 (-665 (-971 (-228)))) (-112)) 19 T ELT)) (-2719 (((-112) $ (-112)) 18 T ELT)) (-1563 (((-112) $) 17 T ELT)) (-4077 (((-665 (-665 (-971 (-228)))) $) 13 T ELT)) (-2936 ((|#1| $) 8 T ELT)) (-4270 (((-112) $) 15 T ELT))) -(((-1242 |#1|) (-10 -8 (-15 -2936 (|#1| $)) (-15 -4077 ((-665 (-665 (-971 (-228)))) $)) (-15 -4270 ((-112) $)) (-15 -1563 ((-112) $)) (-15 -2719 ((-112) $ (-112))) (-15 -4266 ($ |#1| (-665 (-665 (-971 (-228)))) (-112)))) (-1004)) (T -1242)) -((-4266 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-112)) (-5 *1 (-1242 *2)) (-4 *2 (-1004)))) (-2719 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-4270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-1242 *3)) (-4 *3 (-1004)))) (-2936 (*1 *2 *1) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1004))))) -(-10 -8 (-15 -2936 (|#1| $)) (-15 -4077 ((-665 (-665 (-971 (-228)))) $)) (-15 -4270 ((-112) $)) (-15 -1563 ((-112) $)) (-15 -2719 ((-112) $ (-112))) (-15 -4266 ($ |#1| (-665 (-665 (-971 (-228)))) (-112)))) -((-1997 (((-971 (-228)) (-971 (-228))) 31 T ELT)) (-4414 (((-971 (-228)) (-228) (-228) (-228) (-228)) 10 T ELT)) (-2099 (((-665 (-971 (-228))) (-971 (-228)) (-971 (-228)) (-971 (-228)) (-228) (-665 (-665 (-228)))) 56 T ELT)) (-3511 (((-228) (-971 (-228)) (-971 (-228))) 27 T ELT)) (-4437 (((-971 (-228)) (-971 (-228)) (-971 (-228))) 28 T ELT)) (-2276 (((-665 (-665 (-228))) (-577)) 44 T ELT)) (-2483 (((-971 (-228)) (-971 (-228)) (-971 (-228))) 26 T ELT)) (-2471 (((-971 (-228)) (-971 (-228)) (-971 (-228))) 24 T ELT)) (* (((-971 (-228)) (-228) (-971 (-228))) 22 T ELT))) -(((-1243) (-10 -7 (-15 -4414 ((-971 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-971 (-228)) (-228) (-971 (-228)))) (-15 -2471 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -2483 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -3511 ((-228) (-971 (-228)) (-971 (-228)))) (-15 -4437 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -1997 ((-971 (-228)) (-971 (-228)))) (-15 -2276 ((-665 (-665 (-228))) (-577))) (-15 -2099 ((-665 (-971 (-228))) (-971 (-228)) (-971 (-228)) (-971 (-228)) (-228) (-665 (-665 (-228))))))) (T -1243)) -((-2099 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-665 (-665 (-228)))) (-5 *4 (-228)) (-5 *2 (-665 (-971 *4))) (-5 *1 (-1243)) (-5 *3 (-971 *4)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-1243)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (-4437 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (-3511 (*1 *2 *3 *3) (-12 (-5 *3 (-971 (-228))) (-5 *2 (-228)) (-5 *1 (-1243)))) (-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (-2471 (*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-971 (-228))) (-5 *3 (-228)) (-5 *1 (-1243)))) (-4414 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)) (-5 *3 (-228))))) -(-10 -7 (-15 -4414 ((-971 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-971 (-228)) (-228) (-971 (-228)))) (-15 -2471 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -2483 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -3511 ((-228) (-971 (-228)) (-971 (-228)))) (-15 -4437 ((-971 (-228)) (-971 (-228)) (-971 (-228)))) (-15 -1997 ((-971 (-228)) (-971 (-228)))) (-15 -2276 ((-665 (-665 (-228))) (-577))) (-15 -2099 ((-665 (-971 (-228))) (-971 (-228)) (-971 (-228)) (-971 (-228)) (-228) (-665 (-665 (-228)))))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-4232 ((|#1| $ (-792)) 18 T ELT)) (-3490 (((-792) $) 13 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-2410 (((-986 |#1|) $) 12 T ELT) (($ (-986 |#1|)) 11 T ELT) (((-885) $) 29 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-2383 (((-112) $ $) 22 (|has| |#1| (-1130)) ELT))) -(((-1244 |#1|) (-13 (-503 (-986 |#1|)) (-10 -8 (-15 -4232 (|#1| $ (-792))) (-15 -3490 ((-792) $)) (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) (-1247)) (T -1244)) -((-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-1244 *2)) (-4 *2 (-1247)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1244 *3)) (-4 *3 (-1247))))) -(-13 (-503 (-986 |#1|)) (-10 -8 (-15 -4232 (|#1| $ (-792))) (-15 -3490 ((-792) $)) (IF (|has| |#1| (-631 (-885))) (-6 (-631 (-885))) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|))) -((-3166 (((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)) (-577)) 94 T ELT)) (-2016 (((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|))) 86 T ELT)) (-2236 (((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|))) 70 T ELT))) -(((-1245 |#1|) (-10 -7 (-15 -2016 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -2236 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -3166 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)) (-577)))) (-361)) (T -1245)) -((-3166 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1202 (-1202 *5)))) (-5 *1 (-1245 *5)) (-5 *3 (-1202 (-1202 *5))))) (-2236 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4))))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4)))))) -(-10 -7 (-15 -2016 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -2236 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)))) (-15 -3166 ((-431 (-1202 (-1202 |#1|))) (-1202 (-1202 |#1|)) (-577)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 9 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1246) (-1113)) (T -1246)) -NIL -(-1113) -NIL -(((-1247) (-141)) (T -1247)) -NIL -(-13 (-10 -7 (-6 -3873))) -((-1541 (((-112)) 18 T ELT)) (-3091 (((-1302) (-665 |#1|) (-665 |#1|)) 22 T ELT) (((-1302) (-665 |#1|)) 23 T ELT)) (-1967 (((-112) |#1| |#1|) 37 (|has| |#1| (-870)) ELT)) (-3417 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29 T ELT) (((-3 (-112) "failed") |#1| |#1|) 27 T ELT)) (-4090 ((|#1| (-665 |#1|)) 38 (|has| |#1| (-870)) ELT) ((|#1| (-665 |#1|) (-1 (-112) |#1| |#1|)) 32 T ELT)) (-1693 (((-2 (|:| -3413 (-665 |#1|)) (|:| -4100 (-665 |#1|)))) 20 T ELT))) -(((-1248 |#1|) (-10 -7 (-15 -3091 ((-1302) (-665 |#1|))) (-15 -3091 ((-1302) (-665 |#1|) (-665 |#1|))) (-15 -1693 ((-2 (|:| -3413 (-665 |#1|)) (|:| -4100 (-665 |#1|))))) (-15 -3417 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3417 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4090 (|#1| (-665 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1541 ((-112))) (IF (|has| |#1| (-870)) (PROGN (-15 -4090 (|#1| (-665 |#1|))) (-15 -1967 ((-112) |#1| |#1|))) |%noBranch|)) (-1130)) (T -1248)) -((-1967 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-870)) (-4 *3 (-1130)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-870)) (-5 *1 (-1248 *2)))) (-1541 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1248 *2)) (-4 *2 (-1130)))) (-3417 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1130)) (-5 *2 (-112)) (-5 *1 (-1248 *3)))) (-3417 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) (-1693 (*1 *2) (-12 (-5 *2 (-2 (|:| -3413 (-665 *3)) (|:| -4100 (-665 *3)))) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) (-5 *1 (-1248 *4)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) (-5 *1 (-1248 *4))))) -(-10 -7 (-15 -3091 ((-1302) (-665 |#1|))) (-15 -3091 ((-1302) (-665 |#1|) (-665 |#1|))) (-15 -1693 ((-2 (|:| -3413 (-665 |#1|)) (|:| -4100 (-665 |#1|))))) (-15 -3417 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3417 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4090 (|#1| (-665 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1541 ((-112))) (IF (|has| |#1| (-870)) (PROGN (-15 -4090 (|#1| (-665 |#1|))) (-15 -1967 ((-112) |#1| |#1|))) |%noBranch|)) -((-3915 (((-1302) (-665 (-1206)) (-665 (-1206))) 14 T ELT) (((-1302) (-665 (-1206))) 12 T ELT)) (-2669 (((-1302)) 16 T ELT)) (-4336 (((-2 (|:| -4100 (-665 (-1206))) (|:| -3413 (-665 (-1206))))) 20 T ELT))) -(((-1249) (-10 -7 (-15 -3915 ((-1302) (-665 (-1206)))) (-15 -3915 ((-1302) (-665 (-1206)) (-665 (-1206)))) (-15 -4336 ((-2 (|:| -4100 (-665 (-1206))) (|:| -3413 (-665 (-1206)))))) (-15 -2669 ((-1302))))) (T -1249)) -((-2669 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1249)))) (-4336 (*1 *2) (-12 (-5 *2 (-2 (|:| -4100 (-665 (-1206))) (|:| -3413 (-665 (-1206))))) (-5 *1 (-1249)))) (-3915 (*1 *2 *3 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249))))) -(-10 -7 (-15 -3915 ((-1302) (-665 (-1206)))) (-15 -3915 ((-1302) (-665 (-1206)) (-665 (-1206)))) (-15 -4336 ((-2 (|:| -4100 (-665 (-1206))) (|:| -3413 (-665 (-1206)))))) (-15 -2669 ((-1302)))) -((-4456 (($ $) 17 T ELT)) (-1632 (((-112) $) 28 T ELT))) -(((-1250 |#1|) (-10 -8 (-15 -4456 (|#1| |#1|)) (-15 -1632 ((-112) |#1|))) (-1251)) (T -1250)) -NIL -(-10 -8 (-15 -4456 (|#1| |#1|)) (-15 -1632 ((-112) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 57 T ELT)) (-4240 (((-431 $) $) 58 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1632 (((-112) $) 59 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2799 (((-431 $) $) 56 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT))) -(((-1251) (-141)) (T -1251)) -((-1632 (*1 *2 *1) (-12 (-4 *1 (-1251)) (-5 *2 (-112)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251)))) (-4456 (*1 *1 *1) (-4 *1 (-1251))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251))))) -(-13 (-465) (-10 -8 (-15 -1632 ((-112) $)) (-15 -4240 ((-431 $) $)) (-15 -4456 ($ $)) (-15 -2799 ((-431 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-667 (-577)) . T) ((-667 $) . T) ((-669 $) . T) ((-661 $) . T) ((-738 $) . T) ((-747) . T) ((-1081 $) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-1866 (($ $ $) NIL T ELT)) (-1854 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-1252) (-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528)))) (T -1252)) -((-1854 (*1 *1 *1 *1) (-5 *1 (-1252))) (-1866 (*1 *1 *1 *1) (-5 *1 (-1252))) (-2762 (*1 *1) (-5 *1 (-1252)))) -(-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 9 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 7 T ELT))) +(((-1215) (-1131)) (T -1215)) +NIL +(-1131) +((-4460 (((-666 (-666 (-981 |#1|))) (-666 (-421 (-981 |#1|))) (-666 (-1207))) 69 T ELT)) (-2096 (((-666 (-306 (-421 (-981 |#1|)))) (-306 (-421 (-981 |#1|)))) 80 T ELT) (((-666 (-306 (-421 (-981 |#1|)))) (-421 (-981 |#1|))) 76 T ELT) (((-666 (-306 (-421 (-981 |#1|)))) (-306 (-421 (-981 |#1|))) (-1207)) 81 T ELT) (((-666 (-306 (-421 (-981 |#1|)))) (-421 (-981 |#1|)) (-1207)) 75 T ELT) (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-306 (-421 (-981 |#1|))))) 106 T ELT) (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-421 (-981 |#1|)))) 105 T ELT) (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-306 (-421 (-981 |#1|)))) (-666 (-1207))) 107 T ELT) (((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-421 (-981 |#1|))) (-666 (-1207))) 104 T ELT))) +(((-1216 |#1|) (-10 -7 (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-306 (-421 (-981 |#1|)))) (-666 (-1207)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-421 (-981 |#1|))))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-306 (-421 (-981 |#1|)))))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-421 (-981 |#1|)) (-1207))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-306 (-421 (-981 |#1|))) (-1207))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-421 (-981 |#1|)))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-306 (-421 (-981 |#1|))))) (-15 -4460 ((-666 (-666 (-981 |#1|))) (-666 (-421 (-981 |#1|))) (-666 (-1207))))) (-570)) (T -1216)) +((-4460 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) (-4 *5 (-570)) (-5 *2 (-666 (-666 (-981 *5)))) (-5 *1 (-1216 *5)))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-666 (-306 (-421 (-981 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-306 (-421 (-981 *4)))))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-666 (-306 (-421 (-981 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-421 (-981 *4))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-570)) (-5 *2 (-666 (-306 (-421 (-981 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-306 (-421 (-981 *5)))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-570)) (-5 *2 (-666 (-306 (-421 (-981 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-421 (-981 *5))))) (-2096 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) (-5 *1 (-1216 *4)) (-5 *3 (-666 (-306 (-421 (-981 *4))))))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-666 (-421 (-981 *4)))) (-4 *4 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) (-5 *1 (-1216 *4)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-666 (-1207))) (-4 *5 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) (-5 *1 (-1216 *5)) (-5 *3 (-666 (-306 (-421 (-981 *5))))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) (-4 *5 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) (-5 *1 (-1216 *5))))) +(-10 -7 (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-421 (-981 |#1|))) (-666 (-1207)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-306 (-421 (-981 |#1|)))) (-666 (-1207)))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-421 (-981 |#1|))))) (-15 -2096 ((-666 (-666 (-306 (-421 (-981 |#1|))))) (-666 (-306 (-421 (-981 |#1|)))))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-421 (-981 |#1|)) (-1207))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-306 (-421 (-981 |#1|))) (-1207))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-421 (-981 |#1|)))) (-15 -2096 ((-666 (-306 (-421 (-981 |#1|)))) (-306 (-421 (-981 |#1|))))) (-15 -4460 ((-666 (-666 (-981 |#1|))) (-666 (-421 (-981 |#1|))) (-666 (-1207))))) +((-2178 (((-1189)) 7 T ELT)) (-3568 (((-1189)) 11 T CONST)) (-2298 (((-1303) (-1189)) 13 T ELT)) (-3159 (((-1189)) 8 T CONST)) (-1651 (((-132)) 10 T CONST))) +(((-1217) (-13 (-1248) (-10 -7 (-15 -2178 ((-1189))) (-15 -3159 ((-1189)) -1529) (-15 -1651 ((-132)) -1529) (-15 -3568 ((-1189)) -1529) (-15 -2298 ((-1303) (-1189)))))) (T -1217)) +((-2178 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-3159 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-1651 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217)))) (-3568 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217))))) +(-13 (-1248) (-10 -7 (-15 -2178 ((-1189))) (-15 -3159 ((-1189)) -1529) (-15 -1651 ((-132)) -1529) (-15 -3568 ((-1189)) -1529) (-15 -2298 ((-1303) (-1189))))) +((-3823 (((-666 (-666 |#1|)) (-666 (-666 |#1|)) (-666 (-666 (-666 |#1|)))) 56 T ELT)) (-3628 (((-666 (-666 (-666 |#1|))) (-666 (-666 |#1|))) 38 T ELT)) (-1516 (((-1219 (-666 |#1|)) (-666 |#1|)) 49 T ELT)) (-3265 (((-666 (-666 |#1|)) (-666 |#1|)) 45 T ELT)) (-2483 (((-2 (|:| |f1| (-666 |#1|)) (|:| |f2| (-666 (-666 (-666 |#1|)))) (|:| |f3| (-666 (-666 |#1|))) (|:| |f4| (-666 (-666 (-666 |#1|))))) (-666 (-666 (-666 |#1|)))) 53 T ELT)) (-4367 (((-2 (|:| |f1| (-666 |#1|)) (|:| |f2| (-666 (-666 (-666 |#1|)))) (|:| |f3| (-666 (-666 |#1|))) (|:| |f4| (-666 (-666 (-666 |#1|))))) (-666 |#1|) (-666 (-666 (-666 |#1|))) (-666 (-666 |#1|)) (-666 (-666 (-666 |#1|))) (-666 (-666 (-666 |#1|))) (-666 (-666 (-666 |#1|)))) 52 T ELT)) (-2060 (((-666 (-666 |#1|)) (-666 (-666 |#1|))) 43 T ELT)) (-3335 (((-666 |#1|) (-666 |#1|)) 46 T ELT)) (-3672 (((-666 (-666 (-666 |#1|))) (-666 |#1|) (-666 (-666 (-666 |#1|)))) 32 T ELT)) (-1752 (((-666 (-666 (-666 |#1|))) (-1 (-112) |#1| |#1|) (-666 |#1|) (-666 (-666 (-666 |#1|)))) 29 T ELT)) (-3438 (((-2 (|:| |fs| (-112)) (|:| |sd| (-666 |#1|)) (|:| |td| (-666 (-666 |#1|)))) (-1 (-112) |#1| |#1|) (-666 |#1|) (-666 (-666 |#1|))) 24 T ELT)) (-3053 (((-666 (-666 |#1|)) (-666 (-666 (-666 |#1|)))) 58 T ELT)) (-2651 (((-666 (-666 |#1|)) (-1219 (-666 |#1|))) 60 T ELT))) +(((-1218 |#1|) (-10 -7 (-15 -3438 ((-2 (|:| |fs| (-112)) (|:| |sd| (-666 |#1|)) (|:| |td| (-666 (-666 |#1|)))) (-1 (-112) |#1| |#1|) (-666 |#1|) (-666 (-666 |#1|)))) (-15 -1752 ((-666 (-666 (-666 |#1|))) (-1 (-112) |#1| |#1|) (-666 |#1|) (-666 (-666 (-666 |#1|))))) (-15 -3672 ((-666 (-666 (-666 |#1|))) (-666 |#1|) (-666 (-666 (-666 |#1|))))) (-15 -3823 ((-666 (-666 |#1|)) (-666 (-666 |#1|)) (-666 (-666 (-666 |#1|))))) (-15 -3053 ((-666 (-666 |#1|)) (-666 (-666 (-666 |#1|))))) (-15 -2651 ((-666 (-666 |#1|)) (-1219 (-666 |#1|)))) (-15 -3628 ((-666 (-666 (-666 |#1|))) (-666 (-666 |#1|)))) (-15 -1516 ((-1219 (-666 |#1|)) (-666 |#1|))) (-15 -2060 ((-666 (-666 |#1|)) (-666 (-666 |#1|)))) (-15 -3265 ((-666 (-666 |#1|)) (-666 |#1|))) (-15 -3335 ((-666 |#1|) (-666 |#1|))) (-15 -4367 ((-2 (|:| |f1| (-666 |#1|)) (|:| |f2| (-666 (-666 (-666 |#1|)))) (|:| |f3| (-666 (-666 |#1|))) (|:| |f4| (-666 (-666 (-666 |#1|))))) (-666 |#1|) (-666 (-666 (-666 |#1|))) (-666 (-666 |#1|)) (-666 (-666 (-666 |#1|))) (-666 (-666 (-666 |#1|))) (-666 (-666 (-666 |#1|))))) (-15 -2483 ((-2 (|:| |f1| (-666 |#1|)) (|:| |f2| (-666 (-666 (-666 |#1|)))) (|:| |f3| (-666 (-666 |#1|))) (|:| |f4| (-666 (-666 (-666 |#1|))))) (-666 (-666 (-666 |#1|)))))) (-871)) (T -1218)) +((-2483 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-2 (|:| |f1| (-666 *4)) (|:| |f2| (-666 (-666 (-666 *4)))) (|:| |f3| (-666 (-666 *4))) (|:| |f4| (-666 (-666 (-666 *4)))))) (-5 *1 (-1218 *4)) (-5 *3 (-666 (-666 (-666 *4)))))) (-4367 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-871)) (-5 *3 (-666 *6)) (-5 *5 (-666 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-666 *5)) (|:| |f3| *5) (|:| |f4| (-666 *5)))) (-5 *1 (-1218 *6)) (-5 *4 (-666 *5)))) (-3335 (*1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-1218 *3)))) (-3265 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-666 (-666 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-666 *4)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-871)) (-5 *1 (-1218 *3)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-1219 (-666 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-666 *4)))) (-3628 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-666 (-666 (-666 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-666 (-666 *4))))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1219 (-666 *4))) (-4 *4 (-871)) (-5 *2 (-666 (-666 *4))) (-5 *1 (-1218 *4)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-666 (-666 (-666 *4)))) (-5 *2 (-666 (-666 *4))) (-5 *1 (-1218 *4)) (-4 *4 (-871)))) (-3823 (*1 *2 *2 *3) (-12 (-5 *3 (-666 (-666 (-666 *4)))) (-5 *2 (-666 (-666 *4))) (-4 *4 (-871)) (-5 *1 (-1218 *4)))) (-3672 (*1 *2 *3 *2) (-12 (-5 *2 (-666 (-666 (-666 *4)))) (-5 *3 (-666 *4)) (-4 *4 (-871)) (-5 *1 (-1218 *4)))) (-1752 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-666 (-666 (-666 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-666 *5)) (-4 *5 (-871)) (-5 *1 (-1218 *5)))) (-3438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-871)) (-5 *4 (-666 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-666 *4)))) (-5 *1 (-1218 *6)) (-5 *5 (-666 *4))))) +(-10 -7 (-15 -3438 ((-2 (|:| |fs| (-112)) (|:| |sd| (-666 |#1|)) (|:| |td| (-666 (-666 |#1|)))) (-1 (-112) |#1| |#1|) (-666 |#1|) (-666 (-666 |#1|)))) (-15 -1752 ((-666 (-666 (-666 |#1|))) (-1 (-112) |#1| |#1|) (-666 |#1|) (-666 (-666 (-666 |#1|))))) (-15 -3672 ((-666 (-666 (-666 |#1|))) (-666 |#1|) (-666 (-666 (-666 |#1|))))) (-15 -3823 ((-666 (-666 |#1|)) (-666 (-666 |#1|)) (-666 (-666 (-666 |#1|))))) (-15 -3053 ((-666 (-666 |#1|)) (-666 (-666 (-666 |#1|))))) (-15 -2651 ((-666 (-666 |#1|)) (-1219 (-666 |#1|)))) (-15 -3628 ((-666 (-666 (-666 |#1|))) (-666 (-666 |#1|)))) (-15 -1516 ((-1219 (-666 |#1|)) (-666 |#1|))) (-15 -2060 ((-666 (-666 |#1|)) (-666 (-666 |#1|)))) (-15 -3265 ((-666 (-666 |#1|)) (-666 |#1|))) (-15 -3335 ((-666 |#1|) (-666 |#1|))) (-15 -4367 ((-2 (|:| |f1| (-666 |#1|)) (|:| |f2| (-666 (-666 (-666 |#1|)))) (|:| |f3| (-666 (-666 |#1|))) (|:| |f4| (-666 (-666 (-666 |#1|))))) (-666 |#1|) (-666 (-666 (-666 |#1|))) (-666 (-666 |#1|)) (-666 (-666 (-666 |#1|))) (-666 (-666 (-666 |#1|))) (-666 (-666 (-666 |#1|))))) (-15 -2483 ((-2 (|:| |f1| (-666 |#1|)) (|:| |f2| (-666 (-666 (-666 |#1|)))) (|:| |f3| (-666 (-666 |#1|))) (|:| |f4| (-666 (-666 (-666 |#1|))))) (-666 (-666 (-666 |#1|)))))) +((-3620 (($ (-666 (-666 |#1|))) 10 T ELT)) (-3692 (((-666 (-666 |#1|)) $) 11 T ELT)) (-2411 (((-886) $) 33 T ELT))) +(((-1219 |#1|) (-10 -8 (-15 -3620 ($ (-666 (-666 |#1|)))) (-15 -3692 ((-666 (-666 |#1|)) $)) (-15 -2411 ((-886) $))) (-1131)) (T -1219)) +((-2411 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1219 *3)) (-4 *3 (-1131)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-666 (-666 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1131)))) (-3620 (*1 *1 *2) (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-1219 *3))))) +(-10 -8 (-15 -3620 ($ (-666 (-666 |#1|)))) (-15 -3692 ((-666 (-666 |#1|)) $)) (-15 -2411 ((-886) $))) +((-3213 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3736 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-1794 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-2316 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-3244 (((-666 |#1|) $) NIL T ELT)) (-4300 (((-112) |#1| $) NIL T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-4030 (((-666 |#1|) $) NIL T ELT)) (-3023 (((-112) |#1| $) NIL T ELT)) (-4313 (((-1151) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| |#2| (-1131))) ELT)) (-4189 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL T ELT)) (-4291 (($ $ |#2|) NIL (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1338 (($) NIL T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) NIL (-12 (|has| $ (-6 -4500)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT) (((-793) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-2411 (((-886) $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886))) (|has| |#2| (-632 (-886)))) ELT)) (-2876 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) NIL T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) NIL (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) NIL (-2230 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1220 |#1| |#2|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) (-1131) (-1131)) (T -1220)) +NIL +(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4500))) +((-3213 (((-112) $ $) NIL T ELT)) (-4397 (($ |#1| (-55)) 10 T ELT)) (-4107 ((|#1| $) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1413 (((-112) $ |#1|) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1639 (((-55) $) 14 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1221 |#1|) (-13 (-857 |#1|) (-10 -8 (-15 -4397 ($ |#1| (-55))))) (-1131)) (T -1221)) +((-4397 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1131))))) +(-13 (-857 |#1|) (-10 -8 (-15 -4397 ($ |#1| (-55))))) +((-1998 ((|#1| (-666 |#1|)) 46 T ELT)) (-4478 ((|#1| |#1| (-578)) 24 T ELT)) (-3982 (((-1203 |#1|) |#1| (-950)) 20 T ELT))) +(((-1222 |#1|) (-10 -7 (-15 -1998 (|#1| (-666 |#1|))) (-15 -3982 ((-1203 |#1|) |#1| (-950))) (-15 -4478 (|#1| |#1| (-578)))) (-376)) (T -1222)) +((-4478 (*1 *2 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))) (-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-5 *2 (-1203 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-376)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376))))) +(-10 -7 (-15 -1998 (|#1| (-666 |#1|))) (-15 -3982 ((-1203 |#1|) |#1| (-950))) (-15 -4478 (|#1| |#1| (-578)))) +((-3736 (($) 10 T ELT) (($ (-666 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)))) 14 T ELT)) (-2631 (($ (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) $) 67 T ELT) (($ (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) 39 T ELT) (((-666 |#3|) $) 41 T ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-2743 (((-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) $) 60 T ELT)) (-4328 (($ (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) $) 16 T ELT)) (-4030 (((-666 |#2|) $) 19 T ELT)) (-3023 (((-112) |#2| $) 65 T ELT)) (-3668 (((-3 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) "failed") (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) 64 T ELT)) (-1994 (((-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) $) 69 T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 73 T ELT)) (-4322 (((-666 |#3|) $) 43 T ELT)) (-2436 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) NIL T ELT) (((-793) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) $) NIL T ELT) (((-793) |#3| $) NIL T ELT) (((-793) (-1 (-112) |#3|) $) 79 T ELT)) (-2411 (((-886) $) 27 T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) $) NIL T ELT) (((-112) (-1 (-112) |#3|) $) 71 T ELT)) (-2384 (((-112) $ $) 51 T ELT))) +(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -3611 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3736 (|#1| (-666 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))))) (-15 -3736 (|#1|)) (-15 -3611 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3439 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4324 ((-793) (-1 (-112) |#3|) |#1|)) (-15 -2729 ((-666 |#3|) |#1|)) (-15 -4324 ((-793) |#3| |#1|)) (-15 -2436 (|#3| |#1| |#2| |#3|)) (-15 -2436 (|#3| |#1| |#2|)) (-15 -4322 ((-666 |#3|) |#1|)) (-15 -3023 ((-112) |#2| |#1|)) (-15 -4030 ((-666 |#2|) |#1|)) (-15 -2631 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2631 (|#1| (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -2631 (|#1| (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -3668 ((-3 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) "failed") (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -2743 ((-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -4328 (|#1| (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -1994 ((-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -4324 ((-793) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -2729 ((-666 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -4324 ((-793) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -2808 ((-112) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -3673 ((-112) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -3439 (|#1| (-1 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -3611 (|#1| (-1 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|))) (-1224 |#2| |#3|) (-1131) (-1131)) (T -1223)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -2411 ((-886) |#1|)) (-15 -3611 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3736 (|#1| (-666 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))))) (-15 -3736 (|#1|)) (-15 -3611 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3439 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3673 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2808 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4324 ((-793) (-1 (-112) |#3|) |#1|)) (-15 -2729 ((-666 |#3|) |#1|)) (-15 -4324 ((-793) |#3| |#1|)) (-15 -2436 (|#3| |#1| |#2| |#3|)) (-15 -2436 (|#3| |#1| |#2|)) (-15 -4322 ((-666 |#3|) |#1|)) (-15 -3023 ((-112) |#2| |#1|)) (-15 -4030 ((-666 |#2|) |#1|)) (-15 -2631 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2631 (|#1| (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -2631 (|#1| (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -3668 ((-3 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) "failed") (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -2743 ((-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -4328 (|#1| (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -1994 ((-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -4324 ((-793) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) |#1|)) (-15 -2729 ((-666 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -4324 ((-793) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -2808 ((-112) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -3673 ((-112) (-1 (-112) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -3439 (|#1| (-1 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|)) (-15 -3611 (|#1| (-1 (-2 (|:| -3173 |#2|) (|:| -2754 |#3|)) (-2 (|:| -3173 |#2|) (|:| -2754 |#3|))) |#1|))) +((-3213 (((-112) $ $) 20 (-2230 (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ELT)) (-3736 (($) 73 T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 72 T ELT)) (-1794 (((-1303) $ |#1| |#1|) 100 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#2| $ |#1| |#2|) 74 T ELT)) (-1589 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 46 (|has| $ (-6 -4500)) ELT)) (-4233 (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 56 (|has| $ (-6 -4500)) ELT)) (-3257 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3534 (($) 7 T CONST)) (-3776 (($ $) 59 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT)) (-2631 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 48 (|has| $ (-6 -4500)) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 47 (|has| $ (-6 -4500)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-2737 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 55 (|has| $ (-6 -4500)) ELT)) (-2512 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 57 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 54 (|has| $ (-6 -4500)) ELT) (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 53 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#2| $ |#1|) 89 T ELT)) (-2729 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 31 (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) 80 (|has| $ (-6 -4500)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 ((|#1| $) 97 (|has| |#1| (-871)) ELT)) (-1441 (((-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 30 (|has| $ (-6 -4500)) ELT) (((-666 |#2|) $) 81 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 ((|#1| $) 96 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 35 (|has| $ (-6 -4501)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-2617 (((-1189) $) 23 (-2230 (|has| |#2| (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-3244 (((-666 |#1|) $) 64 T ELT)) (-4300 (((-112) |#1| $) 65 T ELT)) (-2743 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 40 T ELT)) (-4328 (($ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 41 T ELT)) (-4030 (((-666 |#1|) $) 94 T ELT)) (-3023 (((-112) |#1| $) 93 T ELT)) (-4313 (((-1151) $) 22 (-2230 (|has| |#2| (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT)) (-4189 ((|#2| $) 98 (|has| |#1| (-871)) ELT)) (-3668 (((-3 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) "failed") (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 52 T ELT)) (-4291 (($ $ |#2|) 99 (|has| $ (-6 -4501)) ELT)) (-1994 (((-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 42 T ELT)) (-2808 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 33 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))))) 27 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-306 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 26 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) 25 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 24 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) 87 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-306 |#2|)) 85 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT) (($ $ (-666 (-306 |#2|))) 84 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4500)) (|has| |#2| (-1131))) ELT)) (-4322 (((-666 |#2|) $) 92 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT)) (-1338 (($) 50 T ELT) (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 49 T ELT)) (-4324 (((-793) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) |#2| $) 82 (-12 (|has| |#2| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 60 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ELT)) (-2423 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 51 T ELT)) (-2411 (((-886) $) 18 (-2230 (|has| |#2| (-632 (-886))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886)))) ELT)) (-2876 (((-112) $ $) 21 (-2230 (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ELT)) (-3764 (($ (-666 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) 43 T ELT)) (-3673 (((-112) (-1 (-112) (-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) $) 34 (|has| $ (-6 -4500)) ELT) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (-2230 (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1224 |#1| |#2|) (-142) (-1131) (-1131)) (T -1224)) +((-2590 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) (-3736 (*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-666 (-2 (|:| -3173 *3) (|:| -2754 *4)))) (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *1 (-1224 *3 *4)))) (-3611 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +(-13 (-629 |t#1| |t#2|) (-618 |t#1| |t#2|) (-10 -8 (-15 -2590 (|t#2| $ |t#1| |t#2|)) (-15 -3736 ($)) (-15 -3736 ($ (-666 (-2 (|:| -3173 |t#1|) (|:| -2754 |t#2|))))) (-15 -3611 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -3173 |#1|) (|:| -2754 |#2|))) . T) ((-102) -2230 (|has| |#2| (-1131)) (|has| |#2| (-102)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-102))) ((-632 (-886)) -2230 (|has| |#2| (-1131)) (|has| |#2| (-632 (-886))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-632 (-886)))) ((-153 #0#) . T) ((-633 (-550)) |has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-633 (-550))) ((-233 #0#) . T) ((-242 #0#) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 #0#) -12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-503 #0#) . T) ((-503 |#2|) . T) ((-618 |#1| |#2|) . T) ((-528 #0# #0#) -12 (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-321 (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)))) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1131))) ((-629 |#1| |#2|) . T) ((-1131) -2230 (|has| |#2| (-1131)) (|has| (-2 (|:| -3173 |#1|) (|:| -2754 |#2|)) (-1131))) ((-1248) . T)) +((-4105 (((-112)) 29 T ELT)) (-2064 (((-1303) (-1189)) 31 T ELT)) (-3503 (((-112)) 41 T ELT)) (-1848 (((-1303)) 39 T ELT)) (-3104 (((-1303) (-1189) (-1189)) 30 T ELT)) (-3649 (((-112)) 42 T ELT)) (-4328 (((-1303) |#1| |#2|) 53 T ELT)) (-2497 (((-1303)) 26 T ELT)) (-1468 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3705 (((-1303)) 40 T ELT))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -2497 ((-1303))) (-15 -3104 ((-1303) (-1189) (-1189))) (-15 -2064 ((-1303) (-1189))) (-15 -1848 ((-1303))) (-15 -3705 ((-1303))) (-15 -4105 ((-112))) (-15 -3503 ((-112))) (-15 -3649 ((-112))) (-15 -1468 ((-3 |#2| "failed") |#1|)) (-15 -4328 ((-1303) |#1| |#2|))) (-1131) (-1131)) (T -1225)) +((-4328 (*1 *2 *3 *4) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-1468 (*1 *2 *3) (|partial| -12 (-4 *2 (-1131)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1131)))) (-3649 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-3503 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-4105 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-3705 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-1848 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)))) (-2497 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131))))) +(-10 -7 (-15 -2497 ((-1303))) (-15 -3104 ((-1303) (-1189) (-1189))) (-15 -2064 ((-1303) (-1189))) (-15 -1848 ((-1303))) (-15 -3705 ((-1303))) (-15 -4105 ((-112))) (-15 -3503 ((-112))) (-15 -3649 ((-112))) (-15 -1468 ((-3 |#2| "failed") |#1|)) (-15 -4328 ((-1303) |#1| |#2|))) +((-2133 (((-1189) (-1189)) 22 T ELT)) (-2937 (((-52) (-1189)) 25 T ELT))) +(((-1226) (-10 -7 (-15 -2937 ((-52) (-1189))) (-15 -2133 ((-1189) (-1189))))) (T -1226)) +((-2133 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-52)) (-5 *1 (-1226))))) +(-10 -7 (-15 -2937 ((-52) (-1189))) (-15 -2133 ((-1189) (-1189)))) +((-2411 (((-1228) |#1|) 11 T ELT))) +(((-1227 |#1|) (-10 -7 (-15 -2411 ((-1228) |#1|))) (-1131)) (T -1227)) +((-2411 (*1 *2 *3) (-12 (-5 *2 (-1228)) (-5 *1 (-1227 *3)) (-4 *3 (-1131))))) +(-10 -7 (-15 -2411 ((-1228) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3455 (((-666 (-1189)) $) 39 T ELT)) (-3311 (((-666 (-1189)) $ (-666 (-1189))) 42 T ELT)) (-3323 (((-666 (-1189)) $ (-666 (-1189))) 41 T ELT)) (-2351 (((-666 (-1189)) $ (-666 (-1189))) 43 T ELT)) (-4171 (((-666 (-1189)) $) 38 T ELT)) (-3749 (($) 28 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2481 (((-666 (-1189)) $) 40 T ELT)) (-1647 (((-1303) $ (-578)) 35 T ELT) (((-1303) $) 36 T ELT)) (-3343 (($ (-886) (-578)) 33 T ELT) (($ (-886) (-578) (-886)) NIL T ELT)) (-2411 (((-886) $) 49 T ELT) (($ (-886)) 32 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1228) (-13 (-1131) (-635 (-886)) (-10 -8 (-15 -3343 ($ (-886) (-578))) (-15 -3343 ($ (-886) (-578) (-886))) (-15 -1647 ((-1303) $ (-578))) (-15 -1647 ((-1303) $)) (-15 -2481 ((-666 (-1189)) $)) (-15 -3455 ((-666 (-1189)) $)) (-15 -3749 ($)) (-15 -4171 ((-666 (-1189)) $)) (-15 -2351 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3311 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3323 ((-666 (-1189)) $ (-666 (-1189))))))) (T -1228)) +((-3343 (*1 *1 *2 *3) (-12 (-5 *2 (-886)) (-5 *3 (-578)) (-5 *1 (-1228)))) (-3343 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-578)) (-5 *1 (-1228)))) (-1647 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1228)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1228)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228)))) (-3749 (*1 *1) (-5 *1 (-1228))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228)))) (-2351 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228)))) (-3311 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228)))) (-3323 (*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228))))) +(-13 (-1131) (-635 (-886)) (-10 -8 (-15 -3343 ($ (-886) (-578))) (-15 -3343 ($ (-886) (-578) (-886))) (-15 -1647 ((-1303) $ (-578))) (-15 -1647 ((-1303) $)) (-15 -2481 ((-666 (-1189)) $)) (-15 -3455 ((-666 (-1189)) $)) (-15 -3749 ($)) (-15 -4171 ((-666 (-1189)) $)) (-15 -2351 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3311 ((-666 (-1189)) $ (-666 (-1189)))) (-15 -3323 ((-666 (-1189)) $ (-666 (-1189)))))) +((-3213 (((-112) $ $) NIL T ELT)) (-2345 (((-1189) $ (-1189)) 17 T ELT) (((-1189) $) 16 T ELT)) (-2070 (((-1189) $ (-1189)) 15 T ELT)) (-4089 (($ $ (-1189)) NIL T ELT)) (-2301 (((-3 (-1189) "failed") $) 11 T ELT)) (-2089 (((-1189) $) 8 T ELT)) (-3507 (((-3 (-1189) "failed") $) 12 T ELT)) (-2464 (((-1189) $) 9 T ELT)) (-2259 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-4107 (((-402) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2882 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2941 (((-112) $) 21 T ELT)) (-2411 (((-886) $) NIL T ELT)) (-3250 (($ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1229) (-13 (-377 (-402) (-1189)) (-10 -8 (-15 -2345 ((-1189) $ (-1189))) (-15 -2345 ((-1189) $)) (-15 -2089 ((-1189) $)) (-15 -2301 ((-3 (-1189) "failed") $)) (-15 -3507 ((-3 (-1189) "failed") $)) (-15 -2941 ((-112) $))))) (T -1229)) +((-2345 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2301 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-3507 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229))))) +(-13 (-377 (-402) (-1189)) (-10 -8 (-15 -2345 ((-1189) $ (-1189))) (-15 -2345 ((-1189) $)) (-15 -2089 ((-1189) $)) (-15 -2301 ((-3 (-1189) "failed") $)) (-15 -3507 ((-3 (-1189) "failed") $)) (-15 -2941 ((-112) $)))) +((-1490 (((-3 (-578) "failed") |#1|) 19 T ELT)) (-3932 (((-3 (-578) "failed") |#1|) 14 T ELT)) (-2887 (((-578) (-1189)) 33 T ELT))) +(((-1230 |#1|) (-10 -7 (-15 -1490 ((-3 (-578) "failed") |#1|)) (-15 -3932 ((-3 (-578) "failed") |#1|)) (-15 -2887 ((-578) (-1189)))) (-1080)) (T -1230)) +((-2887 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-578)) (-5 *1 (-1230 *4)) (-4 *4 (-1080)))) (-3932 (*1 *2 *3) (|partial| -12 (-5 *2 (-578)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))) (-1490 (*1 *2 *3) (|partial| -12 (-5 *2 (-578)) (-5 *1 (-1230 *3)) (-4 *3 (-1080))))) +(-10 -7 (-15 -1490 ((-3 (-578) "failed") |#1|)) (-15 -3932 ((-3 (-578) "failed") |#1|)) (-15 -2887 ((-578) (-1189)))) +((-3324 (((-1164 (-229))) 9 T ELT))) +(((-1231) (-10 -7 (-15 -3324 ((-1164 (-229)))))) (T -1231)) +((-3324 (*1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1231))))) +(-10 -7 (-15 -3324 ((-1164 (-229))))) +((-2551 (($) 12 T ELT)) (-1576 (($ $) 36 T ELT)) (-1552 (($ $) 34 T ELT)) (-1414 (($ $) 26 T ELT)) (-1598 (($ $) 18 T ELT)) (-3502 (($ $) 16 T ELT)) (-1587 (($ $) 20 T ELT)) (-1447 (($ $) 31 T ELT)) (-1564 (($ $) 35 T ELT)) (-1424 (($ $) 30 T ELT))) +(((-1232 |#1|) (-10 -8 (-15 -2551 (|#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1598 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1414 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -1424 (|#1| |#1|))) (-1233)) (T -1232)) +NIL +(-10 -8 (-15 -2551 (|#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1598 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1414 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -1424 (|#1| |#1|))) +((-1502 (($ $) 26 T ELT)) (-1372 (($ $) 11 T ELT)) (-1478 (($ $) 27 T ELT)) (-1349 (($ $) 10 T ELT)) (-1528 (($ $) 28 T ELT)) (-1392 (($ $) 9 T ELT)) (-2551 (($) 16 T ELT)) (-3864 (($ $) 19 T ELT)) (-3587 (($ $) 18 T ELT)) (-1541 (($ $) 29 T ELT)) (-1403 (($ $) 8 T ELT)) (-1515 (($ $) 30 T ELT)) (-1382 (($ $) 7 T ELT)) (-1489 (($ $) 31 T ELT)) (-1361 (($ $) 6 T ELT)) (-1576 (($ $) 20 T ELT)) (-1436 (($ $) 32 T ELT)) (-1552 (($ $) 21 T ELT)) (-1414 (($ $) 33 T ELT)) (-1598 (($ $) 22 T ELT)) (-1456 (($ $) 34 T ELT)) (-3502 (($ $) 23 T ELT)) (-1467 (($ $) 35 T ELT)) (-1587 (($ $) 24 T ELT)) (-1447 (($ $) 36 T ELT)) (-1564 (($ $) 25 T ELT)) (-1424 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1233) (-142)) (T -1233)) +((-2551 (*1 *1) (-4 *1 (-1233)))) +(-13 (-1236) (-95) (-507) (-35) (-296) (-10 -8 (-15 -2551 ($)))) +(((-35) . T) ((-95) . T) ((-296) . T) ((-507) . T) ((-1236) . T)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 19 T ELT)) (-3903 (($ |#1| (-666 $)) 28 T ELT) (($ (-666 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-1628 (((-112) $ (-793)) 72 T ELT)) (-4227 ((|#1| $ |#1|) 14 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 13 (|has| $ (-6 -4501)) ELT)) (-3534 (($) NIL T CONST)) (-2729 (((-666 |#1|) $) 77 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 64 T ELT)) (-2989 (((-112) $ $) 50 (|has| |#1| (-1131)) ELT)) (-2363 (((-112) $ (-793)) 62 T ELT)) (-1441 (((-666 |#1|) $) 78 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-1719 (((-112) $ (-793)) 60 T ELT)) (-1504 (((-666 |#1|) $) 55 T ELT)) (-3821 (((-112) $) 53 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 107 T ELT)) (-4186 (((-112) $) 9 T ELT)) (-1696 (($) 10 T ELT)) (-2436 ((|#1| $ "value") NIL T ELT)) (-1842 (((-578) $ $) 48 T ELT)) (-1380 (((-666 $) $) 89 T ELT)) (-2336 (((-112) $ $) 110 T ELT)) (-3617 (((-666 $) $) 105 T ELT)) (-4250 (($ $) 106 T ELT)) (-1368 (((-112) $) 84 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 17 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3979 (($ $) 88 T ELT)) (-2411 (((-886) $) 91 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 12 T ELT)) (-1849 (((-112) $ $) 39 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 37 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 58 (|has| $ (-6 -4500)) ELT))) +(((-1234 |#1|) (-13 (-1041 |#1|) (-10 -8 (-6 -4500) (-6 -4501) (-15 -3903 ($ |#1| (-666 $))) (-15 -3903 ($ (-666 |#1|))) (-15 -3903 ($ |#1|)) (-15 -1368 ((-112) $)) (-15 -4250 ($ $)) (-15 -3617 ((-666 $) $)) (-15 -2336 ((-112) $ $)) (-15 -1380 ((-666 $) $)))) (-1131)) (T -1234)) +((-1368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1131)))) (-3903 (*1 *1 *2 *3) (-12 (-5 *3 (-666 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-1234 *3)))) (-3903 (*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) (-4250 (*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-666 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131)))) (-2336 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1131)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-666 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) +(-13 (-1041 |#1|) (-10 -8 (-6 -4500) (-6 -4501) (-15 -3903 ($ |#1| (-666 $))) (-15 -3903 ($ (-666 |#1|))) (-15 -3903 ($ |#1|)) (-15 -1368 ((-112) $)) (-15 -4250 ($ $)) (-15 -3617 ((-666 $) $)) (-15 -2336 ((-112) $ $)) (-15 -1380 ((-666 $) $)))) +((-1372 (($ $) 15 T ELT)) (-1392 (($ $) 12 T ELT)) (-1403 (($ $) 10 T ELT)) (-1382 (($ $) 17 T ELT))) +(((-1235 |#1|) (-10 -8 (-15 -1382 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1372 (|#1| |#1|))) (-1236)) (T -1235)) +NIL +(-10 -8 (-15 -1382 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1372 (|#1| |#1|))) +((-1372 (($ $) 11 T ELT)) (-1349 (($ $) 10 T ELT)) (-1392 (($ $) 9 T ELT)) (-1403 (($ $) 8 T ELT)) (-1382 (($ $) 7 T ELT)) (-1361 (($ $) 6 T ELT))) +(((-1236) (-142)) (T -1236)) +((-1372 (*1 *1 *1) (-4 *1 (-1236))) (-1349 (*1 *1 *1) (-4 *1 (-1236))) (-1392 (*1 *1 *1) (-4 *1 (-1236))) (-1403 (*1 *1 *1) (-4 *1 (-1236))) (-1382 (*1 *1 *1) (-4 *1 (-1236))) (-1361 (*1 *1 *1) (-4 *1 (-1236)))) +(-13 (-10 -8 (-15 -1361 ($ $)) (-15 -1382 ($ $)) (-15 -1403 ($ $)) (-15 -1392 ($ $)) (-15 -1349 ($ $)) (-15 -1372 ($ $)))) +((-3936 ((|#2| |#2|) 98 T ELT)) (-2147 (((-112) |#2|) 29 T ELT)) (-2823 ((|#2| |#2|) 33 T ELT)) (-2834 ((|#2| |#2|) 35 T ELT)) (-3706 ((|#2| |#2| (-1207)) 92 T ELT) ((|#2| |#2|) 93 T ELT)) (-2130 (((-172 |#2|) |#2|) 31 T ELT)) (-1878 ((|#2| |#2| (-1207)) 94 T ELT) ((|#2| |#2|) 95 T ELT))) +(((-1237 |#1| |#2|) (-10 -7 (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| (-1207))) (-15 -1878 (|#2| |#2|)) (-15 -1878 (|#2| |#2| (-1207))) (-15 -3936 (|#2| |#2|)) (-15 -2823 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2147 ((-112) |#2|)) (-15 -2130 ((-172 |#2|) |#2|))) (-13 (-466) (-1069 (-578)) (-660 (-578))) (-13 (-27) (-1233) (-444 |#1|))) (T -1237)) +((-2130 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-172 *3)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) (-2147 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-112)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) (-2823 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) (-1878 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) (-3706 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3)))))) +(-10 -7 (-15 -3706 (|#2| |#2|)) (-15 -3706 (|#2| |#2| (-1207))) (-15 -1878 (|#2| |#2|)) (-15 -1878 (|#2| |#2| (-1207))) (-15 -3936 (|#2| |#2|)) (-15 -2823 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2147 ((-112) |#2|)) (-15 -2130 ((-172 |#2|) |#2|))) +((-3285 ((|#4| |#4| |#1|) 31 T ELT)) (-2233 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1238 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3285 (|#4| |#4| |#1|)) (-15 -2233 (|#4| |#4| |#1|))) (-570) (-386 |#1|) (-386 |#1|) (-709 |#1| |#2| |#3|)) (T -1238)) +((-2233 (*1 *2 *2 *3) (-12 (-4 *3 (-570)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) (-3285 (*1 *2 *2 *3) (-12 (-4 *3 (-570)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(-10 -7 (-15 -3285 (|#4| |#4| |#1|)) (-15 -2233 (|#4| |#4| |#1|))) +((-3519 ((|#2| |#2|) 148 T ELT)) (-2670 ((|#2| |#2|) 145 T ELT)) (-3047 ((|#2| |#2|) 136 T ELT)) (-3688 ((|#2| |#2|) 133 T ELT)) (-4362 ((|#2| |#2|) 141 T ELT)) (-3263 ((|#2| |#2|) 129 T ELT)) (-4287 ((|#2| |#2|) 44 T ELT)) (-1341 ((|#2| |#2|) 105 T ELT)) (-1662 ((|#2| |#2|) 88 T ELT)) (-2253 ((|#2| |#2|) 143 T ELT)) (-1830 ((|#2| |#2|) 131 T ELT)) (-1851 ((|#2| |#2|) 153 T ELT)) (-3158 ((|#2| |#2|) 151 T ELT)) (-3650 ((|#2| |#2|) 152 T ELT)) (-4224 ((|#2| |#2|) 150 T ELT)) (-1854 ((|#2| |#2|) 163 T ELT)) (-2621 ((|#2| |#2|) 30 (-12 (|has| |#2| (-633 (-917 |#1|))) (|has| |#2| (-911 |#1|)) (|has| |#1| (-633 (-917 |#1|))) (|has| |#1| (-911 |#1|))) ELT)) (-3387 ((|#2| |#2|) 89 T ELT)) (-1831 ((|#2| |#2|) 154 T ELT)) (-4199 ((|#2| |#2|) 155 T ELT)) (-3707 ((|#2| |#2|) 142 T ELT)) (-3079 ((|#2| |#2|) 130 T ELT)) (-2094 ((|#2| |#2|) 149 T ELT)) (-1816 ((|#2| |#2|) 147 T ELT)) (-2700 ((|#2| |#2|) 137 T ELT)) (-2891 ((|#2| |#2|) 135 T ELT)) (-3577 ((|#2| |#2|) 139 T ELT)) (-4124 ((|#2| |#2|) 127 T ELT))) +(((-1239 |#1| |#2|) (-10 -7 (-15 -4199 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -1341 (|#2| |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -2700 (|#2| |#2|)) (-15 -2094 (|#2| |#2|)) (-15 -3079 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3688 (|#2| |#2|)) (-15 -2670 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -4224 (|#2| |#2|)) (-15 -3158 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (IF (|has| |#1| (-911 |#1|)) (IF (|has| |#1| (-633 (-917 |#1|))) (IF (|has| |#2| (-633 (-917 |#1|))) (IF (|has| |#2| (-911 |#1|)) (-15 -2621 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-466) (-13 (-444 |#1|) (-1233))) (T -1239)) +((-2621 (*1 *2 *2) (-12 (-4 *3 (-633 (-917 *3))) (-4 *3 (-911 *3)) (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-633 (-917 *3))) (-4 *2 (-911 *3)) (-4 *2 (-13 (-444 *3) (-1233))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3158 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-4224 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-2670 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3688 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3047 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-4362 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3263 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-2094 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-2700 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3577 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-1831 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-4287 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-1341 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-1854 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233))))) (-4199 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-444 *3) (-1233)))))) +(-10 -7 (-15 -4199 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1854 (|#2| |#2|)) (-15 -1341 (|#2| |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -1831 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -2700 (|#2| |#2|)) (-15 -2094 (|#2| |#2|)) (-15 -3079 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -3263 (|#2| |#2|)) (-15 -4362 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -3688 (|#2| |#2|)) (-15 -2670 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -1816 (|#2| |#2|)) (-15 -4224 (|#2| |#2|)) (-15 -3158 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (IF (|has| |#1| (-911 |#1|)) (IF (|has| |#1| (-633 (-917 |#1|))) (IF (|has| |#2| (-633 (-917 |#1|))) (IF (|has| |#2| (-911 |#1|)) (-15 -2621 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-4409 (((-112) |#5| $) 68 T ELT) (((-112) $) 110 T ELT)) (-2596 ((|#5| |#5| $) 83 T ELT)) (-4233 (($ (-1 (-112) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 127 T ELT)) (-4271 (((-666 |#5|) (-666 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81 T ELT)) (-2818 (((-3 $ "failed") (-666 |#5|)) 135 T ELT)) (-4198 (((-3 $ "failed") $) 120 T ELT)) (-1707 ((|#5| |#5| $) 102 T ELT)) (-2582 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36 T ELT)) (-3069 ((|#5| |#5| $) 106 T ELT)) (-2512 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77 T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#5|)) (|:| -2259 (-666 |#5|))) $) 63 T ELT)) (-4308 (((-112) |#5| $) 66 T ELT) (((-112) $) 111 T ELT)) (-2537 ((|#4| $) 116 T ELT)) (-2757 (((-3 |#5| "failed") $) 118 T ELT)) (-1708 (((-666 |#5|) $) 55 T ELT)) (-3084 (((-112) |#5| $) 75 T ELT) (((-112) $) 115 T ELT)) (-3494 ((|#5| |#5| $) 89 T ELT)) (-3151 (((-112) $ $) 29 T ELT)) (-2643 (((-112) |#5| $) 71 T ELT) (((-112) $) 113 T ELT)) (-1922 ((|#5| |#5| $) 86 T ELT)) (-4189 (((-3 |#5| "failed") $) 117 T ELT)) (-2704 (($ $ |#5|) 136 T ELT)) (-3683 (((-793) $) 60 T ELT)) (-2423 (($ (-666 |#5|)) 133 T ELT)) (-1339 (($ $ |#4|) 131 T ELT)) (-2093 (($ $ |#4|) 129 T ELT)) (-2499 (($ $) 128 T ELT)) (-2411 (((-886) $) NIL T ELT) (((-666 |#5|) $) 121 T ELT)) (-2474 (((-793) $) 140 T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#5|))) "failed") (-666 |#5|) (-1 (-112) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#5|))) "failed") (-666 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51 T ELT)) (-1943 (((-112) $ (-1 (-112) |#5| (-666 |#5|))) 108 T ELT)) (-1362 (((-666 |#4|) $) 123 T ELT)) (-2714 (((-112) |#4| $) 126 T ELT)) (-2384 (((-112) $ $) 20 T ELT))) +(((-1240 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2474 ((-793) |#1|)) (-15 -2704 (|#1| |#1| |#5|)) (-15 -4233 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2714 ((-112) |#4| |#1|)) (-15 -1362 ((-666 |#4|) |#1|)) (-15 -4198 ((-3 |#1| "failed") |#1|)) (-15 -2757 ((-3 |#5| "failed") |#1|)) (-15 -4189 ((-3 |#5| "failed") |#1|)) (-15 -3069 (|#5| |#5| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -1707 (|#5| |#5| |#1|)) (-15 -3494 (|#5| |#5| |#1|)) (-15 -1922 (|#5| |#5| |#1|)) (-15 -2596 (|#5| |#5| |#1|)) (-15 -4271 ((-666 |#5|) (-666 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2512 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3084 ((-112) |#1|)) (-15 -2643 ((-112) |#1|)) (-15 -4409 ((-112) |#1|)) (-15 -1943 ((-112) |#1| (-1 (-112) |#5| (-666 |#5|)))) (-15 -3084 ((-112) |#5| |#1|)) (-15 -2643 ((-112) |#5| |#1|)) (-15 -4409 ((-112) |#5| |#1|)) (-15 -2582 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4308 ((-112) |#1|)) (-15 -4308 ((-112) |#5| |#1|)) (-15 -1661 ((-2 (|:| -1625 (-666 |#5|)) (|:| -2259 (-666 |#5|))) |#1|)) (-15 -3683 ((-793) |#1|)) (-15 -1708 ((-666 |#5|) |#1|)) (-15 -2595 ((-3 (-2 (|:| |bas| |#1|) (|:| -2853 (-666 |#5|))) "failed") (-666 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2595 ((-3 (-2 (|:| |bas| |#1|) (|:| -2853 (-666 |#5|))) "failed") (-666 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3151 ((-112) |#1| |#1|)) (-15 -1339 (|#1| |#1| |#4|)) (-15 -2093 (|#1| |#1| |#4|)) (-15 -2537 (|#4| |#1|)) (-15 -2818 ((-3 |#1| "failed") (-666 |#5|))) (-15 -2411 ((-666 |#5|) |#1|)) (-15 -2423 (|#1| (-666 |#5|))) (-15 -2512 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2512 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4233 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2512 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) (-1241 |#2| |#3| |#4| |#5|) (-570) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1240)) +NIL +(-10 -8 (-15 -2474 ((-793) |#1|)) (-15 -2704 (|#1| |#1| |#5|)) (-15 -4233 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2714 ((-112) |#4| |#1|)) (-15 -1362 ((-666 |#4|) |#1|)) (-15 -4198 ((-3 |#1| "failed") |#1|)) (-15 -2757 ((-3 |#5| "failed") |#1|)) (-15 -4189 ((-3 |#5| "failed") |#1|)) (-15 -3069 (|#5| |#5| |#1|)) (-15 -2499 (|#1| |#1|)) (-15 -1707 (|#5| |#5| |#1|)) (-15 -3494 (|#5| |#5| |#1|)) (-15 -1922 (|#5| |#5| |#1|)) (-15 -2596 (|#5| |#5| |#1|)) (-15 -4271 ((-666 |#5|) (-666 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2512 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3084 ((-112) |#1|)) (-15 -2643 ((-112) |#1|)) (-15 -4409 ((-112) |#1|)) (-15 -1943 ((-112) |#1| (-1 (-112) |#5| (-666 |#5|)))) (-15 -3084 ((-112) |#5| |#1|)) (-15 -2643 ((-112) |#5| |#1|)) (-15 -4409 ((-112) |#5| |#1|)) (-15 -2582 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4308 ((-112) |#1|)) (-15 -4308 ((-112) |#5| |#1|)) (-15 -1661 ((-2 (|:| -1625 (-666 |#5|)) (|:| -2259 (-666 |#5|))) |#1|)) (-15 -3683 ((-793) |#1|)) (-15 -1708 ((-666 |#5|) |#1|)) (-15 -2595 ((-3 (-2 (|:| |bas| |#1|) (|:| -2853 (-666 |#5|))) "failed") (-666 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2595 ((-3 (-2 (|:| |bas| |#1|) (|:| -2853 (-666 |#5|))) "failed") (-666 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3151 ((-112) |#1| |#1|)) (-15 -1339 (|#1| |#1| |#4|)) (-15 -2093 (|#1| |#1| |#4|)) (-15 -2537 (|#4| |#1|)) (-15 -2818 ((-3 |#1| "failed") (-666 |#5|))) (-15 -2411 ((-666 |#5|) |#1|)) (-15 -2423 (|#1| (-666 |#5|))) (-15 -2512 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2512 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4233 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2512 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2411 ((-886) |#1|)) (-15 -2384 ((-112) |#1| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) 86 T ELT)) (-3997 (((-666 $) (-666 |#4|)) 87 T ELT)) (-2949 (((-666 |#3|) $) 34 T ELT)) (-3039 (((-112) $) 27 T ELT)) (-2774 (((-112) $) 18 (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) 102 T ELT) (((-112) $) 98 T ELT)) (-2596 ((|#4| |#4| $) 93 T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-1628 (((-112) $ (-793)) 45 T ELT)) (-4233 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3534 (($) 46 T CONST)) (-4147 (((-112) $) 23 (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) 25 (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) 24 (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) 26 (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94 T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) 19 (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) 20 (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) 37 T ELT)) (-3516 (($ (-666 |#4|)) 36 T ELT)) (-4198 (((-3 $ "failed") $) 83 T ELT)) (-1707 ((|#4| |#4| $) 90 T ELT)) (-3776 (($ $) 69 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#4| $) 68 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103 T ELT)) (-3069 ((|#4| |#4| $) 88 T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95 T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) 106 T ELT)) (-2729 (((-666 |#4|) $) 53 (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) 105 T ELT) (((-112) $) 104 T ELT)) (-2537 ((|#3| $) 35 T ELT)) (-2363 (((-112) $ (-793)) 44 T ELT)) (-1441 (((-666 |#4|) $) 54 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3117 (((-666 |#3|) $) 33 T ELT)) (-1455 (((-112) |#3| $) 32 T ELT)) (-1719 (((-112) $ (-793)) 43 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2757 (((-3 |#4| "failed") $) 84 T ELT)) (-1708 (((-666 |#4|) $) 108 T ELT)) (-3084 (((-112) |#4| $) 100 T ELT) (((-112) $) 96 T ELT)) (-3494 ((|#4| |#4| $) 91 T ELT)) (-3151 (((-112) $ $) 111 T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) 101 T ELT) (((-112) $) 97 T ELT)) (-1922 ((|#4| |#4| $) 92 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4189 (((-3 |#4| "failed") $) 85 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62 T ELT)) (-2861 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2704 (($ $ |#4|) 78 T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) 39 T ELT)) (-4186 (((-112) $) 42 T ELT)) (-1696 (($) 41 T ELT)) (-3683 (((-793) $) 107 T ELT)) (-4324 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1131)) (|has| $ (-6 -4500))) ELT) (((-793) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) 40 T ELT)) (-3343 (((-550) $) 70 (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) 61 T ELT)) (-1339 (($ $ |#3|) 29 T ELT)) (-2093 (($ $ |#3|) 31 T ELT)) (-2499 (($ $) 89 T ELT)) (-3102 (($ $ |#3|) 30 T ELT)) (-2411 (((-886) $) 12 T ELT) (((-666 |#4|) $) 38 T ELT)) (-2474 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109 T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) 99 T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) 82 T ELT)) (-2714 (((-112) |#3| $) 81 T ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-3226 (((-793) $) 47 (|has| $ (-6 -4500)) ELT))) +(((-1241 |#1| |#2| |#3| |#4|) (-142) (-570) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1241)) +((-3151 (*1 *2 *1 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) (-2595 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2853 (-666 *8)))) (-5 *3 (-666 *8)) (-4 *1 (-1241 *5 *6 *7 *8)))) (-2595 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-570)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2853 (-666 *9)))) (-5 *3 (-666 *9)) (-4 *1 (-1241 *6 *7 *8 *9)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *6)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-793)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-2 (|:| -1625 (-666 *6)) (|:| -2259 (-666 *6)))))) (-4308 (*1 *2 *3 *1) (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-4308 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) (-2582 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1241 *5 *6 *7 *3)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-112)))) (-4409 (*1 *2 *3 *1) (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-2643 (*1 *2 *3 *1) (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-3084 (*1 *2 *3 *1) (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-1943 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-666 *7))) (-4 *1 (-1241 *4 *5 *6 *7)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)))) (-4409 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) (-2512 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1241 *5 *6 *7 *2)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *2 (-1096 *5 *6 *7)))) (-4271 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-666 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1241 *5 *6 *7 *8)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)))) (-2596 (*1 *2 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1922 (*1 *2 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3494 (*1 *2 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1707 (*1 *2 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2499 (*1 *1 *1) (-12 (-4 *1 (-1241 *2 *3 *4 *5)) (-4 *2 (-570)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))) (-3069 (*1 *2 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) (-4 *1 (-1241 *4 *5 *6 *7)))) (-4024 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-666 (-2 (|:| -1625 *1) (|:| -2259 (-666 *7))))) (-5 *3 (-666 *7)) (-4 *1 (-1241 *4 *5 *6 *7)))) (-4189 (*1 *2 *1) (|partial| -12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2757 (*1 *2 *1) (|partial| -12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-4198 (*1 *1 *1) (|partial| -12 (-4 *1 (-1241 *2 *3 *4 *5)) (-4 *2 (-570)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *5)))) (-2714 (*1 *2 *3 *1) (-12 (-4 *1 (-1241 *4 *5 *3 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-112)))) (-4233 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1241 *4 *5 *3 *2)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *2 (-1096 *4 *5 *3)))) (-2861 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2704 (*1 *1 *1 *2) (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-793))))) +(-13 (-1007 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4500) (-6 -4501) (-15 -3151 ((-112) $ $)) (-15 -2595 ((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |t#4|))) "failed") (-666 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2595 ((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |t#4|))) "failed") (-666 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1708 ((-666 |t#4|) $)) (-15 -3683 ((-793) $)) (-15 -1661 ((-2 (|:| -1625 (-666 |t#4|)) (|:| -2259 (-666 |t#4|))) $)) (-15 -4308 ((-112) |t#4| $)) (-15 -4308 ((-112) $)) (-15 -2582 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4409 ((-112) |t#4| $)) (-15 -2643 ((-112) |t#4| $)) (-15 -3084 ((-112) |t#4| $)) (-15 -1943 ((-112) $ (-1 (-112) |t#4| (-666 |t#4|)))) (-15 -4409 ((-112) $)) (-15 -2643 ((-112) $)) (-15 -3084 ((-112) $)) (-15 -2512 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4271 ((-666 |t#4|) (-666 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2596 (|t#4| |t#4| $)) (-15 -1922 (|t#4| |t#4| $)) (-15 -3494 (|t#4| |t#4| $)) (-15 -1707 (|t#4| |t#4| $)) (-15 -2499 ($ $)) (-15 -3069 (|t#4| |t#4| $)) (-15 -3997 ((-666 $) (-666 |t#4|))) (-15 -4024 ((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |t#4|)))) (-666 |t#4|))) (-15 -4189 ((-3 |t#4| "failed") $)) (-15 -2757 ((-3 |t#4| "failed") $)) (-15 -4198 ((-3 $ "failed") $)) (-15 -1362 ((-666 |t#3|) $)) (-15 -2714 ((-112) |t#3| $)) (-15 -4233 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2861 ((-3 $ "failed") $ |t#4|)) (-15 -2704 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -2474 ((-793) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-632 (-666 |#4|)) . T) ((-632 (-886)) . T) ((-153 |#4|) . T) ((-633 (-550)) |has| |#4| (-633 (-550))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1207)) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-1502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1478 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1528 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-1769 (((-981 |#1|) $ (-793)) 17 T ELT) (((-981 |#1|) $ (-793) (-793)) NIL T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-793) $ (-1207)) NIL T ELT) (((-793) $ (-1207) (-793)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ $ (-666 (-1207)) (-666 (-545 (-1207)))) NIL T ELT) (($ $ (-1207) (-545 (-1207))) NIL T ELT) (($ |#1| (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3864 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4371 (($ $ (-1207)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3208 (($ (-1 $) (-1207) |#1|) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2704 (($ $ (-793)) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (($ $ (-1207) $) NIL T ELT) (($ $ (-666 (-1207)) (-666 $)) NIL T ELT) (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT)) (-2031 (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3683 (((-545 (-1207)) $) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-1207)) NIL T ELT) (($ (-981 |#1|)) NIL T ELT)) (-3708 ((|#1| $ (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (((-981 |#1|) $ (-793)) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-1676 (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1242 |#1|) (-13 (-762 |#1| (-1207)) (-10 -8 (-15 -3708 ((-981 |#1|) $ (-793))) (-15 -2411 ($ (-1207))) (-15 -2411 ($ (-981 |#1|))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $ (-1207) |#1|)) (-15 -3208 ($ (-1 $) (-1207) |#1|))) |%noBranch|))) (-1080)) (T -1242)) +((-3708 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-981 *4)) (-5 *1 (-1242 *4)) (-4 *4 (-1080)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1242 *3)) (-4 *3 (-1080)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-981 *3)) (-4 *3 (-1080)) (-5 *1 (-1242 *3)))) (-4371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *1 (-1242 *3)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)))) (-3208 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1242 *4))) (-5 *3 (-1207)) (-5 *1 (-1242 *4)) (-4 *4 (-38 (-421 (-578)))) (-4 *4 (-1080))))) +(-13 (-762 |#1| (-1207)) (-10 -8 (-15 -3708 ((-981 |#1|) $ (-793))) (-15 -2411 ($ (-1207))) (-15 -2411 ($ (-981 |#1|))) (IF (|has| |#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $ (-1207) |#1|)) (-15 -3208 ($ (-1 $) (-1207) |#1|))) |%noBranch|))) +((-3337 (($ |#1| (-666 (-666 (-972 (-229)))) (-112)) 19 T ELT)) (-4337 (((-112) $ (-112)) 18 T ELT)) (-2730 (((-112) $) 17 T ELT)) (-2092 (((-666 (-666 (-972 (-229)))) $) 13 T ELT)) (-3911 ((|#1| $) 8 T ELT)) (-3383 (((-112) $) 15 T ELT))) +(((-1243 |#1|) (-10 -8 (-15 -3911 (|#1| $)) (-15 -2092 ((-666 (-666 (-972 (-229)))) $)) (-15 -3383 ((-112) $)) (-15 -2730 ((-112) $)) (-15 -4337 ((-112) $ (-112))) (-15 -3337 ($ |#1| (-666 (-666 (-972 (-229)))) (-112)))) (-1005)) (T -1243)) +((-3337 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-112)) (-5 *1 (-1243 *2)) (-4 *2 (-1005)))) (-4337 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-3911 (*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1005))))) +(-10 -8 (-15 -3911 (|#1| $)) (-15 -2092 ((-666 (-666 (-972 (-229)))) $)) (-15 -3383 ((-112) $)) (-15 -2730 ((-112) $)) (-15 -4337 ((-112) $ (-112))) (-15 -3337 ($ |#1| (-666 (-666 (-972 (-229)))) (-112)))) +((-2695 (((-972 (-229)) (-972 (-229))) 31 T ELT)) (-4414 (((-972 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-4404 (((-666 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-666 (-666 (-229)))) 56 T ELT)) (-1406 (((-229) (-972 (-229)) (-972 (-229))) 27 T ELT)) (-4431 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 28 T ELT)) (-2414 (((-666 (-666 (-229))) (-578)) 44 T ELT)) (-2484 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 26 T ELT)) (-2472 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 24 T ELT)) (* (((-972 (-229)) (-229) (-972 (-229))) 22 T ELT))) +(((-1244) (-10 -7 (-15 -4414 ((-972 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-972 (-229)) (-229) (-972 (-229)))) (-15 -2472 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2484 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -1406 ((-229) (-972 (-229)) (-972 (-229)))) (-15 -4431 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2695 ((-972 (-229)) (-972 (-229)))) (-15 -2414 ((-666 (-666 (-229))) (-578))) (-15 -4404 ((-666 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-666 (-666 (-229))))))) (T -1244)) +((-4404 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-666 (-666 (-229)))) (-5 *4 (-229)) (-5 *2 (-666 (-972 *4))) (-5 *1 (-1244)) (-5 *3 (-972 *4)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-578)) (-5 *2 (-666 (-666 (-229)))) (-5 *1 (-1244)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-4431 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-229)) (-5 *1 (-1244)))) (-2484 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-2472 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-972 (-229))) (-5 *3 (-229)) (-5 *1 (-1244)))) (-4414 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)) (-5 *3 (-229))))) +(-10 -7 (-15 -4414 ((-972 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-972 (-229)) (-229) (-972 (-229)))) (-15 -2472 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2484 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -1406 ((-229) (-972 (-229)) (-972 (-229)))) (-15 -4431 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2695 ((-972 (-229)) (-972 (-229)))) (-15 -2414 ((-666 (-666 (-229))) (-578))) (-15 -4404 ((-666 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-666 (-666 (-229)))))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4233 ((|#1| $ (-793)) 18 T ELT)) (-3492 (((-793) $) 13 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-2411 (((-987 |#1|) $) 12 T ELT) (($ (-987 |#1|)) 11 T ELT) (((-886) $) 29 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-2384 (((-112) $ $) 22 (|has| |#1| (-1131)) ELT))) +(((-1245 |#1|) (-13 (-504 (-987 |#1|)) (-10 -8 (-15 -4233 (|#1| $ (-793))) (-15 -3492 ((-793) $)) (IF (|has| |#1| (-632 (-886))) (-6 (-632 (-886))) |%noBranch|) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) (-1248)) (T -1245)) +((-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-1245 *2)) (-4 *2 (-1248)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1245 *3)) (-4 *3 (-1248))))) +(-13 (-504 (-987 |#1|)) (-10 -8 (-15 -4233 (|#1| $ (-793))) (-15 -3492 ((-793) $)) (IF (|has| |#1| (-632 (-886))) (-6 (-632 (-886))) |%noBranch|) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|))) +((-4305 (((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)) (-578)) 94 T ELT)) (-1701 (((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|))) 86 T ELT)) (-3306 (((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|))) 70 T ELT))) +(((-1246 |#1|) (-10 -7 (-15 -1701 ((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -3306 ((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -4305 ((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)) (-578)))) (-362)) (T -1246)) +((-4305 (*1 *2 *3 *4) (-12 (-5 *4 (-578)) (-4 *5 (-362)) (-5 *2 (-432 (-1203 (-1203 *5)))) (-5 *1 (-1246 *5)) (-5 *3 (-1203 (-1203 *5))))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-432 (-1203 (-1203 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1203 (-1203 *4))))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-362)) (-5 *2 (-432 (-1203 (-1203 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1203 (-1203 *4)))))) +(-10 -7 (-15 -1701 ((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -3306 ((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)))) (-15 -4305 ((-432 (-1203 (-1203 |#1|))) (-1203 (-1203 |#1|)) (-578)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 9 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1247) (-1114)) (T -1247)) +NIL +(-1114) +NIL +(((-1248) (-142)) (T -1248)) +NIL +(-13 (-10 -7 (-6 -3874))) +((-3844 (((-112)) 18 T ELT)) (-1659 (((-1303) (-666 |#1|) (-666 |#1|)) 22 T ELT) (((-1303) (-666 |#1|)) 23 T ELT)) (-2363 (((-112) |#1| |#1|) 37 (|has| |#1| (-871)) ELT)) (-1719 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29 T ELT) (((-3 (-112) "failed") |#1| |#1|) 27 T ELT)) (-2200 ((|#1| (-666 |#1|)) 38 (|has| |#1| (-871)) ELT) ((|#1| (-666 |#1|) (-1 (-112) |#1| |#1|)) 32 T ELT)) (-1565 (((-2 (|:| -1685 (-666 |#1|)) (|:| -4242 (-666 |#1|)))) 20 T ELT))) +(((-1249 |#1|) (-10 -7 (-15 -1659 ((-1303) (-666 |#1|))) (-15 -1659 ((-1303) (-666 |#1|) (-666 |#1|))) (-15 -1565 ((-2 (|:| -1685 (-666 |#1|)) (|:| -4242 (-666 |#1|))))) (-15 -1719 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1719 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2200 (|#1| (-666 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3844 ((-112))) (IF (|has| |#1| (-871)) (PROGN (-15 -2200 (|#1| (-666 |#1|))) (-15 -2363 ((-112) |#1| |#1|))) |%noBranch|)) (-1131)) (T -1249)) +((-2363 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3)) (-4 *3 (-871)) (-4 *3 (-1131)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-871)) (-5 *1 (-1249 *2)))) (-3844 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1249 *2)) (-4 *2 (-1131)))) (-1719 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-1249 *3)))) (-1719 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) (-1565 (*1 *2) (-12 (-5 *2 (-2 (|:| -1685 (-666 *3)) (|:| -4242 (-666 *3)))) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) (-1659 (*1 *2 *3 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) (-5 *1 (-1249 *4)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-666 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) (-5 *1 (-1249 *4))))) +(-10 -7 (-15 -1659 ((-1303) (-666 |#1|))) (-15 -1659 ((-1303) (-666 |#1|) (-666 |#1|))) (-15 -1565 ((-2 (|:| -1685 (-666 |#1|)) (|:| -4242 (-666 |#1|))))) (-15 -1719 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1719 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2200 (|#1| (-666 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3844 ((-112))) (IF (|has| |#1| (-871)) (PROGN (-15 -2200 (|#1| (-666 |#1|))) (-15 -2363 ((-112) |#1| |#1|))) |%noBranch|)) +((-3012 (((-1303) (-666 (-1207)) (-666 (-1207))) 14 T ELT) (((-1303) (-666 (-1207))) 12 T ELT)) (-1907 (((-1303)) 16 T ELT)) (-2761 (((-2 (|:| -4242 (-666 (-1207))) (|:| -1685 (-666 (-1207))))) 20 T ELT))) +(((-1250) (-10 -7 (-15 -3012 ((-1303) (-666 (-1207)))) (-15 -3012 ((-1303) (-666 (-1207)) (-666 (-1207)))) (-15 -2761 ((-2 (|:| -4242 (-666 (-1207))) (|:| -1685 (-666 (-1207)))))) (-15 -1907 ((-1303))))) (T -1250)) +((-1907 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250)))) (-2761 (*1 *2) (-12 (-5 *2 (-2 (|:| -4242 (-666 (-1207))) (|:| -1685 (-666 (-1207))))) (-5 *1 (-1250)))) (-3012 (*1 *2 *3 *3) (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250))))) +(-10 -7 (-15 -3012 ((-1303) (-666 (-1207)))) (-15 -3012 ((-1303) (-666 (-1207)) (-666 (-1207)))) (-15 -2761 ((-2 (|:| -4242 (-666 (-1207))) (|:| -1685 (-666 (-1207)))))) (-15 -1907 ((-1303)))) +((-1457 (($ $) 17 T ELT)) (-2159 (((-112) $) 28 T ELT))) +(((-1251 |#1|) (-10 -8 (-15 -1457 (|#1| |#1|)) (-15 -2159 ((-112) |#1|))) (-1252)) (T -1251)) +NIL +(-10 -8 (-15 -1457 (|#1| |#1|)) (-15 -2159 ((-112) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 57 T ELT)) (-3034 (((-432 $) $) 58 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2159 (((-112) $) 59 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2800 (((-432 $) $) 56 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT))) +(((-1252) (-142)) (T -1252)) +((-2159 (*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-112)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-432 *1)) (-4 *1 (-1252)))) (-1457 (*1 *1 *1) (-4 *1 (-1252))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-432 *1)) (-4 *1 (-1252))))) +(-13 (-466) (-10 -8 (-15 -2159 ((-112) $)) (-15 -3034 ((-432 $) $)) (-15 -1457 ($ $)) (-15 -2800 ((-432 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-570) . T) ((-668 (-578)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-1867 (($ $ $) NIL T ELT)) (-1855 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-1253) (-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529)))) (T -1253)) +((-1855 (*1 *1 *1 *1) (-5 *1 (-1253))) (-1867 (*1 *1 *1 *1) (-5 *1 (-1253))) (-3534 (*1 *1) (-5 *1 (-1253)))) +(-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529))) ((|NonNegativeInteger|) (|%not| (|%ilt| 16 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-1866 (($ $ $) NIL T ELT)) (-1854 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-1253) (-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528)))) (T -1253)) -((-1854 (*1 *1 *1 *1) (-5 *1 (-1253))) (-1866 (*1 *1 *1 *1) (-5 *1 (-1253))) (-2762 (*1 *1) (-5 *1 (-1253)))) -(-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-1867 (($ $ $) NIL T ELT)) (-1855 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-1254) (-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529)))) (T -1254)) +((-1855 (*1 *1 *1 *1) (-5 *1 (-1254))) (-1867 (*1 *1 *1 *1) (-5 *1 (-1254))) (-3534 (*1 *1) (-5 *1 (-1254)))) +(-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529))) ((|NonNegativeInteger|) (|%not| (|%ilt| 32 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-1866 (($ $ $) NIL T ELT)) (-1854 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-1254) (-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528)))) (T -1254)) -((-1854 (*1 *1 *1 *1) (-5 *1 (-1254))) (-1866 (*1 *1 *1 *1) (-5 *1 (-1254))) (-2762 (*1 *1) (-5 *1 (-1254)))) -(-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-1867 (($ $ $) NIL T ELT)) (-1855 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-1255) (-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529)))) (T -1255)) +((-1855 (*1 *1 *1 *1) (-5 *1 (-1255))) (-1867 (*1 *1 *1 *1) (-5 *1 (-1255))) (-3534 (*1 *1) (-5 *1 (-1255)))) +(-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529))) ((|NonNegativeInteger|) (|%not| (|%ilt| 64 (INTEGER-LENGTH |#1|)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-2221 (((-792)) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2060 (($) NIL T ELT)) (-1344 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4167 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2553 (((-949) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2085 (($ (-949)) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT)) (-1866 (($ $ $) NIL T ELT)) (-1854 (($ $ $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3285 (($ $ $) NIL T ELT)) (-2440 (((-112) $ $) NIL T ELT)) (-2415 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-2403 (((-112) $ $) NIL T ELT)) (-3272 (($ $ $) NIL T ELT))) -(((-1255) (-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528)))) (T -1255)) -((-1854 (*1 *1 *1 *1) (-5 *1 (-1255))) (-1866 (*1 *1 *1 *1) (-5 *1 (-1255))) (-2762 (*1 *1) (-5 *1 (-1255)))) -(-13 (-865) (-682) (-10 -8 (-15 -1854 ($ $ $)) (-15 -1866 ($ $ $)) (-15 -2762 ($) -1528))) +((-3213 (((-112) $ $) NIL T ELT)) (-3237 (($ $) NIL T ELT)) (-2222 (((-793)) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2062 (($) NIL T ELT)) (-1345 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3667 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3193 (((-950) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2087 (($ (-950)) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT)) (-1867 (($ $ $) NIL T ELT)) (-1855 (($ $ $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3287 (($ $ $) NIL T ELT)) (-2441 (((-112) $ $) NIL T ELT)) (-2416 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL T ELT)) (-2404 (((-112) $ $) NIL T ELT)) (-3274 (($ $ $) NIL T ELT))) +(((-1256) (-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529)))) (T -1256)) +((-1855 (*1 *1 *1 *1) (-5 *1 (-1256))) (-1867 (*1 *1 *1 *1) (-5 *1 (-1256))) (-3534 (*1 *1) (-5 *1 (-1256)))) +(-13 (-866) (-683) (-10 -8 (-15 -1855 ($ $ $)) (-15 -1867 ($ $ $)) (-15 -3534 ($) -1529))) ((|NonNegativeInteger|) (|%not| (|%ilt| 8 (INTEGER-LENGTH |#1|)))) -((-3609 (((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)) 23 T ELT))) -(((-1256 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3609 ((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)))) (-1079) (-1079) (-1206) (-1206) |#1| |#2|) (T -1256)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1261 *5 *7 *9)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1261 *6 *8 *10)) (-5 *1 (-1256 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1206))))) -(-10 -7 (-15 -3609 ((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 (-1112)) $) 86 T ELT)) (-3966 (((-1206) $) 118 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-577)) 113 T ELT) (($ $ (-577) (-577)) 112 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119 T ELT)) (-1501 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 177 (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-2809 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1477 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188 T ELT)) (-1527 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) 18 T CONST)) (-3152 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-4190 (((-420 (-980 |#1|)) $ (-577)) 186 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)) ELT)) (-3164 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) 85 T ELT)) (-2549 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-577) $) 115 T ELT) (((-577) $ (-577)) 114 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) 116 T ELT)) (-4195 (($ (-1 |#1| (-577)) $) 187 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-577)) 73 T ELT) (($ $ (-1112) (-577)) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-577))) 87 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3863 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-2388 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 180 (|has| |#1| (-375)) ELT)) (-3491 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2229 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-577)) 110 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-3585 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT)) (-2442 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-577)) 120 T ELT) (($ $ $) 96 (|has| (-577) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-2776 (((-577) $) 76 T ELT)) (-1540 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 84 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-577)) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-4368 ((|#1| $) 117 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1575 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1551 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-577) |#1|))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1257 |#1|) (-141) (-1079)) (T -1257)) -((-4447 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1079)) (-4 *1 (-1257 *3)))) (-4195 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1257 *3)) (-4 *3 (-1079)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) (-5 *2 (-420 (-980 *4))))) (-4190 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) (-5 *2 (-420 (-980 *4))))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) (-3491 (*1 *1 *1 *2) (-2229 (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -2948 ((-665 *2) *3))) (|has| *3 (-15 -3491 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) -(-13 (-1275 |t#1| (-577)) (-10 -8 (-15 -4447 ($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |t#1|))))) (-15 -4195 ($ (-1 |t#1| (-577)) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -4190 ((-420 (-980 |t#1|)) $ (-577))) (-15 -4190 ((-420 (-980 |t#1|)) $ (-577) (-577)))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $)) (IF (|has| |t#1| (-15 -3491 (|t#1| |t#1| (-1206)))) (IF (|has| |t#1| (-15 -2948 ((-665 (-1206)) |t#1|))) (-15 -3491 ($ $ (-1206))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1232)) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-29 (-577))) (-15 -3491 ($ $ (-1206))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1232))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-577) (-1142)) ((-301) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-738 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1275 |#1| #0#) . T)) -((-1516 (((-112) $) 12 T ELT)) (-2817 (((-3 |#3| "failed") $) 17 T ELT) (((-3 (-1206) "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT)) (-3514 ((|#3| $) 14 T ELT) (((-1206) $) NIL T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT))) -(((-1258 |#1| |#2| |#3|) (-10 -8 (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-1206) "failed") |#1|)) (-15 -3514 ((-1206) |#1|)) (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -1516 ((-112) |#1|))) (-1259 |#2| |#3|) (-1079) (-1288 |#2|)) (T -1258)) -NIL -(-10 -8 (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -2817 ((-3 (-1206) "failed") |#1|)) (-15 -3514 ((-1206) |#1|)) (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -1516 ((-112) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3277 ((|#2| $) 251 (-2319 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-2948 (((-665 (-1112)) $) 86 T ELT)) (-3966 (((-1206) $) 118 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-577)) 113 T ELT) (($ $ (-577) (-577)) 112 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119 T ELT)) (-3724 ((|#2| $) 287 T ELT)) (-1407 (((-3 |#2| "failed") $) 283 T ELT)) (-3002 ((|#2| $) 284 T ELT)) (-1501 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 260 (-2319 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-4456 (($ $) 177 (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-2809 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 257 (-2319 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-3397 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1477 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4459 (((-577) $) 269 (-2319 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188 T ELT)) (-1527 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#2| "failed") $) 290 T ELT) (((-3 (-577) "failed") $) 280 (-2319 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) 278 (-2319 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-1206) "failed") $) 262 (-2319 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3514 ((|#2| $) 291 T ELT) (((-577) $) 279 (-2319 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) 277 (-2319 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-1206) $) 261 (-2319 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3931 (($ $) 286 T ELT) (($ (-577) $) 285 T ELT)) (-3152 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3134 (($ $) 72 T ELT)) (-1953 (((-710 |#2|) (-710 $)) 239 (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) 238 (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 237 (-2319 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) 236 (-2319 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-4190 (((-420 (-980 |#1|)) $ (-577)) 186 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)) ELT)) (-2060 (($) 253 (-2319 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-3164 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-2785 (((-112) $) 267 (-2319 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2741 (((-112) $) 85 T ELT)) (-2549 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 245 (-2319 (|has| |#2| (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 244 (-2319 (|has| |#2| (-910 (-577))) (|has| |#1| (-375))) ELT)) (-3890 (((-577) $) 115 T ELT) (((-577) $ (-577)) 114 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2614 (($ $) 249 (|has| |#1| (-375)) ELT)) (-2518 ((|#2| $) 247 (|has| |#1| (-375)) ELT)) (-4341 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3651 (((-3 $ "failed") $) 281 (-2319 (|has| |#2| (-1182)) (|has| |#1| (-375))) ELT)) (-1434 (((-112) $) 268 (-2319 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2393 (($ $ (-949)) 116 T ELT)) (-4195 (($ (-1 |#1| (-577)) $) 187 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-577)) 73 T ELT) (($ $ (-1112) (-577)) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-577))) 87 T ELT)) (-1344 (($ $ $) 276 (-2319 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-4167 (($ $ $) 275 (-2319 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-375)) ELT)) (-3863 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2796 (((-710 |#2|) (-1297 $)) 241 (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 240 (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 235 (-2319 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) 234 (-2319 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-2388 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-3016 (($ (-577) |#2|) 288 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 180 (|has| |#1| (-375)) ELT)) (-3491 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2229 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-2199 (($) 282 (-2319 (|has| |#2| (-1182)) (|has| |#1| (-375))) CONST)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-2687 (($ $) 252 (-2319 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-2136 ((|#2| $) 255 (-2319 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 258 (-2319 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 259 (-2319 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2799 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-577)) 110 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-3585 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) |#2|) 228 (-2319 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 |#2|)) 227 (-2319 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 |#2|))) 226 (-2319 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-305 |#2|)) 225 (-2319 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ |#2| |#2|) 224 (-2319 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) 223 (-2319 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT)) (-2442 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-577)) 120 T ELT) (($ $ $) 96 (|has| (-577) (-1142)) ELT) (($ $ |#2|) 222 (-2319 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1 |#2| |#2|) (-792)) 231 (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-375)) ELT) (($ $) 100 (-2229 (-2319 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) 98 (-2229 (-2319 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) 108 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206))) 106 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-1206) (-792)) 105 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT)) (-2430 (($ $) 250 (|has| |#1| (-375)) ELT)) (-2528 ((|#2| $) 248 (|has| |#1| (-375)) ELT)) (-2776 (((-577) $) 76 T ELT)) (-1540 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3341 (((-228) $) 266 (-2319 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-391) $) 265 (-2319 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-549) $) 264 (-2319 (|has| |#2| (-632 (-549))) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) 243 (-2319 (|has| |#2| (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) 242 (-2319 (|has| |#2| (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 256 (-2319 (-2319 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#1| (-375))) ELT)) (-1470 (($ $) 84 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ |#2|) 289 T ELT) (($ (-1206)) 263 (-2319 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-577)) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (-2229 (-2319 (-2229 (|has| |#2| (-146)) (-2319 (|has| $ (-146)) (|has| |#2| (-937)))) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 32 T CONST)) (-4368 ((|#1| $) 117 T ELT)) (-1465 ((|#2| $) 254 (-2319 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1575 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1551 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3385 (($ $) 270 (-2319 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1 |#2| |#2|) (-792)) 233 (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-375)) ELT) (($ $) 99 (-2229 (-2319 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) 97 (-2229 (-2319 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) 107 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206))) 103 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-1206) (-792)) 102 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-2229 (-2319 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) ELT)) (-2440 (((-112) $ $) 274 (-2319 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2415 (((-112) $ $) 272 (-2319 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2428 (((-112) $ $) 273 (-2319 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2403 (((-112) $ $) 271 (-2319 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT) (($ |#2| |#2|) 246 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ $ |#2|) 221 (|has| |#1| (-375)) ELT) (($ |#2| $) 220 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1259 |#1| |#2|) (-141) (-1079) (-1288 |t#1|)) (T -1259)) -((-2776 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1288 *3)) (-5 *2 (-577)))) (-3016 (*1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *4 (-1079)) (-4 *1 (-1259 *4 *3)) (-4 *3 (-1288 *4)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3)))) (-3931 (*1 *1 *1) (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1288 *2)))) (-3931 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1288 *3)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3)))) (-1407 (*1 *2 *1) (|partial| -12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3))))) -(-13 (-1257 |t#1|) (-1068 |t#2|) (-634 |t#2|) (-10 -8 (-15 -3016 ($ (-577) |t#2|)) (-15 -2776 ((-577) $)) (-15 -3724 (|t#2| $)) (-15 -3931 ($ $)) (-15 -3931 ($ (-577) $)) (-15 -3002 (|t#2| $)) (-15 -1407 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-375)) (-6 (-1022 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-375)) ((-38 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-375)) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-634 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 #2=(-1206)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) ((-634 |#1|) |has| |#1| (-174)) ((-634 |#2|) . T) ((-634 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-632 (-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) ((-632 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) ((-632 (-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-632 (-916 (-577))))) ((-235 $) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-233 |#2|) |has| |#1| (-375)) ((-239) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-238) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-273 |#2|) |has| |#1| (-375)) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 |#2| $) -12 (|has| |#1| (-375)) (|has| |#2| (-297 |#2| |#2|))) ((-297 $ $) |has| (-577) (-1142)) ((-301) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-375) |has| |#1| (-375)) ((-350 |#2|) |has| |#1| (-375)) ((-389 |#2|) |has| |#1| (-375)) ((-413 |#2|) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 (-1206) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1206) |#2|))) ((-527 |#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-569) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 |#2|) |has| |#1| (-375)) ((-667 $) . T) ((-669 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 #3=(-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) ((-669 |#1|) . T) ((-669 |#2|) |has| |#1| (-375)) ((-669 $) . T) ((-661 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 |#2|) |has| |#1| (-375)) ((-661 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-659 #3#) -12 (|has| |#1| (-375)) (|has| |#2| (-659 (-577)))) ((-659 |#2|) |has| |#1| (-375)) ((-738 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 |#2|) |has| |#1| (-375)) ((-738 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-812) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-813) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-815) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-816) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-841) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-869) -12 (|has| |#1| (-375)) (|has| |#2| (-841))) ((-870) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-870))) (-12 (|has| |#1| (-375)) (|has| |#2| (-841)))) ((-873) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-870))) (-12 (|has| |#1| (-375)) (|has| |#2| (-841)))) ((-920 $ #4=(-1206)) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ((-926 (-1206)) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ((-928 #4#) -2229 (-12 (|has| |#1| (-375)) (|has| |#2| (-928 (-1206)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-926 (-1206)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ((-910 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-391)))) ((-910 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-910 (-577)))) ((-908 |#2|) |has| |#1| (-375)) ((-937) -12 (|has| |#1| (-375)) (|has| |#2| (-937))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1022 |#2|) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1052) -12 (|has| |#1| (-375)) (|has| |#2| (-1052))) ((-1068 (-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577)))) ((-1068 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-577)))) ((-1068 #2#) -12 (|has| |#1| (-375)) (|has| |#2| (-1068 (-1206)))) ((-1068 |#2|) . T) ((-1081 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 |#2|) |has| |#1| (-375)) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 |#2|) |has| |#1| (-375)) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) -12 (|has| |#1| (-375)) (|has| |#2| (-1182))) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1257 |#1|) . T) ((-1275 |#1| #0#) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 81 T ELT)) (-3277 ((|#2| $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 100 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-577)) 109 T ELT) (($ $ (-577) (-577)) 111 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 51 T ELT)) (-3724 ((|#2| $) 11 T ELT)) (-1407 (((-3 |#2| "failed") $) 35 T ELT)) (-3002 ((|#2| $) 36 T ELT)) (-1501 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4459 (((-577) $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 59 T ELT)) (-1527 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) 157 T ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-1206) "failed") $) NIL (-12 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3514 ((|#2| $) 156 T ELT) (((-577) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-1206) $) NIL (-12 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT)) (-3931 (($ $) 65 T ELT) (($ (-577) $) 28 T ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 |#2|) (-710 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4281 (((-3 $ "failed") $) 88 T ELT)) (-4190 (((-420 (-980 |#1|)) $ (-577)) 124 (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) 126 (|has| |#1| (-569)) ELT)) (-2060 (($) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2785 (((-112) $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2741 (((-112) $) 74 T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#2| (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| |#2| (-910 (-577))) (|has| |#1| (-375))) ELT)) (-3890 (((-577) $) 105 T ELT) (((-577) $ (-577)) 107 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2518 ((|#2| $) 165 (|has| |#1| (-375)) ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3651 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-375))) ELT)) (-1434 (((-112) $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2393 (($ $ (-949)) 148 T ELT)) (-4195 (($ (-1 |#1| (-577)) $) 144 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-577)) 20 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-1344 (($ $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-4167 (($ $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 141 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-375)) ELT)) (-3863 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2796 (((-710 |#2|) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| |#2| (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3016 (($ (-577) |#2|) 10 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 159 (|has| |#1| (-375)) ELT)) (-3491 (($ $) 228 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 233 (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT)) (-2199 (($) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-375))) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2687 (($ $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))) ELT)) (-2136 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-577)) 138 T ELT)) (-3200 (((-3 $ "failed") $ $) 128 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3585 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) |#2|) NIL (-12 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 |#2|)) NIL (-12 (|has| |#2| (-527 (-1206) |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT) (($ $ (-665 |#2|) (-665 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-577)) 103 T ELT) (($ $ $) 90 (|has| (-577) (-1142)) ELT) (($ $ |#2|) NIL (-12 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375)) ELT) (($ $) 149 (-2229 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) 153 (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-2430 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2528 ((|#2| $) 166 (|has| |#1| (-375)) ELT)) (-2776 (((-577) $) 12 T ELT)) (-1540 (($ $) 212 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3341 (((-228) $) NIL (-12 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| |#2| (-1052)) (|has| |#1| (-375))) ELT) (((-549) $) NIL (-12 (|has| |#2| (-632 (-549))) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) NIL (-12 (|has| |#2| (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) NIL (-12 (|has| |#2| (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937)) (|has| |#1| (-375))) ELT)) (-1470 (($ $) 136 T ELT)) (-2410 (((-885) $) 266 T ELT) (($ (-577)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-174)) ELT) (($ |#2|) 21 T ELT) (($ (-1206)) NIL (-12 (|has| |#2| (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ (-420 (-577))) 169 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-577)) 85 T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#2| (-937)) (|has| |#1| (-375))) (-12 (|has| |#2| (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 155 T CONST)) (-4368 ((|#1| $) 102 T ELT)) (-1465 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) 218 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) 214 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 222 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-577)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 224 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 220 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 216 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3385 (($ $) NIL (-12 (|has| |#2| (-841)) (|has| |#1| (-375))) ELT)) (-2367 (($) 13 T CONST)) (-2378 (($) 18 T CONST)) (-1675 (($ $ (-1 |#2| |#2|) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375)) ELT) (($ $) NIL (-2229 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| |#2| (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-2440 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2415 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2383 (((-112) $ $) 72 T ELT)) (-2428 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2403 (((-112) $ $) NIL (-12 (|has| |#2| (-870)) (|has| |#1| (-375))) ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT) (($ |#2| |#2|) 164 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 227 T ELT) (($ $ $) 78 T ELT)) (-2471 (($ $ $) 76 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 84 T ELT) (($ $ (-577)) 160 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 79 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 152 T ELT) (($ $ |#2|) 162 (|has| |#1| (-375)) ELT) (($ |#2| $) 161 (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1260 |#1| |#2|) (-1259 |#1| |#2|) (-1079) (-1288 |#1|)) (T -1260)) -NIL -(-1259 |#1| |#2|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3277 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 10 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-3913 (($ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-4244 (((-112) $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-4083 (($ $ (-577)) NIL T ELT) (($ $ (-577) (-577)) NIL T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL T ELT)) (-3724 (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-1407 (((-3 (-1289 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3002 (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-1501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4459 (((-577) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL T ELT)) (-1527 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-1289 |#1| |#2| |#3|) "failed") $) NIL T ELT) (((-3 (-1206) "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3514 (((-1289 |#1| |#2| |#3|) $) NIL T ELT) (((-1206) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (((-420 (-577)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT) (((-577) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) ELT)) (-3931 (($ $) NIL T ELT) (($ (-577) $) NIL T ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-1289 |#1| |#2| |#3|)) (-710 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-1289 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1289 |#1| |#2| |#3|)))) (-710 $) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-710 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-4190 (((-420 (-980 |#1|)) $ (-577)) NIL (|has| |#1| (-569)) ELT) (((-420 (-980 |#1|)) $ (-577) (-577)) NIL (|has| |#1| (-569)) ELT)) (-2060 (($) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2785 (((-112) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-910 (-391))) (|has| |#1| (-375))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-910 (-577))) (|has| |#1| (-375))) ELT)) (-3890 (((-577) $) NIL T ELT) (((-577) $ (-577)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2614 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2518 (((-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3651 (((-3 $ "failed") $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) ELT)) (-1434 (((-112) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2393 (($ $ (-949)) NIL T ELT)) (-4195 (($ (-1 |#1| (-577)) $) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-577)) 18 T ELT) (($ $ (-1112) (-577)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-577))) NIL T ELT)) (-1344 (($ $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-4167 (($ $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)) ELT)) (-3863 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2796 (((-710 (-1289 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-1289 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1289 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT) (((-710 (-577)) (-1297 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-659 (-577))) (|has| |#1| (-375))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3016 (($ (-577) (-1289 |#1| |#2| |#3|)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3491 (($ $) 27 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 28 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2199 (($) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-375))) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2687 (($ $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))) ELT)) (-2136 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-577)) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3585 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))) ELT) (($ $ (-1206) (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-527 (-1206) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1206)) (-665 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-527 (-1206) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-305 (-1289 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-305 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT) (($ $ (-665 (-1289 |#1| |#2| |#3|)) (-665 (-1289 |#1| |#2| |#3|))) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-320 (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-577)) NIL T ELT) (($ $ $) NIL (|has| (-577) (-1142)) ELT) (($ $ (-1289 |#1| |#2| |#3|)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-297 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) (|has| |#1| (-375))) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) 26 T ELT) (($ $) 25 (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-2430 (($ $) NIL (|has| |#1| (-375)) ELT)) (-2528 (((-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT)) (-2776 (((-577) $) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3341 (((-549) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-632 (-549))) (|has| |#1| (-375))) ELT) (((-391) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-228) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-375))) ELT) (((-916 (-391)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-632 (-916 (-391)))) (|has| |#1| (-375))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-632 (-916 (-577)))) (|has| |#1| (-375))) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1289 |#1| |#2| |#3|)) NIL T ELT) (($ (-1293 |#2|)) 24 T ELT) (($ (-1206)) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-1206))) (|has| |#1| (-375))) ELT) (($ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT) (($ (-420 (-577))) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-1068 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))) ELT)) (-2778 ((|#1| $ (-577)) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) 11 T ELT)) (-1465 (((-1289 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-937)) (|has| |#1| (-375))) (|has| |#1| (-569))) ELT)) (-1551 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3385 (($ $) NIL (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) ELT)) (-2367 (($) 20 T CONST)) (-2378 (($) 15 T CONST)) (-1675 (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) (-792)) NIL (|has| |#1| (-375)) ELT) (($ $ (-1 (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|))) NIL (|has| |#1| (-375)) ELT) (($ $ (-1293 |#2|)) NIL T ELT) (($ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-792)) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206))) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-1206) (-792)) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-926 (-1206))) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-928 (-1206))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-926 (-1206))))) ELT)) (-2440 (((-112) $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2415 (((-112) $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2428 (((-112) $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2403 (((-112) $ $) NIL (-2229 (-12 (|has| (-1289 |#1| |#2| |#3|) (-841)) (|has| |#1| (-375))) (-12 (|has| (-1289 |#1| |#2| |#3|) (-870)) (|has| |#1| (-375)))) ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT) (($ (-1289 |#1| |#2| |#3|) (-1289 |#1| |#2| |#3|)) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 22 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1289 |#1| |#2| |#3|)) NIL (|has| |#1| (-375)) ELT) (($ (-1289 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)) ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1261 |#1| |#2| |#3|) (-13 (-1259 |#1| (-1289 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1261)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(-13 (-1259 |#1| (-1289 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1293 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) -((-4186 (((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112)) 13 T ELT)) (-4255 (((-431 |#1|) |#1|) 26 T ELT)) (-2799 (((-431 |#1|) |#1|) 24 T ELT))) -(((-1262 |#1|) (-10 -7 (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4255 ((-431 |#1|) |#1|)) (-15 -4186 ((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112)))) (-1273 (-577))) (T -1262)) -((-4186 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577))))) (-4255 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577))))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) -(-10 -7 (-15 -2799 ((-431 |#1|) |#1|)) (-15 -4255 ((-431 |#1|) |#1|)) (-15 -4186 ((-2 (|:| |contp| (-577)) (|:| -1679 (-665 (-2 (|:| |irr| |#1|) (|:| -2938 (-577)))))) |#1| (-112)))) -((-3609 (((-1187 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 23 (|has| |#1| (-869)) ELT) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 17 T ELT))) -(((-1263 |#1| |#2|) (-10 -7 (-15 -3609 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-869)) (-15 -3609 ((-1187 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1263)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-869)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1187 *6)) (-5 *1 (-1263 *5 *6)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6))))) -(-10 -7 (-15 -3609 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-869)) (-15 -3609 ((-1187 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) -((-3211 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-4227 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3609 (((-1187 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-869)) ELT)) (-3413 ((|#1| $) 15 T ELT)) (-3319 ((|#1| $) 12 T ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4054 (((-577) $) 19 T ELT)) (-4100 ((|#1| $) 18 T ELT)) (-4064 ((|#1| $) 13 T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-3477 (((-112) $) 17 T ELT)) (-4198 (((-1187 |#1|) $) 41 (|has| |#1| (-869)) ELT) (((-1187 |#1|) (-665 $)) 40 (|has| |#1| (-869)) ELT)) (-3341 (($ |#1|) 26 T ELT)) (-2410 (($ (-1124 |#1|)) 25 T ELT) (((-885) $) 37 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-1130)) ELT)) (-3933 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-2165 (($ $ (-577)) 14 T ELT)) (-2383 (((-112) $ $) 30 (|has| |#1| (-1130)) ELT))) -(((-1264 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -3933 ($ |#1|)) (-15 -4227 ($ |#1|)) (-15 -2410 ($ (-1124 |#1|))) (-15 -3477 ((-112) $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-1187 |#1|))) |%noBranch|))) (-1247)) (T -1264)) -((-3933 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-4227 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3)) (-4 *3 (-1247))))) -(-13 (-1123 |#1|) (-10 -8 (-15 -3933 ($ |#1|)) (-15 -4227 ($ |#1|)) (-15 -2410 ($ (-1124 |#1|))) (-15 -3477 ((-112) $)) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-869)) (-6 (-1125 |#1| (-1187 |#1|))) |%noBranch|))) -((-3609 (((-1270 |#3| |#4|) (-1 |#4| |#2|) (-1270 |#1| |#2|)) 15 T ELT))) -(((-1265 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 ((-1270 |#3| |#4|) (-1 |#4| |#2|) (-1270 |#1| |#2|)))) (-1206) (-1079) (-1206) (-1079)) (T -1265)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1270 *5 *6)) (-14 *5 (-1206)) (-4 *6 (-1079)) (-4 *8 (-1079)) (-5 *2 (-1270 *7 *8)) (-5 *1 (-1265 *5 *6 *7 *8)) (-14 *7 (-1206))))) -(-10 -7 (-15 -3609 ((-1270 |#3| |#4|) (-1 |#4| |#2|) (-1270 |#1| |#2|)))) -((-2116 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-4162 ((|#1| |#3|) 13 T ELT)) (-2362 ((|#3| |#3|) 19 T ELT))) -(((-1266 |#1| |#2| |#3|) (-10 -7 (-15 -4162 (|#1| |#3|)) (-15 -2362 (|#3| |#3|)) (-15 -2116 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1022 |#1|) (-1273 |#2|)) (T -1266)) -((-2116 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1266 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2362 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-1266 *3 *4 *2)) (-4 *2 (-1273 *4)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-1266 *2 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -4162 (|#1| |#3|)) (-15 -2362 (|#3| |#3|)) (-15 -2116 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3808 (((-3 |#2| "failed") |#2| (-792) |#1|) 35 T ELT)) (-3824 (((-3 |#2| "failed") |#2| (-792)) 36 T ELT)) (-1663 (((-3 (-2 (|:| -3854 |#2|) (|:| -3867 |#2|)) "failed") |#2|) 50 T ELT)) (-1820 (((-665 |#2|) |#2|) 52 T ELT)) (-2590 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT))) -(((-1267 |#1| |#2|) (-10 -7 (-15 -3824 ((-3 |#2| "failed") |#2| (-792))) (-15 -3808 ((-3 |#2| "failed") |#2| (-792) |#1|)) (-15 -2590 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1663 ((-3 (-2 (|:| -3854 |#2|) (|:| -3867 |#2|)) "failed") |#2|)) (-15 -1820 ((-665 |#2|) |#2|))) (-13 (-569) (-148)) (-1273 |#1|)) (T -1267)) -((-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-665 *3)) (-5 *1 (-1267 *4 *3)) (-4 *3 (-1273 *4)))) (-1663 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| -3854 *3) (|:| -3867 *3))) (-5 *1 (-1267 *4 *3)) (-4 *3 (-1273 *4)))) (-2590 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1267 *3 *2)) (-4 *2 (-1273 *3)))) (-3808 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4)))) (-3824 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4))))) -(-10 -7 (-15 -3824 ((-3 |#2| "failed") |#2| (-792))) (-15 -3808 ((-3 |#2| "failed") |#2| (-792) |#1|)) (-15 -2590 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1663 ((-3 (-2 (|:| -3854 |#2|) (|:| -3867 |#2|)) "failed") |#2|)) (-15 -1820 ((-665 |#2|) |#2|))) -((-4021 (((-3 (-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1268 |#1| |#2|) (-10 -7 (-15 -4021 ((-3 (-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) "failed") |#2| |#2|))) (-569) (-1273 |#1|)) (T -1268)) -((-4021 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-1268 *4 *3)) (-4 *3 (-1273 *4))))) -(-10 -7 (-15 -4021 ((-3 (-2 (|:| -1636 |#2|) (|:| -4369 |#2|)) "failed") |#2| |#2|))) -((-4114 ((|#2| |#2| |#2|) 22 T ELT)) (-3436 ((|#2| |#2| |#2|) 36 T ELT)) (-4120 ((|#2| |#2| |#2| (-792) (-792)) 44 T ELT))) -(((-1269 |#1| |#2|) (-10 -7 (-15 -4114 (|#2| |#2| |#2|)) (-15 -3436 (|#2| |#2| |#2|)) (-15 -4120 (|#2| |#2| |#2| (-792) (-792)))) (-1079) (-1273 |#1|)) (T -1269)) -((-4120 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))) (-3436 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3)))) (-4114 (*1 *2 *2 *2) (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3))))) -(-10 -7 (-15 -4114 (|#2| |#2| |#2|)) (-15 -3436 (|#2| |#2| |#2|)) (-15 -4120 (|#2| |#2| |#2| (-792) (-792)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2535 (((-1297 |#2|) $ (-792)) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-4052 (($ (-1202 |#2|)) NIL T ELT)) (-4419 (((-1202 $) $ (-1112)) NIL T ELT) (((-1202 |#2|) $) NIL T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#2| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#2| (-569)) ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2907 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4456 (($ $) NIL (|has| |#2| (-465)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#2| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-3397 (((-112) $ $) NIL (|has| |#2| (-375)) ELT)) (-2478 (($ $ (-792)) NIL T ELT)) (-2485 (($ $ (-792)) NIL T ELT)) (-1778 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-465)) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3514 ((|#2| $) NIL T ELT) (((-420 (-577)) $) NIL (|has| |#2| (-1068 (-420 (-577)))) ELT) (((-577) $) NIL (|has| |#2| (-1068 (-577))) ELT) (((-1112) $) NIL T ELT)) (-3760 (($ $ $ (-1112)) NIL (|has| |#2| (-174)) ELT) ((|#2| $ $) NIL (|has| |#2| (-174)) ELT)) (-3152 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-1953 (((-710 (-577)) (-710 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-710 $) (-1297 $)) NIL T ELT) (((-710 |#2|) (-710 $)) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3164 (($ $ $) NIL (|has| |#2| (-375)) ELT)) (-2425 (($ $ $) NIL T ELT)) (-4435 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-3536 (((-2 (|:| -2671 |#2|) (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#2| (-375)) ELT)) (-3008 (($ $) NIL (|has| |#2| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#2| (-465)) ELT)) (-3120 (((-665 $) $) NIL T ELT)) (-1632 (((-112) $) NIL (|has| |#2| (-937)) ELT)) (-4313 (($ $ |#2| (-792) $) NIL T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1112) (-910 (-391))) (|has| |#2| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) NIL (-12 (|has| (-1112) (-910 (-577))) (|has| |#2| (-910 (-577)))) ELT)) (-3890 (((-792) $ $) NIL (|has| |#2| (-569)) ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-3651 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-2935 (($ (-1202 |#2|) (-1112)) NIL T ELT) (($ (-1202 $) (-1112)) NIL T ELT)) (-2393 (($ $ (-792)) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-792)) 18 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-1112)) NIL T ELT) (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL T ELT)) (-3569 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-4309 (($ (-1 (-792) (-792)) $) NIL T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3728 (((-1202 |#2|) $) NIL T ELT)) (-2505 (((-3 (-1112) "failed") $) NIL T ELT)) (-2796 (((-710 (-577)) (-1297 $)) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) NIL (|has| |#2| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-710 |#2|) (-1297 $)) NIL T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#2| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3691 (((-2 (|:| -1636 $) (|:| -4369 $)) $ (-792)) NIL T ELT)) (-1620 (((-3 (-665 $) "failed") $) NIL T ELT)) (-3124 (((-3 (-665 $) "failed") $) NIL T ELT)) (-2315 (((-3 (-2 (|:| |var| (-1112)) (|:| -2182 (-792))) "failed") $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT)) (-2199 (($) NIL (|has| |#2| (-1182)) CONST)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 ((|#2| $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#2| (-465)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#2| (-465)) ELT) (($ $ $) NIL (|has| |#2| (-465)) ELT)) (-2726 (($ $ (-792) |#2| $) NIL T ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) NIL (|has| |#2| (-937)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#2| (-937)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-3200 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#2| (-375)) ELT)) (-3362 (($ $ (-665 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#2|) NIL T ELT) (($ $ (-665 (-1112)) (-665 |#2|)) NIL T ELT) (($ $ (-1112) $) NIL T ELT) (($ $ (-665 (-1112)) (-665 $)) NIL T ELT)) (-2442 (((-792) $) NIL (|has| |#2| (-375)) ELT)) (-2435 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#2| (-569)) ELT) ((|#2| (-420 $) |#2|) NIL (|has| |#2| (-375)) ELT) (((-420 $) $ (-420 $)) NIL (|has| |#2| (-569)) ELT)) (-1616 (((-3 $ "failed") $ (-792)) NIL T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#2| (-375)) ELT)) (-1611 (($ $ (-1112)) NIL (|has| |#2| (-174)) ELT) ((|#2| $) NIL (|has| |#2| (-174)) ELT)) (-2030 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-2776 (((-792) $) NIL T ELT) (((-792) $ (-1112)) NIL T ELT) (((-665 (-792)) $ (-665 (-1112))) NIL T ELT)) (-3341 (((-916 (-391)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#2| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) NIL (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#2| (-632 (-916 (-577))))) ELT) (((-549) $) NIL (-12 (|has| (-1112) (-632 (-549))) (|has| |#2| (-632 (-549)))) ELT)) (-2091 ((|#2| $) NIL (|has| |#2| (-465)) ELT) (($ $ (-1112)) NIL (|has| |#2| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-937))) ELT)) (-2341 (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#2| (-569)) ELT)) (-2410 (((-885) $) 13 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1112)) NIL T ELT) (($ (-1293 |#1|)) 20 T ELT) (($ (-420 (-577))) NIL (-2229 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1068 (-420 (-577))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-792)) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (-2229 (-12 (|has| $ (-146)) (|has| |#2| (-937))) (|has| |#2| (-146))) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL (|has| |#2| (-569)) ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) 14 T CONST)) (-1675 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1206)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) NIL (|has| |#2| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (|has| |#2| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#2|) NIL (|has| |#2| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1270 |#1| |#2|) (-13 (-1273 |#2|) (-634 (-1293 |#1|)) (-10 -8 (-15 -2726 ($ $ (-792) |#2| $)))) (-1206) (-1079)) (T -1270)) -((-2726 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1270 *4 *3)) (-14 *4 (-1206)) (-4 *3 (-1079))))) -(-13 (-1273 |#2|) (-634 (-1293 |#1|)) (-10 -8 (-15 -2726 ($ $ (-792) |#2| $)))) -((-3609 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|))) (-1079) (-1273 |#1|) (-1079) (-1273 |#3|)) (T -1271)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1273 *6)) (-5 *1 (-1271 *5 *4 *6 *2)) (-4 *4 (-1273 *5))))) -(-10 -7 (-15 -3609 (|#4| (-1 |#3| |#1|) |#2|))) -((-2535 (((-1297 |#2|) $ (-792)) 129 T ELT)) (-2948 (((-665 (-1112)) $) 16 T ELT)) (-4052 (($ (-1202 |#2|)) 80 T ELT)) (-3703 (((-792) $) NIL T ELT) (((-792) $ (-665 (-1112))) 21 T ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 204 T ELT)) (-4456 (($ $) 194 T ELT)) (-4240 (((-431 $) $) 192 T ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 95 T ELT)) (-2478 (($ $ (-792)) 84 T ELT)) (-2485 (($ $ (-792)) 86 T ELT)) (-1778 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145 T ELT)) (-2817 (((-3 |#2| "failed") $) 132 T ELT) (((-3 (-420 (-577)) "failed") $) NIL T ELT) (((-3 (-577) "failed") $) NIL T ELT) (((-3 (-1112) "failed") $) NIL T ELT)) (-3514 ((|#2| $) 130 T ELT) (((-420 (-577)) $) NIL T ELT) (((-577) $) NIL T ELT) (((-1112) $) NIL T ELT)) (-4435 (($ $ $) 170 T ELT)) (-3536 (((-2 (|:| -2671 |#2|) (|:| -1636 $) (|:| -4369 $)) $ $) 172 T ELT)) (-3890 (((-792) $ $) 189 T ELT)) (-3651 (((-3 $ "failed") $) 138 T ELT)) (-2925 (($ |#2| (-792)) NIL T ELT) (($ $ (-1112) (-792)) 59 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-3569 (((-792) $) NIL T ELT) (((-792) $ (-1112)) 54 T ELT) (((-665 (-792)) $ (-665 (-1112))) 55 T ELT)) (-3728 (((-1202 |#2|) $) 72 T ELT)) (-2505 (((-3 (-1112) "failed") $) 52 T ELT)) (-3691 (((-2 (|:| -1636 $) (|:| -4369 $)) $ (-792)) 83 T ELT)) (-3491 (($ $) 219 T ELT)) (-2199 (($) 134 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 201 T ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 101 T ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 99 T ELT)) (-2799 (((-431 $) $) 120 T ELT)) (-3362 (($ $ (-665 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-665 $) (-665 $)) NIL T ELT) (($ $ (-1112) |#2|) 39 T ELT) (($ $ (-665 (-1112)) (-665 |#2|)) 36 T ELT) (($ $ (-1112) $) 32 T ELT) (($ $ (-665 (-1112)) (-665 $)) 30 T ELT)) (-2442 (((-792) $) 207 T ELT)) (-2435 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-420 $) (-420 $) (-420 $)) 164 T ELT) ((|#2| (-420 $) |#2|) 206 T ELT) (((-420 $) $ (-420 $)) 188 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 212 T ELT)) (-2030 (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112))) NIL T ELT) (($ $ (-1112)) 157 T ELT) (($ $) 155 T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 154 T ELT) (($ $ (-1 |#2| |#2|) (-792)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 149 T ELT) (($ $ (-1206)) NIL T ELT) (($ $ (-665 (-1206))) NIL T ELT) (($ $ (-1206) (-792)) NIL T ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL T ELT)) (-2776 (((-792) $) NIL T ELT) (((-792) $ (-1112)) 17 T ELT) (((-665 (-792)) $ (-665 (-1112))) 23 T ELT)) (-2091 ((|#2| $) NIL T ELT) (($ $ (-1112)) 140 T ELT)) (-2341 (((-3 $ "failed") $ $) 180 T ELT) (((-3 (-420 $) "failed") (-420 $) $) 176 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1112)) 64 T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT))) -(((-1272 |#1| |#2|) (-10 -8 (-15 -2410 (|#1| |#1|)) (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -4456 (|#1| |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -2435 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -2442 ((-792) |#1|)) (-15 -4384 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -2435 (|#2| (-420 |#1|) |#2|)) (-15 -1778 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3536 ((-2 (|:| -2671 |#2|) (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -4435 (|#1| |#1| |#1|)) (-15 -2341 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -2341 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3890 ((-792) |#1| |#1|)) (-15 -2435 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2485 (|#1| |#1| (-792))) (-15 -2478 (|#1| |#1| (-792))) (-15 -3691 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| (-792))) (-15 -4052 (|#1| (-1202 |#2|))) (-15 -3728 ((-1202 |#2|) |#1|)) (-15 -2535 ((-1297 |#2|) |#1| (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -2435 (|#2| |#1| |#2|)) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -3650 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4275 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2583 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -2091 (|#1| |#1| (-1112))) (-15 -2948 ((-665 (-1112)) |#1|)) (-15 -3703 ((-792) |#1| (-665 (-1112)))) (-15 -3703 ((-792) |#1|)) (-15 -2925 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -2925 (|#1| |#1| (-1112) (-792))) (-15 -3569 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -3569 ((-792) |#1| (-1112))) (-15 -2505 ((-3 (-1112) "failed") |#1|)) (-15 -2776 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -2776 ((-792) |#1| (-1112))) (-15 -2410 (|#1| (-1112))) (-15 -2817 ((-3 (-1112) "failed") |#1|)) (-15 -3514 ((-1112) |#1|)) (-15 -3362 (|#1| |#1| (-665 (-1112)) (-665 |#1|))) (-15 -3362 (|#1| |#1| (-1112) |#1|)) (-15 -3362 (|#1| |#1| (-665 (-1112)) (-665 |#2|))) (-15 -3362 (|#1| |#1| (-1112) |#2|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -2776 ((-792) |#1|)) (-15 -2925 (|#1| |#2| (-792))) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -3569 ((-792) |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2030 (|#1| |#1| (-1112))) (-15 -2030 (|#1| |#1| (-665 (-1112)))) (-15 -2030 (|#1| |#1| (-1112) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) (-1273 |#2|) (-1079)) (T -1272)) -NIL -(-10 -8 (-15 -2410 (|#1| |#1|)) (-15 -4373 ((-1202 |#1|) (-1202 |#1|) (-1202 |#1|))) (-15 -2030 (|#1| |#1| (-665 (-1206)) (-665 (-792)))) (-15 -2030 (|#1| |#1| (-1206) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1206)))) (-15 -2030 (|#1| |#1| (-1206))) (-15 -4240 ((-431 |#1|) |#1|)) (-15 -4456 (|#1| |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2199 (|#1|)) (-15 -3651 ((-3 |#1| "failed") |#1|)) (-15 -2435 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -2442 ((-792) |#1|)) (-15 -4384 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -2435 (|#2| (-420 |#1|) |#2|)) (-15 -1778 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3536 ((-2 (|:| -2671 |#2|) (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| |#1|)) (-15 -4435 (|#1| |#1| |#1|)) (-15 -2341 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -2341 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3890 ((-792) |#1| |#1|)) (-15 -2435 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2485 (|#1| |#1| (-792))) (-15 -2478 (|#1| |#1| (-792))) (-15 -3691 ((-2 (|:| -1636 |#1|) (|:| -4369 |#1|)) |#1| (-792))) (-15 -4052 (|#1| (-1202 |#2|))) (-15 -3728 ((-1202 |#2|) |#1|)) (-15 -2535 ((-1297 |#2|) |#1| (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|) (-792))) (-15 -2030 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2030 (|#1| |#1| (-792))) (-15 -2030 (|#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -2435 (|#2| |#1| |#2|)) (-15 -2799 ((-431 |#1|) |#1|)) (-15 -3650 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -4275 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -2583 ((-431 (-1202 |#1|)) (-1202 |#1|))) (-15 -1440 ((-3 (-665 (-1202 |#1|)) "failed") (-665 (-1202 |#1|)) (-1202 |#1|))) (-15 -2091 (|#1| |#1| (-1112))) (-15 -2948 ((-665 (-1112)) |#1|)) (-15 -3703 ((-792) |#1| (-665 (-1112)))) (-15 -3703 ((-792) |#1|)) (-15 -2925 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -2925 (|#1| |#1| (-1112) (-792))) (-15 -3569 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -3569 ((-792) |#1| (-1112))) (-15 -2505 ((-3 (-1112) "failed") |#1|)) (-15 -2776 ((-665 (-792)) |#1| (-665 (-1112)))) (-15 -2776 ((-792) |#1| (-1112))) (-15 -2410 (|#1| (-1112))) (-15 -2817 ((-3 (-1112) "failed") |#1|)) (-15 -3514 ((-1112) |#1|)) (-15 -3362 (|#1| |#1| (-665 (-1112)) (-665 |#1|))) (-15 -3362 (|#1| |#1| (-1112) |#1|)) (-15 -3362 (|#1| |#1| (-665 (-1112)) (-665 |#2|))) (-15 -3362 (|#1| |#1| (-1112) |#2|)) (-15 -3362 (|#1| |#1| (-665 |#1|) (-665 |#1|))) (-15 -3362 (|#1| |#1| |#1| |#1|)) (-15 -3362 (|#1| |#1| (-305 |#1|))) (-15 -3362 (|#1| |#1| (-665 (-305 |#1|)))) (-15 -2776 ((-792) |#1|)) (-15 -2925 (|#1| |#2| (-792))) (-15 -2817 ((-3 (-577) "failed") |#1|)) (-15 -3514 ((-577) |#1|)) (-15 -2817 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3514 ((-420 (-577)) |#1|)) (-15 -3514 (|#2| |#1|)) (-15 -2817 ((-3 |#2| "failed") |#1|)) (-15 -2410 (|#1| |#2|)) (-15 -3569 ((-792) |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2030 (|#1| |#1| (-1112))) (-15 -2030 (|#1| |#1| (-665 (-1112)))) (-15 -2030 (|#1| |#1| (-1112) (-792))) (-15 -2030 (|#1| |#1| (-665 (-1112)) (-665 (-792)))) (-15 -2410 (|#1| (-577))) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2535 (((-1297 |#1|) $ (-792)) 256 T ELT)) (-2948 (((-665 (-1112)) $) 113 T ELT)) (-4052 (($ (-1202 |#1|)) 254 T ELT)) (-4419 (((-1202 $) $ (-1112)) 128 T ELT) (((-1202 |#1|) $) 127 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 91 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 93 (|has| |#1| (-569)) ELT)) (-3703 (((-792) $) 115 T ELT) (((-792) $ (-665 (-1112))) 114 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2907 (($ $ $) 241 (|has| |#1| (-569)) ELT)) (-3650 (((-431 (-1202 $)) (-1202 $)) 103 (|has| |#1| (-937)) ELT)) (-4456 (($ $) 101 (|has| |#1| (-465)) ELT)) (-4240 (((-431 $) $) 100 (|has| |#1| (-465)) ELT)) (-1440 (((-3 (-665 (-1202 $)) "failed") (-665 (-1202 $)) (-1202 $)) 106 (|has| |#1| (-937)) ELT)) (-3397 (((-112) $ $) 226 (|has| |#1| (-375)) ELT)) (-2478 (($ $ (-792)) 249 T ELT)) (-2485 (($ $ (-792)) 248 T ELT)) (-1778 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-465)) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1068 (-577))) ELT) (((-3 (-1112) "failed") $) 143 T ELT)) (-3514 ((|#1| $) 170 T ELT) (((-420 (-577)) $) 169 (|has| |#1| (-1068 (-420 (-577)))) ELT) (((-577) $) 167 (|has| |#1| (-1068 (-577))) ELT) (((-1112) $) 144 T ELT)) (-3760 (($ $ $ (-1112)) 111 (|has| |#1| (-174)) ELT) ((|#1| $ $) 244 (|has| |#1| (-174)) ELT)) (-3152 (($ $ $) 230 (|has| |#1| (-375)) ELT)) (-3134 (($ $) 161 T ELT)) (-1953 (((-710 (-577)) (-710 $)) 139 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-710 $) (-1297 $)) 138 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-710 $) (-1297 $)) 137 T ELT) (((-710 |#1|) (-710 $)) 136 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 229 (|has| |#1| (-375)) ELT)) (-2425 (($ $ $) 247 T ELT)) (-4435 (($ $ $) 238 (|has| |#1| (-569)) ELT)) (-3536 (((-2 (|:| -2671 |#1|) (|:| -1636 $) (|:| -4369 $)) $ $) 237 (|has| |#1| (-569)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 224 (|has| |#1| (-375)) ELT)) (-3008 (($ $) 183 (|has| |#1| (-465)) ELT) (($ $ (-1112)) 108 (|has| |#1| (-465)) ELT)) (-3120 (((-665 $) $) 112 T ELT)) (-1632 (((-112) $) 99 (|has| |#1| (-937)) ELT)) (-4313 (($ $ |#1| (-792) $) 179 T ELT)) (-2244 (((-913 (-391) $) $ (-916 (-391)) (-913 (-391) $)) 87 (-12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ELT) (((-913 (-577) $) $ (-916 (-577)) (-913 (-577) $)) 86 (-12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ELT)) (-3890 (((-792) $ $) 242 (|has| |#1| (-569)) ELT)) (-2097 (((-112) $) 35 T ELT)) (-3641 (((-792) $) 176 T ELT)) (-3651 (((-3 $ "failed") $) 222 (|has| |#1| (-1182)) ELT)) (-2935 (($ (-1202 |#1|) (-1112)) 120 T ELT) (($ (-1202 $) (-1112)) 119 T ELT)) (-2393 (($ $ (-792)) 253 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 233 (|has| |#1| (-375)) ELT)) (-1387 (((-665 $) $) 129 T ELT)) (-2338 (((-112) $) 159 T ELT)) (-2925 (($ |#1| (-792)) 160 T ELT) (($ $ (-1112) (-792)) 122 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) 121 T ELT)) (-3553 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $ (-1112)) 123 T ELT) (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 251 T ELT)) (-3569 (((-792) $) 177 T ELT) (((-792) $ (-1112)) 125 T ELT) (((-665 (-792)) $ (-665 (-1112))) 124 T ELT)) (-4309 (($ (-1 (-792) (-792)) $) 178 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-3728 (((-1202 |#1|) $) 255 T ELT)) (-2505 (((-3 (-1112) "failed") $) 126 T ELT)) (-2796 (((-710 (-577)) (-1297 $)) 141 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 (-577))) (|:| |vec| (-1297 (-577)))) (-1297 $) $) 140 (|has| |#1| (-659 (-577))) ELT) (((-2 (|:| -1670 (-710 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-710 |#1|) (-1297 $)) 134 T ELT)) (-3095 (($ $) 156 T ELT)) (-3109 ((|#1| $) 155 T ELT)) (-2388 (($ (-665 $)) 97 (|has| |#1| (-465)) ELT) (($ $ $) 96 (|has| |#1| (-465)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3691 (((-2 (|:| -1636 $) (|:| -4369 $)) $ (-792)) 250 T ELT)) (-1620 (((-3 (-665 $) "failed") $) 117 T ELT)) (-3124 (((-3 (-665 $) "failed") $) 118 T ELT)) (-2315 (((-3 (-2 (|:| |var| (-1112)) (|:| -2182 (-792))) "failed") $) 116 T ELT)) (-3491 (($ $) 234 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2199 (($) 221 (|has| |#1| (-1182)) CONST)) (-4312 (((-1150) $) 11 T ELT)) (-3069 (((-112) $) 173 T ELT)) (-3081 ((|#1| $) 174 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 98 (|has| |#1| (-465)) ELT)) (-2420 (($ (-665 $)) 95 (|has| |#1| (-465)) ELT) (($ $ $) 94 (|has| |#1| (-465)) ELT)) (-2583 (((-431 (-1202 $)) (-1202 $)) 105 (|has| |#1| (-937)) ELT)) (-4275 (((-431 (-1202 $)) (-1202 $)) 104 (|has| |#1| (-937)) ELT)) (-2799 (((-431 $) $) 102 (|has| |#1| (-937)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 231 (|has| |#1| (-375)) ELT)) (-3200 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 225 (|has| |#1| (-375)) ELT)) (-3362 (($ $ (-665 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-665 $) (-665 $)) 149 T ELT) (($ $ (-1112) |#1|) 148 T ELT) (($ $ (-665 (-1112)) (-665 |#1|)) 147 T ELT) (($ $ (-1112) $) 146 T ELT) (($ $ (-665 (-1112)) (-665 $)) 145 T ELT)) (-2442 (((-792) $) 227 (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ |#1|) 266 T ELT) (($ $ $) 265 T ELT) (((-420 $) (-420 $) (-420 $)) 243 (|has| |#1| (-569)) ELT) ((|#1| (-420 $) |#1|) 235 (|has| |#1| (-375)) ELT) (((-420 $) $ (-420 $)) 223 (|has| |#1| (-569)) ELT)) (-1616 (((-3 $ "failed") $ (-792)) 252 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 228 (|has| |#1| (-375)) ELT)) (-1611 (($ $ (-1112)) 110 (|has| |#1| (-174)) ELT) ((|#1| $) 245 (|has| |#1| (-174)) ELT)) (-2030 (($ $ (-665 (-1112)) (-665 (-792))) 44 T ELT) (($ $ (-1112) (-792)) 43 T ELT) (($ $ (-665 (-1112))) 42 T ELT) (($ $ (-1112)) 40 T ELT) (($ $) 264 T ELT) (($ $ (-792)) 262 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 259 T ELT) (($ $ (-1 |#1| |#1|) $) 246 T ELT) (($ $ (-1206)) 220 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 218 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 217 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 216 (|has| |#1| (-928 (-1206))) ELT)) (-2776 (((-792) $) 157 T ELT) (((-792) $ (-1112)) 133 T ELT) (((-665 (-792)) $ (-665 (-1112))) 132 T ELT)) (-3341 (((-916 (-391)) $) 85 (-12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ELT) (((-916 (-577)) $) 84 (-12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ELT) (((-549) $) 83 (-12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ELT)) (-2091 ((|#1| $) 182 (|has| |#1| (-465)) ELT) (($ $ (-1112)) 109 (|has| |#1| (-465)) ELT)) (-3601 (((-3 (-1297 $) "failed") (-710 $)) 107 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) ELT)) (-2341 (((-3 $ "failed") $ $) 240 (|has| |#1| (-569)) ELT) (((-3 (-420 $) "failed") (-420 $) $) 239 (|has| |#1| (-569)) ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 172 T ELT) (($ (-1112)) 142 T ELT) (($ (-420 (-577))) 81 (-2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ELT) (($ $) 88 (|has| |#1| (-569)) ELT)) (-2929 (((-665 |#1|) $) 175 T ELT)) (-2778 ((|#1| $ (-792)) 162 T ELT) (($ $ (-1112) (-792)) 131 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) 130 T ELT)) (-2580 (((-3 $ "failed") $) 82 (-2229 (-2319 (|has| $ (-146)) (|has| |#1| (-937))) (|has| |#1| (-146))) ELT)) (-3234 (((-792)) 32 T CONST)) (-3668 (($ $ $ (-792)) 180 (|has| |#1| (-174)) ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 92 (|has| |#1| (-569)) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-665 (-1112)) (-665 (-792))) 47 T ELT) (($ $ (-1112) (-792)) 46 T ELT) (($ $ (-665 (-1112))) 45 T ELT) (($ $ (-1112)) 41 T ELT) (($ $) 263 T ELT) (($ $ (-792)) 261 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-792)) 257 T ELT) (($ $ (-1206)) 219 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206))) 215 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-1206) (-792)) 214 (|has| |#1| (-928 (-1206))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 213 (|has| |#1| (-928 (-1206))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 163 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) -(((-1273 |#1|) (-141) (-1079)) (T -1273)) -((-2535 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-1273 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-5 *2 (-1202 *3)))) (-4052 (*1 *1 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-1079)) (-4 *1 (-1273 *3)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-1616 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-3553 (*1 *2 *1 *1) (-12 (-4 *3 (-1079)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1273 *3)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1273 *4)))) (-2478 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-2485 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-2425 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)))) (-2030 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174)))) (-3760 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174)))) (-2435 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) (-3890 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)) (-5 *2 (-792)))) (-2907 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-2341 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-2341 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)))) (-4435 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) (-3536 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| -2671 *3) (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1273 *3)))) (-1778 (*1 *2 *1 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1079)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1273 *3)))) (-2435 (*1 *2 *3 *2) (-12 (-5 *3 (-420 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577))))))) -(-13 (-977 |t#1| (-792) (-1112)) (-297 |t#1| |t#1|) (-297 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -2535 ((-1297 |t#1|) $ (-792))) (-15 -3728 ((-1202 |t#1|) $)) (-15 -4052 ($ (-1202 |t#1|))) (-15 -2393 ($ $ (-792))) (-15 -1616 ((-3 $ "failed") $ (-792))) (-15 -3553 ((-2 (|:| -1636 $) (|:| -4369 $)) $ $)) (-15 -3691 ((-2 (|:| -1636 $) (|:| -4369 $)) $ (-792))) (-15 -2478 ($ $ (-792))) (-15 -2485 ($ $ (-792))) (-15 -2425 ($ $ $)) (-15 -2030 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1611 (|t#1| $)) (-15 -3760 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-297 (-420 $) (-420 $))) (-15 -2435 ((-420 $) (-420 $) (-420 $))) (-15 -3890 ((-792) $ $)) (-15 -2907 ($ $ $)) (-15 -2341 ((-3 $ "failed") $ $)) (-15 -2341 ((-3 (-420 $) "failed") (-420 $) $)) (-15 -4435 ($ $ $)) (-15 -3536 ((-2 (|:| -2671 |t#1|) (|:| -1636 $) (|:| -4369 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-15 -1778 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-318)) (-6 -4495) (-15 -2435 (|t#1| (-420 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-15 -3491 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-792)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2229 (|has| |#1| (-1068 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 #2=(-1112)) . T) ((-634 |#1|) . T) ((-634 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-632 (-549)) -12 (|has| (-1112) (-632 (-549))) (|has| |#1| (-632 (-549)))) ((-632 (-916 (-391))) -12 (|has| (-1112) (-632 (-916 (-391)))) (|has| |#1| (-632 (-916 (-391))))) ((-632 (-916 (-577))) -12 (|has| (-1112) (-632 (-916 (-577)))) (|has| |#1| (-632 (-916 (-577))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-273 |#1|) . T) ((-297 (-420 $) (-420 $)) |has| |#1| (-569)) ((-297 |#1| |#1|) . T) ((-297 $ $) . T) ((-301) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 $) . T) ((-337 |#1| #0#) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2229 (|has| |#1| (-937)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-527 #2# |#1|) . T) ((-527 #2# $) . T) ((-527 $ $) . T) ((-569) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-667 #1#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) |has| |#1| (-38 (-420 (-577)))) ((-669 #3=(-577)) |has| |#1| (-659 (-577))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-659 #3#) |has| |#1| (-659 (-577))) ((-659 |#1|) . T) ((-738 #1#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2#) . T) ((-920 $ #4=(-1206)) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) . T) ((-926 (-1206)) |has| |#1| (-926 (-1206))) ((-928 #2#) . T) ((-928 #4#) -2229 (|has| |#1| (-928 (-1206))) (|has| |#1| (-926 (-1206)))) ((-910 (-391)) -12 (|has| (-1112) (-910 (-391))) (|has| |#1| (-910 (-391)))) ((-910 (-577)) -12 (|has| (-1112) (-910 (-577))) (|has| |#1| (-910 (-577)))) ((-977 |#1| #0# #2#) . T) ((-937) |has| |#1| (-937)) ((-948) |has| |#1| (-375)) ((-1068 (-420 (-577))) |has| |#1| (-1068 (-420 (-577)))) ((-1068 (-577)) |has| |#1| (-1068 (-577))) ((-1068 #2#) . T) ((-1068 |#1|) . T) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-937)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1251) |has| |#1| (-937))) -((-2948 (((-665 (-1112)) $) 34 T ELT)) (-3134 (($ $) 31 T ELT)) (-2925 (($ |#2| |#3|) NIL T ELT) (($ $ (-1112) |#3|) 28 T ELT) (($ $ (-665 (-1112)) (-665 |#3|)) 27 T ELT)) (-3095 (($ $) 14 T ELT)) (-3109 ((|#2| $) 12 T ELT)) (-2776 ((|#3| $) 10 T ELT))) -(((-1274 |#1| |#2| |#3|) (-10 -8 (-15 -2948 ((-665 (-1112)) |#1|)) (-15 -2925 (|#1| |#1| (-665 (-1112)) (-665 |#3|))) (-15 -2925 (|#1| |#1| (-1112) |#3|)) (-15 -3134 (|#1| |#1|)) (-15 -2925 (|#1| |#2| |#3|)) (-15 -2776 (|#3| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3109 (|#2| |#1|))) (-1275 |#2| |#3|) (-1079) (-813)) (T -1274)) -NIL -(-10 -8 (-15 -2948 ((-665 (-1112)) |#1|)) (-15 -2925 (|#1| |#1| (-665 (-1112)) (-665 |#3|))) (-15 -2925 (|#1| |#1| (-1112) |#3|)) (-15 -3134 (|#1| |#1|)) (-15 -2925 (|#1| |#2| |#3|)) (-15 -2776 (|#3| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3109 (|#2| |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 (-1112)) $) 86 T ELT)) (-3966 (((-1206) $) 118 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-4083 (($ $ |#2|) 113 T ELT) (($ $ |#2| |#2|) 112 T ELT)) (-2480 (((-1187 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2741 (((-112) $) 85 T ELT)) (-3890 ((|#2| $) 115 T ELT) ((|#2| $ |#2|) 114 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2393 (($ $ (-949)) 116 T ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT) (($ $ (-1112) |#2|) 88 T ELT) (($ $ (-665 (-1112)) (-665 |#2|)) 87 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4013 (($ $ |#2|) 110 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-2435 ((|#1| $ |#2|) 120 T ELT) (($ $ $) 96 (|has| |#2| (-1142)) ELT)) (-2030 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-2776 ((|#2| $) 76 T ELT)) (-1470 (($ $) 84 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-2778 ((|#1| $ |#2|) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-4368 ((|#1| $) 117 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-3908 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1275 |#1| |#2|) (-141) (-1079) (-813)) (T -1275)) -((-2480 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-1187 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (-5 *2 (-1206)))) (-4368 (*1 *2 *1) (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-3890 (*1 *2 *1 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-4083 (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-4083 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-3908 (*1 *2 *1 *3) (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2410 (*2 (-1206)))) (-4 *2 (-1079)))) (-4013 (*1 *1 *1 *2) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) (-3362 (*1 *2 *1 *3) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1187 *3))))) -(-13 (-1003 |t#1| |t#2| (-1112)) (-297 |t#2| |t#1|) (-10 -8 (-15 -2480 ((-1187 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3966 ((-1206) $)) (-15 -4368 (|t#1| $)) (-15 -2393 ($ $ (-949))) (-15 -3890 (|t#2| $)) (-15 -3890 (|t#2| $ |t#2|)) (-15 -4083 ($ $ |t#2|)) (-15 -4083 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2410 (|t#1| (-1206)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3908 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4013 ($ $ |t#2|)) (IF (|has| |t#2| (-1142)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-926 (-1206))) (-6 (-926 (-1206))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3362 ((-1187 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #0#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-297 |#2| |#1|) . T) ((-297 $ $) |has| |#2| (-1142)) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-667 #0#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #0#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-920 $ #1=(-1206)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| |#2| (-1112)) . T) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-4456 ((|#2| |#2|) 12 T ELT)) (-4240 (((-431 |#2|) |#2|) 14 T ELT)) (-2177 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))) 30 T ELT))) -(((-1276 |#1| |#2|) (-10 -7 (-15 -4240 ((-431 |#2|) |#2|)) (-15 -4456 (|#2| |#2|)) (-15 -2177 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) (-569) (-13 (-1273 |#1|) (-569) (-10 -8 (-15 -2420 ($ $ $))))) (T -1276)) -((-2177 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-577)))) (-4 *4 (-13 (-1273 *3) (-569) (-10 -8 (-15 -2420 ($ $ $))))) (-4 *3 (-569)) (-5 *1 (-1276 *3 *4)))) (-4456 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-1276 *3 *2)) (-4 *2 (-13 (-1273 *3) (-569) (-10 -8 (-15 -2420 ($ $ $))))))) (-4240 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1276 *4 *3)) (-4 *3 (-13 (-1273 *4) (-569) (-10 -8 (-15 -2420 ($ $ $)))))))) -(-10 -7 (-15 -4240 ((-431 |#2|) |#2|)) (-15 -4456 (|#2| |#2|)) (-15 -2177 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) -((-3609 (((-1282 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1282 |#1| |#3| |#5|)) 24 T ELT))) -(((-1277 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3609 ((-1282 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1282 |#1| |#3| |#5|)))) (-1079) (-1079) (-1206) (-1206) |#1| |#2|) (T -1277)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1282 *5 *7 *9)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1282 *6 *8 *10)) (-5 *1 (-1277 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1206))))) -(-10 -7 (-15 -3609 ((-1282 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1282 |#1| |#3| |#5|)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 (-1112)) $) 86 T ELT)) (-3966 (((-1206) $) 118 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-420 (-577))) 113 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 112 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119 T ELT)) (-1501 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 177 (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-2809 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1477 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186 T ELT)) (-1527 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) 18 T CONST)) (-3152 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) 85 T ELT)) (-2549 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-420 (-577)) $) 115 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) 116 T ELT) (($ $ (-420 (-577))) 185 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-420 (-577))) 73 T ELT) (($ $ (-1112) (-420 (-577))) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) 87 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3863 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-2388 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 180 (|has| |#1| (-375)) ELT)) (-3491 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2229 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-420 (-577))) 110 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-3585 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-2442 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-420 (-577))) 120 T ELT) (($ $ $) 96 (|has| (-420 (-577)) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2776 (((-420 (-577)) $) 76 T ELT)) (-1540 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 84 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-420 (-577))) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-4368 ((|#1| $) 117 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1575 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1551 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1278 |#1|) (-141) (-1079)) (T -1278)) -((-4447 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) (-4 *4 (-1079)) (-4 *1 (-1278 *4)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1278 *3)) (-4 *3 (-1079)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) (-3491 (*1 *1 *1 *2) (-2229 (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -2948 ((-665 *2) *3))) (|has| *3 (-15 -3491 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) -(-13 (-1275 |t#1| (-420 (-577))) (-10 -8 (-15 -4447 ($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |t#1|))))) (-15 -2393 ($ $ (-420 (-577)))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $)) (IF (|has| |t#1| (-15 -3491 (|t#1| |t#1| (-1206)))) (IF (|has| |t#1| (-15 -2948 ((-665 (-1206)) |t#1|))) (-15 -3491 ($ $ (-1206))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1232)) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-29 (-577))) (-15 -3491 ($ $ (-1206))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1232))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1142)) ((-301) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-738 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1275 |#1| #0#) . T)) -((-1516 (((-112) $) 12 T ELT)) (-2817 (((-3 |#3| "failed") $) 17 T ELT)) (-3514 ((|#3| $) 14 T ELT))) -(((-1279 |#1| |#2| |#3|) (-10 -8 (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -1516 ((-112) |#1|))) (-1280 |#2| |#3|) (-1079) (-1257 |#2|)) (T -1279)) -NIL -(-10 -8 (-15 -2817 ((-3 |#3| "failed") |#1|)) (-15 -3514 (|#3| |#1|)) (-15 -1516 ((-112) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 (-1112)) $) 86 T ELT)) (-3966 (((-1206) $) 118 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-420 (-577))) 113 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 112 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119 T ELT)) (-1501 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 177 (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) 178 (|has| |#1| (-375)) ELT)) (-2809 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) 168 (|has| |#1| (-375)) ELT)) (-1477 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186 T ELT)) (-1527 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#2| "failed") $) 197 T ELT)) (-3514 ((|#2| $) 198 T ELT)) (-3152 (($ $ $) 172 (|has| |#1| (-375)) ELT)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-4345 (((-420 (-577)) $) 194 T ELT)) (-3164 (($ $ $) 171 (|has| |#1| (-375)) ELT)) (-3029 (($ (-420 (-577)) |#2|) 195 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 166 (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) 179 (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) 85 T ELT)) (-2549 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-420 (-577)) $) 115 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) 116 T ELT) (($ $ (-420 (-577))) 185 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 175 (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-420 (-577))) 73 T ELT) (($ $ (-1112) (-420 (-577))) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) 87 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3863 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-2388 (($ (-665 $)) 164 (|has| |#1| (-375)) ELT) (($ $ $) 163 (|has| |#1| (-375)) ELT)) (-2791 ((|#2| $) 193 T ELT)) (-3281 (((-3 |#2| "failed") $) 191 T ELT)) (-3016 ((|#2| $) 192 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 180 (|has| |#1| (-375)) ELT)) (-3491 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 183 (-2229 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 165 (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) 162 (|has| |#1| (-375)) ELT) (($ $ $) 161 (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) 176 (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 173 (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-420 (-577))) 110 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 167 (|has| |#1| (-375)) ELT)) (-3585 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-2442 (((-792) $) 169 (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-420 (-577))) 120 T ELT) (($ $ $) 96 (|has| (-420 (-577)) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 170 (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2776 (((-420 (-577)) $) 76 T ELT)) (-1540 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 84 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT) (($ |#2|) 196 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-420 (-577))) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-4368 ((|#1| $) 117 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1575 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1551 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT) (($ $ $) 182 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 181 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1280 |#1| |#2|) (-141) (-1079) (-1257 |t#1|)) (T -1280)) -((-2776 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) (-5 *2 (-420 (-577))))) (-3029 (*1 *1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1079)) (-4 *1 (-1280 *4 *3)) (-4 *3 (-1257 *4)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) (-5 *2 (-420 (-577))))) (-2791 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3)))) (-3281 (*1 *2 *1) (|partial| -12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3))))) -(-13 (-1278 |t#1|) (-1068 |t#2|) (-634 |t#2|) (-10 -8 (-15 -3029 ($ (-420 (-577)) |t#2|)) (-15 -4345 ((-420 (-577)) $)) (-15 -2791 (|t#2| $)) (-15 -2776 ((-420 (-577)) $)) (-15 -3016 (|t#2| $)) (-15 -3281 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 |#2|) . T) ((-634 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1142)) ((-301) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-667 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-738 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-948) |has| |#1| (-375)) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1068 |#2|) . T) ((-1081 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1086 #1#) -2229 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1251) |has| |#1| (-375)) ((-1275 |#1| #0#) . T) ((-1278 |#1|) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 104 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-420 (-577))) 116 T ELT) (($ $ (-420 (-577)) (-420 (-577))) 118 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 54 T ELT)) (-1501 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 65 T ELT)) (-1527 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) NIL T ELT)) (-3514 ((|#2| $) NIL T ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 85 T ELT)) (-4345 (((-420 (-577)) $) 13 T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3029 (($ (-420 (-577)) |#2|) 11 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) 74 T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-420 (-577)) $) 113 T ELT) (((-420 (-577)) $ (-420 (-577))) 114 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) 130 T ELT) (($ $ (-420 (-577))) 128 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-420 (-577))) 33 T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3863 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2791 ((|#2| $) 12 T ELT)) (-3281 (((-3 |#2| "failed") $) 44 T ELT)) (-3016 ((|#2| $) 45 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) 101 (|has| |#1| (-375)) ELT)) (-3491 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 151 (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-420 (-577))) 122 T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3585 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-420 (-577))) 108 T ELT) (($ $ $) 94 (|has| (-420 (-577)) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) 138 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2776 (((-420 (-577)) $) 16 T ELT)) (-1540 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 120 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-174)) ELT) (($ |#2|) 34 T ELT) (($ (-420 (-577))) 139 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-420 (-577))) 107 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 127 T CONST)) (-4368 ((|#1| $) 106 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 21 T CONST)) (-2378 (($) 17 T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT)) (-2383 (((-112) $ $) 72 T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) 100 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-2471 (($ $ $) 76 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 82 T ELT) (($ $ (-577)) 157 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1281 |#1| |#2|) (-1280 |#1| |#2|) (-1079) (-1257 |#1|)) (T -1281)) -NIL -(-1280 |#1| |#2|) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 11 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-420 (-577))) NIL T ELT) (($ $ (-420 (-577)) (-420 (-577))) NIL T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL T ELT)) (-1501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-4456 (($ $) NIL (|has| |#1| (-375)) ELT)) (-4240 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3397 (((-112) $ $) NIL (|has| |#1| (-375)) ELT)) (-1477 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-792) (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL T ELT)) (-1527 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) 19 T ELT) (((-3 (-1289 |#1| |#2| |#3|) "failed") $) 22 T ELT)) (-3514 (((-1261 |#1| |#2| |#3|) $) NIL T ELT) (((-1289 |#1| |#2| |#3|) $) NIL T ELT)) (-3152 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-4345 (((-420 (-577)) $) 69 T ELT)) (-3164 (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-3029 (($ (-420 (-577)) (-1261 |#1| |#2| |#3|)) NIL T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) NIL (|has| |#1| (-375)) ELT)) (-1632 (((-112) $) NIL (|has| |#1| (-375)) ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-420 (-577)) $) NIL T ELT) (((-420 (-577)) $ (-420 (-577))) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) NIL T ELT) (($ $ (-420 (-577))) NIL T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-420 (-577))) 30 T ELT) (($ $ (-1112) (-420 (-577))) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-420 (-577)))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3863 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-2388 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2791 (((-1261 |#1| |#2| |#3|) $) 72 T ELT)) (-3281 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3016 (((-1261 |#1| |#2| |#3|) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3055 (($ $) NIL (|has| |#1| (-375)) ELT)) (-3491 (($ $) 39 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) NIL (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) NIL (|has| |#1| (-375)) ELT)) (-2420 (($ (-665 $)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2799 (((-431 $) $) NIL (|has| |#1| (-375)) ELT)) (-1506 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-4013 (($ $ (-420 (-577))) NIL T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) NIL (|has| |#1| (-375)) ELT)) (-3585 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) ELT)) (-2442 (((-792) $) NIL (|has| |#1| (-375)) ELT)) (-2435 ((|#1| $ (-420 (-577))) NIL T ELT) (($ $ $) NIL (|has| (-420 (-577)) (-1142)) ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) NIL (|has| |#1| (-375)) ELT)) (-2030 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) 38 T ELT)) (-2776 (((-420 (-577)) $) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) NIL T ELT)) (-2410 (((-885) $) 107 T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT) (($ (-1261 |#1| |#2| |#3|)) 16 T ELT) (($ (-1289 |#1| |#2| |#3|)) 17 T ELT) (($ (-1293 |#2|)) 36 T ELT) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-2778 ((|#1| $ (-420 (-577))) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) 12 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-420 (-577))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 32 T CONST)) (-2378 (($) 26 T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 34 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ (-577)) NIL (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1282 |#1| |#2| |#3|) (-13 (-1280 |#1| (-1261 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1289 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1282)) -((-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1282 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(-13 (-1280 |#1| (-1261 |#1| |#2| |#3|)) (-920 $ (-1293 |#2|)) (-1068 (-1289 |#1| |#2| |#3|)) (-634 (-1293 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 37 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4244 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 (-577) "failed") $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-420 (-577)))) ELT) (((-3 (-1282 |#2| |#3| |#4|) "failed") $) 22 T ELT)) (-3514 (((-577) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-577))) ELT) (((-420 (-577)) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-1068 (-420 (-577)))) ELT) (((-1282 |#2| |#3| |#4|) $) NIL T ELT)) (-3134 (($ $) 41 T ELT)) (-4281 (((-3 $ "failed") $) 27 T ELT)) (-3008 (($ $) NIL (|has| (-1282 |#2| |#3| |#4|) (-465)) ELT)) (-4313 (($ $ (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|) $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) 11 T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) 25 T ELT)) (-3569 (((-330 |#2| |#3| |#4|) $) NIL T ELT)) (-4309 (($ (-1 (-330 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) $) NIL T ELT)) (-3609 (($ (-1 (-1282 |#2| |#3| |#4|) (-1282 |#2| |#3| |#4|)) $) NIL T ELT)) (-4382 (((-3 (-864 |#2|) "failed") $) 90 T ELT)) (-3095 (($ $) NIL T ELT)) (-3109 (((-1282 |#2| |#3| |#4|) $) 20 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3069 (((-112) $) NIL T ELT)) (-3081 (((-1282 |#2| |#3| |#4|) $) NIL T ELT)) (-3200 (((-3 $ "failed") $ (-1282 |#2| |#3| |#4|)) NIL (|has| (-1282 |#2| |#3| |#4|) (-569)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-3859 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1188))) "failed") $) 74 T ELT)) (-2776 (((-330 |#2| |#3| |#4|) $) 17 T ELT)) (-2091 (((-1282 |#2| |#3| |#4|) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-465)) ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ (-1282 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-420 (-577))) NIL (-2229 (|has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) (|has| (-1282 |#2| |#3| |#4|) (-1068 (-420 (-577))))) ELT)) (-2929 (((-665 (-1282 |#2| |#3| |#4|)) $) NIL T ELT)) (-2778 (((-1282 |#2| |#3| |#4|) $ (-330 |#2| |#3| |#4|)) NIL T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| (-1282 |#2| |#3| |#4|) (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-3668 (($ $ $ (-792)) NIL (|has| (-1282 |#2| |#3| |#4|) (-174)) ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1370 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ (-1282 |#2| |#3| |#4|)) NIL (|has| (-1282 |#2| |#3| |#4|) (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1282 |#2| |#3| |#4|)) NIL T ELT) (($ (-1282 |#2| |#3| |#4|) $) NIL T ELT) (($ (-420 (-577)) $) NIL (|has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| (-1282 |#2| |#3| |#4|) (-38 (-420 (-577)))) ELT))) -(((-1283 |#1| |#2| |#3| |#4|) (-13 (-337 (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -4382 ((-3 (-864 |#2|) "failed") $)) (-15 -3859 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1188))) "failed") $)))) (-13 (-1068 (-577)) (-659 (-577)) (-465)) (-13 (-27) (-1232) (-443 |#1|)) (-1206) |#2|) (T -1283)) -((-4382 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *2 (-864 *4)) (-5 *1 (-1283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4))) (-3859 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 *4 *5 *6)) (|:| |%expon| (-330 *4 *5 *6)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) (|:| |%type| (-1188)))) (-5 *1 (-1283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) (-14 *6 *4)))) -(-13 (-337 (-1282 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -4382 ((-3 (-864 |#2|) "failed") $)) (-15 -3859 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1282 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1188))) "failed") $)))) -((-4119 ((|#2| $) 34 T ELT)) (-3932 ((|#2| $) 18 T ELT)) (-3840 (($ $) 53 T ELT)) (-2797 (($ $ (-577)) 85 T ELT)) (-2641 (((-112) $ (-792)) 46 T ELT)) (-4411 ((|#2| $ |#2|) 82 T ELT)) (-4306 ((|#2| $ |#2|) 78 T ELT)) (-2589 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 71 T ELT) (($ $ "rest" $) 75 T ELT) ((|#2| $ "last" |#2|) 73 T ELT)) (-2802 (($ $ (-665 $)) 81 T ELT)) (-3919 ((|#2| $) 17 T ELT)) (-4197 (($ $) NIL T ELT) (($ $ (-792)) 59 T ELT)) (-4284 (((-665 $) $) 31 T ELT)) (-2975 (((-112) $ $) 69 T ELT)) (-1967 (((-112) $ (-792)) 45 T ELT)) (-3417 (((-112) $ (-792)) 43 T ELT)) (-1452 (((-112) $) 33 T ELT)) (-2756 ((|#2| $) 25 T ELT) (($ $ (-792)) 64 T ELT)) (-2435 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-2110 (((-112) $) 23 T ELT)) (-1751 (($ $) 56 T ELT)) (-4123 (($ $) 86 T ELT)) (-2909 (((-792) $) 58 T ELT)) (-3252 (($ $) 57 T ELT)) (-3702 (($ $ $) 77 T ELT) (($ |#2| $) NIL T ELT)) (-2421 (((-665 $) $) 32 T ELT)) (-2383 (((-112) $ $) 67 T ELT)) (-3224 (((-792) $) 52 T ELT))) -(((-1284 |#1| |#2|) (-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2797 (|#1| |#1| (-577))) (-15 -2589 (|#2| |#1| "last" |#2|)) (-15 -4306 (|#2| |#1| |#2|)) (-15 -2589 (|#1| |#1| "rest" |#1|)) (-15 -2589 (|#2| |#1| "first" |#2|)) (-15 -4123 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -2909 ((-792) |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -3932 (|#2| |#1|)) (-15 -3919 (|#2| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -2756 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "last")) (-15 -2756 (|#2| |#1|)) (-15 -4197 (|#1| |#1| (-792))) (-15 -2435 (|#1| |#1| "rest")) (-15 -4197 (|#1| |#1|)) (-15 -2435 (|#2| |#1| "first")) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#1|)) (-15 -4411 (|#2| |#1| |#2|)) (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -2802 (|#1| |#1| (-665 |#1|))) (-15 -2975 ((-112) |#1| |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2435 (|#2| |#1| "value")) (-15 -4119 (|#2| |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -4284 ((-665 |#1|) |#1|)) (-15 -2421 ((-665 |#1|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792)))) (-1285 |#2|) (-1247)) (T -1284)) -NIL -(-10 -8 (-15 -2383 ((-112) |#1| |#1|)) (-15 -2797 (|#1| |#1| (-577))) (-15 -2589 (|#2| |#1| "last" |#2|)) (-15 -4306 (|#2| |#1| |#2|)) (-15 -2589 (|#1| |#1| "rest" |#1|)) (-15 -2589 (|#2| |#1| "first" |#2|)) (-15 -4123 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -2909 ((-792) |#1|)) (-15 -3252 (|#1| |#1|)) (-15 -3932 (|#2| |#1|)) (-15 -3919 (|#2| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -2756 (|#1| |#1| (-792))) (-15 -2435 (|#2| |#1| "last")) (-15 -2756 (|#2| |#1|)) (-15 -4197 (|#1| |#1| (-792))) (-15 -2435 (|#1| |#1| "rest")) (-15 -4197 (|#1| |#1|)) (-15 -2435 (|#2| |#1| "first")) (-15 -3702 (|#1| |#2| |#1|)) (-15 -3702 (|#1| |#1| |#1|)) (-15 -4411 (|#2| |#1| |#2|)) (-15 -2589 (|#2| |#1| "value" |#2|)) (-15 -2802 (|#1| |#1| (-665 |#1|))) (-15 -2975 ((-112) |#1| |#1|)) (-15 -2110 ((-112) |#1|)) (-15 -2435 (|#2| |#1| "value")) (-15 -4119 (|#2| |#1|)) (-15 -1452 ((-112) |#1|)) (-15 -4284 ((-665 |#1|) |#1|)) (-15 -2421 ((-665 |#1|) |#1|)) (-15 -3224 ((-792) |#1|)) (-15 -2641 ((-112) |#1| (-792))) (-15 -1967 ((-112) |#1| (-792))) (-15 -3417 ((-112) |#1| (-792)))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4119 ((|#1| $) 49 T ELT)) (-3932 ((|#1| $) 66 T ELT)) (-3840 (($ $) 68 T ELT)) (-2797 (($ $ (-577)) 53 (|has| $ (-6 -4500)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-4411 ((|#1| $ |#1|) 40 (|has| $ (-6 -4500)) ELT)) (-1980 (($ $ $) 57 (|has| $ (-6 -4500)) ELT)) (-4306 ((|#1| $ |#1|) 55 (|has| $ (-6 -4500)) ELT)) (-3445 ((|#1| $ |#1|) 59 (|has| $ (-6 -4500)) ELT)) (-2589 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4500)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4500)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4500)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-2802 (($ $ (-665 $)) 42 (|has| $ (-6 -4500)) ELT)) (-3919 ((|#1| $) 67 T ELT)) (-2762 (($) 7 T CONST)) (-4197 (($ $) 74 T ELT) (($ $ (-792)) 72 T ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-4284 (((-665 $) $) 51 T ELT)) (-2975 (((-112) $ $) 43 (|has| |#1| (-1130)) ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-1503 (((-665 |#1|) $) 46 T ELT)) (-1452 (((-112) $) 50 T ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-2756 ((|#1| $) 71 T ELT) (($ $ (-792)) 69 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 77 T ELT) (($ $ (-792)) 75 T ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT)) (-1722 (((-577) $ $) 45 T ELT)) (-2110 (((-112) $) 47 T ELT)) (-1751 (($ $) 63 T ELT)) (-4123 (($ $) 60 (|has| $ (-6 -4500)) ELT)) (-2909 (((-792) $) 64 T ELT)) (-3252 (($ $) 65 T ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-3978 (($ $) 13 T ELT)) (-2872 (($ $ $) 62 (|has| $ (-6 -4500)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4500)) ELT)) (-3702 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2421 (((-665 $) $) 52 T ELT)) (-3737 (((-112) $ $) 44 (|has| |#1| (-1130)) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1285 |#1|) (-141) (-1247)) (T -1285)) -((-3702 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-3702 (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-4188 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2435 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-2756 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2435 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2756 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-3840 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) (-1751 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2872 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2872 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-4123 (*1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-3445 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2589 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-1980 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2589 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) (-4306 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2589 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) (-2797 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) (-4 *3 (-1247))))) -(-13 (-1040 |t#1|) (-10 -8 (-15 -3702 ($ $ $)) (-15 -3702 ($ |t#1| $)) (-15 -4188 (|t#1| $)) (-15 -2435 (|t#1| $ "first")) (-15 -4188 ($ $ (-792))) (-15 -4197 ($ $)) (-15 -2435 ($ $ "rest")) (-15 -4197 ($ $ (-792))) (-15 -2756 (|t#1| $)) (-15 -2435 (|t#1| $ "last")) (-15 -2756 ($ $ (-792))) (-15 -3840 ($ $)) (-15 -3919 (|t#1| $)) (-15 -3932 (|t#1| $)) (-15 -3252 ($ $)) (-15 -2909 ((-792) $)) (-15 -1751 ($ $)) (IF (|has| $ (-6 -4500)) (PROGN (-15 -2872 ($ $ $)) (-15 -2872 ($ $ |t#1|)) (-15 -4123 ($ $)) (-15 -3445 (|t#1| $ |t#1|)) (-15 -2589 (|t#1| $ "first" |t#1|)) (-15 -1980 ($ $ $)) (-15 -2589 ($ $ "rest" $)) (-15 -4306 (|t#1| $ |t#1|)) (-15 -2589 (|t#1| $ "last" |t#1|)) (-15 -2797 ($ $ (-577)))) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-631 (-885)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-1040 |#1|) . T) ((-1130) |has| |#1| (-1130)) ((-1247) . T)) -((-3609 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3609 (|#4| (-1 |#2| |#1|) |#3|))) (-1079) (-1079) (-1288 |#1|) (-1288 |#2|)) (T -1286)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) (-4 *2 (-1288 *6)) (-5 *1 (-1286 *5 *6 *4 *2)) (-4 *4 (-1288 *5))))) -(-10 -7 (-15 -3609 (|#4| (-1 |#2| |#1|) |#3|))) -((-1516 (((-112) $) 17 T ELT)) (-1501 (($ $) 105 T ELT)) (-1371 (($ $) 81 T ELT)) (-1477 (($ $) 101 T ELT)) (-1348 (($ $) 77 T ELT)) (-1527 (($ $) 109 T ELT)) (-1391 (($ $) 85 T ELT)) (-3863 (($ $) 75 T ELT)) (-3585 (($ $) 73 T ELT)) (-1540 (($ $) 111 T ELT)) (-1402 (($ $) 87 T ELT)) (-1515 (($ $) 107 T ELT)) (-1381 (($ $) 83 T ELT)) (-1489 (($ $) 103 T ELT)) (-1360 (($ $) 79 T ELT)) (-2410 (((-885) $) 61 T ELT) (($ (-577)) NIL T ELT) (($ (-420 (-577))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-1575 (($ $) 117 T ELT)) (-1435 (($ $) 93 T ELT)) (-1551 (($ $) 113 T ELT)) (-1413 (($ $) 89 T ELT)) (-1597 (($ $) 121 T ELT)) (-1456 (($ $) 97 T ELT)) (-3501 (($ $) 123 T ELT)) (-1466 (($ $) 99 T ELT)) (-1586 (($ $) 119 T ELT)) (-1446 (($ $) 95 T ELT)) (-1562 (($ $) 115 T ELT)) (-1423 (($ $) 91 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-420 (-577))) 71 T ELT))) -(((-1287 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -1371 (|#1| |#1|)) (-15 -1348 (|#1| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -1360 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1466 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1435 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1527 (|#1| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -1516 ((-112) |#1|)) (-15 -2410 ((-885) |#1|))) (-1288 |#2|) (-1079)) (T -1287)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -1371 (|#1| |#1|)) (-15 -1348 (|#1| |#1|)) (-15 -1391 (|#1| |#1|)) (-15 -1402 (|#1| |#1|)) (-15 -1381 (|#1| |#1|)) (-15 -1360 (|#1| |#1|)) (-15 -1423 (|#1| |#1|)) (-15 -1446 (|#1| |#1|)) (-15 -1466 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -1435 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1527 (|#1| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -1597 (|#1| |#1|)) (-15 -1551 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3585 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2410 (|#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 -2410 (|#1| (-420 (-577)))) (-15 -2410 (|#1| (-577))) (-15 ** (|#1| |#1| (-792))) (-15 ** (|#1| |#1| (-949))) (-15 -1516 ((-112) |#1|)) (-15 -2410 ((-885) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-2948 (((-665 (-1112)) $) 86 T ELT)) (-3966 (((-1206) $) 118 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 64 (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 66 (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-792)) 113 T ELT) (($ $ (-792) (-792)) 112 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|))) $) 119 T ELT)) (-1501 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2809 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1477 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|)))) 170 T ELT) (($ (-1187 |#1|)) 168 T ELT)) (-1527 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) 18 T CONST)) (-3134 (($ $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-1882 (($ $) 167 T ELT)) (-1768 (((-980 |#1|) $ (-792)) 165 T ELT) (((-980 |#1|) $ (-792) (-792)) 164 T ELT)) (-2741 (((-112) $) 85 T ELT)) (-2549 (($) 160 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-792) $) 115 T ELT) (((-792) $ (-792)) 114 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-4341 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2393 (($ $ (-949)) 116 T ELT)) (-4195 (($ (-1 |#1| (-577)) $) 166 T ELT)) (-2338 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-792)) 73 T ELT) (($ $ (-1112) (-792)) 88 T ELT) (($ $ (-665 (-1112)) (-665 (-792))) 87 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3863 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) 77 T ELT)) (-3109 ((|#1| $) 78 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 161 (-2229 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-987)) (|has| |#1| (-1232)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-38 (-420 (-577)))))) ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4013 (($ $ (-792)) 110 T ELT)) (-3200 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)) ELT)) (-3585 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3362 (((-1187 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) ELT)) (-2435 ((|#1| $ (-792)) 120 T ELT) (($ $ $) 96 (|has| (-792) (-1142)) ELT)) (-2030 (($ $ (-1206)) 108 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206))) 106 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-1206) (-792)) 105 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 104 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) 98 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT)) (-2776 (((-792) $) 76 T ELT)) (-1540 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 84 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) 61 (|has| |#1| (-569)) ELT) (($ |#1|) 59 (|has| |#1| (-174)) ELT)) (-2929 (((-1187 |#1|) $) 169 T ELT)) (-2778 ((|#1| $ (-792)) 71 T ELT)) (-2580 (((-3 $ "failed") $) 60 (|has| |#1| (-146)) ELT)) (-3234 (((-792)) 32 T CONST)) (-4368 ((|#1| $) 117 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-1575 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) 65 (|has| |#1| (-569)) ELT)) (-1551 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-792)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-1675 (($ $ (-1206)) 107 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206))) 103 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-1206) (-792)) 102 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) 101 (-12 (|has| |#1| (-926 (-1206))) (|has| |#1| (-15 * (|#1| (-792) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) 97 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 70 (|has| |#1| (-375)) ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ |#1|) 163 (|has| |#1| (-375)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1288 |#1|) (-141) (-1079)) (T -1288)) -((-4447 (*1 *1 *2) (-12 (-5 *2 (-1187 (-2 (|:| |k| (-792)) (|:| |c| *3)))) (-4 *3 (-1079)) (-4 *1 (-1288 *3)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-5 *2 (-1187 *3)))) (-4447 (*1 *1 *2) (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-4 *1 (-1288 *3)))) (-1882 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)))) (-4195 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1288 *3)) (-4 *3 (-1079)))) (-1768 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) (-5 *2 (-980 *4)))) (-1768 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) (-5 *2 (-980 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) (-3491 (*1 *1 *1 *2) (-2229 (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-12 (|has| *3 (-15 -2948 ((-665 *2) *3))) (|has| *3 (-15 -3491 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) -(-13 (-1275 |t#1| (-792)) (-10 -8 (-15 -4447 ($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |t#1|))))) (-15 -2929 ((-1187 |t#1|) $)) (-15 -4447 ($ (-1187 |t#1|))) (-15 -1882 ($ $)) (-15 -4195 ($ (-1 |t#1| (-577)) $)) (-15 -1768 ((-980 |t#1|) $ (-792))) (-15 -1768 ((-980 |t#1|) $ (-792) (-792))) (IF (|has| |t#1| (-375)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -3491 ($ $)) (IF (|has| |t#1| (-15 -3491 (|t#1| |t#1| (-1206)))) (IF (|has| |t#1| (-15 -2948 ((-665 (-1206)) |t#1|))) (-15 -3491 ($ $ (-1206))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1232)) (IF (|has| |t#1| (-987)) (IF (|has| |t#1| (-29 (-577))) (-15 -3491 ($ $ (-1206))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1032)) (-6 (-1232))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-792)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-634 #1#) |has| |#1| (-38 (-420 (-577)))) ((-634 (-577)) . T) ((-634 |#1|) |has| |#1| (-174)) ((-634 $) |has| |#1| (-569)) ((-631 (-885)) . T) ((-174) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-792) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-792) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-792) |#1|))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-792) (-1142)) ((-301) |has| |#1| (-569)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) |has| |#1| (-569)) ((-667 #1#) |has| |#1| (-38 (-420 (-577)))) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #1#) |has| |#1| (-38 (-420 (-577)))) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #1#) |has| |#1| (-38 (-420 (-577)))) ((-661 |#1|) |has| |#1| (-174)) ((-661 $) |has| |#1| (-569)) ((-738 #1#) |has| |#1| (-38 (-420 (-577)))) ((-738 |#1|) |has| |#1| (-174)) ((-738 $) |has| |#1| (-569)) ((-747) . T) ((-920 $ #2=(-1206)) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ((-926 #2#) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ((-928 #2#) -12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ((-1003 |#1| #0# (-1112)) . T) ((-1032) |has| |#1| (-38 (-420 (-577)))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1086 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1086 |#1|) . T) ((-1086 $) -2229 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1232) |has| |#1| (-38 (-420 (-577)))) ((-1235) |has| |#1| (-38 (-420 (-577)))) ((-1247) . T) ((-1275 |#1| #0#) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-2948 (((-665 (-1112)) $) NIL T ELT)) (-3966 (((-1206) $) 90 T ELT)) (-2548 (((-1270 |#2| |#1|) $ (-792)) 73 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4244 (((-112) $) 142 (|has| |#1| (-569)) ELT)) (-4083 (($ $ (-792)) 127 T ELT) (($ $ (-792) (-792)) 130 T ELT)) (-2480 (((-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|))) $) 43 T ELT)) (-1501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1371 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2809 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1477 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1348 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4447 (($ (-1187 (-2 (|:| |k| (-792)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1187 |#1|)) NIL T ELT)) (-1527 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1391 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2762 (($) NIL T CONST)) (-3665 (($ $) 134 T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-1882 (($ $) 140 T ELT)) (-1768 (((-980 |#1|) $ (-792)) 63 T ELT) (((-980 |#1|) $ (-792) (-792)) 65 T ELT)) (-2741 (((-112) $) NIL T ELT)) (-2549 (($) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3890 (((-792) $) NIL T ELT) (((-792) $ (-792)) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-4343 (($ $) 117 T ELT)) (-4341 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3364 (($ (-577) (-577) $) 136 T ELT)) (-2393 (($ $ (-949)) 139 T ELT)) (-4195 (($ (-1 |#1| (-577)) $) 111 T ELT)) (-2338 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-792)) 16 T ELT) (($ $ (-1112) (-792)) NIL T ELT) (($ $ (-665 (-1112)) (-665 (-792))) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) 98 T ELT)) (-3863 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3095 (($ $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2640 (($ $) 115 T ELT)) (-1718 (($ $) 113 T ELT)) (-2409 (($ (-577) (-577) $) 138 T ELT)) (-3491 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-1206)) 156 (-2229 (-12 (|has| |#1| (-15 -3491 (|#1| |#1| (-1206)))) (|has| |#1| (-15 -2948 ((-665 (-1206)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-987)) (|has| |#1| (-1232)))) ELT) (($ $ (-1293 |#2|)) 151 (|has| |#1| (-38 (-420 (-577)))) ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4080 (($ $ (-577) (-577)) 121 T ELT)) (-4013 (($ $ (-792)) 123 T ELT)) (-3200 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)) ELT)) (-3585 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2376 (($ $) 119 T ELT)) (-3362 (((-1187 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) ELT)) (-2435 ((|#1| $ (-792)) 95 T ELT) (($ $ $) 132 (|has| (-792) (-1142)) ELT)) (-2030 (($ $ (-1206)) 108 (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) 102 (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) 103 T ELT)) (-2776 (((-792) $) NIL T ELT)) (-1540 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1402 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1381 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1360 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1470 (($ $) 125 T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) 26 T ELT) (($ (-420 (-577))) 148 (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 25 (|has| |#1| (-174)) ELT) (($ (-1270 |#2| |#1|)) 81 T ELT) (($ (-1293 |#2|)) 22 T ELT)) (-2929 (((-1187 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ (-792)) 94 T ELT)) (-2580 (((-3 $ "failed") $) NIL (|has| |#1| (-146)) ELT)) (-3234 (((-792)) NIL T CONST)) (-4368 ((|#1| $) 91 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-1575 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1435 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1370 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-1551 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1413 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1597 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-3908 ((|#1| $ (-792)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-792)))) (|has| |#1| (-15 -2410 (|#1| (-1206))))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1466 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1586 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1446 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1562 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-1423 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (-2367 (($) 18 T CONST)) (-2378 (($) 13 T CONST)) (-1675 (($ $ (-1206)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-1206) (-792)) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $ (-665 (-1206)) (-665 (-792))) NIL (-12 (|has| |#1| (-15 * (|#1| (-792) |#1|))) (|has| |#1| (-926 (-1206)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-792)) NIL (|has| |#1| (-15 * (|#1| (-792) |#1|))) ELT) (($ $ (-1293 |#2|)) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-2494 (($ $ |#1|) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-2471 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT) (($ $ |#1|) 145 (|has| |#1| (-375)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 106 T ELT) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577)))) ELT) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))) ELT))) -(((-1289 |#1| |#2| |#3|) (-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1270 |#2| |#1|))) (-15 -2548 ((-1270 |#2| |#1|) $ (-792))) (-15 -2410 ($ (-1293 |#2|))) (-15 -1718 ($ $)) (-15 -2640 ($ $)) (-15 -4343 ($ $)) (-15 -2376 ($ $)) (-15 -4080 ($ $ (-577) (-577))) (-15 -3665 ($ $)) (-15 -3364 ($ (-577) (-577) $)) (-15 -2409 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) (-1079) (-1206) |#1|) (T -1289)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3) (-5 *1 (-1289 *3 *4 *5)))) (-2548 (*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1289 *4 *5 *6)) (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *5 *3))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-2640 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-4080 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3))) (-3665 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) (-14 *4 *2))) (-3364 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3))) (-2409 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) (-14 *5 *3))) (-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(-13 (-1288 |#1|) (-920 $ (-1293 |#2|)) (-10 -8 (-15 -2410 ($ (-1270 |#2| |#1|))) (-15 -2548 ((-1270 |#2| |#1|) $ (-792))) (-15 -2410 ($ (-1293 |#2|))) (-15 -1718 ($ $)) (-15 -2640 ($ $)) (-15 -4343 ($ $)) (-15 -2376 ($ $)) (-15 -4080 ($ $ (-577) (-577))) (-15 -3665 ($ $)) (-15 -3364 ($ (-577) (-577) $)) (-15 -2409 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3491 ($ $ (-1293 |#2|))) |%noBranch|))) -((-1915 (((-1 (-1187 |#1|) (-665 (-1187 |#1|))) (-1 |#2| (-665 |#2|))) 24 T ELT)) (-2462 (((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-1474 (((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-1910 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-2563 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-2141 ((|#2| (-1 |#2| (-665 |#2|)) (-665 |#1|)) 60 T ELT)) (-3912 (((-665 |#2|) (-665 |#1|) (-665 (-1 |#2| (-665 |#2|)))) 66 T ELT)) (-3549 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1290 |#1| |#2|) (-10 -7 (-15 -1474 ((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|))) (-15 -2462 ((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1915 ((-1 (-1187 |#1|) (-665 (-1187 |#1|))) (-1 |#2| (-665 |#2|)))) (-15 -3549 (|#2| |#2| |#2|)) (-15 -2563 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1910 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2141 (|#2| (-1 |#2| (-665 |#2|)) (-665 |#1|))) (-15 -3912 ((-665 |#2|) (-665 |#1|) (-665 (-1 |#2| (-665 |#2|)))))) (-38 (-420 (-577))) (-1288 |#1|)) (T -1290)) -((-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 (-1 *6 (-665 *6)))) (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1288 *5)) (-5 *2 (-665 *6)) (-5 *1 (-1290 *5 *6)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-665 *2))) (-5 *4 (-665 *5)) (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1288 *5)) (-5 *1 (-1290 *5 *2)))) (-1910 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-3549 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1290 *3 *2)) (-4 *2 (-1288 *3)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-665 *5))) (-4 *5 (-1288 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-665 (-1187 *4)))) (-5 *1 (-1290 *4 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1288 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-1187 *4) (-1187 *4))) (-5 *1 (-1290 *4 *5)))) (-1474 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1288 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1290 *4 *5))))) -(-10 -7 (-15 -1474 ((-1 (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2|))) (-15 -2462 ((-1 (-1187 |#1|) (-1187 |#1|) (-1187 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1915 ((-1 (-1187 |#1|) (-665 (-1187 |#1|))) (-1 |#2| (-665 |#2|)))) (-15 -3549 (|#2| |#2| |#2|)) (-15 -2563 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1910 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2141 (|#2| (-1 |#2| (-665 |#2|)) (-665 |#1|))) (-15 -3912 ((-665 |#2|) (-665 |#1|) (-665 (-1 |#2| (-665 |#2|)))))) -((-2920 ((|#2| |#4| (-792)) 31 T ELT)) (-3648 ((|#4| |#2|) 26 T ELT)) (-1785 ((|#4| (-420 |#2|)) 49 (|has| |#1| (-569)) ELT)) (-2252 (((-1 |#4| (-665 |#4|)) |#3|) 43 T ELT))) -(((-1291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3648 (|#4| |#2|)) (-15 -2920 (|#2| |#4| (-792))) (-15 -2252 ((-1 |#4| (-665 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -1785 (|#4| (-420 |#2|))) |%noBranch|)) (-1079) (-1273 |#1|) (-677 |#2|) (-1288 |#1|)) (T -1291)) -((-1785 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-569)) (-4 *4 (-1079)) (-4 *2 (-1288 *4)) (-5 *1 (-1291 *4 *5 *6 *2)) (-4 *6 (-677 *5)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-665 *6))) (-5 *1 (-1291 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-1288 *4)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-1291 *5 *2 *6 *3)) (-4 *6 (-677 *2)) (-4 *3 (-1288 *5)))) (-3648 (*1 *2 *3) (-12 (-4 *4 (-1079)) (-4 *3 (-1273 *4)) (-4 *2 (-1288 *4)) (-5 *1 (-1291 *4 *3 *5 *2)) (-4 *5 (-677 *3))))) -(-10 -7 (-15 -3648 (|#4| |#2|)) (-15 -2920 (|#2| |#4| (-792))) (-15 -2252 ((-1 |#4| (-665 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -1785 (|#4| (-420 |#2|))) |%noBranch|)) -NIL -(((-1292) (-141)) (T -1292)) -NIL -(-13 (-10 -7 (-6 -3873))) -((-3211 (((-112) $ $) NIL T ELT)) (-3966 (((-1206)) 12 T ELT)) (-3384 (((-1188) $) 18 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 11 T ELT) (((-1206) $) 8 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 15 T ELT))) -(((-1293 |#1|) (-13 (-1130) (-631 (-1206)) (-10 -8 (-15 -2410 ((-1206) $)) (-15 -3966 ((-1206))))) (-1206)) (T -1293)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2))) (-3966 (*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2)))) -(-13 (-1130) (-631 (-1206)) (-10 -8 (-15 -2410 ((-1206) $)) (-15 -3966 ((-1206))))) -((-1525 (($ (-792)) 19 T ELT)) (-2359 (((-710 |#2|) $ $) 41 T ELT)) (-2323 ((|#2| $) 51 T ELT)) (-3490 ((|#2| $) 50 T ELT)) (-3511 ((|#2| $ $) 36 T ELT)) (-4437 (($ $ $) 47 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-577) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1294 |#1| |#2|) (-10 -8 (-15 -2323 (|#2| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -4437 (|#1| |#1| |#1|)) (-15 -2359 ((-710 |#2|) |#1| |#1|)) (-15 -3511 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -1525 (|#1| (-792))) (-15 -2471 (|#1| |#1| |#1|))) (-1295 |#2|) (-1247)) (T -1294)) -NIL -(-10 -8 (-15 -2323 (|#2| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -4437 (|#1| |#1| |#1|)) (-15 -2359 ((-710 |#2|) |#1| |#1|)) (-15 -3511 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -2483 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -1525 (|#1| (-792))) (-15 -2471 (|#1| |#1| |#1|))) -((-3211 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1525 (($ (-792)) 115 (|has| |#1| (-23)) ELT)) (-3425 (((-1302) $ (-577) (-577)) 41 (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4500)) ELT) (($ $) 91 (-12 (|has| |#1| (-870)) (|has| $ (-6 -4500))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) 8 T ELT)) (-2589 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) 60 (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4499)) ELT)) (-2762 (($) 7 T CONST)) (-3823 (($ $) 93 (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) 103 T ELT)) (-3860 (($ $) 80 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-2736 (($ |#1| $) 79 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) 52 T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) 100 T ELT) (((-577) |#1| $) 99 (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) 31 (|has| $ (-6 -4499)) ELT)) (-2359 (((-710 |#1|) $ $) 108 (|has| |#1| (-1079)) ELT)) (-3748 (($ (-792) |#1|) 70 T ELT)) (-1967 (((-112) $ (-792)) 9 T ELT)) (-3167 (((-577) $) 44 (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) 85 (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) 30 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1962 (((-577) $) 45 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) 86 (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-2323 ((|#1| $) 105 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3417 (((-112) $ (-792)) 10 T ELT)) (-3490 ((|#1| $) 106 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1032))) ELT)) (-3384 (((-1188) $) 23 (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) 62 T ELT) (($ $ $ (-577)) 61 T ELT)) (-3887 (((-665 (-577)) $) 47 T ELT)) (-1593 (((-112) (-577) $) 48 T ELT)) (-4312 (((-1150) $) 22 (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) 43 (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-3482 (($ $ |#1|) 42 (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) 14 T ELT)) (-3153 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) 49 T ELT)) (-2392 (((-112) $) 11 T ELT)) (-3414 (($) 12 T ELT)) (-2435 ((|#1| $ (-577) |#1|) 51 T ELT) ((|#1| $ (-577)) 50 T ELT) (($ $ (-1264 (-577))) 71 T ELT)) (-3511 ((|#1| $ $) 109 (|has| |#1| (-1079)) ELT)) (-1704 (($ $ (-577)) 64 T ELT) (($ $ (-1264 (-577))) 63 T ELT)) (-4437 (($ $ $) 107 (|has| |#1| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) 29 (-12 (|has| |#1| (-1130)) (|has| $ (-6 -4499))) ELT)) (-1530 (($ $ $ (-577)) 94 (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) 13 T ELT)) (-3341 (((-549) $) 81 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 72 T ELT)) (-3702 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-665 $)) 66 T ELT)) (-2410 (((-885) $) 18 (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) 87 (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) 89 (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) 88 (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) 90 (|has| |#1| (-870)) ELT)) (-2483 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-577) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-747)) ELT) (($ $ |#1|) 110 (|has| |#1| (-747)) ELT)) (-3224 (((-792) $) 6 (|has| $ (-6 -4499)) ELT))) -(((-1295 |#1|) (-141) (-1247)) (T -1295)) -((-2471 (*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-25)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1295 *3)) (-4 *3 (-23)) (-4 *3 (-1247)))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (-2483 (*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) (-3511 (*1 *2 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) (-2359 (*1 *2 *1 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-1079)) (-5 *2 (-710 *3)))) (-4437 (*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) (-4 *2 (-1079))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2471 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1525 ($ (-792))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2483 ($ $)) (-15 -2483 ($ $ $)) (-15 * ($ (-577) $))) |%noBranch|) (IF (|has| |t#1| (-747)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1079)) (PROGN (-15 -3511 (|t#1| $ $)) (-15 -2359 ((-710 |t#1|) $ $)) (-15 -4437 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1032)) (IF (|has| |t#1| (-1079)) (PROGN (-15 -3490 (|t#1| $)) (-15 -2323 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-102))) ((-631 (-885)) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870)) (|has| |#1| (-631 (-885)))) ((-152 |#1|) . T) ((-632 (-549)) |has| |#1| (-632 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1264 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ((-672 |#1|) . T) ((-19 |#1|) . T) ((-870) |has| |#1| (-870)) ((-873) |has| |#1| (-870)) ((-1130) -2229 (|has| |#1| (-1130)) (|has| |#1| (-870))) ((-1247) . T)) -((-2090 (((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 13 T ELT)) (-2511 ((|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 15 T ELT)) (-3609 (((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)) 30 T ELT) (((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|)) 18 T ELT))) -(((-1296 |#1| |#2|) (-10 -7 (-15 -2090 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -3609 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -3609 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) (-1247) (-1247)) (T -1296)) -((-3609 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1296 *5 *6)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1296 *5 *6)))) (-2511 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1296 *5 *2)))) (-2090 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1296 *6 *5))))) -(-10 -7 (-15 -2090 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -2511 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -3609 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -3609 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) -((-3211 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1525 (($ (-792)) NIL (|has| |#1| (-23)) ELT)) (-2020 (($ (-665 |#1|)) 11 T ELT)) (-3425 (((-1302) $ (-577) (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3047 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-870)) ELT)) (-1461 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-870))) ELT)) (-2040 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-870)) ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-2589 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| $ (-1264 (-577)) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-4232 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2762 (($) NIL T CONST)) (-3823 (($ $) NIL (|has| $ (-6 -4500)) ELT)) (-1538 (($ $) NIL T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-2736 (($ |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2511 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4499)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3448 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-3381 ((|#1| $ (-577)) NIL T ELT)) (-3886 (((-577) (-1 (-112) |#1|) $) NIL T ELT) (((-577) |#1| $) NIL (|has| |#1| (-1130)) ELT) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1130)) ELT)) (-2728 (((-665 |#1|) $) 16 (|has| $ (-6 -4499)) ELT)) (-2359 (((-710 |#1|) $ $) NIL (|has| |#1| (-1079)) ELT)) (-3748 (($ (-792) |#1|) NIL T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-3167 (((-577) $) NIL (|has| (-577) (-870)) ELT)) (-1344 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2223 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4138 (((-665 |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1962 (((-577) $) 12 (|has| (-577) (-870)) ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3437 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2323 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3490 ((|#1| $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1079))) ELT)) (-3384 (((-1188) $) NIL (|has| |#1| (-1130)) ELT)) (-4272 (($ |#1| $ (-577)) NIL T ELT) (($ $ $ (-577)) NIL T ELT)) (-3887 (((-665 (-577)) $) NIL T ELT)) (-1593 (((-112) (-577) $) NIL T ELT)) (-4312 (((-1150) $) NIL (|has| |#1| (-1130)) ELT)) (-4188 ((|#1| $) NIL (|has| (-577) (-870)) ELT)) (-1520 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-3482 (($ $ |#1|) NIL (|has| $ (-6 -4500)) ELT)) (-2519 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT) (($ $ (-665 |#1|) (-665 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-3153 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-3485 (((-665 |#1|) $) NIL T ELT)) (-2392 (((-112) $) NIL T ELT)) (-3414 (($) NIL T ELT)) (-2435 ((|#1| $ (-577) |#1|) NIL T ELT) ((|#1| $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-3511 ((|#1| $ $) NIL (|has| |#1| (-1079)) ELT)) (-1704 (($ $ (-577)) NIL T ELT) (($ $ (-1264 (-577))) NIL T ELT)) (-4437 (($ $ $) NIL (|has| |#1| (-1079)) ELT)) (-4323 (((-792) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT) (((-792) |#1| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#1| (-1130))) ELT)) (-1530 (($ $ $ (-577)) NIL (|has| $ (-6 -4500)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) 20 (|has| |#1| (-632 (-549))) ELT)) (-2422 (($ (-665 |#1|)) 10 T ELT)) (-3702 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-665 $)) NIL T ELT)) (-2410 (((-885) $) NIL (|has| |#1| (-631 (-885))) ELT)) (-2525 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1835 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4499)) ELT)) (-2440 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2415 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2383 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2428 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2403 (((-112) $ $) NIL (|has| |#1| (-870)) ELT)) (-2483 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2471 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-577) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-747)) ELT) (($ $ |#1|) NIL (|has| |#1| (-747)) ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1297 |#1|) (-13 (-1295 |#1|) (-10 -8 (-15 -2020 ($ (-665 |#1|))))) (-1247)) (T -1297)) -((-2020 (*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3))))) -(-13 (-1295 |#1|) (-10 -8 (-15 -2020 ($ (-665 |#1|))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1427 (((-1188) $ (-1188)) 107 T ELT) (((-1188) $ (-1188) (-1188)) 105 T ELT) (((-1188) $ (-1188) (-665 (-1188))) 104 T ELT)) (-2958 (($) 69 T ELT)) (-3825 (((-1302) $ (-481) (-949)) 54 T ELT)) (-3939 (((-1302) $ (-949) (-1188)) 89 T ELT) (((-1302) $ (-949) (-897)) 90 T ELT)) (-1939 (((-1302) $ (-949) (-391) (-391)) 57 T ELT)) (-3377 (((-1302) $ (-1188)) 84 T ELT)) (-1857 (((-1302) $ (-949) (-1188)) 94 T ELT)) (-1405 (((-1302) $ (-949) (-391) (-391)) 58 T ELT)) (-3923 (((-1302) $ (-949) (-949)) 55 T ELT)) (-1406 (((-1302) $) 85 T ELT)) (-2139 (((-1302) $ (-949) (-1188)) 93 T ELT)) (-1409 (((-1302) $ (-481) (-949)) 41 T ELT)) (-2686 (((-1302) $ (-949) (-1188)) 92 T ELT)) (-1933 (((-665 (-271)) $) 29 T ELT) (($ $ (-665 (-271))) 30 T ELT)) (-3625 (((-1302) $ (-792) (-792)) 52 T ELT)) (-3776 (($ $) 70 T ELT) (($ (-481) (-665 (-271))) 71 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3171 (((-577) $) 48 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2822 (((-1297 (-3 (-481) "undefined")) $) 47 T ELT)) (-1610 (((-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2686 (-577)) (|:| -2586 (-577)) (|:| |spline| (-577)) (|:| -3712 (-577)) (|:| |axesColor| (-897)) (|:| -3939 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577)))) $) 46 T ELT)) (-1870 (((-1302) $ (-949) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-897) (-577) (-897) (-577)) 83 T ELT)) (-4025 (((-665 (-971 (-228))) $) NIL T ELT)) (-2752 (((-481) $ (-949)) 43 T ELT)) (-3014 (((-1302) $ (-792) (-792) (-949) (-949)) 50 T ELT)) (-1340 (((-1302) $ (-1188)) 95 T ELT)) (-2586 (((-1302) $ (-949) (-1188)) 91 T ELT)) (-2410 (((-885) $) 102 T ELT)) (-1624 (((-1302) $) 96 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3712 (((-1302) $ (-949) (-1188)) 87 T ELT) (((-1302) $ (-949) (-897)) 88 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1298) (-13 (-1130) (-10 -8 (-15 -4025 ((-665 (-971 (-228))) $)) (-15 -2958 ($)) (-15 -3776 ($ $)) (-15 -1933 ((-665 (-271)) $)) (-15 -1933 ($ $ (-665 (-271)))) (-15 -3776 ($ (-481) (-665 (-271)))) (-15 -1870 ((-1302) $ (-949) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-897) (-577) (-897) (-577))) (-15 -1610 ((-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2686 (-577)) (|:| -2586 (-577)) (|:| |spline| (-577)) (|:| -3712 (-577)) (|:| |axesColor| (-897)) (|:| -3939 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577)))) $)) (-15 -2822 ((-1297 (-3 (-481) "undefined")) $)) (-15 -3377 ((-1302) $ (-1188))) (-15 -1409 ((-1302) $ (-481) (-949))) (-15 -2752 ((-481) $ (-949))) (-15 -3712 ((-1302) $ (-949) (-1188))) (-15 -3712 ((-1302) $ (-949) (-897))) (-15 -3939 ((-1302) $ (-949) (-1188))) (-15 -3939 ((-1302) $ (-949) (-897))) (-15 -2686 ((-1302) $ (-949) (-1188))) (-15 -2139 ((-1302) $ (-949) (-1188))) (-15 -2586 ((-1302) $ (-949) (-1188))) (-15 -1340 ((-1302) $ (-1188))) (-15 -1624 ((-1302) $)) (-15 -3014 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -1405 ((-1302) $ (-949) (-391) (-391))) (-15 -1939 ((-1302) $ (-949) (-391) (-391))) (-15 -1857 ((-1302) $ (-949) (-1188))) (-15 -3625 ((-1302) $ (-792) (-792))) (-15 -3825 ((-1302) $ (-481) (-949))) (-15 -3923 ((-1302) $ (-949) (-949))) (-15 -1427 ((-1188) $ (-1188))) (-15 -1427 ((-1188) $ (-1188) (-1188))) (-15 -1427 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -1406 ((-1302) $)) (-15 -3171 ((-577) $)) (-15 -2410 ((-885) $))))) (T -1298)) -((-2410 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1298)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-665 (-971 (-228)))) (-5 *1 (-1298)))) (-2958 (*1 *1) (-5 *1 (-1298))) (-3776 (*1 *1 *1) (-5 *1 (-1298))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) (-3776 (*1 *1 *2 *3) (-12 (-5 *2 (-481)) (-5 *3 (-665 (-271))) (-5 *1 (-1298)))) (-1870 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-949)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2686 (-577)) (|:| -2586 (-577)) (|:| |spline| (-577)) (|:| -3712 (-577)) (|:| |axesColor| (-897)) (|:| -3939 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577))))) (-5 *1 (-1298)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-1297 (-3 (-481) "undefined"))) (-5 *1 (-1298)))) (-3377 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1409 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2752 (*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-5 *2 (-481)) (-5 *1 (-1298)))) (-3712 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3712 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3939 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3939 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2686 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2139 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-2586 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1340 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3014 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1405 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1939 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1857 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3625 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3825 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3923 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) (-1427 (*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) (-1427 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) (-1427 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1298)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1298))))) -(-13 (-1130) (-10 -8 (-15 -4025 ((-665 (-971 (-228))) $)) (-15 -2958 ($)) (-15 -3776 ($ $)) (-15 -1933 ((-665 (-271)) $)) (-15 -1933 ($ $ (-665 (-271)))) (-15 -3776 ($ (-481) (-665 (-271)))) (-15 -1870 ((-1302) $ (-949) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-897) (-577) (-897) (-577))) (-15 -1610 ((-1297 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2686 (-577)) (|:| -2586 (-577)) (|:| |spline| (-577)) (|:| -3712 (-577)) (|:| |axesColor| (-897)) (|:| -3939 (-577)) (|:| |unitsColor| (-897)) (|:| |showing| (-577)))) $)) (-15 -2822 ((-1297 (-3 (-481) "undefined")) $)) (-15 -3377 ((-1302) $ (-1188))) (-15 -1409 ((-1302) $ (-481) (-949))) (-15 -2752 ((-481) $ (-949))) (-15 -3712 ((-1302) $ (-949) (-1188))) (-15 -3712 ((-1302) $ (-949) (-897))) (-15 -3939 ((-1302) $ (-949) (-1188))) (-15 -3939 ((-1302) $ (-949) (-897))) (-15 -2686 ((-1302) $ (-949) (-1188))) (-15 -2139 ((-1302) $ (-949) (-1188))) (-15 -2586 ((-1302) $ (-949) (-1188))) (-15 -1340 ((-1302) $ (-1188))) (-15 -1624 ((-1302) $)) (-15 -3014 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -1405 ((-1302) $ (-949) (-391) (-391))) (-15 -1939 ((-1302) $ (-949) (-391) (-391))) (-15 -1857 ((-1302) $ (-949) (-1188))) (-15 -3625 ((-1302) $ (-792) (-792))) (-15 -3825 ((-1302) $ (-481) (-949))) (-15 -3923 ((-1302) $ (-949) (-949))) (-15 -1427 ((-1188) $ (-1188))) (-15 -1427 ((-1188) $ (-1188) (-1188))) (-15 -1427 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -1406 ((-1302) $)) (-15 -3171 ((-577) $)) (-15 -2410 ((-885) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3062 (((-1302) $ (-391)) 169 T ELT) (((-1302) $ (-391) (-391) (-391)) 170 T ELT)) (-1427 (((-1188) $ (-1188)) 179 T ELT) (((-1188) $ (-1188) (-1188)) 177 T ELT) (((-1188) $ (-1188) (-665 (-1188))) 176 T ELT)) (-2862 (($) 67 T ELT)) (-4314 (((-1302) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $) 139 T ELT) (((-1302) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 140 T ELT) (((-1302) $ (-577) (-577) (-391) (-391) (-391)) 144 T ELT) (((-1302) $ (-391) (-391)) 145 T ELT) (((-1302) $ (-391) (-391) (-391)) 152 T ELT)) (-3179 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-3616 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-3128 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-3883 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-2512 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-1939 (((-1302) $ (-391) (-391)) 171 T ELT)) (-3377 (((-1302) $ (-1188)) 153 T ELT)) (-1752 (((-1163 (-228)) $) 68 T ELT) (($ $ (-1163 (-228))) 69 T ELT)) (-3662 (((-1302) $ (-1188)) 187 T ELT)) (-3046 (((-1302) $ (-1188)) 188 T ELT)) (-3075 (((-1302) $ (-391) (-391)) 151 T ELT) (((-1302) $ (-577) (-577)) 168 T ELT)) (-3923 (((-1302) $ (-949) (-949)) 160 T ELT)) (-1406 (((-1302) $) 137 T ELT)) (-1705 (((-1302) $ (-1188)) 186 T ELT)) (-3635 (((-1302) $ (-1188)) 134 T ELT)) (-1933 (((-665 (-271)) $) 70 T ELT) (($ $ (-665 (-271))) 71 T ELT)) (-3625 (((-1302) $ (-792) (-792)) 159 T ELT)) (-1983 (((-1302) $ (-792) (-971 (-228))) 193 T ELT)) (-4325 (($ $) 73 T ELT) (($ (-1163 (-228)) (-1188)) 74 T ELT) (($ (-1163 (-228)) (-665 (-271))) 75 T ELT)) (-3682 (((-1302) $ (-391) (-391) (-391)) 131 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-3171 (((-577) $) 128 T ELT)) (-3812 (((-1302) $ (-391)) 174 T ELT)) (-2851 (((-1302) $ (-391)) 191 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-1626 (((-1302) $ (-391)) 190 T ELT)) (-3057 (((-1302) $ (-1188)) 136 T ELT)) (-3014 (((-1302) $ (-792) (-792) (-949) (-949)) 158 T ELT)) (-1956 (((-1302) $ (-1188)) 133 T ELT)) (-1340 (((-1302) $ (-1188)) 135 T ELT)) (-3174 (((-1302) $ (-158) (-158)) 157 T ELT)) (-2410 (((-885) $) 166 T ELT)) (-1624 (((-1302) $) 138 T ELT)) (-4043 (((-1302) $ (-1188)) 189 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-3712 (((-1302) $ (-1188)) 132 T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1299) (-13 (-1130) (-10 -8 (-15 -3616 ((-391))) (-15 -3616 ((-391) (-391))) (-15 -3128 ((-391))) (-15 -3128 ((-391) (-391))) (-15 -3179 ((-391))) (-15 -3179 ((-391) (-391))) (-15 -2512 ((-391))) (-15 -2512 ((-391) (-391))) (-15 -3883 ((-391))) (-15 -3883 ((-391) (-391))) (-15 -2862 ($)) (-15 -4325 ($ $)) (-15 -4325 ($ (-1163 (-228)) (-1188))) (-15 -4325 ($ (-1163 (-228)) (-665 (-271)))) (-15 -1752 ((-1163 (-228)) $)) (-15 -1752 ($ $ (-1163 (-228)))) (-15 -1983 ((-1302) $ (-792) (-971 (-228)))) (-15 -1933 ((-665 (-271)) $)) (-15 -1933 ($ $ (-665 (-271)))) (-15 -3625 ((-1302) $ (-792) (-792))) (-15 -3923 ((-1302) $ (-949) (-949))) (-15 -3377 ((-1302) $ (-1188))) (-15 -3014 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -4314 ((-1302) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4314 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -4314 ((-1302) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -4314 ((-1302) $ (-577) (-577) (-391) (-391) (-391))) (-15 -4314 ((-1302) $ (-391) (-391))) (-15 -4314 ((-1302) $ (-391) (-391) (-391))) (-15 -1340 ((-1302) $ (-1188))) (-15 -3712 ((-1302) $ (-1188))) (-15 -1956 ((-1302) $ (-1188))) (-15 -3635 ((-1302) $ (-1188))) (-15 -3057 ((-1302) $ (-1188))) (-15 -3075 ((-1302) $ (-391) (-391))) (-15 -3075 ((-1302) $ (-577) (-577))) (-15 -3062 ((-1302) $ (-391))) (-15 -3062 ((-1302) $ (-391) (-391) (-391))) (-15 -1939 ((-1302) $ (-391) (-391))) (-15 -1705 ((-1302) $ (-1188))) (-15 -1626 ((-1302) $ (-391))) (-15 -2851 ((-1302) $ (-391))) (-15 -3662 ((-1302) $ (-1188))) (-15 -3046 ((-1302) $ (-1188))) (-15 -4043 ((-1302) $ (-1188))) (-15 -3682 ((-1302) $ (-391) (-391) (-391))) (-15 -3812 ((-1302) $ (-391))) (-15 -1406 ((-1302) $)) (-15 -3174 ((-1302) $ (-158) (-158))) (-15 -1427 ((-1188) $ (-1188))) (-15 -1427 ((-1188) $ (-1188) (-1188))) (-15 -1427 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -1624 ((-1302) $)) (-15 -3171 ((-577) $))))) (T -1299)) -((-3616 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3128 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3179 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-2512 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-2512 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3883 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) (-2862 (*1 *1) (-5 *1 (-1299))) (-4325 (*1 *1 *1) (-5 *1 (-1299))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1188)) (-5 *1 (-1299)))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-665 (-271))) (-5 *1 (-1299)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299)))) (-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299)))) (-1983 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-792)) (-5 *4 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299)))) (-1933 (*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299)))) (-3625 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3923 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3377 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3014 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4314 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4314 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-1299)))) (-4314 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4314 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4314 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4314 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1340 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1956 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3635 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3057 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3075 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3075 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3062 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3062 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1939 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1705 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1626 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-2851 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3662 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3046 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-4043 (*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3682 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3174 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1302)) (-5 *1 (-1299)))) (-1427 (*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299)))) (-1427 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299)))) (-1427 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1299)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1299))))) -(-13 (-1130) (-10 -8 (-15 -3616 ((-391))) (-15 -3616 ((-391) (-391))) (-15 -3128 ((-391))) (-15 -3128 ((-391) (-391))) (-15 -3179 ((-391))) (-15 -3179 ((-391) (-391))) (-15 -2512 ((-391))) (-15 -2512 ((-391) (-391))) (-15 -3883 ((-391))) (-15 -3883 ((-391) (-391))) (-15 -2862 ($)) (-15 -4325 ($ $)) (-15 -4325 ($ (-1163 (-228)) (-1188))) (-15 -4325 ($ (-1163 (-228)) (-665 (-271)))) (-15 -1752 ((-1163 (-228)) $)) (-15 -1752 ($ $ (-1163 (-228)))) (-15 -1983 ((-1302) $ (-792) (-971 (-228)))) (-15 -1933 ((-665 (-271)) $)) (-15 -1933 ($ $ (-665 (-271)))) (-15 -3625 ((-1302) $ (-792) (-792))) (-15 -3923 ((-1302) $ (-949) (-949))) (-15 -3377 ((-1302) $ (-1188))) (-15 -3014 ((-1302) $ (-792) (-792) (-949) (-949))) (-15 -4314 ((-1302) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4314 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -4314 ((-1302) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -4314 ((-1302) $ (-577) (-577) (-391) (-391) (-391))) (-15 -4314 ((-1302) $ (-391) (-391))) (-15 -4314 ((-1302) $ (-391) (-391) (-391))) (-15 -1340 ((-1302) $ (-1188))) (-15 -3712 ((-1302) $ (-1188))) (-15 -1956 ((-1302) $ (-1188))) (-15 -3635 ((-1302) $ (-1188))) (-15 -3057 ((-1302) $ (-1188))) (-15 -3075 ((-1302) $ (-391) (-391))) (-15 -3075 ((-1302) $ (-577) (-577))) (-15 -3062 ((-1302) $ (-391))) (-15 -3062 ((-1302) $ (-391) (-391) (-391))) (-15 -1939 ((-1302) $ (-391) (-391))) (-15 -1705 ((-1302) $ (-1188))) (-15 -1626 ((-1302) $ (-391))) (-15 -2851 ((-1302) $ (-391))) (-15 -3662 ((-1302) $ (-1188))) (-15 -3046 ((-1302) $ (-1188))) (-15 -4043 ((-1302) $ (-1188))) (-15 -3682 ((-1302) $ (-391) (-391) (-391))) (-15 -3812 ((-1302) $ (-391))) (-15 -1406 ((-1302) $)) (-15 -3174 ((-1302) $ (-158) (-158))) (-15 -1427 ((-1188) $ (-1188))) (-15 -1427 ((-1188) $ (-1188) (-1188))) (-15 -1427 ((-1188) $ (-1188) (-665 (-1188)))) (-15 -1624 ((-1302) $)) (-15 -3171 ((-577) $)))) -((-3608 (((-665 (-1188)) (-665 (-1188))) 104 T ELT) (((-665 (-1188))) 96 T ELT)) (-3264 (((-665 (-1188))) 94 T ELT)) (-2498 (((-665 (-949)) (-665 (-949))) 69 T ELT) (((-665 (-949))) 64 T ELT)) (-2158 (((-665 (-792)) (-665 (-792))) 61 T ELT) (((-665 (-792))) 55 T ELT)) (-1481 (((-1302)) 71 T ELT)) (-3618 (((-949) (-949)) 87 T ELT) (((-949)) 86 T ELT)) (-2857 (((-949) (-949)) 85 T ELT) (((-949)) 84 T ELT)) (-3070 (((-897) (-897)) 81 T ELT) (((-897)) 80 T ELT)) (-1467 (((-228)) 91 T ELT) (((-228) (-391)) 93 T ELT)) (-1334 (((-949)) 88 T ELT) (((-949) (-949)) 89 T ELT)) (-2123 (((-949) (-949)) 83 T ELT) (((-949)) 82 T ELT)) (-3035 (((-897) (-897)) 75 T ELT) (((-897)) 73 T ELT)) (-3447 (((-897) (-897)) 77 T ELT) (((-897)) 76 T ELT)) (-3229 (((-897) (-897)) 79 T ELT) (((-897)) 78 T ELT))) -(((-1300) (-10 -7 (-15 -3035 ((-897))) (-15 -3035 ((-897) (-897))) (-15 -3447 ((-897))) (-15 -3447 ((-897) (-897))) (-15 -3229 ((-897))) (-15 -3229 ((-897) (-897))) (-15 -3070 ((-897))) (-15 -3070 ((-897) (-897))) (-15 -2123 ((-949))) (-15 -2123 ((-949) (-949))) (-15 -2158 ((-665 (-792)))) (-15 -2158 ((-665 (-792)) (-665 (-792)))) (-15 -2498 ((-665 (-949)))) (-15 -2498 ((-665 (-949)) (-665 (-949)))) (-15 -1481 ((-1302))) (-15 -3608 ((-665 (-1188)))) (-15 -3608 ((-665 (-1188)) (-665 (-1188)))) (-15 -3264 ((-665 (-1188)))) (-15 -2857 ((-949))) (-15 -3618 ((-949))) (-15 -2857 ((-949) (-949))) (-15 -3618 ((-949) (-949))) (-15 -1334 ((-949) (-949))) (-15 -1334 ((-949))) (-15 -1467 ((-228) (-391))) (-15 -1467 ((-228))))) (T -1300)) -((-1467 (*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1300)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1300)))) (-1334 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-1334 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-2857 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-3618 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-2857 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-3264 (*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) (-3608 (*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) (-3608 (*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) (-1481 (*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1300)))) (-2498 (*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300)))) (-2498 (*1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300)))) (-2158 (*1 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-2123 (*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3070 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3229 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3447 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) (-3035 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) -(-10 -7 (-15 -3035 ((-897))) (-15 -3035 ((-897) (-897))) (-15 -3447 ((-897))) (-15 -3447 ((-897) (-897))) (-15 -3229 ((-897))) (-15 -3229 ((-897) (-897))) (-15 -3070 ((-897))) (-15 -3070 ((-897) (-897))) (-15 -2123 ((-949))) (-15 -2123 ((-949) (-949))) (-15 -2158 ((-665 (-792)))) (-15 -2158 ((-665 (-792)) (-665 (-792)))) (-15 -2498 ((-665 (-949)))) (-15 -2498 ((-665 (-949)) (-665 (-949)))) (-15 -1481 ((-1302))) (-15 -3608 ((-665 (-1188)))) (-15 -3608 ((-665 (-1188)) (-665 (-1188)))) (-15 -3264 ((-665 (-1188)))) (-15 -2857 ((-949))) (-15 -3618 ((-949))) (-15 -2857 ((-949) (-949))) (-15 -3618 ((-949) (-949))) (-15 -1334 ((-949) (-949))) (-15 -1334 ((-949))) (-15 -1467 ((-228) (-391))) (-15 -1467 ((-228)))) -((-1940 (((-481) (-665 (-665 (-971 (-228)))) (-665 (-271))) 22 T ELT) (((-481) (-665 (-665 (-971 (-228))))) 21 T ELT) (((-481) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271))) 20 T ELT)) (-4257 (((-1298) (-665 (-665 (-971 (-228)))) (-665 (-271))) 30 T ELT) (((-1298) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271))) 29 T ELT)) (-2410 (((-1298) (-481)) 46 T ELT))) -(((-1301) (-10 -7 (-15 -1940 ((-481) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -1940 ((-481) (-665 (-665 (-971 (-228)))))) (-15 -1940 ((-481) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -4257 ((-1298) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -4257 ((-1298) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -2410 ((-1298) (-481))))) (T -1301)) -((-2410 (*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1298)) (-5 *1 (-1301)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-1301)))) (-4257 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-1301)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) (-5 *2 (-481)) (-5 *1 (-1301)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-481)) (-5 *1 (-1301)))) (-1940 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-481)) (-5 *1 (-1301))))) -(-10 -7 (-15 -1940 ((-481) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -1940 ((-481) (-665 (-665 (-971 (-228)))))) (-15 -1940 ((-481) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -4257 ((-1298) (-665 (-665 (-971 (-228)))) (-897) (-897) (-949) (-665 (-271)))) (-15 -4257 ((-1298) (-665 (-665 (-971 (-228)))) (-665 (-271)))) (-15 -2410 ((-1298) (-481)))) -((-2892 (($) 6 T ELT)) (-2410 (((-885) $) 9 T ELT))) -(((-1302) (-13 (-631 (-885)) (-10 -8 (-15 -2892 ($))))) (T -1302)) -((-2892 (*1 *1) (-5 *1 (-1302)))) -(-13 (-631 (-885)) (-10 -8 (-15 -2892 ($)))) -((-2494 (($ $ |#2|) 10 T ELT))) -(((-1303 |#1| |#2|) (-10 -8 (-15 -2494 (|#1| |#1| |#2|))) (-1304 |#2|) (-375)) (T -1303)) -NIL -(-10 -8 (-15 -2494 (|#1| |#1| |#2|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2419 (((-135)) 33 T ELT)) (-2410 (((-885) $) 12 T ELT)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ |#1|) 34 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) -(((-1304 |#1|) (-141) (-375)) (T -1304)) -((-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-375)))) (-2419 (*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) -(-13 (-738 |t#1|) (-10 -8 (-15 -2494 ($ $ |t#1|)) (-15 -2419 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-669 |#1|) . T) ((-661 |#1|) . T) ((-738 |#1|) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1130) . T) ((-1247) . T)) -((-3226 (((-665 (-1241 |#1|)) (-1206) (-1241 |#1|)) 83 T ELT)) (-3097 (((-1187 (-1187 (-980 |#1|))) (-1206) (-1187 (-980 |#1|))) 63 T ELT)) (-4084 (((-1 (-1187 (-1241 |#1|)) (-1187 (-1241 |#1|))) (-792) (-1241 |#1|) (-1187 (-1241 |#1|))) 74 T ELT)) (-2902 (((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792)) 65 T ELT)) (-3145 (((-1 (-1202 (-980 |#1|)) (-980 |#1|)) (-1206)) 32 T ELT)) (-1829 (((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792)) 64 T ELT))) -(((-1305 |#1|) (-10 -7 (-15 -2902 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -1829 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -3097 ((-1187 (-1187 (-980 |#1|))) (-1206) (-1187 (-980 |#1|)))) (-15 -3145 ((-1 (-1202 (-980 |#1|)) (-980 |#1|)) (-1206))) (-15 -3226 ((-665 (-1241 |#1|)) (-1206) (-1241 |#1|))) (-15 -4084 ((-1 (-1187 (-1241 |#1|)) (-1187 (-1241 |#1|))) (-792) (-1241 |#1|) (-1187 (-1241 |#1|))))) (-375)) (T -1305)) -((-4084 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-792)) (-4 *6 (-375)) (-5 *4 (-1241 *6)) (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1305 *6)) (-5 *5 (-1187 *4)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-665 (-1241 *5))) (-5 *1 (-1305 *5)) (-5 *4 (-1241 *5)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1 (-1202 (-980 *4)) (-980 *4))) (-5 *1 (-1305 *4)) (-4 *4 (-375)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-1187 (-1187 (-980 *5)))) (-5 *1 (-1305 *5)) (-5 *4 (-1187 (-980 *5))))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) (-5 *1 (-1305 *4)) (-4 *4 (-375)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) (-5 *1 (-1305 *4)) (-4 *4 (-375))))) -(-10 -7 (-15 -2902 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -1829 ((-1 (-1187 (-980 |#1|)) (-1187 (-980 |#1|))) (-792))) (-15 -3097 ((-1187 (-1187 (-980 |#1|))) (-1206) (-1187 (-980 |#1|)))) (-15 -3145 ((-1 (-1202 (-980 |#1|)) (-980 |#1|)) (-1206))) (-15 -3226 ((-665 (-1241 |#1|)) (-1206) (-1241 |#1|))) (-15 -4084 ((-1 (-1187 (-1241 |#1|)) (-1187 (-1241 |#1|))) (-792) (-1241 |#1|) (-1187 (-1241 |#1|))))) -((-4175 (((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|) 80 T ELT)) (-2544 (((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|)))) 79 T ELT))) -(((-1306 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -4175 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|))) (-361) (-1273 |#1|) (-1273 |#2|) (-422 |#2| |#3|)) (T -1306)) -((-4175 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-710 *3)))) (-5 *1 (-1306 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-2544 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2225 (-710 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-710 *4)))) (-5 *1 (-1306 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) -(-10 -7 (-15 -2544 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))))) (-15 -4175 ((-2 (|:| -2225 (-710 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-710 |#2|))) |#2|))) -((-3211 (((-112) $ $) NIL T ELT)) (-3843 (((-1165) $) 11 T ELT)) (-3707 (((-1165) $) 9 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 17 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1307) (-13 (-1113) (-10 -8 (-15 -3707 ((-1165) $)) (-15 -3843 ((-1165) $))))) (T -1307)) -((-3707 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307))))) -(-13 (-1113) (-10 -8 (-15 -3707 ((-1165) $)) (-15 -3843 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2100 (((-1165) $) 9 T ELT)) (-2410 (((-885) $) 15 T ELT) (($ (-1211)) NIL T ELT) (((-1211) $) NIL T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT))) -(((-1308) (-13 (-1113) (-10 -8 (-15 -2100 ((-1165) $))))) (T -1308)) -((-2100 (*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308))))) -(-13 (-1113) (-10 -8 (-15 -2100 ((-1165) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 58 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 81 T ELT) (($ (-577)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-174)) ELT)) (-3234 (((-792)) NIL T CONST)) (-3323 (((-1302) (-792)) 16 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 37 T CONST)) (-2378 (($) 84 T CONST)) (-2383 (((-112) $ $) 87 T ELT)) (-2494 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)) ELT)) (-2483 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 63 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-174)) ELT) (($ $ |#1|) NIL (|has| |#1| (-174)) ELT))) -(((-1309 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1079) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2494 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3323 ((-1302) (-792))))) (-1079) (-870) (-814) (-977 |#1| |#3| |#2|) (-665 |#2|) (-665 (-792)) (-792)) (T -1309)) -((-2494 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1079)) (-4 *3 (-870)) (-4 *4 (-814)) (-14 *6 (-665 *3)) (-5 *1 (-1309 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-977 *2 *4 *3)) (-14 *7 (-665 (-792))) (-14 *8 (-792)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) (-14 *8 (-665 *5)) (-5 *2 (-1302)) (-5 *1 (-1309 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-977 *4 *6 *5)) (-14 *9 (-665 *3)) (-14 *10 *3)))) -(-13 (-1079) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2494 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3323 ((-1302) (-792))))) -((-3211 (((-112) $ $) NIL T ELT)) (-1872 (((-665 (-2 (|:| -1624 $) (|:| -2258 (-665 |#4|)))) (-665 |#4|)) NIL T ELT)) (-4202 (((-665 $) (-665 |#4|)) 96 T ELT)) (-2948 (((-665 |#3|) $) NIL T ELT)) (-3294 (((-112) $) NIL T ELT)) (-1567 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-1790 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1988 ((|#4| |#4| $) NIL T ELT)) (-2040 (((-2 (|:| |under| $) (|:| -2136 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-2641 (((-112) $ (-792)) NIL T ELT)) (-4232 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-2762 (($) NIL T CONST)) (-1760 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3408 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-2307 (((-112) $ $) NIL (|has| |#1| (-569)) ELT)) (-4394 (((-112) $) NIL (|has| |#1| (-569)) ELT)) (-3480 (((-665 |#4|) (-665 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31 T ELT)) (-2450 (((-665 |#4|) (-665 |#4|) $) 28 (|has| |#1| (-569)) ELT)) (-4091 (((-665 |#4|) (-665 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-2817 (((-3 $ "failed") (-665 |#4|)) NIL T ELT)) (-3514 (($ (-665 |#4|)) NIL T ELT)) (-4197 (((-3 $ "failed") $) 78 T ELT)) (-3415 ((|#4| |#4| $) 83 T ELT)) (-3860 (($ $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-2736 (($ |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4369 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4002 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-2981 ((|#4| |#4| $) NIL T ELT)) (-2511 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4499)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4499)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3717 (((-2 (|:| -1624 (-665 |#4|)) (|:| -2258 (-665 |#4|))) $) NIL T ELT)) (-2728 (((-665 |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-4424 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1669 ((|#3| $) 84 T ELT)) (-1967 (((-112) $ (-792)) NIL T ELT)) (-4138 (((-665 |#4|) $) 32 (|has| $ (-6 -4499)) ELT)) (-2318 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT)) (-3687 (((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-665 |#4|)) 38 T ELT)) (-3437 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3609 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2850 (((-665 |#3|) $) NIL T ELT)) (-2746 (((-112) |#3| $) NIL T ELT)) (-3417 (((-112) $ (-792)) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2756 (((-3 |#4| "failed") $) NIL T ELT)) (-2327 (((-665 |#4|) $) 54 T ELT)) (-2982 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1502 ((|#4| |#4| $) 82 T ELT)) (-2220 (((-112) $ $) 93 T ELT)) (-4363 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-2624 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-4058 ((|#4| |#4| $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4188 (((-3 |#4| "failed") $) 77 T ELT)) (-1520 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-3276 (((-3 $ "failed") $ |#4|) NIL T ELT)) (-4013 (($ $ |#4|) NIL T ELT)) (-2519 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3362 (($ $ (-665 |#4|) (-665 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT) (($ $ (-665 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1130))) ELT)) (-3674 (((-112) $ $) NIL T ELT)) (-2392 (((-112) $) 75 T ELT)) (-3414 (($) 46 T ELT)) (-2776 (((-792) $) NIL T ELT)) (-4323 (((-792) |#4| $) NIL (-12 (|has| $ (-6 -4499)) (|has| |#4| (-1130))) ELT) (((-792) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-3978 (($ $) NIL T ELT)) (-3341 (((-549) $) NIL (|has| |#4| (-632 (-549))) ELT)) (-2422 (($ (-665 |#4|)) NIL T ELT)) (-1799 (($ $ |#3|) NIL T ELT)) (-3139 (($ $ |#3|) NIL T ELT)) (-3680 (($ $) NIL T ELT)) (-1600 (($ $ |#3|) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (((-665 |#4|) $) 63 T ELT)) (-3050 (((-792) $) NIL (|has| |#3| (-380)) ELT)) (-2317 (((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-665 |#4|)) 45 T ELT)) (-2890 (((-665 $) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-665 $) (-665 |#4|)) 74 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-4003 (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2852 (-665 |#4|))) "failed") (-665 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3441 (((-112) $ (-1 (-112) |#4| (-665 |#4|))) NIL T ELT)) (-1835 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4499)) ELT)) (-1801 (((-665 |#3|) $) NIL T ELT)) (-2306 (((-112) |#3| $) NIL T ELT)) (-2383 (((-112) $ $) NIL T ELT)) (-3224 (((-792) $) NIL (|has| $ (-6 -4499)) ELT))) -(((-1310 |#1| |#2| |#3| |#4|) (-13 (-1240 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3687 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3687 ((-3 $ "failed") (-665 |#4|))) (-15 -2317 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2317 ((-3 $ "failed") (-665 |#4|))) (-15 -2890 ((-665 $) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2890 ((-665 $) (-665 |#4|))))) (-569) (-814) (-870) (-1095 |#1| |#2| |#3|)) (T -1310)) -((-3687 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8)))) (-3687 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1310 *3 *4 *5 *6)))) (-2317 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8)))) (-2317 (*1 *1 *2) (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1310 *3 *4 *5 *6)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-665 (-1310 *6 *7 *8 *9))) (-5 *1 (-1310 *6 *7 *8 *9)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-1310 *4 *5 *6 *7))) (-5 *1 (-1310 *4 *5 *6 *7))))) -(-13 (-1240 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3687 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3687 ((-3 $ "failed") (-665 |#4|))) (-15 -2317 ((-3 $ "failed") (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2317 ((-3 $ "failed") (-665 |#4|))) (-15 -2890 ((-665 $) (-665 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2890 ((-665 $) (-665 |#4|))))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-2762 (($) 18 T CONST)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#1|) 45 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 47 T ELT) (($ |#1| $) 46 T ELT))) -(((-1311 |#1|) (-141) (-1079)) (T -1311)) -NIL -(-13 (-1079) (-111 |t#1| |t#1|) (-634 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 |#1|) |has| |#1| (-174)) ((-738 |#1|) |has| |#1| (-174)) ((-747) . T) ((-1081 |#1|) . T) ((-1086 |#1|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T)) -((-3211 (((-112) $ $) 67 T ELT)) (-1516 (((-112) $) NIL T ELT)) (-4417 (((-665 |#1|) $) 52 T ELT)) (-4370 (($ $ (-792)) 46 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1735 (($ $ (-792)) 24 (|has| |#2| (-174)) ELT) (($ $ $) 25 (|has| |#2| (-174)) ELT)) (-2762 (($) NIL T CONST)) (-3216 (($ $ $) 70 T ELT) (($ $ (-840 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-2817 (((-3 (-840 |#1|) "failed") $) NIL T ELT)) (-3514 (((-840 |#1|) $) NIL T ELT)) (-3134 (($ $) 39 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3799 (((-112) $) NIL T ELT)) (-2167 (($ $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-1475 (($ (-840 |#1|) |#2|) 38 T ELT)) (-2955 (($ $) 40 T ELT)) (-1808 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-3338 (((-840 |#1|) $) NIL T ELT)) (-2268 (((-840 |#1|) $) 41 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3855 (($ $ $) 69 T ELT) (($ $ (-840 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3388 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3095 (((-840 |#1|) $) 35 T ELT)) (-3109 ((|#2| $) 37 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2776 (((-792) $) 43 T ELT)) (-2995 (((-112) $) 47 T ELT)) (-1528 ((|#2| $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-840 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-577)) NIL T ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-840 |#1|)) NIL T ELT)) (-2671 ((|#2| $ $) 76 T ELT) ((|#2| $ (-840 |#1|)) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 13 T CONST)) (-2378 (($) 19 T CONST)) (-2662 (((-665 (-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2383 (((-112) $ $) 44 T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 28 T ELT)) (** (($ $ (-792)) NIL T ELT) (($ $ (-949)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-840 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) -(((-1312 |#1| |#2|) (-13 (-394 |#2| (-840 |#1|)) (-1318 |#1| |#2|)) (-870) (-1079)) (T -1312)) -NIL -(-13 (-394 |#2| (-840 |#1|)) (-1318 |#1| |#2|)) -((-3863 ((|#3| |#3| (-792)) 28 T ELT)) (-3585 ((|#3| |#3| (-792)) 34 T ELT)) (-3592 ((|#3| |#3| |#3| (-792)) 35 T ELT))) -(((-1313 |#1| |#2| |#3|) (-10 -7 (-15 -3585 (|#3| |#3| (-792))) (-15 -3863 (|#3| |#3| (-792))) (-15 -3592 (|#3| |#3| |#3| (-792)))) (-13 (-1079) (-738 (-420 (-577)))) (-870) (-1318 |#2| |#1|)) (T -1313)) -((-3592 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) (-3863 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) (-3585 (*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4))))) -(-10 -7 (-15 -3585 (|#3| |#3| (-792))) (-15 -3863 (|#3| |#3| (-792))) (-15 -3592 (|#3| |#3| |#3| (-792)))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-4417 (((-665 |#1|) $) 47 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-1735 (($ $ $) 50 (|has| |#2| (-174)) ELT) (($ $ (-792)) 49 (|has| |#2| (-174)) ELT)) (-2762 (($) 18 T CONST)) (-3216 (($ $ |#1|) 61 T ELT) (($ $ (-840 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2817 (((-3 (-840 |#1|) "failed") $) 71 T ELT)) (-3514 (((-840 |#1|) $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3799 (((-112) $) 52 T ELT)) (-2167 (($ $) 51 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2338 (((-112) $) 57 T ELT)) (-1475 (($ (-840 |#1|) |#2|) 58 T ELT)) (-2955 (($ $) 56 T ELT)) (-1808 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-3338 (((-840 |#1|) $) 68 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3855 (($ $ |#1|) 64 T ELT) (($ $ (-840 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2995 (((-112) $) 54 T ELT)) (-1528 ((|#2| $) 53 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-840 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2671 ((|#2| $ (-840 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) -(((-1314 |#1| |#2|) (-141) (-870) (-1079)) (T -1314)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-840 *3)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-2 (|:| |k| (-840 *3)) (|:| |c| *4))))) (-2671 (*1 *2 *1 *3) (-12 (-5 *3 (-840 *4)) (-4 *1 (-1314 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1079)))) (-2671 (*1 *2 *1 *1) (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (-3855 (*1 *1 *1 *2) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-3216 (*1 *1 *1 *2) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-3216 (*1 *1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-1475 (*1 *1 *2 *3) (-12 (-5 *2 (-840 *4)) (-4 *4 (-870)) (-4 *1 (-1314 *4 *3)) (-4 *3 (-1079)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-112)))) (-2955 (*1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-2410 (*1 *1 *2) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-112)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-112)))) (-2167 (*1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)) (-4 *3 (-174)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-4 *4 (-174)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-4417 (*1 *2 *1) (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-665 *3))))) -(-13 (-1079) (-1311 |t#2|) (-1068 (-840 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3338 ((-840 |t#1|) $)) (-15 -1808 ((-2 (|:| |k| (-840 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2671 (|t#2| $ (-840 |t#1|))) (-15 -2671 (|t#2| $ $)) (-15 -3855 ($ $ |t#1|)) (-15 -3855 ($ $ (-840 |t#1|))) (-15 -3855 ($ $ $)) (-15 -3216 ($ $ |t#1|)) (-15 -3216 ($ $ (-840 |t#1|))) (-15 -3216 ($ $ $)) (-15 -1475 ($ (-840 |t#1|) |t#2|)) (-15 -2338 ((-112) $)) (-15 -2955 ($ $)) (-15 -2410 ($ |t#1|)) (-15 -2995 ((-112) $)) (-15 -1528 (|t#2| $)) (-15 -3799 ((-112) $)) (-15 -2167 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -1735 ($ $ $)) (-15 -1735 ($ $ (-792)))) |%noBranch|) (-15 -3609 ($ (-1 |t#2| |t#2|) $)) (-15 -4417 ((-665 |t#1|) $)) (IF (|has| |t#2| (-6 -4492)) (-6 -4492) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 #0=(-840 |#1|)) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-669 |#2|) . T) ((-669 $) . T) ((-661 |#2|) |has| |#2| (-174)) ((-738 |#2|) |has| |#2| (-174)) ((-747) . T) ((-1068 #0#) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1311 |#2|) . T)) -((-1518 (((-112) $) 15 T ELT)) (-2306 (((-112) $) 14 T ELT)) (-3077 (($ $) 19 T ELT) (($ $ (-792)) 21 T ELT))) -(((-1315 |#1| |#2|) (-10 -8 (-15 -3077 (|#1| |#1| (-792))) (-15 -3077 (|#1| |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -2306 ((-112) |#1|))) (-1316 |#2|) (-375)) (T -1315)) -NIL -(-10 -8 (-15 -3077 (|#1| |#1| (-792))) (-15 -3077 (|#1| |#1|)) (-15 -1518 ((-112) |#1|)) (-15 -2306 ((-112) |#1|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-1936 (((-2 (|:| -2117 $) (|:| -4486 $) (|:| |associate| $)) $) 47 T ELT)) (-3913 (($ $) 46 T ELT)) (-4244 (((-112) $) 44 T ELT)) (-1518 (((-112) $) 104 T ELT)) (-2632 (((-792)) 100 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-4456 (($ $) 81 T ELT)) (-4240 (((-431 $) $) 80 T ELT)) (-3397 (((-112) $ $) 65 T ELT)) (-2762 (($) 18 T CONST)) (-2817 (((-3 |#1| "failed") $) 111 T ELT)) (-3514 ((|#1| $) 112 T ELT)) (-3152 (($ $ $) 61 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3164 (($ $ $) 62 T ELT)) (-1426 (((-2 (|:| -2671 (-665 $)) (|:| -2846 $)) (-665 $)) 57 T ELT)) (-2202 (($ $ (-792)) 97 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT) (($ $) 96 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-1632 (((-112) $) 79 T ELT)) (-3890 (((-854 (-949)) $) 94 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2097 (((-112) $) 35 T ELT)) (-2749 (((-3 (-665 $) "failed") (-665 $) $) 58 T ELT)) (-2388 (($ $ $) 52 T ELT) (($ (-665 $)) 51 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-3055 (($ $) 78 T ELT)) (-2267 (((-112) $) 103 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-4373 (((-1202 $) (-1202 $) (-1202 $)) 50 T ELT)) (-2420 (($ $ $) 54 T ELT) (($ (-665 $)) 53 T ELT)) (-2799 (((-431 $) $) 82 T ELT)) (-3204 (((-854 (-949))) 101 T ELT)) (-1506 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2846 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3200 (((-3 $ "failed") $ $) 48 T ELT)) (-2576 (((-3 (-665 $) "failed") (-665 $) $) 56 T ELT)) (-2442 (((-792) $) 64 T ELT)) (-4384 (((-2 (|:| -1636 $) (|:| -4369 $)) $ $) 63 T ELT)) (-2723 (((-3 (-792) "failed") $ $) 95 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-2419 (((-135)) 109 T ELT)) (-2776 (((-854 (-949)) $) 102 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ $) 49 T ELT) (($ (-420 (-577))) 74 T ELT) (($ |#1|) 110 T ELT)) (-2580 (((-3 $ "failed") $) 93 (-2229 (|has| |#1| (-146)) (|has| |#1| (-380))) ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-1370 (((-112) $ $) 45 T ELT)) (-2306 (((-112) $) 105 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-3077 (($ $) 99 (|has| |#1| (-380)) ELT) (($ $ (-792)) 98 (|has| |#1| (-380)) ELT)) (-2383 (((-112) $ $) 8 T ELT)) (-2494 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT) (($ $ (-577)) 77 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-420 (-577))) 76 T ELT) (($ (-420 (-577)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) -(((-1316 |#1|) (-141) (-375)) (T -1316)) -((-2306 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-1518 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949))))) (-3204 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949))))) (-2632 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-792)))) (-3077 (*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-375)) (-4 *2 (-380)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-4 *3 (-380))))) -(-13 (-375) (-1068 |t#1|) (-1304 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-415)) |%noBranch|) (-15 -2306 ((-112) $)) (-15 -1518 ((-112) $)) (-15 -2267 ((-112) $)) (-15 -2776 ((-854 (-949)) $)) (-15 -3204 ((-854 (-949)))) (-15 -2632 ((-792))) (IF (|has| |t#1| (-380)) (PROGN (-6 (-415)) (-15 -3077 ($ $)) (-15 -3077 ($ $ (-792)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2229 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-634 #0#) . T) ((-634 (-577)) . T) ((-634 |#1|) . T) ((-634 $) . T) ((-631 (-885)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) -2229 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-465) . T) ((-569) . T) ((-667 #0#) . T) ((-667 (-577)) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-669 #0#) . T) ((-669 |#1|) . T) ((-669 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-738 #0#) . T) ((-738 |#1|) . T) ((-738 $) . T) ((-747) . T) ((-948) . T) ((-1068 |#1|) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1086 #0#) . T) ((-1086 |#1|) . T) ((-1086 $) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1251) . T) ((-1304 |#1|) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-4417 (((-665 |#1|) $) 98 T ELT)) (-4370 (($ $ (-792)) 102 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1735 (($ $ $) NIL (|has| |#2| (-174)) ELT) (($ $ (-792)) NIL (|has| |#2| (-174)) ELT)) (-2762 (($) NIL T CONST)) (-3216 (($ $ |#1|) NIL T ELT) (($ $ (-840 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-2817 (((-3 (-840 |#1|) "failed") $) NIL T ELT) (((-3 (-917 |#1|) "failed") $) NIL T ELT)) (-3514 (((-840 |#1|) $) NIL T ELT) (((-917 |#1|) $) NIL T ELT)) (-3134 (($ $) 101 T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3799 (((-112) $) 90 T ELT)) (-2167 (($ $) 93 T ELT)) (-3526 (($ $ $ (-792)) 103 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-1475 (($ (-840 |#1|) |#2|) NIL T ELT) (($ (-917 |#1|) |#2|) 29 T ELT)) (-2955 (($ $) 119 T ELT)) (-1808 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3338 (((-840 |#1|) $) NIL T ELT)) (-2268 (((-840 |#1|) $) NIL T ELT)) (-3609 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3855 (($ $ |#1|) NIL T ELT) (($ $ (-840 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3863 (($ $ (-792)) 112 (|has| |#2| (-738 (-420 (-577)))) ELT)) (-3388 (((-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3095 (((-917 |#1|) $) 83 T ELT)) (-3109 ((|#2| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3585 (($ $ (-792)) 109 (|has| |#2| (-738 (-420 (-577)))) ELT)) (-2776 (((-792) $) 99 T ELT)) (-2995 (((-112) $) 84 T ELT)) (-1528 ((|#2| $) 88 T ELT)) (-2410 (((-885) $) 69 T ELT) (($ (-577)) NIL T ELT) (($ |#2|) 60 T ELT) (($ (-840 |#1|)) NIL T ELT) (($ |#1|) 71 T ELT) (($ (-917 |#1|)) NIL T ELT) (($ (-685 |#1| |#2|)) 48 T ELT) (((-1312 |#1| |#2|) $) 76 T ELT) (((-1321 |#1| |#2|) $) 81 T ELT)) (-2929 (((-665 |#2|) $) NIL T ELT)) (-2778 ((|#2| $ (-917 |#1|)) NIL T ELT)) (-2671 ((|#2| $ (-840 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 21 T CONST)) (-2378 (($) 28 T CONST)) (-2662 (((-665 (-2 (|:| |k| (-917 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3030 (((-3 (-685 |#1| |#2|) "failed") $) 118 T ELT)) (-2383 (((-112) $ $) 77 T ELT)) (-2483 (($ $) 111 T ELT) (($ $ $) 110 T ELT)) (-2471 (($ $ $) 20 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 49 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-917 |#1|)) NIL T ELT))) -(((-1317 |#1| |#2|) (-13 (-1318 |#1| |#2|) (-394 |#2| (-917 |#1|)) (-10 -8 (-15 -2410 ($ (-685 |#1| |#2|))) (-15 -2410 ((-1312 |#1| |#2|) $)) (-15 -2410 ((-1321 |#1| |#2|) $)) (-15 -3030 ((-3 (-685 |#1| |#2|) "failed") $)) (-15 -3526 ($ $ $ (-792))) (IF (|has| |#2| (-738 (-420 (-577)))) (PROGN (-15 -3585 ($ $ (-792))) (-15 -3863 ($ $ (-792)))) |%noBranch|))) (-870) (-174)) (T -1317)) -((-2410 (*1 *1 *2) (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) (-5 *1 (-1317 *3 *4)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-1321 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-3030 (*1 *2 *1) (|partial| -12 (-5 *2 (-685 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-3526 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)))) (-3585 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174)))) (-3863 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174))))) -(-13 (-1318 |#1| |#2|) (-394 |#2| (-917 |#1|)) (-10 -8 (-15 -2410 ($ (-685 |#1| |#2|))) (-15 -2410 ((-1312 |#1| |#2|) $)) (-15 -2410 ((-1321 |#1| |#2|) $)) (-15 -3030 ((-3 (-685 |#1| |#2|) "failed") $)) (-15 -3526 ($ $ $ (-792))) (IF (|has| |#2| (-738 (-420 (-577)))) (PROGN (-15 -3585 ($ $ (-792))) (-15 -3863 ($ $ (-792)))) |%noBranch|))) -((-3211 (((-112) $ $) 7 T ELT)) (-1516 (((-112) $) 17 T ELT)) (-4417 (((-665 |#1|) $) 47 T ELT)) (-4370 (($ $ (-792)) 80 T ELT)) (-3262 (((-3 $ "failed") $ $) 20 T ELT)) (-1735 (($ $ $) 50 (|has| |#2| (-174)) ELT) (($ $ (-792)) 49 (|has| |#2| (-174)) ELT)) (-2762 (($) 18 T CONST)) (-3216 (($ $ |#1|) 61 T ELT) (($ $ (-840 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2817 (((-3 (-840 |#1|) "failed") $) 71 T ELT)) (-3514 (((-840 |#1|) $) 72 T ELT)) (-4281 (((-3 $ "failed") $) 37 T ELT)) (-3799 (((-112) $) 52 T ELT)) (-2167 (($ $) 51 T ELT)) (-2097 (((-112) $) 35 T ELT)) (-2338 (((-112) $) 57 T ELT)) (-1475 (($ (-840 |#1|) |#2|) 58 T ELT)) (-2955 (($ $) 56 T ELT)) (-1808 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-3338 (((-840 |#1|) $) 68 T ELT)) (-2268 (((-840 |#1|) $) 82 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3855 (($ $ |#1|) 64 T ELT) (($ $ (-840 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-3384 (((-1188) $) 10 T ELT)) (-4312 (((-1150) $) 11 T ELT)) (-2776 (((-792) $) 81 T ELT)) (-2995 (((-112) $) 54 T ELT)) (-1528 ((|#2| $) 53 T ELT)) (-2410 (((-885) $) 12 T ELT) (($ (-577)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-840 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2671 ((|#2| $ (-840 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-3234 (((-792)) 32 T CONST)) (-2525 (((-112) $ $) 6 T ELT)) (-2367 (($) 19 T CONST)) (-2378 (($) 34 T CONST)) (-2383 (((-112) $ $) 8 T ELT)) (-2483 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2471 (($ $ $) 15 T ELT)) (** (($ $ (-949)) 28 T ELT) (($ $ (-792)) 36 T ELT)) (* (($ (-949) $) 14 T ELT) (($ (-792) $) 16 T ELT) (($ (-577) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) -(((-1318 |#1| |#2|) (-141) (-870) (-1079)) (T -1318)) -((-2268 (*1 *2 *1) (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-840 *3)))) (-2776 (*1 *2 *1) (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *2 (-792)))) (-4370 (*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) -(-13 (-1314 |t#1| |t#2|) (-10 -8 (-15 -2268 ((-840 |t#1|) $)) (-15 -2776 ((-792) $)) (-15 -4370 ($ $ (-792))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-634 (-577)) . T) ((-634 #0=(-840 |#1|)) . T) ((-634 |#2|) . T) ((-631 (-885)) . T) ((-667 (-577)) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-669 |#2|) . T) ((-669 $) . T) ((-661 |#2|) |has| |#2| (-174)) ((-738 |#2|) |has| |#2| (-174)) ((-747) . T) ((-1068 #0#) . T) ((-1081 |#2|) . T) ((-1086 |#2|) . T) ((-1079) . T) ((-1088) . T) ((-1142) . T) ((-1130) . T) ((-1247) . T) ((-1311 |#2|) . T) ((-1314 |#1| |#2|) . T)) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-4417 (((-665 (-1206)) $) NIL T ELT)) (-2203 (($ (-1312 (-1206) |#1|)) NIL T ELT)) (-4370 (($ $ (-792)) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1735 (($ $ $) NIL (|has| |#1| (-174)) ELT) (($ $ (-792)) NIL (|has| |#1| (-174)) ELT)) (-2762 (($) NIL T CONST)) (-3216 (($ $ (-1206)) NIL T ELT) (($ $ (-840 (-1206))) NIL T ELT) (($ $ $) NIL T ELT)) (-2817 (((-3 (-840 (-1206)) "failed") $) NIL T ELT)) (-3514 (((-840 (-1206)) $) NIL T ELT)) (-4281 (((-3 $ "failed") $) NIL T ELT)) (-3799 (((-112) $) NIL T ELT)) (-2167 (($ $) NIL T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-1475 (($ (-840 (-1206)) |#1|) NIL T ELT)) (-2955 (($ $) NIL T ELT)) (-1808 (((-2 (|:| |k| (-840 (-1206))) (|:| |c| |#1|)) $) NIL T ELT)) (-3338 (((-840 (-1206)) $) NIL T ELT)) (-2268 (((-840 (-1206)) $) NIL T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3855 (($ $ (-1206)) NIL T ELT) (($ $ (-840 (-1206))) NIL T ELT) (($ $ $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4198 (((-1312 (-1206) |#1|) $) NIL T ELT)) (-2776 (((-792) $) NIL T ELT)) (-2995 (((-112) $) NIL T ELT)) (-1528 ((|#1| $) NIL T ELT)) (-2410 (((-885) $) NIL T ELT) (($ (-577)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1206))) NIL T ELT) (($ (-1206)) NIL T ELT)) (-2671 ((|#1| $ (-840 (-1206))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3234 (((-792)) NIL T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) NIL T CONST)) (-2630 (((-665 (-2 (|:| |k| (-1206)) (|:| |c| $))) $) NIL T ELT)) (-2378 (($) NIL T CONST)) (-2383 (((-112) $ $) NIL T ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) NIL T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) NIL T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1206) $) NIL T ELT))) -(((-1319 |#1|) (-13 (-1318 (-1206) |#1|) (-10 -8 (-15 -4198 ((-1312 (-1206) |#1|) $)) (-15 -2203 ($ (-1312 (-1206) |#1|))) (-15 -2630 ((-665 (-2 (|:| |k| (-1206)) (|:| |c| $))) $)))) (-1079)) (T -1319)) -((-4198 (*1 *2 *1) (-12 (-5 *2 (-1312 (-1206) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-1312 (-1206) *3)) (-4 *3 (-1079)) (-5 *1 (-1319 *3)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| (-1206)) (|:| |c| (-1319 *3))))) (-5 *1 (-1319 *3)) (-4 *3 (-1079))))) -(-13 (-1318 (-1206) |#1|) (-10 -8 (-15 -4198 ((-1312 (-1206) |#1|) $)) (-15 -2203 ($ (-1312 (-1206) |#1|))) (-15 -2630 ((-665 (-2 (|:| |k| (-1206)) (|:| |c| $))) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) NIL T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2762 (($) NIL T CONST)) (-2817 (((-3 |#2| "failed") $) NIL T ELT)) (-3514 ((|#2| $) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 42 T ELT)) (-3799 (((-112) $) 35 T ELT)) (-2167 (($ $) 37 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-3641 (((-792) $) NIL T ELT)) (-1387 (((-665 $) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-1475 (($ |#2| |#1|) NIL T ELT)) (-3338 ((|#2| $) 24 T ELT)) (-2268 ((|#2| $) 22 T ELT)) (-3609 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3095 ((|#2| $) NIL T ELT)) (-3109 ((|#1| $) NIL T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2995 (((-112) $) 32 T ELT)) (-1528 ((|#1| $) 33 T ELT)) (-2410 (((-885) $) 65 T ELT) (($ (-577)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-2929 (((-665 |#1|) $) NIL T ELT)) (-2778 ((|#1| $ |#2|) NIL T ELT)) (-2671 ((|#1| $ |#2|) 28 T ELT)) (-3234 (((-792)) 14 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 29 T CONST)) (-2378 (($) 11 T CONST)) (-2662 (((-665 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-2383 (((-112) $ $) 30 T ELT)) (-2494 (($ $ |#1|) 67 (|has| |#1| (-375)) ELT)) (-2483 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2471 (($ $ $) 50 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 52 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3224 (((-792) $) 16 T ELT))) -(((-1320 |#1| |#2|) (-13 (-1079) (-1311 |#1|) (-394 |#1| |#2|) (-634 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3224 ((-792) $)) (-15 -2268 (|#2| $)) (-15 -3338 (|#2| $)) (-15 -3134 ($ $)) (-15 -2671 (|#1| $ |#2|)) (-15 -2995 ((-112) $)) (-15 -1528 (|#1| $)) (-15 -3799 ((-112) $)) (-15 -2167 ($ $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -2494 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4492)) (-6 -4492) |%noBranch|) (IF (|has| |#1| (-6 -4496)) (-6 -4496) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) (-1079) (-867)) (T -1320)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867)))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-1320 *3 *4)) (-4 *4 (-867)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-867)))) (-2268 (*1 *2 *1) (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079)))) (-3338 (*1 *2 *1) (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-867)))) (-1528 (*1 *2 *1) (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-867)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867)))) (-2494 (*1 *1 *1 *2) (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1079)) (-4 *3 (-867))))) -(-13 (-1079) (-1311 |#1|) (-394 |#1| |#2|) (-634 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3224 ((-792) $)) (-15 -2268 (|#2| $)) (-15 -3338 (|#2| $)) (-15 -3134 ($ $)) (-15 -2671 (|#1| $ |#2|)) (-15 -2995 ((-112) $)) (-15 -1528 (|#1| $)) (-15 -3799 ((-112) $)) (-15 -2167 ($ $)) (-15 -3609 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -2494 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4492)) (-6 -4492) |%noBranch|) (IF (|has| |#1| (-6 -4496)) (-6 -4496) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|))) -((-3211 (((-112) $ $) 27 T ELT)) (-1516 (((-112) $) NIL T ELT)) (-4417 (((-665 |#1|) $) 132 T ELT)) (-2203 (($ (-1312 |#1| |#2|)) 50 T ELT)) (-4370 (($ $ (-792)) 38 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-1735 (($ $ $) 54 (|has| |#2| (-174)) ELT) (($ $ (-792)) 52 (|has| |#2| (-174)) ELT)) (-2762 (($) NIL T CONST)) (-3216 (($ $ |#1|) 114 T ELT) (($ $ (-840 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-2817 (((-3 (-840 |#1|) "failed") $) NIL T ELT)) (-3514 (((-840 |#1|) $) NIL T ELT)) (-4281 (((-3 $ "failed") $) 122 T ELT)) (-3799 (((-112) $) 117 T ELT)) (-2167 (($ $) 118 T ELT)) (-2097 (((-112) $) NIL T ELT)) (-2338 (((-112) $) NIL T ELT)) (-1475 (($ (-840 |#1|) |#2|) 20 T ELT)) (-2955 (($ $) NIL T ELT)) (-1808 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3338 (((-840 |#1|) $) 123 T ELT)) (-2268 (((-840 |#1|) $) 126 T ELT)) (-3609 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3855 (($ $ |#1|) 112 T ELT) (($ $ (-840 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-4198 (((-1312 |#1| |#2|) $) 94 T ELT)) (-2776 (((-792) $) 129 T ELT)) (-2995 (((-112) $) 81 T ELT)) (-1528 ((|#2| $) 32 T ELT)) (-2410 (((-885) $) 73 T ELT) (($ (-577)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-840 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-2671 ((|#2| $ (-840 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3234 (((-792)) 120 T CONST)) (-2525 (((-112) $ $) NIL T ELT)) (-2367 (($) 15 T CONST)) (-2630 (((-665 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2378 (($) 33 T CONST)) (-2383 (((-112) $ $) 14 T ELT)) (-2483 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-2471 (($ $ $) 61 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 55 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) 53 T ELT) (($ (-577) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1321 |#1| |#2|) (-13 (-1318 |#1| |#2|) (-10 -8 (-15 -4198 ((-1312 |#1| |#2|) $)) (-15 -2203 ($ (-1312 |#1| |#2|))) (-15 -2630 ((-665 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-870) (-1079)) (T -1321)) -((-4198 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) (-5 *1 (-1321 *3 *4)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-665 (-2 (|:| |k| *3) (|:| |c| (-1321 *3 *4))))) (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) -(-13 (-1318 |#1| |#2|) (-10 -8 (-15 -4198 ((-1312 |#1| |#2|) $)) (-15 -2203 ($ (-1312 |#1| |#2|))) (-15 -2630 ((-665 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3211 (((-112) $ $) NIL T ELT)) (-1942 (($ (-665 (-949))) 10 T ELT)) (-2107 (((-1001) $) 12 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-2410 (((-885) $) 25 T ELT) (($ (-1001)) 14 T ELT) (((-1001) $) 13 T ELT)) (-2525 (((-112) $ $) NIL T ELT)) (-2383 (((-112) $ $) 17 T ELT))) -(((-1322) (-13 (-1130) (-503 (-1001)) (-10 -8 (-15 -1942 ($ (-665 (-949)))) (-15 -2107 ((-1001) $))))) (T -1322)) -((-1942 (*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1322)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-1322))))) -(-13 (-1130) (-503 (-1001)) (-10 -8 (-15 -1942 ($ (-665 (-949)))) (-15 -2107 ((-1001) $)))) -((-2584 (((-665 (-1187 |#1|)) (-1 (-665 (-1187 |#1|)) (-665 (-1187 |#1|))) (-577)) 16 T ELT) (((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|))) 13 T ELT))) -(((-1323 |#1|) (-10 -7 (-15 -2584 ((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|)))) (-15 -2584 ((-665 (-1187 |#1|)) (-1 (-665 (-1187 |#1|)) (-665 (-1187 |#1|))) (-577)))) (-1247)) (T -1323)) -((-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-665 (-1187 *5)) (-665 (-1187 *5)))) (-5 *4 (-577)) (-5 *2 (-665 (-1187 *5))) (-5 *1 (-1323 *5)) (-4 *5 (-1247)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-1 (-1187 *4) (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1323 *4)) (-4 *4 (-1247))))) -(-10 -7 (-15 -2584 ((-1187 |#1|) (-1 (-1187 |#1|) (-1187 |#1|)))) (-15 -2584 ((-665 (-1187 |#1|)) (-1 (-665 (-1187 |#1|)) (-665 (-1187 |#1|))) (-577)))) -((-2166 (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|))) 174 T ELT) (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112)) 173 T ELT) (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112)) 172 T ELT) (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112) (-112)) 171 T ELT) (((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-1076 |#1| |#2|)) 156 T ELT)) (-2247 (((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|))) 85 T ELT) (((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112)) 84 T ELT) (((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112) (-112)) 83 T ELT)) (-4240 (((-665 (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) (-1076 |#1| |#2|)) 73 T ELT)) (-4059 (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|))) 140 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112)) 139 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112)) 138 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112) (-112)) 137 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|)) 132 T ELT)) (-1929 (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|))) 145 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112)) 144 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112)) 143 T ELT) (((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|)) 142 T ELT)) (-3341 (((-665 (-801 |#1| (-887 |#3|))) (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) 111 T ELT) (((-1202 (-1054 (-420 |#1|))) (-1202 |#1|)) 102 T ELT) (((-980 (-1054 (-420 |#1|))) (-801 |#1| (-887 |#3|))) 109 T ELT) (((-980 (-1054 (-420 |#1|))) (-980 |#1|)) 107 T ELT) (((-801 |#1| (-887 |#3|)) (-801 |#1| (-887 |#2|))) 33 T ELT))) -(((-1324 |#1| |#2| |#3|) (-10 -7 (-15 -2247 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112) (-112))) (-15 -2247 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112))) (-15 -2247 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-1076 |#1| |#2|))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -4240 ((-665 (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) (-1076 |#1| |#2|))) (-15 -3341 ((-801 |#1| (-887 |#3|)) (-801 |#1| (-887 |#2|)))) (-15 -3341 ((-980 (-1054 (-420 |#1|))) (-980 |#1|))) (-15 -3341 ((-980 (-1054 (-420 |#1|))) (-801 |#1| (-887 |#3|)))) (-15 -3341 ((-1202 (-1054 (-420 |#1|))) (-1202 |#1|))) (-15 -3341 ((-665 (-801 |#1| (-887 |#3|))) (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))))) (-13 (-869) (-318) (-148) (-1052)) (-665 (-1206)) (-665 (-1206))) (T -1324)) -((-3341 (*1 *2 *3) (-12 (-5 *3 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6)))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-801 *4 (-887 *6)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-1202 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-1202 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-801 *4 (-887 *6))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-801 *4 (-887 *5))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-801 *4 (-887 *6))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-4240 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-1929 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-1929 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-4059 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-4059 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-2166 (*1 *2 *3) (-12 (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *4)) (|:| -2119 (-665 (-980 *4)))))) (-5 *1 (-1324 *4 *5 *6)) (-5 *3 (-665 (-980 *4))) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-2166 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-2166 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-2 (|:| -4193 (-1202 *4)) (|:| -2119 (-665 (-980 *4)))))) (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-1076 *4 *5))) (-5 *1 (-1324 *4 *5 *6)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) (-2247 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) (-2247 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206)))))) -(-10 -7 (-15 -2247 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112) (-112))) (-15 -2247 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)) (-112))) (-15 -2247 ((-665 (-1076 |#1| |#2|)) (-665 (-980 |#1|)))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-1076 |#1| |#2|))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)) (-112))) (-15 -2166 ((-665 (-2 (|:| -4193 (-1202 |#1|)) (|:| -2119 (-665 (-980 |#1|))))) (-665 (-980 |#1|)))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112) (-112))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -4059 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-1076 |#1| |#2|))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112) (-112))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)) (-112))) (-15 -1929 ((-665 (-665 (-1054 (-420 |#1|)))) (-665 (-980 |#1|)))) (-15 -4240 ((-665 (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))) (-1076 |#1| |#2|))) (-15 -3341 ((-801 |#1| (-887 |#3|)) (-801 |#1| (-887 |#2|)))) (-15 -3341 ((-980 (-1054 (-420 |#1|))) (-980 |#1|))) (-15 -3341 ((-980 (-1054 (-420 |#1|))) (-801 |#1| (-887 |#3|)))) (-15 -3341 ((-1202 (-1054 (-420 |#1|))) (-1202 |#1|))) (-15 -3341 ((-665 (-801 |#1| (-887 |#3|))) (-1176 |#1| (-544 (-887 |#3|)) (-887 |#3|) (-801 |#1| (-887 |#3|)))))) -((-2446 (((-3 (-1297 (-420 (-577))) "failed") (-1297 |#1|) |#1|) 21 T ELT)) (-3000 (((-112) (-1297 |#1|)) 12 T ELT)) (-2445 (((-3 (-1297 (-577)) "failed") (-1297 |#1|)) 16 T ELT))) -(((-1325 |#1|) (-10 -7 (-15 -3000 ((-112) (-1297 |#1|))) (-15 -2445 ((-3 (-1297 (-577)) "failed") (-1297 |#1|))) (-15 -2446 ((-3 (-1297 (-420 (-577))) "failed") (-1297 |#1|) |#1|))) (-13 (-1079) (-659 (-577)))) (T -1325)) -((-2446 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) (-5 *2 (-1297 (-420 (-577)))) (-5 *1 (-1325 *4)))) (-2445 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) (-5 *2 (-1297 (-577))) (-5 *1 (-1325 *4)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) (-5 *2 (-112)) (-5 *1 (-1325 *4))))) -(-10 -7 (-15 -3000 ((-112) (-1297 |#1|))) (-15 -2445 ((-3 (-1297 (-577)) "failed") (-1297 |#1|))) (-15 -2446 ((-3 (-1297 (-420 (-577))) "failed") (-1297 |#1|) |#1|))) -((-3211 (((-112) $ $) NIL T ELT)) (-1516 (((-112) $) 11 T ELT)) (-3262 (((-3 $ "failed") $ $) NIL T ELT)) (-2221 (((-792)) 8 T ELT)) (-2762 (($) NIL T CONST)) (-4281 (((-3 $ "failed") $) 58 T ELT)) (-2060 (($) 49 T ELT)) (-2097 (((-112) $) 57 T ELT)) (-3651 (((-3 $ "failed") $) 40 T ELT)) (-2553 (((-949) $) 15 T ELT)) (-3384 (((-1188) $) NIL T ELT)) (-2199 (($) 32 T CONST)) (-2085 (($ (-949)) 50 T ELT)) (-4312 (((-1150) $) NIL T ELT)) (-3341 (((-577) $) 13 T ELT)) (-2410 (((-885) $) 27 T ELT) (($ (-577)) 24 T ELT)) (-3234 (((-792)) 9 T CONST)) (-2525 (((-112) $ $) 60 T ELT)) (-2367 (($) 29 T CONST)) (-2378 (($) 31 T CONST)) (-2383 (((-112) $ $) 38 T ELT)) (-2483 (($ $) 52 T ELT) (($ $ $) 47 T ELT)) (-2471 (($ $ $) 35 T ELT)) (** (($ $ (-949)) NIL T ELT) (($ $ (-792)) 54 T ELT)) (* (($ (-949) $) NIL T ELT) (($ (-792) $) NIL T ELT) (($ (-577) $) 44 T ELT) (($ $ $) 43 T ELT))) -(((-1326 |#1|) (-13 (-174) (-380) (-632 (-577)) (-1182)) (-949)) (T -1326)) -NIL -(-13 (-174) (-380) (-632 (-577)) (-1182)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3471744 3471749 3471754 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3471729 3471734 3471739 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3471714 3471719 3471724 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3471699 3471704 3471709 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1326 3470686 3471574 3471651 "ZMOD" 3471656 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1325 3469722 3469904 3470127 "ZLINDEP" 3470518 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1324 3458884 3460790 3462762 "ZDSOLVE" 3467852 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1323 3458118 3458271 3458460 "YSTREAM" 3458730 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1322 3457478 3457787 3457902 "YDIAGRAM" 3458025 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1321 3454926 3456779 3456983 "XRPOLY" 3457321 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1320 3451193 3452797 3453372 "XPR" 3454398 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1319 3448588 3450524 3450728 "XPOLY" 3451024 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1318 3445919 3447595 3447650 "XPOLYC" 3447938 NIL XPOLYC (NIL T T) -9 NIL 3448051 NIL) (-1317 3441865 3444436 3444824 "XPBWPOLY" 3445577 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1316 3437134 3439841 3439883 "XF" 3440504 NIL XF (NIL T) -9 NIL 3440904 NIL) (-1315 3436731 3436843 3437012 "XF-" 3437017 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1314 3431623 3433202 3433257 "XFALG" 3435429 NIL XFALG (NIL T T) -9 NIL 3436218 NIL) (-1313 3430738 3430860 3431065 "XEXPPKG" 3431515 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1312 3428479 3430588 3430684 "XDPOLY" 3430689 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3427134 3427872 3427915 "XALG" 3427920 NIL XALG (NIL T) -9 NIL 3428031 NIL) (-1310 3420044 3425111 3425605 "WUTSET" 3426726 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1309 3418146 3419096 3419419 "WP" 3419855 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1308 3417694 3417968 3418038 "WHILEAST" 3418098 T WHILEAST (NIL) -8 NIL NIL NIL) (-1307 3417106 3417411 3417505 "WHEREAST" 3417622 T WHEREAST (NIL) -8 NIL NIL NIL) (-1306 3415980 3416190 3416485 "WFFINTBS" 3416903 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1305 3413848 3414311 3414773 "WEIER" 3415552 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1304 3412772 3413330 3413372 "VSPACE" 3413508 NIL VSPACE (NIL T) -9 NIL 3413582 NIL) (-1303 3412604 3412637 3412728 "VSPACE-" 3412733 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1302 3412401 3412455 3412523 "VOID" 3412558 T VOID (NIL) -8 NIL NIL NIL) (-1301 3410501 3410896 3411302 "VIEW" 3412017 T VIEW (NIL) -7 NIL NIL NIL) (-1300 3406769 3407564 3408301 "VIEWDEF" 3409786 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1299 3395713 3398317 3400490 "VIEW3D" 3404618 T VIEW3D (NIL) -8 NIL NIL NIL) (-1298 3387730 3389624 3391203 "VIEW2D" 3394156 T VIEW2D (NIL) -8 NIL NIL NIL) (-1297 3382636 3387500 3387592 "VECTOR" 3387673 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1296 3381189 3381472 3381790 "VECTOR2" 3382366 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1295 3374143 3378893 3378936 "VECTCAT" 3379931 NIL VECTCAT (NIL T) -9 NIL 3380518 NIL) (-1294 3373085 3373411 3373801 "VECTCAT-" 3373806 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1293 3372491 3372736 3372856 "VARIABLE" 3373000 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1292 3372424 3372429 3372459 "UTYPE" 3372464 T UTYPE (NIL) -9 NIL NIL NIL) (-1291 3371232 3371408 3371670 "UTSODETL" 3372250 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1290 3368624 3369132 3369656 "UTSODE" 3370773 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1289 3359934 3366385 3366865 "UTS" 3368202 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1288 3349941 3355867 3355910 "UTSCAT" 3357022 NIL UTSCAT (NIL T) -9 NIL 3357780 NIL) (-1287 3347067 3348011 3349000 "UTSCAT-" 3349005 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1286 3346688 3346737 3346870 "UTS2" 3347018 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1285 3340555 3343498 3343541 "URAGG" 3345611 NIL URAGG (NIL T) -9 NIL 3346334 NIL) (-1284 3337278 3338357 3339480 "URAGG-" 3339485 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1283 3332647 3335913 3336378 "UPXSSING" 3336942 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1282 3324125 3332029 3332293 "UPXS" 3332441 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1281 3316540 3324029 3324101 "UPXSCONS" 3324106 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1280 3305288 3312742 3312804 "UPXSCCA" 3313378 NIL UPXSCCA (NIL T T) -9 NIL 3313611 NIL) (-1279 3304908 3305011 3305185 "UPXSCCA-" 3305190 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1278 3293556 3300735 3300778 "UPXSCAT" 3301426 NIL UPXSCAT (NIL T) -9 NIL 3302035 NIL) (-1277 3292980 3293065 3293244 "UPXS2" 3293471 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1276 3291616 3291887 3292238 "UPSQFREE" 3292723 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1275 3284444 3287882 3287937 "UPSCAT" 3289017 NIL UPSCAT (NIL T T) -9 NIL 3289783 NIL) (-1274 3283600 3283855 3284182 "UPSCAT-" 3284187 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1273 3267734 3276727 3276770 "UPOLYC" 3278871 NIL UPOLYC (NIL T) -9 NIL 3280092 NIL) (-1272 3258582 3261488 3264635 "UPOLYC-" 3264640 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1271 3258203 3258252 3258385 "UPOLYC2" 3258533 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1270 3248778 3257886 3258015 "UP" 3258122 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1269 3248099 3248224 3248388 "UPMP" 3248667 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1268 3247646 3247733 3247872 "UPDIVP" 3248012 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1267 3246184 3246463 3246779 "UPDECOMP" 3247395 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1266 3245397 3245527 3245713 "UPCDEN" 3246068 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1265 3244910 3244985 3245134 "UP2" 3245322 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1264 3243263 3244114 3244391 "UNISEG" 3244668 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1263 3242468 3242605 3242810 "UNISEG2" 3243106 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1262 3241510 3241708 3241934 "UNIFACT" 3242284 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1261 3223320 3240822 3241064 "ULS" 3241326 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1260 3210030 3223224 3223296 "ULSCONS" 3223301 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1259 3189830 3203110 3203172 "ULSCCAT" 3203810 NIL ULSCCAT (NIL T T) -9 NIL 3204099 NIL) (-1258 3188826 3189125 3189513 "ULSCCAT-" 3189518 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1257 3177271 3184372 3184415 "ULSCAT" 3185278 NIL ULSCAT (NIL T) -9 NIL 3186009 NIL) (-1256 3176695 3176780 3176959 "ULS2" 3177186 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1255 3175610 3176310 3176424 "UINT8" 3176535 T UINT8 (NIL) -8 NIL NIL 3176627) (-1254 3174524 3175224 3175338 "UINT64" 3175449 T UINT64 (NIL) -8 NIL NIL 3175541) (-1253 3173438 3174138 3174252 "UINT32" 3174363 T UINT32 (NIL) -8 NIL NIL 3174455) (-1252 3172352 3173052 3173166 "UINT16" 3173277 T UINT16 (NIL) -8 NIL NIL 3173369) (-1251 3170431 3171598 3171628 "UFD" 3171840 T UFD (NIL) -9 NIL 3171954 NIL) (-1250 3170213 3170271 3170366 "UFD-" 3170371 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1249 3169271 3169478 3169694 "UDVO" 3170019 T UDVO (NIL) -7 NIL NIL NIL) (-1248 3167037 3167496 3167967 "UDPO" 3168835 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1247 3166970 3166975 3167005 "TYPE" 3167010 T TYPE (NIL) -9 NIL NIL NIL) (-1246 3166682 3166925 3166956 "TYPEAST" 3166961 T TYPEAST (NIL) -8 NIL NIL NIL) (-1245 3165635 3165855 3166095 "TWOFACT" 3166476 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1244 3164610 3165044 3165279 "TUPLE" 3165435 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1243 3162247 3162820 3163359 "TUBETOOL" 3164093 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1242 3161053 3161294 3161536 "TUBE" 3162040 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1241 3155232 3160025 3160308 "TS" 3160805 NIL TS (NIL T) -8 NIL NIL NIL) (-1240 3143374 3147989 3148086 "TSETCAT" 3153355 NIL TSETCAT (NIL T T T T) -9 NIL 3154887 NIL) (-1239 3137842 3139706 3141597 "TSETCAT-" 3141602 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1238 3132315 3133328 3134257 "TRMANIP" 3136978 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1237 3131744 3131819 3131982 "TRIMAT" 3132247 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1236 3129556 3129847 3130204 "TRIGMNIP" 3131493 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1235 3129040 3129189 3129219 "TRIGCAT" 3129432 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1234 3128685 3128788 3128929 "TRIGCAT-" 3128934 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1233 3125299 3127543 3127824 "TREE" 3128439 NIL TREE (NIL T) -8 NIL NIL NIL) (-1232 3124405 3125101 3125131 "TRANFUN" 3125166 T TRANFUN (NIL) -9 NIL 3125232 NIL) (-1231 3123624 3123875 3124155 "TRANFUN-" 3124160 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1230 3123422 3123460 3123521 "TOPSP" 3123585 T TOPSP (NIL) -7 NIL NIL NIL) (-1229 3122752 3122885 3123039 "TOOLSIGN" 3123303 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1228 3121266 3121929 3122168 "TEXTFILE" 3122535 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1227 3119070 3119719 3120148 "TEX" 3120859 T TEX (NIL) -8 NIL NIL NIL) (-1226 3118845 3118882 3118954 "TEX1" 3119033 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1225 3118481 3118556 3118646 "TEMUTL" 3118777 T TEMUTL (NIL) -7 NIL NIL NIL) (-1224 3116575 3116915 3117240 "TBCMPPK" 3118204 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1223 3107902 3114661 3114717 "TBAGG" 3115117 NIL TBAGG (NIL T T) -9 NIL 3115328 NIL) (-1222 3102786 3104460 3106214 "TBAGG-" 3106219 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1221 3102152 3102277 3102422 "TANEXP" 3102675 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1220 3101603 3101927 3102017 "TALGOP" 3102097 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1219 3094617 3101460 3101553 "TABLE" 3101558 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1218 3094011 3094128 3094266 "TABLEAU" 3094514 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1217 3088541 3089839 3091087 "TABLBUMP" 3092797 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1216 3087751 3087910 3088091 "SYSTEM" 3088382 T SYSTEM (NIL) -8 NIL NIL NIL) (-1215 3084156 3084909 3085692 "SYSSOLP" 3087002 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1214 3083918 3084111 3084142 "SYSPTR" 3084147 T SYSPTR (NIL) -8 NIL NIL NIL) (-1213 3082753 3083445 3083571 "SYSNNI" 3083757 NIL SYSNNI (NIL NIL) -8 NIL NIL 3083849) (-1212 3081956 3082511 3082590 "SYSINT" 3082650 NIL SYSINT (NIL NIL) -8 NIL NIL 3082695) (-1211 3078054 3079234 3079944 "SYNTAX" 3081268 T SYNTAX (NIL) -8 NIL NIL NIL) (-1210 3075134 3075814 3076446 "SYMTAB" 3077444 T SYMTAB (NIL) -8 NIL NIL NIL) (-1209 3070233 3071285 3072268 "SYMS" 3074173 T SYMS (NIL) -8 NIL NIL NIL) (-1208 3067132 3069684 3069917 "SYMPOLY" 3070035 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1207 3066637 3066724 3066847 "SYMFUNC" 3067044 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1206 3062435 3063949 3064762 "SYMBOL" 3065846 T SYMBOL (NIL) -8 NIL NIL NIL) (-1205 3055908 3057663 3059383 "SWITCH" 3060737 T SWITCH (NIL) -8 NIL NIL NIL) (-1204 3048662 3054864 3055158 "SUTS" 3055672 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1203 3040140 3048044 3048308 "SUPXS" 3048456 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1202 3030663 3039758 3039884 "SUP" 3040049 NIL SUP (NIL T) -8 NIL NIL NIL) (-1201 3029810 3029949 3030166 "SUPFRACF" 3030531 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1200 3029425 3029490 3029603 "SUP2" 3029745 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1199 3027849 3028147 3028503 "SUMRF" 3029124 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1198 3027172 3027250 3027442 "SUMFS" 3027770 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1197 3009017 3026484 3026726 "SULS" 3026988 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1196 3008565 3008839 3008909 "SUCHTAST" 3008969 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1195 3007806 3008090 3008230 "SUCH" 3008473 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1194 3001445 3002712 3003671 "SUBSPACE" 3006894 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1193 3000865 3000965 3001129 "SUBRESP" 3001333 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1192 2994059 2995530 2996841 "STTF" 2999601 NIL STTF (NIL T) -7 NIL NIL NIL) (-1191 2988070 2989352 2990499 "STTFNC" 2992959 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1190 2979187 2981252 2983046 "STTAYLOR" 2986311 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1189 2971941 2979051 2979134 "STRTBL" 2979139 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1188 2966338 2971650 2971749 "STRING" 2971864 T STRING (NIL) -8 NIL NIL NIL) (-1187 2958448 2963957 2964568 "STREAM" 2965762 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1186 2957952 2958035 2958179 "STREAM3" 2958365 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1185 2956916 2957117 2957352 "STREAM2" 2957765 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1184 2956598 2956656 2956749 "STREAM1" 2956858 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1183 2955590 2955795 2956026 "STINPROD" 2956414 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1182 2955086 2955338 2955368 "STEP" 2955448 T STEP (NIL) -9 NIL 2955526 NIL) (-1181 2954201 2954575 2954723 "STEPAST" 2954960 T STEPAST (NIL) -8 NIL NIL NIL) (-1180 2947257 2954100 2954177 "STBL" 2954182 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1179 2941815 2946420 2946463 "STAGG" 2946616 NIL STAGG (NIL T) -9 NIL 2946705 NIL) (-1178 2939367 2940119 2940991 "STAGG-" 2940996 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1177 2937339 2939137 2939229 "STACK" 2939310 NIL STACK (NIL T) -8 NIL NIL NIL) (-1176 2929346 2935480 2935936 "SREGSET" 2936969 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1175 2921693 2923140 2924653 "SRDCMPK" 2927952 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1174 2914002 2919052 2919082 "SRAGG" 2920385 T SRAGG (NIL) -9 NIL 2920993 NIL) (-1173 2912953 2913274 2913653 "SRAGG-" 2913658 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1172 2906537 2911900 2912321 "SQMATRIX" 2912579 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1171 2899949 2903255 2903982 "SPLTREE" 2905882 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1170 2895774 2896605 2897251 "SPLNODE" 2899375 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1169 2894749 2895054 2895084 "SPFCAT" 2895528 T SPFCAT (NIL) -9 NIL NIL NIL) (-1168 2893444 2893696 2893960 "SPECOUT" 2894507 T SPECOUT (NIL) -7 NIL NIL NIL) (-1167 2884090 2886408 2886438 "SPADXPT" 2891116 T SPADXPT (NIL) -9 NIL 2893282 NIL) (-1166 2883845 2883891 2883960 "SPADPRSR" 2884043 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1165 2881448 2883800 2883831 "SPADAST" 2883836 T SPADAST (NIL) -8 NIL NIL NIL) (-1164 2873049 2875152 2875195 "SPACEC" 2879568 NIL SPACEC (NIL T) -9 NIL 2881384 NIL) (-1163 2870849 2872981 2873030 "SPACE3" 2873035 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1162 2869581 2869772 2870063 "SORTPAK" 2870654 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1161 2867643 2867976 2868388 "SOLVETRA" 2869245 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1160 2866681 2866915 2867176 "SOLVESER" 2867416 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1159 2861913 2862873 2863868 "SOLVERAD" 2865733 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1158 2857638 2858337 2859066 "SOLVEFOR" 2861280 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1157 2851249 2856986 2857083 "SNTSCAT" 2857088 NIL SNTSCAT (NIL T T T T) -9 NIL 2857158 NIL) (-1156 2844793 2849572 2849963 "SMTS" 2850939 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1155 2838508 2844681 2844758 "SMP" 2844763 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1154 2836637 2836968 2837366 "SMITH" 2838205 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1153 2828169 2833216 2833319 "SMATCAT" 2834670 NIL SMATCAT (NIL NIL T T T) -9 NIL 2835220 NIL) (-1152 2824941 2825932 2827110 "SMATCAT-" 2827115 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1151 2822410 2824149 2824192 "SKAGG" 2824453 NIL SKAGG (NIL T) -9 NIL 2824588 NIL) (-1150 2817904 2821883 2822067 "SINT" 2822219 T SINT (NIL) -8 NIL NIL 2822381) (-1149 2817670 2817714 2817780 "SIMPAN" 2817860 T SIMPAN (NIL) -7 NIL NIL NIL) (-1148 2816895 2817205 2817345 "SIG" 2817552 T SIG (NIL) -8 NIL NIL NIL) (-1147 2815715 2815954 2816229 "SIGNRF" 2816654 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1146 2814530 2814699 2814983 "SIGNEF" 2815544 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1145 2813770 2814113 2814237 "SIGAST" 2814428 T SIGAST (NIL) -8 NIL NIL NIL) (-1144 2811422 2811914 2812420 "SHP" 2813311 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1143 2804795 2811323 2811399 "SHDP" 2811404 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1142 2804306 2804546 2804576 "SGROUP" 2804669 T SGROUP (NIL) -9 NIL 2804731 NIL) (-1141 2804158 2804190 2804263 "SGROUP-" 2804268 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1140 2800877 2801647 2802370 "SGCF" 2803457 T SGCF (NIL) -7 NIL NIL NIL) (-1139 2794586 2800323 2800420 "SFRTCAT" 2800425 NIL SFRTCAT (NIL T T T T) -9 NIL 2800464 NIL) (-1138 2787905 2789025 2790161 "SFRGCD" 2793569 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1137 2780923 2782104 2783290 "SFQCMPK" 2786838 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1136 2780525 2780632 2780743 "SFORT" 2780864 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1135 2779451 2780365 2780486 "SEXOF" 2780491 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1134 2778366 2779332 2779400 "SEX" 2779405 T SEX (NIL) -8 NIL NIL NIL) (-1133 2773955 2774862 2774957 "SEXCAT" 2777579 NIL SEXCAT (NIL T T T T T) -9 NIL 2778139 NIL) (-1132 2770764 2773889 2773937 "SET" 2773942 NIL SET (NIL T) -8 NIL NIL NIL) (-1131 2768886 2769477 2769782 "SETMN" 2770505 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1130 2768416 2768604 2768634 "SETCAT" 2768751 T SETCAT (NIL) -9 NIL 2768836 NIL) (-1129 2768184 2768248 2768347 "SETCAT-" 2768352 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1128 2764287 2766645 2766688 "SETAGG" 2767558 NIL SETAGG (NIL T) -9 NIL 2767898 NIL) (-1127 2763709 2763861 2764098 "SETAGG-" 2764103 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1126 2763092 2763405 2763506 "SEQAST" 2763630 T SEQAST (NIL) -8 NIL NIL NIL) (-1125 2762219 2762585 2762646 "SEGXCAT" 2762932 NIL SEGXCAT (NIL T T) -9 NIL 2763052 NIL) (-1124 2761135 2761885 2762067 "SEG" 2762072 NIL SEG (NIL T) -8 NIL NIL NIL) (-1123 2760060 2760328 2760371 "SEGCAT" 2760893 NIL SEGCAT (NIL T) -9 NIL 2761114 NIL) (-1122 2758950 2759423 2759631 "SEGBIND" 2759887 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1121 2758565 2758630 2758743 "SEGBIND2" 2758885 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1120 2758084 2758366 2758443 "SEGAST" 2758510 T SEGAST (NIL) -8 NIL NIL NIL) (-1119 2757293 2757429 2757633 "SEG2" 2757928 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1118 2756526 2757228 2757275 "SDVAR" 2757280 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1117 2747877 2756296 2756426 "SDPOL" 2756431 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1116 2746446 2746736 2747055 "SCPKG" 2747592 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1115 2745568 2745782 2745974 "SCOPE" 2746276 T SCOPE (NIL) -8 NIL NIL NIL) (-1114 2744764 2744922 2745101 "SCACHE" 2745423 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1113 2744348 2744582 2744612 "SASTCAT" 2744617 T SASTCAT (NIL) -9 NIL 2744630 NIL) (-1112 2743751 2744183 2744259 "SAOS" 2744294 T SAOS (NIL) -8 NIL NIL NIL) (-1111 2743310 2743351 2743524 "SAERFFC" 2743710 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1110 2736337 2743207 2743287 "SAE" 2743292 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1109 2735924 2735965 2736124 "SAEFACT" 2736296 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1108 2734227 2734559 2734960 "RURPK" 2735590 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1107 2732804 2733170 2733475 "RULESET" 2734061 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1106 2729919 2730557 2731015 "RULE" 2732485 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1105 2729489 2729713 2729796 "RULECOLD" 2729871 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1104 2729273 2729307 2729378 "RTVALUE" 2729440 T RTVALUE (NIL) -8 NIL NIL NIL) (-1103 2728684 2728990 2729084 "RSTRCAST" 2729201 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1102 2723454 2724327 2725247 "RSETGCD" 2727883 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2712025 2717762 2717859 "RSETCAT" 2721978 NIL RSETCAT (NIL T T T T) -9 NIL 2723075 NIL) (-1100 2709844 2710491 2711315 "RSETCAT-" 2711320 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1099 2702152 2703606 2705126 "RSDCMPK" 2708443 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1098 2700021 2700584 2700658 "RRCC" 2701744 NIL RRCC (NIL T T) -9 NIL 2702088 NIL) (-1097 2699342 2699546 2699825 "RRCC-" 2699830 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1096 2698725 2699038 2699139 "RPTAST" 2699263 T RPTAST (NIL) -8 NIL NIL NIL) (-1095 2671111 2681837 2681904 "RPOLCAT" 2692570 NIL RPOLCAT (NIL T T T) -9 NIL 2695730 NIL) (-1094 2662081 2664949 2668071 "RPOLCAT-" 2668076 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1093 2652534 2660292 2660774 "ROUTINE" 2661621 T ROUTINE (NIL) -8 NIL NIL NIL) (-1092 2648583 2652160 2652300 "ROMAN" 2652416 T ROMAN (NIL) -8 NIL NIL NIL) (-1091 2646695 2647443 2647703 "ROIRC" 2648388 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1090 2642413 2645184 2645214 "RNS" 2645518 T RNS (NIL) -9 NIL 2645792 NIL) (-1089 2640820 2641305 2641839 "RNS-" 2641914 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1088 2640113 2640617 2640647 "RNG" 2640652 T RNG (NIL) -9 NIL 2640673 NIL) (-1087 2639074 2639478 2639680 "RNGBIND" 2639964 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1086 2638369 2638847 2638890 "RMODULE" 2638895 NIL RMODULE (NIL T) -9 NIL 2638922 NIL) (-1085 2637193 2637299 2637635 "RMCAT2" 2638270 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1084 2633695 2636539 2636836 "RMATRIX" 2636955 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1083 2626194 2628782 2628897 "RMATCAT" 2632256 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2633238 NIL) (-1082 2625533 2625716 2626023 "RMATCAT-" 2626028 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1081 2625106 2625320 2625363 "RLINSET" 2625425 NIL RLINSET (NIL T) -9 NIL 2625469 NIL) (-1080 2624667 2624748 2624876 "RINTERP" 2625025 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1079 2623591 2624265 2624295 "RING" 2624351 T RING (NIL) -9 NIL 2624443 NIL) (-1078 2623371 2623427 2623524 "RING-" 2623529 NIL RING- (NIL T) -8 NIL NIL NIL) (-1077 2622182 2622449 2622707 "RIDIST" 2623135 T RIDIST (NIL) -7 NIL NIL NIL) (-1076 2612807 2621650 2621856 "RGCHAIN" 2622030 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1075 2612065 2612549 2612590 "RGBCSPC" 2612648 NIL RGBCSPC (NIL T) -9 NIL 2612700 NIL) (-1074 2611131 2611590 2611631 "RGBCMDL" 2611863 NIL RGBCMDL (NIL T) -9 NIL 2611977 NIL) (-1073 2608071 2608739 2609409 "RF" 2610495 NIL RF (NIL T) -7 NIL NIL NIL) (-1072 2607711 2607780 2607883 "RFFACTOR" 2608002 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1071 2607430 2607471 2607568 "RFFACT" 2607670 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1070 2605481 2605911 2606293 "RFDIST" 2607070 T RFDIST (NIL) -7 NIL NIL NIL) (-1069 2604928 2605026 2605189 "RETSOL" 2605383 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1068 2604546 2604644 2604687 "RETRACT" 2604820 NIL RETRACT (NIL T) -9 NIL 2604907 NIL) (-1067 2604389 2604420 2604507 "RETRACT-" 2604512 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1066 2603937 2604211 2604281 "RETAST" 2604341 T RETAST (NIL) -8 NIL NIL NIL) (-1065 2596287 2603590 2603717 "RESULT" 2603832 T RESULT (NIL) -8 NIL NIL NIL) (-1064 2594722 2595556 2595755 "RESRING" 2596190 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1063 2594346 2594407 2594505 "RESLATC" 2594659 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1062 2594045 2594086 2594193 "REPSQ" 2594305 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1061 2591425 2592047 2592649 "REP" 2593465 T REP (NIL) -7 NIL NIL NIL) (-1060 2591116 2591157 2591268 "REPDB" 2591384 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1059 2584948 2586405 2587628 "REP2" 2589928 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1058 2581251 2582006 2582814 "REP1" 2584175 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1057 2573259 2579392 2579848 "REGSET" 2580881 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1056 2571968 2572407 2572657 "REF" 2573044 NIL REF (NIL T) -8 NIL NIL NIL) (-1055 2571333 2571448 2571615 "REDORDER" 2571852 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1054 2566697 2570546 2570773 "RECLOS" 2571161 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1053 2565731 2565930 2566145 "REALSOLV" 2566504 T REALSOLV (NIL) -7 NIL NIL NIL) (-1052 2565565 2565618 2565648 "REAL" 2565653 T REAL (NIL) -9 NIL 2565688 NIL) (-1051 2562012 2562850 2563734 "REAL0Q" 2564730 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1050 2557565 2558601 2559662 "REAL0" 2560993 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1049 2556976 2557282 2557376 "RDUCEAST" 2557493 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1048 2556375 2556453 2556660 "RDIV" 2556898 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1047 2555425 2555617 2555830 "RDIST" 2556197 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1046 2554010 2554309 2554681 "RDETRS" 2555133 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1045 2551804 2552276 2552814 "RDETR" 2553552 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1044 2550423 2550707 2551104 "RDEEFS" 2551520 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1043 2548926 2549238 2549663 "RDEEF" 2550111 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1042 2542403 2545880 2545910 "RCFIELD" 2547205 T RCFIELD (NIL) -9 NIL 2547936 NIL) (-1041 2540359 2540971 2541667 "RCFIELD-" 2541742 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1040 2536411 2538432 2538475 "RCAGG" 2539559 NIL RCAGG (NIL T) -9 NIL 2540024 NIL) (-1039 2536021 2536133 2536296 "RCAGG-" 2536301 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1038 2535338 2535468 2535633 "RATRET" 2535905 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1037 2534879 2534958 2535079 "RATFACT" 2535266 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1036 2534157 2534307 2534459 "RANDSRC" 2534749 T RANDSRC (NIL) -7 NIL NIL NIL) (-1035 2533885 2533935 2534008 "RADUTIL" 2534106 T RADUTIL (NIL) -7 NIL NIL NIL) (-1034 2526009 2532716 2533027 "RADIX" 2533608 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1033 2515603 2525851 2525981 "RADFF" 2525986 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1032 2515232 2515325 2515355 "RADCAT" 2515515 T RADCAT (NIL) -9 NIL NIL NIL) (-1031 2515002 2515062 2515162 "RADCAT-" 2515167 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1030 2512913 2514772 2514864 "QUEUE" 2514945 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1029 2508752 2512846 2512894 "QUAT" 2512899 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1028 2508377 2508426 2508557 "QUATCT2" 2508703 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1027 2500753 2504800 2504842 "QUATCAT" 2505633 NIL QUATCAT (NIL T) -9 NIL 2506399 NIL) (-1026 2496634 2497929 2499319 "QUATCAT-" 2499415 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1025 2493890 2495682 2495725 "QUAGG" 2496106 NIL QUAGG (NIL T) -9 NIL 2496281 NIL) (-1024 2493438 2493712 2493782 "QQUTAST" 2493842 T QQUTAST (NIL) -8 NIL NIL NIL) (-1023 2492349 2492951 2493116 "QFORM" 2493319 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1022 2482025 2488196 2488238 "QFCAT" 2488906 NIL QFCAT (NIL T) -9 NIL 2489907 NIL) (-1021 2477340 2478793 2480387 "QFCAT-" 2480483 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1020 2476965 2477014 2477145 "QFCAT2" 2477291 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1019 2476396 2476530 2476662 "QEQUAT" 2476855 T QEQUAT (NIL) -8 NIL NIL NIL) (-1018 2469414 2470595 2471781 "QCMPACK" 2475329 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2466864 2467400 2467830 "QALGSET" 2469069 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1016 2466093 2466275 2466511 "QALGSET2" 2466682 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1015 2464760 2465002 2465321 "PWFFINTB" 2465866 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1014 2462905 2463103 2463459 "PUSHVAR" 2464574 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1013 2458632 2459848 2459891 "PTRANFN" 2461802 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1012 2456969 2457314 2457638 "PTPACK" 2458343 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1011 2456592 2456655 2456766 "PTFUNC2" 2456906 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1010 2450517 2455381 2455424 "PTCAT" 2455724 NIL PTCAT (NIL T) -9 NIL 2455877 NIL) (-1009 2450166 2450207 2450333 "PSQFR" 2450476 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1008 2448738 2449054 2449390 "PSEUDLIN" 2449864 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1007 2435258 2437833 2440159 "PSETPK" 2446498 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1006 2427966 2430994 2431092 "PSETCAT" 2434133 NIL PSETCAT (NIL T T T T) -9 NIL 2434947 NIL) (-1005 2425691 2426433 2427257 "PSETCAT-" 2427262 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1004 2425004 2425199 2425229 "PSCURVE" 2425501 T PSCURVE (NIL) -9 NIL 2425668 NIL) (-1003 2420720 2422494 2422561 "PSCAT" 2423413 NIL PSCAT (NIL T T T) -9 NIL 2423653 NIL) (-1002 2419714 2419996 2420399 "PSCAT-" 2420404 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-1001 2417913 2418773 2419038 "PRTITION" 2419471 T PRTITION (NIL) -8 NIL NIL NIL) (-1000 2417324 2417630 2417724 "PRTDAST" 2417841 T PRTDAST (NIL) -8 NIL NIL NIL) (-999 2406206 2408628 2410816 "PRS" 2415186 NIL PRS (NIL T T) -7 NIL NIL NIL) (-998 2403826 2405528 2405568 "PRQAGG" 2405751 NIL PRQAGG (NIL T) -9 NIL 2405853 NIL) (-997 2403005 2403454 2403482 "PROPLOG" 2403621 T PROPLOG (NIL) -9 NIL 2403736 NIL) (-996 2402603 2402666 2402789 "PROPFUN2" 2402928 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-995 2401900 2402039 2402211 "PROPFUN1" 2402464 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-994 2399879 2400647 2400944 "PROPFRML" 2401636 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-993 2399324 2399455 2399583 "PROPERTY" 2399771 T PROPERTY (NIL) -8 NIL NIL NIL) (-992 2393212 2397490 2398310 "PRODUCT" 2398550 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-991 2390170 2392670 2392904 "PR" 2393023 NIL PR (NIL T T) -8 NIL NIL NIL) (-990 2389960 2389998 2390057 "PRINT" 2390131 T PRINT (NIL) -7 NIL NIL NIL) (-989 2389276 2389417 2389569 "PRIMES" 2389840 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-988 2387323 2387742 2388208 "PRIMELT" 2388855 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-987 2387040 2387101 2387129 "PRIMCAT" 2387253 T PRIMCAT (NIL) -9 NIL NIL NIL) (-986 2382762 2386978 2387023 "PRIMARR" 2387028 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-985 2381751 2381947 2382175 "PRIMARR2" 2382580 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-984 2381388 2381450 2381561 "PREASSOC" 2381689 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-983 2380839 2380996 2381024 "PPCURVE" 2381229 T PPCURVE (NIL) -9 NIL 2381365 NIL) (-982 2380386 2380634 2380717 "PORTNUM" 2380776 T PORTNUM (NIL) -8 NIL NIL NIL) (-981 2377723 2378144 2378736 "POLYROOT" 2379967 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-980 2370931 2377327 2377487 "POLY" 2377596 NIL POLY (NIL T) -8 NIL NIL NIL) (-979 2370308 2370372 2370606 "POLYLIFT" 2370867 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-978 2366529 2367032 2367661 "POLYCATQ" 2369853 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-977 2352177 2358276 2358341 "POLYCAT" 2361855 NIL POLYCAT (NIL T T T) -9 NIL 2363733 NIL) (-976 2345296 2347488 2349872 "POLYCAT-" 2349877 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-975 2344877 2344951 2345071 "POLY2UP" 2345222 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-974 2344503 2344566 2344675 "POLY2" 2344814 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-973 2343164 2343427 2343703 "POLUTIL" 2344277 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-972 2341483 2341796 2342127 "POLTOPOL" 2342886 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-971 2336479 2341417 2341464 "POINT" 2341469 NIL POINT (NIL T) -8 NIL NIL NIL) (-970 2334612 2335023 2335398 "PNTHEORY" 2336124 T PNTHEORY (NIL) -7 NIL NIL NIL) (-969 2333058 2333367 2333766 "PMTOOLS" 2334310 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-968 2332645 2332729 2332846 "PMSYM" 2332974 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-967 2332147 2332222 2332397 "PMQFCAT" 2332570 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-966 2331490 2331612 2331768 "PMPRED" 2332024 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-965 2330871 2330969 2331131 "PMPREDFS" 2331391 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-964 2329525 2329743 2330121 "PMPLCAT" 2330633 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-963 2329051 2329136 2329288 "PMLSAGG" 2329440 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-962 2328518 2328600 2328782 "PMKERNEL" 2328969 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-961 2328129 2328210 2328323 "PMINS" 2328437 NIL PMINS (NIL T) -7 NIL NIL NIL) (-960 2327565 2327640 2327849 "PMFS" 2328054 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-959 2326781 2326911 2327116 "PMDOWN" 2327442 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-958 2325924 2326106 2326287 "PMASS" 2326620 T PMASS (NIL) -7 NIL NIL NIL) (-957 2325173 2325307 2325470 "PMASSFS" 2325811 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-956 2324822 2324896 2324990 "PLOTTOOL" 2325099 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-955 2319243 2320633 2321781 "PLOT" 2323694 T PLOT (NIL) -8 NIL NIL NIL) (-954 2314895 2316089 2317011 "PLOT3D" 2318341 T PLOT3D (NIL) -8 NIL NIL NIL) (-953 2313783 2313984 2314219 "PLOT1" 2314699 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-952 2288958 2293849 2298700 "PLEQN" 2309049 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-951 2288264 2288398 2288578 "PINTERP" 2288823 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-950 2287951 2288004 2288107 "PINTERPA" 2288211 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-949 2287047 2287715 2287802 "PI" 2287842 T PI (NIL) -8 NIL NIL 2287909) (-948 2285132 2286305 2286333 "PID" 2286515 T PID (NIL) -9 NIL 2286649 NIL) (-947 2284877 2284920 2284995 "PICOERCE" 2285089 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-946 2284185 2284336 2284512 "PGROEB" 2284733 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-945 2279624 2280583 2281489 "PGE" 2283299 T PGE (NIL) -7 NIL NIL NIL) (-944 2277705 2277994 2278360 "PGCD" 2279341 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-943 2277031 2277146 2277307 "PFRPAC" 2277589 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-942 2273281 2275579 2275932 "PFR" 2276710 NIL PFR (NIL T) -8 NIL NIL NIL) (-941 2271634 2271914 2272239 "PFOTOOLS" 2273028 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-940 2270149 2270406 2270757 "PFOQ" 2271391 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-939 2268632 2268862 2269218 "PFO" 2269933 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-938 2264557 2268521 2268590 "PF" 2268595 NIL PF (NIL NIL) -8 NIL NIL NIL) (-937 2261635 2263148 2263176 "PFECAT" 2263761 T PFECAT (NIL) -9 NIL 2264145 NIL) (-936 2261062 2261234 2261448 "PFECAT-" 2261453 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-935 2259635 2259917 2260218 "PFBRU" 2260811 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-934 2257465 2257853 2258285 "PFBR" 2259286 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-933 2253267 2254974 2255622 "PERM" 2256850 NIL PERM (NIL T) -8 NIL NIL NIL) (-932 2248321 2249474 2250344 "PERMGRP" 2252430 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-931 2246233 2247345 2247386 "PERMCAT" 2247786 NIL PERMCAT (NIL T) -9 NIL 2248084 NIL) (-930 2245880 2245927 2246051 "PERMAN" 2246186 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-929 2243121 2245545 2245667 "PENDTREE" 2245791 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-928 2242002 2242265 2242306 "PDSPC" 2242839 NIL PDSPC (NIL T) -9 NIL 2243084 NIL) (-927 2241057 2241323 2241685 "PDSPC-" 2241690 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-926 2239771 2240707 2240748 "PDRING" 2240753 NIL PDRING (NIL T) -9 NIL 2240781 NIL) (-925 2238514 2239276 2239330 "PDMOD" 2239335 NIL PDMOD (NIL T T) -9 NIL 2239439 NIL) (-924 2235681 2236507 2237175 "PDEPROB" 2237866 T PDEPROB (NIL) -8 NIL NIL NIL) (-923 2233190 2233730 2234285 "PDEPACK" 2235146 T PDEPACK (NIL) -7 NIL NIL NIL) (-922 2232078 2232292 2232543 "PDECOMP" 2232989 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-921 2229595 2230486 2230514 "PDECAT" 2231301 T PDECAT (NIL) -9 NIL 2232014 NIL) (-920 2229212 2229279 2229333 "PDDOM" 2229498 NIL PDDOM (NIL T T) -9 NIL 2229578 NIL) (-919 2229025 2229061 2229168 "PDDOM-" 2229173 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-918 2228770 2228809 2228899 "PCOMP" 2228986 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-917 2226810 2227571 2227868 "PBWLB" 2228499 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-916 2218989 2220883 2222221 "PATTERN" 2225493 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-915 2218615 2218678 2218787 "PATTERN2" 2218926 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-914 2216324 2216760 2217217 "PATTERN1" 2218204 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-913 2213590 2214273 2214754 "PATRES" 2215889 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-912 2213148 2213221 2213353 "PATRES2" 2213517 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-911 2211001 2211436 2211843 "PATMATCH" 2212815 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-910 2210455 2210706 2210747 "PATMAB" 2210854 NIL PATMAB (NIL T) -9 NIL 2210937 NIL) (-909 2208901 2209309 2209567 "PATLRES" 2210260 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-908 2208439 2208570 2208611 "PATAB" 2208616 NIL PATAB (NIL T) -9 NIL 2208788 NIL) (-907 2206579 2207016 2207439 "PARTPERM" 2208036 T PARTPERM (NIL) -7 NIL NIL NIL) (-906 2206188 2206263 2206365 "PARSURF" 2206510 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-905 2205814 2205877 2205986 "PARSU2" 2206125 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-904 2205572 2205618 2205685 "PARSER" 2205767 T PARSER (NIL) -7 NIL NIL NIL) (-903 2205181 2205256 2205358 "PARSCURV" 2205503 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-902 2204807 2204870 2204979 "PARSC2" 2205118 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-901 2204434 2204504 2204601 "PARPCURV" 2204743 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-900 2204060 2204123 2204232 "PARPC2" 2204371 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-899 2203049 2203433 2203615 "PARAMAST" 2203898 T PARAMAST (NIL) -8 NIL NIL NIL) (-898 2202557 2202655 2202774 "PAN2EXPR" 2202950 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-897 2201250 2201678 2201906 "PALETTE" 2202349 T PALETTE (NIL) -8 NIL NIL NIL) (-896 2199595 2200255 2200615 "PAIR" 2200936 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-895 2192507 2198852 2199047 "PADICRC" 2199449 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-894 2184743 2191851 2192036 "PADICRAT" 2192354 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-893 2182752 2184680 2184725 "PADIC" 2184730 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-892 2179542 2181412 2181452 "PADICCT" 2182033 NIL PADICCT (NIL NIL) -9 NIL 2182315 NIL) (-891 2178487 2178699 2178967 "PADEPAC" 2179329 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-890 2177687 2177832 2178038 "PADE" 2178349 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-889 2175920 2176895 2177175 "OWP" 2177491 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-888 2175365 2175626 2175723 "OVERSET" 2175843 T OVERSET (NIL) -8 NIL NIL NIL) (-887 2174285 2174970 2175142 "OVAR" 2175233 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-886 2173525 2173670 2173831 "OUT" 2174144 T OUT (NIL) -7 NIL NIL NIL) (-885 2161761 2164634 2166834 "OUTFORM" 2171345 T OUTFORM (NIL) -8 NIL NIL NIL) (-884 2161043 2161358 2161485 "OUTBFILE" 2161654 T OUTBFILE (NIL) -8 NIL NIL NIL) (-883 2160320 2160515 2160543 "OUTBCON" 2160861 T OUTBCON (NIL) -9 NIL 2161027 NIL) (-882 2159903 2160033 2160190 "OUTBCON-" 2160195 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-881 2159199 2159632 2159721 "OSI" 2159834 T OSI (NIL) -8 NIL NIL NIL) (-880 2158618 2159040 2159068 "OSGROUP" 2159073 T OSGROUP (NIL) -9 NIL 2159095 NIL) (-879 2157329 2157590 2157875 "ORTHPOL" 2158365 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-878 2154580 2157164 2157285 "OREUP" 2157290 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-877 2151683 2154271 2154398 "ORESUP" 2154522 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-876 2149183 2149711 2150272 "OREPCTO" 2151172 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-875 2142561 2145056 2145097 "OREPCAT" 2147445 NIL OREPCAT (NIL T) -9 NIL 2148549 NIL) (-874 2139534 2140490 2141548 "OREPCAT-" 2141553 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-873 2138727 2139004 2139032 "ORDTYPE" 2139341 T ORDTYPE (NIL) -9 NIL 2139504 NIL) (-872 2138028 2138244 2138499 "ORDTYPE-" 2138504 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-871 2137384 2137767 2137925 "ORDSTRCT" 2137930 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-870 2136882 2137252 2137280 "ORDSET" 2137285 T ORDSET (NIL) -9 NIL 2137307 NIL) (-869 2135240 2136211 2136239 "ORDRING" 2136441 T ORDRING (NIL) -9 NIL 2136566 NIL) (-868 2134861 2134979 2135123 "ORDRING-" 2135128 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-867 2134112 2134677 2134705 "ORDMON" 2134710 T ORDMON (NIL) -9 NIL 2134731 NIL) (-866 2133256 2133421 2133616 "ORDFUNS" 2133961 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-865 2132471 2132986 2133014 "ORDFIN" 2133079 T ORDFIN (NIL) -9 NIL 2133153 NIL) (-864 2128818 2131057 2131466 "ORDCOMP" 2132095 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-863 2128072 2128211 2128397 "ORDCOMP2" 2128678 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-862 2124593 2125563 2126377 "OPTPROB" 2127278 T OPTPROB (NIL) -8 NIL NIL NIL) (-861 2121335 2122034 2122738 "OPTPACK" 2123909 T OPTPACK (NIL) -7 NIL NIL NIL) (-860 2118948 2119774 2119802 "OPTCAT" 2120621 T OPTCAT (NIL) -9 NIL 2121271 NIL) (-859 2118266 2118625 2118730 "OPSIG" 2118863 T OPSIG (NIL) -8 NIL NIL NIL) (-858 2118028 2118073 2118139 "OPQUERY" 2118220 T OPQUERY (NIL) -7 NIL NIL NIL) (-857 2114937 2116339 2116843 "OP" 2117557 NIL OP (NIL T) -8 NIL NIL NIL) (-856 2114243 2114523 2114564 "OPERCAT" 2114776 NIL OPERCAT (NIL T) -9 NIL 2114873 NIL) (-855 2113986 2114054 2114171 "OPERCAT-" 2114176 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-854 2110599 2112783 2113152 "ONECOMP" 2113650 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-853 2109892 2110019 2110193 "ONECOMP2" 2110471 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-852 2109293 2109417 2109547 "OMSERVER" 2109782 T OMSERVER (NIL) -7 NIL NIL NIL) (-851 2105807 2108733 2108773 "OMSAGG" 2108834 NIL OMSAGG (NIL T) -9 NIL 2108898 NIL) (-850 2104382 2104693 2104975 "OMPKG" 2105545 T OMPKG (NIL) -7 NIL NIL NIL) (-849 2103788 2103915 2103943 "OM" 2104242 T OM (NIL) -9 NIL NIL NIL) (-848 2102135 2103337 2103506 "OMLO" 2103669 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-847 2101071 2101242 2101462 "OMEXPR" 2101961 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-846 2100308 2100617 2100753 "OMERR" 2100955 T OMERR (NIL) -8 NIL NIL NIL) (-845 2099393 2099729 2099889 "OMERRK" 2100168 T OMERRK (NIL) -8 NIL NIL NIL) (-844 2098784 2099070 2099178 "OMENC" 2099305 T OMENC (NIL) -8 NIL NIL NIL) (-843 2092421 2093864 2095035 "OMDEV" 2097633 T OMDEV (NIL) -8 NIL NIL NIL) (-842 2091454 2091661 2091855 "OMCONN" 2092247 T OMCONN (NIL) -8 NIL NIL NIL) (-841 2089732 2090924 2090952 "OINTDOM" 2090957 T OINTDOM (NIL) -9 NIL 2090978 NIL) (-840 2086806 2088420 2088757 "OFMONOID" 2089427 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-839 2086040 2086743 2086788 "ODVAR" 2086793 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-838 2083177 2085785 2085940 "ODR" 2085945 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-837 2074582 2082953 2083079 "ODPOL" 2083084 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-836 2067925 2074454 2074559 "ODP" 2074564 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-835 2066667 2066906 2067181 "ODETOOLS" 2067699 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-834 2063610 2064292 2065008 "ODESYS" 2066000 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-833 2058440 2059400 2060425 "ODERTRIC" 2062685 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-832 2057860 2057948 2058142 "ODERED" 2058352 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-831 2054712 2055296 2055973 "ODERAT" 2057283 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-830 2051629 2052136 2052733 "ODEPRRIC" 2054241 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-829 2049524 2050168 2050654 "ODEPROB" 2051163 T ODEPROB (NIL) -8 NIL NIL NIL) (-828 2045990 2046529 2047176 "ODEPRIM" 2049003 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-827 2045233 2045341 2045601 "ODEPAL" 2045882 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-826 2041335 2042186 2043050 "ODEPACK" 2044389 T ODEPACK (NIL) -7 NIL NIL NIL) (-825 2040378 2040503 2040725 "ODEINT" 2041224 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-824 2034443 2035904 2037351 "ODEIFTBL" 2038951 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-823 2029793 2030627 2031579 "ODEEF" 2033602 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-822 2029136 2029231 2029454 "ODECONST" 2029698 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-821 2027199 2027908 2027936 "ODECAT" 2028541 T ODECAT (NIL) -9 NIL 2029072 NIL) (-820 2023692 2026904 2027026 "OCT" 2027109 NIL OCT (NIL T) -8 NIL NIL NIL) (-819 2023324 2023373 2023500 "OCTCT2" 2023643 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-818 2017593 2020367 2020407 "OC" 2021504 NIL OC (NIL T) -9 NIL 2022362 NIL) (-817 2014628 2015568 2016558 "OC-" 2016652 NIL OC- (NIL T T) -8 NIL NIL NIL) (-816 2013851 2014421 2014449 "OCAMON" 2014454 T OCAMON (NIL) -9 NIL 2014475 NIL) (-815 2013271 2013696 2013724 "OASGP" 2013729 T OASGP (NIL) -9 NIL 2013749 NIL) (-814 2012397 2012994 2013022 "OAMONS" 2013062 T OAMONS (NIL) -9 NIL 2013105 NIL) (-813 2011688 2012217 2012245 "OAMON" 2012250 T OAMON (NIL) -9 NIL 2012270 NIL) (-812 2010799 2011437 2011465 "OAGROUP" 2011470 T OAGROUP (NIL) -9 NIL 2011490 NIL) (-811 2010481 2010537 2010626 "NUMTUBE" 2010743 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-810 2004000 2005572 2007108 "NUMQUAD" 2008965 T NUMQUAD (NIL) -7 NIL NIL NIL) (-809 1999720 2000744 2001769 "NUMODE" 2002995 T NUMODE (NIL) -7 NIL NIL NIL) (-808 1997001 1997941 1997969 "NUMINT" 1998892 T NUMINT (NIL) -9 NIL 1999656 NIL) (-807 1995913 1996146 1996364 "NUMFMT" 1996803 T NUMFMT (NIL) -7 NIL NIL NIL) (-806 1982096 1985217 1987749 "NUMERIC" 1993420 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-805 1975807 1981544 1981639 "NTSCAT" 1981644 NIL NTSCAT (NIL T T T T) -9 NIL 1981683 NIL) (-804 1974987 1975166 1975359 "NTPOLFN" 1975646 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-803 1961748 1971812 1972624 "NSUP" 1974208 NIL NSUP (NIL T) -8 NIL NIL NIL) (-802 1961374 1961437 1961546 "NSUP2" 1961685 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-801 1950210 1961148 1961281 "NSMP" 1961286 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-800 1948618 1948943 1949300 "NREP" 1949898 NIL NREP (NIL T) -7 NIL NIL NIL) (-799 1947197 1947461 1947819 "NPCOEF" 1948361 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-798 1946245 1946378 1946594 "NORMRETR" 1947078 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-797 1944256 1944576 1944985 "NORMPK" 1945953 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-796 1943935 1943969 1944093 "NORMMA" 1944222 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-795 1943699 1943892 1943921 "NONE" 1943926 T NONE (NIL) -8 NIL NIL NIL) (-794 1943482 1943517 1943586 "NONE1" 1943663 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-793 1942973 1943041 1943220 "NODE1" 1943414 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-792 1941065 1942096 1942351 "NNI" 1942698 T NNI (NIL) -8 NIL NIL 1942933) (-791 1939461 1939798 1940162 "NLINSOL" 1940733 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-790 1935642 1936697 1937596 "NIPROB" 1938582 T NIPROB (NIL) -8 NIL NIL NIL) (-789 1934381 1934633 1934935 "NFINTBAS" 1935404 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-788 1933465 1934031 1934072 "NETCLT" 1934244 NIL NETCLT (NIL T) -9 NIL 1934326 NIL) (-787 1932137 1932404 1932685 "NCODIV" 1933233 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-786 1931893 1931936 1932011 "NCNTFRAC" 1932094 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-785 1930049 1930437 1930857 "NCEP" 1931518 NIL NCEP (NIL T) -7 NIL NIL NIL) (-784 1928712 1929659 1929687 "NASRING" 1929797 T NASRING (NIL) -9 NIL 1929877 NIL) (-783 1928495 1928551 1928645 "NASRING-" 1928650 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-782 1927462 1928113 1928141 "NARNG" 1928258 T NARNG (NIL) -9 NIL 1928349 NIL) (-781 1927136 1927221 1927355 "NARNG-" 1927360 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-780 1925973 1926222 1926457 "NAGSP" 1926921 T NAGSP (NIL) -7 NIL NIL NIL) (-779 1917017 1918929 1920602 "NAGS" 1924320 T NAGS (NIL) -7 NIL NIL NIL) (-778 1915541 1915873 1916204 "NAGF07" 1916706 T NAGF07 (NIL) -7 NIL NIL NIL) (-777 1910013 1911370 1912677 "NAGF04" 1914254 T NAGF04 (NIL) -7 NIL NIL NIL) (-776 1902885 1904595 1906228 "NAGF02" 1908400 T NAGF02 (NIL) -7 NIL NIL NIL) (-775 1898049 1899209 1900326 "NAGF01" 1901788 T NAGF01 (NIL) -7 NIL NIL NIL) (-774 1891629 1893243 1894828 "NAGE04" 1896484 T NAGE04 (NIL) -7 NIL NIL NIL) (-773 1882690 1884919 1887049 "NAGE02" 1889519 T NAGE02 (NIL) -7 NIL NIL NIL) (-772 1878583 1879590 1880554 "NAGE01" 1881746 T NAGE01 (NIL) -7 NIL NIL NIL) (-771 1876360 1876912 1877470 "NAGD03" 1878045 T NAGD03 (NIL) -7 NIL NIL NIL) (-770 1868056 1870038 1871992 "NAGD02" 1874426 T NAGD02 (NIL) -7 NIL NIL NIL) (-769 1861795 1863292 1864732 "NAGD01" 1866636 T NAGD01 (NIL) -7 NIL NIL NIL) (-768 1857932 1858826 1859663 "NAGC06" 1860978 T NAGC06 (NIL) -7 NIL NIL NIL) (-767 1856379 1856729 1857085 "NAGC05" 1857596 T NAGC05 (NIL) -7 NIL NIL NIL) (-766 1855743 1855874 1856018 "NAGC02" 1856255 T NAGC02 (NIL) -7 NIL NIL NIL) (-765 1854544 1855271 1855311 "NAALG" 1855390 NIL NAALG (NIL T) -9 NIL 1855451 NIL) (-764 1854373 1854408 1854498 "NAALG-" 1854503 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-763 1848245 1849431 1850618 "MULTSQFR" 1853269 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-762 1847552 1847639 1847823 "MULTFACT" 1848157 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-761 1839697 1844135 1844188 "MTSCAT" 1845258 NIL MTSCAT (NIL T T) -9 NIL 1845774 NIL) (-760 1839403 1839463 1839555 "MTHING" 1839637 NIL MTHING (NIL T) -7 NIL NIL NIL) (-759 1839189 1839228 1839288 "MSYSCMD" 1839363 T MSYSCMD (NIL) -7 NIL NIL NIL) (-758 1834903 1837944 1838264 "MSET" 1838902 NIL MSET (NIL T) -8 NIL NIL NIL) (-757 1831648 1834464 1834505 "MSETAGG" 1834510 NIL MSETAGG (NIL T) -9 NIL 1834544 NIL) (-756 1827240 1829027 1829772 "MRING" 1830948 NIL MRING (NIL T T) -8 NIL NIL NIL) (-755 1826800 1826873 1827004 "MRF2" 1827167 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-754 1826412 1826453 1826597 "MRATFAC" 1826759 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-753 1823982 1824319 1824750 "MPRFF" 1826117 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-752 1817309 1823836 1823933 "MPOLY" 1823938 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-751 1816793 1816834 1817042 "MPCPF" 1817268 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-750 1816301 1816350 1816534 "MPC3" 1816744 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-749 1815484 1815577 1815798 "MPC2" 1816216 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-748 1813761 1814122 1814512 "MONOTOOL" 1815144 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-747 1812906 1813289 1813317 "MONOID" 1813536 T MONOID (NIL) -9 NIL 1813683 NIL) (-746 1812422 1812571 1812752 "MONOID-" 1812757 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-745 1801376 1808242 1808301 "MONOGEN" 1808975 NIL MONOGEN (NIL T T) -9 NIL 1809431 NIL) (-744 1798426 1799329 1800329 "MONOGEN-" 1800448 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-743 1797143 1797691 1797719 "MONADWU" 1798111 T MONADWU (NIL) -9 NIL 1798349 NIL) (-742 1796473 1796674 1796922 "MONADWU-" 1796927 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-741 1795758 1796062 1796090 "MONAD" 1796297 T MONAD (NIL) -9 NIL 1796409 NIL) (-740 1795425 1795521 1795653 "MONAD-" 1795658 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-739 1793564 1794338 1794617 "MOEBIUS" 1795178 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-738 1792732 1793232 1793272 "MODULE" 1793277 NIL MODULE (NIL T) -9 NIL 1793316 NIL) (-737 1792270 1792396 1792586 "MODULE-" 1792591 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-736 1789800 1790634 1790961 "MODRING" 1792094 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-735 1786522 1787905 1788426 "MODOP" 1789329 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-734 1785008 1785589 1785866 "MODMONOM" 1786385 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-733 1773748 1783299 1783713 "MODMON" 1784645 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-732 1770574 1772592 1772868 "MODFIELD" 1773623 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-731 1769485 1769855 1770045 "MMLFORM" 1770404 T MMLFORM (NIL) -8 NIL NIL NIL) (-730 1769005 1769054 1769233 "MMAP" 1769436 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-729 1766898 1767837 1767878 "MLO" 1768301 NIL MLO (NIL T) -9 NIL 1768543 NIL) (-728 1764246 1764780 1765382 "MLIFT" 1766379 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-727 1763625 1763721 1763875 "MKUCFUNC" 1764157 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-726 1763218 1763294 1763417 "MKRECORD" 1763548 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-725 1762241 1762427 1762655 "MKFUNC" 1763029 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-724 1761617 1761733 1761889 "MKFLCFN" 1762124 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-723 1760882 1760996 1761181 "MKBCFUNC" 1761510 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-722 1756865 1760436 1760572 "MINT" 1760766 T MINT (NIL) -8 NIL NIL NIL) (-721 1755647 1755920 1756197 "MHROWRED" 1756620 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-720 1750391 1754182 1754587 "MFLOAT" 1755262 T MFLOAT (NIL) -8 NIL NIL NIL) (-719 1749736 1749824 1749995 "MFINFACT" 1750303 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-718 1746015 1746899 1747783 "MESH" 1748872 T MESH (NIL) -7 NIL NIL NIL) (-717 1744369 1744717 1745070 "MDDFACT" 1745702 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-716 1740905 1743500 1743541 "MDAGG" 1743796 NIL MDAGG (NIL T) -9 NIL 1743939 NIL) (-715 1728607 1740198 1740405 "MCMPLX" 1740718 T MCMPLX (NIL) -8 NIL NIL NIL) (-714 1727726 1727890 1728091 "MCDEN" 1728456 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-713 1725574 1725886 1726266 "MCALCFN" 1727456 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-712 1724451 1724739 1724972 "MAYBE" 1725380 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-711 1722009 1722586 1723148 "MATSTOR" 1723922 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-710 1717431 1721381 1721629 "MATRIX" 1721794 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-709 1713131 1713904 1714640 "MATLIN" 1716788 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-708 1702477 1706188 1706265 "MATCAT" 1711297 NIL MATCAT (NIL T T T) -9 NIL 1712769 NIL) (-707 1698430 1699740 1701153 "MATCAT-" 1701158 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-706 1697006 1697177 1697510 "MATCAT2" 1698265 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-705 1695082 1695442 1695826 "MAPPKG3" 1696681 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-704 1694039 1694236 1694458 "MAPPKG2" 1694906 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-703 1692496 1692822 1693149 "MAPPKG1" 1693745 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-702 1691497 1691902 1692079 "MAPPAST" 1692339 T MAPPAST (NIL) -8 NIL NIL NIL) (-701 1691102 1691166 1691289 "MAPHACK3" 1691433 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-700 1690682 1690755 1690869 "MAPHACK2" 1691034 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-699 1690108 1690223 1690365 "MAPHACK1" 1690573 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-698 1688031 1688808 1689112 "MAGMA" 1689836 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-697 1687450 1687755 1687846 "MACROAST" 1687960 T MACROAST (NIL) -8 NIL NIL NIL) (-696 1683693 1685689 1686150 "M3D" 1687022 NIL M3D (NIL T) -8 NIL NIL NIL) (-695 1677173 1682004 1682045 "LZSTAGG" 1682827 NIL LZSTAGG (NIL T) -9 NIL 1683122 NIL) (-694 1672855 1674304 1675761 "LZSTAGG-" 1675766 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-693 1669768 1670746 1671233 "LWORD" 1672400 NIL LWORD (NIL T) -8 NIL NIL NIL) (-692 1669290 1669572 1669647 "LSTAST" 1669713 T LSTAST (NIL) -8 NIL NIL NIL) (-691 1661218 1669061 1669195 "LSQM" 1669200 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-690 1660436 1660581 1660809 "LSPP" 1661073 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-689 1658218 1658549 1659005 "LSMP" 1660125 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-688 1654955 1655671 1656401 "LSMP1" 1657520 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-687 1648091 1654045 1654086 "LSAGG" 1654148 NIL LSAGG (NIL T) -9 NIL 1654226 NIL) (-686 1644600 1645710 1646923 "LSAGG-" 1646928 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-685 1641895 1643744 1643993 "LPOLY" 1644395 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-684 1641471 1641562 1641685 "LPEFRAC" 1641804 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-683 1639648 1640565 1640818 "LO" 1641303 NIL LO (NIL T T T) -8 NIL NIL NIL) (-682 1639331 1639410 1639438 "LOGIC" 1639549 T LOGIC (NIL) -9 NIL 1639631 NIL) (-681 1639187 1639216 1639287 "LOGIC-" 1639292 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-680 1638362 1638520 1638713 "LODOOPS" 1639043 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-679 1635457 1638278 1638344 "LODO" 1638349 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-678 1633981 1634230 1634583 "LODOF" 1635204 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-677 1629857 1632616 1632657 "LODOCAT" 1633095 NIL LODOCAT (NIL T) -9 NIL 1633306 NIL) (-676 1629572 1629648 1629775 "LODOCAT-" 1629780 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-675 1626558 1629413 1629531 "LODO2" 1629536 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-674 1623665 1626495 1626540 "LODO1" 1626545 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-673 1622534 1622711 1623016 "LODEEF" 1623488 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-672 1617506 1620700 1620741 "LNAGG" 1621603 NIL LNAGG (NIL T) -9 NIL 1622038 NIL) (-671 1616599 1616867 1617209 "LNAGG-" 1617214 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-670 1612579 1613524 1614163 "LMOPS" 1616014 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-669 1611878 1612356 1612397 "LMODULE" 1612402 NIL LMODULE (NIL T) -9 NIL 1612428 NIL) (-668 1608833 1611523 1611646 "LMDICT" 1611788 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-667 1608409 1608623 1608664 "LLINSET" 1608725 NIL LLINSET (NIL T) -9 NIL 1608769 NIL) (-666 1608054 1608317 1608377 "LITERAL" 1608382 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-665 1600508 1606988 1607292 "LIST" 1607783 NIL LIST (NIL T) -8 NIL NIL NIL) (-664 1600027 1600107 1600246 "LIST3" 1600428 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-663 1599016 1599212 1599440 "LIST2" 1599845 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-662 1597114 1597462 1597861 "LIST2MAP" 1598663 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-661 1596697 1596933 1596974 "LINSET" 1596979 NIL LINSET (NIL T) -9 NIL 1597013 NIL) (-660 1595511 1596205 1596372 "LINFORM" 1596582 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-659 1593810 1594538 1594579 "LINEXP" 1595069 NIL LINEXP (NIL T) -9 NIL 1595342 NIL) (-658 1592386 1593290 1593471 "LINELT" 1593681 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-657 1590943 1591223 1591534 "LINDEP" 1592138 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-656 1590079 1590675 1590785 "LINBASIS" 1590873 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-655 1586816 1587565 1588342 "LIMITRF" 1589334 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-654 1585101 1585415 1585824 "LIMITPS" 1586511 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-653 1579121 1584612 1584840 "LIE" 1584922 NIL LIE (NIL T T) -8 NIL NIL NIL) (-652 1577949 1578524 1578564 "LIECAT" 1578704 NIL LIECAT (NIL T) -9 NIL 1578855 NIL) (-651 1577784 1577817 1577905 "LIECAT-" 1577910 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-650 1569971 1577324 1577480 "LIB" 1577648 T LIB (NIL) -8 NIL NIL NIL) (-649 1565540 1566489 1567424 "LGROBP" 1569088 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-648 1563478 1563812 1564162 "LF" 1565261 NIL LF (NIL T T) -7 NIL NIL NIL) (-647 1562102 1563010 1563038 "LFCAT" 1563245 T LFCAT (NIL) -9 NIL 1563384 NIL) (-646 1558962 1559634 1560322 "LEXTRIPK" 1561466 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-645 1555550 1556532 1557035 "LEXP" 1558542 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-644 1554966 1555271 1555363 "LETAST" 1555478 T LETAST (NIL) -8 NIL NIL NIL) (-643 1553352 1553677 1554078 "LEADCDET" 1554648 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-642 1552530 1552616 1552845 "LAZM3PK" 1553273 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-641 1547041 1550607 1551145 "LAUPOL" 1552042 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-640 1546614 1546664 1546825 "LAPLACE" 1546991 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-639 1544351 1545715 1545966 "LA" 1546447 NIL LA (NIL T T T) -8 NIL NIL NIL) (-638 1543199 1543915 1543956 "LALG" 1544018 NIL LALG (NIL T) -9 NIL 1544077 NIL) (-637 1542895 1542972 1543108 "LALG-" 1543113 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-636 1542724 1542754 1542795 "KVTFROM" 1542857 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-635 1541481 1542091 1542276 "KTVLOGIC" 1542559 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-634 1541310 1541340 1541381 "KRCFROM" 1541443 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-633 1540202 1540401 1540700 "KOVACIC" 1541110 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-632 1540031 1540061 1540102 "KONVERT" 1540164 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-631 1539860 1539890 1539931 "KOERCE" 1539993 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-630 1537547 1538453 1538830 "KERNEL" 1539516 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-629 1537031 1537124 1537256 "KERNEL2" 1537461 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-628 1530502 1535508 1535562 "KDAGG" 1535939 NIL KDAGG (NIL T T) -9 NIL 1536145 NIL) (-627 1530013 1530155 1530360 "KDAGG-" 1530365 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-626 1522713 1529674 1529829 "KAFILE" 1529891 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-625 1522317 1522602 1522665 "JVMOP" 1522670 T JVMOP (NIL) -8 NIL NIL NIL) (-624 1521053 1521557 1521806 "JVMMDACC" 1522088 T JVMMDACC (NIL) -8 NIL NIL NIL) (-623 1519989 1520443 1520648 "JVMFDACC" 1520868 T JVMFDACC (NIL) -8 NIL NIL NIL) (-622 1518570 1519065 1519365 "JVMCSTTG" 1519709 T JVMCSTTG (NIL) -8 NIL NIL NIL) (-621 1517706 1518110 1518271 "JVMCFACC" 1518429 T JVMCFACC (NIL) -8 NIL NIL NIL) (-620 1517384 1517623 1517672 "JVMBCODE" 1517677 T JVMBCODE (NIL) -8 NIL NIL NIL) (-619 1511404 1516895 1517123 "JORDAN" 1517205 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1510717 1511053 1511174 "JOINAST" 1511303 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1506752 1508894 1508948 "IXAGG" 1509877 NIL IXAGG (NIL T T) -9 NIL 1510336 NIL) (-616 1505605 1505977 1506396 "IXAGG-" 1506401 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-615 1500694 1505527 1505586 "IVECTOR" 1505591 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-614 1499418 1499697 1499963 "ITUPLE" 1500461 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-613 1497890 1498097 1498392 "ITRIGMNP" 1499240 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-612 1496617 1496839 1497122 "ITFUN3" 1497666 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-611 1496243 1496306 1496415 "ITFUN2" 1496554 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-610 1495348 1495723 1495897 "ITFORM" 1496089 T ITFORM (NIL) -8 NIL NIL NIL) (-609 1493117 1494368 1494646 "ITAYLOR" 1495103 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-608 1481514 1487254 1488417 "ISUPS" 1491987 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-607 1480606 1480758 1480994 "ISUMP" 1481361 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-606 1475456 1480551 1480592 "ISTRING" 1480597 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-605 1474872 1475177 1475269 "ISAST" 1475384 T ISAST (NIL) -8 NIL NIL NIL) (-604 1474069 1474163 1474379 "IRURPK" 1474786 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-603 1472981 1473206 1473446 "IRSN" 1473849 T IRSN (NIL) -7 NIL NIL NIL) (-602 1471026 1471407 1471836 "IRRF2F" 1472619 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-601 1470767 1470811 1470887 "IRREDFFX" 1470982 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-600 1469340 1469641 1469940 "IROOT" 1470500 NIL IROOT (NIL T) -7 NIL NIL NIL) (-599 1465780 1467024 1467716 "IR" 1468680 NIL IR (NIL T) -8 NIL NIL NIL) (-598 1464919 1465273 1465424 "IRFORM" 1465649 T IRFORM (NIL) -8 NIL NIL NIL) (-597 1462508 1463027 1463593 "IR2" 1464397 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-596 1461590 1461721 1461935 "IR2F" 1462391 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-595 1461375 1461415 1461475 "IPRNTPK" 1461550 T IPRNTPK (NIL) -7 NIL NIL NIL) (-594 1457328 1461264 1461333 "IPF" 1461338 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-593 1455349 1457253 1457310 "IPADIC" 1457315 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-592 1454607 1454909 1455039 "IP4ADDR" 1455239 T IP4ADDR (NIL) -8 NIL NIL NIL) (-591 1453945 1454236 1454368 "IOMODE" 1454495 T IOMODE (NIL) -8 NIL NIL NIL) (-590 1452916 1453542 1453669 "IOBFILE" 1453838 T IOBFILE (NIL) -8 NIL NIL NIL) (-589 1452326 1452820 1452848 "IOBCON" 1452853 T IOBCON (NIL) -9 NIL 1452874 NIL) (-588 1451831 1451895 1452078 "INVLAPLA" 1452262 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-587 1441401 1443833 1446219 "INTTR" 1449495 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-586 1437694 1438478 1439343 "INTTOOLS" 1440586 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-585 1437274 1437371 1437488 "INTSLPE" 1437597 T INTSLPE (NIL) -7 NIL NIL NIL) (-584 1434741 1437197 1437256 "INTRVL" 1437261 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-583 1432319 1432855 1433430 "INTRF" 1434226 NIL INTRF (NIL T) -7 NIL NIL NIL) (-582 1431712 1431827 1431969 "INTRET" 1432217 NIL INTRET (NIL T) -7 NIL NIL NIL) (-581 1429685 1430098 1430568 "INTRAT" 1431320 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-580 1426930 1427531 1428150 "INTPM" 1429170 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-579 1423647 1424274 1425012 "INTPAF" 1426316 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-578 1418748 1419788 1420839 "INTPACK" 1422616 T INTPACK (NIL) -7 NIL NIL NIL) (-577 1414936 1418545 1418654 "INT" 1418659 T INT (NIL) -8 NIL NIL NIL) (-576 1414182 1414340 1414548 "INTHERTR" 1414778 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-575 1413615 1413701 1413889 "INTHERAL" 1414096 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-574 1411383 1411904 1412361 "INTHEORY" 1413178 T INTHEORY (NIL) -7 NIL NIL NIL) (-573 1402715 1404410 1406182 "INTG0" 1409735 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-572 1383240 1388078 1392888 "INTFTBL" 1397925 T INTFTBL (NIL) -8 NIL NIL NIL) (-571 1382465 1382627 1382800 "INTFACT" 1383099 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-570 1379862 1380338 1380895 "INTEF" 1382019 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-569 1378059 1378954 1378982 "INTDOM" 1379283 T INTDOM (NIL) -9 NIL 1379490 NIL) (-568 1377398 1377602 1377844 "INTDOM-" 1377849 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-567 1373272 1375687 1375741 "INTCAT" 1376540 NIL INTCAT (NIL T) -9 NIL 1376861 NIL) (-566 1372726 1372847 1372975 "INTBIT" 1373164 T INTBIT (NIL) -7 NIL NIL NIL) (-565 1371407 1371579 1371886 "INTALG" 1372571 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-564 1370884 1370980 1371137 "INTAF" 1371311 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-563 1363851 1370694 1370834 "INTABL" 1370839 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-562 1363088 1363650 1363715 "INT8" 1363749 T INT8 (NIL) -8 NIL NIL 1363794) (-561 1362324 1362886 1362951 "INT64" 1362985 T INT64 (NIL) -8 NIL NIL 1363030) (-560 1361560 1362122 1362187 "INT32" 1362221 T INT32 (NIL) -8 NIL NIL 1362266) (-559 1360796 1361358 1361423 "INT16" 1361457 T INT16 (NIL) -8 NIL NIL 1361502) (-558 1354897 1358344 1358372 "INS" 1359306 T INS (NIL) -9 NIL 1359971 NIL) (-557 1351951 1352908 1353882 "INS-" 1353955 NIL INS- (NIL T) -8 NIL NIL NIL) (-556 1350708 1350953 1351251 "INPSIGN" 1351704 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-555 1349802 1349943 1350140 "INPRODPF" 1350588 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-554 1348672 1348813 1349050 "INPRODFF" 1349682 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-553 1347660 1347824 1348084 "INNMFACT" 1348508 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-552 1346839 1346954 1347142 "INMODGCD" 1347559 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-551 1345323 1345592 1345916 "INFSP" 1346584 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-550 1344483 1344624 1344807 "INFPROD0" 1345203 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-549 1341050 1342548 1343063 "INFORM" 1343976 T INFORM (NIL) -8 NIL NIL NIL) (-548 1340648 1340720 1340818 "INFORM1" 1340985 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-547 1340153 1340260 1340374 "INFINITY" 1340554 T INFINITY (NIL) -7 NIL NIL NIL) (-546 1339227 1339873 1339974 "INETCLTS" 1340072 T INETCLTS (NIL) -8 NIL NIL NIL) (-545 1337825 1338093 1338414 "INEP" 1338975 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-544 1336886 1337722 1337787 "INDE" 1337792 NIL INDE (NIL T) -8 NIL NIL NIL) (-543 1336438 1336518 1336635 "INCRMAPS" 1336813 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-542 1335160 1335707 1335913 "INBFILE" 1336252 T INBFILE (NIL) -8 NIL NIL NIL) (-541 1330339 1331396 1332340 "INBFF" 1334248 NIL INBFF (NIL T) -7 NIL NIL NIL) (-540 1329193 1329516 1329544 "INBCON" 1330057 T INBCON (NIL) -9 NIL 1330323 NIL) (-539 1328403 1328668 1328944 "INBCON-" 1328949 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-538 1327822 1328127 1328218 "INAST" 1328332 T INAST (NIL) -8 NIL NIL NIL) (-537 1327189 1327501 1327607 "IMPTAST" 1327736 T IMPTAST (NIL) -8 NIL NIL NIL) (-536 1323110 1327033 1327137 "IMATRIX" 1327142 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-535 1321802 1321941 1322257 "IMATQF" 1322966 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-534 1319982 1320249 1320586 "IMATLIN" 1321558 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-533 1313897 1319906 1319964 "ILIST" 1319969 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-532 1311563 1313757 1313870 "IIARRAY2" 1313875 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-531 1306363 1311474 1311538 "IFF" 1311543 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-530 1305644 1305980 1306096 "IFAST" 1306267 T IFAST (NIL) -8 NIL NIL NIL) (-529 1300156 1304936 1305124 "IFARRAY" 1305501 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-528 1299194 1300060 1300133 "IFAMON" 1300138 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-527 1298766 1298843 1298897 "IEVALAB" 1299104 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-526 1298429 1298509 1298669 "IEVALAB-" 1298674 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-525 1297810 1298344 1298406 "IDPO" 1298411 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-524 1296874 1297699 1297774 "IDPOAMS" 1297779 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1296007 1296763 1296838 "IDPOAM" 1296843 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1294487 1295014 1295066 "IDPC" 1295578 NIL IDPC (NIL T T) -9 NIL 1295859 NIL) (-521 1293819 1294379 1294452 "IDPAM" 1294457 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-520 1293034 1293711 1293784 "IDPAG" 1293789 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-519 1292578 1292840 1292930 "IDENT" 1292964 T IDENT (NIL) -8 NIL NIL NIL) (-518 1288797 1289681 1290576 "IDECOMP" 1291735 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-517 1281432 1282720 1283767 "IDEAL" 1287833 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-516 1280574 1280704 1280904 "ICDEN" 1281316 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-515 1279549 1280054 1280201 "ICARD" 1280447 T ICARD (NIL) -8 NIL NIL NIL) (-514 1277579 1277922 1278327 "IBPTOOLS" 1279226 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-513 1272694 1277199 1277312 "IBITS" 1277498 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-512 1269369 1269993 1270688 "IBATOOL" 1272111 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-511 1267130 1267610 1268143 "IBACHIN" 1268904 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-510 1264720 1266976 1267079 "IARRAY2" 1267084 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-509 1260433 1264646 1264703 "IARRAY1" 1264708 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-508 1253443 1258845 1259326 "IAN" 1259972 T IAN (NIL) -8 NIL NIL NIL) (-507 1252948 1253011 1253184 "IALGFACT" 1253380 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-506 1252440 1252589 1252617 "HYPCAT" 1252824 T HYPCAT (NIL) -9 NIL NIL NIL) (-505 1251942 1252095 1252281 "HYPCAT-" 1252286 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-504 1251489 1251737 1251820 "HOSTNAME" 1251879 T HOSTNAME (NIL) -8 NIL NIL NIL) (-503 1251322 1251371 1251412 "HOMOTOP" 1251417 NIL HOMOTOP (NIL T) -9 NIL 1251450 NIL) (-502 1247755 1249254 1249295 "HOAGG" 1250276 NIL HOAGG (NIL T) -9 NIL 1251005 NIL) (-501 1246271 1246748 1247274 "HOAGG-" 1247279 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-500 1239307 1245864 1246014 "HEXADEC" 1246141 T HEXADEC (NIL) -8 NIL NIL NIL) (-499 1238019 1238277 1238540 "HEUGCD" 1239084 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-498 1236951 1237856 1237986 "HELLFDIV" 1237991 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-497 1234961 1236728 1236816 "HEAP" 1236895 NIL HEAP (NIL T) -8 NIL NIL NIL) (-496 1234158 1234513 1234647 "HEADAST" 1234847 T HEADAST (NIL) -8 NIL NIL NIL) (-495 1227545 1234073 1234135 "HDP" 1234140 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-494 1220557 1227180 1227332 "HDMP" 1227446 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-493 1219863 1220021 1220185 "HB" 1220413 T HB (NIL) -7 NIL NIL NIL) (-492 1212873 1219709 1219813 "HASHTBL" 1219818 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-491 1212289 1212594 1212686 "HASAST" 1212801 T HASAST (NIL) -8 NIL NIL NIL) (-490 1209695 1211911 1212093 "HACKPI" 1212127 T HACKPI (NIL) -8 NIL NIL NIL) (-489 1204867 1209548 1209661 "GTSET" 1209666 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-488 1197906 1204745 1204843 "GSTBL" 1204848 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-487 1189655 1197071 1197327 "GSERIES" 1197706 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-486 1188686 1189199 1189227 "GROUP" 1189430 T GROUP (NIL) -9 NIL 1189564 NIL) (-485 1188010 1188211 1188462 "GROUP-" 1188467 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-484 1186359 1186698 1187085 "GROEBSOL" 1187687 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-483 1185187 1185547 1185598 "GRMOD" 1186127 NIL GRMOD (NIL T T) -9 NIL 1186295 NIL) (-482 1184943 1184991 1185119 "GRMOD-" 1185124 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-481 1180083 1181297 1182297 "GRIMAGE" 1183963 T GRIMAGE (NIL) -8 NIL NIL NIL) (-480 1178477 1178810 1179134 "GRDEF" 1179779 T GRDEF (NIL) -7 NIL NIL NIL) (-479 1177909 1178037 1178178 "GRAY" 1178356 T GRAY (NIL) -7 NIL NIL NIL) (-478 1176986 1177488 1177539 "GRALG" 1177692 NIL GRALG (NIL T T) -9 NIL 1177785 NIL) (-477 1176623 1176720 1176883 "GRALG-" 1176888 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-476 1173104 1176206 1176385 "GPOLSET" 1176529 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-475 1172452 1172515 1172773 "GOSPER" 1173041 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-474 1168022 1168890 1169416 "GMODPOL" 1172151 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-473 1167009 1167211 1167449 "GHENSEL" 1167834 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-472 1161081 1162008 1163028 "GENUPS" 1166093 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-471 1160772 1160829 1160918 "GENUFACT" 1161024 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-470 1160172 1160261 1160426 "GENPGCD" 1160690 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-469 1159640 1159681 1159894 "GENMFACT" 1160131 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-468 1158176 1158463 1158770 "GENEEZ" 1159383 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-467 1151348 1157787 1157949 "GDMP" 1158099 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-466 1140087 1145119 1146225 "GCNAALG" 1150331 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-465 1138214 1139262 1139290 "GCDDOM" 1139545 T GCDDOM (NIL) -9 NIL 1139702 NIL) (-464 1137654 1137811 1138026 "GCDDOM-" 1138031 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-463 1136304 1136511 1136815 "GB" 1137433 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-462 1124776 1127250 1129642 "GBINTERN" 1133995 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1122577 1122905 1123326 "GBF" 1124451 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1121334 1121523 1121790 "GBEUCLID" 1122393 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1120665 1120808 1120957 "GAUSSFAC" 1121205 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-458 1118986 1119334 1119648 "GALUTIL" 1120384 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-457 1117246 1117568 1117892 "GALPOLYU" 1118713 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-456 1114545 1114901 1115308 "GALFACTU" 1116943 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-455 1106159 1107850 1109458 "GALFACT" 1112977 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-454 1103445 1104205 1104233 "FVFUN" 1105389 T FVFUN (NIL) -9 NIL 1106109 NIL) (-453 1102675 1102893 1102921 "FVC" 1103212 T FVC (NIL) -9 NIL 1103395 NIL) (-452 1102276 1102500 1102568 "FUNDESC" 1102627 T FUNDESC (NIL) -8 NIL NIL NIL) (-451 1101849 1102073 1102154 "FUNCTION" 1102228 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-450 1099479 1100171 1100637 "FT" 1101403 T FT (NIL) -8 NIL NIL NIL) (-449 1098156 1098780 1098983 "FTEM" 1099296 T FTEM (NIL) -8 NIL NIL NIL) (-448 1096425 1096736 1097133 "FSUPFACT" 1097847 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-447 1094744 1095111 1095443 "FST" 1096113 T FST (NIL) -8 NIL NIL NIL) (-446 1093925 1094049 1094237 "FSRED" 1094626 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-445 1092614 1092880 1093227 "FSPRMELT" 1093640 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-444 1089824 1090358 1090844 "FSPECF" 1092177 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-443 1070051 1079598 1079639 "FS" 1083523 NIL FS (NIL T) -9 NIL 1085812 NIL) (-442 1058112 1061687 1065744 "FS-" 1066044 NIL FS- (NIL T T) -8 NIL NIL NIL) (-441 1057634 1057694 1057864 "FSINT" 1058053 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-440 1055770 1056627 1056930 "FSERIES" 1057413 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-439 1054794 1054928 1055152 "FSCINT" 1055650 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-438 1050658 1053738 1053779 "FSAGG" 1054149 NIL FSAGG (NIL T) -9 NIL 1054408 NIL) (-437 1048258 1049021 1049817 "FSAGG-" 1049912 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-436 1047282 1047443 1047670 "FSAGG2" 1048111 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-435 1044942 1045240 1045788 "FS2UPS" 1047000 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-434 1044570 1044619 1044748 "FS2" 1044893 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 1043436 1043619 1043921 "FS2EXPXP" 1044395 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-432 1042850 1042977 1043129 "FRUTIL" 1043316 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-431 1033767 1038345 1039703 "FR" 1041524 NIL FR (NIL T) -8 NIL NIL NIL) (-430 1028285 1031456 1031496 "FRNAALG" 1032816 NIL FRNAALG (NIL T) -9 NIL 1033414 NIL) (-429 1023766 1025034 1026309 "FRNAALG-" 1027059 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-428 1023398 1023447 1023574 "FRNAAF2" 1023717 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 1021685 1022247 1022543 "FRMOD" 1023210 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 1019290 1020060 1020378 "FRIDEAL" 1021476 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-425 1018475 1018568 1018859 "FRIDEAL2" 1019197 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-424 1017566 1018022 1018063 "FRETRCT" 1018068 NIL FRETRCT (NIL T) -9 NIL 1018244 NIL) (-423 1016624 1016909 1017260 "FRETRCT-" 1017265 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-422 1013438 1014908 1014967 "FRAMALG" 1015849 NIL FRAMALG (NIL T T) -9 NIL 1016141 NIL) (-421 1011476 1012027 1012657 "FRAMALG-" 1012880 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-420 1004447 1010949 1011226 "FRAC" 1011231 NIL FRAC (NIL T) -8 NIL NIL NIL) (-419 1004077 1004140 1004247 "FRAC2" 1004384 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-418 1003707 1003770 1003877 "FR2" 1004014 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 997624 1001086 1001114 "FPS" 1002233 T FPS (NIL) -9 NIL 1002790 NIL) (-416 997049 997182 997346 "FPS-" 997492 NIL FPS- (NIL T) -8 NIL NIL NIL) (-415 994001 996006 996034 "FPC" 996259 T FPC (NIL) -9 NIL 996401 NIL) (-414 993782 993834 993931 "FPC-" 993936 NIL FPC- (NIL T) -8 NIL NIL NIL) (-413 992540 993270 993311 "FPATMAB" 993316 NIL FPATMAB (NIL T) -9 NIL 993468 NIL) (-412 990683 991282 991629 "FPARFRAC" 992256 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-411 985975 986575 987257 "FORTRAN" 990115 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-410 983661 984191 984730 "FORT" 985456 T FORT (NIL) -7 NIL NIL NIL) (-409 981235 981899 981927 "FORTFN" 982987 T FORTFN (NIL) -9 NIL 983611 NIL) (-408 980987 981049 981077 "FORTCAT" 981136 T FORTCAT (NIL) -9 NIL 981198 NIL) (-407 978991 979603 979993 "FORMULA" 980617 T FORMULA (NIL) -8 NIL NIL NIL) (-406 978773 978809 978878 "FORMULA1" 978955 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-405 978290 978348 978521 "FORDER" 978715 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-404 977350 977550 977743 "FOP" 978117 T FOP (NIL) -7 NIL NIL NIL) (-403 975763 976630 976804 "FNLA" 977232 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-402 974382 974893 974921 "FNCAT" 975381 T FNCAT (NIL) -9 NIL 975641 NIL) (-401 973825 974341 974369 "FNAME" 974374 T FNAME (NIL) -8 NIL NIL NIL) (-400 972151 973324 973352 "FMTC" 973357 T FMTC (NIL) -9 NIL 973393 NIL) (-399 970699 972087 972133 "FMONOID" 972138 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-398 967288 968654 968695 "FMONCAT" 969912 NIL FMONCAT (NIL T) -9 NIL 970517 NIL) (-397 966306 967030 967179 "FM" 967184 NIL FM (NIL T T) -8 NIL NIL NIL) (-396 963628 964376 964404 "FMFUN" 965548 T FMFUN (NIL) -9 NIL 966256 NIL) (-395 962861 963078 963106 "FMC" 963396 T FMC (NIL) -9 NIL 963578 NIL) (-394 959734 960786 960840 "FMCAT" 962035 NIL FMCAT (NIL T T) -9 NIL 962530 NIL) (-393 958402 959500 959600 "FM1" 959679 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-392 956140 956592 957086 "FLOATRP" 957953 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-391 948796 953869 954490 "FLOAT" 955539 T FLOAT (NIL) -8 NIL NIL NIL) (-390 946198 946734 947312 "FLOATCP" 948263 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-389 944716 945790 945831 "FLINEXP" 945836 NIL FLINEXP (NIL T) -9 NIL 945929 NIL) (-388 943846 944105 944433 "FLINEXP-" 944438 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-387 942904 943066 943290 "FLASORT" 943698 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-386 939822 940874 940926 "FLALG" 942153 NIL FLALG (NIL T T) -9 NIL 942620 NIL) (-385 933086 937231 937272 "FLAGG" 938534 NIL FLAGG (NIL T) -9 NIL 939186 NIL) (-384 931740 932151 932641 "FLAGG-" 932646 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 930764 930925 931152 "FLAGG2" 931593 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-382 927395 928609 928668 "FINRALG" 929796 NIL FINRALG (NIL T T) -9 NIL 930304 NIL) (-381 926519 926784 927123 "FINRALG-" 927128 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-380 925825 926124 926152 "FINITE" 926348 T FINITE (NIL) -9 NIL 926455 NIL) (-379 917776 920355 920395 "FINAALG" 924062 NIL FINAALG (NIL T) -9 NIL 925515 NIL) (-378 912892 914158 915302 "FINAALG-" 916681 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-377 912170 912647 912750 "FILE" 912822 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 910730 911152 911206 "FILECAT" 911890 NIL FILECAT (NIL T T) -9 NIL 912106 NIL) (-375 908126 909960 909988 "FIELD" 910028 T FIELD (NIL) -9 NIL 910108 NIL) (-374 906668 907131 907642 "FIELD-" 907647 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-373 904350 905303 905650 "FGROUP" 906354 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-372 903422 903604 903824 "FGLMICPK" 904182 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-371 898656 903347 903404 "FFX" 903409 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-370 898251 898318 898453 "FFSLPE" 898589 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-369 894127 895023 895819 "FFPOLY" 897487 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 893625 893667 893876 "FFPOLY2" 894085 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-367 888873 893544 893607 "FFP" 893612 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-366 883673 888784 888848 "FF" 888853 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-365 878183 883016 883206 "FFNBX" 883527 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-364 872495 877318 877576 "FFNBP" 878037 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-363 866512 871779 871990 "FFNB" 872328 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-362 865332 865542 865857 "FFINTBAS" 866309 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-361 860908 863579 863607 "FFIELDC" 864227 T FFIELDC (NIL) -9 NIL 864603 NIL) (-360 859486 859941 860438 "FFIELDC-" 860443 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-359 859043 859101 859225 "FFHOM" 859428 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-358 856702 857225 857742 "FFF" 858558 NIL FFF (NIL T) -7 NIL NIL NIL) (-357 851716 856444 856545 "FFCGX" 856645 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-356 846734 851448 851555 "FFCGP" 851659 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-355 841313 846461 846569 "FFCG" 846670 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-354 819976 831045 831131 "FFCAT" 836296 NIL FFCAT (NIL T T T) -9 NIL 837747 NIL) (-353 814987 816221 817535 "FFCAT-" 818765 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-352 814392 814441 814676 "FFCAT2" 814938 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-351 803045 807364 808584 "FEXPR" 813244 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-350 801973 802442 802483 "FEVALAB" 802567 NIL FEVALAB (NIL T) -9 NIL 802828 NIL) (-349 801090 801342 801680 "FEVALAB-" 801685 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-348 799500 800473 800676 "FDIV" 800989 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-347 796362 797247 797362 "FDIVCAT" 798930 NIL FDIVCAT (NIL T T T T) -9 NIL 799367 NIL) (-346 796118 796151 796321 "FDIVCAT-" 796326 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-345 795332 795425 795702 "FDIV2" 796025 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 794240 794627 794829 "FCTRDATA" 795150 T FCTRDATA (NIL) -8 NIL NIL NIL) (-343 792896 793185 793474 "FCPAK1" 793971 T FCPAK1 (NIL) -7 NIL NIL NIL) (-342 791899 792396 792537 "FCOMP" 792787 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-341 775214 779049 782587 "FC" 788381 T FC (NIL) -8 NIL NIL NIL) (-340 766909 771535 771575 "FAXF" 773377 NIL FAXF (NIL T) -9 NIL 774069 NIL) (-339 764030 764843 765668 "FAXF-" 766133 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-338 758599 763406 763582 "FARRAY" 763887 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-337 753163 755546 755599 "FAMR" 756622 NIL FAMR (NIL T T) -9 NIL 757082 NIL) (-336 751987 752355 752790 "FAMR-" 752795 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-335 751014 751909 751962 "FAMONOID" 751967 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-334 748644 749496 749549 "FAMONC" 750490 NIL FAMONC (NIL T T) -9 NIL 750876 NIL) (-333 747118 748398 748535 "FAGROUP" 748540 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-332 744871 745232 745635 "FACUTIL" 746799 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-331 743958 744155 744377 "FACTFUNC" 744681 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-330 735716 743261 743460 "EXPUPXS" 743814 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-329 733169 733739 734325 "EXPRTUBE" 735150 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-328 729380 730032 730762 "EXPRODE" 732508 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-327 713674 728029 728458 "EXPR" 728984 NIL EXPR (NIL T) -8 NIL NIL NIL) (-326 708108 708815 709621 "EXPR2UPS" 712972 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-325 707734 707797 707906 "EXPR2" 708045 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-324 698051 706885 707176 "EXPEXPAN" 707570 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-323 697815 698008 698037 "EXIT" 698042 T EXIT (NIL) -8 NIL NIL NIL) (-322 697235 697539 697630 "EXITAST" 697744 T EXITAST (NIL) -8 NIL NIL NIL) (-321 696856 696924 697037 "EVALCYC" 697167 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-320 696373 696515 696556 "EVALAB" 696726 NIL EVALAB (NIL T) -9 NIL 696830 NIL) (-319 695830 695976 696197 "EVALAB-" 696202 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-318 692938 694486 694514 "EUCDOM" 695069 T EUCDOM (NIL) -9 NIL 695419 NIL) (-317 691277 691785 692375 "EUCDOM-" 692380 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-316 678594 681575 684325 "ESTOOLS" 688547 T ESTOOLS (NIL) -7 NIL NIL NIL) (-315 678220 678283 678392 "ESTOOLS2" 678531 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-314 677965 678013 678093 "ESTOOLS1" 678172 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-313 671666 673596 673624 "ES" 676392 T ES (NIL) -9 NIL 677802 NIL) (-312 666343 667900 669717 "ES-" 669881 NIL ES- (NIL T) -8 NIL NIL NIL) (-311 662651 663478 664258 "ESCONT" 665583 T ESCONT (NIL) -7 NIL NIL NIL) (-310 662390 662428 662510 "ESCONT1" 662613 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-309 662059 662115 662215 "ES2" 662334 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-308 661683 661747 661856 "ES1" 661995 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-307 660875 661028 661204 "ERROR" 661527 T ERROR (NIL) -7 NIL NIL NIL) (-306 653891 660734 660825 "EQTBL" 660830 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-305 646150 649205 650654 "EQ" 652475 NIL -1544 (NIL T) -8 NIL NIL NIL) (-304 645776 645839 645948 "EQ2" 646087 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-303 641019 642114 643207 "EP" 644715 NIL EP (NIL T) -7 NIL NIL NIL) (-302 639559 639910 640216 "ENV" 640733 T ENV (NIL) -8 NIL NIL NIL) (-301 638519 639193 639221 "ENTIRER" 639226 T ENTIRER (NIL) -9 NIL 639272 NIL) (-300 634931 636701 637062 "EMR" 638327 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-299 634035 634246 634300 "ELTAGG" 634680 NIL ELTAGG (NIL T T) -9 NIL 634891 NIL) (-298 633742 633816 633957 "ELTAGG-" 633962 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-297 633500 633535 633589 "ELTAB" 633673 NIL ELTAB (NIL T T) -9 NIL 633725 NIL) (-296 632602 632772 632971 "ELFUTS" 633351 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-295 632326 632400 632428 "ELEMFUN" 632533 T ELEMFUN (NIL) -9 NIL NIL NIL) (-294 632190 632217 632285 "ELEMFUN-" 632290 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-293 626607 630232 630273 "ELAGG" 631213 NIL ELAGG (NIL T) -9 NIL 631676 NIL) (-292 624784 625326 625989 "ELAGG-" 625994 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-291 624066 624233 624389 "ELABOR" 624648 T ELABOR (NIL) -8 NIL NIL NIL) (-290 622673 623006 623300 "ELABEXPR" 623792 T ELABEXPR (NIL) -8 NIL NIL NIL) (-289 615185 617310 618139 "EFUPXS" 621948 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-288 608311 610434 611245 "EFULS" 614460 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-287 605748 606154 606626 "EFSTRUC" 607943 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-286 595185 597105 598653 "EF" 604263 NIL EF (NIL T T) -7 NIL NIL NIL) (-285 594163 594670 594819 "EAB" 595056 T EAB (NIL) -8 NIL NIL NIL) (-284 593285 594122 594150 "E04UCFA" 594155 T E04UCFA (NIL) -8 NIL NIL NIL) (-283 592407 593244 593272 "E04NAFA" 593277 T E04NAFA (NIL) -8 NIL NIL NIL) (-282 591529 592366 592394 "E04MBFA" 592399 T E04MBFA (NIL) -8 NIL NIL NIL) (-281 590651 591488 591516 "E04JAFA" 591521 T E04JAFA (NIL) -8 NIL NIL NIL) (-280 589775 590610 590638 "E04GCFA" 590643 T E04GCFA (NIL) -8 NIL NIL NIL) (-279 588899 589734 589762 "E04FDFA" 589767 T E04FDFA (NIL) -8 NIL NIL NIL) (-278 588021 588858 588886 "E04DGFA" 588891 T E04DGFA (NIL) -8 NIL NIL NIL) (-277 582098 583546 584910 "E04AGNT" 586677 T E04AGNT (NIL) -7 NIL NIL NIL) (-276 580718 581399 581439 "DVARCAT" 581780 NIL DVARCAT (NIL T) -9 NIL 581943 NIL) (-275 579868 580134 580448 "DVARCAT-" 580453 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-274 571829 579667 579796 "DSMP" 579801 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-273 570180 570971 571012 "DSEXT" 571375 NIL DSEXT (NIL T) -9 NIL 571669 NIL) (-272 568369 568893 569559 "DSEXT-" 569564 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-271 562952 564314 565382 "DROPT" 567321 T DROPT (NIL) -8 NIL NIL NIL) (-270 562611 562676 562774 "DROPT1" 562887 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-269 557630 558852 559989 "DROPT0" 561494 T DROPT0 (NIL) -7 NIL NIL NIL) (-268 555939 556300 556686 "DRAWPT" 557264 T DRAWPT (NIL) -7 NIL NIL NIL) (-267 550430 551449 552528 "DRAW" 554913 NIL DRAW (NIL T) -7 NIL NIL NIL) (-266 550057 550116 550234 "DRAWHACK" 550371 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-265 548758 549057 549348 "DRAWCX" 549786 T DRAWCX (NIL) -7 NIL NIL NIL) (-264 548267 548342 548493 "DRAWCURV" 548684 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-263 538585 540697 542812 "DRAWCFUN" 546172 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-262 535056 537250 537291 "DQAGG" 537920 NIL DQAGG (NIL T) -9 NIL 538194 NIL) (-261 521639 529267 529350 "DPOLCAT" 531202 NIL DPOLCAT (NIL T T T T) -9 NIL 531747 NIL) (-260 516158 517824 519782 "DPOLCAT-" 519787 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-259 509015 516019 516117 "DPMO" 516122 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-258 501769 508795 508962 "DPMM" 508967 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-257 501291 501553 501642 "DOMTMPLT" 501700 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-256 500640 501093 501173 "DOMCTOR" 501231 T DOMCTOR (NIL) -8 NIL NIL NIL) (-255 499792 500120 500271 "DOMAIN" 500509 T DOMAIN (NIL) -8 NIL NIL NIL) (-254 492804 499427 499579 "DMP" 499693 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-253 490581 491871 491912 "DMEXT" 491917 NIL DMEXT (NIL T) -9 NIL 492093 NIL) (-252 490175 490237 490381 "DLP" 490519 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 483298 489502 489692 "DLIST" 490017 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 479836 482123 482164 "DLAGG" 482714 NIL DLAGG (NIL T) -9 NIL 482944 NIL) (-249 478348 479162 479190 "DIVRING" 479282 T DIVRING (NIL) -9 NIL 479365 NIL) (-248 477531 477775 478075 "DIVRING-" 478080 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 475573 475990 476396 "DISPLAY" 477145 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 468980 475487 475550 "DIRPROD" 475555 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 467810 468031 468296 "DIRPROD2" 468773 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 456029 462521 462574 "DIRPCAT" 462832 NIL DIRPCAT (NIL NIL T) -9 NIL 463707 NIL) (-243 453229 453997 454878 "DIRPCAT-" 455215 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 452510 452676 452862 "DIOSP" 453063 T DIOSP (NIL) -7 NIL NIL NIL) (-241 448924 451394 451435 "DIOPS" 451869 NIL DIOPS (NIL T) -9 NIL 452098 NIL) (-240 448443 448587 448778 "DIOPS-" 448783 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 447350 448122 448150 "DIFRING" 448155 T DIFRING (NIL) -9 NIL 448177 NIL) (-238 446998 447096 447124 "DIFFSPC" 447243 T DIFFSPC (NIL) -9 NIL 447318 NIL) (-237 446619 446721 446873 "DIFFSPC-" 446878 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 445555 446153 446194 "DIFFMOD" 446199 NIL DIFFMOD (NIL T) -9 NIL 446297 NIL) (-235 445251 445308 445349 "DIFFDOM" 445470 NIL DIFFDOM (NIL T) -9 NIL 445538 NIL) (-234 445098 445128 445212 "DIFFDOM-" 445217 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 442838 444302 444343 "DIFEXT" 444348 NIL DIFEXT (NIL T) -9 NIL 444501 NIL) (-232 439872 442342 442383 "DIAGG" 442388 NIL DIAGG (NIL T) -9 NIL 442408 NIL) (-231 439220 439413 439665 "DIAGG-" 439670 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-230 434070 438179 438456 "DHMATRIX" 438989 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-229 429538 430591 431601 "DFSFUN" 433080 T DFSFUN (NIL) -7 NIL NIL NIL) (-228 423772 428469 428781 "DFLOAT" 429246 T DFLOAT (NIL) -8 NIL NIL NIL) (-227 422011 422316 422705 "DFINTTLS" 423480 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-226 418830 420032 420432 "DERHAM" 421677 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-225 416366 418605 418694 "DEQUEUE" 418774 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-224 415608 415753 415936 "DEGRED" 416228 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-223 412014 412783 413629 "DEFINTRF" 414836 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-222 409551 410038 410630 "DEFINTEF" 411533 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-221 408835 409171 409286 "DEFAST" 409456 T DEFAST (NIL) -8 NIL NIL NIL) (-220 401871 408428 408578 "DECIMAL" 408705 T DECIMAL (NIL) -8 NIL NIL NIL) (-219 399329 399841 400347 "DDFACT" 401415 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-218 398919 398968 399119 "DBLRESP" 399280 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-217 398120 398689 398780 "DBASIS" 398868 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-216 395904 396350 396711 "DBASE" 397886 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 395092 395384 395530 "DATAARY" 395803 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 394150 395051 395079 "D03FAFA" 395084 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 393209 394109 394137 "D03EEFA" 394142 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 391135 391625 392114 "D03AGNT" 392740 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 390376 391094 391122 "D02EJFA" 391127 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 389617 390335 390363 "D02CJFA" 390368 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 388858 389576 389604 "D02BHFA" 389609 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 388099 388817 388845 "D02BBFA" 388850 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 381230 382885 384491 "D02AGNT" 386513 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 378980 379521 380067 "D01WGTS" 380704 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 377987 378939 378967 "D01TRNS" 378972 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 376995 377946 377974 "D01GBFA" 377979 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 376003 376954 376982 "D01FCFA" 376987 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 375011 375962 375990 "D01ASFA" 375995 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 374019 374970 374998 "D01AQFA" 375003 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 373027 373978 374006 "D01APFA" 374011 T D01APFA (NIL) -8 NIL NIL NIL) (-199 372035 372986 373014 "D01ANFA" 373019 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 371043 371994 372022 "D01AMFA" 372027 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 370051 371002 371030 "D01ALFA" 371035 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 369059 370010 370038 "D01AKFA" 370043 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 368067 369018 369046 "D01AJFA" 369051 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 361290 362915 364476 "D01AGNT" 366526 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 360609 360755 360907 "CYCLOTOM" 361158 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 357264 358057 358784 "CYCLES" 359902 T CYCLES (NIL) -7 NIL NIL NIL) (-191 356564 356710 356881 "CVMP" 357125 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 354351 354663 355032 "CTRIGMNP" 356292 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 353709 354145 354218 "CTOR" 354298 T CTOR (NIL) -8 NIL NIL NIL) (-188 353182 353440 353541 "CTORKIND" 353628 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 352387 352775 352803 "CTORCAT" 352985 T CTORCAT (NIL) -9 NIL 353098 NIL) (-186 351961 352096 352255 "CTORCAT-" 352260 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 351375 351635 351743 "CTORCALL" 351885 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 350731 350848 351001 "CSTTOOLS" 351272 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 346428 347187 347945 "CRFP" 350043 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 345843 346149 346241 "CRCEAST" 346356 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 344866 345075 345303 "CRAPACK" 345647 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 344246 344351 344555 "CPMATCH" 344742 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 343965 343999 344105 "CPIMA" 344212 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 340223 340985 341704 "COORDSYS" 343300 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 339611 339756 339898 "CONTOUR" 340101 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 335076 337614 338106 "CONTFRAC" 339151 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 334950 334977 335005 "CONDUIT" 335042 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 333904 334578 334606 "COMRING" 334611 T COMRING (NIL) -9 NIL 334663 NIL) (-173 332886 333262 333446 "COMPPROP" 333740 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 332541 332582 332710 "COMPLPAT" 332845 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 320924 332350 332459 "COMPLEX" 332464 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 320554 320617 320724 "COMPLEX2" 320861 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 319875 320014 320174 "COMPILER" 320414 T COMPILER (NIL) -8 NIL NIL NIL) (-168 319587 319628 319726 "COMPFACT" 319834 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 300962 313291 313331 "COMPCAT" 314335 NIL COMPCAT (NIL T) -9 NIL 315683 NIL) (-166 289850 293401 297028 "COMPCAT-" 297384 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 289573 289607 289710 "COMMUPC" 289816 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 289361 289401 289460 "COMMONOP" 289534 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 288869 289112 289199 "COMM" 289294 T COMM (NIL) -8 NIL NIL NIL) (-162 288391 288673 288748 "COMMAAST" 288814 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 287586 287834 287862 "COMBOPC" 288200 T COMBOPC (NIL) -9 NIL 288375 NIL) (-160 286440 286692 286934 "COMBINAT" 287376 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 282783 283471 284098 "COMBF" 285862 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 281445 281899 282134 "COLOR" 282568 T COLOR (NIL) -8 NIL NIL NIL) (-157 280861 281166 281258 "COLONAST" 281373 T COLONAST (NIL) -8 NIL NIL NIL) (-156 280495 280548 280673 "CMPLXRT" 280808 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 279883 280195 280294 "CLLCTAST" 280416 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 275343 276413 277493 "CLIP" 278823 T CLIP (NIL) -7 NIL NIL NIL) (-153 273516 274444 274684 "CLIF" 275170 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 269498 271634 271675 "CLAGG" 272604 NIL CLAGG (NIL T) -9 NIL 273140 NIL) (-151 267842 268377 268960 "CLAGG-" 268965 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 267380 267471 267611 "CINTSLPE" 267751 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 264845 265352 265900 "CHVAR" 266908 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 263885 264559 264587 "CHARZ" 264592 T CHARZ (NIL) -9 NIL 264607 NIL) (-147 263633 263679 263757 "CHARPOL" 263839 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 262551 263264 263292 "CHARNZ" 263339 T CHARNZ (NIL) -9 NIL 263395 NIL) (-145 260295 261205 261558 "CHAR" 262218 T CHAR (NIL) -8 NIL NIL NIL) (-144 260003 260082 260110 "CFCAT" 260221 T CFCAT (NIL) -9 NIL NIL NIL) (-143 259226 259355 259538 "CDEN" 259887 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 254823 258379 258659 "CCLASS" 258966 T CCLASS (NIL) -8 NIL NIL NIL) (-141 254044 254231 254408 "CATEGORY" 254666 T -10 (NIL) -8 NIL NIL NIL) (-140 253539 253963 254011 "CATCTOR" 254016 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 252930 253242 253340 "CATAST" 253461 T CATAST (NIL) -8 NIL NIL NIL) (-138 252346 252651 252743 "CASEAST" 252858 T CASEAST (NIL) -8 NIL NIL NIL) (-137 247244 248503 249247 "CARTEN" 251658 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 246340 246500 246721 "CARTEN2" 247091 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 244470 245490 245747 "CARD" 246103 T CARD (NIL) -8 NIL NIL NIL) (-134 243992 244274 244349 "CAPSLAST" 244415 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 243434 243690 243718 "CACHSET" 243850 T CACHSET (NIL) -9 NIL 243928 NIL) (-132 242824 243212 243240 "CABMON" 243290 T CABMON (NIL) -9 NIL 243346 NIL) (-131 242261 242528 242638 "BYTEORD" 242734 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 241019 241776 241925 "BYTE" 242088 T BYTE (NIL) -8 NIL NIL 242217) (-129 235946 240524 240696 "BYTEBUF" 240867 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 233208 235638 235745 "BTREE" 235872 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 230410 232856 232978 "BTOURN" 233118 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 227517 229852 229893 "BTCAT" 229961 NIL BTCAT (NIL T) -9 NIL 230038 NIL) (-125 227166 227264 227413 "BTCAT-" 227418 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 222058 226412 226440 "BTAGG" 226554 T BTAGG (NIL) -9 NIL 226664 NIL) (-123 221512 221673 221879 "BTAGG-" 221884 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 218248 220790 221005 "BSTREE" 221329 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 217356 217512 217696 "BRILL" 218104 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 213751 216054 216095 "BRAGG" 216744 NIL BRAGG (NIL T) -9 NIL 217002 NIL) (-119 212184 212686 213241 "BRAGG-" 213246 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 204420 211528 211713 "BPADICRT" 212031 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 202429 204357 204402 "BPADIC" 204407 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 202121 202157 202271 "BOUNDZRO" 202393 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 197103 198547 199459 "BOP" 201229 T BOP (NIL) -8 NIL NIL NIL) (-114 194830 195288 195763 "BOP1" 196661 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 194423 194580 194608 "BOOLE" 194719 T BOOLE (NIL) -9 NIL 194800 NIL) (-112 193088 194011 194153 "BOOLEAN" 194301 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 192257 192757 192811 "BMODULE" 192816 NIL BMODULE (NIL T T) -9 NIL 192881 NIL) (-110 187578 192055 192128 "BITS" 192204 T BITS (NIL) -8 NIL NIL NIL) (-109 186975 187118 187258 "BINDING" 187458 T BINDING (NIL) -8 NIL NIL NIL) (-108 180014 186570 186719 "BINARY" 186846 T BINARY (NIL) -8 NIL NIL NIL) (-107 177621 179241 179282 "BGAGG" 179542 NIL BGAGG (NIL T) -9 NIL 179679 NIL) (-106 177446 177484 177575 "BGAGG-" 177580 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 176469 176830 177035 "BFUNCT" 177261 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 175139 175337 175625 "BEZOUT" 176293 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 171337 173991 174321 "BBTREE" 174842 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 170920 171016 171044 "BASTYPE" 171221 T BASTYPE (NIL) -9 NIL 171320 NIL) (-101 170578 170677 170812 "BASTYPE-" 170817 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 170000 170088 170240 "BALFACT" 170489 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 168736 169415 169601 "AUTOMOR" 169845 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 168462 168467 168493 "ATTREG" 168498 T ATTREG (NIL) -9 NIL NIL NIL) (-97 166624 167159 167511 "ATTRBUT" 168128 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 166178 166452 166518 "ATTRAST" 166576 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 165678 165827 165853 "ATRIG" 166054 T ATRIG (NIL) -9 NIL NIL NIL) (-94 165475 165528 165615 "ATRIG-" 165620 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 165058 165292 165318 "ASTCAT" 165323 T ASTCAT (NIL) -9 NIL 165353 NIL) (-92 164767 164844 164963 "ASTCAT-" 164968 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 162741 164543 164631 "ASTACK" 164710 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 161230 161543 161908 "ASSOCEQ" 162423 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 160154 160889 161013 "ASP9" 161137 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 159881 160102 160141 "ASP8" 160146 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 158641 159486 159628 "ASP80" 159770 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 157431 158276 158408 "ASP7" 158540 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 156277 157108 157226 "ASP78" 157344 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 155138 155957 156074 "ASP77" 156191 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 153942 154776 154907 "ASP74" 155038 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 152734 153577 153709 "ASP73" 153841 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 151730 152560 152660 "ASP6" 152665 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 150569 151407 151525 "ASP55" 151643 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 149410 150243 150362 "ASP50" 150481 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 148390 149111 149221 "ASP4" 149331 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 147370 148091 148201 "ASP49" 148311 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 146046 146909 147077 "ASP42" 147259 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 144715 145579 145749 "ASP41" 145933 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 143557 144392 144510 "ASP35" 144628 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 143286 143505 143544 "ASP34" 143549 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 143005 143090 143166 "ASP33" 143241 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 141791 142640 142772 "ASP31" 142904 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 141520 141739 141778 "ASP30" 141783 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 141237 141324 141400 "ASP29" 141475 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 140966 141185 141224 "ASP28" 141229 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 140695 140914 140953 "ASP27" 140958 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 139671 140393 140504 "ASP24" 140615 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 138640 139473 139585 "ASP20" 139590 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 137620 138341 138451 "ASP1" 138561 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 136455 137294 137413 "ASP19" 137532 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 136174 136259 136335 "ASP12" 136410 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 134918 135773 135917 "ASP10" 136061 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 132530 134762 134853 "ARRAY2" 134858 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 127890 132178 132292 "ARRAY1" 132447 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 126904 127095 127316 "ARRAY12" 127713 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 120949 123106 123181 "ARR2CAT" 125811 NIL ARR2CAT (NIL T T T) -9 NIL 126569 NIL) (-56 118239 119127 120081 "ARR2CAT-" 120086 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 117490 117866 117991 "ARITY" 118132 T ARITY (NIL) -8 NIL NIL NIL) (-54 116248 116418 116717 "APPRULE" 117326 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 115893 115947 116066 "APPLYORE" 116194 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 115193 115486 115606 "ANY" 115791 T ANY (NIL) -8 NIL NIL NIL) (-51 114447 114594 114751 "ANY1" 115067 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 111773 112884 113211 "ANTISYM" 114171 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 111217 111480 111576 "ANON" 111695 T ANON (NIL) -8 NIL NIL NIL) (-48 104373 109756 110210 "AN" 110781 T AN (NIL) -8 NIL NIL NIL) (-47 100029 101645 101696 "AMR" 102444 NIL AMR (NIL T T) -9 NIL 103044 NIL) (-46 99081 99362 99725 "AMR-" 99730 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 82550 98998 99059 "ALIST" 99064 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 78847 82144 82313 "ALGSC" 82468 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 75297 75957 76564 "ALGPKG" 78287 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 74562 74675 74859 "ALGMFACT" 75183 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 70545 71176 71770 "ALGMANIP" 74146 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 59884 70171 70321 "ALGFF" 70478 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 59056 59211 59390 "ALGFACT" 59742 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 57845 58583 58621 "ALGEBRA" 58626 NIL ALGEBRA (NIL T) -9 NIL 58667 NIL) (-37 57545 57622 57754 "ALGEBRA-" 57759 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 38506 55382 55434 "ALAGG" 55570 NIL ALAGG (NIL T T) -9 NIL 55731 NIL) (-35 38006 38155 38181 "AHYP" 38382 T AHYP (NIL) -9 NIL NIL NIL) (-34 36891 37185 37211 "AGG" 37710 T AGG (NIL) -9 NIL 37989 NIL) (-33 36289 36487 36701 "AGG-" 36706 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 34049 34518 34923 "AF" 35931 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33469 33774 33864 "ADDAST" 33977 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32701 32996 33152 "ACPLOT" 33331 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20258 29633 29671 "ACFS" 30278 NIL ACFS (NIL T) -9 NIL 30517 NIL) (-28 18165 18775 19537 "ACFS-" 19542 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13873 16198 16224 "ACF" 17103 T ACF (NIL) -9 NIL 17516 NIL) (-26 12505 12911 13404 "ACF-" 13409 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 12015 12258 12284 "ABELSG" 12376 T ABELSG (NIL) -9 NIL 12441 NIL) (-24 11876 11907 11973 "ABELSG-" 11978 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11145 11492 11518 "ABELMON" 11688 T ABELMON (NIL) -9 NIL 11800 NIL) (-22 10785 10893 11031 "ABELMON-" 11036 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 10035 10491 10517 "ABELGRP" 10589 T ABELGRP (NIL) -9 NIL 10664 NIL) (-20 9462 9627 9843 "ABELGRP-" 9848 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8724 8763 "A1AGG" 8768 NIL A1AGG (NIL T) -9 NIL 8808 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-3611 (((-1262 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1262 |#1| |#3| |#5|)) 23 T ELT))) +(((-1257 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3611 ((-1262 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1262 |#1| |#3| |#5|)))) (-1080) (-1080) (-1207) (-1207) |#1| |#2|) (T -1257)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5 *7 *9)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1262 *6 *8 *10)) (-5 *1 (-1257 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207))))) +(-10 -7 (-15 -3611 ((-1262 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1262 |#1| |#3| |#5|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 (-1113)) $) 86 T ELT)) (-3967 (((-1207) $) 118 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-578)) 113 T ELT) (($ $ (-578) (-578)) 112 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $) 119 T ELT)) (-1502 (($ $) 150 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 133 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) 178 (|has| |#1| (-376)) ELT)) (-2811 (($ $) 132 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) 168 (|has| |#1| (-376)) ELT)) (-1478 (($ $) 149 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|)))) 188 T ELT)) (-1528 (($ $) 148 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 135 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) 18 T CONST)) (-3154 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3879 (((-421 (-981 |#1|)) $ (-578)) 186 (|has| |#1| (-570)) ELT) (((-421 (-981 |#1|)) $ (-578) (-578)) 185 (|has| |#1| (-570)) ELT)) (-3166 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 166 (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) 179 (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) 85 T ELT)) (-2551 (($) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-578) $) 115 T ELT) (((-578) $ (-578)) 114 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 131 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) 116 T ELT)) (-3939 (($ (-1 |#1| (-578)) $) 187 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 175 (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-578)) 73 T ELT) (($ $ (-1113) (-578)) 88 T ELT) (($ $ (-666 (-1113)) (-666 (-578))) 87 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3864 (($ $) 157 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2389 (($ (-666 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 184 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 183 (-2230 (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-578)))))) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 165 (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) 176 (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-578)) 110 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 167 (|has| |#1| (-376)) ELT)) (-3587 (($ $) 158 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) ELT)) (-1449 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-578)) 120 T ELT) (($ $ $) 96 (|has| (-578) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-666 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT)) (-3683 (((-578) $) 76 T ELT)) (-1541 (($ $) 147 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 136 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 137 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 138 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 84 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-578)) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-4369 ((|#1| $) 117 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1576 (($ $) 156 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 144 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-1552 (($ $) 155 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 143 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 154 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-578)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 153 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 141 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 152 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 140 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 151 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 139 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-666 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-578) |#1|))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 130 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1258 |#1|) (-142) (-1080)) (T -1258)) +((-4449 (*1 *1 *2) (-12 (-5 *2 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *3)))) (-4 *3 (-1080)) (-4 *1 (-1258 *3)))) (-3939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-578))) (-4 *1 (-1258 *3)) (-4 *3 (-1080)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-1258 *4)) (-4 *4 (-1080)) (-4 *4 (-570)) (-5 *2 (-421 (-981 *4))))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-4 *1 (-1258 *4)) (-4 *4 (-1080)) (-4 *4 (-570)) (-5 *2 (-421 (-981 *4))))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578)))))) (-4371 (*1 *1 *1 *2) (-2230 (-12 (-5 *2 (-1207)) (-4 *1 (-1258 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-578))) (-4 *3 (-988)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-578)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1258 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -2949 ((-666 *2) *3))) (|has| *3 (-15 -4371 (*3 *3 *2))) (-4 *3 (-38 (-421 (-578))))))))) +(-13 (-1276 |t#1| (-578)) (-10 -8 (-15 -4449 ($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |t#1|))))) (-15 -3939 ($ (-1 |t#1| (-578)) $)) (IF (|has| |t#1| (-570)) (PROGN (-15 -3879 ((-421 (-981 |t#1|)) $ (-578))) (-15 -3879 ((-421 (-981 |t#1|)) $ (-578) (-578)))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $)) (IF (|has| |t#1| (-15 -4371 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -2949 ((-666 (-1207)) |t#1|))) (-15 -4371 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-988)) (IF (|has| |t#1| (-29 (-578))) (-15 -4371 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-578)) . T) ((-25) . T) ((-38 #1=(-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-578)))) ((-95) |has| |#1| (-38 (-421 (-578)))) ((-102) . T) ((-111 #1# #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-578) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-578) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-578) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-578)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-578) (-1143)) ((-302) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-578)))) ((-570) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-668 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-739 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-949) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-578)))) ((-1082 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-421 (-578)))) ((-1236) |has| |#1| (-38 (-421 (-578)))) ((-1248) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T)) +((-3623 (((-112) $) 12 T ELT)) (-2818 (((-3 |#3| "failed") $) 17 T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) NIL T ELT)) (-3516 ((|#3| $) 14 T ELT) (((-1207) $) NIL T ELT) (((-421 (-578)) $) NIL T ELT) (((-578) $) NIL T ELT))) +(((-1259 |#1| |#2| |#3|) (-10 -8 (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-1207) "failed") |#1|)) (-15 -3516 ((-1207) |#1|)) (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -3516 (|#3| |#1|)) (-15 -3623 ((-112) |#1|))) (-1260 |#2| |#3|) (-1080) (-1289 |#2|)) (T -1259)) +NIL +(-10 -8 (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -2818 ((-3 (-1207) "failed") |#1|)) (-15 -3516 ((-1207) |#1|)) (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -3516 (|#3| |#1|)) (-15 -3623 ((-112) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2873 ((|#2| $) 251 (-2320 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-2949 (((-666 (-1113)) $) 86 T ELT)) (-3967 (((-1207) $) 118 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-578)) 113 T ELT) (($ $ (-578) (-578)) 112 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $) 119 T ELT)) (-1738 ((|#2| $) 287 T ELT)) (-4251 (((-3 |#2| "failed") $) 283 T ELT)) (-3004 ((|#2| $) 284 T ELT)) (-1502 (($ $) 150 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 133 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 260 (-2320 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-1457 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) 178 (|has| |#1| (-376)) ELT)) (-2811 (($ $) 132 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 257 (-2320 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-2732 (((-112) $ $) 168 (|has| |#1| (-376)) ELT)) (-1478 (($ $) 149 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1490 (((-578) $) 269 (-2320 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|)))) 188 T ELT)) (-1528 (($ $) 148 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 135 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#2| "failed") $) 290 T ELT) (((-3 (-578) "failed") $) 280 (-2320 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-578)) "failed") $) 278 (-2320 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-3 (-1207) "failed") $) 262 (-2320 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3516 ((|#2| $) 291 T ELT) (((-578) $) 279 (-2320 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-421 (-578)) $) 277 (-2320 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-1207) $) 261 (-2320 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3178 (($ $) 286 T ELT) (($ (-578) $) 285 T ELT)) (-3154 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3136 (($ $) 72 T ELT)) (-2242 (((-711 |#2|) (-711 $)) 239 (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) 238 (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 237 (-2320 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-711 $)) 236 (-2320 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3879 (((-421 (-981 |#1|)) $ (-578)) 186 (|has| |#1| (-570)) ELT) (((-421 (-981 |#1|)) $ (-578) (-578)) 185 (|has| |#1| (-570)) ELT)) (-2062 (($) 253 (-2320 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3166 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 166 (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) 179 (|has| |#1| (-376)) ELT)) (-3789 (((-112) $) 267 (-2320 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-1401 (((-112) $) 85 T ELT)) (-2551 (($) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 245 (-2320 (|has| |#2| (-911 (-392))) (|has| |#1| (-376))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 244 (-2320 (|has| |#2| (-911 (-578))) (|has| |#1| (-376))) ELT)) (-4059 (((-578) $) 115 T ELT) (((-578) $ (-578)) 114 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2544 (($ $) 249 (|has| |#1| (-376)) ELT)) (-2519 ((|#2| $) 247 (|has| |#1| (-376)) ELT)) (-2812 (($ $ (-578)) 131 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2204 (((-3 $ "failed") $) 281 (-2320 (|has| |#2| (-1183)) (|has| |#1| (-376))) ELT)) (-1721 (((-112) $) 268 (-2320 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4196 (($ $ (-950)) 116 T ELT)) (-3939 (($ (-1 |#1| (-578)) $) 187 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 175 (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-578)) 73 T ELT) (($ $ (-1113) (-578)) 88 T ELT) (($ $ (-666 (-1113)) (-666 (-578))) 87 T ELT)) (-1345 (($ $ $) 276 (-2320 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-3667 (($ $ $) 275 (-2320 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-376)) ELT)) (-3864 (($ $) 157 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3908 (((-711 |#2|) (-1298 $)) 241 (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) 240 (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 235 (-2320 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-1298 $)) 234 (-2320 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2389 (($ (-666 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-3018 (($ (-578) |#2|) 288 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 184 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 183 (-2230 (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-578)))))) ELT)) (-2199 (($) 282 (-2320 (|has| |#2| (-1183)) (|has| |#1| (-376))) CONST)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 165 (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-2055 (($ $) 252 (-2320 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3575 ((|#2| $) 255 (-2320 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 258 (-2320 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 259 (-2320 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-2800 (((-432 $) $) 176 (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-578)) 110 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 167 (|has| |#1| (-376)) ELT)) (-3587 (($ $) 158 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) ELT) (($ $ (-1207) |#2|) 228 (-2320 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1207)) (-666 |#2|)) 227 (-2320 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-666 (-306 |#2|))) 226 (-2320 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-306 |#2|)) 225 (-2320 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 224 (-2320 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) 223 (-2320 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-1449 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-578)) 120 T ELT) (($ $ $) 96 (|has| (-578) (-1143)) ELT) (($ $ |#2|) 222 (-2320 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1 |#2| |#2|) (-793)) 231 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-376)) ELT) (($ $) 100 (-2230 (-2320 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) 98 (-2230 (-2320 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) 108 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT) (($ $ (-666 (-1207))) 106 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT) (($ $ (-1207) (-793)) 105 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 104 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT)) (-1363 (($ $) 250 (|has| |#1| (-376)) ELT)) (-2530 ((|#2| $) 248 (|has| |#1| (-376)) ELT)) (-3683 (((-578) $) 76 T ELT)) (-1541 (($ $) 147 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 136 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 137 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 138 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3343 (((-229) $) 266 (-2320 (|has| |#2| (-1053)) (|has| |#1| (-376))) ELT) (((-392) $) 265 (-2320 (|has| |#2| (-1053)) (|has| |#1| (-376))) ELT) (((-550) $) 264 (-2320 (|has| |#2| (-633 (-550))) (|has| |#1| (-376))) ELT) (((-917 (-392)) $) 243 (-2320 (|has| |#2| (-633 (-917 (-392)))) (|has| |#1| (-376))) ELT) (((-917 (-578)) $) 242 (-2320 (|has| |#2| (-633 (-917 (-578)))) (|has| |#1| (-376))) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 256 (-2320 (-2320 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#1| (-376))) ELT)) (-2117 (($ $) 84 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ |#2|) 289 T ELT) (($ (-1207)) 263 (-2320 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-578)) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (-2230 (-2320 (-2230 (|has| |#2| (-147)) (-2320 (|has| $ (-147)) (|has| |#2| (-938)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 32 T CONST)) (-4369 ((|#1| $) 117 T ELT)) (-1585 ((|#2| $) 254 (-2320 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1576 (($ $) 156 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 144 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-1552 (($ $) 155 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 143 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 154 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-578)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 153 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 141 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 152 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 140 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 151 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 139 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2628 (($ $) 270 (-2320 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1 |#2| |#2|) (-793)) 233 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-376)) ELT) (($ $) 99 (-2230 (-2320 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) 97 (-2230 (-2320 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) 107 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT) (($ $ (-666 (-1207))) 103 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT) (($ $ (-1207) (-793)) 102 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 101 (-2230 (-2320 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-578) |#1|))))) ELT)) (-2441 (((-112) $ $) 274 (-2320 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2416 (((-112) $ $) 272 (-2320 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2429 (((-112) $ $) 273 (-2320 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2404 (((-112) $ $) 271 (-2320 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 246 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 130 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ $ |#2|) 221 (|has| |#1| (-376)) ELT) (($ |#2| $) 220 (|has| |#1| (-376)) ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1260 |#1| |#2|) (-142) (-1080) (-1289 |t#1|)) (T -1260)) +((-3683 (*1 *2 *1) (-12 (-4 *1 (-1260 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1289 *3)) (-5 *2 (-578)))) (-3018 (*1 *1 *2 *3) (-12 (-5 *2 (-578)) (-4 *4 (-1080)) (-4 *1 (-1260 *4 *3)) (-4 *3 (-1289 *4)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1289 *3)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-1260 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1289 *2)))) (-3178 (*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-4 *1 (-1260 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1289 *3)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1289 *3)))) (-4251 (*1 *2 *1) (|partial| -12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1289 *3))))) +(-13 (-1258 |t#1|) (-1069 |t#2|) (-635 |t#2|) (-10 -8 (-15 -3018 ($ (-578) |t#2|)) (-15 -3683 ((-578) $)) (-15 -1738 (|t#2| $)) (-15 -3178 ($ $)) (-15 -3178 ($ (-578) $)) (-15 -3004 (|t#2| $)) (-15 -4251 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1023 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-578)) . T) ((-25) . T) ((-38 #1=(-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-578)))) ((-95) |has| |#1| (-38 (-421 (-578)))) ((-102) . T) ((-111 #1# #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-635 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 #2=(-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1053))) ((-633 (-392)) -12 (|has| |#1| (-376)) (|has| |#2| (-1053))) ((-633 (-550)) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-550)))) ((-633 (-917 (-392))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-917 (-392))))) ((-633 (-917 (-578))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-917 (-578))))) ((-236 $) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ((-239) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-578)))) ((-298 #0# |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-578) (-1143)) ((-302) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-414 |#2|) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-578)))) ((-528 (-1207) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1207) |#2|))) ((-528 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-570) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-668 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 |#2|) |has| |#1| (-376)) ((-668 $) . T) ((-670 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-670 #3=(-578)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-578)))) ((-670 |#1|) . T) ((-670 |#2|) |has| |#1| (-376)) ((-670 $) . T) ((-662 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 |#2|) |has| |#1| (-376)) ((-662 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-660 #3#) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-578)))) ((-660 |#2|) |has| |#1| (-376)) ((-739 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 |#2|) |has| |#1| (-376)) ((-739 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-748) . T) ((-813) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-814) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-816) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-817) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-842) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-870) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-871) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-871))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-874) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-871))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-921 $ #4=(-1207)) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ((-927 (-1207)) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ((-929 #4#) -2230 (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ((-911 (-392)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-392)))) ((-911 (-578)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-578)))) ((-909 |#2|) |has| |#1| (-376)) ((-938) -12 (|has| |#1| (-376)) (|has| |#2| (-938))) ((-1004 |#1| #0# (-1113)) . T) ((-949) |has| |#1| (-376)) ((-1023 |#2|) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-578)))) ((-1053) -12 (|has| |#1| (-376)) (|has| |#2| (-1053))) ((-1069 (-421 (-578))) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-578)))) ((-1069 (-578)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-578)))) ((-1069 #2#) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) ((-1069 |#2|) . T) ((-1082 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1082 |#1|) . T) ((-1082 |#2|) |has| |#1| (-376)) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1087 |#1|) . T) ((-1087 |#2|) |has| |#1| (-376)) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) -12 (|has| |#1| (-376)) (|has| |#2| (-1183))) ((-1233) |has| |#1| (-38 (-421 (-578)))) ((-1236) |has| |#1| (-38 (-421 (-578)))) ((-1248) . T) ((-1252) |has| |#1| (-376)) ((-1258 |#1|) . T) ((-1276 |#1| #0#) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 81 T ELT)) (-2873 ((|#2| $) NIL (-12 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 100 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-578)) 109 T ELT) (($ $ (-578) (-578)) 111 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $) 51 T ELT)) (-1738 ((|#2| $) 11 T ELT)) (-4251 (((-3 |#2| "failed") $) 35 T ELT)) (-3004 ((|#2| $) 36 T ELT)) (-1502 (($ $) 206 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 182 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) 202 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 178 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1490 (((-578) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|)))) 59 T ELT)) (-1528 (($ $) 210 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 186 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) 157 T ELT) (((-3 (-578) "failed") $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3516 ((|#2| $) 156 T ELT) (((-578) $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-421 (-578)) $) NIL (-12 (|has| |#2| (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-1207) $) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3178 (($ $) 65 T ELT) (($ (-578) $) 28 T ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 |#2|) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3493 (((-3 $ "failed") $) 88 T ELT)) (-3879 (((-421 (-981 |#1|)) $ (-578)) 124 (|has| |#1| (-570)) ELT) (((-421 (-981 |#1|)) $ (-578) (-578)) 126 (|has| |#1| (-570)) ELT)) (-2062 (($) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-3789 (((-112) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-1401 (((-112) $) 74 T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| |#2| (-911 (-392))) (|has| |#1| (-376))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| |#2| (-911 (-578))) (|has| |#1| (-376))) ELT)) (-4059 (((-578) $) 105 T ELT) (((-578) $ (-578)) 107 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2519 ((|#2| $) 165 (|has| |#1| (-376)) ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2204 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1183)) (|has| |#1| (-376))) ELT)) (-1721 (((-112) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4196 (($ $ (-950)) 148 T ELT)) (-3939 (($ (-1 |#1| (-578)) $) 144 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-578)) 20 T ELT) (($ $ (-1113) (-578)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-578))) NIL T ELT)) (-1345 (($ $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-3667 (($ $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 141 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-3864 (($ $) 176 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3908 (((-711 |#2|) (-1298 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-1298 $)) NIL (-12 (|has| |#2| (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (($ (-578) |#2|) 10 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 159 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 228 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 233 (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT)) (-2199 (($) NIL (-12 (|has| |#2| (-1183)) (|has| |#1| (-376))) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2055 (($ $) NIL (-12 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3575 ((|#2| $) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-578)) 138 T ELT)) (-3202 (((-3 $ "failed") $ $) 128 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3587 (($ $) 174 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) ELT) (($ $ (-1207) |#2|) NIL (-12 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1207)) (-666 |#2|)) NIL (-12 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-666 (-306 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-306 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-666 |#2|) (-666 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-578)) 103 T ELT) (($ $ $) 90 (|has| (-578) (-1143)) ELT) (($ $ |#2|) NIL (-12 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 149 (-2230 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) 153 (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-1363 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2530 ((|#2| $) 166 (|has| |#1| (-376)) ELT)) (-3683 (((-578) $) 12 T ELT)) (-1541 (($ $) 212 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 188 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 208 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 184 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 204 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 180 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3343 (((-229) $) NIL (-12 (|has| |#2| (-1053)) (|has| |#1| (-376))) ELT) (((-392) $) NIL (-12 (|has| |#2| (-1053)) (|has| |#1| (-376))) ELT) (((-550) $) NIL (-12 (|has| |#2| (-633 (-550))) (|has| |#1| (-376))) ELT) (((-917 (-392)) $) NIL (-12 (|has| |#2| (-633 (-917 (-392)))) (|has| |#1| (-376))) ELT) (((-917 (-578)) $) NIL (-12 (|has| |#2| (-633 (-917 (-578)))) (|has| |#1| (-376))) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938)) (|has| |#1| (-376))) ELT)) (-2117 (($ $) 136 T ELT)) (-2411 (((-886) $) 266 T ELT) (($ (-578)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1207)) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ (-421 (-578))) 169 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-578)) 85 T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#2| (-938)) (|has| |#1| (-376))) (-12 (|has| |#2| (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 155 T CONST)) (-4369 ((|#1| $) 102 T ELT)) (-1585 ((|#2| $) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) 218 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 194 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) 214 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 190 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 222 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 198 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-578)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 224 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 200 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 220 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 196 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 216 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 192 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2628 (($ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2368 (($) 13 T CONST)) (-2379 (($) 18 T CONST)) (-1676 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-2230 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2441 (((-112) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2416 (((-112) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2384 (((-112) $ $) 72 T ELT)) (-2429 (((-112) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2404 (((-112) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 164 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 227 T ELT) (($ $ $) 78 T ELT)) (-2472 (($ $ $) 76 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 84 T ELT) (($ $ (-578)) 160 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 172 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 79 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 152 T ELT) (($ $ |#2|) 162 (|has| |#1| (-376)) ELT) (($ |#2| $) 161 (|has| |#1| (-376)) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1261 |#1| |#2|) (-1260 |#1| |#2|) (-1080) (-1289 |#1|)) (T -1261)) +NIL +(-1260 |#1| |#2|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2873 (((-1290 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 10 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-2987 (($ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-3087 (((-112) $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-2140 (($ $ (-578)) NIL T ELT) (($ $ (-578) (-578)) NIL T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|))) $) NIL T ELT)) (-1738 (((-1290 |#1| |#2| |#3|) $) NIL T ELT)) (-4251 (((-3 (-1290 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3004 (((-1290 |#1| |#2| |#3|) $) NIL T ELT)) (-1502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1490 (((-578) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-578)) (|:| |c| |#1|)))) NIL T ELT)) (-1528 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-1290 |#1| |#2| |#3|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-3 (-578) "failed") $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT)) (-3516 (((-1290 |#1| |#2| |#3|) $) NIL T ELT) (((-1207) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-421 (-578)) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT) (((-578) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) ELT)) (-3178 (($ $) NIL T ELT) (($ (-578) $) NIL T ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-1290 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-1290 |#1| |#2| |#3|))) (|:| |vec| (-1298 (-1290 |#1| |#2| |#3|)))) (-711 $) (-1298 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-711 $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3879 (((-421 (-981 |#1|)) $ (-578)) NIL (|has| |#1| (-570)) ELT) (((-421 (-981 |#1|)) $ (-578) (-578)) NIL (|has| |#1| (-570)) ELT)) (-2062 (($) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-3789 (((-112) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-911 (-392))) (|has| |#1| (-376))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-911 (-578))) (|has| |#1| (-376))) ELT)) (-4059 (((-578) $) NIL T ELT) (((-578) $ (-578)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2519 (((-1290 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2204 (((-3 $ "failed") $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1183)) (|has| |#1| (-376))) ELT)) (-1721 (((-112) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4196 (($ $ (-950)) NIL T ELT)) (-3939 (($ (-1 |#1| (-578)) $) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-578)) 18 T ELT) (($ $ (-1113) (-578)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-578))) NIL T ELT)) (-1345 (($ $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-3667 (($ $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-3864 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3908 (((-711 (-1290 |#1| |#2| |#3|)) (-1298 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-1290 |#1| |#2| |#3|))) (|:| |vec| (-1298 (-1290 |#1| |#2| |#3|)))) (-1298 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT) (((-711 (-578)) (-1298 $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-660 (-578))) (|has| |#1| (-376))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3018 (($ (-578) (-1290 |#1| |#2| |#3|)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 27 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 28 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2199 (($) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1183)) (|has| |#1| (-376))) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2055 (($ $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3575 (((-1290 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-578)) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-578)))) ELT) (($ $ (-1207) (-1290 |#1| |#2| |#3|)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-528 (-1207) (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1207)) (-666 (-1290 |#1| |#2| |#3|))) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-528 (-1207) (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-306 (-1290 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-321 (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-306 (-1290 |#1| |#2| |#3|))) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-321 (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-321 (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-666 (-1290 |#1| |#2| |#3|)) (-666 (-1290 |#1| |#2| |#3|))) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-321 (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-578)) NIL T ELT) (($ $ $) NIL (|has| (-578) (-1143)) ELT) (($ $ (-1290 |#1| |#2| |#3|)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-298 (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1 (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 26 T ELT) (($ $) 25 (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-1363 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2530 (((-1290 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3683 (((-578) $) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3343 (((-550) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-633 (-550))) (|has| |#1| (-376))) ELT) (((-392) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-376))) ELT) (((-917 (-392)) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-633 (-917 (-392)))) (|has| |#1| (-376))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-633 (-917 (-578)))) (|has| |#1| (-376))) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1290 |#1| |#2| |#3|)) NIL T ELT) (($ (-1294 |#2|)) 24 T ELT) (($ (-1207)) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT) (($ (-421 (-578))) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-1069 (-578))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-578))))) ELT)) (-3708 ((|#1| $ (-578)) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) 11 T ELT)) (-1585 (((-1290 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-938)) (|has| |#1| (-376))) (|has| |#1| (-570))) ELT)) (-1552 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-578)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-578)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2628 (($ $) NIL (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2368 (($) 20 T CONST)) (-2379 (($) 15 T CONST)) (-1676 (($ $ (-1 (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-793)) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-578) |#1|)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207))) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-578) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2441 (((-112) $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2416 (((-112) $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2429 (((-112) $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2404 (((-112) $ $) NIL (-2230 (-12 (|has| (-1290 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1290 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1290 |#1| |#2| |#3|) (-1290 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 22 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1290 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1290 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1262 |#1| |#2| |#3|) (-13 (-1260 |#1| (-1290 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1262)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1262 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(-13 (-1260 |#1| (-1290 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) +((-3854 (((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112)) 13 T ELT)) (-3218 (((-432 |#1|) |#1|) 26 T ELT)) (-2800 (((-432 |#1|) |#1|) 24 T ELT))) +(((-1263 |#1|) (-10 -7 (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3218 ((-432 |#1|) |#1|)) (-15 -3854 ((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112)))) (-1274 (-578))) (T -1263)) +((-3854 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) (-5 *1 (-1263 *3)) (-4 *3 (-1274 (-578))))) (-3218 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1274 (-578))))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1274 (-578)))))) +(-10 -7 (-15 -2800 ((-432 |#1|) |#1|)) (-15 -3218 ((-432 |#1|) |#1|)) (-15 -3854 ((-2 (|:| |contp| (-578)) (|:| -2636 (-666 (-2 (|:| |irr| |#1|) (|:| -3935 (-578)))))) |#1| (-112)))) +((-3611 (((-1188 |#2|) (-1 |#2| |#1|) (-1265 |#1|)) 23 (|has| |#1| (-870)) ELT) (((-1265 |#2|) (-1 |#2| |#1|) (-1265 |#1|)) 17 T ELT))) +(((-1264 |#1| |#2|) (-10 -7 (-15 -3611 ((-1265 |#2|) (-1 |#2| |#1|) (-1265 |#1|))) (IF (|has| |#1| (-870)) (-15 -3611 ((-1188 |#2|) (-1 |#2| |#1|) (-1265 |#1|))) |%noBranch|)) (-1248) (-1248)) (T -1264)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-870)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1188 *6)) (-5 *1 (-1264 *5 *6)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1265 *6)) (-5 *1 (-1264 *5 *6))))) +(-10 -7 (-15 -3611 ((-1265 |#2|) (-1 |#2| |#1|) (-1265 |#1|))) (IF (|has| |#1| (-870)) (-15 -3611 ((-1188 |#2|) (-1 |#2| |#1|) (-1265 |#1|))) |%noBranch|)) +((-3213 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-4228 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3611 (((-1188 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-870)) ELT)) (-1685 ((|#1| $) 15 T ELT)) (-3322 ((|#1| $) 12 T ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4055 (((-578) $) 19 T ELT)) (-4242 ((|#1| $) 18 T ELT)) (-4065 ((|#1| $) 13 T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4241 (((-112) $) 17 T ELT)) (-4199 (((-1188 |#1|) $) 41 (|has| |#1| (-870)) ELT) (((-1188 |#1|) (-666 $)) 40 (|has| |#1| (-870)) ELT)) (-3343 (($ |#1|) 26 T ELT)) (-2411 (($ (-1125 |#1|)) 25 T ELT) (((-886) $) 37 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-1131)) ELT)) (-3934 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-2167 (($ $ (-578)) 14 T ELT)) (-2384 (((-112) $ $) 30 (|has| |#1| (-1131)) ELT))) +(((-1265 |#1|) (-13 (-1124 |#1|) (-10 -8 (-15 -3934 ($ |#1|)) (-15 -4228 ($ |#1|)) (-15 -2411 ($ (-1125 |#1|))) (-15 -4241 ((-112) $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-1188 |#1|))) |%noBranch|))) (-1248)) (T -1265)) +((-3934 (*1 *1 *2) (-12 (-5 *1 (-1265 *2)) (-4 *2 (-1248)))) (-4228 (*1 *1 *2) (-12 (-5 *1 (-1265 *2)) (-4 *2 (-1248)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1248)) (-5 *1 (-1265 *3)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1265 *3)) (-4 *3 (-1248))))) +(-13 (-1124 |#1|) (-10 -8 (-15 -3934 ($ |#1|)) (-15 -4228 ($ |#1|)) (-15 -2411 ($ (-1125 |#1|))) (-15 -4241 ((-112) $)) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-1188 |#1|))) |%noBranch|))) +((-3611 (((-1271 |#3| |#4|) (-1 |#4| |#2|) (-1271 |#1| |#2|)) 15 T ELT))) +(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 ((-1271 |#3| |#4|) (-1 |#4| |#2|) (-1271 |#1| |#2|)))) (-1207) (-1080) (-1207) (-1080)) (T -1266)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1271 *5 *6)) (-14 *5 (-1207)) (-4 *6 (-1080)) (-4 *8 (-1080)) (-5 *2 (-1271 *7 *8)) (-5 *1 (-1266 *5 *6 *7 *8)) (-14 *7 (-1207))))) +(-10 -7 (-15 -3611 ((-1271 |#3| |#4|) (-1 |#4| |#2|) (-1271 |#1| |#2|)))) +((-1420 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3621 ((|#1| |#3|) 13 T ELT)) (-1992 ((|#3| |#3|) 19 T ELT))) +(((-1267 |#1| |#2| |#3|) (-10 -7 (-15 -3621 (|#1| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -1420 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-570) (-1023 |#1|) (-1274 |#2|)) (T -1267)) +((-1420 (*1 *2 *3) (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1267 *4 *5 *3)) (-4 *3 (-1274 *5)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-570)) (-4 *4 (-1023 *3)) (-5 *1 (-1267 *3 *4 *2)) (-4 *2 (-1274 *4)))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-1023 *2)) (-4 *2 (-570)) (-5 *1 (-1267 *2 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -3621 (|#1| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -1420 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4462 (((-3 |#2| "failed") |#2| (-793) |#1|) 35 T ELT)) (-1475 (((-3 |#2| "failed") |#2| (-793)) 36 T ELT)) (-2479 (((-3 (-2 (|:| -3855 |#2|) (|:| -3868 |#2|)) "failed") |#2|) 50 T ELT)) (-3499 (((-666 |#2|) |#2|) 52 T ELT)) (-2295 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT))) +(((-1268 |#1| |#2|) (-10 -7 (-15 -1475 ((-3 |#2| "failed") |#2| (-793))) (-15 -4462 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -2295 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2479 ((-3 (-2 (|:| -3855 |#2|) (|:| -3868 |#2|)) "failed") |#2|)) (-15 -3499 ((-666 |#2|) |#2|))) (-13 (-570) (-149)) (-1274 |#1|)) (T -1268)) +((-3499 (*1 *2 *3) (-12 (-4 *4 (-13 (-570) (-149))) (-5 *2 (-666 *3)) (-5 *1 (-1268 *4 *3)) (-4 *3 (-1274 *4)))) (-2479 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-570) (-149))) (-5 *2 (-2 (|:| -3855 *3) (|:| -3868 *3))) (-5 *1 (-1268 *4 *3)) (-4 *3 (-1274 *4)))) (-2295 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-1268 *3 *2)) (-4 *2 (-1274 *3)))) (-4462 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-570) (-149))) (-5 *1 (-1268 *4 *2)) (-4 *2 (-1274 *4)))) (-1475 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-570) (-149))) (-5 *1 (-1268 *4 *2)) (-4 *2 (-1274 *4))))) +(-10 -7 (-15 -1475 ((-3 |#2| "failed") |#2| (-793))) (-15 -4462 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -2295 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2479 ((-3 (-2 (|:| -3855 |#2|) (|:| -3868 |#2|)) "failed") |#2|)) (-15 -3499 ((-666 |#2|) |#2|))) +((-2777 (((-3 (-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1269 |#1| |#2|) (-10 -7 (-15 -2777 ((-3 (-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) "failed") |#2| |#2|))) (-570) (-1274 |#1|)) (T -1269)) +((-2777 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-570)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-1269 *4 *3)) (-4 *3 (-1274 *4))))) +(-10 -7 (-15 -2777 ((-3 (-2 (|:| -2196 |#2|) (|:| -1886 |#2|)) "failed") |#2| |#2|))) +((-4361 ((|#2| |#2| |#2|) 22 T ELT)) (-1901 ((|#2| |#2| |#2|) 36 T ELT)) (-4402 ((|#2| |#2| |#2| (-793) (-793)) 44 T ELT))) +(((-1270 |#1| |#2|) (-10 -7 (-15 -4361 (|#2| |#2| |#2|)) (-15 -1901 (|#2| |#2| |#2|)) (-15 -4402 (|#2| |#2| |#2| (-793) (-793)))) (-1080) (-1274 |#1|)) (T -1270)) +((-4402 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-1270 *4 *2)) (-4 *2 (-1274 *4)))) (-1901 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-1270 *3 *2)) (-4 *2 (-1274 *3)))) (-4361 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-1270 *3 *2)) (-4 *2 (-1274 *3))))) +(-10 -7 (-15 -4361 (|#2| |#2| |#2|)) (-15 -1901 (|#2| |#2| |#2|)) (-15 -4402 (|#2| |#2| |#2| (-793) (-793)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2981 (((-1298 |#2|) $ (-793)) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-1868 (($ (-1203 |#2|)) NIL T ELT)) (-4420 (((-1203 $) $ (-1113)) NIL T ELT) (((-1203 |#2|) $) NIL T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#2| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#2| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#2| (-570)) ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-1113))) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3594 (($ $ $) NIL (|has| |#2| (-570)) ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-1457 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#2| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2732 (((-112) $ $) NIL (|has| |#2| (-376)) ELT)) (-3734 (($ $ (-793)) NIL T ELT)) (-3794 (($ $ (-793)) NIL T ELT)) (-4299 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-466)) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3516 ((|#2| $) NIL T ELT) (((-421 (-578)) $) NIL (|has| |#2| (-1069 (-421 (-578)))) ELT) (((-578) $) NIL (|has| |#2| (-1069 (-578))) ELT) (((-1113) $) NIL T ELT)) (-2035 (($ $ $ (-1113)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-3154 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-2242 (((-711 (-578)) (-711 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-711 $) (-1298 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-3166 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4467 (($ $ $) NIL T ELT)) (-4407 (($ $ $) NIL (|has| |#2| (-570)) ELT)) (-3580 (((-2 (|:| -2672 |#2|) (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#2| (-570)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#2| (-376)) ELT)) (-2111 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#2| (-466)) ELT)) (-3123 (((-666 $) $) NIL T ELT)) (-2159 (((-112) $) NIL (|has| |#2| (-938)) ELT)) (-2535 (($ $ |#2| (-793) $) NIL T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) NIL (-12 (|has| (-1113) (-911 (-392))) (|has| |#2| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) NIL (-12 (|has| (-1113) (-911 (-578))) (|has| |#2| (-911 (-578)))) ELT)) (-4059 (((-793) $ $) NIL (|has| |#2| (-570)) ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2204 (((-3 $ "failed") $) NIL (|has| |#2| (-1183)) ELT)) (-2936 (($ (-1203 |#2|) (-1113)) NIL T ELT) (($ (-1203 $) (-1113)) NIL T ELT)) (-4196 (($ $ (-793)) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#2| (-376)) ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#2| (-793)) 18 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL T ELT)) (-3937 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-2500 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1781 (((-1203 |#2|) $) NIL T ELT)) (-4006 (((-3 (-1113) "failed") $) NIL T ELT)) (-3908 (((-711 (-578)) (-1298 $)) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) NIL (|has| |#2| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#2|)) (|:| |vec| (-1298 |#2|))) (-1298 $) $) NIL T ELT) (((-711 |#2|) (-1298 $)) NIL T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2599 (((-2 (|:| -2196 $) (|:| -1886 $)) $ (-793)) NIL T ELT)) (-3315 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1968 (((-3 (-666 $) "failed") $) NIL T ELT)) (-1590 (((-3 (-2 (|:| |var| (-1113)) (|:| -2764 (-793))) "failed") $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#2| (-38 (-421 (-578)))) ELT)) (-2199 (($) NIL (|has| |#2| (-1183)) CONST)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 ((|#2| $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#2| (-466)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-4406 (($ $ (-793) |#2| $) NIL T ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) NIL (|has| |#2| (-938)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#2| (-938)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3202 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-570)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#2| (-376)) ELT)) (-3364 (($ $ (-666 (-306 $))) NIL T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-1113) |#2|) NIL T ELT) (($ $ (-666 (-1113)) (-666 |#2|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-666 (-1113)) (-666 $)) NIL T ELT)) (-1449 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-2436 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#2| (-570)) ELT) ((|#2| (-421 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#2| (-570)) ELT)) (-3293 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3232 (($ $ (-1113)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-2031 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3683 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-666 (-793)) $ (-666 (-1113))) NIL T ELT)) (-3343 (((-917 (-392)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-392)))) (|has| |#2| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) NIL (-12 (|has| (-1113) (-633 (-917 (-578)))) (|has| |#2| (-633 (-917 (-578))))) ELT) (((-550) $) NIL (-12 (|has| (-1113) (-633 (-550))) (|has| |#2| (-633 (-550)))) ELT)) (-4325 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#2| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-938))) ELT)) (-1825 (((-3 $ "failed") $ $) NIL (|has| |#2| (-570)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#2| (-570)) ELT)) (-2411 (((-886) $) 13 T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1113)) NIL T ELT) (($ (-1294 |#1|)) 20 T ELT) (($ (-421 (-578))) NIL (-2230 (|has| |#2| (-38 (-421 (-578)))) (|has| |#2| (-1069 (-421 (-578))))) ELT) (($ $) NIL (|has| |#2| (-570)) ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (-2230 (-12 (|has| $ (-147)) (|has| |#2| (-938))) (|has| |#2| (-147))) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL (|has| |#2| (-570)) ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) 14 T CONST)) (-1676 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-578))) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) NIL (|has| |#2| (-38 (-421 (-578)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1271 |#1| |#2|) (-13 (-1274 |#2|) (-635 (-1294 |#1|)) (-10 -8 (-15 -4406 ($ $ (-793) |#2| $)))) (-1207) (-1080)) (T -1271)) +((-4406 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1271 *4 *3)) (-14 *4 (-1207)) (-4 *3 (-1080))))) +(-13 (-1274 |#2|) (-635 (-1294 |#1|)) (-10 -8 (-15 -4406 ($ $ (-793) |#2| $)))) +((-3611 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|))) (-1080) (-1274 |#1|) (-1080) (-1274 |#3|)) (T -1272)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-1274 *6)) (-5 *1 (-1272 *5 *4 *6 *2)) (-4 *4 (-1274 *5))))) +(-10 -7 (-15 -3611 (|#4| (-1 |#3| |#1|) |#2|))) +((-2981 (((-1298 |#2|) $ (-793)) 129 T ELT)) (-2949 (((-666 (-1113)) $) 16 T ELT)) (-1868 (($ (-1203 |#2|)) 80 T ELT)) (-2707 (((-793) $) NIL T ELT) (((-793) $ (-666 (-1113))) 21 T ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 204 T ELT)) (-1457 (($ $) 194 T ELT)) (-3034 (((-432 $) $) 192 T ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 95 T ELT)) (-3734 (($ $ (-793)) 84 T ELT)) (-3794 (($ $ (-793)) 86 T ELT)) (-4299 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145 T ELT)) (-2818 (((-3 |#2| "failed") $) 132 T ELT) (((-3 (-421 (-578)) "failed") $) NIL T ELT) (((-3 (-578) "failed") $) NIL T ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3516 ((|#2| $) 130 T ELT) (((-421 (-578)) $) NIL T ELT) (((-578) $) NIL T ELT) (((-1113) $) NIL T ELT)) (-4407 (($ $ $) 170 T ELT)) (-3580 (((-2 (|:| -2672 |#2|) (|:| -2196 $) (|:| -1886 $)) $ $) 172 T ELT)) (-4059 (((-793) $ $) 189 T ELT)) (-2204 (((-3 $ "failed") $) 138 T ELT)) (-2925 (($ |#2| (-793)) NIL T ELT) (($ $ (-1113) (-793)) 59 T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-3937 (((-793) $) NIL T ELT) (((-793) $ (-1113)) 54 T ELT) (((-666 (-793)) $ (-666 (-1113))) 55 T ELT)) (-1781 (((-1203 |#2|) $) 72 T ELT)) (-4006 (((-3 (-1113) "failed") $) 52 T ELT)) (-2599 (((-2 (|:| -2196 $) (|:| -1886 $)) $ (-793)) 83 T ELT)) (-4371 (($ $) 219 T ELT)) (-2199 (($) 134 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 201 T ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 101 T ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 99 T ELT)) (-2800 (((-432 $) $) 120 T ELT)) (-3364 (($ $ (-666 (-306 $))) 51 T ELT) (($ $ (-306 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-666 $) (-666 $)) NIL T ELT) (($ $ (-1113) |#2|) 39 T ELT) (($ $ (-666 (-1113)) (-666 |#2|)) 36 T ELT) (($ $ (-1113) $) 32 T ELT) (($ $ (-666 (-1113)) (-666 $)) 30 T ELT)) (-1449 (((-793) $) 207 T ELT)) (-2436 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) 164 T ELT) ((|#2| (-421 $) |#2|) 206 T ELT) (((-421 $) $ (-421 $)) 188 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 212 T ELT)) (-2031 (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113))) NIL T ELT) (($ $ (-1113)) 157 T ELT) (($ $) 155 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 154 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 149 T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-666 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL T ELT)) (-3683 (((-793) $) NIL T ELT) (((-793) $ (-1113)) 17 T ELT) (((-666 (-793)) $ (-666 (-1113))) 23 T ELT)) (-4325 ((|#2| $) NIL T ELT) (($ $ (-1113)) 140 T ELT)) (-1825 (((-3 $ "failed") $ $) 180 T ELT) (((-3 (-421 $) "failed") (-421 $) $) 176 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1113)) 64 T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT))) +(((-1273 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| |#1|)) (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -2436 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -1449 ((-793) |#1|)) (-15 -2036 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -2436 (|#2| (-421 |#1|) |#2|)) (-15 -4299 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3580 ((-2 (|:| -2672 |#2|) (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -4407 (|#1| |#1| |#1|)) (-15 -1825 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -1825 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4059 ((-793) |#1| |#1|)) (-15 -2436 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3794 (|#1| |#1| (-793))) (-15 -3734 (|#1| |#1| (-793))) (-15 -2599 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| (-793))) (-15 -1868 (|#1| (-1203 |#2|))) (-15 -1781 ((-1203 |#2|) |#1|)) (-15 -2981 ((-1298 |#2|) |#1| (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| |#2|)) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -2194 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3428 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -2245 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -4325 (|#1| |#1| (-1113))) (-15 -2949 ((-666 (-1113)) |#1|)) (-15 -2707 ((-793) |#1| (-666 (-1113)))) (-15 -2707 ((-793) |#1|)) (-15 -2925 (|#1| |#1| (-666 (-1113)) (-666 (-793)))) (-15 -2925 (|#1| |#1| (-1113) (-793))) (-15 -3937 ((-666 (-793)) |#1| (-666 (-1113)))) (-15 -3937 ((-793) |#1| (-1113))) (-15 -4006 ((-3 (-1113) "failed") |#1|)) (-15 -3683 ((-666 (-793)) |#1| (-666 (-1113)))) (-15 -3683 ((-793) |#1| (-1113))) (-15 -2411 (|#1| (-1113))) (-15 -2818 ((-3 (-1113) "failed") |#1|)) (-15 -3516 ((-1113) |#1|)) (-15 -3364 (|#1| |#1| (-666 (-1113)) (-666 |#1|))) (-15 -3364 (|#1| |#1| (-1113) |#1|)) (-15 -3364 (|#1| |#1| (-666 (-1113)) (-666 |#2|))) (-15 -3364 (|#1| |#1| (-1113) |#2|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3683 ((-793) |#1|)) (-15 -2925 (|#1| |#2| (-793))) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -3937 ((-793) |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2031 (|#1| |#1| (-1113))) (-15 -2031 (|#1| |#1| (-666 (-1113)))) (-15 -2031 (|#1| |#1| (-1113) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1113)) (-666 (-793)))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) (-1274 |#2|) (-1080)) (T -1273)) +NIL +(-10 -8 (-15 -2411 (|#1| |#1|)) (-15 -1927 ((-1203 |#1|) (-1203 |#1|) (-1203 |#1|))) (-15 -2031 (|#1| |#1| (-666 (-1207)) (-666 (-793)))) (-15 -2031 (|#1| |#1| (-1207) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1207)))) (-15 -2031 (|#1| |#1| (-1207))) (-15 -3034 ((-432 |#1|) |#1|)) (-15 -1457 (|#1| |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2199 (|#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)) (-15 -2436 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -1449 ((-793) |#1|)) (-15 -2036 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -2436 (|#2| (-421 |#1|) |#2|)) (-15 -4299 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3580 ((-2 (|:| -2672 |#2|) (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| |#1|)) (-15 -4407 (|#1| |#1| |#1|)) (-15 -1825 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -1825 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4059 ((-793) |#1| |#1|)) (-15 -2436 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3794 (|#1| |#1| (-793))) (-15 -3734 (|#1| |#1| (-793))) (-15 -2599 ((-2 (|:| -2196 |#1|) (|:| -1886 |#1|)) |#1| (-793))) (-15 -1868 (|#1| (-1203 |#2|))) (-15 -1781 ((-1203 |#2|) |#1|)) (-15 -2981 ((-1298 |#2|) |#1| (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2031 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2031 (|#1| |#1| (-793))) (-15 -2031 (|#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| |#2|)) (-15 -2800 ((-432 |#1|) |#1|)) (-15 -2194 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3428 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -2245 ((-432 (-1203 |#1|)) (-1203 |#1|))) (-15 -3273 ((-3 (-666 (-1203 |#1|)) "failed") (-666 (-1203 |#1|)) (-1203 |#1|))) (-15 -4325 (|#1| |#1| (-1113))) (-15 -2949 ((-666 (-1113)) |#1|)) (-15 -2707 ((-793) |#1| (-666 (-1113)))) (-15 -2707 ((-793) |#1|)) (-15 -2925 (|#1| |#1| (-666 (-1113)) (-666 (-793)))) (-15 -2925 (|#1| |#1| (-1113) (-793))) (-15 -3937 ((-666 (-793)) |#1| (-666 (-1113)))) (-15 -3937 ((-793) |#1| (-1113))) (-15 -4006 ((-3 (-1113) "failed") |#1|)) (-15 -3683 ((-666 (-793)) |#1| (-666 (-1113)))) (-15 -3683 ((-793) |#1| (-1113))) (-15 -2411 (|#1| (-1113))) (-15 -2818 ((-3 (-1113) "failed") |#1|)) (-15 -3516 ((-1113) |#1|)) (-15 -3364 (|#1| |#1| (-666 (-1113)) (-666 |#1|))) (-15 -3364 (|#1| |#1| (-1113) |#1|)) (-15 -3364 (|#1| |#1| (-666 (-1113)) (-666 |#2|))) (-15 -3364 (|#1| |#1| (-1113) |#2|)) (-15 -3364 (|#1| |#1| (-666 |#1|) (-666 |#1|))) (-15 -3364 (|#1| |#1| |#1| |#1|)) (-15 -3364 (|#1| |#1| (-306 |#1|))) (-15 -3364 (|#1| |#1| (-666 (-306 |#1|)))) (-15 -3683 ((-793) |#1|)) (-15 -2925 (|#1| |#2| (-793))) (-15 -2818 ((-3 (-578) "failed") |#1|)) (-15 -3516 ((-578) |#1|)) (-15 -2818 ((-3 (-421 (-578)) "failed") |#1|)) (-15 -3516 ((-421 (-578)) |#1|)) (-15 -3516 (|#2| |#1|)) (-15 -2818 ((-3 |#2| "failed") |#1|)) (-15 -2411 (|#1| |#2|)) (-15 -3937 ((-793) |#1|)) (-15 -4325 (|#2| |#1|)) (-15 -2031 (|#1| |#1| (-1113))) (-15 -2031 (|#1| |#1| (-666 (-1113)))) (-15 -2031 (|#1| |#1| (-1113) (-793))) (-15 -2031 (|#1| |#1| (-666 (-1113)) (-666 (-793)))) (-15 -2411 (|#1| (-578))) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2981 (((-1298 |#1|) $ (-793)) 256 T ELT)) (-2949 (((-666 (-1113)) $) 113 T ELT)) (-1868 (($ (-1203 |#1|)) 254 T ELT)) (-4420 (((-1203 $) $ (-1113)) 128 T ELT) (((-1203 |#1|) $) 127 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 90 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 91 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 93 (|has| |#1| (-570)) ELT)) (-2707 (((-793) $) 115 T ELT) (((-793) $ (-666 (-1113))) 114 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3594 (($ $ $) 241 (|has| |#1| (-570)) ELT)) (-2194 (((-432 (-1203 $)) (-1203 $)) 103 (|has| |#1| (-938)) ELT)) (-1457 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3034 (((-432 $) $) 100 (|has| |#1| (-466)) ELT)) (-3273 (((-3 (-666 (-1203 $)) "failed") (-666 (-1203 $)) (-1203 $)) 106 (|has| |#1| (-938)) ELT)) (-2732 (((-112) $ $) 226 (|has| |#1| (-376)) ELT)) (-3734 (($ $ (-793)) 249 T ELT)) (-3794 (($ $ (-793)) 248 T ELT)) (-4299 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-466)) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-578)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-3 (-578) "failed") $) 166 (|has| |#1| (-1069 (-578))) ELT) (((-3 (-1113) "failed") $) 143 T ELT)) (-3516 ((|#1| $) 170 T ELT) (((-421 (-578)) $) 169 (|has| |#1| (-1069 (-421 (-578)))) ELT) (((-578) $) 167 (|has| |#1| (-1069 (-578))) ELT) (((-1113) $) 144 T ELT)) (-2035 (($ $ $ (-1113)) 111 (|has| |#1| (-175)) ELT) ((|#1| $ $) 244 (|has| |#1| (-175)) ELT)) (-3154 (($ $ $) 230 (|has| |#1| (-376)) ELT)) (-3136 (($ $) 161 T ELT)) (-2242 (((-711 (-578)) (-711 $)) 139 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-711 $) (-1298 $)) 138 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-711 $) (-1298 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 229 (|has| |#1| (-376)) ELT)) (-4467 (($ $ $) 247 T ELT)) (-4407 (($ $ $) 238 (|has| |#1| (-570)) ELT)) (-3580 (((-2 (|:| -2672 |#1|) (|:| -2196 $) (|:| -1886 $)) $ $) 237 (|has| |#1| (-570)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 224 (|has| |#1| (-376)) ELT)) (-2111 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ (-1113)) 108 (|has| |#1| (-466)) ELT)) (-3123 (((-666 $) $) 112 T ELT)) (-2159 (((-112) $) 99 (|has| |#1| (-938)) ELT)) (-2535 (($ $ |#1| (-793) $) 179 T ELT)) (-3386 (((-914 (-392) $) $ (-917 (-392)) (-914 (-392) $)) 87 (-12 (|has| (-1113) (-911 (-392))) (|has| |#1| (-911 (-392)))) ELT) (((-914 (-578) $) $ (-917 (-578)) (-914 (-578) $)) 86 (-12 (|has| (-1113) (-911 (-578))) (|has| |#1| (-911 (-578)))) ELT)) (-4059 (((-793) $ $) 242 (|has| |#1| (-570)) ELT)) (-4382 (((-112) $) 35 T ELT)) (-3380 (((-793) $) 176 T ELT)) (-2204 (((-3 $ "failed") $) 222 (|has| |#1| (-1183)) ELT)) (-2936 (($ (-1203 |#1|) (-1113)) 120 T ELT) (($ (-1203 $) (-1113)) 119 T ELT)) (-4196 (($ $ (-793)) 253 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 233 (|has| |#1| (-376)) ELT)) (-2613 (((-666 $) $) 129 T ELT)) (-1796 (((-112) $) 159 T ELT)) (-2925 (($ |#1| (-793)) 160 T ELT) (($ $ (-1113) (-793)) 122 T ELT) (($ $ (-666 (-1113)) (-666 (-793))) 121 T ELT)) (-3760 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $ (-1113)) 123 T ELT) (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 251 T ELT)) (-3937 (((-793) $) 177 T ELT) (((-793) $ (-1113)) 125 T ELT) (((-666 (-793)) $ (-666 (-1113))) 124 T ELT)) (-2500 (($ (-1 (-793) (-793)) $) 178 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-1781 (((-1203 |#1|) $) 255 T ELT)) (-4006 (((-3 (-1113) "failed") $) 126 T ELT)) (-3908 (((-711 (-578)) (-1298 $)) 141 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 (-578))) (|:| |vec| (-1298 (-578)))) (-1298 $) $) 140 (|has| |#1| (-660 (-578))) ELT) (((-2 (|:| -2547 (-711 |#1|)) (|:| |vec| (-1298 |#1|))) (-1298 $) $) 135 T ELT) (((-711 |#1|) (-1298 $)) 134 T ELT)) (-3097 (($ $) 156 T ELT)) (-3110 ((|#1| $) 155 T ELT)) (-2389 (($ (-666 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-2599 (((-2 (|:| -2196 $) (|:| -1886 $)) $ (-793)) 250 T ELT)) (-3315 (((-3 (-666 $) "failed") $) 117 T ELT)) (-1968 (((-3 (-666 $) "failed") $) 118 T ELT)) (-1590 (((-3 (-2 (|:| |var| (-1113)) (|:| -2764 (-793))) "failed") $) 116 T ELT)) (-4371 (($ $) 234 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2199 (($) 221 (|has| |#1| (-1183)) CONST)) (-4313 (((-1151) $) 11 T ELT)) (-3067 (((-112) $) 173 T ELT)) (-3080 ((|#1| $) 174 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 98 (|has| |#1| (-466)) ELT)) (-2421 (($ (-666 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-2245 (((-432 (-1203 $)) (-1203 $)) 105 (|has| |#1| (-938)) ELT)) (-3428 (((-432 (-1203 $)) (-1203 $)) 104 (|has| |#1| (-938)) ELT)) (-2800 (((-432 $) $) 102 (|has| |#1| (-938)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 231 (|has| |#1| (-376)) ELT)) (-3202 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-570)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 225 (|has| |#1| (-376)) ELT)) (-3364 (($ $ (-666 (-306 $))) 152 T ELT) (($ $ (-306 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-666 $) (-666 $)) 149 T ELT) (($ $ (-1113) |#1|) 148 T ELT) (($ $ (-666 (-1113)) (-666 |#1|)) 147 T ELT) (($ $ (-1113) $) 146 T ELT) (($ $ (-666 (-1113)) (-666 $)) 145 T ELT)) (-1449 (((-793) $) 227 (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ |#1|) 266 T ELT) (($ $ $) 265 T ELT) (((-421 $) (-421 $) (-421 $)) 243 (|has| |#1| (-570)) ELT) ((|#1| (-421 $) |#1|) 235 (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) 223 (|has| |#1| (-570)) ELT)) (-3293 (((-3 $ "failed") $ (-793)) 252 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 228 (|has| |#1| (-376)) ELT)) (-3232 (($ $ (-1113)) 110 (|has| |#1| (-175)) ELT) ((|#1| $) 245 (|has| |#1| (-175)) ELT)) (-2031 (($ $ (-666 (-1113)) (-666 (-793))) 44 T ELT) (($ $ (-1113) (-793)) 43 T ELT) (($ $ (-666 (-1113))) 42 T ELT) (($ $ (-1113)) 40 T ELT) (($ $) 264 T ELT) (($ $ (-793)) 262 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 259 T ELT) (($ $ (-1 |#1| |#1|) $) 246 T ELT) (($ $ (-1207)) 220 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 218 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 217 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 216 (|has| |#1| (-929 (-1207))) ELT)) (-3683 (((-793) $) 157 T ELT) (((-793) $ (-1113)) 133 T ELT) (((-666 (-793)) $ (-666 (-1113))) 132 T ELT)) (-3343 (((-917 (-392)) $) 85 (-12 (|has| (-1113) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ELT) (((-917 (-578)) $) 84 (-12 (|has| (-1113) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ELT) (((-550) $) 83 (-12 (|has| (-1113) (-633 (-550))) (|has| |#1| (-633 (-550)))) ELT)) (-4325 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ (-1113)) 109 (|has| |#1| (-466)) ELT)) (-2948 (((-3 (-1298 $) "failed") (-711 $)) 107 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) ELT)) (-1825 (((-3 $ "failed") $ $) 240 (|has| |#1| (-570)) ELT) (((-3 (-421 $) "failed") (-421 $) $) 239 (|has| |#1| (-570)) ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 172 T ELT) (($ (-1113)) 142 T ELT) (($ (-421 (-578))) 81 (-2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ELT) (($ $) 88 (|has| |#1| (-570)) ELT)) (-3839 (((-666 |#1|) $) 175 T ELT)) (-3708 ((|#1| $ (-793)) 162 T ELT) (($ $ (-1113) (-793)) 131 T ELT) (($ $ (-666 (-1113)) (-666 (-793))) 130 T ELT)) (-2213 (((-3 $ "failed") $) 82 (-2230 (-2320 (|has| $ (-147)) (|has| |#1| (-938))) (|has| |#1| (-147))) ELT)) (-3753 (((-793)) 32 T CONST)) (-2364 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 92 (|has| |#1| (-570)) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-666 (-1113)) (-666 (-793))) 47 T ELT) (($ $ (-1113) (-793)) 46 T ELT) (($ $ (-666 (-1113))) 45 T ELT) (($ $ (-1113)) 41 T ELT) (($ $) 263 T ELT) (($ $ (-793)) 261 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 257 T ELT) (($ $ (-1207)) 219 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207))) 215 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 214 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 213 (|has| |#1| (-929 (-1207))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 165 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ (-421 (-578)) $) 164 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT))) +(((-1274 |#1|) (-142) (-1080)) (T -1274)) +((-2981 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1274 *4)) (-4 *4 (-1080)) (-5 *2 (-1298 *4)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1080)) (-5 *2 (-1203 *3)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-1080)) (-4 *1 (-1274 *3)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)))) (-3293 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)))) (-3760 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1274 *3)))) (-2599 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1274 *4)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)))) (-4467 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)))) (-2031 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))) (-2035 (*1 *2 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))) (-2436 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)) (-4 *3 (-570)))) (-4059 (*1 *2 *1 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1080)) (-4 *3 (-570)) (-5 *2 (-793)))) (-3594 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-570)))) (-1825 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-570)))) (-1825 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)) (-4 *3 (-570)))) (-4407 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-570)))) (-3580 (*1 *2 *1 *1) (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2672 *3) (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1274 *3)))) (-4299 (*1 *2 *1 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1274 *3)))) (-2436 (*1 *2 *3 *2) (-12 (-5 *3 (-421 *1)) (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578))))))) +(-13 (-978 |t#1| (-793) (-1113)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -2981 ((-1298 |t#1|) $ (-793))) (-15 -1781 ((-1203 |t#1|) $)) (-15 -1868 ($ (-1203 |t#1|))) (-15 -4196 ($ $ (-793))) (-15 -3293 ((-3 $ "failed") $ (-793))) (-15 -3760 ((-2 (|:| -2196 $) (|:| -1886 $)) $ $)) (-15 -2599 ((-2 (|:| -2196 $) (|:| -1886 $)) $ (-793))) (-15 -3734 ($ $ (-793))) (-15 -3794 ($ $ (-793))) (-15 -4467 ($ $ $)) (-15 -2031 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1183)) (-6 (-1183)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -3232 (|t#1| $)) (-15 -2035 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-570)) (PROGN (-6 (-298 (-421 $) (-421 $))) (-15 -2436 ((-421 $) (-421 $) (-421 $))) (-15 -4059 ((-793) $ $)) (-15 -3594 ($ $ $)) (-15 -1825 ((-3 $ "failed") $ $)) (-15 -1825 ((-3 (-421 $) "failed") (-421 $) $)) (-15 -4407 ($ $ $)) (-15 -3580 ((-2 (|:| -2672 |t#1|) (|:| -2196 $) (|:| -1886 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-15 -4299 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4496) (-15 -2436 (|t#1| (-421 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-578)))) (-15 -4371 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-793)) . T) ((-25) . T) ((-38 #1=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2230 (|has| |#1| (-1069 (-421 (-578)))) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 #2=(-1113)) . T) ((-635 |#1|) . T) ((-635 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-550)) -12 (|has| (-1113) (-633 (-550))) (|has| |#1| (-633 (-550)))) ((-633 (-917 (-392))) -12 (|has| (-1113) (-633 (-917 (-392)))) (|has| |#1| (-633 (-917 (-392))))) ((-633 (-917 (-578))) -12 (|has| (-1113) (-633 (-917 (-578)))) (|has| |#1| (-633 (-917 (-578))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-421 $) (-421 $)) |has| |#1| (-570)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| #0#) . T) ((-390 |#1|) . T) ((-425 |#1|) . T) ((-466) -2230 (|has| |#1| (-938)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-528 #2# |#1|) . T) ((-528 #2# $) . T) ((-528 $ $) . T) ((-570) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-668 #1#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-578)))) ((-670 #3=(-578)) |has| |#1| (-660 (-578))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-660 #3#) |has| |#1| (-660 (-578))) ((-660 |#1|) . T) ((-739 #1#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2#) . T) ((-921 $ #4=(-1207)) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) . T) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #2#) . T) ((-929 #4#) -2230 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-392)) -12 (|has| (-1113) (-911 (-392))) (|has| |#1| (-911 (-392)))) ((-911 (-578)) -12 (|has| (-1113) (-911 (-578))) (|has| |#1| (-911 (-578)))) ((-978 |#1| #0# #2#) . T) ((-938) |has| |#1| (-938)) ((-949) |has| |#1| (-376)) ((-1069 (-421 (-578))) |has| |#1| (-1069 (-421 (-578)))) ((-1069 (-578)) |has| |#1| (-1069 (-578))) ((-1069 #2#) . T) ((-1069 |#1|) . T) ((-1082 #1#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-938)) (|has| |#1| (-570)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1183) |has| |#1| (-1183)) ((-1248) . T) ((-1252) |has| |#1| (-938))) +((-2949 (((-666 (-1113)) $) 34 T ELT)) (-3136 (($ $) 31 T ELT)) (-2925 (($ |#2| |#3|) NIL T ELT) (($ $ (-1113) |#3|) 28 T ELT) (($ $ (-666 (-1113)) (-666 |#3|)) 27 T ELT)) (-3097 (($ $) 14 T ELT)) (-3110 ((|#2| $) 12 T ELT)) (-3683 ((|#3| $) 10 T ELT))) +(((-1275 |#1| |#2| |#3|) (-10 -8 (-15 -2949 ((-666 (-1113)) |#1|)) (-15 -2925 (|#1| |#1| (-666 (-1113)) (-666 |#3|))) (-15 -2925 (|#1| |#1| (-1113) |#3|)) (-15 -3136 (|#1| |#1|)) (-15 -2925 (|#1| |#2| |#3|)) (-15 -3683 (|#3| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -3110 (|#2| |#1|))) (-1276 |#2| |#3|) (-1080) (-814)) (T -1275)) +NIL +(-10 -8 (-15 -2949 ((-666 (-1113)) |#1|)) (-15 -2925 (|#1| |#1| (-666 (-1113)) (-666 |#3|))) (-15 -2925 (|#1| |#1| (-1113) |#3|)) (-15 -3136 (|#1| |#1|)) (-15 -2925 (|#1| |#2| |#3|)) (-15 -3683 (|#3| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -3110 (|#2| |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 (-1113)) $) 86 T ELT)) (-3967 (((-1207) $) 118 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-2140 (($ $ |#2|) 113 T ELT) (($ $ |#2| |#2|) 112 T ELT)) (-3761 (((-1188 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-1401 (((-112) $) 85 T ELT)) (-4059 ((|#2| $) 115 T ELT) ((|#2| $ |#2|) 114 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-4196 (($ $ (-950)) 116 T ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| |#2|) 73 T ELT) (($ $ (-1113) |#2|) 88 T ELT) (($ $ (-666 (-1113)) (-666 |#2|)) 87 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2704 (($ $ |#2|) 110 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-2436 ((|#1| $ |#2|) 120 T ELT) (($ $ $) 96 (|has| |#2| (-1143)) ELT)) (-2031 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-666 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3683 ((|#2| $) 76 T ELT)) (-2117 (($ $) 84 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-3708 ((|#1| $ |#2|) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-4369 ((|#1| $) 117 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-3909 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-666 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1276 |#1| |#2|) (-142) (-1080) (-814)) (T -1276)) +((-3761 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-1188 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-1207)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-4059 (*1 *2 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-2140 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-2140 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3909 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2411 (*2 (-1207)))) (-4 *2 (-1080)))) (-2704 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3364 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1188 *3))))) +(-13 (-1004 |t#1| |t#2| (-1113)) (-298 |t#2| |t#1|) (-10 -8 (-15 -3761 ((-1188 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3967 ((-1207) $)) (-15 -4369 (|t#1| $)) (-15 -4196 ($ $ (-950))) (-15 -4059 (|t#2| $)) (-15 -4059 (|t#2| $ |t#2|)) (-15 -2140 ($ $ |t#2|)) (-15 -2140 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2411 (|t#1| (-1207)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3909 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2704 ($ $ |t#2|)) (IF (|has| |t#2| (-1143)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3364 ((-1188 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-570)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-570)) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1143)) ((-302) |has| |#1| (-570)) ((-570) |has| |#1| (-570)) ((-668 #0#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-578)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-570)) ((-739 #0#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-570)) ((-748) . T) ((-921 $ #1=(-1207)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| |#2| (-1113)) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-1457 ((|#2| |#2|) 12 T ELT)) (-3034 (((-432 |#2|) |#2|) 14 T ELT)) (-4020 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-578))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-578)))) 30 T ELT))) +(((-1277 |#1| |#2|) (-10 -7 (-15 -3034 ((-432 |#2|) |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -4020 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-578))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-578)))))) (-570) (-13 (-1274 |#1|) (-570) (-10 -8 (-15 -2421 ($ $ $))))) (T -1277)) +((-4020 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-578)))) (-4 *4 (-13 (-1274 *3) (-570) (-10 -8 (-15 -2421 ($ $ $))))) (-4 *3 (-570)) (-5 *1 (-1277 *3 *4)))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-570)) (-5 *1 (-1277 *3 *2)) (-4 *2 (-13 (-1274 *3) (-570) (-10 -8 (-15 -2421 ($ $ $))))))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-570)) (-5 *2 (-432 *3)) (-5 *1 (-1277 *4 *3)) (-4 *3 (-13 (-1274 *4) (-570) (-10 -8 (-15 -2421 ($ $ $)))))))) +(-10 -7 (-15 -3034 ((-432 |#2|) |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -4020 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-578))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-578)))))) +((-3611 (((-1283 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1283 |#1| |#3| |#5|)) 24 T ELT))) +(((-1278 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3611 ((-1283 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1283 |#1| |#3| |#5|)))) (-1080) (-1080) (-1207) (-1207) |#1| |#2|) (T -1278)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1283 *5 *7 *9)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1283 *6 *8 *10)) (-5 *1 (-1278 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207))))) +(-10 -7 (-15 -3611 ((-1283 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1283 |#1| |#3| |#5|)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 (-1113)) $) 86 T ELT)) (-3967 (((-1207) $) 118 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-421 (-578))) 113 T ELT) (($ $ (-421 (-578)) (-421 (-578))) 112 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|))) $) 119 T ELT)) (-1502 (($ $) 150 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 133 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) 178 (|has| |#1| (-376)) ELT)) (-2811 (($ $) 132 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) 168 (|has| |#1| (-376)) ELT)) (-1478 (($ $) 149 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|)))) 186 T ELT)) (-1528 (($ $) 148 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 135 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) 18 T CONST)) (-3154 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 166 (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) 179 (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) 85 T ELT)) (-2551 (($) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-421 (-578)) $) 115 T ELT) (((-421 (-578)) $ (-421 (-578))) 114 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 131 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) 116 T ELT) (($ $ (-421 (-578))) 185 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 175 (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-421 (-578))) 73 T ELT) (($ $ (-1113) (-421 (-578))) 88 T ELT) (($ $ (-666 (-1113)) (-666 (-421 (-578)))) 87 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3864 (($ $) 157 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2389 (($ (-666 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 184 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 183 (-2230 (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-578)))))) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 165 (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) 176 (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-421 (-578))) 110 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 167 (|has| |#1| (-376)) ELT)) (-3587 (($ $) 158 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) ELT)) (-1449 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-421 (-578))) 120 T ELT) (($ $ $) 96 (|has| (-421 (-578)) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-3683 (((-421 (-578)) $) 76 T ELT)) (-1541 (($ $) 147 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 136 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 137 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 138 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 84 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-421 (-578))) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-4369 ((|#1| $) 117 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1576 (($ $) 156 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 144 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-1552 (($ $) 155 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 143 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 154 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-421 (-578))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 153 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 141 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 152 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 140 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 151 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 139 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 130 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1279 |#1|) (-142) (-1080)) (T -1279)) +((-4449 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| *4)))) (-4 *4 (-1080)) (-4 *1 (-1279 *4)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-4 *1 (-1279 *3)) (-4 *3 (-1080)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578)))))) (-4371 (*1 *1 *1 *2) (-2230 (-12 (-5 *2 (-1207)) (-4 *1 (-1279 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-578))) (-4 *3 (-988)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-578)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1279 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -2949 ((-666 *2) *3))) (|has| *3 (-15 -4371 (*3 *3 *2))) (-4 *3 (-38 (-421 (-578))))))))) +(-13 (-1276 |t#1| (-421 (-578))) (-10 -8 (-15 -4449 ($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |t#1|))))) (-15 -4196 ($ $ (-421 (-578)))) (IF (|has| |t#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $)) (IF (|has| |t#1| (-15 -4371 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -2949 ((-666 (-1207)) |t#1|))) (-15 -4371 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-988)) (IF (|has| |t#1| (-29 (-578))) (-15 -4371 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-421 (-578))) . T) ((-25) . T) ((-38 #1=(-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-578)))) ((-95) |has| |#1| (-38 (-421 (-578)))) ((-102) . T) ((-111 #1# #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-578)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-421 (-578)) (-1143)) ((-302) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-578)))) ((-570) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-668 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-739 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-949) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-578)))) ((-1082 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-421 (-578)))) ((-1236) |has| |#1| (-38 (-421 (-578)))) ((-1248) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T)) +((-3623 (((-112) $) 12 T ELT)) (-2818 (((-3 |#3| "failed") $) 17 T ELT)) (-3516 ((|#3| $) 14 T ELT))) +(((-1280 |#1| |#2| |#3|) (-10 -8 (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -3516 (|#3| |#1|)) (-15 -3623 ((-112) |#1|))) (-1281 |#2| |#3|) (-1080) (-1258 |#2|)) (T -1280)) +NIL +(-10 -8 (-15 -2818 ((-3 |#3| "failed") |#1|)) (-15 -3516 (|#3| |#1|)) (-15 -3623 ((-112) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 (-1113)) $) 86 T ELT)) (-3967 (((-1207) $) 118 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-421 (-578))) 113 T ELT) (($ $ (-421 (-578)) (-421 (-578))) 112 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|))) $) 119 T ELT)) (-1502 (($ $) 150 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 133 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) 178 (|has| |#1| (-376)) ELT)) (-2811 (($ $) 132 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) 168 (|has| |#1| (-376)) ELT)) (-1478 (($ $) 149 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|)))) 186 T ELT)) (-1528 (($ $) 148 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 135 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#2| "failed") $) 197 T ELT)) (-3516 ((|#2| $) 198 T ELT)) (-3154 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2858 (((-421 (-578)) $) 194 T ELT)) (-3166 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-3031 (($ (-421 (-578)) |#2|) 195 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 166 (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) 179 (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) 85 T ELT)) (-2551 (($) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-421 (-578)) $) 115 T ELT) (((-421 (-578)) $ (-421 (-578))) 114 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 131 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) 116 T ELT) (($ $ (-421 (-578))) 185 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 175 (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-421 (-578))) 73 T ELT) (($ $ (-1113) (-421 (-578))) 88 T ELT) (($ $ (-666 (-1113)) (-666 (-421 (-578)))) 87 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3864 (($ $) 157 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2389 (($ (-666 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-3848 ((|#2| $) 193 T ELT)) (-2908 (((-3 |#2| "failed") $) 191 T ELT)) (-3018 ((|#2| $) 192 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 184 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 183 (-2230 (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-578)))))) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 165 (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) 176 (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-421 (-578))) 110 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 167 (|has| |#1| (-376)) ELT)) (-3587 (($ $) 158 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) ELT)) (-1449 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-421 (-578))) 120 T ELT) (($ $ $) 96 (|has| (-421 (-578)) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-3683 (((-421 (-578)) $) 76 T ELT)) (-1541 (($ $) 147 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 136 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 137 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 138 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 84 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ |#2|) 196 T ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-421 (-578))) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-4369 ((|#1| $) 117 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1576 (($ $) 156 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 144 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-1552 (($ $) 155 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 143 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 154 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-421 (-578))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 153 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 141 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 152 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 140 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 151 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 139 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 130 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1281 |#1| |#2|) (-142) (-1080) (-1258 |t#1|)) (T -1281)) +((-3683 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1258 *3)) (-5 *2 (-421 (-578))))) (-3031 (*1 *1 *2 *3) (-12 (-5 *2 (-421 (-578))) (-4 *4 (-1080)) (-4 *1 (-1281 *4 *3)) (-4 *3 (-1258 *4)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1258 *3)) (-5 *2 (-421 (-578))))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1258 *3)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1258 *3)))) (-2908 (*1 *2 *1) (|partial| -12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1258 *3))))) +(-13 (-1279 |t#1|) (-1069 |t#2|) (-635 |t#2|) (-10 -8 (-15 -3031 ($ (-421 (-578)) |t#2|)) (-15 -2858 ((-421 (-578)) $)) (-15 -3848 (|t#2| $)) (-15 -3683 ((-421 (-578)) $)) (-15 -3018 (|t#2| $)) (-15 -2908 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-421 (-578))) . T) ((-25) . T) ((-38 #1=(-421 (-578))) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-578)))) ((-95) |has| |#1| (-38 (-421 (-578)))) ((-102) . T) ((-111 #1# #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-578)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-421 (-578)) (-1143)) ((-302) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-578)))) ((-570) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-668 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-739 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-949) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-578)))) ((-1069 |#2|) . T) ((-1082 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2230 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-578))))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-421 (-578)))) ((-1236) |has| |#1| (-38 (-421 (-578)))) ((-1248) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T) ((-1279 |#1|) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 104 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-421 (-578))) 116 T ELT) (($ $ (-421 (-578)) (-421 (-578))) 118 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|))) $) 54 T ELT)) (-1502 (($ $) 192 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 168 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) 188 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 164 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|)))) 65 T ELT)) (-1528 (($ $) 196 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 172 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) NIL T ELT)) (-3516 ((|#2| $) NIL T ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 85 T ELT)) (-2858 (((-421 (-578)) $) 13 T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3031 (($ (-421 (-578)) |#2|) 11 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) 74 T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-421 (-578)) $) 113 T ELT) (((-421 (-578)) $ (-421 (-578))) 114 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) 130 T ELT) (($ $ (-421 (-578))) 128 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-421 (-578))) 33 T ELT) (($ $ (-1113) (-421 (-578))) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-421 (-578)))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3864 (($ $) 162 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3848 ((|#2| $) 12 T ELT)) (-2908 (((-3 |#2| "failed") $) 44 T ELT)) (-3018 ((|#2| $) 45 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) 101 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 146 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 151 (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-421 (-578))) 122 T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3587 (($ $) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-421 (-578))) 108 T ELT) (($ $ $) 94 (|has| (-421 (-578)) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) 138 (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-3683 (((-421 (-578)) $) 16 T ELT)) (-1541 (($ $) 198 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 174 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 194 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 170 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 190 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 166 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 120 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-421 (-578))) 139 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-421 (-578))) 107 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 127 T CONST)) (-4369 ((|#1| $) 106 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) 204 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 180 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) 200 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 176 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 208 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 184 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-421 (-578))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 210 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 186 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 206 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 182 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 202 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 178 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 21 T CONST)) (-2379 (($) 17 T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT)) (-2384 (((-112) $ $) 72 T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-2472 (($ $ $) 76 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 82 T ELT) (($ $ (-578)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 158 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1282 |#1| |#2|) (-1281 |#1| |#2|) (-1080) (-1258 |#1|)) (T -1282)) +NIL +(-1281 |#1| |#2|) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 11 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-421 (-578))) NIL T ELT) (($ $ (-421 (-578)) (-421 (-578))) NIL T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|))) $) NIL T ELT)) (-1502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1457 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3034 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2732 (((-112) $ $) NIL (|has| |#1| (-376)) ELT)) (-1478 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-793) (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#1|)))) NIL T ELT)) (-1528 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-1262 |#1| |#2| |#3|) "failed") $) 19 T ELT) (((-3 (-1290 |#1| |#2| |#3|) "failed") $) 22 T ELT)) (-3516 (((-1262 |#1| |#2| |#3|) $) NIL T ELT) (((-1290 |#1| |#2| |#3|) $) NIL T ELT)) (-3154 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2858 (((-421 (-578)) $) 69 T ELT)) (-3166 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3031 (($ (-421 (-578)) (-1262 |#1| |#2| |#3|)) NIL T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) NIL (|has| |#1| (-376)) ELT)) (-2159 (((-112) $) NIL (|has| |#1| (-376)) ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-421 (-578)) $) NIL T ELT) (((-421 (-578)) $ (-421 (-578))) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) NIL T ELT) (($ $ (-421 (-578))) NIL T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-421 (-578))) 30 T ELT) (($ $ (-1113) (-421 (-578))) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-421 (-578)))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3864 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2389 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3848 (((-1262 |#1| |#2| |#3|) $) 72 T ELT)) (-2908 (((-3 (-1262 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-3018 (((-1262 |#1| |#2| |#3|) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3057 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 39 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) NIL (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) NIL (|has| |#1| (-376)) ELT)) (-2421 (($ (-666 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2800 (((-432 $) $) NIL (|has| |#1| (-376)) ELT)) (-3530 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2704 (($ $ (-421 (-578))) NIL T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) NIL (|has| |#1| (-376)) ELT)) (-3587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) ELT)) (-1449 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2436 ((|#1| $ (-421 (-578))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-578)) (-1143)) ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2031 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-3683 (((-421 (-578)) $) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) NIL T ELT)) (-2411 (((-886) $) 107 T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1262 |#1| |#2| |#3|)) 16 T ELT) (($ (-1290 |#1| |#2| |#3|)) 17 T ELT) (($ (-1294 |#2|)) 36 T ELT) (($ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT)) (-3708 ((|#1| $ (-421 (-578))) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) 12 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-421 (-578))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-578))))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 32 T CONST)) (-2379 (($) 26 T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-578)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 34 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-578)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1283 |#1| |#2| |#3|) (-13 (-1281 |#1| (-1262 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1290 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1283)) +((-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1283 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(-13 (-1281 |#1| (-1262 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1290 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 37 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL T ELT)) (-2987 (($ $) NIL T ELT)) (-3087 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 (-578) "failed") $) NIL (|has| (-1283 |#2| |#3| |#4|) (-1069 (-578))) ELT) (((-3 (-421 (-578)) "failed") $) NIL (|has| (-1283 |#2| |#3| |#4|) (-1069 (-421 (-578)))) ELT) (((-3 (-1283 |#2| |#3| |#4|) "failed") $) 22 T ELT)) (-3516 (((-578) $) NIL (|has| (-1283 |#2| |#3| |#4|) (-1069 (-578))) ELT) (((-421 (-578)) $) NIL (|has| (-1283 |#2| |#3| |#4|) (-1069 (-421 (-578)))) ELT) (((-1283 |#2| |#3| |#4|) $) NIL T ELT)) (-3136 (($ $) 41 T ELT)) (-3493 (((-3 $ "failed") $) 27 T ELT)) (-2111 (($ $) NIL (|has| (-1283 |#2| |#3| |#4|) (-466)) ELT)) (-2535 (($ $ (-1283 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) 11 T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ (-1283 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3937 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-2500 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-3611 (($ (-1 (-1283 |#2| |#3| |#4|) (-1283 |#2| |#3| |#4|)) $) NIL T ELT)) (-2016 (((-3 (-865 |#2|) "failed") $) 90 T ELT)) (-3097 (($ $) NIL T ELT)) (-3110 (((-1283 |#2| |#3| |#4|) $) 20 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3067 (((-112) $) NIL T ELT)) (-3080 (((-1283 |#2| |#3| |#4|) $) NIL T ELT)) (-3202 (((-3 $ "failed") $ (-1283 |#2| |#3| |#4|)) NIL (|has| (-1283 |#2| |#3| |#4|) (-570)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-3767 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1283 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-666 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $) 74 T ELT)) (-3683 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-4325 (((-1283 |#2| |#3| |#4|) $) NIL (|has| (-1283 |#2| |#3| |#4|) (-466)) ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ (-1283 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-578))) NIL (-2230 (|has| (-1283 |#2| |#3| |#4|) (-38 (-421 (-578)))) (|has| (-1283 |#2| |#3| |#4|) (-1069 (-421 (-578))))) ELT)) (-3839 (((-666 (-1283 |#2| |#3| |#4|)) $) NIL T ELT)) (-3708 (((-1283 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| (-1283 |#2| |#3| |#4|) (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-2364 (($ $ $ (-793)) NIL (|has| (-1283 |#2| |#3| |#4|) (-175)) ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-3138 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ (-1283 |#2| |#3| |#4|)) NIL (|has| (-1283 |#2| |#3| |#4|) (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1283 |#2| |#3| |#4|)) NIL T ELT) (($ (-1283 |#2| |#3| |#4|) $) NIL T ELT) (($ (-421 (-578)) $) NIL (|has| (-1283 |#2| |#3| |#4|) (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| (-1283 |#2| |#3| |#4|) (-38 (-421 (-578)))) ELT))) +(((-1284 |#1| |#2| |#3| |#4|) (-13 (-338 (-1283 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-570) (-10 -8 (-15 -2016 ((-3 (-865 |#2|) "failed") $)) (-15 -3767 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1283 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-666 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $)))) (-13 (-1069 (-578)) (-660 (-578)) (-466)) (-13 (-27) (-1233) (-444 |#1|)) (-1207) |#2|) (T -1284)) +((-2016 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) (-5 *2 (-865 *4)) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-444 *3))) (-14 *5 (-1207)) (-14 *6 *4))) (-3767 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1283 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-666 (-2 (|:| |k| (-421 (-578))) (|:| |c| *4)))))) (|:| |%type| (-1189)))) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-444 *3))) (-14 *5 (-1207)) (-14 *6 *4)))) +(-13 (-338 (-1283 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-570) (-10 -8 (-15 -2016 ((-3 (-865 |#2|) "failed") $)) (-15 -3767 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1283 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-666 (-2 (|:| |k| (-421 (-578))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $)))) +((-4120 ((|#2| $) 34 T ELT)) (-3933 ((|#2| $) 18 T ELT)) (-3841 (($ $) 53 T ELT)) (-3919 (($ $ (-578)) 85 T ELT)) (-1628 (((-112) $ (-793)) 46 T ELT)) (-4227 ((|#2| $ |#2|) 82 T ELT)) (-2466 ((|#2| $ |#2|) 78 T ELT)) (-2590 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 71 T ELT) (($ $ "rest" $) 75 T ELT) ((|#2| $ "last" |#2|) 73 T ELT)) (-3966 (($ $ (-666 $)) 81 T ELT)) (-3920 ((|#2| $) 17 T ELT)) (-4198 (($ $) NIL T ELT) (($ $ (-793)) 59 T ELT)) (-3528 (((-666 $) $) 31 T ELT)) (-2989 (((-112) $ $) 69 T ELT)) (-2363 (((-112) $ (-793)) 45 T ELT)) (-1719 (((-112) $ (-793)) 43 T ELT)) (-3821 (((-112) $) 33 T ELT)) (-2757 ((|#2| $) 25 T ELT) (($ $ (-793)) 64 T ELT)) (-2436 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-1368 (((-112) $) 23 T ELT)) (-4076 (($ $) 56 T ELT)) (-4436 (($ $) 86 T ELT)) (-3618 (((-793) $) 58 T ELT)) (-3931 (($ $) 57 T ELT)) (-3703 (($ $ $) 77 T ELT) (($ |#2| $) NIL T ELT)) (-4435 (((-666 $) $) 32 T ELT)) (-2384 (((-112) $ $) 67 T ELT)) (-3226 (((-793) $) 52 T ELT))) +(((-1285 |#1| |#2|) (-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -3919 (|#1| |#1| (-578))) (-15 -2590 (|#2| |#1| "last" |#2|)) (-15 -2466 (|#2| |#1| |#2|)) (-15 -2590 (|#1| |#1| "rest" |#1|)) (-15 -2590 (|#2| |#1| "first" |#2|)) (-15 -4436 (|#1| |#1|)) (-15 -4076 (|#1| |#1|)) (-15 -3618 ((-793) |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#2| |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2757 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "last")) (-15 -2757 (|#2| |#1|)) (-15 -4198 (|#1| |#1| (-793))) (-15 -2436 (|#1| |#1| "rest")) (-15 -4198 (|#1| |#1|)) (-15 -2436 (|#2| |#1| "first")) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -4227 (|#2| |#1| |#2|)) (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -3966 (|#1| |#1| (-666 |#1|))) (-15 -2989 ((-112) |#1| |#1|)) (-15 -1368 ((-112) |#1|)) (-15 -2436 (|#2| |#1| "value")) (-15 -4120 (|#2| |#1|)) (-15 -3821 ((-112) |#1|)) (-15 -3528 ((-666 |#1|) |#1|)) (-15 -4435 ((-666 |#1|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793)))) (-1286 |#2|) (-1248)) (T -1285)) +NIL +(-10 -8 (-15 -2384 ((-112) |#1| |#1|)) (-15 -3919 (|#1| |#1| (-578))) (-15 -2590 (|#2| |#1| "last" |#2|)) (-15 -2466 (|#2| |#1| |#2|)) (-15 -2590 (|#1| |#1| "rest" |#1|)) (-15 -2590 (|#2| |#1| "first" |#2|)) (-15 -4436 (|#1| |#1|)) (-15 -4076 (|#1| |#1|)) (-15 -3618 ((-793) |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3933 (|#2| |#1|)) (-15 -3920 (|#2| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2757 (|#1| |#1| (-793))) (-15 -2436 (|#2| |#1| "last")) (-15 -2757 (|#2| |#1|)) (-15 -4198 (|#1| |#1| (-793))) (-15 -2436 (|#1| |#1| "rest")) (-15 -4198 (|#1| |#1|)) (-15 -2436 (|#2| |#1| "first")) (-15 -3703 (|#1| |#2| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -4227 (|#2| |#1| |#2|)) (-15 -2590 (|#2| |#1| "value" |#2|)) (-15 -3966 (|#1| |#1| (-666 |#1|))) (-15 -2989 ((-112) |#1| |#1|)) (-15 -1368 ((-112) |#1|)) (-15 -2436 (|#2| |#1| "value")) (-15 -4120 (|#2| |#1|)) (-15 -3821 ((-112) |#1|)) (-15 -3528 ((-666 |#1|) |#1|)) (-15 -4435 ((-666 |#1|) |#1|)) (-15 -3226 ((-793) |#1|)) (-15 -1628 ((-112) |#1| (-793))) (-15 -2363 ((-112) |#1| (-793))) (-15 -1719 ((-112) |#1| (-793)))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-4120 ((|#1| $) 49 T ELT)) (-3933 ((|#1| $) 66 T ELT)) (-3841 (($ $) 68 T ELT)) (-3919 (($ $ (-578)) 53 (|has| $ (-6 -4501)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-4227 ((|#1| $ |#1|) 40 (|has| $ (-6 -4501)) ELT)) (-2509 (($ $ $) 57 (|has| $ (-6 -4501)) ELT)) (-2466 ((|#1| $ |#1|) 55 (|has| $ (-6 -4501)) ELT)) (-1983 ((|#1| $ |#1|) 59 (|has| $ (-6 -4501)) ELT)) (-2590 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4501)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4501)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4501)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4501)) ELT)) (-3966 (($ $ (-666 $)) 42 (|has| $ (-6 -4501)) ELT)) (-3920 ((|#1| $) 67 T ELT)) (-3534 (($) 7 T CONST)) (-4198 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-3528 (((-666 $) $) 51 T ELT)) (-2989 (((-112) $ $) 43 (|has| |#1| (-1131)) ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-1504 (((-666 |#1|) $) 46 T ELT)) (-3821 (((-112) $) 50 T ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-2757 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT)) (-1842 (((-578) $ $) 45 T ELT)) (-1368 (((-112) $) 47 T ELT)) (-4076 (($ $) 63 T ELT)) (-4436 (($ $) 60 (|has| $ (-6 -4501)) ELT)) (-3618 (((-793) $) 64 T ELT)) (-3931 (($ $) 65 T ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3979 (($ $) 13 T ELT)) (-3342 (($ $ $) 62 (|has| $ (-6 -4501)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4501)) ELT)) (-3703 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-4435 (((-666 $) $) 52 T ELT)) (-1849 (((-112) $ $) 44 (|has| |#1| (-1131)) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1286 |#1|) (-142) (-1248)) (T -1286)) +((-3703 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3703 (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) (-4198 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2436 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2757 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3931 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1248)) (-5 *2 (-793)))) (-4076 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3342 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3342 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-4436 (*1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-1983 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2590 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2509 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2590 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4501)) (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) (-2466 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-2590 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-578)) (|has| *1 (-6 -4501)) (-4 *1 (-1286 *3)) (-4 *3 (-1248))))) +(-13 (-1041 |t#1|) (-10 -8 (-15 -3703 ($ $ $)) (-15 -3703 ($ |t#1| $)) (-15 -4189 (|t#1| $)) (-15 -2436 (|t#1| $ "first")) (-15 -4189 ($ $ (-793))) (-15 -4198 ($ $)) (-15 -2436 ($ $ "rest")) (-15 -4198 ($ $ (-793))) (-15 -2757 (|t#1| $)) (-15 -2436 (|t#1| $ "last")) (-15 -2757 ($ $ (-793))) (-15 -3841 ($ $)) (-15 -3920 (|t#1| $)) (-15 -3933 (|t#1| $)) (-15 -3931 ($ $)) (-15 -3618 ((-793) $)) (-15 -4076 ($ $)) (IF (|has| $ (-6 -4501)) (PROGN (-15 -3342 ($ $ $)) (-15 -3342 ($ $ |t#1|)) (-15 -4436 ($ $)) (-15 -1983 (|t#1| $ |t#1|)) (-15 -2590 (|t#1| $ "first" |t#1|)) (-15 -2509 ($ $ $)) (-15 -2590 ($ $ "rest" $)) (-15 -2466 (|t#1| $ |t#1|)) (-15 -2590 (|t#1| $ "last" |t#1|)) (-15 -3919 ($ $ (-578)))) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-632 (-886)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-1041 |#1|) . T) ((-1131) |has| |#1| (-1131)) ((-1248) . T)) +((-3611 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1287 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3611 (|#4| (-1 |#2| |#1|) |#3|))) (-1080) (-1080) (-1289 |#1|) (-1289 |#2|)) (T -1287)) +((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-1289 *6)) (-5 *1 (-1287 *5 *6 *4 *2)) (-4 *4 (-1289 *5))))) +(-10 -7 (-15 -3611 (|#4| (-1 |#2| |#1|) |#3|))) +((-3623 (((-112) $) 17 T ELT)) (-1502 (($ $) 105 T ELT)) (-1372 (($ $) 81 T ELT)) (-1478 (($ $) 101 T ELT)) (-1349 (($ $) 77 T ELT)) (-1528 (($ $) 109 T ELT)) (-1392 (($ $) 85 T ELT)) (-3864 (($ $) 75 T ELT)) (-3587 (($ $) 73 T ELT)) (-1541 (($ $) 111 T ELT)) (-1403 (($ $) 87 T ELT)) (-1515 (($ $) 107 T ELT)) (-1382 (($ $) 83 T ELT)) (-1489 (($ $) 103 T ELT)) (-1361 (($ $) 79 T ELT)) (-2411 (((-886) $) 61 T ELT) (($ (-578)) NIL T ELT) (($ (-421 (-578))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-1576 (($ $) 117 T ELT)) (-1436 (($ $) 93 T ELT)) (-1552 (($ $) 113 T ELT)) (-1414 (($ $) 89 T ELT)) (-1598 (($ $) 121 T ELT)) (-1456 (($ $) 97 T ELT)) (-3502 (($ $) 123 T ELT)) (-1467 (($ $) 99 T ELT)) (-1587 (($ $) 119 T ELT)) (-1447 (($ $) 95 T ELT)) (-1564 (($ $) 115 T ELT)) (-1424 (($ $) 91 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-421 (-578))) 71 T ELT))) +(((-1288 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-421 (-578)))) (-15 -1372 (|#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1382 (|#1| |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1424 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1414 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -1598 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3587 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| (-578))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950))) (-15 -3623 ((-112) |#1|)) (-15 -2411 ((-886) |#1|))) (-1289 |#2|) (-1080)) (T -1288)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-421 (-578)))) (-15 -1372 (|#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -1392 (|#1| |#1|)) (-15 -1403 (|#1| |#1|)) (-15 -1382 (|#1| |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1424 (|#1| |#1|)) (-15 -1447 (|#1| |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1414 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -1541 (|#1| |#1|)) (-15 -1528 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -1598 (|#1| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3587 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2411 (|#1| |#2|)) (-15 -2411 (|#1| |#1|)) (-15 -2411 (|#1| (-421 (-578)))) (-15 -2411 (|#1| (-578))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-950))) (-15 -3623 ((-112) |#1|)) (-15 -2411 ((-886) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-2949 (((-666 (-1113)) $) 86 T ELT)) (-3967 (((-1207) $) 118 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 63 (|has| |#1| (-570)) ELT)) (-2987 (($ $) 64 (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 66 (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-793)) 113 T ELT) (($ $ (-793) (-793)) 112 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 119 T ELT)) (-1502 (($ $) 150 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) 133 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-2811 (($ $) 132 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1478 (($ $) 149 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) 134 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 170 T ELT) (($ (-1188 |#1|)) 168 T ELT)) (-1528 (($ $) 148 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) 135 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) 18 T CONST)) (-3136 (($ $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-2790 (($ $) 167 T ELT)) (-1769 (((-981 |#1|) $ (-793)) 165 T ELT) (((-981 |#1|) $ (-793) (-793)) 164 T ELT)) (-1401 (((-112) $) 85 T ELT)) (-2551 (($) 160 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-793) $) 115 T ELT) (((-793) $ (-793)) 114 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2812 (($ $ (-578)) 131 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4196 (($ $ (-950)) 116 T ELT)) (-3939 (($ (-1 |#1| (-578)) $) 166 T ELT)) (-1796 (((-112) $) 74 T ELT)) (-2925 (($ |#1| (-793)) 73 T ELT) (($ $ (-1113) (-793)) 88 T ELT) (($ $ (-666 (-1113)) (-666 (-793))) 87 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3864 (($ $) 157 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) 77 T ELT)) (-3110 ((|#1| $) 78 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4371 (($ $) 162 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 161 (-2230 (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-988)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-578)))))) ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2704 (($ $ (-793)) 110 T ELT)) (-3202 (((-3 $ "failed") $ $) 62 (|has| |#1| (-570)) ELT)) (-3587 (($ $) 158 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3364 (((-1188 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-2436 ((|#1| $ (-793)) 120 T ELT) (($ $ $) 96 (|has| (-793) (-1143)) ELT)) (-2031 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-666 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-3683 (((-793) $) 76 T ELT)) (-1541 (($ $) 147 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) 136 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) 146 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) 137 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) 145 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) 138 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 84 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ (-421 (-578))) 69 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) 61 (|has| |#1| (-570)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-3839 (((-1188 |#1|) $) 169 T ELT)) (-3708 ((|#1| $ (-793)) 71 T ELT)) (-2213 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-3753 (((-793)) 32 T CONST)) (-4369 ((|#1| $) 117 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-1576 (($ $) 156 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) 144 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) 65 (|has| |#1| (-570)) ELT)) (-1552 (($ $) 155 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) 143 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) 154 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) 142 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-793)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) 153 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) 141 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) 152 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) 140 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) 151 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) 139 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1676 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-666 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ |#1|) 163 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 130 (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-578)) $) 68 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) 67 (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1289 |#1|) (-142) (-1080)) (T -1289)) +((-4449 (*1 *1 *2) (-12 (-5 *2 (-1188 (-2 (|:| |k| (-793)) (|:| |c| *3)))) (-4 *3 (-1080)) (-4 *1 (-1289 *3)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1289 *3)) (-4 *3 (-1080)) (-5 *2 (-1188 *3)))) (-4449 (*1 *1 *2) (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-4 *1 (-1289 *3)))) (-2790 (*1 *1 *1) (-12 (-4 *1 (-1289 *2)) (-4 *2 (-1080)))) (-3939 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-578))) (-4 *1 (-1289 *3)) (-4 *3 (-1080)))) (-1769 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1289 *4)) (-4 *4 (-1080)) (-5 *2 (-981 *4)))) (-1769 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1289 *4)) (-4 *4 (-1080)) (-5 *2 (-981 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-4371 (*1 *1 *1) (-12 (-4 *1 (-1289 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578)))))) (-4371 (*1 *1 *1 *2) (-2230 (-12 (-5 *2 (-1207)) (-4 *1 (-1289 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-578))) (-4 *3 (-988)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-578)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1289 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -2949 ((-666 *2) *3))) (|has| *3 (-15 -4371 (*3 *3 *2))) (-4 *3 (-38 (-421 (-578))))))))) +(-13 (-1276 |t#1| (-793)) (-10 -8 (-15 -4449 ($ (-1188 (-2 (|:| |k| (-793)) (|:| |c| |t#1|))))) (-15 -3839 ((-1188 |t#1|) $)) (-15 -4449 ($ (-1188 |t#1|))) (-15 -2790 ($ $)) (-15 -3939 ($ (-1 |t#1| (-578)) $)) (-15 -1769 ((-981 |t#1|) $ (-793))) (-15 -1769 ((-981 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-578)))) (PROGN (-15 -4371 ($ $)) (IF (|has| |t#1| (-15 -4371 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -2949 ((-666 (-1207)) |t#1|))) (-15 -4371 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-988)) (IF (|has| |t#1| (-29 (-578))) (-15 -4371 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-793)) . T) ((-25) . T) ((-38 #1=(-421 (-578))) |has| |#1| (-38 (-421 (-578)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-570)) ((-35) |has| |#1| (-38 (-421 (-578)))) ((-95) |has| |#1| (-38 (-421 (-578)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-578)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-578)))) ((-635 (-578)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-570)) ((-632 (-886)) . T) ((-175) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-296) |has| |#1| (-38 (-421 (-578)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-793) (-1143)) ((-302) |has| |#1| (-570)) ((-507) |has| |#1| (-38 (-421 (-578)))) ((-570) |has| |#1| (-570)) ((-668 #1#) |has| |#1| (-38 (-421 (-578)))) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-578)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-578)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-570)) ((-739 #1#) |has| |#1| (-38 (-421 (-578)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-570)) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-1033) |has| |#1| (-38 (-421 (-578)))) ((-1082 #1#) |has| |#1| (-38 (-421 (-578)))) ((-1082 |#1|) . T) ((-1082 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-578)))) ((-1087 |#1|) . T) ((-1087 $) -2230 (|has| |#1| (-570)) (|has| |#1| (-175))) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1233) |has| |#1| (-38 (-421 (-578)))) ((-1236) |has| |#1| (-38 (-421 (-578)))) ((-1248) . T) ((-1276 |#1| #0#) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-2949 (((-666 (-1113)) $) NIL T ELT)) (-3967 (((-1207) $) 90 T ELT)) (-3147 (((-1271 |#2| |#1|) $ (-793)) 73 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) NIL (|has| |#1| (-570)) ELT)) (-2987 (($ $) NIL (|has| |#1| (-570)) ELT)) (-3087 (((-112) $) 142 (|has| |#1| (-570)) ELT)) (-2140 (($ $ (-793)) 127 T ELT) (($ $ (-793) (-793)) 130 T ELT)) (-3761 (((-1188 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 43 T ELT)) (-1502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1372 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2811 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1478 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1349 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4449 (($ (-1188 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1188 |#1|)) NIL T ELT)) (-1528 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1392 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3534 (($) NIL T CONST)) (-2328 (($ $) 134 T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-2790 (($ $) 140 T ELT)) (-1769 (((-981 |#1|) $ (-793)) 63 T ELT) (((-981 |#1|) $ (-793) (-793)) 65 T ELT)) (-1401 (((-112) $) NIL T ELT)) (-2551 (($) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4059 (((-793) $) NIL T ELT) (((-793) $ (-793)) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2835 (($ $) 117 T ELT)) (-2812 (($ $ (-578)) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2450 (($ (-578) (-578) $) 136 T ELT)) (-4196 (($ $ (-950)) 139 T ELT)) (-3939 (($ (-1 |#1| (-578)) $) 111 T ELT)) (-1796 (((-112) $) NIL T ELT)) (-2925 (($ |#1| (-793)) 16 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-666 (-1113)) (-666 (-793))) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) 98 T ELT)) (-3864 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3097 (($ $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-1617 (($ $) 115 T ELT)) (-1804 (($ $) 113 T ELT)) (-4341 (($ (-578) (-578) $) 138 T ELT)) (-4371 (($ $) 150 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-1207)) 156 (-2230 (-12 (|has| |#1| (-15 -4371 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -2949 ((-666 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-578))))) (-12 (|has| |#1| (-29 (-578))) (|has| |#1| (-38 (-421 (-578)))) (|has| |#1| (-988)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 151 (|has| |#1| (-38 (-421 (-578)))) ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2120 (($ $ (-578) (-578)) 121 T ELT)) (-2704 (($ $ (-793)) 123 T ELT)) (-3202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-570)) ELT)) (-3587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2100 (($ $) 119 T ELT)) (-3364 (((-1188 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-2436 ((|#1| $ (-793)) 95 T ELT) (($ $ $) 132 (|has| (-793) (-1143)) ELT)) (-2031 (($ $ (-1207)) 108 (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 102 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) 103 T ELT)) (-3683 (((-793) $) NIL T ELT)) (-1541 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1403 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1515 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1382 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1489 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1361 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2117 (($ $) 125 T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) 26 T ELT) (($ (-421 (-578))) 148 (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $) NIL (|has| |#1| (-570)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1271 |#2| |#1|)) 81 T ELT) (($ (-1294 |#2|)) 22 T ELT)) (-3839 (((-1188 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ (-793)) 94 T ELT)) (-2213 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-3753 (((-793)) NIL T CONST)) (-4369 ((|#1| $) 91 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1576 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1436 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3138 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-1552 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1414 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1598 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1456 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-3909 ((|#1| $ (-793)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -2411 (|#1| (-1207))))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1467 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1587 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1447 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1564 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-1424 (($ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (-2368 (($) 18 T CONST)) (-2379 (($) 13 T CONST)) (-1676 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-666 (-1207)) (-666 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-2495 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-2472 (($ $ $) 20 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 145 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 106 T ELT) (($ (-421 (-578)) $) NIL (|has| |#1| (-38 (-421 (-578)))) ELT) (($ $ (-421 (-578))) NIL (|has| |#1| (-38 (-421 (-578)))) ELT))) +(((-1290 |#1| |#2| |#3|) (-13 (-1289 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1271 |#2| |#1|))) (-15 -3147 ((-1271 |#2| |#1|) $ (-793))) (-15 -2411 ($ (-1294 |#2|))) (-15 -1804 ($ $)) (-15 -1617 ($ $)) (-15 -2835 ($ $)) (-15 -2100 ($ $)) (-15 -2120 ($ $ (-578) (-578))) (-15 -2328 ($ $)) (-15 -2450 ($ (-578) (-578) $)) (-15 -4341 ($ (-578) (-578) $)) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1290)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-1271 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1290 *3 *4 *5)))) (-3147 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1271 *5 *4)) (-5 *1 (-1290 *4 *5 *6)) (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-1804 (*1 *1 *1) (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-1617 (*1 *1 *1) (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-2835 (*1 *1 *1) (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-2120 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-2328 (*1 *1 *1) (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-2450 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-4341 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(-13 (-1289 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -2411 ($ (-1271 |#2| |#1|))) (-15 -3147 ((-1271 |#2| |#1|) $ (-793))) (-15 -2411 ($ (-1294 |#2|))) (-15 -1804 ($ $)) (-15 -1617 ($ $)) (-15 -2835 ($ $)) (-15 -2100 ($ $)) (-15 -2120 ($ $ (-578) (-578))) (-15 -2328 ($ $)) (-15 -2450 ($ (-578) (-578) $)) (-15 -4341 ($ (-578) (-578) $)) (IF (|has| |#1| (-38 (-421 (-578)))) (-15 -4371 ($ $ (-1294 |#2|))) |%noBranch|))) +((-3134 (((-1 (-1188 |#1|) (-666 (-1188 |#1|))) (-1 |#2| (-666 |#2|))) 24 T ELT)) (-3581 (((-1 (-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-2998 (((-1 (-1188 |#1|) (-1188 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3070 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3301 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3637 ((|#2| (-1 |#2| (-666 |#2|)) (-666 |#1|)) 60 T ELT)) (-2977 (((-666 |#2|) (-666 |#1|) (-666 (-1 |#2| (-666 |#2|)))) 66 T ELT)) (-3712 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1291 |#1| |#2|) (-10 -7 (-15 -2998 ((-1 (-1188 |#1|) (-1188 |#1|)) (-1 |#2| |#2|))) (-15 -3581 ((-1 (-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3134 ((-1 (-1188 |#1|) (-666 (-1188 |#1|))) (-1 |#2| (-666 |#2|)))) (-15 -3712 (|#2| |#2| |#2|)) (-15 -3301 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3070 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3637 (|#2| (-1 |#2| (-666 |#2|)) (-666 |#1|))) (-15 -2977 ((-666 |#2|) (-666 |#1|) (-666 (-1 |#2| (-666 |#2|)))))) (-38 (-421 (-578))) (-1289 |#1|)) (T -1291)) +((-2977 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 (-1 *6 (-666 *6)))) (-4 *5 (-38 (-421 (-578)))) (-4 *6 (-1289 *5)) (-5 *2 (-666 *6)) (-5 *1 (-1291 *5 *6)))) (-3637 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-666 *2))) (-5 *4 (-666 *5)) (-4 *5 (-38 (-421 (-578)))) (-4 *2 (-1289 *5)) (-5 *1 (-1291 *5 *2)))) (-3070 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1289 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-421 (-578)))))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1289 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-421 (-578)))))) (-3712 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1291 *3 *2)) (-4 *2 (-1289 *3)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-666 *5))) (-4 *5 (-1289 *4)) (-4 *4 (-38 (-421 (-578)))) (-5 *2 (-1 (-1188 *4) (-666 (-1188 *4)))) (-5 *1 (-1291 *4 *5)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1289 *4)) (-4 *4 (-38 (-421 (-578)))) (-5 *2 (-1 (-1188 *4) (-1188 *4) (-1188 *4))) (-5 *1 (-1291 *4 *5)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1289 *4)) (-4 *4 (-38 (-421 (-578)))) (-5 *2 (-1 (-1188 *4) (-1188 *4))) (-5 *1 (-1291 *4 *5))))) +(-10 -7 (-15 -2998 ((-1 (-1188 |#1|) (-1188 |#1|)) (-1 |#2| |#2|))) (-15 -3581 ((-1 (-1188 |#1|) (-1188 |#1|) (-1188 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3134 ((-1 (-1188 |#1|) (-666 (-1188 |#1|))) (-1 |#2| (-666 |#2|)))) (-15 -3712 (|#2| |#2| |#2|)) (-15 -3301 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3070 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3637 (|#2| (-1 |#2| (-666 |#2|)) (-666 |#1|))) (-15 -2977 ((-666 |#2|) (-666 |#1|) (-666 (-1 |#2| (-666 |#2|)))))) +((-3745 ((|#2| |#4| (-793)) 31 T ELT)) (-3449 ((|#4| |#2|) 26 T ELT)) (-4368 ((|#4| (-421 |#2|)) 49 (|has| |#1| (-570)) ELT)) (-2198 (((-1 |#4| (-666 |#4|)) |#3|) 43 T ELT))) +(((-1292 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3449 (|#4| |#2|)) (-15 -3745 (|#2| |#4| (-793))) (-15 -2198 ((-1 |#4| (-666 |#4|)) |#3|)) (IF (|has| |#1| (-570)) (-15 -4368 (|#4| (-421 |#2|))) |%noBranch|)) (-1080) (-1274 |#1|) (-678 |#2|) (-1289 |#1|)) (T -1292)) +((-4368 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-570)) (-4 *4 (-1080)) (-4 *2 (-1289 *4)) (-5 *1 (-1292 *4 *5 *6 *2)) (-4 *6 (-678 *5)))) (-2198 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-1274 *4)) (-5 *2 (-1 *6 (-666 *6))) (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-1289 *4)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-4 *2 (-1274 *5)) (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-678 *2)) (-4 *3 (-1289 *5)))) (-3449 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *3 (-1274 *4)) (-4 *2 (-1289 *4)) (-5 *1 (-1292 *4 *3 *5 *2)) (-4 *5 (-678 *3))))) +(-10 -7 (-15 -3449 (|#4| |#2|)) (-15 -3745 (|#2| |#4| (-793))) (-15 -2198 ((-1 |#4| (-666 |#4|)) |#3|)) (IF (|has| |#1| (-570)) (-15 -4368 (|#4| (-421 |#2|))) |%noBranch|)) +NIL +(((-1293) (-142)) (T -1293)) +NIL +(-13 (-10 -7 (-6 -3874))) +((-3213 (((-112) $ $) NIL T ELT)) (-3967 (((-1207)) 12 T ELT)) (-2617 (((-1189) $) 18 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 11 T ELT) (((-1207) $) 8 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 15 T ELT))) +(((-1294 |#1|) (-13 (-1131) (-632 (-1207)) (-10 -8 (-15 -2411 ((-1207) $)) (-15 -3967 ((-1207))))) (-1207)) (T -1294)) +((-2411 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))) (-3967 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2)))) +(-13 (-1131) (-632 (-1207)) (-10 -8 (-15 -2411 ((-1207) $)) (-15 -3967 ((-1207))))) +((-1526 (($ (-793)) 19 T ELT)) (-2360 (((-711 |#2|) $ $) 41 T ELT)) (-1664 ((|#2| $) 51 T ELT)) (-3492 ((|#2| $) 50 T ELT)) (-1406 ((|#2| $ $) 36 T ELT)) (-4431 (($ $ $) 47 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-578) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1295 |#1| |#2|) (-10 -8 (-15 -1664 (|#2| |#1|)) (-15 -3492 (|#2| |#1|)) (-15 -4431 (|#1| |#1| |#1|)) (-15 -2360 ((-711 |#2|) |#1| |#1|)) (-15 -1406 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -1526 (|#1| (-793))) (-15 -2472 (|#1| |#1| |#1|))) (-1296 |#2|) (-1248)) (T -1295)) +NIL +(-10 -8 (-15 -1664 (|#2| |#1|)) (-15 -3492 (|#2| |#1|)) (-15 -4431 (|#1| |#1| |#1|)) (-15 -2360 ((-711 |#2|) |#1| |#1|)) (-15 -1406 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-578) |#1|)) (-15 -2484 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -1526 (|#1| (-793))) (-15 -2472 (|#1| |#1| |#1|))) +((-3213 (((-112) $ $) 20 (|has| |#1| (-102)) ELT)) (-1526 (($ (-793)) 115 (|has| |#1| (-23)) ELT)) (-1794 (((-1303) $ (-578) (-578)) 41 (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) 101 T ELT) (((-112) $) 95 (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4501)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4501))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) 8 T ELT)) (-2590 ((|#1| $ (-578) |#1|) 53 (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) 60 (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4500)) ELT)) (-3534 (($) 7 T CONST)) (-1464 (($ $) 93 (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) 103 T ELT)) (-3776 (($ $) 80 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2737 (($ |#1| $) 79 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) 54 (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) 52 T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) 100 T ELT) (((-578) |#1| $) 99 (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) 98 (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) 31 (|has| $ (-6 -4500)) ELT)) (-2360 (((-711 |#1|) $ $) 108 (|has| |#1| (-1080)) ELT)) (-3749 (($ (-793) |#1|) 70 T ELT)) (-2363 (((-112) $ (-793)) 9 T ELT)) (-4314 (((-578) $) 44 (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) 30 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-2316 (((-578) $) 45 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1664 ((|#1| $) 105 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1719 (((-112) $ (-793)) 10 T ELT)) (-3492 ((|#1| $) 106 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-2617 (((-1189) $) 23 (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) 62 T ELT) (($ $ $ (-578)) 61 T ELT)) (-4030 (((-666 (-578)) $) 47 T ELT)) (-3023 (((-112) (-578) $) 48 T ELT)) (-4313 (((-1151) $) 22 (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) 43 (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73 T ELT)) (-4291 (($ $ |#1|) 42 (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) 14 T ELT)) (-4179 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) 49 T ELT)) (-4186 (((-112) $) 11 T ELT)) (-1696 (($) 12 T ELT)) (-2436 ((|#1| $ (-578) |#1|) 51 T ELT) ((|#1| $ (-578)) 50 T ELT) (($ $ (-1265 (-578))) 71 T ELT)) (-1406 ((|#1| $ $) 109 (|has| |#1| (-1080)) ELT)) (-1705 (($ $ (-578)) 64 T ELT) (($ $ (-1265 (-578))) 63 T ELT)) (-4431 (($ $ $) 107 (|has| |#1| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1131)) (|has| $ (-6 -4500))) ELT)) (-3751 (($ $ $ (-578)) 94 (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) 13 T ELT)) (-3343 (((-550) $) 81 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 72 T ELT)) (-3703 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-666 $)) 66 T ELT)) (-2411 (((-886) $) 18 (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) 21 (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) 87 (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) 89 (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) 19 (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) 88 (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) 90 (|has| |#1| (-871)) ELT)) (-2484 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-578) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-748)) ELT) (($ $ |#1|) 110 (|has| |#1| (-748)) ELT)) (-3226 (((-793) $) 6 (|has| $ (-6 -4500)) ELT))) +(((-1296 |#1|) (-142) (-1248)) (T -1296)) +((-2472 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-25)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1248)))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-21)))) (-2484 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-4 *1 (-1296 *3)) (-4 *3 (-1248)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-748)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-748)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1080)))) (-2360 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1248)) (-4 *3 (-1080)) (-5 *2 (-711 *3)))) (-4431 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1080)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1033)) (-4 *2 (-1080)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1033)) (-4 *2 (-1080))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2472 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1526 ($ (-793))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2484 ($ $)) (-15 -2484 ($ $ $)) (-15 * ($ (-578) $))) |%noBranch|) (IF (|has| |t#1| (-748)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1080)) (PROGN (-15 -1406 (|t#1| $ $)) (-15 -2360 ((-711 |t#1|) $ $)) (-15 -4431 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1033)) (IF (|has| |t#1| (-1080)) (PROGN (-15 -3492 (|t#1| $)) (-15 -1664 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-886)) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871)) (|has| |#1| (-632 (-886)))) ((-153 |#1|) . T) ((-633 (-550)) |has| |#1| (-633 (-550))) ((-298 #0=(-578) |#1|) . T) ((-298 (-1265 (-578)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-386 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1131) -2230 (|has| |#1| (-1131)) (|has| |#1| (-871))) ((-1248) . T)) +((-4315 (((-1298 |#2|) (-1 |#2| |#1| |#2|) (-1298 |#1|) |#2|) 13 T ELT)) (-2512 ((|#2| (-1 |#2| |#1| |#2|) (-1298 |#1|) |#2|) 15 T ELT)) (-3611 (((-3 (-1298 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1298 |#1|)) 30 T ELT) (((-1298 |#2|) (-1 |#2| |#1|) (-1298 |#1|)) 18 T ELT))) +(((-1297 |#1| |#2|) (-10 -7 (-15 -4315 ((-1298 |#2|) (-1 |#2| |#1| |#2|) (-1298 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-1298 |#1|) |#2|)) (-15 -3611 ((-1298 |#2|) (-1 |#2| |#1|) (-1298 |#1|))) (-15 -3611 ((-3 (-1298 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1298 |#1|)))) (-1248) (-1248)) (T -1297)) +((-3611 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1298 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1298 *6)) (-5 *1 (-1297 *5 *6)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1298 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1298 *6)) (-5 *1 (-1297 *5 *6)))) (-2512 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1298 *5)) (-4 *5 (-1248)) (-4 *2 (-1248)) (-5 *1 (-1297 *5 *2)))) (-4315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1298 *6)) (-4 *6 (-1248)) (-4 *5 (-1248)) (-5 *2 (-1298 *5)) (-5 *1 (-1297 *6 *5))))) +(-10 -7 (-15 -4315 ((-1298 |#2|) (-1 |#2| |#1| |#2|) (-1298 |#1|) |#2|)) (-15 -2512 (|#2| (-1 |#2| |#1| |#2|) (-1298 |#1|) |#2|)) (-15 -3611 ((-1298 |#2|) (-1 |#2| |#1|) (-1298 |#1|))) (-15 -3611 ((-3 (-1298 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1298 |#1|)))) +((-3213 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-1526 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-2021 (($ (-666 |#1|)) 11 T ELT)) (-1794 (((-1303) $ (-578) (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-2442 (((-112) (-1 (-112) |#1| |#1|) $) NIL T ELT) (((-112) $) NIL (|has| |#1| (-871)) ELT)) (-4101 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4501)) (|has| |#1| (-871))) ELT)) (-2042 (($ (-1 (-112) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-2590 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT) ((|#1| $ (-1265 (-578)) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-4233 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3534 (($) NIL T CONST)) (-1464 (($ $) NIL (|has| $ (-6 -4501)) ELT)) (-1540 (($ $) NIL T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2737 (($ |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2512 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4500)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3450 ((|#1| $ (-578) |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-3382 ((|#1| $ (-578)) NIL T ELT)) (-3887 (((-578) (-1 (-112) |#1|) $) NIL T ELT) (((-578) |#1| $) NIL (|has| |#1| (-1131)) ELT) (((-578) |#1| $ (-578)) NIL (|has| |#1| (-1131)) ELT)) (-2729 (((-666 |#1|) $) 16 (|has| $ (-6 -4500)) ELT)) (-2360 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-3749 (($ (-793) |#1|) NIL T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-4314 (((-578) $) NIL (|has| (-578) (-871)) ELT)) (-1345 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3176 (($ (-1 (-112) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1441 (((-666 |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-2316 (((-578) $) 12 (|has| (-578) (-871)) ELT)) (-3667 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3439 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1664 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-3492 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-2617 (((-1189) $) NIL (|has| |#1| (-1131)) ELT)) (-4273 (($ |#1| $ (-578)) NIL T ELT) (($ $ $ (-578)) NIL T ELT)) (-4030 (((-666 (-578)) $) NIL T ELT)) (-3023 (((-112) (-578) $) NIL T ELT)) (-4313 (((-1151) $) NIL (|has| |#1| (-1131)) ELT)) (-4189 ((|#1| $) NIL (|has| (-578) (-871)) ELT)) (-3668 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL T ELT)) (-4291 (($ $ |#1|) NIL (|has| $ (-6 -4501)) ELT)) (-2808 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 (-306 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-306 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT) (($ $ (-666 |#1|) (-666 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4179 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-4322 (((-666 |#1|) $) NIL T ELT)) (-4186 (((-112) $) NIL T ELT)) (-1696 (($) NIL T ELT)) (-2436 ((|#1| $ (-578) |#1|) NIL T ELT) ((|#1| $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-1406 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-1705 (($ $ (-578)) NIL T ELT) (($ $ (-1265 (-578))) NIL T ELT)) (-4431 (($ $ $) NIL (|has| |#1| (-1080)) ELT)) (-4324 (((-793) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#1| (-1131))) ELT)) (-3751 (($ $ $ (-578)) NIL (|has| $ (-6 -4501)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) 20 (|has| |#1| (-633 (-550))) ELT)) (-2423 (($ (-666 |#1|)) 10 T ELT)) (-3703 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-666 $)) NIL T ELT)) (-2411 (((-886) $) NIL (|has| |#1| (-632 (-886))) ELT)) (-2876 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-3673 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4500)) ELT)) (-2441 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2416 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2384 (((-112) $ $) NIL (|has| |#1| (-102)) ELT)) (-2429 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2404 (((-112) $ $) NIL (|has| |#1| (-871)) ELT)) (-2484 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2472 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-578) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1298 |#1|) (-13 (-1296 |#1|) (-10 -8 (-15 -2021 ($ (-666 |#1|))))) (-1248)) (T -1298)) +((-2021 (*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-1298 *3))))) +(-13 (-1296 |#1|) (-10 -8 (-15 -2021 ($ (-666 |#1|))))) +((-3213 (((-112) $ $) NIL T ELT)) (-1428 (((-1189) $ (-1189)) 107 T ELT) (((-1189) $ (-1189) (-1189)) 105 T ELT) (((-1189) $ (-1189) (-666 (-1189))) 104 T ELT)) (-2797 (($) 69 T ELT)) (-3826 (((-1303) $ (-482) (-950)) 54 T ELT)) (-3940 (((-1303) $ (-950) (-1189)) 89 T ELT) (((-1303) $ (-950) (-898)) 90 T ELT)) (-1941 (((-1303) $ (-950) (-392) (-392)) 57 T ELT)) (-3379 (((-1303) $ (-1189)) 84 T ELT)) (-1858 (((-1303) $ (-950) (-1189)) 94 T ELT)) (-3803 (((-1303) $ (-950) (-392) (-392)) 58 T ELT)) (-3078 (((-1303) $ (-950) (-950)) 55 T ELT)) (-1407 (((-1303) $) 85 T ELT)) (-3613 (((-1303) $ (-950) (-1189)) 93 T ELT)) (-4282 (((-1303) $ (-482) (-950)) 41 T ELT)) (-2046 (((-1303) $ (-950) (-1189)) 92 T ELT)) (-1934 (((-666 (-272)) $) 29 T ELT) (($ $ (-666 (-272))) 30 T ELT)) (-3206 (((-1303) $ (-793) (-793)) 52 T ELT)) (-4138 (($ $) 70 T ELT) (($ (-482) (-666 (-272))) 71 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3173 (((-578) $) 48 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4123 (((-1298 (-3 (-482) "undefined")) $) 47 T ELT)) (-3221 (((-1298 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2046 (-578)) (|:| -2264 (-578)) (|:| |spline| (-578)) (|:| -1607 (-578)) (|:| |axesColor| (-898)) (|:| -3940 (-578)) (|:| |unitsColor| (-898)) (|:| |showing| (-578)))) $) 46 T ELT)) (-4004 (((-1303) $ (-950) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-898) (-578) (-898) (-578)) 83 T ELT)) (-2817 (((-666 (-972 (-229))) $) NIL T ELT)) (-1527 (((-482) $ (-950)) 43 T ELT)) (-2164 (((-1303) $ (-793) (-793) (-950) (-950)) 50 T ELT)) (-2568 (((-1303) $ (-1189)) 95 T ELT)) (-2264 (((-1303) $ (-950) (-1189)) 91 T ELT)) (-2411 (((-886) $) 102 T ELT)) (-1625 (((-1303) $) 96 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1607 (((-1303) $ (-950) (-1189)) 87 T ELT) (((-1303) $ (-950) (-898)) 88 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1299) (-13 (-1131) (-10 -8 (-15 -2817 ((-666 (-972 (-229))) $)) (-15 -2797 ($)) (-15 -4138 ($ $)) (-15 -1934 ((-666 (-272)) $)) (-15 -1934 ($ $ (-666 (-272)))) (-15 -4138 ($ (-482) (-666 (-272)))) (-15 -4004 ((-1303) $ (-950) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-898) (-578) (-898) (-578))) (-15 -3221 ((-1298 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2046 (-578)) (|:| -2264 (-578)) (|:| |spline| (-578)) (|:| -1607 (-578)) (|:| |axesColor| (-898)) (|:| -3940 (-578)) (|:| |unitsColor| (-898)) (|:| |showing| (-578)))) $)) (-15 -4123 ((-1298 (-3 (-482) "undefined")) $)) (-15 -3379 ((-1303) $ (-1189))) (-15 -4282 ((-1303) $ (-482) (-950))) (-15 -1527 ((-482) $ (-950))) (-15 -1607 ((-1303) $ (-950) (-1189))) (-15 -1607 ((-1303) $ (-950) (-898))) (-15 -3940 ((-1303) $ (-950) (-1189))) (-15 -3940 ((-1303) $ (-950) (-898))) (-15 -2046 ((-1303) $ (-950) (-1189))) (-15 -3613 ((-1303) $ (-950) (-1189))) (-15 -2264 ((-1303) $ (-950) (-1189))) (-15 -2568 ((-1303) $ (-1189))) (-15 -1625 ((-1303) $)) (-15 -2164 ((-1303) $ (-793) (-793) (-950) (-950))) (-15 -3803 ((-1303) $ (-950) (-392) (-392))) (-15 -1941 ((-1303) $ (-950) (-392) (-392))) (-15 -1858 ((-1303) $ (-950) (-1189))) (-15 -3206 ((-1303) $ (-793) (-793))) (-15 -3826 ((-1303) $ (-482) (-950))) (-15 -3078 ((-1303) $ (-950) (-950))) (-15 -1428 ((-1189) $ (-1189))) (-15 -1428 ((-1189) $ (-1189) (-1189))) (-15 -1428 ((-1189) $ (-1189) (-666 (-1189)))) (-15 -1407 ((-1303) $)) (-15 -3173 ((-578) $)) (-15 -2411 ((-886) $))))) (T -1299)) +((-2411 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1299)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-666 (-972 (-229)))) (-5 *1 (-1299)))) (-2797 (*1 *1) (-5 *1 (-1299))) (-4138 (*1 *1 *1) (-5 *1 (-1299))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1299)))) (-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1299)))) (-4138 (*1 *1 *2 *3) (-12 (-5 *2 (-482)) (-5 *3 (-666 (-272))) (-5 *1 (-1299)))) (-4004 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-950)) (-5 *4 (-229)) (-5 *5 (-578)) (-5 *6 (-898)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-1298 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2046 (-578)) (|:| -2264 (-578)) (|:| |spline| (-578)) (|:| -1607 (-578)) (|:| |axesColor| (-898)) (|:| -3940 (-578)) (|:| |unitsColor| (-898)) (|:| |showing| (-578))))) (-5 *1 (-1299)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-1298 (-3 (-482) "undefined"))) (-5 *1 (-1299)))) (-3379 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-4282 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-1527 (*1 *2 *1 *3) (-12 (-5 *3 (-950)) (-5 *2 (-482)) (-5 *1 (-1299)))) (-1607 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-1607 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3940 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3940 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-2046 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3613 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-2264 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-2568 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1299)))) (-2164 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3803 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-950)) (-5 *4 (-392)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-1941 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-950)) (-5 *4 (-392)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-1858 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3826 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3078 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299)))) (-1428 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1299)))) (-1428 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1299)))) (-1428 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1299)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1299)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1299))))) +(-13 (-1131) (-10 -8 (-15 -2817 ((-666 (-972 (-229))) $)) (-15 -2797 ($)) (-15 -4138 ($ $)) (-15 -1934 ((-666 (-272)) $)) (-15 -1934 ($ $ (-666 (-272)))) (-15 -4138 ($ (-482) (-666 (-272)))) (-15 -4004 ((-1303) $ (-950) (-229) (-229) (-229) (-229) (-578) (-578) (-578) (-578) (-898) (-578) (-898) (-578))) (-15 -3221 ((-1298 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2046 (-578)) (|:| -2264 (-578)) (|:| |spline| (-578)) (|:| -1607 (-578)) (|:| |axesColor| (-898)) (|:| -3940 (-578)) (|:| |unitsColor| (-898)) (|:| |showing| (-578)))) $)) (-15 -4123 ((-1298 (-3 (-482) "undefined")) $)) (-15 -3379 ((-1303) $ (-1189))) (-15 -4282 ((-1303) $ (-482) (-950))) (-15 -1527 ((-482) $ (-950))) (-15 -1607 ((-1303) $ (-950) (-1189))) (-15 -1607 ((-1303) $ (-950) (-898))) (-15 -3940 ((-1303) $ (-950) (-1189))) (-15 -3940 ((-1303) $ (-950) (-898))) (-15 -2046 ((-1303) $ (-950) (-1189))) (-15 -3613 ((-1303) $ (-950) (-1189))) (-15 -2264 ((-1303) $ (-950) (-1189))) (-15 -2568 ((-1303) $ (-1189))) (-15 -1625 ((-1303) $)) (-15 -2164 ((-1303) $ (-793) (-793) (-950) (-950))) (-15 -3803 ((-1303) $ (-950) (-392) (-392))) (-15 -1941 ((-1303) $ (-950) (-392) (-392))) (-15 -1858 ((-1303) $ (-950) (-1189))) (-15 -3206 ((-1303) $ (-793) (-793))) (-15 -3826 ((-1303) $ (-482) (-950))) (-15 -3078 ((-1303) $ (-950) (-950))) (-15 -1428 ((-1189) $ (-1189))) (-15 -1428 ((-1189) $ (-1189) (-1189))) (-15 -1428 ((-1189) $ (-1189) (-666 (-1189)))) (-15 -1407 ((-1303) $)) (-15 -3173 ((-578) $)) (-15 -2411 ((-886) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2597 (((-1303) $ (-392)) 169 T ELT) (((-1303) $ (-392) (-392) (-392)) 170 T ELT)) (-1428 (((-1189) $ (-1189)) 179 T ELT) (((-1189) $ (-1189) (-1189)) 177 T ELT) (((-1189) $ (-1189) (-666 (-1189))) 176 T ELT)) (-3249 (($) 67 T ELT)) (-2545 (((-1303) $ (-392) (-392) (-392) (-392) (-392)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1303) $ (-578) (-578) (-392) (-392) (-392)) 144 T ELT) (((-1303) $ (-392) (-392)) 145 T ELT) (((-1303) $ (-392) (-392) (-392)) 152 T ELT)) (-4416 (((-392)) 122 T ELT) (((-392) (-392)) 123 T ELT)) (-3111 (((-392)) 117 T ELT) (((-392) (-392)) 119 T ELT)) (-2004 (((-392)) 120 T ELT) (((-392) (-392)) 121 T ELT)) (-4002 (((-392)) 126 T ELT) (((-392) (-392)) 127 T ELT)) (-4053 (((-392)) 124 T ELT) (((-392) (-392)) 125 T ELT)) (-1941 (((-1303) $ (-392) (-392)) 171 T ELT)) (-3379 (((-1303) $ (-1189)) 153 T ELT)) (-4085 (((-1164 (-229)) $) 68 T ELT) (($ $ (-1164 (-229))) 69 T ELT)) (-2307 (((-1303) $ (-1189)) 187 T ELT)) (-2431 (((-1303) $ (-1189)) 188 T ELT)) (-1510 (((-1303) $ (-392) (-392)) 151 T ELT) (((-1303) $ (-578) (-578)) 168 T ELT)) (-3078 (((-1303) $ (-950) (-950)) 160 T ELT)) (-1407 (((-1303) $) 137 T ELT)) (-1672 (((-1303) $ (-1189)) 186 T ELT)) (-3325 (((-1303) $ (-1189)) 134 T ELT)) (-1934 (((-666 (-272)) $) 70 T ELT) (($ $ (-666 (-272))) 71 T ELT)) (-3206 (((-1303) $ (-793) (-793)) 159 T ELT)) (-2542 (((-1303) $ (-793) (-972 (-229))) 193 T ELT)) (-2644 (($ $) 73 T ELT) (($ (-1164 (-229)) (-1189)) 74 T ELT) (($ (-1164 (-229)) (-666 (-272))) 75 T ELT)) (-2511 (((-1303) $ (-392) (-392) (-392)) 131 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-3173 (((-578) $) 128 T ELT)) (-1359 (((-1303) $ (-392)) 174 T ELT)) (-3130 (((-1303) $ (-392)) 191 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2106 (((-1303) $ (-392)) 190 T ELT)) (-2541 (((-1303) $ (-1189)) 136 T ELT)) (-2164 (((-1303) $ (-793) (-793) (-950) (-950)) 158 T ELT)) (-2262 (((-1303) $ (-1189)) 133 T ELT)) (-2568 (((-1303) $ (-1189)) 135 T ELT)) (-4363 (((-1303) $ (-159) (-159)) 157 T ELT)) (-2411 (((-886) $) 166 T ELT)) (-1625 (((-1303) $) 138 T ELT)) (-1786 (((-1303) $ (-1189)) 189 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-1607 (((-1303) $ (-1189)) 132 T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1300) (-13 (-1131) (-10 -8 (-15 -3111 ((-392))) (-15 -3111 ((-392) (-392))) (-15 -2004 ((-392))) (-15 -2004 ((-392) (-392))) (-15 -4416 ((-392))) (-15 -4416 ((-392) (-392))) (-15 -4053 ((-392))) (-15 -4053 ((-392) (-392))) (-15 -4002 ((-392))) (-15 -4002 ((-392) (-392))) (-15 -3249 ($)) (-15 -2644 ($ $)) (-15 -2644 ($ (-1164 (-229)) (-1189))) (-15 -2644 ($ (-1164 (-229)) (-666 (-272)))) (-15 -4085 ((-1164 (-229)) $)) (-15 -4085 ($ $ (-1164 (-229)))) (-15 -2542 ((-1303) $ (-793) (-972 (-229)))) (-15 -1934 ((-666 (-272)) $)) (-15 -1934 ($ $ (-666 (-272)))) (-15 -3206 ((-1303) $ (-793) (-793))) (-15 -3078 ((-1303) $ (-950) (-950))) (-15 -3379 ((-1303) $ (-1189))) (-15 -2164 ((-1303) $ (-793) (-793) (-950) (-950))) (-15 -2545 ((-1303) $ (-392) (-392) (-392) (-392) (-392))) (-15 -2545 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -2545 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -2545 ((-1303) $ (-578) (-578) (-392) (-392) (-392))) (-15 -2545 ((-1303) $ (-392) (-392))) (-15 -2545 ((-1303) $ (-392) (-392) (-392))) (-15 -2568 ((-1303) $ (-1189))) (-15 -1607 ((-1303) $ (-1189))) (-15 -2262 ((-1303) $ (-1189))) (-15 -3325 ((-1303) $ (-1189))) (-15 -2541 ((-1303) $ (-1189))) (-15 -1510 ((-1303) $ (-392) (-392))) (-15 -1510 ((-1303) $ (-578) (-578))) (-15 -2597 ((-1303) $ (-392))) (-15 -2597 ((-1303) $ (-392) (-392) (-392))) (-15 -1941 ((-1303) $ (-392) (-392))) (-15 -1672 ((-1303) $ (-1189))) (-15 -2106 ((-1303) $ (-392))) (-15 -3130 ((-1303) $ (-392))) (-15 -2307 ((-1303) $ (-1189))) (-15 -2431 ((-1303) $ (-1189))) (-15 -1786 ((-1303) $ (-1189))) (-15 -2511 ((-1303) $ (-392) (-392) (-392))) (-15 -1359 ((-1303) $ (-392))) (-15 -1407 ((-1303) $)) (-15 -4363 ((-1303) $ (-159) (-159))) (-15 -1428 ((-1189) $ (-1189))) (-15 -1428 ((-1189) $ (-1189) (-1189))) (-15 -1428 ((-1189) $ (-1189) (-666 (-1189)))) (-15 -1625 ((-1303) $)) (-15 -3173 ((-578) $))))) (T -1300)) +((-3111 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-2004 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-4416 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-4416 (*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-4053 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-4002 (*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) (-3249 (*1 *1) (-5 *1 (-1300))) (-2644 (*1 *1 *1) (-5 *1 (-1300))) (-2644 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1189)) (-5 *1 (-1300)))) (-2644 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-666 (-272))) (-5 *1 (-1300)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1300)))) (-4085 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1300)))) (-2542 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1300)))) (-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1300)))) (-3206 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3078 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3379 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2164 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2545 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1300)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2545 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-578)) (-5 *4 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2545 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2545 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2568 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1607 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2262 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3325 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2541 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1510 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1510 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2597 (*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2597 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1941 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1672 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2106 (*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3130 (*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2307 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2431 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2511 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4363 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1428 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-1428 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-1428 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1300))))) +(-13 (-1131) (-10 -8 (-15 -3111 ((-392))) (-15 -3111 ((-392) (-392))) (-15 -2004 ((-392))) (-15 -2004 ((-392) (-392))) (-15 -4416 ((-392))) (-15 -4416 ((-392) (-392))) (-15 -4053 ((-392))) (-15 -4053 ((-392) (-392))) (-15 -4002 ((-392))) (-15 -4002 ((-392) (-392))) (-15 -3249 ($)) (-15 -2644 ($ $)) (-15 -2644 ($ (-1164 (-229)) (-1189))) (-15 -2644 ($ (-1164 (-229)) (-666 (-272)))) (-15 -4085 ((-1164 (-229)) $)) (-15 -4085 ($ $ (-1164 (-229)))) (-15 -2542 ((-1303) $ (-793) (-972 (-229)))) (-15 -1934 ((-666 (-272)) $)) (-15 -1934 ($ $ (-666 (-272)))) (-15 -3206 ((-1303) $ (-793) (-793))) (-15 -3078 ((-1303) $ (-950) (-950))) (-15 -3379 ((-1303) $ (-1189))) (-15 -2164 ((-1303) $ (-793) (-793) (-950) (-950))) (-15 -2545 ((-1303) $ (-392) (-392) (-392) (-392) (-392))) (-15 -2545 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -2545 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -2545 ((-1303) $ (-578) (-578) (-392) (-392) (-392))) (-15 -2545 ((-1303) $ (-392) (-392))) (-15 -2545 ((-1303) $ (-392) (-392) (-392))) (-15 -2568 ((-1303) $ (-1189))) (-15 -1607 ((-1303) $ (-1189))) (-15 -2262 ((-1303) $ (-1189))) (-15 -3325 ((-1303) $ (-1189))) (-15 -2541 ((-1303) $ (-1189))) (-15 -1510 ((-1303) $ (-392) (-392))) (-15 -1510 ((-1303) $ (-578) (-578))) (-15 -2597 ((-1303) $ (-392))) (-15 -2597 ((-1303) $ (-392) (-392) (-392))) (-15 -1941 ((-1303) $ (-392) (-392))) (-15 -1672 ((-1303) $ (-1189))) (-15 -2106 ((-1303) $ (-392))) (-15 -3130 ((-1303) $ (-392))) (-15 -2307 ((-1303) $ (-1189))) (-15 -2431 ((-1303) $ (-1189))) (-15 -1786 ((-1303) $ (-1189))) (-15 -2511 ((-1303) $ (-392) (-392) (-392))) (-15 -1359 ((-1303) $ (-392))) (-15 -1407 ((-1303) $)) (-15 -4363 ((-1303) $ (-159) (-159))) (-15 -1428 ((-1189) $ (-1189))) (-15 -1428 ((-1189) $ (-1189) (-1189))) (-15 -1428 ((-1189) $ (-1189) (-666 (-1189)))) (-15 -1625 ((-1303) $)) (-15 -3173 ((-578) $)))) +((-3032 (((-666 (-1189)) (-666 (-1189))) 104 T ELT) (((-666 (-1189))) 96 T ELT)) (-4048 (((-666 (-1189))) 94 T ELT)) (-3938 (((-666 (-950)) (-666 (-950))) 69 T ELT) (((-666 (-950))) 64 T ELT)) (-3809 (((-666 (-793)) (-666 (-793))) 61 T ELT) (((-666 (-793))) 55 T ELT)) (-3066 (((-1303)) 71 T ELT)) (-3135 (((-950) (-950)) 87 T ELT) (((-950)) 86 T ELT)) (-3189 (((-950) (-950)) 85 T ELT) (((-950)) 84 T ELT)) (-2663 (((-898) (-898)) 81 T ELT) (((-898)) 80 T ELT)) (-1596 (((-229)) 91 T ELT) (((-229) (-392)) 93 T ELT)) (-2525 (((-950)) 88 T ELT) (((-950) (-950)) 89 T ELT)) (-3432 (((-950) (-950)) 83 T ELT) (((-950)) 82 T ELT)) (-2339 (((-898) (-898)) 75 T ELT) (((-898)) 73 T ELT)) (-2001 (((-898) (-898)) 77 T ELT) (((-898)) 76 T ELT)) (-3694 (((-898) (-898)) 79 T ELT) (((-898)) 78 T ELT))) +(((-1301) (-10 -7 (-15 -2339 ((-898))) (-15 -2339 ((-898) (-898))) (-15 -2001 ((-898))) (-15 -2001 ((-898) (-898))) (-15 -3694 ((-898))) (-15 -3694 ((-898) (-898))) (-15 -2663 ((-898))) (-15 -2663 ((-898) (-898))) (-15 -3432 ((-950))) (-15 -3432 ((-950) (-950))) (-15 -3809 ((-666 (-793)))) (-15 -3809 ((-666 (-793)) (-666 (-793)))) (-15 -3938 ((-666 (-950)))) (-15 -3938 ((-666 (-950)) (-666 (-950)))) (-15 -3066 ((-1303))) (-15 -3032 ((-666 (-1189)))) (-15 -3032 ((-666 (-1189)) (-666 (-1189)))) (-15 -4048 ((-666 (-1189)))) (-15 -3189 ((-950))) (-15 -3135 ((-950))) (-15 -3189 ((-950) (-950))) (-15 -3135 ((-950) (-950))) (-15 -2525 ((-950) (-950))) (-15 -2525 ((-950))) (-15 -1596 ((-229) (-392))) (-15 -1596 ((-229))))) (T -1301)) +((-1596 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1301)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-229)) (-5 *1 (-1301)))) (-2525 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-2525 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-3135 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-3189 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-4048 (*1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1301)))) (-3032 (*1 *2 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1301)))) (-3032 (*1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1301)))) (-3066 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1301)))) (-3938 (*1 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1301)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-666 (-793))) (-5 *1 (-1301)))) (-3809 (*1 *2) (-12 (-5 *2 (-666 (-793))) (-5 *1 (-1301)))) (-3432 (*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-3432 (*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) (-2663 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) (-2663 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) (-3694 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) (-2001 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) (-2001 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) (-2339 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301))))) +(-10 -7 (-15 -2339 ((-898))) (-15 -2339 ((-898) (-898))) (-15 -2001 ((-898))) (-15 -2001 ((-898) (-898))) (-15 -3694 ((-898))) (-15 -3694 ((-898) (-898))) (-15 -2663 ((-898))) (-15 -2663 ((-898) (-898))) (-15 -3432 ((-950))) (-15 -3432 ((-950) (-950))) (-15 -3809 ((-666 (-793)))) (-15 -3809 ((-666 (-793)) (-666 (-793)))) (-15 -3938 ((-666 (-950)))) (-15 -3938 ((-666 (-950)) (-666 (-950)))) (-15 -3066 ((-1303))) (-15 -3032 ((-666 (-1189)))) (-15 -3032 ((-666 (-1189)) (-666 (-1189)))) (-15 -4048 ((-666 (-1189)))) (-15 -3189 ((-950))) (-15 -3135 ((-950))) (-15 -3189 ((-950) (-950))) (-15 -3135 ((-950) (-950))) (-15 -2525 ((-950) (-950))) (-15 -2525 ((-950))) (-15 -1596 ((-229) (-392))) (-15 -1596 ((-229)))) +((-2122 (((-482) (-666 (-666 (-972 (-229)))) (-666 (-272))) 22 T ELT) (((-482) (-666 (-666 (-972 (-229))))) 21 T ELT) (((-482) (-666 (-666 (-972 (-229)))) (-898) (-898) (-950) (-666 (-272))) 20 T ELT)) (-3231 (((-1299) (-666 (-666 (-972 (-229)))) (-666 (-272))) 30 T ELT) (((-1299) (-666 (-666 (-972 (-229)))) (-898) (-898) (-950) (-666 (-272))) 29 T ELT)) (-2411 (((-1299) (-482)) 46 T ELT))) +(((-1302) (-10 -7 (-15 -2122 ((-482) (-666 (-666 (-972 (-229)))) (-898) (-898) (-950) (-666 (-272)))) (-15 -2122 ((-482) (-666 (-666 (-972 (-229)))))) (-15 -2122 ((-482) (-666 (-666 (-972 (-229)))) (-666 (-272)))) (-15 -3231 ((-1299) (-666 (-666 (-972 (-229)))) (-898) (-898) (-950) (-666 (-272)))) (-15 -3231 ((-1299) (-666 (-666 (-972 (-229)))) (-666 (-272)))) (-15 -2411 ((-1299) (-482))))) (T -1302)) +((-2411 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1299)) (-5 *1 (-1302)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-1302)))) (-3231 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-898)) (-5 *5 (-950)) (-5 *6 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-1302)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-666 (-272))) (-5 *2 (-482)) (-5 *1 (-1302)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *2 (-482)) (-5 *1 (-1302)))) (-2122 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-898)) (-5 *5 (-950)) (-5 *6 (-666 (-272))) (-5 *2 (-482)) (-5 *1 (-1302))))) +(-10 -7 (-15 -2122 ((-482) (-666 (-666 (-972 (-229)))) (-898) (-898) (-950) (-666 (-272)))) (-15 -2122 ((-482) (-666 (-666 (-972 (-229)))))) (-15 -2122 ((-482) (-666 (-666 (-972 (-229)))) (-666 (-272)))) (-15 -3231 ((-1299) (-666 (-666 (-972 (-229)))) (-898) (-898) (-950) (-666 (-272)))) (-15 -3231 ((-1299) (-666 (-666 (-972 (-229)))) (-666 (-272)))) (-15 -2411 ((-1299) (-482)))) +((-2893 (($) 6 T ELT)) (-2411 (((-886) $) 9 T ELT))) +(((-1303) (-13 (-632 (-886)) (-10 -8 (-15 -2893 ($))))) (T -1303)) +((-2893 (*1 *1) (-5 *1 (-1303)))) +(-13 (-632 (-886)) (-10 -8 (-15 -2893 ($)))) +((-2495 (($ $ |#2|) 10 T ELT))) +(((-1304 |#1| |#2|) (-10 -8 (-15 -2495 (|#1| |#1| |#2|))) (-1305 |#2|) (-376)) (T -1304)) +NIL +(-10 -8 (-15 -2495 (|#1| |#1| |#2|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-4425 (((-136)) 33 T ELT)) (-2411 (((-886) $) 12 T ELT)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ |#1|) 34 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT))) +(((-1305 |#1|) (-142) (-376)) (T -1305)) +((-2495 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)))) (-4425 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) +(-13 (-739 |t#1|) (-10 -8 (-15 -2495 ($ $ |t#1|)) (-15 -4425 ((-136))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1131) . T) ((-1248) . T)) +((-3659 (((-666 (-1242 |#1|)) (-1207) (-1242 |#1|)) 83 T ELT)) (-1713 (((-1188 (-1188 (-981 |#1|))) (-1207) (-1188 (-981 |#1|))) 63 T ELT)) (-2152 (((-1 (-1188 (-1242 |#1|)) (-1188 (-1242 |#1|))) (-793) (-1242 |#1|) (-1188 (-1242 |#1|))) 74 T ELT)) (-3547 (((-1 (-1188 (-981 |#1|)) (-1188 (-981 |#1|))) (-793)) 65 T ELT)) (-4121 (((-1 (-1203 (-981 |#1|)) (-981 |#1|)) (-1207)) 32 T ELT)) (-3605 (((-1 (-1188 (-981 |#1|)) (-1188 (-981 |#1|))) (-793)) 64 T ELT))) +(((-1306 |#1|) (-10 -7 (-15 -3547 ((-1 (-1188 (-981 |#1|)) (-1188 (-981 |#1|))) (-793))) (-15 -3605 ((-1 (-1188 (-981 |#1|)) (-1188 (-981 |#1|))) (-793))) (-15 -1713 ((-1188 (-1188 (-981 |#1|))) (-1207) (-1188 (-981 |#1|)))) (-15 -4121 ((-1 (-1203 (-981 |#1|)) (-981 |#1|)) (-1207))) (-15 -3659 ((-666 (-1242 |#1|)) (-1207) (-1242 |#1|))) (-15 -2152 ((-1 (-1188 (-1242 |#1|)) (-1188 (-1242 |#1|))) (-793) (-1242 |#1|) (-1188 (-1242 |#1|))))) (-376)) (T -1306)) +((-2152 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1242 *6)) (-5 *2 (-1 (-1188 *4) (-1188 *4))) (-5 *1 (-1306 *6)) (-5 *5 (-1188 *4)))) (-3659 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-666 (-1242 *5))) (-5 *1 (-1306 *5)) (-5 *4 (-1242 *5)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1203 (-981 *4)) (-981 *4))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-1713 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1188 (-1188 (-981 *5)))) (-5 *1 (-1306 *5)) (-5 *4 (-1188 (-981 *5))))) (-3605 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1188 (-981 *4)) (-1188 (-981 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1188 (-981 *4)) (-1188 (-981 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376))))) +(-10 -7 (-15 -3547 ((-1 (-1188 (-981 |#1|)) (-1188 (-981 |#1|))) (-793))) (-15 -3605 ((-1 (-1188 (-981 |#1|)) (-1188 (-981 |#1|))) (-793))) (-15 -1713 ((-1188 (-1188 (-981 |#1|))) (-1207) (-1188 (-981 |#1|)))) (-15 -4121 ((-1 (-1203 (-981 |#1|)) (-981 |#1|)) (-1207))) (-15 -3659 ((-666 (-1242 |#1|)) (-1207) (-1242 |#1|))) (-15 -2152 ((-1 (-1188 (-1242 |#1|)) (-1188 (-1242 |#1|))) (-793) (-1242 |#1|) (-1188 (-1242 |#1|))))) +((-3748 (((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 80 T ELT)) (-3098 (((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 79 T ELT))) +(((-1307 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3098 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -3748 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|))) (-362) (-1274 |#1|) (-1274 |#2|) (-423 |#2| |#3|)) (T -1307)) +((-3748 (*1 *2 *3) (-12 (-4 *4 (-362)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 *3)) (-5 *2 (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-423 *3 *5)))) (-3098 (*1 *2) (-12 (-4 *3 (-362)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 *4)) (-5 *2 (-2 (|:| -3198 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-423 *4 *5))))) +(-10 -7 (-15 -3098 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -3748 ((-2 (|:| -3198 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3602 (((-1166) $) 11 T ELT)) (-2749 (((-1166) $) 9 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1308) (-13 (-1114) (-10 -8 (-15 -2749 ((-1166) $)) (-15 -3602 ((-1166) $))))) (T -1308)) +((-2749 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))) (-3602 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308))))) +(-13 (-1114) (-10 -8 (-15 -2749 ((-1166) $)) (-15 -3602 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2101 (((-1166) $) 9 T ELT)) (-2411 (((-886) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT))) +(((-1309) (-13 (-1114) (-10 -8 (-15 -2101 ((-1166) $))))) (T -1309)) +((-2101 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1309))))) +(-13 (-1114) (-10 -8 (-15 -2101 ((-1166) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 58 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 81 T ELT) (($ (-578)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3753 (((-793)) NIL T CONST)) (-3340 (((-1303) (-793)) 16 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 37 T CONST)) (-2379 (($) 84 T CONST)) (-2384 (((-112) $ $) 87 T ELT)) (-2495 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 63 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-1310 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1080) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2495 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3340 ((-1303) (-793))))) (-1080) (-871) (-815) (-978 |#1| |#3| |#2|) (-666 |#2|) (-666 (-793)) (-793)) (T -1310)) +((-2495 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-815)) (-14 *6 (-666 *3)) (-5 *1 (-1310 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-978 *2 *4 *3)) (-14 *7 (-666 (-793))) (-14 *8 (-793)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-14 *8 (-666 *5)) (-5 *2 (-1303)) (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-978 *4 *6 *5)) (-14 *9 (-666 *3)) (-14 *10 *3)))) +(-13 (-1080) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2495 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3340 ((-1303) (-793))))) +((-3213 (((-112) $ $) NIL T ELT)) (-4024 (((-666 (-2 (|:| -1625 $) (|:| -2259 (-666 |#4|)))) (-666 |#4|)) NIL T ELT)) (-3997 (((-666 $) (-666 |#4|)) 96 T ELT)) (-2949 (((-666 |#3|) $) NIL T ELT)) (-3039 (((-112) $) NIL T ELT)) (-2774 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4409 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2596 ((|#4| |#4| $) NIL T ELT)) (-2042 (((-2 (|:| |under| $) (|:| -3575 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-1628 (((-112) $ (-793)) NIL T ELT)) (-4233 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-3534 (($) NIL T CONST)) (-4147 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-1645 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2722 (((-112) $ $) NIL (|has| |#1| (-570)) ELT)) (-2115 (((-112) $) NIL (|has| |#1| (-570)) ELT)) (-4271 (((-666 |#4|) (-666 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31 T ELT)) (-1532 (((-666 |#4|) (-666 |#4|) $) 28 (|has| |#1| (-570)) ELT)) (-4168 (((-666 |#4|) (-666 |#4|) $) NIL (|has| |#1| (-570)) ELT)) (-2818 (((-3 $ "failed") (-666 |#4|)) NIL T ELT)) (-3516 (($ (-666 |#4|)) NIL T ELT)) (-4198 (((-3 $ "failed") $) 78 T ELT)) (-1707 ((|#4| |#4| $) 83 T ELT)) (-3776 (($ $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-2737 (($ |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1886 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-2582 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL T ELT)) (-3069 ((|#4| |#4| $) NIL T ELT)) (-2512 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4500)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4500)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1661 (((-2 (|:| -1625 (-666 |#4|)) (|:| -2259 (-666 |#4|))) $) NIL T ELT)) (-2729 (((-666 |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-4308 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-2537 ((|#3| $) 84 T ELT)) (-2363 (((-112) $ (-793)) NIL T ELT)) (-1441 (((-666 |#4|) $) 32 (|has| $ (-6 -4500)) ELT)) (-1624 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT)) (-2566 (((-3 $ "failed") (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-666 |#4|)) 38 T ELT)) (-3439 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4501)) ELT)) (-3611 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3117 (((-666 |#3|) $) NIL T ELT)) (-1455 (((-112) |#3| $) NIL T ELT)) (-1719 (((-112) $ (-793)) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2757 (((-3 |#4| "failed") $) NIL T ELT)) (-1708 (((-666 |#4|) $) 54 T ELT)) (-3084 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-3494 ((|#4| |#4| $) 82 T ELT)) (-3151 (((-112) $ $) 93 T ELT)) (-1840 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-570)) ELT)) (-2643 (((-112) |#4| $) NIL T ELT) (((-112) $) NIL T ELT)) (-1922 ((|#4| |#4| $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4189 (((-3 |#4| "failed") $) 77 T ELT)) (-3668 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL T ELT)) (-2861 (((-3 $ "failed") $ |#4|) NIL T ELT)) (-2704 (($ $ |#4|) NIL T ELT)) (-2808 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3364 (($ $ (-666 |#4|) (-666 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-306 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT) (($ $ (-666 (-306 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1131))) ELT)) (-2428 (((-112) $ $) NIL T ELT)) (-4186 (((-112) $) 75 T ELT)) (-1696 (($) 46 T ELT)) (-3683 (((-793) $) NIL T ELT)) (-4324 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4500)) (|has| |#4| (-1131))) ELT) (((-793) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-3979 (($ $) NIL T ELT)) (-3343 (((-550) $) NIL (|has| |#4| (-633 (-550))) ELT)) (-2423 (($ (-666 |#4|)) NIL T ELT)) (-1339 (($ $ |#3|) NIL T ELT)) (-2093 (($ $ |#3|) NIL T ELT)) (-2499 (($ $) NIL T ELT)) (-3102 (($ $ |#3|) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (((-666 |#4|) $) 63 T ELT)) (-2474 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-1611 (((-3 $ "failed") (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-666 |#4|)) 45 T ELT)) (-3425 (((-666 $) (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-666 $) (-666 |#4|)) 74 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2595 (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2853 (-666 |#4|))) "failed") (-666 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL T ELT)) (-1943 (((-112) $ (-1 (-112) |#4| (-666 |#4|))) NIL T ELT)) (-3673 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4500)) ELT)) (-1362 (((-666 |#3|) $) NIL T ELT)) (-2714 (((-112) |#3| $) NIL T ELT)) (-2384 (((-112) $ $) NIL T ELT)) (-3226 (((-793) $) NIL (|has| $ (-6 -4500)) ELT))) +(((-1311 |#1| |#2| |#3| |#4|) (-13 (-1241 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2566 ((-3 $ "failed") (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2566 ((-3 $ "failed") (-666 |#4|))) (-15 -1611 ((-3 $ "failed") (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1611 ((-3 $ "failed") (-666 |#4|))) (-15 -3425 ((-666 $) (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3425 ((-666 $) (-666 |#4|))))) (-570) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1311)) +((-2566 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-666 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-2566 (*1 *1 *2) (|partial| -12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-1611 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-666 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-1611 (*1 *1 *2) (|partial| -12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-3425 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-570)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-666 (-1311 *6 *7 *8 *9))) (-5 *1 (-1311 *6 *7 *8 *9)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 (-1311 *4 *5 *6 *7))) (-5 *1 (-1311 *4 *5 *6 *7))))) +(-13 (-1241 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2566 ((-3 $ "failed") (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2566 ((-3 $ "failed") (-666 |#4|))) (-15 -1611 ((-3 $ "failed") (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1611 ((-3 $ "failed") (-666 |#4|))) (-15 -3425 ((-666 $) (-666 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3425 ((-666 $) (-666 |#4|))))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-3534 (($) 18 T CONST)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#1|) 45 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 47 T ELT) (($ |#1| $) 46 T ELT))) +(((-1312 |#1|) (-142) (-1080)) (T -1312)) +NIL +(-13 (-1080) (-111 |t#1| |t#1|) (-635 |t#1|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T)) +((-3213 (((-112) $ $) 67 T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4418 (((-666 |#1|) $) 52 T ELT)) (-1898 (($ $ (-793)) 46 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1972 (($ $ (-793)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-3534 (($) NIL T CONST)) (-3564 (($ $ $) 70 T ELT) (($ $ (-841 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-2818 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3516 (((-841 |#1|) $) NIL T ELT)) (-3136 (($ $) 39 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4365 (((-112) $) NIL T ELT)) (-3906 (($ $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-1476 (($ (-841 |#1|) |#2|) 38 T ELT)) (-2779 (($ $) 40 T ELT)) (-1438 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-2208 (((-841 |#1|) $) NIL T ELT)) (-2335 (((-841 |#1|) $) 41 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3718 (($ $ $) 69 T ELT) (($ $ (-841 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-2658 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3097 (((-841 |#1|) $) 35 T ELT)) (-3110 ((|#2| $) 37 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3683 (((-793) $) 43 T ELT)) (-3239 (((-112) $) 47 T ELT)) (-1529 ((|#2| $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-841 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-578)) NIL T ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-841 |#1|)) NIL T ELT)) (-2672 ((|#2| $ $) 76 T ELT) ((|#2| $ (-841 |#1|)) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 13 T CONST)) (-2379 (($) 19 T CONST)) (-1829 (((-666 (-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2384 (((-112) $ $) 44 T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 28 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-950)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-841 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) +(((-1313 |#1| |#2|) (-13 (-395 |#2| (-841 |#1|)) (-1319 |#1| |#2|)) (-871) (-1080)) (T -1313)) +NIL +(-13 (-395 |#2| (-841 |#1|)) (-1319 |#1| |#2|)) +((-3864 ((|#3| |#3| (-793)) 28 T ELT)) (-3587 ((|#3| |#3| (-793)) 34 T ELT)) (-2845 ((|#3| |#3| |#3| (-793)) 35 T ELT))) +(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -3587 (|#3| |#3| (-793))) (-15 -3864 (|#3| |#3| (-793))) (-15 -2845 (|#3| |#3| |#3| (-793)))) (-13 (-1080) (-739 (-421 (-578)))) (-871) (-1319 |#2| |#1|)) (T -1314)) +((-2845 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-578))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1319 *5 *4)))) (-3864 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-578))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1319 *5 *4)))) (-3587 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-578))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1319 *5 *4))))) +(-10 -7 (-15 -3587 (|#3| |#3| (-793))) (-15 -3864 (|#3| |#3| (-793))) (-15 -2845 (|#3| |#3| |#3| (-793)))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4418 (((-666 |#1|) $) 47 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1972 (($ $ $) 50 (|has| |#2| (-175)) ELT) (($ $ (-793)) 49 (|has| |#2| (-175)) ELT)) (-3534 (($) 18 T CONST)) (-3564 (($ $ |#1|) 61 T ELT) (($ $ (-841 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2818 (((-3 (-841 |#1|) "failed") $) 71 T ELT)) (-3516 (((-841 |#1|) $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4365 (((-112) $) 52 T ELT)) (-3906 (($ $) 51 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1796 (((-112) $) 57 T ELT)) (-1476 (($ (-841 |#1|) |#2|) 58 T ELT)) (-2779 (($ $) 56 T ELT)) (-1438 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-2208 (((-841 |#1|) $) 68 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3718 (($ $ |#1|) 64 T ELT) (($ $ (-841 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3239 (((-112) $) 54 T ELT)) (-1529 ((|#2| $) 53 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-841 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2672 ((|#2| $ (-841 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) +(((-1315 |#1| |#2|) (-142) (-871) (-1080)) (T -1315)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1315 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-841 *3)))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4))))) (-2672 (*1 *2 *1 *3) (-12 (-5 *3 (-841 *4)) (-4 *1 (-1315 *4 *2)) (-4 *4 (-871)) (-4 *2 (-1080)))) (-2672 (*1 *2 *1 *1) (-12 (-4 *1 (-1315 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-3718 (*1 *1 *1 *1) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-3564 (*1 *1 *1 *2) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-3564 (*1 *1 *1 *1) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-1476 (*1 *1 *2 *3) (-12 (-5 *2 (-841 *4)) (-4 *4 (-871)) (-4 *1 (-1315 *4 *3)) (-4 *3 (-1080)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-112)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-2411 (*1 *1 *2) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-112)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-1315 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-112)))) (-3906 (*1 *1 *1) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-1972 (*1 *1 *1 *1) (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)) (-4 *3 (-175)))) (-1972 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-4 *4 (-175)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-4418 (*1 *2 *1) (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-666 *3))))) +(-13 (-1080) (-1312 |t#2|) (-1069 (-841 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2208 ((-841 |t#1|) $)) (-15 -1438 ((-2 (|:| |k| (-841 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2672 (|t#2| $ (-841 |t#1|))) (-15 -2672 (|t#2| $ $)) (-15 -3718 ($ $ |t#1|)) (-15 -3718 ($ $ (-841 |t#1|))) (-15 -3718 ($ $ $)) (-15 -3564 ($ $ |t#1|)) (-15 -3564 ($ $ (-841 |t#1|))) (-15 -3564 ($ $ $)) (-15 -1476 ($ (-841 |t#1|) |t#2|)) (-15 -1796 ((-112) $)) (-15 -2779 ($ $)) (-15 -2411 ($ |t#1|)) (-15 -3239 ((-112) $)) (-15 -1529 (|t#2| $)) (-15 -4365 ((-112) $)) (-15 -3906 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -1972 ($ $ $)) (-15 -1972 ($ $ (-793)))) |%noBranch|) (-15 -3611 ($ (-1 |t#2| |t#2|) $)) (-15 -4418 ((-666 |t#1|) $)) (IF (|has| |t#2| (-6 -4493)) (-6 -4493) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 #0=(-841 |#1|)) . T) ((-635 |#2|) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) |has| |#2| (-175)) ((-739 |#2|) |has| |#2| (-175)) ((-748) . T) ((-1069 #0#) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1312 |#2|) . T)) +((-3646 (((-112) $) 15 T ELT)) (-2714 (((-112) $) 14 T ELT)) (-1536 (($ $) 19 T ELT) (($ $ (-793)) 21 T ELT))) +(((-1316 |#1| |#2|) (-10 -8 (-15 -1536 (|#1| |#1| (-793))) (-15 -1536 (|#1| |#1|)) (-15 -3646 ((-112) |#1|)) (-15 -2714 ((-112) |#1|))) (-1317 |#2|) (-376)) (T -1316)) +NIL +(-10 -8 (-15 -1536 (|#1| |#1| (-793))) (-15 -1536 (|#1| |#1|)) (-15 -3646 ((-112) |#1|)) (-15 -2714 ((-112) |#1|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-3355 (((-2 (|:| -1430 $) (|:| -4487 $) (|:| |associate| $)) $) 47 T ELT)) (-2987 (($ $) 46 T ELT)) (-3087 (((-112) $) 44 T ELT)) (-3646 (((-112) $) 104 T ELT)) (-2727 (((-793)) 100 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1457 (($ $) 81 T ELT)) (-3034 (((-432 $) $) 80 T ELT)) (-2732 (((-112) $ $) 65 T ELT)) (-3534 (($) 18 T CONST)) (-2818 (((-3 |#1| "failed") $) 111 T ELT)) (-3516 ((|#1| $) 112 T ELT)) (-3154 (($ $ $) 61 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-3166 (($ $ $) 62 T ELT)) (-2136 (((-2 (|:| -2672 (-666 $)) (|:| -2847 $)) (-666 $)) 57 T ELT)) (-2953 (($ $ (-793)) 97 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 96 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2159 (((-112) $) 79 T ELT)) (-4059 (((-855 (-950)) $) 94 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4382 (((-112) $) 35 T ELT)) (-1488 (((-3 (-666 $) "failed") (-666 $) $) 58 T ELT)) (-2389 (($ $ $) 52 T ELT) (($ (-666 $)) 51 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-3057 (($ $) 78 T ELT)) (-2323 (((-112) $) 103 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-1927 (((-1203 $) (-1203 $) (-1203 $)) 50 T ELT)) (-2421 (($ $ $) 54 T ELT) (($ (-666 $)) 53 T ELT)) (-2800 (((-432 $) $) 82 T ELT)) (-3443 (((-855 (-950))) 101 T ELT)) (-3530 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2847 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-3202 (((-3 $ "failed") $ $) 48 T ELT)) (-3448 (((-3 (-666 $) "failed") (-666 $) $) 56 T ELT)) (-1449 (((-793) $) 64 T ELT)) (-2036 (((-2 (|:| -2196 $) (|:| -1886 $)) $ $) 63 T ELT)) (-4375 (((-3 (-793) "failed") $ $) 95 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4425 (((-136)) 109 T ELT)) (-3683 (((-855 (-950)) $) 102 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-578))) 74 T ELT) (($ |#1|) 110 T ELT)) (-2213 (((-3 $ "failed") $) 93 (-2230 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-3138 (((-112) $ $) 45 T ELT)) (-2714 (((-112) $) 105 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-1536 (($ $) 99 (|has| |#1| (-381)) ELT) (($ $ (-793)) 98 (|has| |#1| (-381)) ELT)) (-2384 (((-112) $ $) 8 T ELT)) (-2495 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-578)) 77 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-578))) 76 T ELT) (($ (-421 (-578)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT))) +(((-1317 |#1|) (-142) (-376)) (T -1317)) +((-2714 (*1 *2 *1) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-112)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-112)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-112)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-855 (-950))))) (-3443 (*1 *2) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-855 (-950))))) (-2727 (*1 *2) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-793)))) (-1536 (*1 *1 *1) (-12 (-4 *1 (-1317 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-1536 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-4 *3 (-381))))) +(-13 (-376) (-1069 |t#1|) (-1305 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-416)) |%noBranch|) (-15 -2714 ((-112) $)) (-15 -3646 ((-112) $)) (-15 -2323 ((-112) $)) (-15 -3683 ((-855 (-950)) $)) (-15 -3443 ((-855 (-950)))) (-15 -2727 ((-793))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-416)) (-15 -1536 ($ $)) (-15 -1536 ($ $ (-793)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-578))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2230 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-578)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-886)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-416) -2230 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-466) . T) ((-570) . T) ((-668 #0#) . T) ((-668 (-578)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-949) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1252) . T) ((-1305 |#1|) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4418 (((-666 |#1|) $) 98 T ELT)) (-1898 (($ $ (-793)) 102 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1972 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-3534 (($) NIL T CONST)) (-3564 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-2818 (((-3 (-841 |#1|) "failed") $) NIL T ELT) (((-3 (-918 |#1|) "failed") $) NIL T ELT)) (-3516 (((-841 |#1|) $) NIL T ELT) (((-918 |#1|) $) NIL T ELT)) (-3136 (($ $) 101 T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4365 (((-112) $) 90 T ELT)) (-3906 (($ $) 93 T ELT)) (-3471 (($ $ $ (-793)) 103 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-1476 (($ (-841 |#1|) |#2|) NIL T ELT) (($ (-918 |#1|) |#2|) 29 T ELT)) (-2779 (($ $) 119 T ELT)) (-1438 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2208 (((-841 |#1|) $) NIL T ELT)) (-2335 (((-841 |#1|) $) NIL T ELT)) (-3611 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3718 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3864 (($ $ (-793)) 112 (|has| |#2| (-739 (-421 (-578)))) ELT)) (-2658 (((-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3097 (((-918 |#1|) $) 83 T ELT)) (-3110 ((|#2| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3587 (($ $ (-793)) 109 (|has| |#2| (-739 (-421 (-578)))) ELT)) (-3683 (((-793) $) 99 T ELT)) (-3239 (((-112) $) 84 T ELT)) (-1529 ((|#2| $) 88 T ELT)) (-2411 (((-886) $) 69 T ELT) (($ (-578)) NIL T ELT) (($ |#2|) 60 T ELT) (($ (-841 |#1|)) NIL T ELT) (($ |#1|) 71 T ELT) (($ (-918 |#1|)) NIL T ELT) (($ (-686 |#1| |#2|)) 48 T ELT) (((-1313 |#1| |#2|) $) 76 T ELT) (((-1322 |#1| |#2|) $) 81 T ELT)) (-3839 (((-666 |#2|) $) NIL T ELT)) (-3708 ((|#2| $ (-918 |#1|)) NIL T ELT)) (-2672 ((|#2| $ (-841 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 21 T CONST)) (-2379 (($) 28 T CONST)) (-1829 (((-666 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2293 (((-3 (-686 |#1| |#2|) "failed") $) 118 T ELT)) (-2384 (((-112) $ $) 77 T ELT)) (-2484 (($ $) 111 T ELT) (($ $ $) 110 T ELT)) (-2472 (($ $ $) 20 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 49 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-918 |#1|)) NIL T ELT))) +(((-1318 |#1| |#2|) (-13 (-1319 |#1| |#2|) (-395 |#2| (-918 |#1|)) (-10 -8 (-15 -2411 ($ (-686 |#1| |#2|))) (-15 -2411 ((-1313 |#1| |#2|) $)) (-15 -2411 ((-1322 |#1| |#2|) $)) (-15 -2293 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -3471 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-578)))) (PROGN (-15 -3587 ($ $ (-793))) (-15 -3864 ($ $ (-793)))) |%noBranch|))) (-871) (-175)) (T -1318)) +((-2411 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *1 (-1318 *3 *4)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-2293 (*1 *2 *1) (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-3471 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-3587 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-739 (-421 (-578)))) (-4 *3 (-871)) (-4 *4 (-175)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-739 (-421 (-578)))) (-4 *3 (-871)) (-4 *4 (-175))))) +(-13 (-1319 |#1| |#2|) (-395 |#2| (-918 |#1|)) (-10 -8 (-15 -2411 ($ (-686 |#1| |#2|))) (-15 -2411 ((-1313 |#1| |#2|) $)) (-15 -2411 ((-1322 |#1| |#2|) $)) (-15 -2293 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -3471 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-578)))) (PROGN (-15 -3587 ($ $ (-793))) (-15 -3864 ($ $ (-793)))) |%noBranch|))) +((-3213 (((-112) $ $) 7 T ELT)) (-3623 (((-112) $) 17 T ELT)) (-4418 (((-666 |#1|) $) 47 T ELT)) (-1898 (($ $ (-793)) 80 T ELT)) (-4028 (((-3 $ "failed") $ $) 20 T ELT)) (-1972 (($ $ $) 50 (|has| |#2| (-175)) ELT) (($ $ (-793)) 49 (|has| |#2| (-175)) ELT)) (-3534 (($) 18 T CONST)) (-3564 (($ $ |#1|) 61 T ELT) (($ $ (-841 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2818 (((-3 (-841 |#1|) "failed") $) 71 T ELT)) (-3516 (((-841 |#1|) $) 72 T ELT)) (-3493 (((-3 $ "failed") $) 37 T ELT)) (-4365 (((-112) $) 52 T ELT)) (-3906 (($ $) 51 T ELT)) (-4382 (((-112) $) 35 T ELT)) (-1796 (((-112) $) 57 T ELT)) (-1476 (($ (-841 |#1|) |#2|) 58 T ELT)) (-2779 (($ $) 56 T ELT)) (-1438 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-2208 (((-841 |#1|) $) 68 T ELT)) (-2335 (((-841 |#1|) $) 82 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3718 (($ $ |#1|) 64 T ELT) (($ $ (-841 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-2617 (((-1189) $) 10 T ELT)) (-4313 (((-1151) $) 11 T ELT)) (-3683 (((-793) $) 81 T ELT)) (-3239 (((-112) $) 54 T ELT)) (-1529 ((|#2| $) 53 T ELT)) (-2411 (((-886) $) 12 T ELT) (($ (-578)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-841 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2672 ((|#2| $ (-841 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-3753 (((-793)) 32 T CONST)) (-2876 (((-112) $ $) 6 T ELT)) (-2368 (($) 19 T CONST)) (-2379 (($) 34 T CONST)) (-2384 (((-112) $ $) 8 T ELT)) (-2484 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2472 (($ $ $) 15 T ELT)) (** (($ $ (-950)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-950) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-578) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT))) +(((-1319 |#1| |#2|) (-142) (-871) (-1080)) (T -1319)) +((-2335 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-841 *3)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-793)))) (-1898 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))))) +(-13 (-1315 |t#1| |t#2|) (-10 -8 (-15 -2335 ((-841 |t#1|) $)) (-15 -3683 ((-793) $)) (-15 -1898 ($ $ (-793))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 (-578)) . T) ((-635 #0=(-841 |#1|)) . T) ((-635 |#2|) . T) ((-632 (-886)) . T) ((-668 (-578)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) |has| |#2| (-175)) ((-739 |#2|) |has| |#2| (-175)) ((-748) . T) ((-1069 #0#) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1080) . T) ((-1089) . T) ((-1143) . T) ((-1131) . T) ((-1248) . T) ((-1312 |#2|) . T) ((-1315 |#1| |#2|) . T)) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4418 (((-666 (-1207)) $) NIL T ELT)) (-2965 (($ (-1313 (-1207) |#1|)) NIL T ELT)) (-1898 (($ $ (-793)) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1972 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3534 (($) NIL T CONST)) (-3564 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-2818 (((-3 (-841 (-1207)) "failed") $) NIL T ELT)) (-3516 (((-841 (-1207)) $) NIL T ELT)) (-3493 (((-3 $ "failed") $) NIL T ELT)) (-4365 (((-112) $) NIL T ELT)) (-3906 (($ $) NIL T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-1476 (($ (-841 (-1207)) |#1|) NIL T ELT)) (-2779 (($ $) NIL T ELT)) (-1438 (((-2 (|:| |k| (-841 (-1207))) (|:| |c| |#1|)) $) NIL T ELT)) (-2208 (((-841 (-1207)) $) NIL T ELT)) (-2335 (((-841 (-1207)) $) NIL T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3718 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4199 (((-1313 (-1207) |#1|) $) NIL T ELT)) (-3683 (((-793) $) NIL T ELT)) (-3239 (((-112) $) NIL T ELT)) (-1529 ((|#1| $) NIL T ELT)) (-2411 (((-886) $) NIL T ELT) (($ (-578)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-841 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT)) (-2672 ((|#1| $ (-841 (-1207))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3753 (((-793)) NIL T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) NIL T CONST)) (-2708 (((-666 (-2 (|:| |k| (-1207)) (|:| |c| $))) $) NIL T ELT)) (-2379 (($) NIL T CONST)) (-2384 (((-112) $ $) NIL T ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) NIL T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1207) $) NIL T ELT))) +(((-1320 |#1|) (-13 (-1319 (-1207) |#1|) (-10 -8 (-15 -4199 ((-1313 (-1207) |#1|) $)) (-15 -2965 ($ (-1313 (-1207) |#1|))) (-15 -2708 ((-666 (-2 (|:| |k| (-1207)) (|:| |c| $))) $)))) (-1080)) (T -1320)) +((-4199 (*1 *2 *1) (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1320 *3)) (-4 *3 (-1080)))) (-2965 (*1 *1 *2) (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1080)) (-5 *1 (-1320 *3)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |k| (-1207)) (|:| |c| (-1320 *3))))) (-5 *1 (-1320 *3)) (-4 *3 (-1080))))) +(-13 (-1319 (-1207) |#1|) (-10 -8 (-15 -4199 ((-1313 (-1207) |#1|) $)) (-15 -2965 ($ (-1313 (-1207) |#1|))) (-15 -2708 ((-666 (-2 (|:| |k| (-1207)) (|:| |c| $))) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-3534 (($) NIL T CONST)) (-2818 (((-3 |#2| "failed") $) NIL T ELT)) (-3516 ((|#2| $) NIL T ELT)) (-3136 (($ $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 42 T ELT)) (-4365 (((-112) $) 35 T ELT)) (-3906 (($ $) 37 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-3380 (((-793) $) NIL T ELT)) (-2613 (((-666 $) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-1476 (($ |#2| |#1|) NIL T ELT)) (-2208 ((|#2| $) 24 T ELT)) (-2335 ((|#2| $) 22 T ELT)) (-3611 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2658 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3097 ((|#2| $) NIL T ELT)) (-3110 ((|#1| $) NIL T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3239 (((-112) $) 32 T ELT)) (-1529 ((|#1| $) 33 T ELT)) (-2411 (((-886) $) 65 T ELT) (($ (-578)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-3839 (((-666 |#1|) $) NIL T ELT)) (-3708 ((|#1| $ |#2|) NIL T ELT)) (-2672 ((|#1| $ |#2|) 28 T ELT)) (-3753 (((-793)) 14 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 29 T CONST)) (-2379 (($) 11 T CONST)) (-1829 (((-666 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-2384 (((-112) $ $) 30 T ELT)) (-2495 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-2484 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2472 (($ $ $) 50 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 52 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3226 (((-793) $) 16 T ELT))) +(((-1321 |#1| |#2|) (-13 (-1080) (-1312 |#1|) (-395 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3226 ((-793) $)) (-15 -2335 (|#2| $)) (-15 -2208 (|#2| $)) (-15 -3136 ($ $)) (-15 -2672 (|#1| $ |#2|)) (-15 -3239 ((-112) $)) (-15 -1529 (|#1| $)) (-15 -4365 ((-112) $)) (-15 -3906 ($ $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -2495 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4493)) (-6 -4493) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|))) (-1080) (-868)) (T -1321)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-1321 *3 *4)) (-4 *4 (-868)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-2335 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))) (-2208 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))) (-2672 (*1 *2 *1 *3) (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-1529 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-3906 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-2495 (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1080)) (-4 *3 (-868))))) +(-13 (-1080) (-1312 |#1|) (-395 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3226 ((-793) $)) (-15 -2335 (|#2| $)) (-15 -2208 (|#2| $)) (-15 -3136 ($ $)) (-15 -2672 (|#1| $ |#2|)) (-15 -3239 ((-112) $)) (-15 -1529 (|#1| $)) (-15 -4365 ((-112) $)) (-15 -3906 ($ $)) (-15 -3611 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -2495 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4493)) (-6 -4493) |%noBranch|) (IF (|has| |#1| (-6 -4497)) (-6 -4497) |%noBranch|) (IF (|has| |#1| (-6 -4498)) (-6 -4498) |%noBranch|))) +((-3213 (((-112) $ $) 27 T ELT)) (-3623 (((-112) $) NIL T ELT)) (-4418 (((-666 |#1|) $) 132 T ELT)) (-2965 (($ (-1313 |#1| |#2|)) 50 T ELT)) (-1898 (($ $ (-793)) 38 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-1972 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-793)) 52 (|has| |#2| (-175)) ELT)) (-3534 (($) NIL T CONST)) (-3564 (($ $ |#1|) 114 T ELT) (($ $ (-841 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-2818 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3516 (((-841 |#1|) $) NIL T ELT)) (-3493 (((-3 $ "failed") $) 122 T ELT)) (-4365 (((-112) $) 117 T ELT)) (-3906 (($ $) 118 T ELT)) (-4382 (((-112) $) NIL T ELT)) (-1796 (((-112) $) NIL T ELT)) (-1476 (($ (-841 |#1|) |#2|) 20 T ELT)) (-2779 (($ $) NIL T ELT)) (-1438 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2208 (((-841 |#1|) $) 123 T ELT)) (-2335 (((-841 |#1|) $) 126 T ELT)) (-3611 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3718 (($ $ |#1|) 112 T ELT) (($ $ (-841 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-4199 (((-1313 |#1| |#2|) $) 94 T ELT)) (-3683 (((-793) $) 129 T ELT)) (-3239 (((-112) $) 81 T ELT)) (-1529 ((|#2| $) 32 T ELT)) (-2411 (((-886) $) 73 T ELT) (($ (-578)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-841 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-2672 ((|#2| $ (-841 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3753 (((-793)) 120 T CONST)) (-2876 (((-112) $ $) NIL T ELT)) (-2368 (($) 15 T CONST)) (-2708 (((-666 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2379 (($) 33 T CONST)) (-2384 (((-112) $ $) 14 T ELT)) (-2484 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-2472 (($ $ $) 61 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 55 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) 53 T ELT) (($ (-578) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1322 |#1| |#2|) (-13 (-1319 |#1| |#2|) (-10 -8 (-15 -4199 ((-1313 |#1| |#2|) $)) (-15 -2965 ($ (-1313 |#1| |#2|))) (-15 -2708 ((-666 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-871) (-1080)) (T -1322)) +((-4199 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-2965 (*1 *1 *2) (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *1 (-1322 *3 *4)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-666 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4))))) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))))) +(-13 (-1319 |#1| |#2|) (-10 -8 (-15 -4199 ((-1313 |#1| |#2|) $)) (-15 -2965 ($ (-1313 |#1| |#2|))) (-15 -2708 ((-666 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3213 (((-112) $ $) NIL T ELT)) (-2142 (($ (-666 (-950))) 10 T ELT)) (-1333 (((-1002) $) 12 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-2411 (((-886) $) 25 T ELT) (($ (-1002)) 14 T ELT) (((-1002) $) 13 T ELT)) (-2876 (((-112) $ $) NIL T ELT)) (-2384 (((-112) $ $) 17 T ELT))) +(((-1323) (-13 (-1131) (-504 (-1002)) (-10 -8 (-15 -2142 ($ (-666 (-950)))) (-15 -1333 ((-1002) $))))) (T -1323)) +((-2142 (*1 *1 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1323)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-1323))))) +(-13 (-1131) (-504 (-1002)) (-10 -8 (-15 -2142 ($ (-666 (-950)))) (-15 -1333 ((-1002) $)))) +((-2585 (((-666 (-1188 |#1|)) (-1 (-666 (-1188 |#1|)) (-666 (-1188 |#1|))) (-578)) 16 T ELT) (((-1188 |#1|) (-1 (-1188 |#1|) (-1188 |#1|))) 13 T ELT))) +(((-1324 |#1|) (-10 -7 (-15 -2585 ((-1188 |#1|) (-1 (-1188 |#1|) (-1188 |#1|)))) (-15 -2585 ((-666 (-1188 |#1|)) (-1 (-666 (-1188 |#1|)) (-666 (-1188 |#1|))) (-578)))) (-1248)) (T -1324)) +((-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-666 (-1188 *5)) (-666 (-1188 *5)))) (-5 *4 (-578)) (-5 *2 (-666 (-1188 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1248)))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-1 (-1188 *4) (-1188 *4))) (-5 *2 (-1188 *4)) (-5 *1 (-1324 *4)) (-4 *4 (-1248))))) +(-10 -7 (-15 -2585 ((-1188 |#1|) (-1 (-1188 |#1|) (-1188 |#1|)))) (-15 -2585 ((-666 (-1188 |#1|)) (-1 (-666 (-1188 |#1|)) (-666 (-1188 |#1|))) (-578)))) +((-3894 (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|))) 174 T ELT) (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112)) 173 T ELT) (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112)) 172 T ELT) (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112) (-112)) 171 T ELT) (((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-1077 |#1| |#2|)) 156 T ELT)) (-2151 (((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|))) 85 T ELT) (((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)) (-112)) 84 T ELT) (((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)) (-112) (-112)) 83 T ELT)) (-3034 (((-666 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|)) 73 T ELT)) (-1933 (((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|))) 140 T ELT) (((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112)) 139 T ELT) (((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112)) 138 T ELT) (((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112) (-112)) 137 T ELT) (((-666 (-666 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|)) 132 T ELT)) (-3289 (((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|))) 145 T ELT) (((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112)) 144 T ELT) (((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112)) 143 T ELT) (((-666 (-666 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|)) 142 T ELT)) (-3343 (((-666 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) 111 T ELT) (((-1203 (-1055 (-421 |#1|))) (-1203 |#1|)) 102 T ELT) (((-981 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|))) 109 T ELT) (((-981 (-1055 (-421 |#1|))) (-981 |#1|)) 107 T ELT) (((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|))) 33 T ELT))) +(((-1325 |#1| |#2| |#3|) (-10 -7 (-15 -2151 ((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)) (-112) (-112))) (-15 -2151 ((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)) (-112))) (-15 -2151 ((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-1077 |#1| |#2|))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112) (-112))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112) (-112))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)))) (-15 -3034 ((-666 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|))) (-15 -3343 ((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|)))) (-15 -3343 ((-981 (-1055 (-421 |#1|))) (-981 |#1|))) (-15 -3343 ((-981 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|)))) (-15 -3343 ((-1203 (-1055 (-421 |#1|))) (-1203 |#1|))) (-15 -3343 ((-666 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))))) (-13 (-870) (-319) (-149) (-1053)) (-666 (-1207)) (-666 (-1207))) (T -1325)) +((-3343 (*1 *2 *3) (-12 (-5 *3 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6)))) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-802 *4 (-888 *6)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-666 (-1207))))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-1203 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-1203 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-888 *6))) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *6 (-666 (-1207))) (-5 *2 (-981 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-666 (-1207))))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-981 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-981 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-888 *5))) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *5 (-666 (-1207))) (-5 *2 (-802 *4 (-888 *6))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *5 (-666 (-1207))) (-5 *2 (-666 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-666 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) (-3289 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-3289 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *5 (-666 (-1207))) (-5 *2 (-666 (-666 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-666 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) (-1933 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-1933 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-1933 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *5 (-666 (-1207))) (-5 *2 (-666 (-666 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) (-3894 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *4)) (|:| -1453 (-666 (-981 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-666 (-981 *4))) (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) (-3894 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-666 (-981 *5))) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-3894 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-666 (-981 *5))) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-3894 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-666 (-981 *5))) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *5 (-666 (-1207))) (-5 *2 (-666 (-2 (|:| -3914 (-1203 *4)) (|:| -1453 (-666 (-981 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-1077 *4 *5))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) (-2151 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) (-5 *2 (-666 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207)))))) +(-10 -7 (-15 -2151 ((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)) (-112) (-112))) (-15 -2151 ((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)) (-112))) (-15 -2151 ((-666 (-1077 |#1| |#2|)) (-666 (-981 |#1|)))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-1077 |#1| |#2|))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112) (-112))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112) (-112))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)) (-112))) (-15 -3894 ((-666 (-2 (|:| -3914 (-1203 |#1|)) (|:| -1453 (-666 (-981 |#1|))))) (-666 (-981 |#1|)))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112) (-112))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112))) (-15 -1933 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112) (-112))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)) (-112))) (-15 -3289 ((-666 (-666 (-1055 (-421 |#1|)))) (-666 (-981 |#1|)))) (-15 -3034 ((-666 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|))) (-15 -3343 ((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|)))) (-15 -3343 ((-981 (-1055 (-421 |#1|))) (-981 |#1|))) (-15 -3343 ((-981 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|)))) (-15 -3343 ((-1203 (-1055 (-421 |#1|))) (-1203 |#1|))) (-15 -3343 ((-666 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))))) +((-1494 (((-3 (-1298 (-421 (-578))) "failed") (-1298 |#1|) |#1|) 21 T ELT)) (-3299 (((-112) (-1298 |#1|)) 12 T ELT)) (-1482 (((-3 (-1298 (-578)) "failed") (-1298 |#1|)) 16 T ELT))) +(((-1326 |#1|) (-10 -7 (-15 -3299 ((-112) (-1298 |#1|))) (-15 -1482 ((-3 (-1298 (-578)) "failed") (-1298 |#1|))) (-15 -1494 ((-3 (-1298 (-421 (-578))) "failed") (-1298 |#1|) |#1|))) (-13 (-1080) (-660 (-578)))) (T -1326)) +((-1494 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 (-578)))) (-5 *2 (-1298 (-421 (-578)))) (-5 *1 (-1326 *4)))) (-1482 (*1 *2 *3) (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 (-578)))) (-5 *2 (-1298 (-578))) (-5 *1 (-1326 *4)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 (-578)))) (-5 *2 (-112)) (-5 *1 (-1326 *4))))) +(-10 -7 (-15 -3299 ((-112) (-1298 |#1|))) (-15 -1482 ((-3 (-1298 (-578)) "failed") (-1298 |#1|))) (-15 -1494 ((-3 (-1298 (-421 (-578))) "failed") (-1298 |#1|) |#1|))) +((-3213 (((-112) $ $) NIL T ELT)) (-3623 (((-112) $) 11 T ELT)) (-4028 (((-3 $ "failed") $ $) NIL T ELT)) (-2222 (((-793)) 8 T ELT)) (-3534 (($) NIL T CONST)) (-3493 (((-3 $ "failed") $) 58 T ELT)) (-2062 (($) 49 T ELT)) (-4382 (((-112) $) 57 T ELT)) (-2204 (((-3 $ "failed") $) 40 T ELT)) (-3193 (((-950) $) 15 T ELT)) (-2617 (((-1189) $) NIL T ELT)) (-2199 (($) 32 T CONST)) (-2087 (($ (-950)) 50 T ELT)) (-4313 (((-1151) $) NIL T ELT)) (-3343 (((-578) $) 13 T ELT)) (-2411 (((-886) $) 27 T ELT) (($ (-578)) 24 T ELT)) (-3753 (((-793)) 9 T CONST)) (-2876 (((-112) $ $) 60 T ELT)) (-2368 (($) 29 T CONST)) (-2379 (($) 31 T CONST)) (-2384 (((-112) $ $) 38 T ELT)) (-2484 (($ $) 52 T ELT) (($ $ $) 47 T ELT)) (-2472 (($ $ $) 35 T ELT)) (** (($ $ (-950)) NIL T ELT) (($ $ (-793)) 54 T ELT)) (* (($ (-950) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-578) $) 44 T ELT) (($ $ $) 43 T ELT))) +(((-1327 |#1|) (-13 (-175) (-381) (-633 (-578)) (-1183)) (-950)) (T -1327)) +NIL +(-13 (-175) (-381) (-633 (-578)) (-1183)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3471914 3471919 3471924 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3471899 3471904 3471909 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3471884 3471889 3471894 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3471869 3471874 3471879 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1327 3470856 3471744 3471821 "ZMOD" 3471826 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1326 3469892 3470074 3470297 "ZLINDEP" 3470688 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1325 3459054 3460960 3462932 "ZDSOLVE" 3468022 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1324 3458288 3458441 3458630 "YSTREAM" 3458900 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1323 3457648 3457957 3458072 "YDIAGRAM" 3458195 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1322 3455096 3456949 3457153 "XRPOLY" 3457491 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1321 3451363 3452967 3453542 "XPR" 3454568 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1320 3448758 3450694 3450898 "XPOLY" 3451194 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1319 3446089 3447765 3447820 "XPOLYC" 3448108 NIL XPOLYC (NIL T T) -9 NIL 3448221 NIL) (-1318 3442035 3444606 3444994 "XPBWPOLY" 3445747 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1317 3437304 3440011 3440053 "XF" 3440674 NIL XF (NIL T) -9 NIL 3441074 NIL) (-1316 3436901 3437013 3437182 "XF-" 3437187 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1315 3431793 3433372 3433427 "XFALG" 3435599 NIL XFALG (NIL T T) -9 NIL 3436388 NIL) (-1314 3430908 3431030 3431235 "XEXPPKG" 3431685 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1313 3428649 3430758 3430854 "XDPOLY" 3430859 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1312 3427304 3428042 3428085 "XALG" 3428090 NIL XALG (NIL T) -9 NIL 3428201 NIL) (-1311 3420214 3425281 3425775 "WUTSET" 3426896 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1310 3418316 3419266 3419589 "WP" 3420025 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1309 3417864 3418138 3418208 "WHILEAST" 3418268 T WHILEAST (NIL) -8 NIL NIL NIL) (-1308 3417276 3417581 3417675 "WHEREAST" 3417792 T WHEREAST (NIL) -8 NIL NIL NIL) (-1307 3416150 3416360 3416655 "WFFINTBS" 3417073 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1306 3414018 3414481 3414943 "WEIER" 3415722 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1305 3412942 3413500 3413542 "VSPACE" 3413678 NIL VSPACE (NIL T) -9 NIL 3413752 NIL) (-1304 3412774 3412807 3412898 "VSPACE-" 3412903 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1303 3412571 3412625 3412693 "VOID" 3412728 T VOID (NIL) -8 NIL NIL NIL) (-1302 3410671 3411066 3411472 "VIEW" 3412187 T VIEW (NIL) -7 NIL NIL NIL) (-1301 3406939 3407734 3408471 "VIEWDEF" 3409956 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1300 3395883 3398487 3400660 "VIEW3D" 3404788 T VIEW3D (NIL) -8 NIL NIL NIL) (-1299 3387900 3389794 3391373 "VIEW2D" 3394326 T VIEW2D (NIL) -8 NIL NIL NIL) (-1298 3382806 3387670 3387762 "VECTOR" 3387843 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1297 3381359 3381642 3381960 "VECTOR2" 3382536 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1296 3374313 3379063 3379106 "VECTCAT" 3380101 NIL VECTCAT (NIL T) -9 NIL 3380688 NIL) (-1295 3373255 3373581 3373971 "VECTCAT-" 3373976 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1294 3372661 3372906 3373026 "VARIABLE" 3373170 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1293 3372594 3372599 3372629 "UTYPE" 3372634 T UTYPE (NIL) -9 NIL NIL NIL) (-1292 3371402 3371578 3371840 "UTSODETL" 3372420 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1291 3368794 3369302 3369826 "UTSODE" 3370943 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1290 3360104 3366555 3367035 "UTS" 3368372 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1289 3350111 3356037 3356080 "UTSCAT" 3357192 NIL UTSCAT (NIL T) -9 NIL 3357950 NIL) (-1288 3347237 3348181 3349170 "UTSCAT-" 3349175 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1287 3346858 3346907 3347040 "UTS2" 3347188 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1286 3340725 3343668 3343711 "URAGG" 3345781 NIL URAGG (NIL T) -9 NIL 3346504 NIL) (-1285 3337448 3338527 3339650 "URAGG-" 3339655 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1284 3332817 3336083 3336548 "UPXSSING" 3337112 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1283 3324295 3332199 3332463 "UPXS" 3332611 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1282 3316710 3324199 3324271 "UPXSCONS" 3324276 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1281 3305458 3312912 3312974 "UPXSCCA" 3313548 NIL UPXSCCA (NIL T T) -9 NIL 3313781 NIL) (-1280 3305078 3305181 3305355 "UPXSCCA-" 3305360 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1279 3293726 3300905 3300948 "UPXSCAT" 3301596 NIL UPXSCAT (NIL T) -9 NIL 3302205 NIL) (-1278 3293150 3293235 3293414 "UPXS2" 3293641 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1277 3291786 3292057 3292408 "UPSQFREE" 3292893 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1276 3284614 3288052 3288107 "UPSCAT" 3289187 NIL UPSCAT (NIL T T) -9 NIL 3289953 NIL) (-1275 3283770 3284025 3284352 "UPSCAT-" 3284357 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1274 3267904 3276897 3276940 "UPOLYC" 3279041 NIL UPOLYC (NIL T) -9 NIL 3280262 NIL) (-1273 3258752 3261658 3264805 "UPOLYC-" 3264810 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1272 3258373 3258422 3258555 "UPOLYC2" 3258703 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1271 3248948 3258056 3258185 "UP" 3258292 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1270 3248269 3248394 3248558 "UPMP" 3248837 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1269 3247816 3247903 3248042 "UPDIVP" 3248182 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1268 3246354 3246633 3246949 "UPDECOMP" 3247565 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1267 3245567 3245697 3245883 "UPCDEN" 3246238 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1266 3245080 3245155 3245304 "UP2" 3245492 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1265 3243433 3244284 3244561 "UNISEG" 3244838 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1264 3242638 3242775 3242980 "UNISEG2" 3243276 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1263 3241680 3241878 3242104 "UNIFACT" 3242454 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1262 3223490 3240992 3241234 "ULS" 3241496 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1261 3210200 3223394 3223466 "ULSCONS" 3223471 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1260 3190000 3203280 3203342 "ULSCCAT" 3203980 NIL ULSCCAT (NIL T T) -9 NIL 3204269 NIL) (-1259 3188996 3189295 3189683 "ULSCCAT-" 3189688 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1258 3177441 3184542 3184585 "ULSCAT" 3185448 NIL ULSCAT (NIL T) -9 NIL 3186179 NIL) (-1257 3176865 3176950 3177129 "ULS2" 3177356 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1256 3175780 3176480 3176594 "UINT8" 3176705 T UINT8 (NIL) -8 NIL NIL 3176797) (-1255 3174694 3175394 3175508 "UINT64" 3175619 T UINT64 (NIL) -8 NIL NIL 3175711) (-1254 3173608 3174308 3174422 "UINT32" 3174533 T UINT32 (NIL) -8 NIL NIL 3174625) (-1253 3172522 3173222 3173336 "UINT16" 3173447 T UINT16 (NIL) -8 NIL NIL 3173539) (-1252 3170601 3171768 3171798 "UFD" 3172010 T UFD (NIL) -9 NIL 3172124 NIL) (-1251 3170383 3170441 3170536 "UFD-" 3170541 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1250 3169441 3169648 3169864 "UDVO" 3170189 T UDVO (NIL) -7 NIL NIL NIL) (-1249 3167207 3167666 3168137 "UDPO" 3169005 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1248 3167140 3167145 3167175 "TYPE" 3167180 T TYPE (NIL) -9 NIL NIL NIL) (-1247 3166852 3167095 3167126 "TYPEAST" 3167131 T TYPEAST (NIL) -8 NIL NIL NIL) (-1246 3165805 3166025 3166265 "TWOFACT" 3166646 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1245 3164780 3165214 3165449 "TUPLE" 3165605 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1244 3162417 3162990 3163529 "TUBETOOL" 3164263 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1243 3161223 3161464 3161706 "TUBE" 3162210 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1242 3155402 3160195 3160478 "TS" 3160975 NIL TS (NIL T) -8 NIL NIL NIL) (-1241 3143544 3148159 3148256 "TSETCAT" 3153525 NIL TSETCAT (NIL T T T T) -9 NIL 3155057 NIL) (-1240 3138012 3139876 3141767 "TSETCAT-" 3141772 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1239 3132485 3133498 3134427 "TRMANIP" 3137148 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1238 3131914 3131989 3132152 "TRIMAT" 3132417 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1237 3129726 3130017 3130374 "TRIGMNIP" 3131663 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1236 3129210 3129359 3129389 "TRIGCAT" 3129602 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1235 3128855 3128958 3129099 "TRIGCAT-" 3129104 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1234 3125469 3127713 3127994 "TREE" 3128609 NIL TREE (NIL T) -8 NIL NIL NIL) (-1233 3124575 3125271 3125301 "TRANFUN" 3125336 T TRANFUN (NIL) -9 NIL 3125402 NIL) (-1232 3123794 3124045 3124325 "TRANFUN-" 3124330 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1231 3123592 3123630 3123691 "TOPSP" 3123755 T TOPSP (NIL) -7 NIL NIL NIL) (-1230 3122922 3123055 3123209 "TOOLSIGN" 3123473 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1229 3121436 3122099 3122338 "TEXTFILE" 3122705 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1228 3119240 3119889 3120318 "TEX" 3121029 T TEX (NIL) -8 NIL NIL NIL) (-1227 3119015 3119052 3119124 "TEX1" 3119203 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1226 3118651 3118726 3118816 "TEMUTL" 3118947 T TEMUTL (NIL) -7 NIL NIL NIL) (-1225 3116745 3117085 3117410 "TBCMPPK" 3118374 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1224 3108072 3114831 3114887 "TBAGG" 3115287 NIL TBAGG (NIL T T) -9 NIL 3115498 NIL) (-1223 3102956 3104630 3106384 "TBAGG-" 3106389 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1222 3102322 3102447 3102592 "TANEXP" 3102845 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1221 3101773 3102097 3102187 "TALGOP" 3102267 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1220 3094787 3101630 3101723 "TABLE" 3101728 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1219 3094181 3094298 3094436 "TABLEAU" 3094684 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1218 3088711 3090009 3091257 "TABLBUMP" 3092967 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1217 3087921 3088080 3088261 "SYSTEM" 3088552 T SYSTEM (NIL) -8 NIL NIL NIL) (-1216 3084326 3085079 3085862 "SYSSOLP" 3087172 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1215 3084088 3084281 3084312 "SYSPTR" 3084317 T SYSPTR (NIL) -8 NIL NIL NIL) (-1214 3082923 3083615 3083741 "SYSNNI" 3083927 NIL SYSNNI (NIL NIL) -8 NIL NIL 3084019) (-1213 3082126 3082681 3082760 "SYSINT" 3082820 NIL SYSINT (NIL NIL) -8 NIL NIL 3082865) (-1212 3078224 3079404 3080114 "SYNTAX" 3081438 T SYNTAX (NIL) -8 NIL NIL NIL) (-1211 3075304 3075984 3076616 "SYMTAB" 3077614 T SYMTAB (NIL) -8 NIL NIL NIL) (-1210 3070403 3071455 3072438 "SYMS" 3074343 T SYMS (NIL) -8 NIL NIL NIL) (-1209 3067302 3069854 3070087 "SYMPOLY" 3070205 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1208 3066807 3066894 3067017 "SYMFUNC" 3067214 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1207 3062605 3064119 3064932 "SYMBOL" 3066016 T SYMBOL (NIL) -8 NIL NIL NIL) (-1206 3056078 3057833 3059553 "SWITCH" 3060907 T SWITCH (NIL) -8 NIL NIL NIL) (-1205 3048832 3055034 3055328 "SUTS" 3055842 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1204 3040310 3048214 3048478 "SUPXS" 3048626 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1203 3030833 3039928 3040054 "SUP" 3040219 NIL SUP (NIL T) -8 NIL NIL NIL) (-1202 3029980 3030119 3030336 "SUPFRACF" 3030701 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1201 3029595 3029660 3029773 "SUP2" 3029915 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1200 3028019 3028317 3028673 "SUMRF" 3029294 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1199 3027342 3027420 3027612 "SUMFS" 3027940 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1198 3009187 3026654 3026896 "SULS" 3027158 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1197 3008735 3009009 3009079 "SUCHTAST" 3009139 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1196 3007976 3008260 3008400 "SUCH" 3008643 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1195 3001615 3002882 3003841 "SUBSPACE" 3007064 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1194 3001035 3001135 3001299 "SUBRESP" 3001503 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1193 2994229 2995700 2997011 "STTF" 2999771 NIL STTF (NIL T) -7 NIL NIL NIL) (-1192 2988240 2989522 2990669 "STTFNC" 2993129 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1191 2979357 2981422 2983216 "STTAYLOR" 2986481 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1190 2972111 2979221 2979304 "STRTBL" 2979309 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1189 2966508 2971820 2971919 "STRING" 2972034 T STRING (NIL) -8 NIL NIL NIL) (-1188 2958618 2964127 2964738 "STREAM" 2965932 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1187 2958122 2958205 2958349 "STREAM3" 2958535 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1186 2957086 2957287 2957522 "STREAM2" 2957935 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1185 2956768 2956826 2956919 "STREAM1" 2957028 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1184 2955760 2955965 2956196 "STINPROD" 2956584 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1183 2955256 2955508 2955538 "STEP" 2955618 T STEP (NIL) -9 NIL 2955696 NIL) (-1182 2954371 2954745 2954893 "STEPAST" 2955130 T STEPAST (NIL) -8 NIL NIL NIL) (-1181 2947427 2954270 2954347 "STBL" 2954352 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1180 2941985 2946590 2946633 "STAGG" 2946786 NIL STAGG (NIL T) -9 NIL 2946875 NIL) (-1179 2939537 2940289 2941161 "STAGG-" 2941166 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1178 2937509 2939307 2939399 "STACK" 2939480 NIL STACK (NIL T) -8 NIL NIL NIL) (-1177 2929516 2935650 2936106 "SREGSET" 2937139 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1176 2921863 2923310 2924823 "SRDCMPK" 2928122 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1175 2914172 2919222 2919252 "SRAGG" 2920555 T SRAGG (NIL) -9 NIL 2921163 NIL) (-1174 2913123 2913444 2913823 "SRAGG-" 2913828 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1173 2906707 2912070 2912491 "SQMATRIX" 2912749 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1172 2900119 2903425 2904152 "SPLTREE" 2906052 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1171 2895944 2896775 2897421 "SPLNODE" 2899545 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1170 2894919 2895224 2895254 "SPFCAT" 2895698 T SPFCAT (NIL) -9 NIL NIL NIL) (-1169 2893614 2893866 2894130 "SPECOUT" 2894677 T SPECOUT (NIL) -7 NIL NIL NIL) (-1168 2884260 2886578 2886608 "SPADXPT" 2891286 T SPADXPT (NIL) -9 NIL 2893452 NIL) (-1167 2884015 2884061 2884130 "SPADPRSR" 2884213 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1166 2881618 2883970 2884001 "SPADAST" 2884006 T SPADAST (NIL) -8 NIL NIL NIL) (-1165 2873219 2875322 2875365 "SPACEC" 2879738 NIL SPACEC (NIL T) -9 NIL 2881554 NIL) (-1164 2871019 2873151 2873200 "SPACE3" 2873205 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1163 2869751 2869942 2870233 "SORTPAK" 2870824 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1162 2867813 2868146 2868558 "SOLVETRA" 2869415 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1161 2866851 2867085 2867346 "SOLVESER" 2867586 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1160 2862083 2863043 2864038 "SOLVERAD" 2865903 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1159 2857808 2858507 2859236 "SOLVEFOR" 2861450 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1158 2851419 2857156 2857253 "SNTSCAT" 2857258 NIL SNTSCAT (NIL T T T T) -9 NIL 2857328 NIL) (-1157 2844963 2849742 2850133 "SMTS" 2851109 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1156 2838678 2844851 2844928 "SMP" 2844933 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1155 2836807 2837138 2837536 "SMITH" 2838375 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1154 2828339 2833386 2833489 "SMATCAT" 2834840 NIL SMATCAT (NIL NIL T T T) -9 NIL 2835390 NIL) (-1153 2825111 2826102 2827280 "SMATCAT-" 2827285 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1152 2822580 2824319 2824362 "SKAGG" 2824623 NIL SKAGG (NIL T) -9 NIL 2824758 NIL) (-1151 2818074 2822053 2822237 "SINT" 2822389 T SINT (NIL) -8 NIL NIL 2822551) (-1150 2817840 2817884 2817950 "SIMPAN" 2818030 T SIMPAN (NIL) -7 NIL NIL NIL) (-1149 2817065 2817375 2817515 "SIG" 2817722 T SIG (NIL) -8 NIL NIL NIL) (-1148 2815885 2816124 2816399 "SIGNRF" 2816824 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1147 2814700 2814869 2815153 "SIGNEF" 2815714 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1146 2813940 2814283 2814407 "SIGAST" 2814598 T SIGAST (NIL) -8 NIL NIL NIL) (-1145 2811592 2812084 2812590 "SHP" 2813481 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1144 2804965 2811493 2811569 "SHDP" 2811574 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1143 2804476 2804716 2804746 "SGROUP" 2804839 T SGROUP (NIL) -9 NIL 2804901 NIL) (-1142 2804328 2804360 2804433 "SGROUP-" 2804438 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1141 2801047 2801817 2802540 "SGCF" 2803627 T SGCF (NIL) -7 NIL NIL NIL) (-1140 2794756 2800493 2800590 "SFRTCAT" 2800595 NIL SFRTCAT (NIL T T T T) -9 NIL 2800634 NIL) (-1139 2788075 2789195 2790331 "SFRGCD" 2793739 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1138 2781093 2782274 2783460 "SFQCMPK" 2787008 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1137 2780695 2780802 2780913 "SFORT" 2781034 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1136 2779621 2780535 2780656 "SEXOF" 2780661 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1135 2778536 2779502 2779570 "SEX" 2779575 T SEX (NIL) -8 NIL NIL NIL) (-1134 2774125 2775032 2775127 "SEXCAT" 2777749 NIL SEXCAT (NIL T T T T T) -9 NIL 2778309 NIL) (-1133 2770934 2774059 2774107 "SET" 2774112 NIL SET (NIL T) -8 NIL NIL NIL) (-1132 2769056 2769647 2769952 "SETMN" 2770675 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1131 2768586 2768774 2768804 "SETCAT" 2768921 T SETCAT (NIL) -9 NIL 2769006 NIL) (-1130 2768354 2768418 2768517 "SETCAT-" 2768522 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1129 2764457 2766815 2766858 "SETAGG" 2767728 NIL SETAGG (NIL T) -9 NIL 2768068 NIL) (-1128 2763879 2764031 2764268 "SETAGG-" 2764273 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1127 2763262 2763575 2763676 "SEQAST" 2763800 T SEQAST (NIL) -8 NIL NIL NIL) (-1126 2762389 2762755 2762816 "SEGXCAT" 2763102 NIL SEGXCAT (NIL T T) -9 NIL 2763222 NIL) (-1125 2761305 2762055 2762237 "SEG" 2762242 NIL SEG (NIL T) -8 NIL NIL NIL) (-1124 2760230 2760498 2760541 "SEGCAT" 2761063 NIL SEGCAT (NIL T) -9 NIL 2761284 NIL) (-1123 2759120 2759593 2759801 "SEGBIND" 2760057 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1122 2758735 2758800 2758913 "SEGBIND2" 2759055 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1121 2758254 2758536 2758613 "SEGAST" 2758680 T SEGAST (NIL) -8 NIL NIL NIL) (-1120 2757463 2757599 2757803 "SEG2" 2758098 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1119 2756696 2757398 2757445 "SDVAR" 2757450 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1118 2748047 2756466 2756596 "SDPOL" 2756601 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1117 2746616 2746906 2747225 "SCPKG" 2747762 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1116 2745738 2745952 2746144 "SCOPE" 2746446 T SCOPE (NIL) -8 NIL NIL NIL) (-1115 2744934 2745092 2745271 "SCACHE" 2745593 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1114 2744518 2744752 2744782 "SASTCAT" 2744787 T SASTCAT (NIL) -9 NIL 2744800 NIL) (-1113 2743921 2744353 2744429 "SAOS" 2744464 T SAOS (NIL) -8 NIL NIL NIL) (-1112 2743480 2743521 2743694 "SAERFFC" 2743880 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1111 2736507 2743377 2743457 "SAE" 2743462 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1110 2736094 2736135 2736294 "SAEFACT" 2736466 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1109 2734397 2734729 2735130 "RURPK" 2735760 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1108 2732974 2733340 2733645 "RULESET" 2734231 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1107 2730089 2730727 2731185 "RULE" 2732655 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1106 2729659 2729883 2729966 "RULECOLD" 2730041 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1105 2729443 2729477 2729548 "RTVALUE" 2729610 T RTVALUE (NIL) -8 NIL NIL NIL) (-1104 2728854 2729160 2729254 "RSTRCAST" 2729371 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1103 2723624 2724497 2725417 "RSETGCD" 2728053 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1102 2712195 2717932 2718029 "RSETCAT" 2722148 NIL RSETCAT (NIL T T T T) -9 NIL 2723245 NIL) (-1101 2710014 2710661 2711485 "RSETCAT-" 2711490 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1100 2702322 2703776 2705296 "RSDCMPK" 2708613 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1099 2700191 2700754 2700828 "RRCC" 2701914 NIL RRCC (NIL T T) -9 NIL 2702258 NIL) (-1098 2699512 2699716 2699995 "RRCC-" 2700000 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1097 2698895 2699208 2699309 "RPTAST" 2699433 T RPTAST (NIL) -8 NIL NIL NIL) (-1096 2671281 2682007 2682074 "RPOLCAT" 2692740 NIL RPOLCAT (NIL T T T) -9 NIL 2695900 NIL) (-1095 2662251 2665119 2668241 "RPOLCAT-" 2668246 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1094 2652704 2660462 2660944 "ROUTINE" 2661791 T ROUTINE (NIL) -8 NIL NIL NIL) (-1093 2648753 2652330 2652470 "ROMAN" 2652586 T ROMAN (NIL) -8 NIL NIL NIL) (-1092 2646865 2647613 2647873 "ROIRC" 2648558 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1091 2642583 2645354 2645384 "RNS" 2645688 T RNS (NIL) -9 NIL 2645962 NIL) (-1090 2640990 2641475 2642009 "RNS-" 2642084 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1089 2640283 2640787 2640817 "RNG" 2640822 T RNG (NIL) -9 NIL 2640843 NIL) (-1088 2639244 2639648 2639850 "RNGBIND" 2640134 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1087 2638539 2639017 2639060 "RMODULE" 2639065 NIL RMODULE (NIL T) -9 NIL 2639092 NIL) (-1086 2637363 2637469 2637805 "RMCAT2" 2638440 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1085 2633865 2636709 2637006 "RMATRIX" 2637125 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1084 2626364 2628952 2629067 "RMATCAT" 2632426 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2633408 NIL) (-1083 2625703 2625886 2626193 "RMATCAT-" 2626198 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1082 2625276 2625490 2625533 "RLINSET" 2625595 NIL RLINSET (NIL T) -9 NIL 2625639 NIL) (-1081 2624837 2624918 2625046 "RINTERP" 2625195 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1080 2623761 2624435 2624465 "RING" 2624521 T RING (NIL) -9 NIL 2624613 NIL) (-1079 2623541 2623597 2623694 "RING-" 2623699 NIL RING- (NIL T) -8 NIL NIL NIL) (-1078 2622352 2622619 2622877 "RIDIST" 2623305 T RIDIST (NIL) -7 NIL NIL NIL) (-1077 2612977 2621820 2622026 "RGCHAIN" 2622200 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1076 2612235 2612719 2612760 "RGBCSPC" 2612818 NIL RGBCSPC (NIL T) -9 NIL 2612870 NIL) (-1075 2611301 2611760 2611801 "RGBCMDL" 2612033 NIL RGBCMDL (NIL T) -9 NIL 2612147 NIL) (-1074 2608241 2608909 2609579 "RF" 2610665 NIL RF (NIL T) -7 NIL NIL NIL) (-1073 2607881 2607950 2608053 "RFFACTOR" 2608172 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1072 2607600 2607641 2607738 "RFFACT" 2607840 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1071 2605651 2606081 2606463 "RFDIST" 2607240 T RFDIST (NIL) -7 NIL NIL NIL) (-1070 2605098 2605196 2605359 "RETSOL" 2605553 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1069 2604716 2604814 2604857 "RETRACT" 2604990 NIL RETRACT (NIL T) -9 NIL 2605077 NIL) (-1068 2604559 2604590 2604677 "RETRACT-" 2604682 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1067 2604107 2604381 2604451 "RETAST" 2604511 T RETAST (NIL) -8 NIL NIL NIL) (-1066 2596457 2603760 2603887 "RESULT" 2604002 T RESULT (NIL) -8 NIL NIL NIL) (-1065 2594892 2595726 2595925 "RESRING" 2596360 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1064 2594516 2594577 2594675 "RESLATC" 2594829 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1063 2594215 2594256 2594363 "REPSQ" 2594475 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1062 2591595 2592217 2592819 "REP" 2593635 T REP (NIL) -7 NIL NIL NIL) (-1061 2591286 2591327 2591438 "REPDB" 2591554 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1060 2585118 2586575 2587798 "REP2" 2590098 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1059 2581421 2582176 2582984 "REP1" 2584345 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1058 2573429 2579562 2580018 "REGSET" 2581051 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1057 2572138 2572577 2572827 "REF" 2573214 NIL REF (NIL T) -8 NIL NIL NIL) (-1056 2571503 2571618 2571785 "REDORDER" 2572022 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1055 2566867 2570716 2570943 "RECLOS" 2571331 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1054 2565901 2566100 2566315 "REALSOLV" 2566674 T REALSOLV (NIL) -7 NIL NIL NIL) (-1053 2565735 2565788 2565818 "REAL" 2565823 T REAL (NIL) -9 NIL 2565858 NIL) (-1052 2562182 2563020 2563904 "REAL0Q" 2564900 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1051 2557735 2558771 2559832 "REAL0" 2561163 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1050 2557146 2557452 2557546 "RDUCEAST" 2557663 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1049 2556545 2556623 2556830 "RDIV" 2557068 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1048 2555595 2555787 2556000 "RDIST" 2556367 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1047 2554180 2554479 2554851 "RDETRS" 2555303 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1046 2551974 2552446 2552984 "RDETR" 2553722 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1045 2550593 2550877 2551274 "RDEEFS" 2551690 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1044 2549096 2549408 2549833 "RDEEF" 2550281 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1043 2542573 2546050 2546080 "RCFIELD" 2547375 T RCFIELD (NIL) -9 NIL 2548106 NIL) (-1042 2540529 2541141 2541837 "RCFIELD-" 2541912 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1041 2536581 2538602 2538645 "RCAGG" 2539729 NIL RCAGG (NIL T) -9 NIL 2540194 NIL) (-1040 2536191 2536303 2536466 "RCAGG-" 2536471 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1039 2535508 2535638 2535803 "RATRET" 2536075 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1038 2535049 2535128 2535249 "RATFACT" 2535436 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1037 2534327 2534477 2534629 "RANDSRC" 2534919 T RANDSRC (NIL) -7 NIL NIL NIL) (-1036 2534055 2534105 2534178 "RADUTIL" 2534276 T RADUTIL (NIL) -7 NIL NIL NIL) (-1035 2526179 2532886 2533197 "RADIX" 2533778 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1034 2515773 2526021 2526151 "RADFF" 2526156 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1033 2515402 2515495 2515525 "RADCAT" 2515685 T RADCAT (NIL) -9 NIL NIL NIL) (-1032 2515172 2515232 2515332 "RADCAT-" 2515337 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1031 2513083 2514942 2515034 "QUEUE" 2515115 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1030 2508922 2513016 2513064 "QUAT" 2513069 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1029 2508547 2508596 2508727 "QUATCT2" 2508873 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1028 2500923 2504970 2505012 "QUATCAT" 2505803 NIL QUATCAT (NIL T) -9 NIL 2506569 NIL) (-1027 2496804 2498099 2499489 "QUATCAT-" 2499585 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1026 2494060 2495852 2495895 "QUAGG" 2496276 NIL QUAGG (NIL T) -9 NIL 2496451 NIL) (-1025 2493608 2493882 2493952 "QQUTAST" 2494012 T QQUTAST (NIL) -8 NIL NIL NIL) (-1024 2492519 2493121 2493286 "QFORM" 2493489 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1023 2482195 2488366 2488408 "QFCAT" 2489076 NIL QFCAT (NIL T) -9 NIL 2490077 NIL) (-1022 2477510 2478963 2480557 "QFCAT-" 2480653 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1021 2477135 2477184 2477315 "QFCAT2" 2477461 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1020 2476566 2476700 2476832 "QEQUAT" 2477025 T QEQUAT (NIL) -8 NIL NIL NIL) (-1019 2469584 2470765 2471951 "QCMPACK" 2475499 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2467034 2467570 2468000 "QALGSET" 2469239 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1017 2466263 2466445 2466681 "QALGSET2" 2466852 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1016 2464930 2465172 2465491 "PWFFINTB" 2466036 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1015 2463075 2463273 2463629 "PUSHVAR" 2464744 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1014 2458802 2460018 2460061 "PTRANFN" 2461972 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1013 2457139 2457484 2457808 "PTPACK" 2458513 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1012 2456762 2456825 2456936 "PTFUNC2" 2457076 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1011 2450687 2455551 2455594 "PTCAT" 2455894 NIL PTCAT (NIL T) -9 NIL 2456047 NIL) (-1010 2450336 2450377 2450503 "PSQFR" 2450646 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1009 2448908 2449224 2449560 "PSEUDLIN" 2450034 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1008 2435428 2438003 2440329 "PSETPK" 2446668 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1007 2428136 2431164 2431262 "PSETCAT" 2434303 NIL PSETCAT (NIL T T T T) -9 NIL 2435117 NIL) (-1006 2425861 2426603 2427427 "PSETCAT-" 2427432 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1005 2425174 2425369 2425399 "PSCURVE" 2425671 T PSCURVE (NIL) -9 NIL 2425838 NIL) (-1004 2420890 2422664 2422731 "PSCAT" 2423583 NIL PSCAT (NIL T T T) -9 NIL 2423823 NIL) (-1003 2419884 2420166 2420569 "PSCAT-" 2420574 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-1002 2418083 2418943 2419208 "PRTITION" 2419641 T PRTITION (NIL) -8 NIL NIL NIL) (-1001 2417494 2417800 2417894 "PRTDAST" 2418011 T PRTDAST (NIL) -8 NIL NIL NIL) (-1000 2406338 2408760 2410950 "PRS" 2415356 NIL PRS (NIL T T) -7 NIL NIL NIL) (-999 2403958 2405660 2405700 "PRQAGG" 2405883 NIL PRQAGG (NIL T) -9 NIL 2405985 NIL) (-998 2403137 2403586 2403614 "PROPLOG" 2403753 T PROPLOG (NIL) -9 NIL 2403868 NIL) (-997 2402735 2402798 2402921 "PROPFUN2" 2403060 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-996 2402032 2402171 2402343 "PROPFUN1" 2402596 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-995 2400011 2400779 2401076 "PROPFRML" 2401768 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-994 2399456 2399587 2399715 "PROPERTY" 2399903 T PROPERTY (NIL) -8 NIL NIL NIL) (-993 2393344 2397622 2398442 "PRODUCT" 2398682 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-992 2390302 2392802 2393036 "PR" 2393155 NIL PR (NIL T T) -8 NIL NIL NIL) (-991 2390092 2390130 2390189 "PRINT" 2390263 T PRINT (NIL) -7 NIL NIL NIL) (-990 2389408 2389549 2389701 "PRIMES" 2389972 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-989 2387455 2387874 2388340 "PRIMELT" 2388987 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-988 2387172 2387233 2387261 "PRIMCAT" 2387385 T PRIMCAT (NIL) -9 NIL NIL NIL) (-987 2382894 2387110 2387155 "PRIMARR" 2387160 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-986 2381883 2382079 2382307 "PRIMARR2" 2382712 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-985 2381520 2381582 2381693 "PREASSOC" 2381821 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-984 2380971 2381128 2381156 "PPCURVE" 2381361 T PPCURVE (NIL) -9 NIL 2381497 NIL) (-983 2380518 2380766 2380849 "PORTNUM" 2380908 T PORTNUM (NIL) -8 NIL NIL NIL) (-982 2377855 2378276 2378868 "POLYROOT" 2380099 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-981 2371063 2377459 2377619 "POLY" 2377728 NIL POLY (NIL T) -8 NIL NIL NIL) (-980 2370440 2370504 2370738 "POLYLIFT" 2370999 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-979 2366661 2367164 2367793 "POLYCATQ" 2369985 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-978 2352309 2358408 2358473 "POLYCAT" 2361987 NIL POLYCAT (NIL T T T) -9 NIL 2363865 NIL) (-977 2345428 2347620 2350004 "POLYCAT-" 2350009 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-976 2345009 2345083 2345203 "POLY2UP" 2345354 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-975 2344635 2344698 2344807 "POLY2" 2344946 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-974 2343296 2343559 2343835 "POLUTIL" 2344409 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-973 2341615 2341928 2342259 "POLTOPOL" 2343018 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-972 2336611 2341549 2341596 "POINT" 2341601 NIL POINT (NIL T) -8 NIL NIL NIL) (-971 2334744 2335155 2335530 "PNTHEORY" 2336256 T PNTHEORY (NIL) -7 NIL NIL NIL) (-970 2333190 2333499 2333898 "PMTOOLS" 2334442 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-969 2332777 2332861 2332978 "PMSYM" 2333106 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-968 2332279 2332354 2332529 "PMQFCAT" 2332702 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-967 2331622 2331744 2331900 "PMPRED" 2332156 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-966 2331003 2331101 2331263 "PMPREDFS" 2331523 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-965 2329657 2329875 2330253 "PMPLCAT" 2330765 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-964 2329183 2329268 2329420 "PMLSAGG" 2329572 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-963 2328650 2328732 2328914 "PMKERNEL" 2329101 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-962 2328261 2328342 2328455 "PMINS" 2328569 NIL PMINS (NIL T) -7 NIL NIL NIL) (-961 2327697 2327772 2327981 "PMFS" 2328186 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-960 2326913 2327043 2327248 "PMDOWN" 2327574 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-959 2326056 2326238 2326419 "PMASS" 2326752 T PMASS (NIL) -7 NIL NIL NIL) (-958 2325305 2325439 2325602 "PMASSFS" 2325943 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-957 2324954 2325028 2325122 "PLOTTOOL" 2325231 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-956 2319375 2320765 2321913 "PLOT" 2323826 T PLOT (NIL) -8 NIL NIL NIL) (-955 2315027 2316221 2317143 "PLOT3D" 2318473 T PLOT3D (NIL) -8 NIL NIL NIL) (-954 2313915 2314116 2314351 "PLOT1" 2314831 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-953 2289090 2293981 2298832 "PLEQN" 2309181 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-952 2288396 2288530 2288710 "PINTERP" 2288955 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-951 2288083 2288136 2288239 "PINTERPA" 2288343 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-950 2287179 2287847 2287934 "PI" 2287974 T PI (NIL) -8 NIL NIL 2288041) (-949 2285264 2286437 2286465 "PID" 2286647 T PID (NIL) -9 NIL 2286781 NIL) (-948 2285009 2285052 2285127 "PICOERCE" 2285221 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-947 2284317 2284468 2284644 "PGROEB" 2284865 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-946 2279756 2280715 2281621 "PGE" 2283431 T PGE (NIL) -7 NIL NIL NIL) (-945 2277837 2278126 2278492 "PGCD" 2279473 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-944 2277163 2277278 2277439 "PFRPAC" 2277721 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-943 2273413 2275711 2276064 "PFR" 2276842 NIL PFR (NIL T) -8 NIL NIL NIL) (-942 2271766 2272046 2272371 "PFOTOOLS" 2273160 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-941 2270281 2270538 2270889 "PFOQ" 2271523 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-940 2268764 2268994 2269350 "PFO" 2270065 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-939 2264689 2268653 2268722 "PF" 2268727 NIL PF (NIL NIL) -8 NIL NIL NIL) (-938 2261767 2263280 2263308 "PFECAT" 2263893 T PFECAT (NIL) -9 NIL 2264277 NIL) (-937 2261194 2261366 2261580 "PFECAT-" 2261585 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-936 2259767 2260049 2260350 "PFBRU" 2260943 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-935 2257597 2257985 2258417 "PFBR" 2259418 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-934 2253399 2255106 2255754 "PERM" 2256982 NIL PERM (NIL T) -8 NIL NIL NIL) (-933 2248453 2249606 2250476 "PERMGRP" 2252562 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-932 2246365 2247477 2247518 "PERMCAT" 2247918 NIL PERMCAT (NIL T) -9 NIL 2248216 NIL) (-931 2246012 2246059 2246183 "PERMAN" 2246318 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-930 2243253 2245677 2245799 "PENDTREE" 2245923 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-929 2242134 2242397 2242438 "PDSPC" 2242971 NIL PDSPC (NIL T) -9 NIL 2243216 NIL) (-928 2241189 2241455 2241817 "PDSPC-" 2241822 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-927 2239903 2240839 2240880 "PDRING" 2240885 NIL PDRING (NIL T) -9 NIL 2240913 NIL) (-926 2238646 2239408 2239462 "PDMOD" 2239467 NIL PDMOD (NIL T T) -9 NIL 2239571 NIL) (-925 2235813 2236639 2237307 "PDEPROB" 2237998 T PDEPROB (NIL) -8 NIL NIL NIL) (-924 2233322 2233862 2234417 "PDEPACK" 2235278 T PDEPACK (NIL) -7 NIL NIL NIL) (-923 2232210 2232424 2232675 "PDECOMP" 2233121 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-922 2229727 2230618 2230646 "PDECAT" 2231433 T PDECAT (NIL) -9 NIL 2232146 NIL) (-921 2229344 2229411 2229465 "PDDOM" 2229630 NIL PDDOM (NIL T T) -9 NIL 2229710 NIL) (-920 2229157 2229193 2229300 "PDDOM-" 2229305 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-919 2228902 2228941 2229031 "PCOMP" 2229118 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-918 2226942 2227703 2228000 "PBWLB" 2228631 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-917 2219121 2221015 2222353 "PATTERN" 2225625 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-916 2218747 2218810 2218919 "PATTERN2" 2219058 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-915 2216456 2216892 2217349 "PATTERN1" 2218336 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-914 2213722 2214405 2214886 "PATRES" 2216021 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-913 2213280 2213353 2213485 "PATRES2" 2213649 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-912 2211133 2211568 2211975 "PATMATCH" 2212947 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-911 2210587 2210838 2210879 "PATMAB" 2210986 NIL PATMAB (NIL T) -9 NIL 2211069 NIL) (-910 2209033 2209441 2209699 "PATLRES" 2210392 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-909 2208571 2208702 2208743 "PATAB" 2208748 NIL PATAB (NIL T) -9 NIL 2208920 NIL) (-908 2206711 2207148 2207571 "PARTPERM" 2208168 T PARTPERM (NIL) -7 NIL NIL NIL) (-907 2206320 2206395 2206497 "PARSURF" 2206642 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-906 2205946 2206009 2206118 "PARSU2" 2206257 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-905 2205704 2205750 2205817 "PARSER" 2205899 T PARSER (NIL) -7 NIL NIL NIL) (-904 2205313 2205388 2205490 "PARSCURV" 2205635 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-903 2204939 2205002 2205111 "PARSC2" 2205250 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-902 2204566 2204636 2204733 "PARPCURV" 2204875 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-901 2204192 2204255 2204364 "PARPC2" 2204503 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-900 2203181 2203565 2203747 "PARAMAST" 2204030 T PARAMAST (NIL) -8 NIL NIL NIL) (-899 2202689 2202787 2202906 "PAN2EXPR" 2203082 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-898 2201382 2201810 2202038 "PALETTE" 2202481 T PALETTE (NIL) -8 NIL NIL NIL) (-897 2199727 2200387 2200747 "PAIR" 2201068 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-896 2192639 2198984 2199179 "PADICRC" 2199581 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-895 2184875 2191983 2192168 "PADICRAT" 2192486 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-894 2182884 2184812 2184857 "PADIC" 2184862 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-893 2179674 2181544 2181584 "PADICCT" 2182165 NIL PADICCT (NIL NIL) -9 NIL 2182447 NIL) (-892 2178619 2178831 2179099 "PADEPAC" 2179461 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-891 2177819 2177964 2178170 "PADE" 2178481 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-890 2176052 2177027 2177307 "OWP" 2177623 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-889 2175497 2175758 2175855 "OVERSET" 2175975 T OVERSET (NIL) -8 NIL NIL NIL) (-888 2174417 2175102 2175274 "OVAR" 2175365 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-887 2173657 2173802 2173963 "OUT" 2174276 T OUT (NIL) -7 NIL NIL NIL) (-886 2161893 2164766 2166966 "OUTFORM" 2171477 T OUTFORM (NIL) -8 NIL NIL NIL) (-885 2161175 2161490 2161617 "OUTBFILE" 2161786 T OUTBFILE (NIL) -8 NIL NIL NIL) (-884 2160452 2160647 2160675 "OUTBCON" 2160993 T OUTBCON (NIL) -9 NIL 2161159 NIL) (-883 2160035 2160165 2160322 "OUTBCON-" 2160327 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-882 2159331 2159764 2159853 "OSI" 2159966 T OSI (NIL) -8 NIL NIL NIL) (-881 2158750 2159172 2159200 "OSGROUP" 2159205 T OSGROUP (NIL) -9 NIL 2159227 NIL) (-880 2157461 2157722 2158007 "ORTHPOL" 2158497 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-879 2154712 2157296 2157417 "OREUP" 2157422 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-878 2151815 2154403 2154530 "ORESUP" 2154654 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-877 2149315 2149843 2150404 "OREPCTO" 2151304 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-876 2142693 2145188 2145229 "OREPCAT" 2147577 NIL OREPCAT (NIL T) -9 NIL 2148681 NIL) (-875 2139666 2140622 2141680 "OREPCAT-" 2141685 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-874 2138859 2139136 2139164 "ORDTYPE" 2139473 T ORDTYPE (NIL) -9 NIL 2139636 NIL) (-873 2138160 2138376 2138631 "ORDTYPE-" 2138636 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-872 2137516 2137899 2138057 "ORDSTRCT" 2138062 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-871 2137014 2137384 2137412 "ORDSET" 2137417 T ORDSET (NIL) -9 NIL 2137439 NIL) (-870 2135372 2136343 2136371 "ORDRING" 2136573 T ORDRING (NIL) -9 NIL 2136698 NIL) (-869 2134993 2135111 2135255 "ORDRING-" 2135260 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-868 2134244 2134809 2134837 "ORDMON" 2134842 T ORDMON (NIL) -9 NIL 2134863 NIL) (-867 2133388 2133553 2133748 "ORDFUNS" 2134093 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-866 2132603 2133118 2133146 "ORDFIN" 2133211 T ORDFIN (NIL) -9 NIL 2133285 NIL) (-865 2128950 2131189 2131598 "ORDCOMP" 2132227 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-864 2128204 2128343 2128529 "ORDCOMP2" 2128810 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-863 2124725 2125695 2126509 "OPTPROB" 2127410 T OPTPROB (NIL) -8 NIL NIL NIL) (-862 2121467 2122166 2122870 "OPTPACK" 2124041 T OPTPACK (NIL) -7 NIL NIL NIL) (-861 2119080 2119906 2119934 "OPTCAT" 2120753 T OPTCAT (NIL) -9 NIL 2121403 NIL) (-860 2118398 2118757 2118862 "OPSIG" 2118995 T OPSIG (NIL) -8 NIL NIL NIL) (-859 2118160 2118205 2118271 "OPQUERY" 2118352 T OPQUERY (NIL) -7 NIL NIL NIL) (-858 2115069 2116471 2116975 "OP" 2117689 NIL OP (NIL T) -8 NIL NIL NIL) (-857 2114375 2114655 2114696 "OPERCAT" 2114908 NIL OPERCAT (NIL T) -9 NIL 2115005 NIL) (-856 2114118 2114186 2114303 "OPERCAT-" 2114308 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-855 2110731 2112915 2113284 "ONECOMP" 2113782 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-854 2110024 2110151 2110325 "ONECOMP2" 2110603 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-853 2109425 2109549 2109679 "OMSERVER" 2109914 T OMSERVER (NIL) -7 NIL NIL NIL) (-852 2105939 2108865 2108905 "OMSAGG" 2108966 NIL OMSAGG (NIL T) -9 NIL 2109030 NIL) (-851 2104514 2104825 2105107 "OMPKG" 2105677 T OMPKG (NIL) -7 NIL NIL NIL) (-850 2103920 2104047 2104075 "OM" 2104374 T OM (NIL) -9 NIL NIL NIL) (-849 2102267 2103469 2103638 "OMLO" 2103801 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-848 2101203 2101374 2101594 "OMEXPR" 2102093 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-847 2100440 2100749 2100885 "OMERR" 2101087 T OMERR (NIL) -8 NIL NIL NIL) (-846 2099525 2099861 2100021 "OMERRK" 2100300 T OMERRK (NIL) -8 NIL NIL NIL) (-845 2098916 2099202 2099310 "OMENC" 2099437 T OMENC (NIL) -8 NIL NIL NIL) (-844 2092553 2093996 2095167 "OMDEV" 2097765 T OMDEV (NIL) -8 NIL NIL NIL) (-843 2091586 2091793 2091987 "OMCONN" 2092379 T OMCONN (NIL) -8 NIL NIL NIL) (-842 2089864 2091056 2091084 "OINTDOM" 2091089 T OINTDOM (NIL) -9 NIL 2091110 NIL) (-841 2086938 2088552 2088889 "OFMONOID" 2089559 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-840 2086172 2086875 2086920 "ODVAR" 2086925 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-839 2083309 2085917 2086072 "ODR" 2086077 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-838 2074714 2083085 2083211 "ODPOL" 2083216 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-837 2068057 2074586 2074691 "ODP" 2074696 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-836 2066799 2067038 2067313 "ODETOOLS" 2067831 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-835 2063742 2064424 2065140 "ODESYS" 2066132 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-834 2058572 2059532 2060557 "ODERTRIC" 2062817 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-833 2057992 2058080 2058274 "ODERED" 2058484 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-832 2054844 2055428 2056105 "ODERAT" 2057415 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-831 2051761 2052268 2052865 "ODEPRRIC" 2054373 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-830 2049656 2050300 2050786 "ODEPROB" 2051295 T ODEPROB (NIL) -8 NIL NIL NIL) (-829 2046122 2046661 2047308 "ODEPRIM" 2049135 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-828 2045365 2045473 2045733 "ODEPAL" 2046014 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-827 2041467 2042318 2043182 "ODEPACK" 2044521 T ODEPACK (NIL) -7 NIL NIL NIL) (-826 2040510 2040635 2040857 "ODEINT" 2041356 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-825 2034575 2036036 2037483 "ODEIFTBL" 2039083 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-824 2029925 2030759 2031711 "ODEEF" 2033734 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-823 2029268 2029363 2029586 "ODECONST" 2029830 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-822 2027331 2028040 2028068 "ODECAT" 2028673 T ODECAT (NIL) -9 NIL 2029204 NIL) (-821 2023824 2027036 2027158 "OCT" 2027241 NIL OCT (NIL T) -8 NIL NIL NIL) (-820 2023456 2023505 2023632 "OCTCT2" 2023775 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-819 2017725 2020499 2020539 "OC" 2021636 NIL OC (NIL T) -9 NIL 2022494 NIL) (-818 2014760 2015700 2016690 "OC-" 2016784 NIL OC- (NIL T T) -8 NIL NIL NIL) (-817 2013983 2014553 2014581 "OCAMON" 2014586 T OCAMON (NIL) -9 NIL 2014607 NIL) (-816 2013403 2013828 2013856 "OASGP" 2013861 T OASGP (NIL) -9 NIL 2013881 NIL) (-815 2012529 2013126 2013154 "OAMONS" 2013194 T OAMONS (NIL) -9 NIL 2013237 NIL) (-814 2011820 2012349 2012377 "OAMON" 2012382 T OAMON (NIL) -9 NIL 2012402 NIL) (-813 2010931 2011569 2011597 "OAGROUP" 2011602 T OAGROUP (NIL) -9 NIL 2011622 NIL) (-812 2010613 2010669 2010758 "NUMTUBE" 2010875 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-811 2004132 2005704 2007240 "NUMQUAD" 2009097 T NUMQUAD (NIL) -7 NIL NIL NIL) (-810 1999852 2000876 2001901 "NUMODE" 2003127 T NUMODE (NIL) -7 NIL NIL NIL) (-809 1997133 1998073 1998101 "NUMINT" 1999024 T NUMINT (NIL) -9 NIL 1999788 NIL) (-808 1996045 1996278 1996496 "NUMFMT" 1996935 T NUMFMT (NIL) -7 NIL NIL NIL) (-807 1982228 1985349 1987881 "NUMERIC" 1993552 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-806 1975939 1981676 1981771 "NTSCAT" 1981776 NIL NTSCAT (NIL T T T T) -9 NIL 1981815 NIL) (-805 1975119 1975298 1975491 "NTPOLFN" 1975778 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-804 1961880 1971944 1972756 "NSUP" 1974340 NIL NSUP (NIL T) -8 NIL NIL NIL) (-803 1961506 1961569 1961678 "NSUP2" 1961817 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-802 1950342 1961280 1961413 "NSMP" 1961418 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-801 1948750 1949075 1949432 "NREP" 1950030 NIL NREP (NIL T) -7 NIL NIL NIL) (-800 1947329 1947593 1947951 "NPCOEF" 1948493 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-799 1946377 1946510 1946726 "NORMRETR" 1947210 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-798 1944388 1944708 1945117 "NORMPK" 1946085 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-797 1944067 1944101 1944225 "NORMMA" 1944354 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-796 1943831 1944024 1944053 "NONE" 1944058 T NONE (NIL) -8 NIL NIL NIL) (-795 1943614 1943649 1943718 "NONE1" 1943795 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-794 1943105 1943173 1943352 "NODE1" 1943546 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-793 1941197 1942228 1942483 "NNI" 1942830 T NNI (NIL) -8 NIL NIL 1943065) (-792 1939593 1939930 1940294 "NLINSOL" 1940865 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-791 1935774 1936829 1937728 "NIPROB" 1938714 T NIPROB (NIL) -8 NIL NIL NIL) (-790 1934513 1934765 1935067 "NFINTBAS" 1935536 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-789 1933597 1934163 1934204 "NETCLT" 1934376 NIL NETCLT (NIL T) -9 NIL 1934458 NIL) (-788 1932269 1932536 1932817 "NCODIV" 1933365 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-787 1932025 1932068 1932143 "NCNTFRAC" 1932226 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-786 1930181 1930569 1930989 "NCEP" 1931650 NIL NCEP (NIL T) -7 NIL NIL NIL) (-785 1928844 1929791 1929819 "NASRING" 1929929 T NASRING (NIL) -9 NIL 1930009 NIL) (-784 1928627 1928683 1928777 "NASRING-" 1928782 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-783 1927594 1928245 1928273 "NARNG" 1928390 T NARNG (NIL) -9 NIL 1928481 NIL) (-782 1927268 1927353 1927487 "NARNG-" 1927492 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-781 1926105 1926354 1926589 "NAGSP" 1927053 T NAGSP (NIL) -7 NIL NIL NIL) (-780 1917149 1919061 1920734 "NAGS" 1924452 T NAGS (NIL) -7 NIL NIL NIL) (-779 1915673 1916005 1916336 "NAGF07" 1916838 T NAGF07 (NIL) -7 NIL NIL NIL) (-778 1910145 1911502 1912809 "NAGF04" 1914386 T NAGF04 (NIL) -7 NIL NIL NIL) (-777 1903017 1904727 1906360 "NAGF02" 1908532 T NAGF02 (NIL) -7 NIL NIL NIL) (-776 1898181 1899341 1900458 "NAGF01" 1901920 T NAGF01 (NIL) -7 NIL NIL NIL) (-775 1891761 1893375 1894960 "NAGE04" 1896616 T NAGE04 (NIL) -7 NIL NIL NIL) (-774 1882822 1885051 1887181 "NAGE02" 1889651 T NAGE02 (NIL) -7 NIL NIL NIL) (-773 1878715 1879722 1880686 "NAGE01" 1881878 T NAGE01 (NIL) -7 NIL NIL NIL) (-772 1876492 1877044 1877602 "NAGD03" 1878177 T NAGD03 (NIL) -7 NIL NIL NIL) (-771 1868188 1870170 1872124 "NAGD02" 1874558 T NAGD02 (NIL) -7 NIL NIL NIL) (-770 1861927 1863424 1864864 "NAGD01" 1866768 T NAGD01 (NIL) -7 NIL NIL NIL) (-769 1858064 1858958 1859795 "NAGC06" 1861110 T NAGC06 (NIL) -7 NIL NIL NIL) (-768 1856511 1856861 1857217 "NAGC05" 1857728 T NAGC05 (NIL) -7 NIL NIL NIL) (-767 1855875 1856006 1856150 "NAGC02" 1856387 T NAGC02 (NIL) -7 NIL NIL NIL) (-766 1854676 1855403 1855443 "NAALG" 1855522 NIL NAALG (NIL T) -9 NIL 1855583 NIL) (-765 1854505 1854540 1854630 "NAALG-" 1854635 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-764 1848377 1849563 1850750 "MULTSQFR" 1853401 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-763 1847684 1847771 1847955 "MULTFACT" 1848289 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-762 1839829 1844267 1844320 "MTSCAT" 1845390 NIL MTSCAT (NIL T T) -9 NIL 1845906 NIL) (-761 1839535 1839595 1839687 "MTHING" 1839769 NIL MTHING (NIL T) -7 NIL NIL NIL) (-760 1839321 1839360 1839420 "MSYSCMD" 1839495 T MSYSCMD (NIL) -7 NIL NIL NIL) (-759 1835035 1838076 1838396 "MSET" 1839034 NIL MSET (NIL T) -8 NIL NIL NIL) (-758 1831780 1834596 1834637 "MSETAGG" 1834642 NIL MSETAGG (NIL T) -9 NIL 1834676 NIL) (-757 1827372 1829159 1829904 "MRING" 1831080 NIL MRING (NIL T T) -8 NIL NIL NIL) (-756 1826932 1827005 1827136 "MRF2" 1827299 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-755 1826544 1826585 1826729 "MRATFAC" 1826891 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-754 1824114 1824451 1824882 "MPRFF" 1826249 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-753 1817441 1823968 1824065 "MPOLY" 1824070 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-752 1816925 1816966 1817174 "MPCPF" 1817400 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-751 1816433 1816482 1816666 "MPC3" 1816876 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-750 1815616 1815709 1815930 "MPC2" 1816348 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-749 1813893 1814254 1814644 "MONOTOOL" 1815276 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-748 1813038 1813421 1813449 "MONOID" 1813668 T MONOID (NIL) -9 NIL 1813815 NIL) (-747 1812554 1812703 1812884 "MONOID-" 1812889 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-746 1801508 1808374 1808433 "MONOGEN" 1809107 NIL MONOGEN (NIL T T) -9 NIL 1809563 NIL) (-745 1798558 1799461 1800461 "MONOGEN-" 1800580 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-744 1797275 1797823 1797851 "MONADWU" 1798243 T MONADWU (NIL) -9 NIL 1798481 NIL) (-743 1796605 1796806 1797054 "MONADWU-" 1797059 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-742 1795890 1796194 1796222 "MONAD" 1796429 T MONAD (NIL) -9 NIL 1796541 NIL) (-741 1795557 1795653 1795785 "MONAD-" 1795790 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-740 1793696 1794470 1794749 "MOEBIUS" 1795310 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-739 1792864 1793364 1793404 "MODULE" 1793409 NIL MODULE (NIL T) -9 NIL 1793448 NIL) (-738 1792402 1792528 1792718 "MODULE-" 1792723 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-737 1789932 1790766 1791093 "MODRING" 1792226 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-736 1786654 1788037 1788558 "MODOP" 1789461 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-735 1785140 1785721 1785998 "MODMONOM" 1786517 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-734 1773880 1783431 1783845 "MODMON" 1784777 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-733 1770706 1772724 1773000 "MODFIELD" 1773755 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-732 1769617 1769987 1770177 "MMLFORM" 1770536 T MMLFORM (NIL) -8 NIL NIL NIL) (-731 1769137 1769186 1769365 "MMAP" 1769568 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-730 1767030 1767969 1768010 "MLO" 1768433 NIL MLO (NIL T) -9 NIL 1768675 NIL) (-729 1764378 1764912 1765514 "MLIFT" 1766511 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-728 1763757 1763853 1764007 "MKUCFUNC" 1764289 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-727 1763350 1763426 1763549 "MKRECORD" 1763680 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-726 1762373 1762559 1762787 "MKFUNC" 1763161 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-725 1761749 1761865 1762021 "MKFLCFN" 1762256 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-724 1761014 1761128 1761313 "MKBCFUNC" 1761642 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-723 1756997 1760568 1760704 "MINT" 1760898 T MINT (NIL) -8 NIL NIL NIL) (-722 1755779 1756052 1756329 "MHROWRED" 1756752 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-721 1750523 1754314 1754719 "MFLOAT" 1755394 T MFLOAT (NIL) -8 NIL NIL NIL) (-720 1749868 1749956 1750127 "MFINFACT" 1750435 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-719 1746147 1747031 1747915 "MESH" 1749004 T MESH (NIL) -7 NIL NIL NIL) (-718 1744501 1744849 1745202 "MDDFACT" 1745834 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-717 1741037 1743632 1743673 "MDAGG" 1743928 NIL MDAGG (NIL T) -9 NIL 1744071 NIL) (-716 1728739 1740330 1740537 "MCMPLX" 1740850 T MCMPLX (NIL) -8 NIL NIL NIL) (-715 1727858 1728022 1728223 "MCDEN" 1728588 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-714 1725706 1726018 1726398 "MCALCFN" 1727588 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-713 1724583 1724871 1725104 "MAYBE" 1725512 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-712 1722141 1722718 1723280 "MATSTOR" 1724054 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-711 1717563 1721513 1721761 "MATRIX" 1721926 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-710 1713263 1714036 1714772 "MATLIN" 1716920 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-709 1702609 1706320 1706397 "MATCAT" 1711429 NIL MATCAT (NIL T T T) -9 NIL 1712901 NIL) (-708 1698562 1699872 1701285 "MATCAT-" 1701290 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-707 1697138 1697309 1697642 "MATCAT2" 1698397 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-706 1695214 1695574 1695958 "MAPPKG3" 1696813 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-705 1694171 1694368 1694590 "MAPPKG2" 1695038 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-704 1692628 1692954 1693281 "MAPPKG1" 1693877 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-703 1691629 1692034 1692211 "MAPPAST" 1692471 T MAPPAST (NIL) -8 NIL NIL NIL) (-702 1691234 1691298 1691421 "MAPHACK3" 1691565 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-701 1690814 1690887 1691001 "MAPHACK2" 1691166 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-700 1690240 1690355 1690497 "MAPHACK1" 1690705 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-699 1688163 1688940 1689244 "MAGMA" 1689968 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-698 1687582 1687887 1687978 "MACROAST" 1688092 T MACROAST (NIL) -8 NIL NIL NIL) (-697 1683825 1685821 1686282 "M3D" 1687154 NIL M3D (NIL T) -8 NIL NIL NIL) (-696 1677305 1682136 1682177 "LZSTAGG" 1682959 NIL LZSTAGG (NIL T) -9 NIL 1683254 NIL) (-695 1672987 1674436 1675893 "LZSTAGG-" 1675898 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-694 1669900 1670878 1671365 "LWORD" 1672532 NIL LWORD (NIL T) -8 NIL NIL NIL) (-693 1669422 1669704 1669779 "LSTAST" 1669845 T LSTAST (NIL) -8 NIL NIL NIL) (-692 1661350 1669193 1669327 "LSQM" 1669332 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-691 1660568 1660713 1660941 "LSPP" 1661205 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-690 1658350 1658681 1659137 "LSMP" 1660257 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-689 1655087 1655803 1656533 "LSMP1" 1657652 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-688 1648223 1654177 1654218 "LSAGG" 1654280 NIL LSAGG (NIL T) -9 NIL 1654358 NIL) (-687 1644732 1645842 1647055 "LSAGG-" 1647060 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-686 1642027 1643876 1644125 "LPOLY" 1644527 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-685 1641603 1641694 1641817 "LPEFRAC" 1641936 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-684 1639780 1640697 1640950 "LO" 1641435 NIL LO (NIL T T T) -8 NIL NIL NIL) (-683 1639463 1639542 1639570 "LOGIC" 1639681 T LOGIC (NIL) -9 NIL 1639763 NIL) (-682 1639319 1639348 1639419 "LOGIC-" 1639424 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-681 1638494 1638652 1638845 "LODOOPS" 1639175 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-680 1635589 1638410 1638476 "LODO" 1638481 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-679 1634113 1634362 1634715 "LODOF" 1635336 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-678 1629989 1632748 1632789 "LODOCAT" 1633227 NIL LODOCAT (NIL T) -9 NIL 1633438 NIL) (-677 1629704 1629780 1629907 "LODOCAT-" 1629912 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-676 1626690 1629545 1629663 "LODO2" 1629668 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-675 1623797 1626627 1626672 "LODO1" 1626677 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-674 1622666 1622843 1623148 "LODEEF" 1623620 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-673 1617638 1620832 1620873 "LNAGG" 1621735 NIL LNAGG (NIL T) -9 NIL 1622170 NIL) (-672 1616731 1616999 1617341 "LNAGG-" 1617346 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-671 1612711 1613656 1614295 "LMOPS" 1616146 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-670 1612010 1612488 1612529 "LMODULE" 1612534 NIL LMODULE (NIL T) -9 NIL 1612560 NIL) (-669 1608965 1611655 1611778 "LMDICT" 1611920 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-668 1608541 1608755 1608796 "LLINSET" 1608857 NIL LLINSET (NIL T) -9 NIL 1608901 NIL) (-667 1608186 1608449 1608509 "LITERAL" 1608514 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-666 1600640 1607120 1607424 "LIST" 1607915 NIL LIST (NIL T) -8 NIL NIL NIL) (-665 1600159 1600239 1600378 "LIST3" 1600560 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-664 1599148 1599344 1599572 "LIST2" 1599977 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-663 1597246 1597594 1597993 "LIST2MAP" 1598795 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-662 1596829 1597065 1597106 "LINSET" 1597111 NIL LINSET (NIL T) -9 NIL 1597145 NIL) (-661 1595643 1596337 1596504 "LINFORM" 1596714 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-660 1593942 1594670 1594711 "LINEXP" 1595201 NIL LINEXP (NIL T) -9 NIL 1595474 NIL) (-659 1592518 1593422 1593603 "LINELT" 1593813 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-658 1591075 1591355 1591666 "LINDEP" 1592270 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-657 1590211 1590807 1590917 "LINBASIS" 1591005 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-656 1586948 1587697 1588474 "LIMITRF" 1589466 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-655 1585233 1585547 1585956 "LIMITPS" 1586643 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-654 1579253 1584744 1584972 "LIE" 1585054 NIL LIE (NIL T T) -8 NIL NIL NIL) (-653 1578081 1578656 1578696 "LIECAT" 1578836 NIL LIECAT (NIL T) -9 NIL 1578987 NIL) (-652 1577916 1577949 1578037 "LIECAT-" 1578042 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-651 1570103 1577456 1577612 "LIB" 1577780 T LIB (NIL) -8 NIL NIL NIL) (-650 1565672 1566621 1567556 "LGROBP" 1569220 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-649 1563610 1563944 1564294 "LF" 1565393 NIL LF (NIL T T) -7 NIL NIL NIL) (-648 1562234 1563142 1563170 "LFCAT" 1563377 T LFCAT (NIL) -9 NIL 1563516 NIL) (-647 1559094 1559766 1560454 "LEXTRIPK" 1561598 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-646 1555682 1556664 1557167 "LEXP" 1558674 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-645 1555098 1555403 1555495 "LETAST" 1555610 T LETAST (NIL) -8 NIL NIL NIL) (-644 1553484 1553809 1554210 "LEADCDET" 1554780 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-643 1552662 1552748 1552977 "LAZM3PK" 1553405 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-642 1547173 1550739 1551277 "LAUPOL" 1552174 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-641 1546746 1546796 1546957 "LAPLACE" 1547123 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-640 1544483 1545847 1546098 "LA" 1546579 NIL LA (NIL T T T) -8 NIL NIL NIL) (-639 1543331 1544047 1544088 "LALG" 1544150 NIL LALG (NIL T) -9 NIL 1544209 NIL) (-638 1543027 1543104 1543240 "LALG-" 1543245 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-637 1542856 1542886 1542927 "KVTFROM" 1542989 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-636 1541613 1542223 1542408 "KTVLOGIC" 1542691 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-635 1541442 1541472 1541513 "KRCFROM" 1541575 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-634 1540334 1540533 1540832 "KOVACIC" 1541242 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-633 1540163 1540193 1540234 "KONVERT" 1540296 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-632 1539992 1540022 1540063 "KOERCE" 1540125 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-631 1537679 1538585 1538962 "KERNEL" 1539648 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-630 1537163 1537256 1537388 "KERNEL2" 1537593 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-629 1530634 1535640 1535694 "KDAGG" 1536071 NIL KDAGG (NIL T T) -9 NIL 1536277 NIL) (-628 1530145 1530287 1530492 "KDAGG-" 1530497 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-627 1522845 1529806 1529961 "KAFILE" 1530023 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-626 1522449 1522734 1522797 "JVMOP" 1522802 T JVMOP (NIL) -8 NIL NIL NIL) (-625 1521185 1521689 1521938 "JVMMDACC" 1522220 T JVMMDACC (NIL) -8 NIL NIL NIL) (-624 1520121 1520575 1520780 "JVMFDACC" 1521000 T JVMFDACC (NIL) -8 NIL NIL NIL) (-623 1518702 1519197 1519497 "JVMCSTTG" 1519841 T JVMCSTTG (NIL) -8 NIL NIL NIL) (-622 1517838 1518242 1518403 "JVMCFACC" 1518561 T JVMCFACC (NIL) -8 NIL NIL NIL) (-621 1517516 1517755 1517804 "JVMBCODE" 1517809 T JVMBCODE (NIL) -8 NIL NIL NIL) (-620 1511536 1517027 1517255 "JORDAN" 1517337 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-619 1510849 1511185 1511306 "JOINAST" 1511435 T JOINAST (NIL) -8 NIL NIL NIL) (-618 1506884 1509026 1509080 "IXAGG" 1510009 NIL IXAGG (NIL T T) -9 NIL 1510468 NIL) (-617 1505737 1506109 1506528 "IXAGG-" 1506533 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-616 1500826 1505659 1505718 "IVECTOR" 1505723 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-615 1499550 1499829 1500095 "ITUPLE" 1500593 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-614 1498022 1498229 1498524 "ITRIGMNP" 1499372 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-613 1496749 1496971 1497254 "ITFUN3" 1497798 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-612 1496375 1496438 1496547 "ITFUN2" 1496686 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-611 1495480 1495855 1496029 "ITFORM" 1496221 T ITFORM (NIL) -8 NIL NIL NIL) (-610 1493249 1494500 1494778 "ITAYLOR" 1495235 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-609 1481646 1487386 1488549 "ISUPS" 1492119 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-608 1480738 1480890 1481126 "ISUMP" 1481493 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-607 1475588 1480683 1480724 "ISTRING" 1480729 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-606 1475004 1475309 1475401 "ISAST" 1475516 T ISAST (NIL) -8 NIL NIL NIL) (-605 1474201 1474295 1474511 "IRURPK" 1474918 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-604 1473113 1473338 1473578 "IRSN" 1473981 T IRSN (NIL) -7 NIL NIL NIL) (-603 1471158 1471539 1471968 "IRRF2F" 1472751 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-602 1470899 1470943 1471019 "IRREDFFX" 1471114 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-601 1469472 1469773 1470072 "IROOT" 1470632 NIL IROOT (NIL T) -7 NIL NIL NIL) (-600 1465912 1467156 1467848 "IR" 1468812 NIL IR (NIL T) -8 NIL NIL NIL) (-599 1465051 1465405 1465556 "IRFORM" 1465781 T IRFORM (NIL) -8 NIL NIL NIL) (-598 1462640 1463159 1463725 "IR2" 1464529 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-597 1461722 1461853 1462067 "IR2F" 1462523 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-596 1461507 1461547 1461607 "IPRNTPK" 1461682 T IPRNTPK (NIL) -7 NIL NIL NIL) (-595 1457460 1461396 1461465 "IPF" 1461470 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-594 1455481 1457385 1457442 "IPADIC" 1457447 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-593 1454739 1455041 1455171 "IP4ADDR" 1455371 T IP4ADDR (NIL) -8 NIL NIL NIL) (-592 1454077 1454368 1454500 "IOMODE" 1454627 T IOMODE (NIL) -8 NIL NIL NIL) (-591 1453048 1453674 1453801 "IOBFILE" 1453970 T IOBFILE (NIL) -8 NIL NIL NIL) (-590 1452458 1452952 1452980 "IOBCON" 1452985 T IOBCON (NIL) -9 NIL 1453006 NIL) (-589 1451963 1452027 1452210 "INVLAPLA" 1452394 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-588 1441533 1443965 1446351 "INTTR" 1449627 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-587 1437826 1438610 1439475 "INTTOOLS" 1440718 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-586 1437406 1437503 1437620 "INTSLPE" 1437729 T INTSLPE (NIL) -7 NIL NIL NIL) (-585 1434873 1437329 1437388 "INTRVL" 1437393 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-584 1432451 1432987 1433562 "INTRF" 1434358 NIL INTRF (NIL T) -7 NIL NIL NIL) (-583 1431844 1431959 1432101 "INTRET" 1432349 NIL INTRET (NIL T) -7 NIL NIL NIL) (-582 1429817 1430230 1430700 "INTRAT" 1431452 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-581 1427062 1427663 1428282 "INTPM" 1429302 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-580 1423779 1424406 1425144 "INTPAF" 1426448 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-579 1418880 1419920 1420971 "INTPACK" 1422748 T INTPACK (NIL) -7 NIL NIL NIL) (-578 1415068 1418677 1418786 "INT" 1418791 T INT (NIL) -8 NIL NIL NIL) (-577 1414314 1414472 1414680 "INTHERTR" 1414910 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-576 1413747 1413833 1414021 "INTHERAL" 1414228 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-575 1411515 1412036 1412493 "INTHEORY" 1413310 T INTHEORY (NIL) -7 NIL NIL NIL) (-574 1402847 1404542 1406314 "INTG0" 1409867 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-573 1383372 1388210 1393020 "INTFTBL" 1398057 T INTFTBL (NIL) -8 NIL NIL NIL) (-572 1382597 1382759 1382932 "INTFACT" 1383231 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-571 1379994 1380470 1381027 "INTEF" 1382151 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-570 1378191 1379086 1379114 "INTDOM" 1379415 T INTDOM (NIL) -9 NIL 1379622 NIL) (-569 1377530 1377734 1377976 "INTDOM-" 1377981 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-568 1373404 1375819 1375873 "INTCAT" 1376672 NIL INTCAT (NIL T) -9 NIL 1376993 NIL) (-567 1372858 1372979 1373107 "INTBIT" 1373296 T INTBIT (NIL) -7 NIL NIL NIL) (-566 1371539 1371711 1372018 "INTALG" 1372703 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-565 1371016 1371112 1371269 "INTAF" 1371443 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-564 1363983 1370826 1370966 "INTABL" 1370971 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-563 1363220 1363782 1363847 "INT8" 1363881 T INT8 (NIL) -8 NIL NIL 1363926) (-562 1362456 1363018 1363083 "INT64" 1363117 T INT64 (NIL) -8 NIL NIL 1363162) (-561 1361692 1362254 1362319 "INT32" 1362353 T INT32 (NIL) -8 NIL NIL 1362398) (-560 1360928 1361490 1361555 "INT16" 1361589 T INT16 (NIL) -8 NIL NIL 1361634) (-559 1355029 1358476 1358504 "INS" 1359438 T INS (NIL) -9 NIL 1360103 NIL) (-558 1352083 1353040 1354014 "INS-" 1354087 NIL INS- (NIL T) -8 NIL NIL NIL) (-557 1350840 1351085 1351383 "INPSIGN" 1351836 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-556 1349934 1350075 1350272 "INPRODPF" 1350720 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-555 1348804 1348945 1349182 "INPRODFF" 1349814 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-554 1347792 1347956 1348216 "INNMFACT" 1348640 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-553 1346971 1347086 1347274 "INMODGCD" 1347691 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-552 1345455 1345724 1346048 "INFSP" 1346716 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-551 1344615 1344756 1344939 "INFPROD0" 1345335 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-550 1341182 1342680 1343195 "INFORM" 1344108 T INFORM (NIL) -8 NIL NIL NIL) (-549 1340780 1340852 1340950 "INFORM1" 1341117 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-548 1340285 1340392 1340506 "INFINITY" 1340686 T INFINITY (NIL) -7 NIL NIL NIL) (-547 1339359 1340005 1340106 "INETCLTS" 1340204 T INETCLTS (NIL) -8 NIL NIL NIL) (-546 1337957 1338225 1338546 "INEP" 1339107 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-545 1337018 1337854 1337919 "INDE" 1337924 NIL INDE (NIL T) -8 NIL NIL NIL) (-544 1336570 1336650 1336767 "INCRMAPS" 1336945 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-543 1335292 1335839 1336045 "INBFILE" 1336384 T INBFILE (NIL) -8 NIL NIL NIL) (-542 1330471 1331528 1332472 "INBFF" 1334380 NIL INBFF (NIL T) -7 NIL NIL NIL) (-541 1329325 1329648 1329676 "INBCON" 1330189 T INBCON (NIL) -9 NIL 1330455 NIL) (-540 1328535 1328800 1329076 "INBCON-" 1329081 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-539 1327954 1328259 1328350 "INAST" 1328464 T INAST (NIL) -8 NIL NIL NIL) (-538 1327321 1327633 1327739 "IMPTAST" 1327868 T IMPTAST (NIL) -8 NIL NIL NIL) (-537 1323242 1327165 1327269 "IMATRIX" 1327274 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-536 1321934 1322073 1322389 "IMATQF" 1323098 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-535 1320114 1320381 1320718 "IMATLIN" 1321690 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-534 1314029 1320038 1320096 "ILIST" 1320101 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-533 1311695 1313889 1314002 "IIARRAY2" 1314007 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-532 1306495 1311606 1311670 "IFF" 1311675 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-531 1305776 1306112 1306228 "IFAST" 1306399 T IFAST (NIL) -8 NIL NIL NIL) (-530 1300288 1305068 1305256 "IFARRAY" 1305633 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-529 1299326 1300192 1300265 "IFAMON" 1300270 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-528 1298898 1298975 1299029 "IEVALAB" 1299236 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-527 1298561 1298641 1298801 "IEVALAB-" 1298806 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-526 1297942 1298476 1298538 "IDPO" 1298543 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-525 1297006 1297831 1297906 "IDPOAMS" 1297911 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-524 1296139 1296895 1296970 "IDPOAM" 1296975 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-523 1294619 1295146 1295198 "IDPC" 1295710 NIL IDPC (NIL T T) -9 NIL 1295991 NIL) (-522 1293951 1294511 1294584 "IDPAM" 1294589 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-521 1293166 1293843 1293916 "IDPAG" 1293921 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-520 1292710 1292972 1293062 "IDENT" 1293096 T IDENT (NIL) -8 NIL NIL NIL) (-519 1288929 1289813 1290708 "IDECOMP" 1291867 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-518 1281564 1282852 1283899 "IDEAL" 1287965 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-517 1280706 1280836 1281036 "ICDEN" 1281448 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-516 1279681 1280186 1280333 "ICARD" 1280579 T ICARD (NIL) -8 NIL NIL NIL) (-515 1277711 1278054 1278459 "IBPTOOLS" 1279358 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-514 1272826 1277331 1277444 "IBITS" 1277630 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-513 1269501 1270125 1270820 "IBATOOL" 1272243 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-512 1267262 1267742 1268275 "IBACHIN" 1269036 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-511 1264852 1267108 1267211 "IARRAY2" 1267216 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-510 1260565 1264778 1264835 "IARRAY1" 1264840 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-509 1253575 1258977 1259458 "IAN" 1260104 T IAN (NIL) -8 NIL NIL NIL) (-508 1253080 1253143 1253316 "IALGFACT" 1253512 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-507 1252572 1252721 1252749 "HYPCAT" 1252956 T HYPCAT (NIL) -9 NIL NIL NIL) (-506 1252074 1252227 1252413 "HYPCAT-" 1252418 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-505 1251621 1251869 1251952 "HOSTNAME" 1252011 T HOSTNAME (NIL) -8 NIL NIL NIL) (-504 1251454 1251503 1251544 "HOMOTOP" 1251549 NIL HOMOTOP (NIL T) -9 NIL 1251582 NIL) (-503 1247887 1249386 1249427 "HOAGG" 1250408 NIL HOAGG (NIL T) -9 NIL 1251137 NIL) (-502 1246403 1246880 1247406 "HOAGG-" 1247411 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-501 1239439 1245996 1246146 "HEXADEC" 1246273 T HEXADEC (NIL) -8 NIL NIL NIL) (-500 1238151 1238409 1238672 "HEUGCD" 1239216 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-499 1237083 1237988 1238118 "HELLFDIV" 1238123 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-498 1235093 1236860 1236948 "HEAP" 1237027 NIL HEAP (NIL T) -8 NIL NIL NIL) (-497 1234290 1234645 1234779 "HEADAST" 1234979 T HEADAST (NIL) -8 NIL NIL NIL) (-496 1227677 1234205 1234267 "HDP" 1234272 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-495 1220689 1227312 1227464 "HDMP" 1227578 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-494 1219995 1220153 1220317 "HB" 1220545 T HB (NIL) -7 NIL NIL NIL) (-493 1213005 1219841 1219945 "HASHTBL" 1219950 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-492 1212421 1212726 1212818 "HASAST" 1212933 T HASAST (NIL) -8 NIL NIL NIL) (-491 1209827 1212043 1212225 "HACKPI" 1212259 T HACKPI (NIL) -8 NIL NIL NIL) (-490 1204999 1209680 1209793 "GTSET" 1209798 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-489 1198038 1204877 1204975 "GSTBL" 1204980 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-488 1189787 1197203 1197459 "GSERIES" 1197838 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-487 1188818 1189331 1189359 "GROUP" 1189562 T GROUP (NIL) -9 NIL 1189696 NIL) (-486 1188142 1188343 1188594 "GROUP-" 1188599 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-485 1186491 1186830 1187217 "GROEBSOL" 1187819 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-484 1185319 1185679 1185730 "GRMOD" 1186259 NIL GRMOD (NIL T T) -9 NIL 1186427 NIL) (-483 1185075 1185123 1185251 "GRMOD-" 1185256 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-482 1180215 1181429 1182429 "GRIMAGE" 1184095 T GRIMAGE (NIL) -8 NIL NIL NIL) (-481 1178609 1178942 1179266 "GRDEF" 1179911 T GRDEF (NIL) -7 NIL NIL NIL) (-480 1178041 1178169 1178310 "GRAY" 1178488 T GRAY (NIL) -7 NIL NIL NIL) (-479 1177118 1177620 1177671 "GRALG" 1177824 NIL GRALG (NIL T T) -9 NIL 1177917 NIL) (-478 1176755 1176852 1177015 "GRALG-" 1177020 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-477 1173236 1176338 1176517 "GPOLSET" 1176661 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-476 1172584 1172647 1172905 "GOSPER" 1173173 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-475 1168154 1169022 1169548 "GMODPOL" 1172283 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-474 1167141 1167343 1167581 "GHENSEL" 1167966 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-473 1161213 1162140 1163160 "GENUPS" 1166225 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-472 1160904 1160961 1161050 "GENUFACT" 1161156 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-471 1160304 1160393 1160558 "GENPGCD" 1160822 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-470 1159772 1159813 1160026 "GENMFACT" 1160263 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-469 1158308 1158595 1158902 "GENEEZ" 1159515 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-468 1151480 1157919 1158081 "GDMP" 1158231 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-467 1140219 1145251 1146357 "GCNAALG" 1150463 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-466 1138346 1139394 1139422 "GCDDOM" 1139677 T GCDDOM (NIL) -9 NIL 1139834 NIL) (-465 1137786 1137943 1138158 "GCDDOM-" 1138163 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-464 1136436 1136643 1136947 "GB" 1137565 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-463 1124908 1127382 1129774 "GBINTERN" 1134127 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-462 1122709 1123037 1123458 "GBF" 1124583 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-461 1121466 1121655 1121922 "GBEUCLID" 1122525 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-460 1120797 1120940 1121089 "GAUSSFAC" 1121337 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-459 1119118 1119466 1119780 "GALUTIL" 1120516 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-458 1117378 1117700 1118024 "GALPOLYU" 1118845 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-457 1114677 1115033 1115440 "GALFACTU" 1117075 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-456 1106291 1107982 1109590 "GALFACT" 1113109 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-455 1103577 1104337 1104365 "FVFUN" 1105521 T FVFUN (NIL) -9 NIL 1106241 NIL) (-454 1102807 1103025 1103053 "FVC" 1103344 T FVC (NIL) -9 NIL 1103527 NIL) (-453 1102408 1102632 1102700 "FUNDESC" 1102759 T FUNDESC (NIL) -8 NIL NIL NIL) (-452 1101981 1102205 1102286 "FUNCTION" 1102360 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-451 1099611 1100303 1100769 "FT" 1101535 T FT (NIL) -8 NIL NIL NIL) (-450 1098288 1098912 1099115 "FTEM" 1099428 T FTEM (NIL) -8 NIL NIL NIL) (-449 1096557 1096868 1097265 "FSUPFACT" 1097979 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-448 1094876 1095243 1095575 "FST" 1096245 T FST (NIL) -8 NIL NIL NIL) (-447 1094057 1094181 1094369 "FSRED" 1094758 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-446 1092746 1093012 1093359 "FSPRMELT" 1093772 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-445 1089956 1090490 1090976 "FSPECF" 1092309 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-444 1070183 1079730 1079771 "FS" 1083655 NIL FS (NIL T) -9 NIL 1085944 NIL) (-443 1058244 1061819 1065876 "FS-" 1066176 NIL FS- (NIL T T) -8 NIL NIL NIL) (-442 1057766 1057826 1057996 "FSINT" 1058185 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-441 1055902 1056759 1057062 "FSERIES" 1057545 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-440 1054926 1055060 1055284 "FSCINT" 1055782 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-439 1050790 1053870 1053911 "FSAGG" 1054281 NIL FSAGG (NIL T) -9 NIL 1054540 NIL) (-438 1048390 1049153 1049949 "FSAGG-" 1050044 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-437 1047414 1047575 1047802 "FSAGG2" 1048243 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-436 1045074 1045372 1045920 "FS2UPS" 1047132 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-435 1044702 1044751 1044880 "FS2" 1045025 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-434 1043568 1043751 1044053 "FS2EXPXP" 1044527 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-433 1042982 1043109 1043261 "FRUTIL" 1043448 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-432 1033899 1038477 1039835 "FR" 1041656 NIL FR (NIL T) -8 NIL NIL NIL) (-431 1028417 1031588 1031628 "FRNAALG" 1032948 NIL FRNAALG (NIL T) -9 NIL 1033546 NIL) (-430 1023898 1025166 1026441 "FRNAALG-" 1027191 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-429 1023530 1023579 1023706 "FRNAAF2" 1023849 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-428 1021817 1022379 1022675 "FRMOD" 1023342 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-427 1019422 1020192 1020510 "FRIDEAL" 1021608 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-426 1018607 1018700 1018991 "FRIDEAL2" 1019329 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-425 1017698 1018154 1018195 "FRETRCT" 1018200 NIL FRETRCT (NIL T) -9 NIL 1018376 NIL) (-424 1016756 1017041 1017392 "FRETRCT-" 1017397 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-423 1013570 1015040 1015099 "FRAMALG" 1015981 NIL FRAMALG (NIL T T) -9 NIL 1016273 NIL) (-422 1011608 1012159 1012789 "FRAMALG-" 1013012 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-421 1004579 1011081 1011358 "FRAC" 1011363 NIL FRAC (NIL T) -8 NIL NIL NIL) (-420 1004209 1004272 1004379 "FRAC2" 1004516 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-419 1003839 1003902 1004009 "FR2" 1004146 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-418 997756 1001218 1001246 "FPS" 1002365 T FPS (NIL) -9 NIL 1002922 NIL) (-417 997181 997314 997478 "FPS-" 997624 NIL FPS- (NIL T) -8 NIL NIL NIL) (-416 994133 996138 996166 "FPC" 996391 T FPC (NIL) -9 NIL 996533 NIL) (-415 993914 993966 994063 "FPC-" 994068 NIL FPC- (NIL T) -8 NIL NIL NIL) (-414 992672 993402 993443 "FPATMAB" 993448 NIL FPATMAB (NIL T) -9 NIL 993600 NIL) (-413 990815 991414 991761 "FPARFRAC" 992388 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-412 986107 986707 987389 "FORTRAN" 990247 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-411 983793 984323 984862 "FORT" 985588 T FORT (NIL) -7 NIL NIL NIL) (-410 981367 982031 982059 "FORTFN" 983119 T FORTFN (NIL) -9 NIL 983743 NIL) (-409 981119 981181 981209 "FORTCAT" 981268 T FORTCAT (NIL) -9 NIL 981330 NIL) (-408 979123 979735 980125 "FORMULA" 980749 T FORMULA (NIL) -8 NIL NIL NIL) (-407 978905 978941 979010 "FORMULA1" 979087 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-406 978422 978480 978653 "FORDER" 978847 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 977482 977682 977875 "FOP" 978249 T FOP (NIL) -7 NIL NIL NIL) (-404 975895 976762 976936 "FNLA" 977364 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 974514 975025 975053 "FNCAT" 975513 T FNCAT (NIL) -9 NIL 975773 NIL) (-402 973957 974473 974501 "FNAME" 974506 T FNAME (NIL) -8 NIL NIL NIL) (-401 972283 973456 973484 "FMTC" 973489 T FMTC (NIL) -9 NIL 973525 NIL) (-400 970831 972219 972265 "FMONOID" 972270 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 967420 968786 968827 "FMONCAT" 970044 NIL FMONCAT (NIL T) -9 NIL 970649 NIL) (-398 966438 967162 967311 "FM" 967316 NIL FM (NIL T T) -8 NIL NIL NIL) (-397 963760 964508 964536 "FMFUN" 965680 T FMFUN (NIL) -9 NIL 966388 NIL) (-396 962993 963210 963238 "FMC" 963528 T FMC (NIL) -9 NIL 963710 NIL) (-395 959866 960918 960972 "FMCAT" 962167 NIL FMCAT (NIL T T) -9 NIL 962662 NIL) (-394 958534 959632 959732 "FM1" 959811 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-393 956272 956724 957218 "FLOATRP" 958085 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 948928 954001 954622 "FLOAT" 955671 T FLOAT (NIL) -8 NIL NIL NIL) (-391 946330 946866 947444 "FLOATCP" 948395 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-390 944848 945922 945963 "FLINEXP" 945968 NIL FLINEXP (NIL T) -9 NIL 946061 NIL) (-389 943978 944237 944565 "FLINEXP-" 944570 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-388 943036 943198 943422 "FLASORT" 943830 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 939954 941006 941058 "FLALG" 942285 NIL FLALG (NIL T T) -9 NIL 942752 NIL) (-386 933218 937363 937404 "FLAGG" 938666 NIL FLAGG (NIL T) -9 NIL 939318 NIL) (-385 931872 932283 932773 "FLAGG-" 932778 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-384 930896 931057 931284 "FLAGG2" 931725 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-383 927527 928741 928800 "FINRALG" 929928 NIL FINRALG (NIL T T) -9 NIL 930436 NIL) (-382 926651 926916 927255 "FINRALG-" 927260 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-381 925957 926256 926284 "FINITE" 926480 T FINITE (NIL) -9 NIL 926587 NIL) (-380 917908 920487 920527 "FINAALG" 924194 NIL FINAALG (NIL T) -9 NIL 925647 NIL) (-379 913024 914290 915434 "FINAALG-" 916813 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-378 912302 912779 912882 "FILE" 912954 NIL FILE (NIL T) -8 NIL NIL NIL) (-377 910862 911284 911338 "FILECAT" 912022 NIL FILECAT (NIL T T) -9 NIL 912238 NIL) (-376 908258 910092 910120 "FIELD" 910160 T FIELD (NIL) -9 NIL 910240 NIL) (-375 906800 907263 907774 "FIELD-" 907779 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-374 904482 905435 905782 "FGROUP" 906486 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 903554 903736 903956 "FGLMICPK" 904314 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 898788 903479 903536 "FFX" 903541 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 898383 898450 898585 "FFSLPE" 898721 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 894259 895155 895951 "FFPOLY" 897619 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-369 893757 893799 894008 "FFPOLY2" 894217 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-368 889005 893676 893739 "FFP" 893744 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 883805 888916 888980 "FF" 888985 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-366 878315 883148 883338 "FFNBX" 883659 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-365 872627 877450 877708 "FFNBP" 878169 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-364 866644 871911 872122 "FFNB" 872460 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-363 865464 865674 865989 "FFINTBAS" 866441 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-362 861040 863711 863739 "FFIELDC" 864359 T FFIELDC (NIL) -9 NIL 864735 NIL) (-361 859618 860073 860570 "FFIELDC-" 860575 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-360 859175 859233 859357 "FFHOM" 859560 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-359 856834 857357 857874 "FFF" 858690 NIL FFF (NIL T) -7 NIL NIL NIL) (-358 851848 856576 856677 "FFCGX" 856777 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-357 846866 851580 851687 "FFCGP" 851791 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-356 841445 846593 846701 "FFCG" 846802 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-355 820108 831177 831263 "FFCAT" 836428 NIL FFCAT (NIL T T T) -9 NIL 837879 NIL) (-354 815119 816353 817667 "FFCAT-" 818897 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-353 814524 814573 814808 "FFCAT2" 815070 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-352 803177 807496 808716 "FEXPR" 813376 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 802105 802574 802615 "FEVALAB" 802699 NIL FEVALAB (NIL T) -9 NIL 802960 NIL) (-350 801222 801474 801812 "FEVALAB-" 801817 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-349 799632 800605 800808 "FDIV" 801121 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-348 796494 797379 797494 "FDIVCAT" 799062 NIL FDIVCAT (NIL T T T T) -9 NIL 799499 NIL) (-347 796250 796283 796453 "FDIVCAT-" 796458 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-346 795464 795557 795834 "FDIV2" 796157 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-345 794372 794759 794961 "FCTRDATA" 795282 T FCTRDATA (NIL) -8 NIL NIL NIL) (-344 793028 793317 793606 "FCPAK1" 794103 T FCPAK1 (NIL) -7 NIL NIL NIL) (-343 792031 792528 792669 "FCOMP" 792919 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 775346 779181 782719 "FC" 788513 T FC (NIL) -8 NIL NIL NIL) (-341 767041 771667 771707 "FAXF" 773509 NIL FAXF (NIL T) -9 NIL 774201 NIL) (-340 764162 764975 765800 "FAXF-" 766265 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-339 758731 763538 763714 "FARRAY" 764019 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 753295 755678 755731 "FAMR" 756754 NIL FAMR (NIL T T) -9 NIL 757214 NIL) (-337 752119 752487 752922 "FAMR-" 752927 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-336 751146 752041 752094 "FAMONOID" 752099 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 748776 749628 749681 "FAMONC" 750622 NIL FAMONC (NIL T T) -9 NIL 751008 NIL) (-334 747250 748530 748667 "FAGROUP" 748672 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 745003 745364 745767 "FACUTIL" 746931 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 744090 744287 744509 "FACTFUNC" 744813 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 735848 743393 743592 "EXPUPXS" 743946 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 733301 733871 734457 "EXPRTUBE" 735282 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 729512 730164 730894 "EXPRODE" 732640 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 713806 728161 728590 "EXPR" 729116 NIL EXPR (NIL T) -8 NIL NIL NIL) (-327 708240 708947 709753 "EXPR2UPS" 713104 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-326 707866 707929 708038 "EXPR2" 708177 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-325 698183 707017 707308 "EXPEXPAN" 707702 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 697947 698140 698169 "EXIT" 698174 T EXIT (NIL) -8 NIL NIL NIL) (-323 697367 697671 697762 "EXITAST" 697876 T EXITAST (NIL) -8 NIL NIL NIL) (-322 696988 697056 697169 "EVALCYC" 697299 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 696505 696647 696688 "EVALAB" 696858 NIL EVALAB (NIL T) -9 NIL 696962 NIL) (-320 695962 696108 696329 "EVALAB-" 696334 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-319 693070 694618 694646 "EUCDOM" 695201 T EUCDOM (NIL) -9 NIL 695551 NIL) (-318 691409 691917 692507 "EUCDOM-" 692512 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-317 678726 681707 684457 "ESTOOLS" 688679 T ESTOOLS (NIL) -7 NIL NIL NIL) (-316 678352 678415 678524 "ESTOOLS2" 678663 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-315 678097 678145 678225 "ESTOOLS1" 678304 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-314 671798 673728 673756 "ES" 676524 T ES (NIL) -9 NIL 677934 NIL) (-313 666475 668032 669849 "ES-" 670013 NIL ES- (NIL T) -8 NIL NIL NIL) (-312 662783 663610 664390 "ESCONT" 665715 T ESCONT (NIL) -7 NIL NIL NIL) (-311 662522 662560 662642 "ESCONT1" 662745 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-310 662191 662247 662347 "ES2" 662466 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-309 661815 661879 661988 "ES1" 662127 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-308 661007 661160 661336 "ERROR" 661659 T ERROR (NIL) -7 NIL NIL NIL) (-307 654023 660866 660957 "EQTBL" 660962 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 646282 649337 650786 "EQ" 652607 NIL -1545 (NIL T) -8 NIL NIL NIL) (-305 645908 645971 646080 "EQ2" 646219 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-304 641151 642246 643339 "EP" 644847 NIL EP (NIL T) -7 NIL NIL NIL) (-303 639691 640042 640348 "ENV" 640865 T ENV (NIL) -8 NIL NIL NIL) (-302 638651 639325 639353 "ENTIRER" 639358 T ENTIRER (NIL) -9 NIL 639404 NIL) (-301 635063 636833 637194 "EMR" 638459 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 634167 634378 634432 "ELTAGG" 634812 NIL ELTAGG (NIL T T) -9 NIL 635023 NIL) (-299 633874 633948 634089 "ELTAGG-" 634094 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-298 633632 633667 633721 "ELTAB" 633805 NIL ELTAB (NIL T T) -9 NIL 633857 NIL) (-297 632734 632904 633103 "ELFUTS" 633483 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 632458 632532 632560 "ELEMFUN" 632665 T ELEMFUN (NIL) -9 NIL NIL NIL) (-295 632322 632349 632417 "ELEMFUN-" 632422 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-294 626739 630364 630405 "ELAGG" 631345 NIL ELAGG (NIL T) -9 NIL 631808 NIL) (-293 624916 625458 626121 "ELAGG-" 626126 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-292 624198 624365 624521 "ELABOR" 624780 T ELABOR (NIL) -8 NIL NIL NIL) (-291 622805 623138 623432 "ELABEXPR" 623924 T ELABEXPR (NIL) -8 NIL NIL NIL) (-290 615317 617442 618271 "EFUPXS" 622080 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-289 608443 610566 611377 "EFULS" 614592 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-288 605880 606286 606758 "EFSTRUC" 608075 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 595317 597237 598785 "EF" 604395 NIL EF (NIL T T) -7 NIL NIL NIL) (-286 594295 594802 594951 "EAB" 595188 T EAB (NIL) -8 NIL NIL NIL) (-285 593417 594254 594282 "E04UCFA" 594287 T E04UCFA (NIL) -8 NIL NIL NIL) (-284 592539 593376 593404 "E04NAFA" 593409 T E04NAFA (NIL) -8 NIL NIL NIL) (-283 591661 592498 592526 "E04MBFA" 592531 T E04MBFA (NIL) -8 NIL NIL NIL) (-282 590783 591620 591648 "E04JAFA" 591653 T E04JAFA (NIL) -8 NIL NIL NIL) (-281 589907 590742 590770 "E04GCFA" 590775 T E04GCFA (NIL) -8 NIL NIL NIL) (-280 589031 589866 589894 "E04FDFA" 589899 T E04FDFA (NIL) -8 NIL NIL NIL) (-279 588153 588990 589018 "E04DGFA" 589023 T E04DGFA (NIL) -8 NIL NIL NIL) (-278 582230 583678 585042 "E04AGNT" 586809 T E04AGNT (NIL) -7 NIL NIL NIL) (-277 580850 581531 581571 "DVARCAT" 581912 NIL DVARCAT (NIL T) -9 NIL 582075 NIL) (-276 580000 580266 580580 "DVARCAT-" 580585 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-275 571961 579799 579928 "DSMP" 579933 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 570312 571103 571144 "DSEXT" 571507 NIL DSEXT (NIL T) -9 NIL 571801 NIL) (-273 568501 569025 569691 "DSEXT-" 569696 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-272 563084 564446 565514 "DROPT" 567453 T DROPT (NIL) -8 NIL NIL NIL) (-271 562743 562808 562906 "DROPT1" 563019 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-270 557762 558984 560121 "DROPT0" 561626 T DROPT0 (NIL) -7 NIL NIL NIL) (-269 556071 556432 556818 "DRAWPT" 557396 T DRAWPT (NIL) -7 NIL NIL NIL) (-268 550562 551581 552660 "DRAW" 555045 NIL DRAW (NIL T) -7 NIL NIL NIL) (-267 550189 550248 550366 "DRAWHACK" 550503 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-266 548890 549189 549480 "DRAWCX" 549918 T DRAWCX (NIL) -7 NIL NIL NIL) (-265 548399 548474 548625 "DRAWCURV" 548816 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-264 538717 540829 542944 "DRAWCFUN" 546304 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-263 535188 537382 537423 "DQAGG" 538052 NIL DQAGG (NIL T) -9 NIL 538326 NIL) (-262 521771 529399 529482 "DPOLCAT" 531334 NIL DPOLCAT (NIL T T T T) -9 NIL 531879 NIL) (-261 516290 517956 519914 "DPOLCAT-" 519919 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-260 509147 516151 516249 "DPMO" 516254 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 501901 508927 509094 "DPMM" 509099 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 501423 501685 501774 "DOMTMPLT" 501832 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 500772 501225 501305 "DOMCTOR" 501363 T DOMCTOR (NIL) -8 NIL NIL NIL) (-256 499924 500252 500403 "DOMAIN" 500641 T DOMAIN (NIL) -8 NIL NIL NIL) (-255 492936 499559 499711 "DMP" 499825 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 490713 492003 492044 "DMEXT" 492049 NIL DMEXT (NIL T) -9 NIL 492225 NIL) (-253 490307 490369 490513 "DLP" 490651 NIL DLP (NIL T) -7 NIL NIL NIL) (-252 483430 489634 489824 "DLIST" 490149 NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 479968 482255 482296 "DLAGG" 482846 NIL DLAGG (NIL T) -9 NIL 483076 NIL) (-250 478480 479294 479322 "DIVRING" 479414 T DIVRING (NIL) -9 NIL 479497 NIL) (-249 477663 477907 478207 "DIVRING-" 478212 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-248 475705 476122 476528 "DISPLAY" 477277 T DISPLAY (NIL) -7 NIL NIL NIL) (-247 469112 475619 475682 "DIRPROD" 475687 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-246 467942 468163 468428 "DIRPROD2" 468905 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-245 456161 462653 462706 "DIRPCAT" 462964 NIL DIRPCAT (NIL NIL T) -9 NIL 463839 NIL) (-244 453361 454129 455010 "DIRPCAT-" 455347 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-243 452642 452808 452994 "DIOSP" 453195 T DIOSP (NIL) -7 NIL NIL NIL) (-242 449056 451526 451567 "DIOPS" 452001 NIL DIOPS (NIL T) -9 NIL 452230 NIL) (-241 448575 448719 448910 "DIOPS-" 448915 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-240 447482 448254 448282 "DIFRING" 448287 T DIFRING (NIL) -9 NIL 448309 NIL) (-239 447130 447228 447256 "DIFFSPC" 447375 T DIFFSPC (NIL) -9 NIL 447450 NIL) (-238 446751 446853 447005 "DIFFSPC-" 447010 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-237 445687 446285 446326 "DIFFMOD" 446331 NIL DIFFMOD (NIL T) -9 NIL 446429 NIL) (-236 445383 445440 445481 "DIFFDOM" 445602 NIL DIFFDOM (NIL T) -9 NIL 445670 NIL) (-235 445230 445260 445344 "DIFFDOM-" 445349 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-234 442970 444434 444475 "DIFEXT" 444480 NIL DIFEXT (NIL T) -9 NIL 444633 NIL) (-233 440004 442474 442515 "DIAGG" 442520 NIL DIAGG (NIL T) -9 NIL 442540 NIL) (-232 439352 439545 439797 "DIAGG-" 439802 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-231 434202 438311 438588 "DHMATRIX" 439121 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 429670 430723 431733 "DFSFUN" 433212 T DFSFUN (NIL) -7 NIL NIL NIL) (-229 423904 428601 428913 "DFLOAT" 429378 T DFLOAT (NIL) -8 NIL NIL NIL) (-228 422143 422448 422837 "DFINTTLS" 423612 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 418962 420164 420564 "DERHAM" 421809 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 416498 418737 418826 "DEQUEUE" 418906 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 415740 415885 416068 "DEGRED" 416360 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 412146 412915 413761 "DEFINTRF" 414968 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 409683 410170 410762 "DEFINTEF" 411665 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 408967 409303 409418 "DEFAST" 409588 T DEFAST (NIL) -8 NIL NIL NIL) (-221 402003 408560 408710 "DECIMAL" 408837 T DECIMAL (NIL) -8 NIL NIL NIL) (-220 399461 399973 400479 "DDFACT" 401547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 399051 399100 399251 "DBLRESP" 399412 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 398252 398821 398912 "DBASIS" 399000 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 396036 396482 396843 "DBASE" 398018 NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 395224 395516 395662 "DATAARY" 395935 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 394282 395183 395211 "D03FAFA" 395216 T D03FAFA (NIL) -8 NIL NIL NIL) (-214 393341 394241 394269 "D03EEFA" 394274 T D03EEFA (NIL) -8 NIL NIL NIL) (-213 391267 391757 392246 "D03AGNT" 392872 T D03AGNT (NIL) -7 NIL NIL NIL) (-212 390508 391226 391254 "D02EJFA" 391259 T D02EJFA (NIL) -8 NIL NIL NIL) (-211 389749 390467 390495 "D02CJFA" 390500 T D02CJFA (NIL) -8 NIL NIL NIL) (-210 388990 389708 389736 "D02BHFA" 389741 T D02BHFA (NIL) -8 NIL NIL NIL) (-209 388231 388949 388977 "D02BBFA" 388982 T D02BBFA (NIL) -8 NIL NIL NIL) (-208 381362 383017 384623 "D02AGNT" 386645 T D02AGNT (NIL) -7 NIL NIL NIL) (-207 379112 379653 380199 "D01WGTS" 380836 T D01WGTS (NIL) -7 NIL NIL NIL) (-206 378119 379071 379099 "D01TRNS" 379104 T D01TRNS (NIL) -8 NIL NIL NIL) (-205 377127 378078 378106 "D01GBFA" 378111 T D01GBFA (NIL) -8 NIL NIL NIL) (-204 376135 377086 377114 "D01FCFA" 377119 T D01FCFA (NIL) -8 NIL NIL NIL) (-203 375143 376094 376122 "D01ASFA" 376127 T D01ASFA (NIL) -8 NIL NIL NIL) (-202 374151 375102 375130 "D01AQFA" 375135 T D01AQFA (NIL) -8 NIL NIL NIL) (-201 373159 374110 374138 "D01APFA" 374143 T D01APFA (NIL) -8 NIL NIL NIL) (-200 372167 373118 373146 "D01ANFA" 373151 T D01ANFA (NIL) -8 NIL NIL NIL) (-199 371175 372126 372154 "D01AMFA" 372159 T D01AMFA (NIL) -8 NIL NIL NIL) (-198 370183 371134 371162 "D01ALFA" 371167 T D01ALFA (NIL) -8 NIL NIL NIL) (-197 369191 370142 370170 "D01AKFA" 370175 T D01AKFA (NIL) -8 NIL NIL NIL) (-196 368199 369150 369178 "D01AJFA" 369183 T D01AJFA (NIL) -8 NIL NIL NIL) (-195 361422 363047 364608 "D01AGNT" 366658 T D01AGNT (NIL) -7 NIL NIL NIL) (-194 360741 360887 361039 "CYCLOTOM" 361290 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 357396 358189 358916 "CYCLES" 360034 T CYCLES (NIL) -7 NIL NIL NIL) (-192 356696 356842 357013 "CVMP" 357257 NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 354483 354795 355164 "CTRIGMNP" 356424 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 353841 354277 354350 "CTOR" 354430 T CTOR (NIL) -8 NIL NIL NIL) (-189 353314 353572 353673 "CTORKIND" 353760 T CTORKIND (NIL) -8 NIL NIL NIL) (-188 352519 352907 352935 "CTORCAT" 353117 T CTORCAT (NIL) -9 NIL 353230 NIL) (-187 352093 352228 352387 "CTORCAT-" 352392 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-186 351507 351767 351875 "CTORCALL" 352017 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-185 350863 350980 351133 "CSTTOOLS" 351404 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 346560 347319 348077 "CRFP" 350175 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 345975 346281 346373 "CRCEAST" 346488 T CRCEAST (NIL) -8 NIL NIL NIL) (-182 344998 345207 345435 "CRAPACK" 345779 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 344378 344483 344687 "CPMATCH" 344874 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 344097 344131 344237 "CPIMA" 344344 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 340355 341117 341836 "COORDSYS" 343432 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 339743 339888 340030 "CONTOUR" 340233 T CONTOUR (NIL) -8 NIL NIL NIL) (-177 335208 337746 338238 "CONTFRAC" 339283 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 335082 335109 335137 "CONDUIT" 335174 T CONDUIT (NIL) -9 NIL NIL NIL) (-175 334036 334710 334738 "COMRING" 334743 T COMRING (NIL) -9 NIL 334795 NIL) (-174 333018 333394 333578 "COMPPROP" 333872 T COMPPROP (NIL) -8 NIL NIL NIL) (-173 332673 332714 332842 "COMPLPAT" 332977 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 321056 332482 332591 "COMPLEX" 332596 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-171 320686 320749 320856 "COMPLEX2" 320993 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-170 320007 320146 320306 "COMPILER" 320546 T COMPILER (NIL) -8 NIL NIL NIL) (-169 319719 319760 319858 "COMPFACT" 319966 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 301094 313423 313463 "COMPCAT" 314467 NIL COMPCAT (NIL T) -9 NIL 315815 NIL) (-167 289982 293533 297160 "COMPCAT-" 297516 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-166 289705 289739 289842 "COMMUPC" 289948 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 289493 289533 289592 "COMMONOP" 289666 T COMMONOP (NIL) -7 NIL NIL NIL) (-164 289001 289244 289331 "COMM" 289426 T COMM (NIL) -8 NIL NIL NIL) (-163 288523 288805 288880 "COMMAAST" 288946 T COMMAAST (NIL) -8 NIL NIL NIL) (-162 287718 287966 287994 "COMBOPC" 288332 T COMBOPC (NIL) -9 NIL 288507 NIL) (-161 286572 286824 287066 "COMBINAT" 287508 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 282915 283603 284230 "COMBF" 285994 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 281577 282031 282266 "COLOR" 282700 T COLOR (NIL) -8 NIL NIL NIL) (-158 280993 281298 281390 "COLONAST" 281505 T COLONAST (NIL) -8 NIL NIL NIL) (-157 280627 280680 280805 "CMPLXRT" 280940 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 280015 280327 280426 "CLLCTAST" 280548 T CLLCTAST (NIL) -8 NIL NIL NIL) (-155 275475 276545 277625 "CLIP" 278955 T CLIP (NIL) -7 NIL NIL NIL) (-154 273648 274576 274816 "CLIF" 275302 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 269630 271766 271807 "CLAGG" 272736 NIL CLAGG (NIL T) -9 NIL 273272 NIL) (-152 267974 268509 269092 "CLAGG-" 269097 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-151 267512 267603 267743 "CINTSLPE" 267883 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 264977 265484 266032 "CHVAR" 267040 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 264017 264691 264719 "CHARZ" 264724 T CHARZ (NIL) -9 NIL 264739 NIL) (-148 263765 263811 263889 "CHARPOL" 263971 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 262683 263396 263424 "CHARNZ" 263471 T CHARNZ (NIL) -9 NIL 263527 NIL) (-146 260427 261337 261690 "CHAR" 262350 T CHAR (NIL) -8 NIL NIL NIL) (-145 260135 260214 260242 "CFCAT" 260353 T CFCAT (NIL) -9 NIL NIL NIL) (-144 259358 259487 259670 "CDEN" 260019 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 254955 258511 258791 "CCLASS" 259098 T CCLASS (NIL) -8 NIL NIL NIL) (-142 254176 254363 254540 "CATEGORY" 254798 T -10 (NIL) -8 NIL NIL NIL) (-141 253671 254095 254143 "CATCTOR" 254148 T CATCTOR (NIL) -8 NIL NIL NIL) (-140 253062 253374 253472 "CATAST" 253593 T CATAST (NIL) -8 NIL NIL NIL) (-139 252478 252783 252875 "CASEAST" 252990 T CASEAST (NIL) -8 NIL NIL NIL) (-138 247376 248635 249379 "CARTEN" 251790 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-137 246472 246632 246853 "CARTEN2" 247223 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-136 244602 245622 245879 "CARD" 246235 T CARD (NIL) -8 NIL NIL NIL) (-135 244124 244406 244481 "CAPSLAST" 244547 T CAPSLAST (NIL) -8 NIL NIL NIL) (-134 243566 243822 243850 "CACHSET" 243982 T CACHSET (NIL) -9 NIL 244060 NIL) (-133 242956 243344 243372 "CABMON" 243422 T CABMON (NIL) -9 NIL 243478 NIL) (-132 242393 242660 242770 "BYTEORD" 242866 T BYTEORD (NIL) -8 NIL NIL NIL) (-131 241151 241908 242057 "BYTE" 242220 T BYTE (NIL) -8 NIL NIL 242349) (-130 236078 240656 240828 "BYTEBUF" 240999 T BYTEBUF (NIL) -8 NIL NIL NIL) (-129 233340 235770 235877 "BTREE" 236004 NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 230542 232988 233110 "BTOURN" 233250 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 227649 229984 230025 "BTCAT" 230093 NIL BTCAT (NIL T) -9 NIL 230170 NIL) (-126 227298 227396 227545 "BTCAT-" 227550 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-125 222190 226544 226572 "BTAGG" 226686 T BTAGG (NIL) -9 NIL 226796 NIL) (-124 221644 221805 222011 "BTAGG-" 222016 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-123 218380 220922 221137 "BSTREE" 221461 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 217488 217644 217828 "BRILL" 218236 NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 213883 216186 216227 "BRAGG" 216876 NIL BRAGG (NIL T) -9 NIL 217134 NIL) (-120 212316 212818 213373 "BRAGG-" 213378 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-119 204552 211660 211845 "BPADICRT" 212163 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 202561 204489 204534 "BPADIC" 204539 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 202253 202289 202403 "BOUNDZRO" 202525 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 197235 198679 199591 "BOP" 201361 T BOP (NIL) -8 NIL NIL NIL) (-115 194962 195420 195895 "BOP1" 196793 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-114 194555 194712 194740 "BOOLE" 194851 T BOOLE (NIL) -9 NIL 194932 NIL) (-113 194423 194450 194516 "BOOLE-" 194521 NIL BOOLE- (NIL T) -8 NIL NIL NIL) (-112 193088 194011 194153 "BOOLEAN" 194301 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 192257 192757 192811 "BMODULE" 192816 NIL BMODULE (NIL T T) -9 NIL 192881 NIL) (-110 187578 192055 192128 "BITS" 192204 T BITS (NIL) -8 NIL NIL NIL) (-109 186975 187118 187258 "BINDING" 187458 T BINDING (NIL) -8 NIL NIL NIL) (-108 180014 186570 186719 "BINARY" 186846 T BINARY (NIL) -8 NIL NIL NIL) (-107 177621 179241 179282 "BGAGG" 179542 NIL BGAGG (NIL T) -9 NIL 179679 NIL) (-106 177446 177484 177575 "BGAGG-" 177580 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 176469 176830 177035 "BFUNCT" 177261 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 175139 175337 175625 "BEZOUT" 176293 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 171337 173991 174321 "BBTREE" 174842 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 170920 171016 171044 "BASTYPE" 171221 T BASTYPE (NIL) -9 NIL 171320 NIL) (-101 170578 170677 170812 "BASTYPE-" 170817 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 170000 170088 170240 "BALFACT" 170489 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 168736 169415 169601 "AUTOMOR" 169845 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 168462 168467 168493 "ATTREG" 168498 T ATTREG (NIL) -9 NIL NIL NIL) (-97 166624 167159 167511 "ATTRBUT" 168128 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 166178 166452 166518 "ATTRAST" 166576 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 165678 165827 165853 "ATRIG" 166054 T ATRIG (NIL) -9 NIL NIL NIL) (-94 165475 165528 165615 "ATRIG-" 165620 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 165058 165292 165318 "ASTCAT" 165323 T ASTCAT (NIL) -9 NIL 165353 NIL) (-92 164767 164844 164963 "ASTCAT-" 164968 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 162741 164543 164631 "ASTACK" 164710 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 161230 161543 161908 "ASSOCEQ" 162423 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 160154 160889 161013 "ASP9" 161137 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 159881 160102 160141 "ASP8" 160146 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 158641 159486 159628 "ASP80" 159770 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 157431 158276 158408 "ASP7" 158540 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 156277 157108 157226 "ASP78" 157344 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 155138 155957 156074 "ASP77" 156191 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 153942 154776 154907 "ASP74" 155038 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 152734 153577 153709 "ASP73" 153841 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 151730 152560 152660 "ASP6" 152665 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 150569 151407 151525 "ASP55" 151643 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 149410 150243 150362 "ASP50" 150481 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 148390 149111 149221 "ASP4" 149331 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 147370 148091 148201 "ASP49" 148311 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 146046 146909 147077 "ASP42" 147259 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 144715 145579 145749 "ASP41" 145933 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 143557 144392 144510 "ASP35" 144628 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 143286 143505 143544 "ASP34" 143549 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 143005 143090 143166 "ASP33" 143241 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 141791 142640 142772 "ASP31" 142904 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 141520 141739 141778 "ASP30" 141783 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 141237 141324 141400 "ASP29" 141475 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 140966 141185 141224 "ASP28" 141229 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 140695 140914 140953 "ASP27" 140958 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 139671 140393 140504 "ASP24" 140615 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 138640 139473 139585 "ASP20" 139590 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 137620 138341 138451 "ASP1" 138561 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 136455 137294 137413 "ASP19" 137532 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 136174 136259 136335 "ASP12" 136410 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 134918 135773 135917 "ASP10" 136061 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 132530 134762 134853 "ARRAY2" 134858 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 127890 132178 132292 "ARRAY1" 132447 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 126904 127095 127316 "ARRAY12" 127713 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 120949 123106 123181 "ARR2CAT" 125811 NIL ARR2CAT (NIL T T T) -9 NIL 126569 NIL) (-56 118239 119127 120081 "ARR2CAT-" 120086 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 117490 117866 117991 "ARITY" 118132 T ARITY (NIL) -8 NIL NIL NIL) (-54 116248 116418 116717 "APPRULE" 117326 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 115893 115947 116066 "APPLYORE" 116194 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 115193 115486 115606 "ANY" 115791 T ANY (NIL) -8 NIL NIL NIL) (-51 114447 114594 114751 "ANY1" 115067 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 111773 112884 113211 "ANTISYM" 114171 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 111217 111480 111576 "ANON" 111695 T ANON (NIL) -8 NIL NIL NIL) (-48 104373 109756 110210 "AN" 110781 T AN (NIL) -8 NIL NIL NIL) (-47 100029 101645 101696 "AMR" 102444 NIL AMR (NIL T T) -9 NIL 103044 NIL) (-46 99081 99362 99725 "AMR-" 99730 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 82550 98998 99059 "ALIST" 99064 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 78847 82144 82313 "ALGSC" 82468 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 75297 75957 76564 "ALGPKG" 78287 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 74562 74675 74859 "ALGMFACT" 75183 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 70545 71176 71770 "ALGMANIP" 74146 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 59884 70171 70321 "ALGFF" 70478 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 59056 59211 59390 "ALGFACT" 59742 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 57845 58583 58621 "ALGEBRA" 58626 NIL ALGEBRA (NIL T) -9 NIL 58667 NIL) (-37 57545 57622 57754 "ALGEBRA-" 57759 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 38506 55382 55434 "ALAGG" 55570 NIL ALAGG (NIL T T) -9 NIL 55731 NIL) (-35 38006 38155 38181 "AHYP" 38382 T AHYP (NIL) -9 NIL NIL NIL) (-34 36891 37185 37211 "AGG" 37710 T AGG (NIL) -9 NIL 37989 NIL) (-33 36289 36487 36701 "AGG-" 36706 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 34049 34518 34923 "AF" 35931 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33469 33774 33864 "ADDAST" 33977 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32701 32996 33152 "ACPLOT" 33331 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20258 29633 29671 "ACFS" 30278 NIL ACFS (NIL T) -9 NIL 30517 NIL) (-28 18165 18775 19537 "ACFS-" 19542 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13873 16198 16224 "ACF" 17103 T ACF (NIL) -9 NIL 17516 NIL) (-26 12505 12911 13404 "ACF-" 13409 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 12015 12258 12284 "ABELSG" 12376 T ABELSG (NIL) -9 NIL 12441 NIL) (-24 11876 11907 11973 "ABELSG-" 11978 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11145 11492 11518 "ABELMON" 11688 T ABELMON (NIL) -9 NIL 11800 NIL) (-22 10785 10893 11031 "ABELMON-" 11036 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 10035 10491 10517 "ABELGRP" 10589 T ABELGRP (NIL) -9 NIL 10664 NIL) (-20 9462 9627 9843 "ABELGRP-" 9848 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8724 8763 "A1AGG" 8768 NIL A1AGG (NIL T) -9 NIL 8808 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 42f155da..c21d1c81 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,9789 +1,9356 @@ -(733090 . 3497162535) +(733126 . 3497168582) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 (-665 *4)))) - (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) -(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 (-392)) (-5 *1 (-208))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-1222 *2)) (-4 *2 (-376))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) - (-5 *2 (-1065)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-549))) (-5 *2 (-1206)) (-5 *1 (-549))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) - (-5 *2 (-665 (-1124 (-228)))) (-5 *1 (-956))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-375) (-869))) (-4 *3 (-1273 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-845)) (-5 *3 (-665 (-1206))) (-5 *1 (-846))))) -(((*1 *2 *3) - (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *4))))))) + (-5 *3 (-666 *7)) (-4 *4 (-13 (-319) (-149))) + (-4 *7 (-978 *4 *6 *5)) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) + (-4 *6 (-1274 *5)) (-5 *2 (-1203 (-1203 *7))) + (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1274 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-666 *3)) (-4 *3 (-1140 *5 *6 *7 *8)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-605 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1203 *5)) (-4 *5 (-466)) (-5 *2 (-666 *6)) + (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1124 (-864 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) - (-5 *1 (-316)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5))))) + (-12 (-5 *3 (-981 *5)) (-4 *5 (-466)) (-5 *2 (-666 *6)) + (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) + (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-950)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-272))))) (((*1 *2 *3) - (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) - (-5 *1 (-316))))) + (-12 (-5 *3 (-666 (-550))) (-5 *2 (-1207)) (-5 *1 (-550))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3) + (-12 (-5 *3 (-711 (-421 (-981 *4)))) (-4 *4 (-466)) + (-5 *2 (-666 (-3 (-421 (-981 *4)) (-1196 (-1207) (-981 *4))))) + (-5 *1 (-304 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-4 *3 (-175)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) + (-4 *2 (-709 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) (-4 *5 (-1130)) - (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *6)))) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *6)) (-4 *5 (-1131)) + (-4 *6 (-1248)) (-5 *2 (-1 *6 *5)) (-5 *1 (-663 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) - (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *2)) (-4 *5 (-1131)) + (-4 *2 (-1248)) (-5 *1 (-663 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 *5)) (-4 *6 (-1130)) - (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-662 *6 *5)))) + (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 *5)) (-4 *6 (-1131)) + (-4 *5 (-1248)) (-5 *2 (-1 *5 *6)) (-5 *1 (-663 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-4 *5 (-1130)) - (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *2)) (-4 *5 (-1131)) + (-4 *2 (-1248)) (-5 *1 (-663 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-665 *5)) (-5 *4 (-665 *6)) - (-4 *5 (-1130)) (-4 *6 (-1247)) (-5 *1 (-662 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-666 *5)) (-5 *4 (-666 *6)) + (-4 *5 (-1131)) (-4 *6 (-1248)) (-5 *1 (-663 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1130)) (-4 *2 (-1247)) (-5 *1 (-662 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-792))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1131)) (-4 *2 (-1248)) (-5 *1 (-663 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-793))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-432 *4)) (-4 *4 (-570))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-570) (-149))) + (-5 *1 (-1268 *4 *2)) (-4 *2 (-1274 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 (-495 *3 *4))) (-14 *3 (-666 (-1207))) + (-4 *4 (-466)) (-5 *1 (-650 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) + (-4 *5 (-570)) (-5 *2 (-666 (-666 (-981 *5)))) (-5 *1 (-1216 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-917 (-578)))) + (-4 *5 (-911 (-578))) + (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-581 *5 *3)) (-4 *3 (-648)) + (-4 *3 (-13 (-27) (-1233) (-444 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-865 *2)) (-4 *2 (-1170)) + (-4 *2 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-633 (-917 (-578)))) (-4 *5 (-911 (-578))) + (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) + (-5 *1 (-581 *5 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-870)) (-5 *2 (-1218 (-665 *4))) (-5 *1 (-1217 *4)) - (-5 *3 (-665 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2846 *1))) - (-4 *1 (-875 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) - (-4 *3 (-1273 *4)) (-5 *2 (-577)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-1068 *2) (-659 *2) (-465))) - (-5 *2 (-577)) (-5 *1 (-1146 *4 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) - (-5 *1 (-1146 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-1188)) - (-4 *6 (-13 (-569) (-1068 *2) (-659 *2) (-465))) (-5 *2 (-577)) - (-5 *1 (-1146 *6 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-577)) - (-5 *1 (-1147 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-864 (-420 (-980 *6)))) - (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-577)) - (-5 *1 (-1147 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1206)) - (-5 *5 (-1188)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1147 *6)))) + (-12 + (-5 *3 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))))) + (-5 *2 (-1066)) (-5 *1 (-317)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-465)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *1)))) - (-4 *1 (-1101 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1251))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-1276 *3 *2)) - (-4 *2 (-13 (-1273 *3) (-569) (-10 -8 (-15 -2420 ($ $ $)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391))))) -(((*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) + (-12 + (-5 *3 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066)))) + (-5 *2 (-1066)) (-5 *1 (-317))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) + (-5 *2 + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 *4)) (-5 *1 (-1171 *3 *4)) - (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-665 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1130)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-665 *4))) (-4 *4 (-1130)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-665 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1130)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) - (-5 *1 (-735 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3))))) -(((*1 *1 *1) (-4 *1 (-647))) + (-12 (-5 *2 (-666 *4)) (-5 *1 (-1172 *3 *4)) + (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-886))))) +(((*1 *1 *1) (-4 *1 (-648))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-112)) (-5 *1 (-630 *4)) - (-4 *4 (-1130)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-630 *4)) (-4 *4 (-1130)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-5 *2 (-112)) (-5 *1 (-911 *5 *3 *4)) - (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *6)) (-4 *6 (-910 *5)) (-4 *5 (-1130)) - (-5 *2 (-112)) (-5 *1 (-911 *5 *6 *4)) (-4 *4 (-632 (-916 *5)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1202 *3) (-1202 *3))) - (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) - (-5 *1 (-564 *6 *3))))) -(((*1 *1 *1) (-5 *1 (-885)))) + (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033) (-1233)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-956))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-559))))) (((*1 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) + (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-420 (-577))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) + (-12 (-5 *4 (-421 (-578))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) + (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *5 *6)))) + (-12 (-5 *4 (-306 *3)) (-5 *5 (-421 (-578))) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-578))) (-5 *4 (-306 *6)) + (-4 *6 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) - (-4 *7 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-578))) (-5 *4 (-306 *7)) (-5 *5 (-1265 (-578))) + (-4 *7 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) - (-4 *3 (-13 (-27) (-1232) (-443 *7))) - (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-578))) + (-4 *3 (-13 (-27) (-1233) (-444 *7))) + (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) - (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) - (-4 *8 (-13 (-27) (-1232) (-443 *7))) - (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-421 (-578)))) (-5 *4 (-306 *8)) + (-5 *5 (-1265 (-421 (-578)))) (-5 *6 (-421 (-578))) + (-4 *8 (-13 (-27) (-1233) (-444 *7))) + (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) - (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) - (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *8 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-421 (-578)))) + (-5 *7 (-421 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *8))) + (-4 *8 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) - (-4 *3 (-1079)) (-5 *1 (-608 *3)))) + (-12 (-5 *2 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *3)))) + (-4 *3 (-1080)) (-5 *1 (-609 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-609 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-610 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) - (-4 *3 (-1079)) (-4 *1 (-1257 *3)))) + (-12 (-5 *2 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *3)))) + (-4 *3 (-1080)) (-4 *1 (-1258 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-792)) - (-5 *3 (-1187 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) - (-4 *4 (-1079)) (-4 *1 (-1278 *4)))) + (-12 (-5 *2 (-793)) + (-5 *3 (-1188 (-2 (|:| |k| (-421 (-578))) (|:| |c| *4)))) + (-4 *4 (-1080)) (-4 *1 (-1279 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-4 *1 (-1288 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-4 *1 (-1289 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-792)) (|:| |c| *3)))) - (-4 *3 (-1079)) (-4 *1 (-1288 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2) - (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-355 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949)))) - ((*1 *2) - (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-1202 *3)))) - ((*1 *2) - (-12 (-5 *2 (-986 (-1150))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-949))))) + (-12 (-5 *2 (-1188 (-2 (|:| |k| (-793)) (|:| |c| *3)))) + (-4 *3 (-1080)) (-4 *1 (-1289 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1187 *7))) (-4 *6 (-870)) - (-4 *7 (-977 *5 (-544 *6) *6)) (-4 *5 (-1079)) - (-5 *2 (-1 (-1187 *7) *7)) (-5 *1 (-1156 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -4327 (-792)))) - (-5 *1 (-803 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4327 (-792)))) - (-4 *1 (-1095 *3 *4 *5))))) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-600 *3)) (-5 *1 (-571 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *5)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1273 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1273 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-792))) - (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1273 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) - (-4 *6 (-1273 *5)) (-5 *2 (-1202 (-1202 *7))) - (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1273 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-431 *4)) (-4 *4 (-569))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885))))) + (-12 (-5 *2 (-1298 (-1298 (-578)))) (-5 *3 (-950)) (-5 *1 (-480))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-570))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) + (-5 *1 (-736 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-858 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-318)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-460 *4 *5 *6 *2))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1079)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-665 (-420 *7))) - (-4 *7 (-1273 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-587 *6 *7))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-319)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032)))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-700 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-870)) (-5 *3 (-665 *6)) (-5 *5 (-665 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-665 *5)) (|:| |f3| *5) - (|:| |f4| (-665 *5)))) - (-5 *1 (-1217 *6)) (-5 *4 (-665 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-775))))) + (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) + (-5 *2 (-2 (|:| -2672 (-421 *5)) (|:| |poly| *3))) + (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1274 (-421 *5)))))) (((*1 *2 *1) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1194 3 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) - ((*1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079))))) + (|partial| -12 (-5 *2 (-1092 (-1055 *3) (-1203 (-1055 *3)))) + (-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1053)))))) +(((*1 *1) (-5 *1 (-451)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-520)) (-5 *2 (-713 (-796))) (-5 *1 (-116)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-796)) (-5 *1 (-116)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-994))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) + (-5 *2 + (-2 (|:| |ir| (-600 (-421 *6))) (|:| |specpart| (-421 *6)) + (|:| |polypart| *6))) + (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) + (-12 (-4 *3 (-1248)) (-5 *2 (-666 *1)) (-4 *1 (-1041 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) + (-14 *3 (-950)) (-4 *4 (-1080))))) +(((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1071))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1080)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1080))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-711 (-421 (-981 (-578))))) + (-5 *2 (-666 (-711 (-328 (-578))))) (-5 *1 (-1062))))) +(((*1 *2) + (-12 (-14 *4 (-793)) (-4 *5 (-1248)) (-5 *2 (-136)) + (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) + (-4 *3 (-341 *4)))) + ((*1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-175)))) + ((*1 *2 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-578)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) + (-5 *2 (-578)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1080)) (-5 *2 (-950)))) + ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) (((*1 *1 *2) - (-12 (-4 *3 (-1079)) (-5 *1 (-848 *2 *3)) (-4 *2 (-729 *3))))) + (-12 (-4 *3 (-1080)) (-5 *1 (-849 *2 *3)) (-4 *2 (-730 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559))))) (((*1 *2 *3) - (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1232))) - (-5 *1 (-596 *4 *2)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-599 (-420 (-980 *4)))) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *4)) - (-5 *1 (-602 *4))))) + (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) + (-4 *2 + (-13 (-416) + (-10 -7 (-15 -2411 (*2 *4)) (-15 -3193 ((-950) *2)) + (-15 -3198 ((-1298 *2) (-950))) (-15 -1536 (*2 *2))))) + (-5 *1 (-369 *2 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *1 (-700 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) + (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) - (-4 *4 (-569)) (-5 *2 (-420 (-1202 *1))))) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-444 *4)) (-4 *4 (-1131)) + (-4 *4 (-570)) (-5 *2 (-421 (-1203 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-1202 (-420 (-1202 *3)))) (-5 *1 (-573 *6 *3 *7)) - (-5 *5 (-1202 *3)) (-4 *7 (-1130)))) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-1203 (-421 (-1203 *3)))) (-5 *1 (-574 *6 *3 *7)) + (-5 *5 (-1203 *3)) (-4 *7 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1293 *5)) (-14 *5 (-1206)) (-4 *6 (-1079)) - (-5 *2 (-1270 *5 (-980 *6))) (-5 *1 (-975 *5 *6)) (-5 *3 (-980 *6)))) + (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1080)) + (-5 *2 (-1271 *5 (-981 *6))) (-5 *1 (-976 *5 *6)) (-5 *3 (-981 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-1202 *3)))) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-1203 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) (-5 *2 (-1202 *1)) - (-4 *1 (-977 *4 *5 *3)))) + (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-1203 *1)) + (-4 *1 (-978 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-1079)) - (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-420 (-1202 *3))) - (-5 *1 (-978 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) + (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-421 (-1203 *3))) + (-5 *1 (-979 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))))) + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1202 *3)) + (-12 (-5 *2 (-1203 *3)) (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))) - (-4 *7 (-977 *6 *5 *4)) (-4 *5 (-814)) (-4 *4 (-870)) - (-4 *6 (-1079)) (-5 *1 (-978 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-4 *5 (-569)) - (-5 *2 (-420 (-1202 (-420 (-980 *5))))) (-5 *1 (-1073 *5)) - (-5 *3 (-420 (-980 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731))))) + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))) + (-4 *7 (-978 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-871)) + (-4 *6 (-1080)) (-5 *1 (-979 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-570)) + (-5 *2 (-421 (-1203 (-421 (-981 *5))))) (-5 *1 (-1074 *5)) + (-5 *3 (-421 (-981 *5)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-666 (-421 *7))) + (-4 *7 (-1274 *6)) (-5 *3 (-421 *7)) (-4 *6 (-376)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-588 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-792)) (-5 *2 (-665 (-1206))) (-5 *1 (-212)) - (-5 *3 (-1206)))) + (-12 (-5 *4 (-793)) (-5 *2 (-666 (-1207))) (-5 *1 (-213)) + (-5 *3 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-792)) (-5 *2 (-665 (-1206))) - (-5 *1 (-277)))) + (-12 (-5 *3 (-328 (-229))) (-5 *4 (-793)) (-5 *2 (-666 (-1207))) + (-5 *1 (-278)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) - (-5 *2 (-665 *3)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) + (-5 *2 (-666 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-665 *3)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) + (-12 (-5 *2 (-666 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) ((*1 *2 *1) - (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-665 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-4 *1 (-931 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-949)) (-4 *5 (-569)) (-5 *2 (-710 *5)) - (-5 *1 (-984 *5 *3)) (-4 *3 (-677 *5))))) + (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-666 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-578)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771))))) +(((*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) + ((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300))))) +(((*1 *2 *1) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *2 (-1302)) - (-5 *1 (-481)))) + (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *2 (-1303)) + (-5 *1 (-482)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-1010 *3)))) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1080)) (-4 *1 (-1011 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-971 *3)))) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-972 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-793)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-666 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-971 *3)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-972 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)) (-5 *3 (-228))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *6 (-632 (-1206))) - (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *2 (-1195 (-665 (-980 *4)) (-665 (-305 (-980 *4))))) - (-5 *1 (-517 *4 *5 *6 *7))))) -(((*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) (-4 *2 (-1247))))) -(((*1 *1) (-5 *1 (-622)))) + (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)) (-5 *3 (-229))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) - (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *2) - (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) + (|partial| -12 (-5 *3 (-711 (-421 (-981 (-578))))) + (-5 *2 (-711 (-328 (-578)))) (-5 *1 (-1062))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-189)) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-4 *1 (-188)) (-5 *2 (-189))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1274 (-48)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-570))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-804 *3)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-992 *3 *2)) (-4 *2 (-133)) (-4 *3 (-570)) + (-4 *3 (-1080)) (-4 *2 (-814)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-1203 *3)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-1002)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-570)) + (-4 *3 (-1080)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-1271 *4 *3)) (-14 *4 (-1207)) + (-4 *3 (-1080))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-172 (-229)) (-172 (-229)))) (-5 *4 (-1125 (-229))) + (-5 *2 (-1300)) (-5 *1 (-266))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-666 (-666 (-229)))) (-5 *4 (-229)) + (-5 *2 (-666 (-972 *4))) (-5 *1 (-1244)) (-5 *3 (-972 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-844))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-1270 *4 *2)) + (-4 *2 (-1274 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1252)))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) - (-4 *2 (-13 (-870) (-21)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *3)) + (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-666 *7) (-666 *7))) (-5 *2 (-666 *7)) + (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) (-4 *5 (-815)) + (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) + (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-443 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-115)))) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-444 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-116)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *1 (-116)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-116)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-443 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-115)) (-5 *1 (-164)))) + (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-160 *3 *4)) + (-4 *4 (-444 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-116)) (-5 *1 (-165)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) - (-4 *4 (-13 (-443 *3) (-1032))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) - ((*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-287 *3 *4)) + (-4 *4 (-13 (-444 *3) (-1033))))) + ((*1 *2 *2) (-12 (-5 *2 (-116)) (-5 *1 (-313 *3)) (-4 *3 (-314)))) + ((*1 *2 *2) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1130)) (-5 *1 (-442 *3 *4)) - (-4 *3 (-443 *4)))) + (-12 (-5 *2 (-116)) (-4 *4 (-1131)) (-5 *1 (-443 *3 *4)) + (-4 *3 (-444 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) - (-4 *4 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-445 *3 *4)) + (-4 *4 (-444 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-116)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-648 *3 *4)) - (-4 *4 (-13 (-443 *3) (-1032) (-1232))))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1220 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) - (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-1007 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) + (-12 (-5 *2 (-116)) (-4 *3 (-570)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-13 (-444 *3) (-1033) (-1233))))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1131))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) - (-5 *2 (-1065)) (-5 *1 (-774))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1165)) (-5 *3 (-302)) (-5 *1 (-169))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-318)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1130)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1636 (-792)) (|:| -4369 (-792)))) - (-5 *1 (-792)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) - (-5 *2 (-864 *4)) (-5 *1 (-324 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) - (-5 *2 (-864 *4)) (-5 *1 (-1283 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1232) (-443 *3))) (-14 *5 (-1206)) - (-14 *6 *4)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-194))))) -(((*1 *2 *3) (-12 (-5 *3 (-665 *2)) (-5 *1 (-1221 *2)) (-4 *2 (-375))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-4 *4 (-1130)) - (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) - (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) - (-5 *2 (-665 (-228))) (-5 *1 (-316))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) - (-15 -2528 ((-1155 *3 (-630 $)) $)) - (-15 -2410 ($ (-1155 *3 (-630 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) - (-15 -2528 ((-1155 *3 (-630 $)) $)) - (-15 -2410 ($ (-1155 *3 (-630 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *2)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *4 (-630 $)) $)) - (-15 -2528 ((-1155 *4 (-630 $)) $)) - (-15 -2410 ($ (-1155 *4 (-630 $))))))) - (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-665 (-630 *2))) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *4 (-630 $)) $)) - (-15 -2528 ((-1155 *4 (-630 $)) $)) - (-15 -2410 ($ (-1155 *4 (-630 $))))))) - (-4 *4 (-569)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-465)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *5 (-937)) (-5 *1 (-470 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-937))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) - (-4 *3 (-569))))) + (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) (-5 *3 (-229)) + (-5 *2 (-1066)) (-5 *1 (-770))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) - (-4 *8 (-977 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) - (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-112)) - (-5 *1 (-952 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-174)))) + (-12 (-5 *3 (-666 (-272))) (-5 *4 (-1207)) (-5 *2 (-112)) + (-5 *1 (-272))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) + (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-978 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-1079))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-665 (-1188))) (-5 *3 (-577)) (-5 *4 (-1188)) - (-5 *1 (-247)))) - ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) + (-5 *1 (-778))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1131))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-303)) (-5 *1 (-170))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1203 (-421 (-578)))) (-5 *1 (-971)) (-5 *3 (-578))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-631 *1))) (-4 *1 (-314))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6)) (-5 *4 (-1207)) (-4 *6 (-444 *5)) + (-4 *5 (-1131)) (-5 *2 (-666 (-631 *6))) (-5 *1 (-587 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-950))) (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) - (-5 *2 (-1065)) (-5 *1 (-770))))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-52)) (-5 *1 (-851))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-666 (-1207))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4))))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) (-4 *3 (-632 (-391))))) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-779))))) +(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-793)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-416)) (-5 *2 (-793))))) +(((*1 *2 *3) + (-12 (-5 *3 (-791)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066)))) + (-5 *1 (-579)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-171 (-391))) (-5 *1 (-806 *3)) - (-4 *3 (-632 (-391))))) - ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-632 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + (-12 (-5 *3 (-791)) (-5 *4 (-1094)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))) (|:| |extra| (-1066)))) + (-5 *1 (-579)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-949)) (-4 *5 (-174)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-632 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + (-12 (-4 *1 (-809)) (-5 *3 (-1094)) + (-5 *4 + (-2 (|:| |fn| (-328 (-229))) + (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) + (|:| |extra| (-1066)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + (-12 (-4 *1 (-809)) (-5 *3 (-1094)) + (-5 *4 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)) + (|:| |extra| (-1066)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + (-12 (-4 *1 (-822)) (-5 *3 (-1094)) + (-5 *4 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) ((*1 *2 *3) - (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + (-12 (-5 *3 (-830)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))))) + (-5 *1 (-827)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + (-12 (-5 *3 (-830)) (-5 *4 (-1094)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))))) + (-5 *1 (-827)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + (-12 (-4 *1 (-861)) (-5 *3 (-1094)) + (-5 *4 + (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) + (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) + (-12 (-4 *1 (-861)) (-5 *3 (-1094)) + (-5 *4 + (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) + (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) + (|:| |ub| (-666 (-865 (-229)))))) + (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) ((*1 *2 *3) - (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) + (-12 (-5 *3 (-863)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))))) + (-5 *1 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-806 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-486))) ((*1 *1 *1 *1) (-4 *1 (-782)))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1006 *4 *5 *6 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) + (-12 (-5 *3 (-863)) (-5 *4 (-1094)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))))) + (-5 *1 (-862)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-922)) (-5 *3 (-1094)) + (-5 *4 + (-2 (|:| |pde| (-666 (-328 (-229)))) + (|:| |constraints| + (-666 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) + (|:| |grid| (-793)) (|:| |boundaryType| (-578)) + (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) + (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) + (|:| |tol| (-229)))) + (-5 *2 (-2 (|:| -4374 (-392)) (|:| |explanations| (-1189)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-925)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))))) + (-5 *1 (-924)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-925)) (-5 *4 (-1094)) + (-5 *2 + (-2 (|:| -4374 (-392)) (|:| -4107 (-1189)) + (|:| |explanations| (-666 (-1189))))) + (-5 *1 (-924))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-5 *1 (-922 *2 *4)) - (-4 *2 (-1273 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-778))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-772))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *2 (-665 *3)) (-5 *1 (-1007 *4 *5 *6 *3)) - (-4 *3 (-1095 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-665 (-630 *6))) (-5 *4 (-1206)) (-5 *2 (-630 *6)) - (-4 *6 (-443 *5)) (-4 *5 (-1130)) (-5 *1 (-586 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) - (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-570 *6 *3))))) -(((*1 *2 *3) - (-12 (-4 *2 (-375)) (-4 *2 (-869)) (-5 *1 (-973 *2 *3)) - (-4 *3 (-1273 *2))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-722))))) -(((*1 *2 *3) - (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316))))) -(((*1 *1 *1) - (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) - (-4 *4 (-276 *3)) (-4 *5 (-814))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) + (-12 (-5 *4 (-1123 (-865 *3))) (-4 *3 (-13 (-1233) (-988) (-29 *5))) + (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 - (-3 (-864 *3) - (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) - (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) - "failed")) - (-5 *1 (-654 *5 *3)))) + (-3 (|:| |f1| (-865 *3)) (|:| |f2| (-666 (-865 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-223 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1188)) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-864 *3)) (-5 *1 (-654 *6 *3)))) + (-12 (-5 *4 (-1123 (-865 *3))) (-5 *5 (-1189)) + (-4 *3 (-13 (-1233) (-988) (-29 *6))) + (-4 *6 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 + (-3 (|:| |f1| (-865 *3)) (|:| |f2| (-666 (-865 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-223 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-864 (-980 *5)))) (-4 *5 (-465)) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1123 (-865 (-328 *5)))) + (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 - (-3 (-864 (-420 (-980 *5))) - (-2 (|:| |leftHandLimit| (-3 (-864 (-420 (-980 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-864 (-420 (-980 *5))) "failed"))) - "failed")) - (-5 *1 (-655 *5)) (-5 *3 (-420 (-980 *5))))) + (-3 (|:| |f1| (-865 (-328 *5))) (|:| |f2| (-666 (-865 (-328 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-224 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-421 (-981 *6))) (-5 *4 (-1123 (-865 (-328 *6)))) + (-5 *5 (-1189)) + (-4 *6 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 + (-3 (|:| |f1| (-865 (-328 *6))) (|:| |f2| (-666 (-865 (-328 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-224 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) - (-4 *5 (-465)) + (-12 (-5 *4 (-1123 (-865 (-421 (-981 *5))))) (-5 *3 (-421 (-981 *5))) + (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) (-5 *2 - (-3 (-864 *3) - (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) - (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) - "failed")) - (-5 *1 (-655 *5)))) + (-3 (|:| |f1| (-865 (-328 *5))) (|:| |f2| (-666 (-865 (-328 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-224 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 (-420 (-980 *6)))) (-5 *5 (-1188)) - (-5 *3 (-420 (-980 *6))) (-4 *6 (-465)) (-5 *2 (-864 *3)) - (-5 *1 (-655 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) - (-5 *2 (-420 (-577)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) - (-4 *3 (-13 (-443 *4) (-1032)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + (-12 (-5 *4 (-1123 (-865 (-421 (-981 *6))))) (-5 *5 (-1189)) + (-5 *3 (-421 (-981 *6))) + (-4 *6 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 + (-3 (|:| |f1| (-865 (-328 *6))) (|:| |f2| (-666 (-865 (-328 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-224 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-3 *3 (-666 *3))) (-5 *1 (-442 *5 *3)) + (-4 *3 (-13 (-1233) (-988) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) + (-5 *5 (-392)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) + (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) + (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-1125 (-865 (-392)))) + (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) + (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) + (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) + (-5 *5 (-392)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-1125 (-865 (-392))))) + (-5 *5 (-392)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-328 (-392))) (-5 *4 (-1123 (-865 (-392)))) + (-5 *5 (-1189)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-328 (-392))) (-5 *4 (-1123 (-865 (-392)))) + (-5 *5 (-1207)) (-5 *2 (-1066)) (-5 *1 (-579)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) (-4 *5 (-1274 *4)) + (-5 *2 (-600 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-3 (-328 *5) (-666 (-328 *5)))) (-5 *1 (-603 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) - (-14 *4 *2)))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) + (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871)) + (-4 *3 (-38 (-421 (-578)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) - (-5 *2 - (-2 (|:| -2182 (-792)) (|:| -2671 *5) (|:| |radicand| (-665 *5)))) - (-5 *1 (-331 *5)) (-5 *4 (-792)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-577))))) + (-12 (-5 *2 (-1207)) (-5 *1 (-981 *3)) (-4 *3 (-38 (-421 (-578)))) + (-4 *3 (-1080)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-4 *2 (-871)) + (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-978 *3 (-545 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) + (-5 *1 (-1191 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *1 (-1242 *3)) (-4 *3 (-38 (-421 (-578)))) + (-4 *3 (-1080)))) + ((*1 *1 *1 *2) + (-2230 + (-12 (-5 *2 (-1207)) (-4 *1 (-1258 *3)) (-4 *3 (-1080)) + (-12 (-4 *3 (-29 (-578))) (-4 *3 (-988)) (-4 *3 (-1233)) + (-4 *3 (-38 (-421 (-578)))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-1258 *3)) (-4 *3 (-1080)) + (-12 (|has| *3 (-15 -2949 ((-666 *2) *3))) + (|has| *3 (-15 -4371 (*3 *3 *2))) (-4 *3 (-38 (-421 (-578)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1262 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578)))))) + ((*1 *1 *1 *2) + (-2230 + (-12 (-5 *2 (-1207)) (-4 *1 (-1279 *3)) (-4 *3 (-1080)) + (-12 (-4 *3 (-29 (-578))) (-4 *3 (-988)) (-4 *3 (-1233)) + (-4 *3 (-38 (-421 (-578)))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-1279 *3)) (-4 *3 (-1080)) + (-12 (|has| *3 (-15 -2949 ((-666 *2) *3))) + (|has| *3 (-15 -4371 (*3 *3 *2))) (-4 *3 (-38 (-421 (-578)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1279 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1283 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2230 + (-12 (-5 *2 (-1207)) (-4 *1 (-1289 *3)) (-4 *3 (-1080)) + (-12 (-4 *3 (-29 (-578))) (-4 *3 (-988)) (-4 *3 (-1233)) + (-4 *3 (-38 (-421 (-578)))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-1289 *3)) (-4 *3 (-1080)) + (-12 (|has| *3 (-15 -2949 ((-666 *2) *3))) + (|has| *3 (-15 -4371 (*3 *3 *2))) (-4 *3 (-38 (-421 (-578)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1289 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-578)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1290 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) + (-4 *2 (-245 *3 *4))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-578)) (-5 *1 (-248)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-666 (-1189))) (-5 *3 (-578)) (-5 *4 (-1189)) + (-5 *1 (-248)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -2852 (-665 *7)))) - (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-610))) (-5 *1 (-610))))) + (-12 (-5 *3 (-421 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-570)) + (-4 *4 (-1080)) (-4 *2 (-1289 *4)) (-5 *1 (-1292 *4 *5 *6 *2)) + (-4 *6 (-678 *5))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-871)) (-5 *3 (-666 *6)) (-5 *5 (-666 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-666 *5)) (|:| |f3| *5) + (|:| |f4| (-666 *5)))) + (-5 *1 (-1218 *6)) (-5 *4 (-666 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1068 (-577))) - (-4 *4 (-569)) (-5 *2 (-1202 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *2 (-172 (-392))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-392))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-950)) (-5 *2 (-172 (-392))) (-5 *1 (-807 *3)) + (-4 *3 (-633 (-392))))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-1079)) (-4 *1 (-313)) - (-5 *2 (-1202 *1))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -4100 (-665 (-1206))) (|:| -3413 (-665 (-1206))))) - (-5 *1 (-1249))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-665 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) - (-5 *2 (-665 (-2 (|:| -1528 *5) (|:| -3503 *3)))) - (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) - (-4 *7 (-677 (-420 *6)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-883)) (-5 *2 (-712 (-1255))) (-5 *3 (-1255))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -1827 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) - (-5 *3 (-420 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-587 *7 *8))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) + (-12 (-5 *3 (-172 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-392))) + (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-172 *5)) (-5 *4 (-950)) (-4 *5 (-175)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-981 (-172 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-392))) + (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-981 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-175)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-392))) + (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-4 *4 (-633 (-392))) + (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-421 (-981 (-172 *4)))) (-4 *4 (-570)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 (-172 *5)))) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-328 (-172 *4))) (-4 *4 (-570)) (-4 *4 (-871)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-328 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-871)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) + (-5 *1 (-807 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-868))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) - (-4 *3 (-13 (-1232) (-29 *5)))))) + (-12 (-5 *4 (-578)) (-5 *2 (-666 (-2 (|:| -2800 *3) (|:| -3683 *4)))) + (-5 *1 (-718 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1080)) (-5 *1 (-1270 *3 *2)) (-4 *2 (-1274 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1037))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1123 (-981 (-578)))) (-5 *3 (-981 (-578))) + (-5 *1 (-342)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1123 (-981 (-578)))) (-5 *1 (-342))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-666 (-578))) (-5 *3 (-666 (-950))) (-5 *4 (-112)) + (-5 *1 (-1141))))) (((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-864 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 (-577)))) (-5 *1 (-479))))) + (-12 (-5 *2 (-1298 (-1132 *3 *4))) (-5 *1 (-1132 *3 *4)) + (-14 *3 (-950)) (-14 *4 (-950))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-934 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-543))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-843))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-324)) (-5 *1 (-851))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) - (-5 *1 (-1190 *3))))) + (-12 (-5 *3 (-421 (-578))) + (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) + (-4 *4 (-277 *3)) (-4 *5 (-815))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(((*1 *2) + (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) + (-5 *2 (-666 (-666 *4))) (-5 *1 (-354 *3 *4 *5 *6)) + (-4 *3 (-355 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-666 (-666 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4501)) (-4 *4 (-376)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4)) (-5 *2 (-666 *6)) (-5 *1 (-535 *4 *5 *6 *3)) + (-4 *3 (-709 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4501)) (-4 *4 (-570)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4)) (-4 *7 (-1023 *4)) (-4 *8 (-386 *7)) + (-4 *9 (-386 *7)) (-5 *2 (-666 *6)) + (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-709 *4 *5 *6)) + (-4 *10 (-709 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-665 (-271))) (-5 *1 (-1299)))) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-4 *3 (-570)) (-5 *2 (-666 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4)) (-5 *2 (-666 *6)) (-5 *1 (-710 *4 *5 *6 *3)) + (-4 *3 (-709 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-570)) + (-5 *2 (-666 *7))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-1080)) + (-5 *1 (-1191 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-578)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-1080)) + (-14 *4 (-1207)) (-14 *5 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) + (-5 *1 (-179 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-776))))) +(((*1 *2 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1005))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2035 *3) (|:| |coef2| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) + (-5 *4 (-328 (-172 (-392)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) + (-5 *4 (-328 (-392))) (-5 *1 (-342)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) + (-5 *4 (-328 (-578))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1188)) (-5 *1 (-1299)))) - ((*1 *1 *1) (-5 *1 (-1299)))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-420 *6)) - (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) - (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) - (-5 *1 (-891 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-792)) (-5 *4 (-1289 *5 *6 *7)) (-4 *5 (-375)) - (-14 *6 (-1206)) (-14 *7 *5) (-5 *2 (-420 (-1270 *6 *5))) - (-5 *1 (-891 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) - (-4 *3 (-1130)) (-5 *2 (-792)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) - (-4 *4 (-1247)) (-5 *2 (-792))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1188)) (|:| -4105 (-1188)))) - (-5 *1 (-843))))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-172 (-392))))) + (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-392)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-578)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-172 (-392))))) + (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-392)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-578)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-172 (-392)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-392))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-578))) (-5 *1 (-342)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) + (-5 *4 (-328 (-716))) (-5 *1 (-342)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) + (-5 *4 (-328 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-981 (-578)))) + (-5 *4 (-328 (-723))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-716)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-721)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-328 (-723)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-716)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-721)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-328 (-723)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-716))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-723))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-716))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-723))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-716))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-721))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-328 (-723))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-342)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2) + (-12 (-5 *2 (-328 *3)) (-4 *3 (-13 (-1080) (-871))) + (-5 *1 (-227 *3 *4)) (-14 *4 (-666 (-1207)))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) + (-5 *2 (-1066)) (-5 *1 (-778))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-704 *4 *3)) (-4 *4 (-1130)) - (-4 *3 (-1130))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-443 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-630 *1))) (-4 *1 (-313))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3867 *7) (|:| |sol?| (-112))) - (-577) *7)) - (-5 *6 (-665 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1273 *7)) - (-5 *3 (-420 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-587 *7 *8))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *2) + (-12 (-5 *3 (-578)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *2 (-1303)) (-5 *1 (-463 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) +(((*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-5 *1 (-651)))) +(((*1 *2 *1) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-871)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-578)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-294 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *3 (-665 (-271))) (-5 *1 (-269)))) + (-2 + (|:| -3173 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (|:| -2754 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1188 (-229))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2246 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-573)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-793)) (-4 *1 (-717 *2)) (-4 *2 (-1131)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *1 (-271)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *2 (-1302)) (-5 *1 (-1299)))) - ((*1 *2 *1) + (-2 + (|:| -3173 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (|:| -2754 + (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) + (|:| |expense| (-392)) (|:| |accuracy| (-392)) + (|:| |intermediateResults| (-392)))))) + (-5 *1 (-825)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 *4)) (-4 *4 (-1080)) (-4 *2 (-1274 *4)) + (-5 *1 (-458 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-421 (-1203 (-328 *5)))) (-5 *3 (-1298 (-328 *5))) + (-5 *4 (-578)) (-4 *5 (-570)) (-5 *1 (-1161 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)) + (-4 *2 (-466)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-1274 (-578))) (-5 *2 (-666 (-578))) + (-5 *1 (-500 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)) (-4 *3 (-466))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) + (-4 *3 (-1131)) (-5 *2 (-793)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4500)) (-4 *1 (-503 *4)) + (-4 *4 (-1248)) (-5 *2 (-793))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *6 (-229)) + (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -1405 (-228)) - (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) - (-5 *1 (-1299)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813))))) -(((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1150))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-4 *5 (-375)) - (-4 *5 (-1079)) (-5 *2 (-112)) (-5 *1 (-1059 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) (-4 *4 (-1079)) - (-5 *2 (-112)) (-5 *1 (-1059 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-813))))) + (-666 + (-2 + (|:| -3173 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (|:| -2754 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1188 (-229))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2246 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-573)))) + ((*1 *2 *1) + (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1248)) + (-5 *2 (-666 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-1297 *4)) - (-5 *1 (-835 *4 *3)) (-4 *3 (-677 *4))))) + (-12 (-5 *3 (-1203 *9)) (-5 *4 (-666 *7)) (-5 *5 (-666 *8)) + (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *9 (-978 *8 *6 *7)) + (-4 *6 (-815)) (-5 *2 (-1203 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-843))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) + ((*1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-631 *1))) (-4 *1 (-314))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-793)) (-4 *6 (-1131)) (-4 *3 (-927 *6)) + (-5 *2 (-711 *3)) (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-386 *3)) + (-4 *4 (-13 (-386 *6) (-10 -7 (-6 -4500))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) - (-4 *2 (-1288 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) - (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) - (-4 *2 (-1288 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) - (-5 *2 (-1065)) (-5 *1 (-777))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-375)) (-5 *2 (-665 (-1187 *4))) (-5 *1 (-296 *4 *5)) - (-5 *3 (-1187 *4)) (-4 *5 (-1288 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1169)))) -(((*1 *1) (-4 *1 (-997)))) -(((*1 *2) - (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) - (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-977 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *2 (-937)) - (-5 *1 (-934 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-937)) (-5 *1 (-935 *2 *3)) (-4 *3 (-1273 *2))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1188)) - (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) + (-5 *1 (-179 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1248)) + (-4 *5 (-1248)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-247 *6 *7)) (-14 *6 (-793)) + (-4 *7 (-1248)) (-4 *5 (-1248)) (-5 *2 (-247 *6 *5)) + (-5 *1 (-246 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1248)) (-4 *5 (-1248)) + (-4 *2 (-386 *5)) (-5 *1 (-384 *6 *4 *5 *2)) (-4 *4 (-386 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1131)) (-4 *5 (-1131)) + (-4 *2 (-439 *5)) (-5 *1 (-437 *6 *4 *5 *2)) (-4 *4 (-439 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-666 *6)) (-4 *6 (-1248)) + (-4 *5 (-1248)) (-5 *2 (-666 *5)) (-5 *1 (-664 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-987 *6)) (-4 *6 (-1248)) + (-4 *5 (-1248)) (-5 *2 (-987 *5)) (-5 *1 (-986 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1188 *6)) (-4 *6 (-1248)) + (-4 *3 (-1248)) (-5 *2 (-1188 *3)) (-5 *1 (-1186 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1298 *6)) (-4 *6 (-1248)) + (-4 *5 (-1248)) (-5 *2 (-1298 *5)) (-5 *1 (-1297 *6 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-971 *4))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-599 *3) *3 (-1206))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1206))) - (-4 *3 (-295)) (-4 *3 (-647)) (-4 *3 (-1068 *4)) (-4 *3 (-443 *7)) - (-5 *4 (-1206)) (-4 *7 (-632 (-916 (-577)))) (-4 *7 (-465)) - (-4 *7 (-910 (-577))) (-4 *7 (-1130)) (-5 *2 (-599 *3)) - (-5 *1 (-586 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-773))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-726 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247))))) + (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1131)) + (-4 *2 (-871))))) +(((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1151))))) (((*1 *1 *1) - (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) - (-4 *3 (-1273 *4)) - (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *7)) (-4 *7 (-870)) - (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1297 (-420 *8)) "failed")) - (|:| -2225 (-665 (-1297 (-420 *8)))))) - (-5 *1 (-690 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-404))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-577)) (-4 *5 (-869)) (-4 *5 (-375)) - (-5 *2 (-792)) (-5 *1 (-973 *5 *6)) (-4 *6 (-1273 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-550))))) (((*1 *2 *1) - (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3))))) -(((*1 *1) (-5 *1 (-844)))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-949)) (-4 *3 (-375)) - (-14 *4 (-1023 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) - ((*1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) - ((*1 *1 *1) (|partial| -4 *1 (-743))) - ((*1 *1 *1) (|partial| -4 *1 (-747))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) - (-4 *2 (-1273 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) -(((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) - ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) - ((*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-1187 (-577)))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1232)))) - ((*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) - (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130)))) - ((*1 *2 *3) - (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1))))) + (-12 (-5 *2 (-666 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-600 *3)) (-4 *3 (-376))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-999 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-672 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) - (-5 *2 (-2 (|:| -2671 (-577)) (|:| |var| (-630 *1)))) - (-4 *1 (-443 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) - (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-665 *3)) (|:| |image| (-665 *3)))) - (-5 *1 (-933 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1242 *3)) - (-5 *1 (-811 *3)) (-4 *3 (-1004)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-112)) - (-5 *1 (-1242 *2)) (-4 *2 (-1004))))) -(((*1 *1 *1 *1) (-4 *1 (-997)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) - (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5)))) + (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) + (-5 *3 (-666 (-578))))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) - (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2225 (-665 *6))) - *7 *6)) - (-4 *6 (-375)) (-4 *7 (-677 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1297 *6) "failed")) - (|:| -2225 (-665 (-1297 *6))))) - (-5 *1 (-834 *6 *7)) (-5 *4 (-1297 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *1)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-710 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 *4)) (-4 *4 (-1079)) (-4 *1 (-1153 *3 *4 *5 *6)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) - (-4 *2 (-677 *4))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) - (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-1298)) - (-5 *1 (-1301)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) - (-5 *2 (-1298)) (-5 *1 (-1301))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-519)) (-4 *4 (-1130)) (-5 *1 (-957 *4 *2)) - (-4 *2 (-443 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) - (-5 *1 (-958))))) + (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) + (-5 *3 (-666 (-578)))))) (((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) - (-4 *3 (-1273 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1273 (-577))))) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) + ((*1 *2) + (-12 (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)) + (-5 *1 (-422 *3 *4 *5)) (-4 *3 (-423 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) + (-5 *2 (-711 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-578)) (-4 *5 (-362)) (-5 *2 (-432 (-1203 (-1203 *5)))) + (-5 *1 (-1246 *5)) (-5 *3 (-1203 (-1203 *5)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-666 (-1203 *13))) (-5 *3 (-1203 *13)) + (-5 *4 (-666 *12)) (-5 *5 (-666 *10)) (-5 *6 (-666 *13)) + (-5 *7 (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| *13))))) + (-5 *8 (-666 (-793))) (-5 *9 (-1298 (-666 (-1203 *10)))) + (-4 *12 (-871)) (-4 *10 (-319)) (-4 *13 (-978 *10 *11 *12)) + (-4 *11 (-815)) (-5 *1 (-729 *11 *12 *10 *13))))) +(((*1 *1) (-4 *1 (-998)))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) + (-5 *2 (-392)) (-5 *1 (-807 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1273 (-577))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) - (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1273 (-577))))) + (|partial| -12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) + (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) - (-4 *3 (-1273 (-420 (-577)))))) + (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) + (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1202 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) - (-4 *3 (-375))))) -(((*1 *2 *1) - (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) -(((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) -(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) - (-4 *3 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) - (-4 *3 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-458 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1130)) - (-4 *2 (-132))))) + (|partial| -12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) + (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-392)) + (-5 *1 (-807 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-431 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) -(((*1 *1) (-5 *1 (-623))) ((*1 *1) (-5 *1 (-624)))) -(((*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537))))) + (-12 (-5 *3 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) + (-5 *2 (-421 (-578))) (-5 *1 (-1051 *4)) (-4 *4 (-1274 (-578)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-1068 (-420 *2)))) (-5 *2 (-577)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-665 - (-665 - (-3 (|:| -4105 (-1206)) - (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577)))))))))) - (-5 *1 (-1210))))) -(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) - ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) - (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) - (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 *7))) - (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + (-12 (-4 *4 (-376)) (-4 *4 (-570)) (-4 *5 (-1274 *4)) + (-5 *2 (-2 (|:| -3495 (-642 *4 *5)) (|:| -4190 (-421 *5)))) + (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-465)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-431 *1)) (-4 *1 (-977 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-465)) (-5 *2 (-431 *3)) - (-5 *1 (-1009 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) - (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) - (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1276 *4 *3)) - (-4 *3 (-13 (-1273 *4) (-569) (-10 -8 (-15 -2420 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-14 *5 (-665 (-1206))) - (-5 *2 - (-665 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6))))) - (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206)))))) + (-12 (-5 *2 (-666 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) + (-14 *3 (-950)) (-4 *4 (-1080)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-466)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1274 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624))) + ((*1 *1) (-5 *1 (-625)))) +(((*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-933 *4)) + (-4 *4 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-727 *3 *4)) (-4 *3 (-1248)) (-4 *4 (-1248))))) +(((*1 *1) (-5 *1 (-1210)))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1248)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-618 *3 *2)) (-4 *3 (-1131)) + (-4 *2 (-1248))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) - (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 (-4 *4 (-1080)) (-4 *2 (-709 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1274 *4)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) +(((*1 *2 *3) + (-12 (-5 *3 (-600 *2)) (-4 *2 (-13 (-29 *4) (-1233))) + (-5 *1 (-597 *4 *2)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-600 (-421 (-981 *4)))) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-328 *4)) + (-5 *1 (-603 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1203 *2)) (-4 *2 (-444 *4)) (-4 *4 (-570)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-482)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *3 (-1096 *6 *7 *8)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1103 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) + (-5 *5 (-112)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) + (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) + (-5 *2 (-666 (-2 (|:| |val| *8) (|:| -4318 *9)))) + (-5 *1 (-1103 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-711 (-229))) (-5 *5 (-112)) (-5 *6 (-229)) + (-5 *7 (-711 (-578))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-775))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-665 (-577))) - (|:| |cols| (-665 (-577))))) - (-5 *4 (-710 *12)) (-5 *5 (-665 (-420 (-980 *9)))) - (-5 *6 (-665 (-665 *12))) (-5 *7 (-792)) (-5 *8 (-577)) - (-4 *9 (-13 (-318) (-148))) (-4 *12 (-977 *9 *11 *10)) - (-4 *10 (-13 (-870) (-632 (-1206)))) (-4 *11 (-814)) - (-5 *2 - (-2 (|:| |eqzro| (-665 *12)) (|:| |neqzro| (-665 *12)) - (|:| |wcond| (-665 (-980 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *9)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *9))))))))) - (-5 *1 (-952 *9 *10 *11 *12))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *8)) (-5 *4 (-792)) (-4 *8 (-977 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) - (-4 *7 (-814)) - (-5 *2 - (-665 - (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) - (|:| |cols| (-665 (-577)))))) - (-5 *1 (-952 *5 *6 *7 *8))))) + (-666 + (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 *2)) + (|:| |logand| (-1203 *2))))) + (-5 *4 (-666 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-376)) (-5 *1 (-600 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) - (-5 *2 (-1202 (-980 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1188 *3)) (-4 *3 (-1131)) + (-4 *3 (-1248))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) + (-5 *2 (-1066)) (-5 *1 (-770))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-578)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-673 *2)) (-4 *2 (-1248))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-666 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1241 *5 *6 *7 *8)) (-4 *5 (-570)) + (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-779))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1069 (-578))) (-4 *3 (-570)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-444 *3)))) ((*1 *2) - (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1670 (-710 (-420 (-980 *4)))) - (|:| |vec| (-665 (-420 (-980 *4)))) (|:| -1875 (-792)) - (|:| |rows| (-665 (-577))) (|:| |cols| (-665 (-577))))) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) + (-12 (-4 *4 (-175)) (-5 *2 (-1203 *4)) (-5 *1 (-167 *3 *4)) + (-4 *3 (-168 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1080)) (-4 *1 (-314)))) + ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) + ((*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1274 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) + (-4 *2 (-1274 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) + (-5 *2 (-666 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-981 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *2 (-666 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-570)) (-5 *2 (-666 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-4 *1 (-932 *3))))) +(((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1066)) (-5 *1 (-775))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) + ((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) + ((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956))))) +(((*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-874))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *2 (-1066)) (-5 *1 (-773))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-466))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-570)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-570)) (-4 *5 (-1080)) + (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) + (-4 *3 (-876 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-950)) (-4 *5 (-570)) (-5 *2 (-711 *5)) + (-5 *1 (-985 *5 *3)) (-4 *3 (-678 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-116)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-520)) (-4 *4 (-1131)) (-5 *1 (-958 *4 *2)) + (-4 *2 (-444 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-520)) (-5 *2 (-328 (-578))) + (-5 *1 (-959))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-4 *5 (-570)) (-5 *2 - (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *4))))))) - (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) - (-4 *5 (-1273 *4)) - (-5 *2 (-2 (|:| -1827 (-420 *5)) (|:| |coeff| (-420 *5)))) - (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) + (-2 (|:| |minor| (-666 (-950))) (|:| -3505 *3) + (|:| |minors| (-666 (-666 (-950)))) (|:| |ops| (-666 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-950)) (-4 *3 (-678 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-851))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) + (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1080)) + (-4 *2 (-1289 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *6 (-633 (-1207))) + (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *2 (-1196 (-666 (-981 *4)) (-666 (-306 (-981 *4))))) + (-5 *1 (-518 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1) (-5 *1 (-611)))) +(((*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-221))))) +(((*1 *2 *2) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) + (-5 *1 (-179 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1265 *3)) (-4 *3 (-1248))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1248)) + (-4 *5 (-386 *4)) (-4 *2 (-386 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *6 *7 *2)) (-4 *6 (-1080)) + (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-392)) (-5 *1 (-1094))))) +(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *5)) (-4 *5 (-175)) (-5 *1 (-138 *3 *4 *5)) + (-14 *3 (-578)) (-14 *4 (-793))))) +(((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) - (-4 *3 (-1247)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *3)) + (-4 *3 (-1248)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1248)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1240 *4 *5 *3 *2)) (-4 *4 (-569)) - (-4 *5 (-814)) (-4 *3 (-870)) (-4 *2 (-1095 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1241 *4 *5 *3 *2)) (-4 *4 (-570)) + (-4 *5 (-815)) (-4 *3 (-871)) (-4 *2 (-1096 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-5 *1 (-1244 *2)) (-4 *2 (-1247))))) -(((*1 *1) (-5 *1 (-624)))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) + (-12 (-5 *3 (-793)) (-5 *1 (-1245 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2035 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) + (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1008 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-2 (|:| -2800 *4) (|:| -3683 (-578))))) + (-4 *4 (-1274 (-578))) (-5 *2 (-759 (-793))) (-5 *1 (-456 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) - (-5 *1 (-541 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) + (-12 (-5 *3 (-432 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-1080)) + (-5 *2 (-759 (-793))) (-5 *1 (-458 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) + (-4 *3 (-319)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1008 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *2 (-1123 *3)) (-5 *1 (-1087 *2 *3)) (-4 *3 (-1247)))) + (-12 (-4 *2 (-1124 *3)) (-5 *1 (-1088 *2 *3)) (-4 *3 (-1248)))) ((*1 *2 *1) - (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-318)) - (-4 *5 (-1079)) (-5 *2 (-710 *5)) (-5 *1 (-1059 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) - (-5 *1 (-1035))))) + (-12 (-5 *2 (-1125 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1248)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2) (-12 (-5 *1 (-1265 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1041 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-774))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-599))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3))))) +(((*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) + ((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) + ((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1077))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) + (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7)) + (-4 *4 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248)) + (-4 *7 (-1248))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1080)) (-5 *2 (-112)) (-5 *1 (-458 *4 *3)) + (-4 *3 (-1274 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1188)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -4368 *5) (|:| -4017 *5)))) - (-5 *1 (-828 *4 *5 *3 *6)) (-4 *3 (-677 *5)) - (-4 *6 (-677 (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -4368 *4) (|:| -4017 *4)))) - (-5 *1 (-828 *5 *4 *3 *6)) (-4 *3 (-677 *4)) - (-4 *6 (-677 (-420 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *5 (-1273 *4)) (-5 *2 (-665 (-2 (|:| -4368 *5) (|:| -4017 *5)))) - (-5 *1 (-828 *4 *5 *6 *3)) (-4 *6 (-677 *5)) - (-4 *3 (-677 (-420 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *4 (-1273 *5)) (-5 *2 (-665 (-2 (|:| -4368 *4) (|:| -4017 *4)))) - (-5 *1 (-828 *5 *4 *6 *3)) (-4 *6 (-677 *4)) - (-4 *3 (-677 (-420 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1057 *5 *6 *7 *3))) (-5 *1 (-1057 *5 *6 *7 *3)) - (-4 *3 (-1095 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-665 *6)) (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1101 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1176 *5 *6 *7 *3))) (-5 *1 (-1176 *5 *6 *7 *3)) - (-4 *3 (-1095 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) - (-5 *1 (-481))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) +(((*1 *2 *3) (-12 (-5 *3 (-421 (-578))) (-5 *2 (-229)) (-5 *1 (-317))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) - (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) - (-5 *1 (-1099 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) - (-5 *4 (-792)) (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-1302)) - (-5 *1 (-1175 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) + (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) + (-5 *1 (-1100 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) + (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) + (-5 *1 (-1176 *5 *6 *7 *8 *9))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) - (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) - (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-318))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1079)) (-5 *2 (-710 *4)) - (-5 *1 (-1059 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2636 (-666 (-2 (|:| |irr| *10) (|:| -3935 (-578))))))) + (-5 *6 (-666 *3)) (-5 *7 (-666 *8)) (-4 *8 (-871)) (-4 *3 (-319)) + (-4 *10 (-978 *3 *9 *8)) (-4 *9 (-815)) + (-5 *2 + (-2 (|:| |polfac| (-666 *10)) (|:| |correct| *3) + (|:| |corrfact| (-666 (-1203 *3))))) + (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-666 (-1203 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-549))) (-5 *1 (-549))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 (-550))) (-5 *1 (-550))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-52)) (-5 *1 (-851))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *10)) - (-5 *1 (-642 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1101 *5 *6 *7 *8)) - (-4 *10 (-1139 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) - (-5 *1 (-646 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-665 (-1206))) - (-5 *2 - (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) - (-5 *1 (-646 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) - (-5 *1 (-1076 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1240 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-949)) - (-5 *2 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) - (-5 *1 (-358 *4)) (-4 *4 (-361))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) + (-12 (-5 *3 (-421 *6)) (-4 *5 (-1252)) (-4 *6 (-1274 *5)) + (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *3) (|:| |radicand| *6))) + (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-793)) (-4 *7 (-1274 *3))))) +(((*1 *2) + (-12 (-4 *3 (-570)) (-5 *2 (-666 (-711 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) + (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 (-666 *6))) (-4 *6 (-978 *3 *5 *4)) + (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) + (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1298 *5)) (-5 *3 (-793)) (-5 *4 (-1151)) (-4 *5 (-362)) + (-5 *1 (-542 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) + (-5 *2 (-1298 *6)) (-5 *1 (-349 *3 *4 *5 *6)) + (-4 *6 (-355 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *6 (-569)) (-5 *2 (-665 (-327 *6))) - (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1079)))) - ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) + (-12 (-5 *4 (-950)) (-4 *6 (-570)) (-5 *2 (-666 (-328 *6))) + (-5 *1 (-225 *5 *6)) (-5 *3 (-328 *6)) (-4 *5 (-1080)))) + ((*1 *2 *1) (-12 (-5 *1 (-432 *2)) (-4 *2 (-570)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1232))) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-665 *5)) - (-5 *1 (-596 *4 *5)))) + (-12 (-5 *3 (-600 *5)) (-4 *5 (-13 (-29 *4) (-1233))) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-666 *5)) + (-5 *1 (-597 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-599 (-420 (-980 *4)))) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-665 (-327 *4))) (-5 *1 (-602 *4)))) + (-12 (-5 *3 (-600 (-421 (-981 *4)))) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-666 (-328 *4))) (-5 *1 (-603 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-869)) (-4 *2 (-1179 *3)))) + (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1180 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *1)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) - (-4 *2 (-1179 *4)))) + (-12 (-5 *3 (-666 *1)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) + (-4 *2 (-1180 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232))))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233))))) ((*1 *2 *1) - (-12 (-5 *2 (-1312 (-1206) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1320 *3)) (-4 *3 (-1080)))) ((*1 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-1079))))) -(((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) + (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-1080))))) +(((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) - (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1241 *2 *3 *4 *5)) (-4 *2 (-570)) + (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) - (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-608 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1257 *3)) (-4 *3 (-1079)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1288 *3)) (-4 *3 (-1079))))) -(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1130))))) + (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-578)) (-5 *5 (-112)) (-5 *6 (-711 (-229))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-950)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-814)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-421 (-578))) (-4 *1 (-1279 *3)) (-4 *3 (-1080))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-578)))) + (-4 *2 (-175))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 (-171 (-577))))) (-5 *2 (-665 (-171 *4))) - (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-869))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) - (-5 *4 (-665 (-1206))) (-5 *2 (-665 (-665 (-171 *5)))) - (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-869)))))) + (-12 (-5 *3 (-505)) (-5 *4 (-983)) (-5 *2 (-713 (-547))) + (-5 *1 (-547)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-983)) (-4 *3 (-1131)) (-5 *2 (-713 *1)) + (-4 *1 (-789 *3))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207))))) (((*1 *2 *3) - (-12 (-4 *3 (-1273 (-420 (-577)))) - (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) - (-5 *1 (-941 *3 *4)) (-4 *4 (-1273 (-420 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) - (-4 *3 (-1273 (-420 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) - (-5 *1 (-779))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) - (-5 *2 (-420 (-980 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1257 *4)) (-4 *4 (-1079)) (-4 *4 (-569)) - (-5 *2 (-420 (-980 *4)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) + (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) + (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1116))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-376) (-149))) + (-5 *2 (-666 (-2 (|:| -2764 (-793)) (|:| -4369 *4) (|:| |num| *4)))) + (-5 *1 (-413 *3 *4)) (-4 *4 (-1274 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) (-4 *3 (-870)) - (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) - ((*1 *2 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) + (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1131)) (-4 *3 (-871)) + (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) + ((*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) ((*1 *2 *1) - (-12 (-4 *2 (-1247)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) + (-12 (-4 *2 (-1248)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) - ((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) + (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) + ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-577)) - (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) - (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25)))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-112)) + (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-983))))) +(((*1 *2 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-1203 *4)) (-5 *1 (-542 *4)) + (-4 *4 (-362))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1209 (-421 (-578)))) (-5 *2 (-421 (-578))) + (-5 *1 (-193))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-578)) (-4 *6 (-376)) (-4 *6 (-381)) + (-4 *6 (-1080)) (-5 *2 (-666 (-666 (-711 *6)))) (-5 *1 (-1060 *6)) + (-5 *3 (-666 (-711 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1080)) + (-5 *2 (-666 (-666 (-711 *4)))) (-5 *1 (-1060 *4)) + (-5 *3 (-666 (-711 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-577)) - (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) - (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1209))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-982))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) + (-12 (-5 *4 (-112)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) + (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-666 (-711 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-950)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) + (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-666 (-711 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-792) (-792))) (-4 *1 (-398 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) - (-4 *3 (-1130))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) + (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-666 (-711 (-328 (-578))))) (-5 *1 (-1062))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1131)) + (-4 *3 (-1248)) (-4 *3 (-1131)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-669 *5)) (-4 *5 (-1079)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-875 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1080)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-876 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-710 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + (-12 (-5 *2 (-711 *3)) (-4 *1 (-431 *3)) (-4 *3 (-175)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1079)) - (-5 *1 (-876 *2 *3)) (-4 *3 (-875 *2))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1080)) + (-5 *1 (-877 *2 *3)) (-4 *3 (-876 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1131)) (-4 *4 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-573))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *4 (-1273 *3)) - (-5 *2 - (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-710 *3)))) - (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-1273 *3)) - (-5 *2 - (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-710 *3)))) - (-5 *1 (-789 *4 *5)) (-4 *5 (-422 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) - (-5 *2 - (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-710 *3)))) - (-5 *1 (-1015 *4 *3 *5 *6)) (-4 *6 (-745 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) - (-5 *2 - (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-710 *3)))) - (-5 *1 (-1306 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-842))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -1827 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-375)) (-4 *7 (-1273 *6)) - (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) + (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) + (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1188 (-1188 *4))) (-5 *2 (-1188 *4)) (-5 *1 (-1191 *4)) + (-4 *4 (-38 (-421 (-578)))) (-4 *4 (-1080))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) + (-5 *2 (-432 (-1203 (-421 (-578))))) (-5 *1 (-449 *4 *5 *3)) + (-4 *3 (-1274 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1297 (-665 (-577)))) (-5 *1 (-493)))) + (-12 (-5 *3 (-793)) (-5 *2 (-1298 (-666 (-578)))) (-5 *1 (-494)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) -(((*1 *1) - (-12 (-4 *1 (-417)) (-2308 (|has| *1 (-6 -4490))) - (-2308 (|has| *1 (-6 -4482))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870)))) - ((*1 *1) (-4 *1 (-865))) ((*1 *1 *1 *1) (-4 *1 (-873))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-665 (-420 *6))) (-5 *3 (-420 *6)) - (-4 *6 (-1273 *5)) (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-581 *5 *6))))) -(((*1 *1 *1) (-5 *1 (-1093)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-666 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) + (-4 *3 (-570))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-385 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-569)) - (-5 *1 (-714 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1022 *2)) (-4 *2 (-569)) (-5 *1 (-1266 *2 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) + (-12 (-4 *4 (-815)) + (-4 *3 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *5 (-570)) + (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-978 (-421 (-981 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1080)) (-4 *5 (-815)) + (-4 *3 + (-13 (-871) + (-10 -8 (-15 -3343 ((-1207) $)) + (-15 -3967 ((-3 $ "failed") (-1207)))))) + (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-978 (-981 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-666 *6)) + (-4 *6 + (-13 (-871) + (-10 -8 (-15 -3343 ((-1207) $)) + (-15 -3967 ((-3 $ "failed") (-1207)))))) + (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) + (-4 *2 (-978 (-981 *4) *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) - (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *4 (-1206)) - (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311))))) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-463 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-421 (-578)))) + (-5 *2 (-2 (|:| -1478 (-1188 *4)) (|:| -1489 (-1188 *4)))) + (-5 *1 (-1193 *4)) (-5 *3 (-1188 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1289 *3))))) +(((*1 *1) (-5 *1 (-1116)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1187 *3))) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079))))) -(((*1 *1) (-5 *1 (-624)))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-593))))) +(((*1 *2 *1) + (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) + (-14 *6 + (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *2)) + (-2 (|:| -2087 *5) (|:| -2764 *2)))) + (-4 *2 (-245 (-3226 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-871)) (-4 *7 (-978 *4 *2 (-888 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-771))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-578)) (-4 *4 (-175)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4)) (-5 *1 (-710 *4 *5 *6 *2)) + (-4 *2 (-709 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1079)) - (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-977 *2 *4 *5))))) + (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1274 *4)) (-5 *2 (-1303)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1274 (-421 *5))) (-14 *7 *6)))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) + (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1210)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1210)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *4 (-1206)) - (-5 *1 (-1209)))) + (-12 (-5 *2 (-451)) (-5 *3 (-666 (-1207))) (-5 *4 (-1207)) + (-5 *1 (-1210)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1209)))) + (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1210)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-1206)) (-5 *1 (-1210)))) + (-12 (-5 *2 (-451)) (-5 *3 (-1207)) (-5 *1 (-1211)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-450)) (-5 *3 (-665 (-1206))) (-5 *1 (-1210))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (-4 *4 (-1079)) - (-5 *1 (-1058 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) (-4 *4 (-1079)) - (-5 *1 (-1058 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-109))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) - (-4 *2 (-1288 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) - (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) - (-4 *2 (-1288 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-569)) - (-5 *2 (-2 (|:| -1670 (-710 *5)) (|:| |vec| (-1297 (-665 (-949)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) -(((*1 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) - (-5 *1 (-946 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-4 *7 (-870)) - (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) (-4 *8 (-318)) - (-5 *2 (-665 (-792))) (-5 *1 (-763 *6 *7 *8 *9)) (-5 *5 (-792))))) -(((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-216 (-515))) (-5 *1 (-858))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-901 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-903 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-5 *1 (-906 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-465)) (-5 *2 (-112)) - (-5 *1 (-372 *4 *5)) (-14 *5 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-801 *4 (-887 *5)))) (-4 *4 (-465)) - (-14 *5 (-665 (-1206))) (-5 *2 (-112)) (-5 *1 (-646 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) + (-12 (-5 *2 (-451)) (-5 *3 (-666 (-1207))) (-5 *1 (-1211))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2421 *3))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) - (-5 *2 (-665 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-452))) (-5 *1 (-888))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-1302)) (-5 *1 (-852))))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2) - (-12 - (-5 *2 - (-1297 (-665 (-2 (|:| -4119 (-938 *3)) (|:| -2085 (-1150)))))) - (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) (-14 *4 (-949)))) - ((*1 *2) - (-12 (-5 *2 (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1202 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150)))))) - (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-949))))) -(((*1 *2 *3) (-12 (-5 *3 (-665 (-52))) (-5 *2 (-1302)) (-5 *1 (-886))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) - (-5 *1 (-613 *4 *2 *3)) - (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232)))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391))))) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1096 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-549)) (-5 *1 (-548 *4)) - (-4 *4 (-1247))))) + (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1091)) (-4 *3 (-1233)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-886)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-950)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-272))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) (((*1 *2 *3) + (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) + (-5 *2 + (-3 (|:| |overq| (-1203 (-421 (-578)))) + (|:| |overan| (-1203 (-48))) (|:| -3849 (-112)))) + (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1274 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-5 *2 (-112))))) +(((*1 *2 *3 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-4 *4 (-465)) - (-5 *2 (-665 (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4))))) - (-5 *1 (-303 *4))))) -(((*1 *2 *3) + (-5 *2 + (-666 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-815)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) + (-5 *1 (-463 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) + (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) + (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-711 *5))) (-5 *4 (-1298 *5)) (-4 *5 (-319)) + (-4 *5 (-1080)) (-5 *2 (-711 *5)) (-5 *1 (-1060 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 + (-2 (|:| |solns| (-666 *5)) + (|:| |maps| (-666 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1159 *3 *5)) (-4 *3 (-1274 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-116)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-116))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) + (-5 *2 + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-482)) (-5 *3 (-666 (-272))) (-5 *1 (-1299)))) + ((*1 *1 *1) (-5 *1 (-1299)))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-666 (-950))) (-5 *2 (-793)) (-5 *1 (-604))))) +(((*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1189)) (-5 *1 (-317))))) +(((*1 *2 *3) (-12 (-5 *3 (-666 (-52))) (-5 *2 (-1303)) (-5 *1 (-887))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-578))) (-5 *4 (-578)) (-5 *2 (-52)) + (-5 *1 (-1036))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1207)) (-5 *5 (-1125 (-229))) (-5 *2 (-956)) + (-5 *1 (-954 *3)) (-4 *3 (-633 (-550))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1207)) (-5 *5 (-1125 (-229))) (-5 *2 (-956)) + (-5 *1 (-954 *3)) (-4 *3 (-633 (-550))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-955)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-955)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-666 (-1 (-229) (-229)))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-666 (-1 (-229) (-229)))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956))))) +(((*1 *1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))))) - (-5 *2 (-1065)) (-5 *1 (-316)))) + (-666 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-578))))) + (-4 *2 (-570)) (-5 *1 (-432 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) - (-5 *2 (-1065)) (-5 *1 (-316))))) + (-2 (|:| |contp| (-578)) + (|:| -2636 (-666 (-2 (|:| |irr| *4) (|:| -3935 (-578))))))) + (-4 *4 (-1274 (-578))) (-5 *2 (-432 *4)) (-5 *1 (-456 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-226 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-4 *1 (-263 *3)))) + ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) + (-4 *4 (-362))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-539))))) +(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-392))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) + (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1298 (-3 (-482) "undefined"))) (-5 *1 (-1299))))) (((*1 *2 *3) - (-12 (-5 *3 (-710 (-420 (-980 (-577))))) - (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061))))) + (-12 (-5 *3 (-1133 *4)) (-4 *4 (-1131)) (-5 *2 (-1 *4)) + (-5 *1 (-1048 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-392))) (-5 *1 (-1071)) (-5 *3 (-392)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1125 (-578))) (-5 *2 (-1 (-578))) (-5 *1 (-1078))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-710 (-420 (-980 (-577))))) - (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-5 *1 (-1269 *4 *2)) - (-4 *2 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-881)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-993)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1019)))) - ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1203 (-981 *4)) (-981 *4))) + (-5 *1 (-1306 *4)) (-4 *4 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-882)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-994)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1020)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1248)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *2 *3)) - (-4 *3 (-13 (-1130) (-34)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) - (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-977 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-52)) (-5 *1 (-850))))) -(((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-221)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-697)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1049)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1096)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1126))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1150)) (-5 *2 (-112)) (-5 *1 (-842))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322)))) + (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1171 *2 *3)) + (-4 *3 (-13 (-1131) (-34)))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1078))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-163)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-222)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-698)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1097)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-1127))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *4 (-666 (-1207))) + (-5 *2 (-711 (-328 (-229)))) (-5 *1 (-208)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-4 *6 (-927 *5)) (-5 *2 (-711 *6)) + (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-386 *6)) + (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500))))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-570)) (-4 *3 (-175)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3198 (-666 *1)))) + (-4 *1 (-380 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-467 *3 *4 *5 *6)) + (|:| -3198 (-666 (-467 *3 *4 *5 *6))))) + (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-666 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) + (-5 *1 (-463 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-323)))) ((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4500)) (-4 *4 (-375)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-534 *4 *5 *6 *3)) - (-4 *3 (-708 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4500)) (-4 *4 (-569)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7)) - (-4 *9 (-385 *7)) (-5 *2 (-665 *6)) - (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) - (-4 *10 (-708 *7 *8 *9)))) + (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3232 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-421 (-981 *4))) (-5 *3 (-1207)) + (-4 *4 (-13 (-570) (-1069 (-578)) (-149))) (-5 *1 (-584 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1274 (-578))) (-5 *1 (-500 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-665 *5)))) + (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-452 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497)))) + ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-889)))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-994)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1106 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1146)))) + ((*1 *1 *1) (-5 *1 (-1207)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-943 *3)) (-4 *3 (-319))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-666 (-981 *4))))) + ((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-666 (-981 *4))) (-5 *1 (-430 *3 *4)) + (-4 *3 (-431 *4)))) + ((*1 *2) + (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-666 (-981 *3))))) + ((*1 *2) + (-12 (-5 *2 (-666 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-665 *6)) (-5 *1 (-709 *4 *5 *6 *3)) - (-4 *3 (-708 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) - (-5 *2 (-665 *7))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) - (-5 *2 (-1065)) (-5 *1 (-777))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) - (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-772))))) + (-12 (-5 *3 (-1298 (-467 *4 *5 *6 *7))) (-5 *2 (-666 (-981 *4))) + (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-570)) (-4 *4 (-175)) + (-14 *5 (-950)) (-14 *6 (-666 (-1207))) (-14 *7 (-1298 (-711 *4)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-4 *3 (-927 *5)) (-5 *2 (-1298 *3)) + (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-386 *3)) + (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500))))))) +(((*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-272)))) + ((*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-272))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-386 *2)) (-4 *2 (-1248)) + (-4 *2 (-871)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4501)) + (-4 *1 (-386 *3)) (-4 *3 (-1248))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) - (-5 *2 (-391)) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) - (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) + (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) - (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) + (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-312)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) - (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-870)) (-4 *5 (-632 *2)) (-5 *2 (-391)) - (-5 *1 (-806 *5))))) -(((*1 *1) (-5 *1 (-1209)))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-109)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-451 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-496)))) - ((*1 *2 *1) (-12 (-4 *1 (-856 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-993)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1105 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1145)))) - ((*1 *1 *1) (-5 *1 (-1206)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-317))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *2 (-1065)) (-5 *1 (-772))))) -(((*1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1679 (-665 (-2 (|:| |irr| *10) (|:| -2938 (-577))))))) - (-5 *6 (-665 *3)) (-5 *7 (-665 *8)) (-4 *8 (-870)) (-4 *3 (-318)) - (-4 *10 (-977 *3 *9 *8)) (-4 *9 (-814)) - (-5 *2 - (-2 (|:| |polfac| (-665 *10)) (|:| |correct| *3) - (|:| |corrfact| (-665 (-1202 *3))))) - (-5 *1 (-643 *8 *9 *3 *10)) (-5 *4 (-665 (-1202 *3)))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774))))) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) + (-5 *1 (-179 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-463 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1207)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-666 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1233) (-27) (-444 *8))) + (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-578)) + (-5 *2 (-666 *4)) (-5 *1 (-1045 *8 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-949)) (-5 *1 (-1060 *2)) - (-4 *2 (-13 (-1130) (-10 -8 (-15 -2471 ($ $ $)))))))) + (-12 (-5 *3 (-950)) (-5 *1 (-1061 *2)) + (-4 *2 (-13 (-1131) (-10 -8 (-15 -2472 ($ $ $)))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1068 (-577))) (-4 *4 (-569)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-443 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-135))) + (-12 (-5 *3 (-421 (-578))) (-4 *4 (-1069 (-578))) (-4 *4 (-570)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-444 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-136))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-228))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-577)))) + (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-229))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-578)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) - (-4 *5 (-1288 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1259 *4 *5)))) + (-12 (-5 *3 (-421 (-578))) (-4 *4 (-376)) (-4 *4 (-38 *3)) + (-4 *5 (-1289 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1260 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) - (-4 *5 (-1257 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1280 *4 *5)) - (-4 *6 (-1013 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-295))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-5 *1 (-391))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-421 (-578))) (-4 *4 (-376)) (-4 *4 (-38 *3)) + (-4 *5 (-1258 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1281 *4 *5)) + (-4 *6 (-1014 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-296))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-5 *1 (-392))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) - (-4 *3 (-1142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-486)) (-5 *2 (-577)))) + (-12 (-5 *2 (-793)) (-4 *1 (-444 *3)) (-4 *3 (-1131)) + (-4 *3 (-1143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-487)) (-5 *2 (-578)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) + (-12 (-5 *2 (-793)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-577)) (-4 *4 (-361)) - (-5 *1 (-541 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-549)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-549)))) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-578)) (-4 *4 (-362)) + (-5 *1 (-542 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-550)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-550)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *4 (-1130)) - (-5 *1 (-703 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *4 (-1131)) + (-5 *1 (-704 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-375)))) + (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) (-4 *3 (-376)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-793)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) - (-5 *1 (-711 *4)))) + (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) + (-5 *1 (-712 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *3 (-1079)) (-5 *1 (-735 *3 *4)) - (-4 *4 (-669 *3)))) + (-12 (-5 *2 (-578)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)) + (-4 *4 (-670 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1079)) - (-5 *1 (-735 *4 *5)) (-4 *5 (-669 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-747)) (-5 *2 (-792)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-857 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-116)) (-5 *3 (-578)) (-4 *4 (-1080)) + (-5 *1 (-736 *4 *5)) (-4 *5 (-670 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-950)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-793)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-858 *3)) (-4 *3 (-1080)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-857 *4)) (-4 *4 (-1079)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-420 (-577))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1142)) (-5 *2 (-949)))) + (-12 (-5 *2 (-116)) (-5 *3 (-578)) (-5 *1 (-858 *4)) (-4 *4 (-1080)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-421 (-578))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-950)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-1153 *3 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-375)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-578)) (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1130)) (-4 *4 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-705 *5 *4 *6))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) - (-4 *3 (-569))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1248 *2)) - (-4 *2 (-1130)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-870)) - (-5 *1 (-1248 *2))))) + (-12 (-4 *1 (-1289 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) + (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1008 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-666 *7)) (-5 *3 (-112)) (-4 *7 (-1096 *4 *5 *6)) + (-4 *4 (-466)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-1008 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-795)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-795)) (-5 *1 (-115))))) -(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1079))))) -(((*1 *2) - (-12 (-4 *1 (-361)) - (-5 *2 (-665 (-2 (|:| -2799 (-577)) (|:| -2182 (-577)))))))) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-570))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-121 *2)) (-4 *2 (-1248))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1189)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-1298 *5))) (-5 *4 (-578)) (-5 *2 (-1298 *5)) + (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1066)) (-5 *1 (-775))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-792)) (-4 *6 (-375)) (-5 *4 (-1241 *6)) - (-5 *2 (-1 (-1187 *4) (-1187 *4))) (-5 *1 (-1305 *6)) - (-5 *5 (-1187 *4))))) -(((*1 *1 *1) (-4 *1 (-1090))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813))))) -(((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) - (-5 *1 (-1190 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) - (-14 *4 (-1206)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-710 *4)) (-5 *3 (-792)) (-4 *4 (-1079)) - (-5 *1 (-711 *4))))) + (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-186 *3)) (-4 *3 (-188))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-1242 *3)) - (-4 *3 (-1004))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-4 *6 (-465)) - (-5 *2 (-665 (-665 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) - (-4 *5 (-13 (-375) (-869)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) - (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792)))))) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-1195 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1300)))) + ((*1 *2 *1) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1300))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080))))) +(((*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *1) (-5 *1 (-451)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *5 (-1274 *4)) (-5 *2 (-666 (-2 (|:| -4369 *5) (|:| -4018 *5)))) + (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-678 *5)) + (-4 *6 (-678 (-421 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *4 (-1274 *5)) (-5 *2 (-666 (-2 (|:| -4369 *4) (|:| -4018 *4)))) + (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-678 *4)) + (-4 *6 (-678 (-421 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *5 (-1274 *4)) (-5 *2 (-666 (-2 (|:| -4369 *5) (|:| -4018 *5)))) + (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-678 *5)) + (-4 *3 (-678 (-421 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *4 (-1274 *5)) (-5 *2 (-666 (-2 (|:| -4369 *4) (|:| -4018 *4)))) + (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-678 *4)) + (-4 *3 (-678 (-421 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) + (-5 *2 + (-666 + (-2 (|:| |eqzro| (-666 *7)) (|:| |neqzro| (-666 *7)) + (|:| |wcond| (-666 (-981 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *4)))))))))) + (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-228))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1641 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1065)) (-5 *1 (-316))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *2 (-1095 *4 *5 *6)) (-5 *1 (-797 *4 *5 *6 *2 *3)) - (-4 *3 (-1101 *4 *5 *6 *2))))) + (-12 (-4 *4 (-362)) (-5 *2 (-112)) (-5 *1 (-220 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1298 (-578))) (-5 *3 (-578)) (-5 *1 (-1141)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1298 (-578))) (-5 *3 (-666 (-578))) (-5 *4 (-578)) + (-5 *1 (-1141))))) +(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624))) + ((*1 *1) (-5 *1 (-625)))) +(((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1002))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-312)))) + ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-317))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))) +(((*1 *1) (-5 *1 (-303)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (|has| *1 (-6 -4491)) (-4 *1 (-418)))) + ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1080)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-666 (-229)))) (-5 *1 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) + (-4 *3 (-1096 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-666 *6)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1177 *5 *6 *7 *3))) (-5 *1 (-1177 *5 *6 *7 *3)) + (-4 *3 (-1096 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-2 (|:| |k| (-694 *3)) (|:| |c| *4)))) + (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950))))) +(((*1 *2 *1) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-950)))) + ((*1 *2 *3) + (-12 (-5 *3 (-349 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) + (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-4 *7 (-355 *4 *5 *6)) + (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-855 (-950))))) + ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-578)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1) + (-12 (-4 *3 (-570)) (-5 *2 (-578)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-1274 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) + (-4 *3 (-871)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871)) + (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-349 *5 *6 *7 *8)) (-4 *5 (-444 *4)) + (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) + (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-570) (-1069 (-578)))) + (-5 *2 (-793)) (-5 *1 (-940 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-349 (-421 (-578)) *4 *5 *6)) + (-4 *4 (-1274 (-421 (-578)))) (-4 *5 (-1274 (-421 *4))) + (-4 *6 (-355 (-421 (-578)) *4 *5)) (-5 *2 (-793)) + (-5 *1 (-941 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-349 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) + (-4 *7 (-1274 *6)) (-4 *4 (-1274 (-421 *7))) (-4 *8 (-355 *6 *7 *4)) + (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793)) + (-5 *1 (-1049 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1080)) (-4 *3 (-570)) + (-5 *2 (-793)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-666 (-981 *3))) (-4 *3 (-466)) + (-5 *1 (-373 *3 *4)) (-14 *4 (-666 (-1207))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-666 (-802 *3 (-888 *4)))) (-4 *3 (-466)) + (-14 *4 (-666 (-1207))) (-5 *1 (-647 *3 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-630 *5))) (-4 *4 (-1130)) (-5 *2 (-630 *5)) - (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-710 (-577))) (-5 *5 (-112)) (-5 *7 (-710 (-228))) - (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-775))))) -(((*1 *2 *3) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-793)) (-4 *4 (-362)) + (-5 *1 (-542 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) - (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1202 *1)) - (-4 *1 (-340 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) - (-4 *2 (-1273 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) - (-5 *1 (-541 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) - (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-977 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) + (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) + (-5 *2 (-112)) (-5 *1 (-463 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1248)) (-5 *2 (-578))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1130)) (-4 *2 (-926 *4)) (-5 *1 (-713 *4 *2 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4499))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-665 (-1206))) - (-5 *2 (-665 (-665 (-391)))) (-5 *1 (-1053)) (-5 *5 (-391)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) - (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-980 *4))) - (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) - (-15 -2528 ((-1155 *3 (-630 $)) $)) - (-15 -2410 ($ (-1155 *3 (-630 $)))))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-712 (-291)))) (-5 *1 (-169))))) -(((*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1247)) (-5 *2 (-577))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *2 (-1242 (-954))) - (-5 *1 (-329)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1124 (-228))) (-5 *6 (-577)) (-5 *7 (-1188)) - (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) - (-5 *2 (-1242 (-954))) (-5 *1 (-329)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1124 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1188)) - (-5 *2 (-1242 (-954))) (-5 *1 (-329))))) + (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *3 (-666 (-898))) + (-5 *1 (-482))))) +(((*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) + ((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-950)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793))))) (((*1 *1 *2) - (-12 (-5 *2 (-1202 *3)) (-4 *3 (-1079)) (-4 *1 (-1273 *3))))) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1080)) (-5 *1 (-734 *3 *4)) + (-4 *4 (-1274 *3))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1301))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-869))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1679 (-431 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-318)) - (-5 *2 (-792)) (-5 *1 (-468 *5 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) - (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *1)))) - (-4 *1 (-1101 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-712 *3)) (-5 *1 (-994 *3)) (-4 *3 (-1130))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-954)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-954)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-971 (-228)) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3)))))) + (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-808))))) (((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-4 *1 (-788 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) - (-5 *1 (-1140))))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-590)))) - ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) - (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) - (-14 *6 (-1206)) (-14 *7 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) - (-4 *2 (-174))))) -(((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1065)) (-5 *1 (-769))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *1) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885))))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-899)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-899)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1188)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-519)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-605)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-491)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1196)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-644)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1126)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1120)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1103)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1000)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1066)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-322)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-692)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1181)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-538)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1308)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1096)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-530)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-702)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1145)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-1307)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-697)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-221)))) - ((*1 *2 *1) (-12 (-4 *1 (-1167)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-792))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) - (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) - (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) - (-5 *1 (-718))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-361)) (-4 *6 (-1273 *5)) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) + (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-978 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1203 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *6 *4 *5)) + (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-319))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 - (-665 - (-2 (|:| -2225 (-710 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-710 *6))))) - (-5 *1 (-511 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2225 (-710 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-710 *6)))) - (-4 *7 (-1273 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-971 (-228)))) (-5 *1 (-1298))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *3 (-1095 *6 *7 *8)) + (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) + (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))) + (-5 *4 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) + (-12 (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) + (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))) (-5 *4 (-421 (-578))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *3 (-1095 *6 *7 *8)) + (-12 (-5 *5 (-421 (-578))) + (-5 *2 (-666 (-2 (|:| -3855 *5) (|:| -3868 *5)))) (-5 *1 (-1051 *3)) + (-4 *3 (-1274 (-578))) (-5 *4 (-2 (|:| -3855 *5) (|:| -3868 *5))))) + ((*1 *2 *3) + (-12 (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) + (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) + (-5 *1 (-1052 *3)) (-4 *3 (-1274 (-421 (-578)))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) + (-12 + (-5 *2 + (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) + (-5 *1 (-1052 *3)) (-4 *3 (-1274 (-421 (-578)))) + (-5 *4 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-421 (-578))) + (-5 *2 (-666 (-2 (|:| -3855 *4) (|:| -3868 *4)))) (-5 *1 (-1052 *3)) + (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-421 (-578))) + (-5 *2 (-666 (-2 (|:| -3855 *5) (|:| -3868 *5)))) (-5 *1 (-1052 *3)) + (-4 *3 (-1274 *5)) (-5 *4 (-2 (|:| -3855 *5) (|:| -3868 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-711 *2)) (-4 *4 (-1274 *2)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-423 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) + (-4 *5 (-245 *3 *2)) (-4 *2 (-1080))))) +(((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1071))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-570)) (-4 *3 (-175)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) + (-4 *2 (-709 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) + (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4)) + (|:| |genIdeal| (-518 *4 *5 *6 *7)))) + (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-666 *7)) (-5 *3 (-578)) (-4 *7 (-978 *4 *5 *6)) + (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-463 *4 *5 *6 *7))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 (-1298 *4))) (-4 *4 (-1080)) (-5 *2 (-711 *4)) + (-5 *1 (-1060 *4))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -4424 (-116)) (|:| |arg| (-666 (-917 *3))))) + (-5 *1 (-917 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-116)) (-5 *2 (-666 (-917 *4))) + (-5 *1 (-917 *4)) (-4 *4 (-1131))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-773))))) + (-12 (-5 *2 (-1203 *6)) (-5 *3 (-578)) (-4 *6 (-319)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-886))))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-900)))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-900)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-578)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-520)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-606)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-492)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1197)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-645)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1121)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1104)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1001)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1067)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-323)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-693)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-539)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1309)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1097)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-531)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-703)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1146)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-135)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-619)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-140)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1308)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-698)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-222)))) + ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1212))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) + (-5 *2 (-666 (-666 (-972 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-666 (-666 (-972 *4)))) (-5 *3 (-112)) (-4 *4 (-1080)) + (-4 *1 (-1165 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 (-666 (-972 *3)))) (-4 *3 (-1080)) + (-4 *1 (-1165 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-666 (-666 (-666 *4)))) (-5 *3 (-112)) + (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-666 (-666 (-972 *4)))) (-5 *3 (-112)) + (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-666 (-666 (-666 *5)))) (-5 *3 (-666 (-174))) + (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-666 (-666 (-972 *5)))) (-5 *3 (-666 (-174))) + (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080))))) +(((*1 *2 *1) + (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1248)) + (-5 *2 (-666 *3))))) +(((*1 *1) (-5 *1 (-845)))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-133)))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-1268 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) - (-5 *2 (-1065)) (-5 *1 (-775))))) -(((*1 *1 *1) (-4 *1 (-1090)))) + (-12 (-4 *4 (-570)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1211))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) + (-5 *2 (-666 (-2 (|:| -1625 *1) (|:| -2259 (-666 *7))))) + (-5 *3 (-666 *7)) (-4 *1 (-1241 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1133 *3)) (-5 *1 (-934 *3)) (-4 *3 (-381)) + (-4 *3 (-1131))))) +(((*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-559))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *8)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) + (-4 *7 (-815)) + (-5 *2 + (-666 + (-2 (|:| -1875 (-793)) + (|:| |eqns| + (-666 + (-2 (|:| |det| *8) (|:| |rows| (-666 (-578))) + (|:| |cols| (-666 (-578)))))) + (|:| |fgb| (-666 *8))))) + (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-793))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-578)))) + (-4 *4 (-13 (-1274 *3) (-570) (-10 -8 (-15 -2421 ($ $ $))))) + (-4 *3 (-570)) (-5 *1 (-1277 *3 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-1019)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1020)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-4 *4 (-1247)) (-5 *1 (-1087 *3 *4)) - (-4 *3 (-1123 *4)))) + (-12 (-5 *2 (-1207)) (-4 *4 (-1248)) (-5 *1 (-1088 *3 *4)) + (-4 *3 (-1124 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1124 *4)) (-4 *4 (-1247)) - (-5 *1 (-1122 *4))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-761 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-870)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *1 (-1010 *3)) (-4 *3 (-1079)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) - (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-665 (-1206))) (-4 *2 (-174)) - (-4 *3 (-244 (-3224 *4) (-792))) - (-14 *6 - (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *3)) - (-2 (|:| -2085 *5) (|:| -2182 *3)))) - (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-870)) - (-4 *7 (-977 *2 *3 (-887 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) - (-4 *4 (-569)) (-5 *2 (-1297 *4)) (-5 *1 (-657 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-710 (-420 (-980 (-577))))) - (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061)) - (-5 *3 (-327 (-577)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *3 (-1273 *4)) (-5 *1 (-830 *4 *3 *2 *5)) (-4 *2 (-677 *3)) - (-4 *5 (-677 (-420 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-420 *5)) - (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-1273 *4)) - (-5 *1 (-830 *4 *5 *2 *6)) (-4 *2 (-677 *5)) (-4 *6 (-677 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-710 (-420 (-980 (-577))))) (-5 *2 (-665 (-327 (-577)))) - (-5 *1 (-1061))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-665 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) - (-4 *8 (-870)) (-5 *1 (-1007 *6 *7 *8 *9))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) - (-4 *2 (-1273 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-1132 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-665 *4))) (-5 *1 (-932 *4)) - (-5 *3 (-665 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1130)) (-5 *2 (-1132 (-1132 *4))) (-5 *1 (-932 *4)) - (-5 *3 (-1132 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1132 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) - (-4 *8 (-870)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2852 (-665 *9)))) - (-5 *3 (-665 *9)) (-4 *1 (-1240 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2852 (-665 *8)))) - (-5 *3 (-665 *8)) (-4 *1 (-1240 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1240 *5 *6 *7 *3)) - (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042))))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1125 *4)) (-4 *4 (-1248)) + (-5 *1 (-1123 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-950)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 + (-12 (-4 *1 (-822)) (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-577)) (-5 *1 (-206))))) + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 (-1066))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-711 (-421 (-578)))) + (-5 *2 + (-666 + (-2 (|:| |outval| *4) (|:| |outmult| (-578)) + (|:| |outvect| (-666 (-711 *4)))))) + (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-578)) (-5 *2 (-112)) (-5 *1 (-567))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1131)) (-5 *1 (-993 *2 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-666 (-1247))) (-5 *3 (-1247)) (-5 *1 (-703))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-569)) + (-12 (-5 *4 (-793)) (-4 *5 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) + (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1080)) (-4 *6 (-978 *5 *4 *2)) + (-4 *2 (-871)) (-5 *1 (-979 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *6)) (-15 -2519 (*6 $)) + (-15 -2530 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) + (-5 *2 (-1207)) (-5 *1 (-1074 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-950)) (-5 *4 (-229)) (-5 *5 (-578)) (-5 *6 (-898)) + (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033)))))) +(((*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) + ((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-376)) (-5 *1 (-923 *2 *3)) + (-4 *2 (-1274 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-665 - (-2 (|:| -1875 (-792)) - (|:| |eqns| - (-665 - (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) - (|:| |cols| (-665 (-577)))))) - (|:| |fgb| (-665 *7))))) - (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) - (-5 *1 (-952 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3760 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) + (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-432 (-1203 *7))) + (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-938)) (-4 *5 (-1274 *4)) (-5 *2 (-432 (-1203 *5))) + (-5 *1 (-936 *4 *5)) (-5 *3 (-1203 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 *10)) + (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1102 *5 *6 *7 *8)) + (-4 *10 (-1140 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) + (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1077 *5 *6))) + (-5 *1 (-647 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) + (-14 *6 (-666 (-1207))) + (-5 *2 + (-666 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) + (-5 *1 (-647 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) + (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1077 *5 *6))) + (-5 *1 (-1077 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1241 *4 *5 *6 *7))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1206)) - (|:| |arrayIndex| (-665 (-980 (-577)))) + (-2 (|:| |var| (-1207)) + (|:| |arrayIndex| (-666 (-981 (-578)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1206)) (|:| |rand| (-885)) + (-2 (|:| |var| (-1207)) (|:| |rand| (-886)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1205)) (|:| |thenClause| (-341)) - (|:| |elseClause| (-341)))) + (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342)) + (|:| |elseClause| (-342)))) (|:| |returnBranch| - (-2 (|:| -2392 (-112)) - (|:| -4119 - (-2 (|:| |ints2Floats?| (-112)) (|:| -3921 (-885)))))) - (|:| |blockBranch| (-665 (-341))) - (|:| |commentBranch| (-665 (-1188))) (|:| |callBranch| (-1188)) + (-2 (|:| -4186 (-112)) + (|:| -4120 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3922 (-886)))))) + (|:| |blockBranch| (-666 (-342))) + (|:| |commentBranch| (-666 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| - (-2 (|:| -1641 (-1122 (-980 (-577)))) - (|:| |span| (-980 (-577))) (|:| -4115 (-341)))) - (|:| |labelBranch| (-1150)) - (|:| |loopBranch| (-2 (|:| |switch| (-1205)) (|:| -4115 (-341)))) + (-2 (|:| -2246 (-1123 (-981 (-578)))) + (|:| |span| (-981 (-578))) (|:| -4117 (-342)))) + (|:| |labelBranch| (-1151)) + (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4117 (-342)))) (|:| |commonBranch| - (-2 (|:| -4105 (-1206)) (|:| |contents| (-665 (-1206))))) - (|:| |printBranch| (-665 (-885))))) - (-5 *1 (-341))))) + (-2 (|:| -4107 (-1207)) (|:| |contents| (-666 (-1207))))) + (|:| |printBranch| (-666 (-886))))) + (-5 *1 (-342))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-778))))) +(((*1 *2 *1) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) + (-5 *2 (-1203 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) - (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-949)) (-5 *1 (-455 *2)) - (-4 *2 (-1273 (-577))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-792)) (-5 *1 (-455 *2)) - (-4 *2 (-1273 (-577))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *1 (-455 *2)) - (-4 *2 (-1273 (-577))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) - (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-949)) (-5 *4 (-665 (-792))) (-5 *5 (-792)) - (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1273 (-577))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-431 *2)) (-4 *2 (-1273 *5)) - (-5 *1 (-457 *5 *2)) (-4 *5 (-1079))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-792)) (-5 *1 (-229)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-228))) (-5 *3 (-792)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508))))) + (-12 (-5 *4 (-578)) (-4 *2 (-444 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1069 *4)) (-4 *3 (-570))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) - (-4 *3 (-1273 *2))))) + (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) + (-4 *3 (-1131))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1207)) (-5 *5 (-1125 (-229))) (-5 *2 (-956)) + (-5 *1 (-954 *3)) (-4 *3 (-633 (-550))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-5 *2 (-956)) (-5 *1 (-954 *3)) + (-4 *3 (-633 (-550))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-956)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1130)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-705 *4 *5 *6))))) + (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) + ((*1 *1 *1) (|partial| -4 *1 (-744)))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2))))) (((*1 *2 *2) (-12 (-5 *2 - (-517 (-420 (-577)) (-246 *4 (-792)) (-887 *3) - (-254 *3 (-420 (-577))))) - (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-518 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))) - (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-287 *4 *2))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-710 (-420 (-980 (-577))))) - (-5 *2 - (-665 - (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) - (|:| |radvect| (-665 (-710 (-327 (-577)))))))) - (-5 *1 (-1061))))) + (-518 (-421 (-578)) (-247 *4 (-793)) (-888 *3) + (-255 *3 (-421 (-578))))) + (-14 *3 (-666 (-1207))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-272)))) + ((*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-272))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-318)) - (-5 *2 (-112)) (-5 *1 (-468 *3 *5))))) -(((*1 *2 *3) - (-12 (-14 *4 (-665 (-1206))) (-4 *5 (-465)) + (-12 (-4 *2 (-1274 *4)) (-5 *1 (-829 *4 *2 *3 *5)) + (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-678 *2)) + (-4 *5 (-678 (-421 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1274 *4)) (-5 *1 (-829 *4 *2 *5 *3)) + (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *5 (-678 *2)) + (-4 *3 (-678 (-421 *2)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-432 (-1203 *6)) (-1203 *6))) + (-4 *6 (-376)) (-5 *2 - (-2 (|:| |glbase| (-665 (-254 *4 *5))) (|:| |glval| (-665 (-577))))) - (-5 *1 (-649 *4 *5)) (-5 *3 (-665 (-254 *4 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1096))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-558))) - ((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) + (-666 + (-2 (|:| |outval| *7) (|:| |outmult| (-578)) + (|:| |outvect| (-666 (-711 *7)))))) + (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-870)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-950)) (-5 *2 (-1203 *3)) (-5 *1 (-1222 *3)) + (-4 *3 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-1097))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-116))) + ((*1 *1 *1) (-5 *1 (-174))) ((*1 *1 *1) (-4 *1 (-559))) + ((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) ((*1 *1 *1) - (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-806 *3)) (-4 *3 (-632 *2)))) + (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1248)) + (-4 *5 (-386 *4)) (-4 *2 (-386 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *6 *2 *7)) (-4 *6 (-1080)) + (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-666 *6)) + (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 (-112) (-666 *1))) + (-4 *1 (-1102 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-2 (|:| -4120 *4) (|:| -2452 (-578))))) + (-4 *4 (-1131)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-1151)) (-5 *2 (-112)) (-5 *1 (-843))))) +(((*1 *2 *3) (-12 (-5 *2 (-392)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-391)) (-5 *1 (-806 *3)) - (-4 *3 (-632 *2)))) + (-12 (-5 *4 (-950)) (-5 *2 (-392)) (-5 *1 (-807 *3)) + (-4 *3 (-633 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) (-4 *4 (-632 *2)) - (-5 *2 (-391)) (-5 *1 (-806 *4)))) + (-12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) + (-5 *2 (-392)) (-5 *1 (-807 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) - (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) + (-12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) + (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-4 *4 (-632 *2)) - (-5 *2 (-391)) (-5 *1 (-806 *4)))) + (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-4 *4 (-633 *2)) + (-5 *2 (-392)) (-5 *1 (-807 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5)))) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) - (-4 *4 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *4)))) + (-12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) + (-4 *4 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) (-4 *5 (-870)) - (-4 *5 (-632 *2)) (-5 *2 (-391)) (-5 *1 (-806 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) + (-12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) (-4 *5 (-871)) + (-4 *5 (-633 *2)) (-5 *2 (-392)) (-5 *1 (-807 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-814)) - (-4 *5 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *6 (-569)) - (-5 *2 (-2 (|:| -1658 (-980 *6)) (|:| -1994 (-980 *6)))) - (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-977 (-420 (-980 *6)) *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-465))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-630 *3)) - (-4 *3 (-13 (-443 *5) (-27) (-1232))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) - (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-792)) - (-4 *5 (-13 (-465) (-1068 (-577)))) (-4 *5 (-569)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *5 (-630 $)) $)) - (-15 -2528 ((-1155 *5 (-630 $)) $)) - (-15 -2410 ($ (-1155 *5 (-630 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) - (-4 *4 (-1273 *3))))) + (|partial| -12 (-5 *3 (-950)) + (-5 *2 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) + (-5 *1 (-359 *4)) (-4 *4 (-362))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) - (-5 *1 (-343))))) -(((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) + (-12 (-5 *3 (-711 (-172 (-421 (-578))))) + (-5 *2 + (-666 + (-2 (|:| |outval| (-172 *4)) (|:| |outmult| (-578)) + (|:| |outvect| (-666 (-711 (-172 *4))))))) + (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-570))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-666 (-116)))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-887 *3)) (-14 *3 (-665 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1019)))) + (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-888 *3)) (-14 *3 (-666 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1020)))) ((*1 *2 *1) - (-12 (-4 *4 (-1247)) (-5 *2 (-1206)) (-5 *1 (-1087 *3 *4)) - (-4 *3 (-1123 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1122 *3)) (-4 *3 (-1247)))) + (-12 (-4 *4 (-1248)) (-5 *2 (-1207)) (-5 *1 (-1088 *3 *4)) + (-4 *3 (-1124 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1123 *3)) (-4 *3 (-1248)))) ((*1 *2 *1) - (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-5 *2 (-1206)))) - ((*1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(((*1 *2 *3) - (-12 (-5 *2 (-665 (-1202 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-665 (-305 *4))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-842)) (-5 *4 (-52)) (-5 *2 (-1302)) (-5 *1 (-852))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) - (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-217 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-217 *3)) (-14 *3 (-665 (-1206))) (-5 *1 (-656 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3))))) -(((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) - (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) - (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-630 *4)) (-5 *6 (-1202 *4)) - (-4 *4 (-13 (-443 *7) (-27) (-1232))) - (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-630 *4)) (-5 *6 (-420 (-1202 *4))) - (-4 *4 (-13 (-443 *7) (-27) (-1232))) - (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-379 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-5 *2 (-1207)))) + ((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-666 *1)) (|has| *1 (-6 -4501)) (-4 *1 (-1041 *3)) + (-4 *3 (-1248))))) (((*1 *2 *3) - (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) - (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) + (-12 (-5 *2 (-578)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-711 *7)) (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *6 *5)) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) + (-5 *2 (-2 (|:| |num| (-1298 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) + (-5 *2 (-112)) (-5 *1 (-1018 *3 *4 *5 *6)) + (-4 *6 (-978 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) +(((*1 *1) (-5 *1 (-845)))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247))))) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *2 *3) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-575)) (-5 *3 (-578)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1203 (-421 (-578)))) (-5 *1 (-971)) (-5 *3 (-578))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) + (-4 *4 (-362))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-251 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-665 (-792)))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-569)) - (-4 *7 (-977 *3 *5 *6)) - (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *8) (|:| |radicand| *8))) - (-5 *1 (-981 *5 *6 *3 *7 *8)) (-5 *4 (-792)) - (-4 *8 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-122 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1079)) (-5 *1 (-735 *4 *2)) - (-4 *2 (-669 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-857 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) + (-12 (-5 *2 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *3)))) + (-5 *1 (-609 *3)) (-4 *3 (-1080))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1189)) (-5 *4 (-172 (-229))) (-5 *5 (-578)) + (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-666 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) + (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) + ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-430 *3 *2)) (-4 *3 (-431 *2)))) + ((*1 *2) (-12 (-4 *1 (-431 *2)) (-4 *2 (-175))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-844)))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) - (-5 *2 (-1065)) (-5 *1 (-769))))) -(((*1 *1 *1) (-4 *1 (-647))) + (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) + (-5 *1 (-344))))) +(((*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-229)) (-5 *1 (-317))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1) (-4 *1 (-648))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) - (-5 *1 (-412 *3 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2))))) + (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033) (-1233)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-463 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *5)) (-4 *5 (-444 *4)) (-4 *4 (-570)) + (-5 *2 (-886)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-665 (-391))) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-481)))) + (-12 (-5 *2 (-666 (-392))) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-392))) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-392))) (-5 *1 (-482)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + (-12 (-5 *3 (-950)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1299)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) - (-4 *3 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *4 *5 *6)) - (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) - (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) -(((*1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-894 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-14 *2 (-577)))) + (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-578))) (-4 *3 (-1080)) (-5 *1 (-609 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-895 *3 *4)) - (-4 *4 (-892 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-577)) (-5 *1 (-895 *2 *3)) (-4 *3 (-892 *2)))) + (-12 (-5 *2 (-1 *3 (-578))) (-4 *1 (-1258 *3)) (-4 *3 (-1080)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1288 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1259 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1288 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) -(((*1 *2 *2) (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1253)))))) + (-12 (-5 *2 (-1 *3 (-578))) (-4 *1 (-1289 *3)) (-4 *3 (-1080))))) +(((*1 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1301))))) +(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) + ((*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 (-793))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) + (-4 *3 (-871)) (-5 *2 (-793))))) (((*1 *2 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079)))) - ((*1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) (-5 *6 (-1202 *3)) - (-4 *3 (-13 (-443 *7) (-27) (-1232))) - (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) - (-5 *6 (-420 (-1202 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1232))) - (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1130))))) + (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-444 (-172 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) + (-4 *4 (-1274 *3))))) +(((*1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2) (-12 (-5 *1 (-1265 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-578)) (-5 *1 (-1230 *3)) (-4 *3 (-1080))))) +(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-844))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) +(((*1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-381)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *5 (-1189)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1066)) + (-5 *1 (-772))))) +(((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1071))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) (-4 *5 (-1274 *4)) + (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1046 *4 *5)) (-5 *3 (-421 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *2)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *2)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) (((*1 *2 *1) - (-12 (-4 *2 (-1247)) (-5 *1 (-896 *3 *2)) (-4 *3 (-1247)))) - ((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-914 *4 *3)) - (-4 *3 (-1247)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) + (-12 (-4 *2 (-1248)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1248)))) + ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-578)) (|has| *1 (-6 -4501)) (-4 *1 (-1286 *3)) + (-4 *3 (-1248))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) - (-5 *2 (-1 *5)) (-5 *1 (-704 *4 *5))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-747) (-25)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1249))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *1 *1) (-4 *1 (-569)))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-448)) + (-5 *2 + (-666 + (-3 (|:| -4107 (-1207)) + (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578))))))))) + (-5 *1 (-1211))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-578)) (-5 *1 (-459 *2)) (-4 *2 (-1080))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-665 (-1 *6 (-665 *6)))) - (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1288 *5)) (-5 *2 (-665 *6)) - (-5 *1 (-1290 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1) (-5 *1 (-610)))) + (-12 (-5 *3 (-421 (-981 (-172 (-578))))) (-5 *2 (-666 (-172 *4))) + (-5 *1 (-391 *4)) (-4 *4 (-13 (-376) (-870))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 (-421 (-981 (-172 (-578)))))) + (-5 *4 (-666 (-1207))) (-5 *2 (-666 (-666 (-172 *5)))) + (-5 *1 (-391 *5)) (-4 *5 (-13 (-376) (-870)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1005))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) + (-5 *2 (-1066)) (-5 *1 (-768))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-577)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-119 *4)) (-14 *4 *3) + (-5 *3 (-578)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-894 *4)) (-14 *4 *3) - (-5 *3 (-577)))) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-895 *4)) (-14 *4 *3) + (-5 *3 (-578)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-895 *4 *5)) - (-5 *3 (-577)) (-4 *5 (-892 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-420 (-577))))) + (-12 (-14 *4 *3) (-5 *2 (-421 (-578))) (-5 *1 (-896 *4 *5)) + (-5 *3 (-578)) (-4 *5 (-893 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-421 (-578))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) - (-4 *3 (-1273 *2)))) + (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) + (-4 *3 (-1274 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1275 *2 *3)) (-4 *3 (-813)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2410 (*2 (-1206)))) - (-4 *2 (-1079))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) - (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-5 *3 (-710 (-327 (-228)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) - (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-1229 *4)) - (-4 *4 (-1079))))) -(((*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2411 (*2 (-1207)))) + (-4 *2 (-1080))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) + (-5 *2 (-2 (|:| -2547 (-711 *4)) (|:| |vec| (-1298 *4)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) + (-5 *2 (-711 *4))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-376)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 (-421 *3))) + (-4 *1 (-348 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-578)) (-4 *2 (-376)) (-4 *4 (-1274 *2)) + (-4 *5 (-1274 (-421 *4))) (-4 *1 (-348 *2 *4 *5 *6)) + (-4 *6 (-355 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-376)) (-4 *3 (-1274 *2)) (-4 *4 (-1274 (-421 *3))) + (-4 *1 (-348 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) + (-4 *1 (-348 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) + (-4 *1 (-348 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) + (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) + (-5 *1 (-810))))) +(((*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1131)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1233 *3)))) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-1234 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-665 (-1233 *2))) (-5 *1 (-1233 *2)) (-4 *2 (-1130))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-842))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-782)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-665 (-1297 *4))) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) - (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) - (-5 *2 (-665 (-1297 *3)))))) + (-12 (-5 *3 (-666 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) + (-4 *3 (-670 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) + (-4 *3 (-670 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) + ((*1 *1 *1) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1080))))) (((*1 *2 *3) - (-12 (-5 *3 (-1132 *4)) (-4 *4 (-1130)) (-5 *2 (-1 *4)) - (-5 *1 (-1047 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391)))) + (-12 (-4 *3 (-1274 (-421 (-578)))) + (-5 *2 (-2 (|:| |den| (-578)) (|:| |gcdnum| (-578)))) + (-5 *1 (-942 *3 *4)) (-4 *4 (-1274 (-421 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) + (-12 (-4 *4 (-1274 (-421 *2))) (-5 *2 (-578)) (-5 *1 (-942 *4 *3)) + (-4 *3 (-1274 (-421 *4)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-578)) (-4 *4 (-13 (-570) (-149))) (-5 *1 (-551 *4 *2)) + (-4 *2 (-1289 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-578)) (-4 *4 (-13 (-376) (-381) (-633 *3))) + (-4 *5 (-1274 *4)) (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2)) + (-4 *2 (-1289 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-578)) (-4 *4 (-13 (-376) (-381) (-633 *3))) + (-5 *1 (-556 *4 *2)) (-4 *2 (-1289 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-13 (-570) (-149))) + (-5 *1 (-1184 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-577)) (-5 *1 (-1140)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1297 (-577))) (-5 *3 (-665 (-577))) (-5 *4 (-577)) - (-5 *1 (-1140))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-954))))) -(((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) - (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) - (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-949)))) - ((*1 *2 *3) - (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) - (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) - (-5 *2 (-792)) (-5 *1 (-405 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-854 (-949))))) - ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) - (-4 *4 (-1273 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) - (-4 *3 (-870)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-761 *4 *3)) (-4 *4 (-1079)) (-4 *3 (-870)) - (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) - (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) - (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) - (-5 *2 (-792)) (-5 *1 (-939 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) - (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) - (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-792)) - (-5 *1 (-940 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) - (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) - (-4 *9 (-13 (-380) (-375))) (-5 *2 (-792)) - (-5 *1 (-1048 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-4 *3 (-569)) - (-5 *2 (-792)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1079)) (-5 *1 (-733 *3 *4)) - (-4 *4 (-1273 *3))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392)))) + (-5 *1 (-208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-1080)) (-5 *2 (-1298 *4)) + (-5 *1 (-1208 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-950)) (-5 *2 (-1298 *3)) (-5 *1 (-1208 *3)) + (-4 *3 (-1080))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1141)) (-5 *3 (-578))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) - (-4 *2 (-708 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) - (-5 *2 (-665 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-792)))) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-434 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-444 *3))) + (-14 *4 (-1207)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-4 *2 (-13 (-27) (-1233) (-444 *3) (-10 -8 (-15 -2411 ($ *4))))) + (-4 *4 (-870)) + (-4 *5 + (-13 (-1276 *2 *4) (-376) (-1233) + (-10 -8 (-15 -2031 ($ $)) (-15 -4371 ($ $))))) + (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1014 *5)) + (-14 *7 (-1207))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 (-392)) (-5 *1 (-208))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-14 *5 (-666 (-1207))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *4)) (|:| -1453 (-666 (-981 *4)))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) + (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-666 (-981 *5))) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) + (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-666 (-981 *5))) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) + (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-666 (-981 *5))) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *4)) (|:| -1453 (-666 (-981 *4)))))) + (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-666 (-981 *4))) + (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1092 (-1055 *4) (-1203 (-1055 *4)))) (-5 *3 (-886)) + (-5 *1 (-1055 *4)) (-4 *4 (-13 (-870) (-376) (-1053)))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-666 + (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) + (|:| |wcond| (-666 (-981 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) + (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-978 *5 *7 *6)) + (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-578)) + (-5 *1 (-953 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-172 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) + (-5 *1 (-780))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-186 (-141)))) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) - (-4 *3 (-1130)))) + (-12 (-5 *2 (-578)) (-4 *1 (-386 *3)) (-4 *3 (-1248)) + (-4 *3 (-1131)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) - (-5 *2 (-577)))) + (-12 (-4 *1 (-386 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) + (-5 *2 (-578)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) - (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-1150)) (-5 *1 (-542)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-577))))) -(((*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-386 *4)) (-4 *4 (-1248)) + (-5 *2 (-578)))) + ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-578)) (-5 *3 (-143)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-578))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-772))))) (((*1 *2 *1) - (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) - (-4 *3 (-1130))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) (((*1 *2 *1) - (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-665 *6)) - (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1229 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-375)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-420 *3))) - (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1273 *2)) - (-4 *5 (-1273 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) - (-4 *6 (-354 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-375)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-420 *3))) - (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) - (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) - (-4 *1 (-347 *3 *4 *5 *6))))) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) - (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-711 *4)))) ((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) - (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) + (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-430 *3 *4)) + (-4 *3 (-431 *4)))) + ((*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-796))) (-5 *1 (-116))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-1258 *4)) (-4 *4 (-1080)) (-4 *4 (-570)) + (-5 *2 (-421 (-981 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-1258 *4)) (-4 *4 (-1080)) (-4 *4 (-570)) + (-5 *2 (-421 (-981 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-578)) (-5 *1 (-718 *2)) (-4 *2 (-1274 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) +(((*1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1069 (-578))) (-4 *1 (-314)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) - (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) - (-5 *1 (-410)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-665 (-665 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-665 (-3 (|:| |array| (-665 *3)) (|:| |scalar| (-1206))))) - (-5 *6 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1134)) - (-5 *1 (-410)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-665 (-1206))) (-5 *5 (-1209)) (-5 *3 (-1206)) - (-5 *2 (-1134)) (-5 *1 (-410))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) + (-12 (-5 *2 (-1188 (-578))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) + (-5 *3 (-578))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2035 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-578)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1248)) + (-4 *3 (-386 *4)) (-4 *5 (-386 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) - (-4 *3 (-1273 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-5 *2 (-577)) - (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1273 *5)) - (-4 *6 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) - (-4 *3 (-1273 *4)) - (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) - (-5 *1 (-1018 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) - (-5 *1 (-1137 *3 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-635)))) + (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) + (-4 *3 (-1274 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175))))) +(((*1 *1) (-5 *1 (-636)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) - ((*1 *1 *1) (-4 *1 (-295))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) + ((*1 *1 *1) (-4 *1 (-296))) ((*1 *2 *3) - (-12 (-5 *3 (-431 *4)) (-4 *4 (-569)) - (-5 *2 (-665 (-2 (|:| -2671 (-792)) (|:| |logand| *4)))) - (-5 *1 (-331 *4)))) + (-12 (-5 *3 (-432 *4)) (-4 *4 (-570)) + (-5 *2 (-666 (-2 (|:| -2672 (-793)) (|:| |logand| *4)))) + (-5 *1 (-332 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) ((*1 *2 *1) - (-12 (-5 *2 (-685 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) - (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) + (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-578))))) + (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1319 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) - (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) - (-5 *2 (-665 (-1206))) (-5 *1 (-1106 *3 *4 *5)) - (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) - (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) - (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1068 (-577)))) - (-5 *2 (-2 (|:| -3890 (-792)) (|:| -2264 *8))) - (-5 *1 (-939 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) - (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) - (-4 *6 (-354 (-420 (-577)) *4 *5)) - (-5 *2 (-2 (|:| -3890 (-792)) (|:| -2264 *6))) - (-5 *1 (-940 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) - (-4 *2 (-1130))))) + (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) + (-4 *4 (-739 (-421 (-578)))) (-4 *3 (-871)) (-4 *4 (-175))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1211))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) + (-5 *2 (-112)) (-5 *1 (-1171 *5 *6))))) +(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-625)))) +(((*1 *2) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) + (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) + (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-328 *4)) (-4 *4 (-13 (-850) (-1080))) (-5 *2 (-1189)) + (-5 *1 (-848 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-328 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-1080))) + (-5 *2 (-1189)) (-5 *1 (-848 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-844)) (-5 *4 (-328 *5)) (-4 *5 (-13 (-850) (-1080))) + (-5 *2 (-1303)) (-5 *1 (-848 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-844)) (-5 *4 (-328 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-850) (-1080))) (-5 *2 (-1303)) (-5 *1 (-848 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-1189)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-850)) (-5 *3 (-112)) (-5 *2 (-1189)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-850)) (-5 *3 (-844)) (-5 *2 (-1303)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-850)) (-5 *3 (-844)) (-5 *4 (-112)) (-5 *2 (-1303))))) +(((*1 *2 *2) (-12 (-5 *2 (-666 (-328 (-229)))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1282 *4 *5 *6)) - (|:| |%expon| (-330 *4 *5 *6)) - (|:| |%expTerms| - (-665 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) - (|:| |%type| (-1188)))) - (-5 *1 (-1283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) - (-14 *5 (-1206)) (-14 *6 *4)))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-542)))) - ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-519)) (-5 *3 (-665 (-899))) (-5 *1 (-496))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) + (-12 (-5 *2 (-972 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) - (-4 *3 (-1273 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1065)) - (-5 *1 (-767))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 *4)))) - (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-670 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-1055 *3 *2)) (-4 *2 (-677 *3)))) + (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) + (-4 *3 (-1274 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-578)) + (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) + (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -3503 *3) (|:| -4422 (-665 *5)))) - (-5 *1 (-1055 *5 *3)) (-5 *4 (-665 *5)) (-4 *3 (-677 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) - (-14 *4 (-665 (-1206))))) - ((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-463 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) - (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-463 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) - (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-463 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) - (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4))))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-578)) + (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) + (-5 *1 (-1263 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-914 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *2 (-631 *4)) (-5 *1 (-630 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *3 (-666 (-578))) + (-5 *1 (-908))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1233) (-988) (-29 *4)))))) (((*1 *1) - (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) - (-4 *4 (-687 *3)))) - ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *1) (-5 *1 (-623))) ((*1 *1) (-5 *1 (-624)))) + (-12 (-4 *3 (-1131)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1131)) + (-4 *4 (-688 *3)))) + ((*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) - ((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) - (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) + (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1258 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-306 (-328 *5)))) + (-5 *1 (-1160 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1160 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-306 (-421 (-981 *5)))) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-306 (-328 *5)))) + (-5 *1 (-1160 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-306 (-421 (-981 *4)))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1160 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *5))))) + (-5 *1 (-1160 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-421 (-981 *4)))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-666 (-666 (-306 (-328 *4))))) (-5 *1 (-1160 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-306 (-421 (-981 *5))))) (-5 *4 (-666 (-1207))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *5))))) + (-5 *1 (-1160 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-306 (-421 (-981 *4))))) + (-4 *4 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-306 (-328 *4))))) + (-5 *1 (-1160 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) + ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080))))) +(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) ((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)))) - ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)))) + ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-4 *2 (-926 *5)) (-5 *1 (-713 *5 *2 *3 *4)) - (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-519)) (-5 *3 (-665 (-1211))) (-5 *1 (-1211))))) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-950)) (-4 *5 (-871)) + (-5 *2 (-59 (-666 (-694 *5)))) (-5 *1 (-694 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-5 *2 (-666 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) + (-5 *2 (-666 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1188 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-748)))) + ((*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-666 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1289 *3)) (-4 *3 (-1080)) (-5 *2 (-1188 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-792)) (-5 *4 (-1297 *2)) (-4 *5 (-318)) - (-4 *6 (-1022 *5)) (-4 *2 (-13 (-422 *6 *7) (-1068 *6))) - (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1273 *6))))) + (-12 (-5 *3 (-1203 *5)) (-4 *5 (-376)) (-5 *2 (-666 *6)) + (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870)))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) + (-2 (|:| |pde| (-666 (-328 (-229)))) + (|:| |constraints| + (-666 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) + (|:| |grid| (-793)) (|:| |boundaryType| (-578)) + (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) + (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) + (|:| |tol| (-229)))) + (-5 *2 (-112)) (-5 *1 (-213))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) + (-4 *3 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *2 (-112)) (-5 *1 (-952 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-112)) - (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5))))) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-870)) (-4 *4 (-376)) (-5 *2 (-793)) + (-5 *1 (-974 *4 *5)) (-4 *5 (-1274 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-986 (-1150))) - (-5 *1 (-358 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-665 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-443 *4) (-1032))) (-4 *4 (-569)) - (-5 *1 (-286 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1202 *7)) (-4 *5 (-1079)) - (-4 *7 (-1079)) (-4 *2 (-1273 *5)) (-5 *1 (-514 *5 *2 *6 *7)) - (-4 *6 (-1273 *2)))) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-602 *4)) + (-4 *4 (-362))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-981 (-578)))) (-5 *1 (-451)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1079)) (-4 *7 (-1079)) - (-4 *4 (-1273 *5)) (-5 *2 (-1202 *7)) (-5 *1 (-514 *5 *4 *6 *7)) - (-4 *6 (-1273 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-194))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) - (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) + (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-229))) (-5 *2 (-1135)) + (-5 *1 (-781)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-578))) (-5 *2 (-1135)) + (-5 *1 (-781))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-666 (-666 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-666 (-3 (|:| |array| (-666 *3)) (|:| |scalar| (-1207))))) + (-5 *6 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1135)) + (-5 *1 (-411)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-666 (-666 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-666 (-3 (|:| |array| (-666 *3)) (|:| |scalar| (-1207))))) + (-5 *6 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1135)) + (-5 *1 (-411)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-666 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207)) + (-5 *2 (-1135)) (-5 *1 (-411))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) (((*1 *2 *1) - (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-622)))) + (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-570)) (-4 *3 (-1131))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1114 *3)) (-4 *3 (-133))))) + (-12 (-4 *2 (-362)) (-4 *2 (-1080)) (-5 *1 (-734 *2 *3)) + (-4 *3 (-1274 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) + (-14 *4 (-793)) (-4 *5 (-175))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-482)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-774))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) + (-12 (-5 *3 (-666 (-666 (-666 *4)))) (-5 *2 (-666 (-666 *4))) + (-4 *4 (-871)) (-5 *1 (-1218 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-5 *2 (-578)) + (-5 *1 (-457 *5 *3 *6)) (-4 *3 (-1274 *5)) + (-4 *6 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-457 *4 *3 *5)) + (-4 *3 (-1274 *4)) + (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539)))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1182))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-578)) (-5 *1 (-392))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 (-2 (|:| -4424 (-116)) (|:| |w| (-229)))) (-5 *1 (-207))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1115 *3)) (-4 *3 (-134))))) (((*1 *2 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1273 (-577))) (-5 *1 (-499 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-768))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-987 *3)) (-5 *1 (-1194 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-631 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) + (-4 *2 (-13 (-444 *5) (-27) (-1233))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1131))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) + (-5 *1 (-1191 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-172 *5)) (-4 *5 (-13 (-444 *4) (-1033) (-1233))) + (-4 *4 (-570)) (-4 *2 (-13 (-444 (-172 *4)) (-1033) (-1233))) + (-5 *1 (-614 *4 *5 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) + (-5 *1 (-1019 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) + (-5 *1 (-1138 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2) (-12 (-5 *2 (-666 (-793))) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-666 (-793))) (-5 *1 (-1301))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) - (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869))))) + (-12 (-5 *3 (-675 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-832 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-980 *5)) (-4 *5 (-465)) (-5 *2 (-665 *6)) - (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-792)) (-4 *4 (-13 (-569) (-148))) - (-5 *1 (-1267 *4 *2)) (-4 *2 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) - (-5 *2 (-1299)) (-5 *1 (-265))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34)))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-778))))) + (-12 (-5 *3 (-675 (-421 *6))) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 (-2 (|:| -3198 (-666 (-421 *6))) (|:| -2547 (-711 *5)))) + (-5 *1 (-832 *5 *6)) (-5 *4 (-666 (-421 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-676 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-832 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-676 *6 (-421 *6))) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 (-2 (|:| -3198 (-666 (-421 *6))) (|:| -2547 (-711 *5)))) + (-5 *1 (-832 *5 *6)) (-5 *4 (-666 (-421 *6)))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-342))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *1) - (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-112)))) + (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) + (-5 *2 (-421 (-578))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-867))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-665 (-577))) (-5 *3 (-665 (-949))) (-5 *4 (-112)) - (-5 *1 (-1140))))) -(((*1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3760 *3) (|:| |coef2| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-870)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-870)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3171 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (|:| -2753 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-228))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1641 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-572)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-716 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3171 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (|:| -2753 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))))) - (-5 *1 (-824)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *3 (-926 *6)) - (-5 *2 (-710 *3)) (-5 *1 (-713 *6 *3 *7 *4)) (-4 *7 (-385 *3)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499))))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) - (-5 *3 (-665 (-577))))) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-432 *3)) (-4 *3 (-559)) + (-4 *3 (-570)))) + ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-578))))) + ((*1 *2 *1) + (-12 (-4 *1 (-819 *3)) (-4 *3 (-175)) (-4 *3 (-559)) + (-5 *2 (-421 (-578))))) + ((*1 *2 *1) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-855 *3)) (-4 *3 (-559)) + (-4 *3 (-1131)))) + ((*1 *2 *1) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-865 *3)) (-4 *3 (-559)) + (-4 *3 (-1131)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-559)) + (-5 *2 (-421 (-578))))) ((*1 *2 *3) - (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) - (-5 *3 (-665 (-577)))))) -(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-623))) - ((*1 *1) (-5 *1 (-624)))) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1065)) (-5 *1 (-774))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-773))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1079)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) - (-4 *3 (-1273 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *2 *3) - (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) - (-5 *2 (-254 *4 *5)) (-5 *1 (-972 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) - (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) - (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079))))) + (-12 (-4 *3 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + ((*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-392)) (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-769))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1248)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) + (-5 *2 (-666 (-1207))) (-5 *1 (-1107 *3 *4 *5)) + (-4 *5 (-13 (-444 *4) (-911 *3) (-633 (-917 *3))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3868 *6) (|:| |sol?| (-112))) (-578) + *6)) + (-4 *6 (-376)) (-4 *7 (-1274 *6)) + (-5 *2 (-2 (|:| |answer| (-600 (-421 *7))) (|:| |a0| *6))) + (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) + (-5 *1 (-344))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-5 *3 (-1207)) + (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *1 (-1210))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-578) (-578))) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-793) (-793))) (-4 *1 (-399 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1093)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-665 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-814)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) - (-5 *1 (-462 *4 *5 *6 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-481)) (-5 *3 (-665 (-271))) (-5 *1 (-1298)))) - ((*1 *1 *1) (-5 *1 (-1298)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) + (-666 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-815)) (-4 *6 (-978 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-871)) + (-5 *1 (-463 *4 *3 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-665 (-173))))))) -(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-885) (-885) (-885))) (-5 *4 (-577)) (-5 *2 (-885)) - (-5 *1 (-670 *5 *6 *7)) (-4 *5 (-1130)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-885)) (-5 *1 (-877 *3 *4 *5)) (-4 *3 (-1079)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-885)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-885)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-885)) (-5 *1 (-1202 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1232) (-29 *6))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-227 *6 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) - (-5 *2 (-1065)) (-5 *1 (-861))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-773))))) + (-12 (-4 *1 (-568 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) + (-4 *3 (-1274 *4)) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-349 *5 *6 *7 *8)) (-4 *5 (-444 *4)) + (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) + (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-570) (-1069 (-578)))) + (-5 *2 (-2 (|:| -4059 (-793)) (|:| -2265 *8))) + (-5 *1 (-940 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-349 (-421 (-578)) *4 *5 *6)) + (-4 *4 (-1274 (-421 (-578)))) (-4 *5 (-1274 (-421 *4))) + (-4 *6 (-355 (-421 (-578)) *4 *5)) + (-5 *2 (-2 (|:| -4059 (-793)) (|:| -2265 *6))) + (-5 *1 (-941 *4 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230))))) +(((*1 *2 *1) + (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) + (-4 *3 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-314)))) + ((*1 *1 *1) (-4 *1 (-314))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) + (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) + (-5 *5 (-1125 (-229))) (-5 *6 (-666 (-272))) (-5 *2 (-1164 (-229))) + (-5 *1 (-719)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-229))) + (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1 (-972 (-229)) (-229) (-229))) + (-5 *4 (-1125 (-229))) (-5 *5 (-666 (-272))) (-5 *1 (-719))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248))))) +(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)) (-4 *2 (-1131)))) + ((*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) (-4 *2 (-1248)) + (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-773))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-934 *4)) (-4 *4 (-1131)) (-5 *2 (-666 (-793))) + (-5 *1 (-933 *4))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1274 *4)) (-5 *1 (-831 *4 *2 *3 *5)) + (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-678 *2)) + (-4 *5 (-678 (-421 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) - (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *9)) (-4 *9 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) - (-4 *8 (-1079)) (-4 *2 (-977 *9 *7 *5)) - (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) - (-4 *4 (-977 *8 *6 *5))))) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-138 *5 *6 *7)) (-14 *5 (-578)) + (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) + (-5 *2 (-138 *5 *6 *8)) (-5 *1 (-137 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *9)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) + (-4 *8 (-1080)) (-4 *2 (-978 *9 *7 *5)) + (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) + (-4 *4 (-978 *8 *6 *5))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1283 *4 *5 *6)) + (|:| |%expon| (-331 *4 *5 *6)) + (|:| |%expTerms| + (-666 (-2 (|:| |k| (-421 (-578))) (|:| |c| *4)))))) + (|:| |%type| (-1189)))) + (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-444 *3))) + (-14 *5 (-1207)) (-14 *6 *4)))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-420 (-980 (-577))))) - (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-869) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-305 (-420 (-980 (-577)))))) - (-5 *2 (-665 (-665 (-305 (-980 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-869) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 (-305 (-980 *4)))) - (-5 *1 (-392 *4)) (-4 *4 (-13 (-869) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-980 (-577))))) - (-5 *2 (-665 (-305 (-980 *4)))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-869) (-375))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1206)) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-4 *4 (-13 (-29 *6) (-1232) (-987))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2225 (-665 *4)))) - (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-677 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 *2)) - (-4 *2 (-13 (-29 *6) (-1232) (-987))) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-677 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1297 *5) "failed")) - (|:| -2225 (-665 (-1297 *5))))) - (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1297 *5) "failed")) - (|:| -2225 (-665 (-1297 *5))))) - (-5 *1 (-688 *5)) (-5 *4 (-1297 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *5)) (-4 *5 (-375)) - (-5 *2 - (-665 - (-2 (|:| |particular| (-3 (-1297 *5) "failed")) - (|:| -2225 (-665 (-1297 *5)))))) - (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-665 *5))) (-4 *5 (-375)) - (-5 *2 - (-665 - (-2 (|:| |particular| (-3 (-1297 *5) "failed")) - (|:| -2225 (-665 (-1297 *5)))))) - (-5 *1 (-688 *5)) (-5 *4 (-665 (-1297 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) - (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4500)))) + (-12 (-4 *5 (-376)) (-4 *7 (-1274 *5)) (-4 *4 (-746 *5 *7)) + (-5 *2 (-2 (|:| -2547 (-711 *6)) (|:| |vec| (-1298 *5)))) + (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-943 *3)) (-4 *3 (-319))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) + (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 *4)))))) + ((*1 *2 *1) + (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874)) + (-5 *2 (-666 (-897 *4 *3))))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-2 (|:| -2672 *3) (|:| -1476 *4)))) + (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-5 *2 (-1188 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) + (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-978 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) + (-4 *1 (-1274 *3))))) +(((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *2) (-12 (-5 *2 (-1125 (-865 (-229)))) (-5 *1 (-317))))) +(((*1 *2) (-12 (-5 *2 (-666 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-134))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 *5)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) + (-14 *4 (-793)) (-4 *5 (-175))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-543)))) + ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4)) + (-4 *3 (-168 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1248)) (-5 *2 (-793)) + (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1131)) (-5 *2 (-793)) (-5 *1 (-443 *3 *4)) + (-4 *3 (-444 *4)))) + ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559)))) + ((*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793)))) + ((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-818 *3 *4)) + (-4 *3 (-819 *4)))) + ((*1 *2) + (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-1022 *3 *4)) + (-4 *3 (-1023 *4)))) + ((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1027 *3 *4)) + (-4 *3 (-1028 *4)))) + ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1042 *3)) (-4 *3 (-1043)))) + ((*1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-793)))) + ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1090 *3)) (-4 *3 (-1091))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-578)) (|has| *1 (-6 -4501)) (-4 *1 (-386 *3)) + (-4 *3 (-1248))))) +(((*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-112)) (-5 *1 (-278))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-793)) (-4 *3 (-1248)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) + ((*1 *1) (-5 *1 (-174))) + ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1131)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))) + ((*1 *1) (-5 *1 (-408))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) + ((*1 *1) + (-12 (-4 *3 (-1131)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1131)) + (-4 *4 (-688 *3)))) + ((*1 *1) (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1173 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1080)))) + ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080)))) + ((*1 *1 *1) (-5 *1 (-1207))) ((*1 *1) (-5 *1 (-1207))) + ((*1 *1) (-5 *1 (-1228)))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *4 (-1274 *3)) (-5 *2 - (-665 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2225 (-665 *7))))) - (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-665 *7)) - (-4 *3 (-708 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) (-4 *5 (-569)) - (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-791 *5)))) + (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-711 *3)))) + (-5 *1 (-363 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-980 *4))) (-4 *4 (-569)) - (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-791 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *1 (-793 *5 *2)) (-4 *2 (-13 (-29 *5) (-1232) (-987))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-710 *7)) (-5 *5 (-1206)) - (-4 *7 (-13 (-29 *6) (-1232) (-987))) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1297 *7)) (|:| -2225 (-665 (-1297 *7))))) - (-5 *1 (-823 *6 *7)) (-5 *4 (-1297 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-710 *6)) (-5 *4 (-1206)) - (-4 *6 (-13 (-29 *5) (-1232) (-987))) - (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 (-665 (-1297 *6))) (-5 *1 (-823 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) - (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1297 *7)) (|:| -2225 (-665 (-1297 *7))))) - (-5 *1 (-823 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) - (-5 *5 (-1206)) (-4 *7 (-13 (-29 *6) (-1232) (-987))) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1297 *7)) (|:| -2225 (-665 (-1297 *7))))) - (-5 *1 (-823 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1206)) - (-4 *7 (-13 (-29 *6) (-1232) (-987))) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) + (-12 (-5 *3 (-578)) (-4 *4 (-1274 *3)) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2225 (-665 *7))) *7 "failed")) - (-5 *1 (-823 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1206)) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2225 (-665 *3))) *3 "failed")) - (-5 *1 (-823 *6 *3)) (-4 *3 (-13 (-29 *6) (-1232) (-987))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-665 *2)) - (-4 *2 (-13 (-29 *6) (-1232) (-987))) (-5 *1 (-823 *6 *2)) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-665 *2)) - (-4 *2 (-13 (-29 *6) (-1232) (-987))) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *1 (-823 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) - (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) - (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) - (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1297 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-665 *4)) - (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) - (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1297 (-327 *4))) (-5 *5 (-665 (-391))) - (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1065)) (-5 *1 (-826)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2225 (-665 *6))) "failed") - *7 *6)) - (-4 *6 (-375)) (-4 *7 (-677 *6)) - (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -2225 (-710 *6)))) - (-5 *1 (-834 *6 *7)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-1065)) (-5 *1 (-923)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-924)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-923)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) - (-5 *8 (-228)) (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) - (-5 *2 (-1065)) (-5 *1 (-923)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-792)) (-5 *6 (-665 (-665 (-327 *3)))) (-5 *7 (-1188)) - (-5 *5 (-665 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1065)) - (-5 *1 (-923)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 (-391))) - (-5 *1 (-1053)) (-5 *4 (-391)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 (-391))) (-5 *1 (-1053)) - (-5 *4 (-391)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) + (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-711 *3)))) + (-5 *1 (-790 *4 *5)) (-4 *5 (-423 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) - (-5 *3 (-327 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1161 *4)) - (-5 *3 (-305 (-327 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) - (-5 *3 (-305 (-327 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 (-665 (-305 (-327 *5)))) (-5 *1 (-1161 *5)) - (-5 *3 (-327 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-1206))) - (-4 *5 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 (-665 (-665 (-305 (-327 *5))))) (-5 *1 (-1161 *5)) - (-5 *3 (-665 (-305 (-327 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) - (-4 *5 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) - (-5 *1 (-1215 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-1206))) (-4 *5 (-569)) - (-5 *2 (-665 (-665 (-305 (-420 (-980 *5)))))) (-5 *1 (-1215 *5)) - (-5 *3 (-665 (-305 (-420 (-980 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-569)) - (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) (-5 *1 (-1215 *4)))) + (-12 (-4 *4 (-362)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 *3)) + (-5 *2 + (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-711 *3)))) + (-5 *1 (-1016 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-665 (-665 (-305 (-420 (-980 *4)))))) - (-5 *1 (-1215 *4)) (-5 *3 (-665 (-305 (-420 (-980 *4))))))) + (-12 (-4 *4 (-362)) (-4 *3 (-1274 *4)) (-4 *5 (-1274 *3)) + (-5 *2 + (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-711 *3)))) + (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-423 *3 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-871)) (-4 *5 (-815)) + (-4 *6 (-570)) (-4 *7 (-978 *6 *5 *3)) + (-5 *1 (-476 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1069 (-421 (-578))) (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) + (-15 -2530 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1080)) + (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) + (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-4 *5 (-569)) - (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) - (-5 *3 (-420 (-980 *5))))) + (-12 (-5 *4 (-950)) (-4 *5 (-1080)) + (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) + (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1274 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-4 *2 (-1274 *5)) + (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-678 *2)) (-4 *3 (-1289 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) + (-5 *2 (-2 (|:| -2612 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-796)) (-5 *1 (-52))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-520)) (-5 *3 (-666 (-900))) (-5 *1 (-497))))) +(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *5)) (-5 *4 (-1298 *5)) (-4 *5 (-376)) + (-5 *2 (-112)) (-5 *1 (-689 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-4 *5 (-569)) - (-5 *2 (-665 (-305 (-420 (-980 *5))))) (-5 *1 (-1215 *5)) - (-5 *3 (-305 (-420 (-980 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) - (-5 *1 (-1215 *4)) (-5 *3 (-420 (-980 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-665 (-305 (-420 (-980 *4))))) - (-5 *1 (-1215 *4)) (-5 *3 (-305 (-420 (-980 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *6)))) - (-5 *4 (-1056 (-864 (-577)))) (-5 *5 (-1206)) (-5 *7 (-420 (-577))) - (-4 *6 (-1079)) (-5 *2 (-885)) (-5 *1 (-608 *6))))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) + (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-5 *2 (-112)) + (-5 *1 (-690 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-228))) (-5 *1 (-316))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1140))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) - (-5 *1 (-777))))) + (-12 (-5 *3 (-1188 (-1188 *4))) (-5 *2 (-1188 *4)) (-5 *1 (-1191 *4)) + (-4 *4 (-1080))))) +(((*1 *1) (-5 *1 (-342)))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-2 (|:| -3173 *3) (|:| -2754 *4)))) + (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *1 (-1224 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-194)) (-5 *3 (-578)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) + (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569)))) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-808))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) + (-4 *4 (-362))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2421 (-804 *3)) (|:| |coef1| (-804 *3)) + (|:| |coef2| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -4317 *7)))) - (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-665 (-2 (|:| |val| (-665 *6)) (|:| -4317 *7)))) - (-4 *6 (-1095 *3 *4 *5)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1137 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1130)) (-5 *2 (-792)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-670 *4 *2 *5)) - (-4 *4 (-1130)) (-14 *5 *2)))) -(((*1 *2) (-12 (-5 *2 (-665 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-133))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) - (-14 *4 (-792)) (-4 *5 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) + (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-2 (|:| -2421 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1080)) (-4 *2 (-709 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1274 *4)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-666 (-1271 *5 *4))) + (-5 *1 (-1145 *4 *5)) (-5 *3 (-1271 *5 *4))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-843))))) (((*1 *2 *1) - (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) - (-4 *3 (-977 *7 *5 *6)) - (-5 *2 - (-2 (|:| -2182 (-792)) (|:| -2671 *3) (|:| |radicand| (-665 *3)))) - (-5 *1 (-981 *5 *6 *7 *3 *8)) (-5 *4 (-792)) - (-4 *8 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *3)) (-15 -2518 (*3 $)) (-15 -2528 (*3 $)))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-318)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-460 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) - (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-460 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-1188)) (-4 *7 (-977 *4 *5 *6)) - (-4 *4 (-318)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-460 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-420 (-980 *6)) (-1195 (-1206) (-980 *6)))) - (-5 *5 (-792)) (-4 *6 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *6))))) - (-5 *1 (-303 *6)) (-5 *4 (-710 (-420 (-980 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) - (|:| |eigmult| (-792)) (|:| |eigvec| (-665 *4)))) - (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) - (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5))))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-792)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1130)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402)))) - ((*1 *1) (-5 *1 (-407))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) - ((*1 *1) - (-12 (-4 *3 (-1130)) (-5 *1 (-909 *2 *3 *4)) (-4 *2 (-1130)) - (-4 *4 (-687 *3)))) - ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *3 (-666 (-272))) + (-5 *1 (-270)))) ((*1 *1 *2) - (-12 (-5 *1 (-1172 *3 *2)) (-14 *3 (-792)) (-4 *2 (-1079)))) - ((*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) - ((*1 *1 *1) (-5 *1 (-1206))) ((*1 *1) (-5 *1 (-1206))) - ((*1 *1) (-5 *1 (-1227)))) + (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-272)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-495 *5 *6))) (-5 *3 (-495 *5 *6)) + (-14 *5 (-666 (-1207))) (-4 *6 (-466)) (-5 *2 (-1298 *6)) + (-5 *1 (-650 *5 *6))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1149)) (-5 *1 (-1146))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *2 (-1066)) (-5 *1 (-773))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) + (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) + (-5 *1 (-810)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) + (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) + (-5 *1 (-810))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-175)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-841 *3)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233)))))) (((*1 *2 *3) - (-12 (-4 *1 (-921)) - (-5 *3 - (-2 (|:| |pde| (-665 (-327 (-228)))) - (|:| |constraints| - (-665 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-792)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) - (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) - (|:| |tol| (-228)))) - (-5 *2 (-1065))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148))) - (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) - (-5 *1 (-1159 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148))) - (-5 *2 (-1195 (-665 (-327 *5)) (-665 (-305 (-327 *5))))) - (-5 *1 (-1159 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-361)) + (-12 (-5 *3 (-956)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) - (-5 *1 (-219 *5 *3)) (-4 *3 (-1273 *5))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1206)) - (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) - (-5 *2 - (-2 (|:| -1827 (-420 (-980 *5))) (|:| |coeff| (-420 (-980 *5))))) - (-5 *1 (-583 *5)) (-5 *3 (-420 (-980 *5)))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-980 *6)) (-5 *4 (-1206)) - (-5 *5 (-864 *7)) - (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-4 *7 (-13 (-1232) (-29 *6))) (-5 *1 (-227 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1202 *6)) (-5 *4 (-864 *6)) - (-4 *6 (-13 (-1232) (-29 *5))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-227 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-52))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) - (-4 *3 (-669 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) - (-5 *2 (-665 *3)) (-5 *1 (-798 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) - (-14 *7 (-949))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1029 *3)) (-4 *3 (-174)) (-5 *1 (-820 *3))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-792)) (-4 *6 (-1130)) (-4 *7 (-926 *6)) - (-5 *2 (-710 *7)) (-5 *1 (-713 *6 *7 *3 *4)) (-4 *3 (-385 *7)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4499))))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) - (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-341)))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-2 (|:| -3171 *3) (|:| -2753 *4)))) - (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *1 (-1223 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1223 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-577)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1079)) (-5 *2 (-1202 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-239)) (-4 *3 (-1079)) (-4 *4 (-870)) (-4 *5 (-276 *4)) - (-4 *6 (-814)) (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *3 *4 *5 *6)))) + (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) + (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) + (-5 *1 (-155)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-956)) (-5 *4 (-421 (-578))) + (-5 *2 + (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) + (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) + (-5 *1 (-155)))) ((*1 *2 *3) - (-12 (-4 *4 (-1079)) (-4 *3 (-870)) (-4 *5 (-276 *3)) (-4 *6 (-814)) - (-5 *2 (-1 *1 (-792))) (-4 *1 (-261 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-276 *2)) (-4 *2 (-870))))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) + (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) + (-5 *1 (-155)) (-5 *3 (-666 (-972 (-229)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) + (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) + (-5 *1 (-155)) (-5 *3 (-666 (-666 (-972 (-229))))))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-272)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-272))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-91 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-1203 *4)) + (-5 *1 (-542 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1291 *3 *2)) + (-4 *2 (-1289 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-666 (-1212))) (-5 *1 (-905))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-884)) (-5 *3 (-130)) (-5 *2 (-793))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-971 *5)) (-4 *5 (-1079)) (-5 *2 (-792)) - (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-666 (-1207))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-666 (-950))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) + (-14 *4 (-950)) (-14 *5 (-1024 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-328 *3)) (-5 *1 (-227 *3 *4)) + (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1080)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *2 (-570)) (-5 *1 (-642 *2 *4)) + (-4 *4 (-1274 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1079)))) + (-12 (-5 *2 (-666 *5)) (-5 *3 (-666 (-793))) (-4 *1 (-762 *4 *5)) + (-4 *4 (-1080)) (-4 *5 (-871)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) - (-5 *1 (-1194 *4 *5)) (-14 *4 (-949))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *5 (-1273 *4)) (-5 *2 (-1202 (-420 *5))) (-5 *1 (-633 *4 *5)) - (-5 *3 (-420 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-148) (-27) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 (-1202 (-420 *6))) (-5 *1 (-633 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) - (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1297 *5)) - (-5 *1 (-657 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 *5))) - (-2308 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1297 (-420 *5))) - (-5 *1 (-657 *5 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-977 *7 *5 *6)) - (-5 *1 (-763 *5 *6 *7 *2)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-318))))) -(((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1079)) (-5 *1 (-735 *2 *4)) - (-4 *4 (-669 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-373 (-115))) (-5 *1 (-857 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) - (-5 *2 (-2 (|:| -1624 (-665 *6)) (|:| -2258 (-665 *6))))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1216))))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-949))) (-5 *2 (-1208 (-420 (-577)))) - (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577)))) + (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) + (-4 *2 (-871)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 *6)) (-5 *3 (-666 (-793))) (-4 *1 (-978 *4 *5 *6)) + (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-793)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *2 (-871)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-793)) (-4 *2 (-978 *4 (-545 *5) *5)) + (-5 *1 (-1157 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-871)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-981 *4)) (-5 *1 (-1242 *4)) + (-4 *4 (-1080))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-444 (-172 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)))) + (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 (-172 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-897)) (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) - (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) - (-5 *1 (-809))))) -(((*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449))))) -(((*1 *1 *1) (-5 *1 (-228))) ((*1 *1 *1) (-5 *1 (-391))) - ((*1 *1) (-5 *1 (-391)))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1307))))) -(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-665 (-1206))) (|:| |pred| (-52)))) - (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-792))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-316)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-1065))) (-5 *2 (-1065)) (-5 *1 (-316)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *1) (-5 *1 (-1093))) - ((*1 *2 *3) - (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1184 *4)) - (-4 *4 (-1247)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) - (-5 *2 (-665 (-693 *5))) (-5 *1 (-693 *5))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1206)) - (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1065)) - (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) - (-4 *4 (-361)) (-5 *2 (-792)) (-5 *1 (-358 *4)))) - ((*1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949)))) - ((*1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) - (-14 *4 - (-3 (-1202 *3) - (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150))))))))) - ((*1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-949))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-318)) (-5 *2 (-431 *3)) - (-5 *1 (-763 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-577)) (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-318)) - (-4 *9 (-977 *8 *6 *7)) - (-5 *2 (-2 (|:| -1524 (-1202 *9)) (|:| |polval| (-1202 *8)))) - (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9)) (-5 *4 (-1202 *8))))) -(((*1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-1079)) - (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1273 *4))))) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4)))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-931 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) - (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1310 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) - (-4 *5 (-465)) (-5 *2 (-665 (-254 *4 *5))) (-5 *1 (-649 *4 *5))))) -(((*1 *1) (-5 *1 (-450)))) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *1) (-5 *1 (-146))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-272))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-317)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-1066))) (-5 *2 (-1066)) (-5 *1 (-317)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *1) (-5 *1 (-1094))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 (-1188 *4))) (-5 *2 (-1188 *4)) (-5 *1 (-1185 *4)) + (-4 *4 (-1248)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-778))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1135))) (-5 *1 (-303))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))) - (-5 *2 (-1065)) (-5 *1 (-316))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1240 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *5 (-1095 *2 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) - (-5 *1 (-369 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-112)) - (-5 *1 (-541 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530))))) -(((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) - (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-815)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-463 *4 *5 *6 *2)) + (-4 *4 (-466)) (-4 *6 (-871))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-792))) (-5 *3 (-173)) (-5 *1 (-1194 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1079))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-665 (-1206))) (-4 *2 (-174)) - (-4 *4 (-244 (-3224 *5) (-792))) - (-14 *6 - (-1 (-112) (-2 (|:| -2085 *3) (|:| -2182 *4)) - (-2 (|:| -2085 *3) (|:| -2182 *4)))) - (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-870)) - (-4 *7 (-977 *2 *4 (-887 *5)))))) + (-12 (-5 *2 (-578)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1248)) + (-4 *5 (-386 *4)) (-4 *3 (-386 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1066)) + (-5 *1 (-768))))) +(((*1 *1 *1) (-4 *1 (-559)))) +(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301))))) (((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-465))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-710 (-577))) (-5 *3 (-665 (-577))) (-5 *1 (-1140))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-813)) (-4 *3 (-174))))) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-466))))) (((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) - (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 *4))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644)))) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-666 (-666 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-1130)) - (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) - (-5 *1 (-1106 *3 *4 *2)) - (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-666 (-666 *5))))) ((*1 *2 *1) - (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *3 *2)) (-4 *3 (-1130))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-4 *4 (-1079)) - (-5 *1 (-1059 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) - (-5 *2 (-1065)) (-5 *1 (-775))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-577)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) - (-5 *1 (-462 *5 *6 *7 *4))))) + (-12 (-5 *2 (-666 (-666 *3))) (-5 *1 (-1219 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-666 (-2 (|:| |totdeg| (-793)) (|:| -3714 *3)))) + (-5 *4 (-793)) (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) + (-4 *7 (-871)) (-5 *1 (-463 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) + ((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6)) + (|:| -4209 *6))) + (-5 *1 (-1046 *5 *6)) (-5 *3 (-421 *6))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *1) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) + ((*1 *2 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) + (-14 *4 (-666 (-1207))))) + ((*1 *2 *1) + (-12 (-5 *2 (-578)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) + (-14 *4 (-666 (-1207))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-286)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1203 *8)) (-5 *4 (-666 *6)) (-4 *6 (-871)) + (-4 *8 (-978 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1080)) + (-5 *2 (-666 (-793))) (-5 *1 (-333 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-950)))) + ((*1 *2 *1) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) + (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-570)) (-5 *2 (-578)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-1274 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 (-793))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) + (-4 *3 (-871)) (-5 *2 (-793)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1004 *3 *2 *4)) (-4 *3 (-1080)) (-4 *4 (-871)) + (-4 *2 (-814)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-793)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1260 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1289 *3)) + (-5 *2 (-578)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1258 *3)) + (-5 *2 (-421 (-578))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-855 (-950))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-793))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 *4)))) + (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *1 *1) (-4 *1 (-648))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033) (-1233)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) (-4 *7 (-870)) - (-4 *8 (-318)) (-4 *6 (-814)) (-4 *9 (-977 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-665 (-2 (|:| -2799 (-1202 *9)) (|:| -2182 (-577))))))) - (-5 *1 (-763 *6 *7 *8 *9)) (-5 *3 (-1202 *9))))) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-376)) (-4 *7 (-1274 *6)) + (-5 *2 (-2 (|:| |answer| (-600 (-421 *7))) (|:| |a0| *6))) + (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-711 *4)))) + ((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-430 *3 *4)) + (-4 *3 (-431 *4)))) + ((*1 *2) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-1274 (-172 *3)))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-778))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4500)) (-4 *1 (-503 *4)) + (-4 *4 (-1248)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-666 (-666 (-666 *4)))) (-5 *3 (-666 *4)) (-4 *4 (-871)) + (-5 *1 (-1218 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-376)) (-5 *1 (-1056 *3 *2)) (-4 *2 (-678 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3505 *3) (|:| -4424 (-666 *5)))) + (-5 *1 (-1056 *5 *3)) (-5 *4 (-666 *5)) (-4 *3 (-678 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-491)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-605)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-644)))) + (-12 (-5 *3 (-1203 *2)) (-4 *2 (-978 (-421 (-981 *6)) *5 *4)) + (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815)) + (-4 *4 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) + (-4 *6 (-570))))) +(((*1 *2 *2) (-12 (-5 *2 (-666 (-328 (-229)))) (-5 *1 (-278))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-153 *2)) + (-4 *2 (-1248))))) +(((*1 *1) + (-12 (-4 *1 (-418)) (-2309 (|has| *1 (-6 -4491))) + (-2309 (|has| *1 (-6 -4483))))) + ((*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1131)) (-4 *2 (-871)))) + ((*1 *1) (-4 *1 (-866))) ((*1 *1 *1 *1) (-4 *1 (-874))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645)))) ((*1 *2 *1) - (-12 (-4 *3 (-1130)) - (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) - (-5 *1 (-1106 *3 *4 *2)) - (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))))) + (-12 (-4 *3 (-1131)) + (-4 *2 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))) + (-5 *1 (-1107 *3 *4 *2)) + (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1130)) (-5 *1 (-1195 *2 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1065)) (-5 *1 (-770)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-401)) (-5 *2 (-1065)) (-5 *1 (-770))))) -(((*1 *1 *1) (|partial| -4 *1 (-1182)))) -(((*1 *2 *3) - (-12 (-5 *2 (-431 (-1202 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1202 *1)) - (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1130)))) - ((*1 *2 *3) - (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1))))) -(((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) + (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886))))) +(((*1 *2 *2) + (-12 (-4 *3 (-376)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) + (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (-4 *4 (-1079)) (-4 *3 (-1273 *4)) (-4 *2 (-1288 *4)) - (-5 *1 (-1291 *4 *3 *5 *2)) (-4 *5 (-677 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *5 (-1274 *4)) (-5 *2 (-666 (-675 (-421 *5)))) + (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-421 *5)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 (-981 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) + (-14 *4 (-666 (-1207))))) + ((*1 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) - (-5 *1 (-432 *4)))) - ((*1 *1 *1) (-5 *1 (-954))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) - ((*1 *1 *1) (-5 *1 (-955))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) - (-5 *4 (-420 (-577))) (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) - (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) - (-5 *4 (-420 (-577))) (-5 *1 (-1051 *3)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) - (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))))) + (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) + (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-464 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) + (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-464 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) - (-4 *3 (-1273 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) ((*1 *1) (-4 *1 (-558))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) - (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) - (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1273 *9)) (-4 *7 (-814)) (-4 *8 (-870)) (-4 *9 (-318)) - (-4 *10 (-977 *9 *7 *8)) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) + (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-666 (-802 *3 (-888 *4)))) (-4 *3 (-466)) + (-14 *4 (-666 (-1207))) (-5 *1 (-647 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-666 (-1242 *5))) + (-5 *1 (-1306 *5)) (-5 *4 (-1242 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-886)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) + (-14 *4 (-793)) (-4 *5 (-175))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) + (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1131)) + (-4 *2 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))) + (-5 *1 (-1107 *3 *4 *2)) + (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1131)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-972 *5)) (-5 *3 (-793)) (-4 *5 (-1080)) + (-5 *1 (-1195 *4 *5)) (-14 *4 (-950))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1131)) (-5 *1 (-993 *3 *2)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-451))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950)))) ((*1 *1) (-4 *1 (-559))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-721)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1207)) (-5 *6 (-112)) + (-4 *7 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-4 *3 (-13 (-1233) (-988) (-29 *7))) (-5 *2 - (-2 (|:| |deter| (-665 (-1202 *10))) - (|:| |dterm| - (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-665 *6)) (|:| |nlead| (-665 *10)))) - (-5 *1 (-799 *6 *7 *8 *9 *10)) (-5 *3 (-1202 *10)) (-5 *4 (-665 *6)) - (-5 *5 (-665 *10))))) + (-3 (|:| |f1| (-865 *3)) (|:| |f2| (-666 (-865 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-223 *7 *3)) (-5 *5 (-865 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-229)) + (-5 *2 + (-2 (|:| |brans| (-666 (-666 (-972 *4)))) + (|:| |xValues| (-1125 *4)) (|:| |yValues| (-1125 *4)))) + (-5 *1 (-155)) (-5 *3 (-666 (-666 (-972 *4))))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-666 (-421 *6))) (-5 *3 (-421 *6)) + (-4 *6 (-1274 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-578)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-582 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-306 (-855 *3))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-855 *3)) (-5 *1 (-655 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-306 (-855 (-981 *5)))) (-4 *5 (-466)) + (-5 *2 (-855 (-421 (-981 *5)))) (-5 *1 (-656 *5)) + (-5 *3 (-421 (-981 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-306 (-421 (-981 *5)))) (-5 *3 (-421 (-981 *5))) + (-4 *5 (-466)) (-5 *2 (-855 *3)) (-5 *1 (-656 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1274 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) + (-5 *2 + (-2 (|:| -2046 (-793)) (|:| |curves| (-793)) + (|:| |polygons| (-793)) (|:| |constructs| (-793))))))) +(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-666 *2))) (-5 *4 (-666 *5)) + (-4 *5 (-38 (-421 (-578)))) (-4 *2 (-1289 *5)) + (-5 *1 (-1291 *5 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-666 *3)) (-5 *1 (-990 *3)) (-4 *3 (-559))))) +(((*1 *1 *1) (-12 (-5 *1 (-432 *2)) (-4 *2 (-570))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-172 (-229)))) + (-5 *2 (-1066)) (-5 *1 (-776))))) +(((*1 *2) + (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) + (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-793))))) (((*1 *2 *3) - (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-465)) - (-5 *2 (-494 *4 *5)) (-5 *1 (-649 *4 *5))))) + (-12 (-4 *1 (-861)) + (-5 *3 + (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) + (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) + (|:| |ub| (-666 (-865 (-229)))))) + (-5 *2 (-1066)))) + ((*1 *2 *3) + (-12 (-4 *1 (-861)) + (-5 *3 + (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) + (-5 *2 (-1066))))) +(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-560)))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-871)) (-5 *2 (-666 (-666 (-666 *4)))) + (-5 *1 (-1218 *4)) (-5 *3 (-666 (-666 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-5 *2 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) - (-5 *2 (-792)))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) + (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080)))) + ((*1 *2 *3) + (-12 (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-175)) + (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-709 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-747))))) -(((*1 *1) (-5 *1 (-572)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) + (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) + (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080))))) (((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) - (-5 *2 - (-2 (|:| -2686 (-792)) (|:| |curves| (-792)) - (|:| |polygons| (-792)) (|:| |constructs| (-792))))))) + (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-5 *1 (-451))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) - (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) - (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-112)) (-5 *1 (-917 *4)) + (-4 *4 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) + (-4 *3 (-1274 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1248)))) + ((*1 *2 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1248)) + (-14 *4 (-578))))) (((*1 *2 *3) - (-12 (-5 *3 (-980 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) + (-12 (-4 *4 (-1023 *2)) (-4 *2 (-570)) (-5 *1 (-144 *2 *4 *3)) + (-4 *3 (-386 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-980 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) - ((*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) + (-12 (-4 *4 (-1023 *2)) (-4 *2 (-570)) (-5 *1 (-517 *2 *4 *5 *3)) + (-4 *5 (-386 *2)) (-4 *3 (-386 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) + (-12 (-5 *3 (-711 *4)) (-4 *4 (-1023 *2)) (-4 *2 (-570)) + (-5 *1 (-715 *2 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1202 (-420 (-577)))) (-5 *2 (-665 *1)) (-4 *1 (-1042)))) + (-12 (-4 *4 (-1023 *2)) (-4 *2 (-570)) (-5 *1 (-1267 *2 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-1219 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-444 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1202 *1)) (-4 *1 (-1042)) (-5 *2 (-665 *1)))) + (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) + (-5 *1 (-160 *4 *5)) (-4 *5 (-444 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-869) (-375))) (-4 *3 (-1273 *4)) (-5 *2 (-665 *1)) - (-4 *1 (-1098 *4 *3))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1273 (-171 *2)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032)))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3) - (-12 (-4 *4 (-870)) (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4)) - (-5 *3 (-665 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-869))) - (-5 *2 (-665 (-2 (|:| -1679 (-665 *3)) (|:| -3395 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1273 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-375) (-869))) - (-5 *2 (-665 (-2 (|:| -1679 (-665 *3)) (|:| -3395 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) - (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *2)) (-4 *2 (-977 *3 *5 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1232) (-987))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1) (-5 *1 (-885))) + (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) + (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-444 *4) (-1033))))) ((*1 *2 *3) - (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *1) (-4 *1 (-361))) + (-12 (-5 *3 (-116)) (-5 *2 (-112)) (-5 *1 (-313 *4)) (-4 *4 (-314)))) + ((*1 *2 *3) (-12 (-4 *1 (-314)) (-5 *3 (-116)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-665 (-1202 *5))) - (|:| |prim| (-1202 *5)))) - (-5 *1 (-445 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-569) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1202 *3)) - (|:| |pol2| (-1202 *3)) (|:| |prim| (-1202 *3)))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-980 *5)) (-5 *4 (-1206)) (-4 *5 (-13 (-375) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) - (|:| |prim| (-1202 *5)))) - (-5 *1 (-988 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-665 (-1206))) - (-4 *5 (-13 (-375) (-148))) - (-5 *2 - (-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 *5))) - (|:| |prim| (-1202 *5)))) - (-5 *1 (-988 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) (-5 *5 (-1206)) - (-4 *6 (-13 (-375) (-148))) - (-5 *2 - (-2 (|:| -2671 (-665 (-577))) (|:| |poly| (-665 (-1202 *6))) - (|:| |prim| (-1202 *6)))) - (-5 *1 (-988 *6))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) - (-4 *7 (-1273 (-420 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -1744 *3))) - (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) - (-5 *2 - (-2 (|:| |answer| (-420 *6)) (|:| -1744 (-420 *6)) - (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) - (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-4 *7 (-569)) - (-4 *8 (-977 *7 *5 *6)) - (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *3) (|:| |radicand| *3))) - (-5 *1 (-981 *5 *6 *7 *8 *3)) (-5 *4 (-792)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *8)) (-15 -2518 (*8 $)) (-15 -2528 (*8 $)))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-665 (-665 *4))) (-5 *2 (-665 *4)) (-4 *4 (-318)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *8)) - (-5 *4 - (-665 - (-2 (|:| -2225 (-710 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-710 *7))))) - (-5 *5 (-792)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-361)) - (-5 *2 - (-2 (|:| -2225 (-710 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-710 *7)))) - (-5 *1 (-511 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-318)) - (-5 *2 (-420 (-431 (-980 *4)))) (-5 *1 (-1072 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) - (-5 *2 (-665 (-420 (-577)))) (-5 *1 (-1050 *4)) - (-4 *4 (-1273 (-577)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) + (-12 (-5 *3 (-116)) (-4 *5 (-1131)) (-5 *2 (-112)) + (-5 *1 (-443 *4 *5)) (-4 *4 (-444 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) + (-5 *1 (-445 *4 *5)) (-4 *5 (-444 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-116)) (-4 *4 (-570)) (-5 *2 (-112)) + (-5 *1 (-649 *4 *5)) (-4 *5 (-13 (-444 *4) (-1033) (-1233)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1248)) (-5 *2 (-793))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-112)) (-5 *1 (-116))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-934 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-813)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-814)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-665 (-1206))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-666 (-1207))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) - (-14 *6 (-792)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-138 *5 *6 *7)) (-14 *5 (-578)) + (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) + (-5 *2 (-138 *5 *6 *8)) (-5 *1 (-137 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) - (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-172 *5)) (-4 *5 (-175)) + (-4 *6 (-175)) (-5 *2 (-172 *6)) (-5 *1 (-171 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1079) (-870))) - (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206))))) + (-12 (-5 *2 (-1 (-328 *3) (-328 *3))) (-4 *3 (-13 (-1080) (-871))) + (-5 *1 (-227 *3 *4)) (-14 *4 (-666 (-1207))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) - (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) - (-5 *1 (-245 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-247 *5 *6)) (-14 *5 (-793)) + (-4 *6 (-1248)) (-4 *7 (-1248)) (-5 *2 (-247 *5 *7)) + (-5 *1 (-246 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-306 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-306 *6)) (-5 *1 (-305 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-306 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1188)) (-5 *5 (-630 *6)) - (-4 *6 (-313)) (-4 *2 (-1247)) (-5 *1 (-308 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-631 *6)) + (-4 *6 (-314)) (-4 *2 (-1248)) (-5 *1 (-309 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-313)) - (-4 *2 (-313)) (-5 *1 (-309 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-631 *5)) (-4 *5 (-314)) + (-4 *2 (-314)) (-5 *1 (-310 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-313)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-631 *1)) (-4 *1 (-314)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-710 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-710 *6)) (-5 *1 (-315 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-5 *2 (-711 *6)) (-5 *1 (-316 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-328 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-328 *6)) (-5 *1 (-326 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) - (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) - (-4 *9 (-375)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-420 *10))) - (-5 *2 (-348 *9 *10 *11 *12)) - (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-354 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-349 *5 *6 *7 *8)) (-4 *5 (-376)) + (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *9 (-376)) (-4 *10 (-1274 *9)) (-4 *11 (-1274 (-421 *10))) + (-5 *2 (-349 *9 *10 *11 *12)) + (-5 *1 (-346 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-355 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1251)) (-4 *8 (-1251)) - (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) (-4 *9 (-1273 *8)) - (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1273 (-420 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252)) + (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) (-4 *9 (-1274 *8)) + (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-353 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1274 (-421 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) - (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1248)) (-4 *6 (-1248)) + (-4 *2 (-386 *6)) (-5 *1 (-384 *5 *4 *6 *2)) (-4 *4 (-386 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-1130)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) - (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-432 *5)) (-4 *5 (-570)) + (-4 *6 (-570)) (-5 *2 (-432 *6)) (-5 *1 (-419 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) - (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-570)) + (-4 *6 (-570)) (-5 *2 (-421 *6)) (-5 *1 (-420 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) - (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6)) - (-4 *8 (-13 (-422 *6 *7) (-1068 *6))) (-4 *9 (-318)) - (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10)) - (-5 *2 (-426 *9 *10 *11 *12)) - (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-422 *10 *11) (-1068 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319)) + (-4 *6 (-1023 *5)) (-4 *7 (-1274 *6)) + (-4 *8 (-13 (-423 *6 *7) (-1069 *6))) (-4 *9 (-319)) + (-4 *10 (-1023 *9)) (-4 *11 (-1274 *10)) + (-5 *2 (-427 *9 *10 *11 *12)) + (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-423 *10 *11) (-1069 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) + (-4 *2 (-431 *6)) (-5 *1 (-429 *4 *5 *2 *6)) (-4 *4 (-431 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-570)) (-5 *1 (-432 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) - (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) + (-4 *2 (-444 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-444 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-4 *2 (-439 *6)) (-5 *1 (-437 *5 *4 *6 *2)) (-4 *4 (-439 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1248)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) - (-4 *4 (-873)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) + (-4 *4 (-874)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) - (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-600 *5)) (-4 *5 (-376)) + (-4 *6 (-376)) (-5 *2 (-600 *6)) (-5 *1 (-598 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -1827 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-375)) (-4 *6 (-375)) - (-5 *2 (-2 (|:| -1827 *6) (|:| |coeff| *6))) - (-5 *1 (-597 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -3579 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-376)) (-4 *6 (-376)) + (-5 *2 (-2 (|:| -3579 *6) (|:| |coeff| *6))) + (-5 *1 (-598 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) + (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-598 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-666 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-375)) (-4 *6 (-375)) + (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-597 *5 *6)))) + (-666 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-598 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) - (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-614 *8)) - (-5 *1 (-612 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7)) + (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-615 *8)) + (-5 *1 (-613 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-614 *7)) - (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) - (-5 *1 (-612 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1188 *6)) (-5 *5 (-615 *7)) + (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-1188 *8)) + (-5 *1 (-613 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1187 *7)) - (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) - (-5 *1 (-612 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1188 *7)) + (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-1188 *8)) + (-5 *1 (-613 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-614 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1248)) (-5 *1 (-615 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-665 *6)) (-5 *1 (-663 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-666 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-666 *6)) (-5 *1 (-664 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-665 *6)) (-5 *5 (-665 *7)) - (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-665 *8)) - (-5 *1 (-664 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-666 *6)) (-5 *5 (-666 *7)) + (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-666 *8)) + (-5 *1 (-665 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1079)) (-4 *8 (-1079)) - (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) - (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) - (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1079)) - (-4 *8 (-1079)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) - (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) - (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-420 *8))) - (-5 *1 (-730 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-420 *6))) - (-4 *8 (-1273 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1079)) (-4 *9 (-1079)) - (-4 *5 (-870)) (-4 *6 (-814)) (-4 *2 (-977 *9 *7 *5)) - (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) - (-4 *4 (-977 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-870)) (-4 *6 (-870)) (-4 *7 (-814)) - (-4 *9 (-1079)) (-4 *2 (-977 *9 *8 *6)) - (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-814)) - (-4 *4 (-977 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-756 *5 *7)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-4 *7 (-747)) (-5 *2 (-756 *6 *7)) - (-5 *1 (-755 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1080)) (-4 *8 (-1080)) + (-4 *6 (-386 *5)) (-4 *7 (-386 *5)) (-4 *2 (-709 *8 *9 *10)) + (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-709 *5 *6 *7)) + (-4 *9 (-386 *8)) (-4 *10 (-386 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1080)) + (-4 *8 (-1080)) (-4 *6 (-386 *5)) (-4 *7 (-386 *5)) + (-4 *2 (-709 *8 *9 *10)) (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-709 *5 *6 *7)) (-4 *9 (-386 *8)) (-4 *10 (-386 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-570)) (-4 *7 (-570)) + (-4 *6 (-1274 *5)) (-4 *2 (-1274 (-421 *8))) + (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1274 (-421 *6))) + (-4 *8 (-1274 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1080)) (-4 *9 (-1080)) + (-4 *5 (-871)) (-4 *6 (-815)) (-4 *2 (-978 *9 *7 *5)) + (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) + (-4 *4 (-978 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-871)) (-4 *6 (-871)) (-4 *7 (-815)) + (-4 *9 (-1080)) (-4 *2 (-978 *9 *8 *6)) + (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815)) + (-4 *4 (-978 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-4 *7 (-748)) (-5 *2 (-757 *6 *7)) + (-5 *1 (-756 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-756 *3 *4)) - (-4 *4 (-747)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-757 *3 *4)) + (-4 *4 (-748)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-818 *6)) (-5 *1 (-819 *4 *5 *2 *6)) (-4 *4 (-818 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) + (-4 *2 (-819 *6)) (-5 *1 (-820 *4 *5 *2 *6)) (-4 *4 (-819 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-854 *6)) (-5 *1 (-853 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-853 *5 *6)))) + (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *1 (-854 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-864 *6)) (-5 *1 (-863 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-865 *6)) (-5 *1 (-864 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *1 (-863 *5 *6)))) + (-12 (-5 *2 (-865 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-5 *1 (-864 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-903 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-903 *6)) (-5 *1 (-902 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-906 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-906 *6)) (-5 *1 (-905 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-913 *5 *7)) - (-5 *1 (-912 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-914 *5 *6)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-914 *5 *7)) + (-5 *1 (-913 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-916 *6)) (-5 *1 (-915 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-917 *6)) (-5 *1 (-916 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-980 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-980 *6)) (-5 *1 (-974 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-5 *2 (-981 *6)) (-5 *1 (-975 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-870)) - (-4 *8 (-1079)) (-4 *6 (-814)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-871)) + (-4 *8 (-1080)) (-4 *6 (-815)) (-4 *2 - (-13 (-1130) - (-10 -8 (-15 -2471 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-792)))))) - (-5 *1 (-979 *6 *7 *8 *5 *2)) (-4 *5 (-977 *8 *6 *7)))) + (-13 (-1131) + (-10 -8 (-15 -2472 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) + (-5 *1 (-980 *6 *7 *8 *5 *2)) (-4 *5 (-978 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-986 *6)) (-5 *1 (-985 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-987 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-987 *6)) (-5 *1 (-986 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-5 *2 (-994 *6)) (-5 *1 (-996 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-995 *6)) (-5 *1 (-997 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-971 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-971 *6)) (-5 *1 (-1011 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-5 *2 (-972 *6)) (-5 *1 (-1012 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-980 *4))) (-4 *4 (-1079)) - (-4 *2 (-977 (-980 *4) *5 *6)) (-4 *5 (-814)) + (-12 (-5 *3 (-1 *2 (-981 *4))) (-4 *4 (-1080)) + (-4 *2 (-978 (-981 *4) *5 *6)) (-4 *5 (-815)) (-4 *6 - (-13 (-870) - (-10 -8 (-15 -3341 ((-1206) $)) - (-15 -3966 ((-3 $ "failed") (-1206)))))) - (-5 *1 (-1014 *4 *5 *6 *2)))) + (-13 (-871) + (-10 -8 (-15 -3343 ((-1207) $)) + (-15 -3967 ((-3 $ "failed") (-1207)))))) + (-5 *1 (-1015 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) - (-4 *2 (-1022 *6)) (-5 *1 (-1020 *5 *6 *4 *2)) (-4 *4 (-1022 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-570)) (-4 *6 (-570)) + (-4 *2 (-1023 *6)) (-5 *1 (-1021 *5 *6 *4 *2)) (-4 *4 (-1023 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1027 *6)) (-5 *1 (-1028 *4 *5 *2 *6)) (-4 *4 (-1027 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) + (-4 *2 (-1028 *6)) (-5 *1 (-1029 *4 *5 *2 *6)) (-4 *4 (-1028 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) - (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) + (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1083 *3 *4 *5 *6 *7)) - (-4 *5 (-1079)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) + (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1079)) (-4 *10 (-1079)) - (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *2 (-1083 *5 *6 *10 *11 *12)) - (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) - (-4 *12 (-244 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1080)) (-4 *10 (-1080)) + (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) + (-4 *9 (-245 *5 *7)) (-4 *2 (-1084 *5 *6 *10 *11 *12)) + (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) + (-4 *12 (-245 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-1124 *6)) (-5 *1 (-1119 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-1125 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-869)) - (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-665 *6)) - (-5 *1 (-1119 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-870)) + (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-666 *6)) + (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-1122 *6)) (-5 *1 (-1121 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-1123 *6)) (-5 *1 (-1122 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1125 *4 *2)) (-4 *4 (-869)) - (-4 *2 (-1179 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) + (-4 *2 (-1180 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-1187 *6)) (-5 *1 (-1185 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1188 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-1188 *6)) (-5 *1 (-1186 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1187 *6)) (-5 *5 (-1187 *7)) - (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1187 *8)) - (-5 *1 (-1186 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1188 *6)) (-5 *5 (-1188 *7)) + (-4 *6 (-1248)) (-4 *7 (-1248)) (-4 *8 (-1248)) (-5 *2 (-1188 *8)) + (-5 *1 (-1187 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-5 *2 (-1202 *6)) (-5 *1 (-1200 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1203 *5)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-5 *2 (-1203 *6)) (-5 *1 (-1201 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1223 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1261 *5 *7 *9)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1261 *6 *8 *10)) (-5 *1 (-1256 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1206)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1262 *5 *7 *9)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1262 *6 *8 *10)) (-5 *1 (-1257 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1263 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-1265 *6)) (-5 *1 (-1264 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-869)) - (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1187 *6)) - (-5 *1 (-1263 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-870)) + (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1188 *6)) + (-5 *1 (-1264 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1270 *5 *6)) (-14 *5 (-1206)) - (-4 *6 (-1079)) (-4 *8 (-1079)) (-5 *2 (-1270 *7 *8)) - (-5 *1 (-1265 *5 *6 *7 *8)) (-14 *7 (-1206)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1271 *5 *6)) (-14 *5 (-1207)) + (-4 *6 (-1080)) (-4 *8 (-1080)) (-5 *2 (-1271 *7 *8)) + (-5 *1 (-1266 *5 *6 *7 *8)) (-14 *7 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) - (-4 *2 (-1273 *6)) (-5 *1 (-1271 *5 *4 *6 *2)) (-4 *4 (-1273 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) + (-4 *2 (-1274 *6)) (-5 *1 (-1272 *5 *4 *6 *2)) (-4 *4 (-1274 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1282 *5 *7 *9)) (-4 *5 (-1079)) - (-4 *6 (-1079)) (-14 *7 (-1206)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1282 *6 *8 *10)) (-5 *1 (-1277 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1206)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1283 *5 *7 *9)) (-4 *5 (-1080)) + (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1283 *6 *8 *10)) (-5 *1 (-1278 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1207)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1079)) (-4 *6 (-1079)) - (-4 *2 (-1288 *6)) (-5 *1 (-1286 *5 *6 *4 *2)) (-4 *4 (-1288 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) + (-4 *2 (-1289 *6)) (-5 *1 (-1287 *5 *6 *4 *2)) (-4 *4 (-1289 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) - (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1296 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1298 *5)) (-4 *5 (-1248)) + (-4 *6 (-1248)) (-5 *2 (-1298 *6)) (-5 *1 (-1297 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) - (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) - (-5 *1 (-1296 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1298 *5)) + (-4 *5 (-1248)) (-4 *6 (-1248)) (-5 *2 (-1298 *6)) + (-5 *1 (-1297 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-1079)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-1080)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-1320 *3 *4)) - (-4 *4 (-867))))) -(((*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-665 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *6 (-1273 *5)) - (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -3503 *3)))) - (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) - (-4 *7 (-677 (-420 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-665 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *6 (-1273 *5)) - (-5 *2 (-665 (-2 (|:| |poly| *6) (|:| -3503 (-675 *6 (-420 *6)))))) - (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1068 (-48))) - (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) - (-5 *2 (-431 (-1202 (-48)))) (-5 *1 (-448 *4 *5 *3)) - (-4 *3 (-1273 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1170 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) - (-5 *2 (-112)) (-5 *1 (-1171 *5 *6))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-1321 *3 *4)) + (-4 *4 (-868))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955))))) +(((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-934 *3))))) +(((*1 *1 *1) (-4 *1 (-648))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033) (-1233)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) + (-5 *2 (-1203 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) + (-5 *2 (-1203 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) - (-5 *2 (-1297 (-710 (-980 *4)))) (-5 *1 (-191 *4))))) + (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1188 (-981 *4)) (-1188 (-981 *4)))) + (-5 *1 (-1306 *4)) (-4 *4 (-376))))) +(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-361)) (-5 *2 (-1297 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-710 *1)) (-4 *1 (-146)) (-4 *1 (-937)) - (-5 *2 (-1297 *1))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712 (-994 *3))) (-5 *1 (-994 *3)) (-4 *3 (-1130))))) -(((*1 *1) (-5 *1 (-519)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-710 *5))) (-4 *5 (-318)) (-4 *5 (-1079)) - (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1059 *5)) (-5 *4 (-1297 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-4 *6 (-910 *5)) (-5 *2 (-909 *5 *6 (-665 *6))) - (-5 *1 (-911 *5 *6 *4)) (-5 *3 (-665 *6)) (-4 *4 (-632 (-916 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 *3))) (-5 *1 (-911 *5 *3 *4)) - (-4 *3 (-1068 (-1206))) (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-5 *2 (-665 (-305 (-980 *3)))) - (-5 *1 (-911 *5 *3 *4)) (-4 *3 (-1079)) - (-2308 (-4 *3 (-1068 (-1206)))) (-4 *3 (-910 *5)) - (-4 *4 (-632 (-916 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-5 *2 (-913 *5 *3)) (-5 *1 (-911 *5 *3 *4)) - (-2308 (-4 *3 (-1068 (-1206)))) (-2308 (-4 *3 (-1079))) - (-4 *3 (-910 *5)) (-4 *4 (-632 (-916 *5)))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 (-392)) (-5 *1 (-208))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) + (-5 *2 (-666 *4)) (-5 *1 (-1145 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) + (-5 *2 + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1274 *6)) + (-4 *6 (-13 (-376) (-149) (-1069 *4))) (-5 *4 (-578)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3505 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1046 *6 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-710 *4)) (-4 *4 (-1079)) (-5 *1 (-1172 *3 *4)) - (-14 *3 (-792))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-859))) (-5 *1 (-141))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) - (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-254 *5 *6))) (-4 *6 (-465)) - (-5 *2 (-254 *5 *6)) (-14 *5 (-665 (-1206))) (-5 *1 (-649 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) - (-5 *1 (-1015 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-745 *2 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-228))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070)))) - ((*1 *1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1065)) (-5 *1 (-774))))) + (-12 (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4)))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-778))))) +(((*1 *2 *1) + (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) + (-4 *5 (-245 (-3226 *3) (-793))) + (-14 *6 + (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *5)) + (-2 (|:| -2087 *2) (|:| -2764 *5)))) + (-4 *2 (-871)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-978 *4 *5 (-888 *3)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-570))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-376)) (-5 *2 (-666 *3)) (-5 *1 (-974 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *3)) + (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) - (-14 *4 (-665 (-1206))))) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) + (-14 *4 (-666 (-1207))))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) - ((*1 *1 *1) (-4 *1 (-295))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) + ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-5 *1 (-645 *3 *4 *5)) - (-14 *5 (-949)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-5 *1 (-646 *3 *4 *5)) + (-14 *5 (-950)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-13 (-1079) (-738 (-420 (-577))))) - (-4 *5 (-870)) (-5 *1 (-1313 *4 *5 *2)) (-4 *2 (-1318 *5 *4)))) + (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-578))))) + (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1319 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) - (-4 *4 (-738 (-420 (-577)))) (-4 *3 (-870)) (-4 *4 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188)) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) - (-5 *2 - (-665 - (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) - (|:| |wcond| (-665 (-980 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *4)))))))))) - (-5 *1 (-952 *4 *5 *6 *7)) (-4 *7 (-977 *4 *6 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1247)))) + (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) + (-4 *4 (-739 (-421 (-578)))) (-4 *3 (-871)) (-4 *4 (-175))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-314)) (-4 *2 (-1248)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-630 *1))) (-5 *3 (-665 *1)) (-4 *1 (-313)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-305 *1))) (-4 *1 (-313)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313))))) -(((*1 *1) (-5 *1 (-302)))) -(((*1 *2 *1) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) + (-12 (-5 *2 (-666 (-631 *1))) (-5 *3 (-666 *1)) (-4 *1 (-314)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-306 *1))) (-4 *1 (-314)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-306 *1)) (-4 *1 (-314))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-981 (-421 (-578)))) (-5 *4 (-1207)) + (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-666 (-229))) (-5 *1 (-312))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032)))))) + (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) - (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) - (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) - (-5 *4 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) - (-5 *1 (-1050 *3)) (-4 *3 (-1273 (-577))) (-5 *4 (-420 (-577))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-420 (-577))) - (-5 *2 (-665 (-2 (|:| -3854 *5) (|:| -3867 *5)))) (-5 *1 (-1050 *3)) - (-4 *3 (-1273 (-577))) (-5 *4 (-2 (|:| -3854 *5) (|:| -3867 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) - (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-665 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577)))))) - (-5 *1 (-1051 *3)) (-4 *3 (-1273 (-420 (-577)))) - (-5 *4 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-420 (-577))) - (-5 *2 (-665 (-2 (|:| -3854 *4) (|:| -3867 *4)))) (-5 *1 (-1051 *3)) - (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-420 (-577))) - (-5 *2 (-665 (-2 (|:| -3854 *5) (|:| -3867 *5)))) (-5 *1 (-1051 *3)) - (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -3854 *5) (|:| -3867 *5)))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -4422 (-115)) (|:| |arg| (-665 (-916 *3))))) - (-5 *1 (-916 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-916 *4))) - (-5 *1 (-916 *4)) (-4 *4 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1289 *4)) + (-4 *4 (-38 (-421 (-578)))) + (-5 *2 (-1 (-1188 *4) (-1188 *4) (-1188 *4))) (-5 *1 (-1291 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) + (-5 *2 (-2 (|:| -2672 *4) (|:| -2196 *3) (|:| -1886 *3))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1096 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-570)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| -2672 *3) (|:| -2196 *1) (|:| -1886 *1))) + (-4 *1 (-1274 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-376))))) +(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-131)))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) - (-5 *2 (-1202 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *3 *5)) - (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) - (-4 *5 (-677 (-420 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1273 *4)) (-5 *1 (-828 *4 *2 *5 *3)) - (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *5 (-677 *2)) - (-4 *3 (-677 (-420 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710 (-171 (-420 (-577))))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 - (-665 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) - (|:| |outvect| (-665 (-710 (-171 *4))))))) - (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869)))))) -(((*1 *1) (-5 *1 (-844)))) -(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) - ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) - ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) +(((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-559)))) + ((*1 *1 *1) (-4 *1 (-1091)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-229)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) + (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-229)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-392)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) - (-4 *3 (-870)) (-5 *2 (-792))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-341))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) - (-4 *2 (-1288 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) - (-4 *5 (-1273 *4)) (-4 *6 (-745 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) - (-4 *2 (-1288 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-632 *3))) - (-5 *1 (-555 *4 *2)) (-4 *2 (-1288 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) - (-5 *1 (-1183 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1174)) (-5 *3 (-577)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) - (-5 *1 (-913 *4 *2))))) + (-12 (-5 *3 (-793)) (-5 *2 (-421 (-578))) (-5 *1 (-392))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 *5)) (-4 *5 (-375)) (-5 *2 (-665 *6)) - (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-869)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) - (-14 *4 (-792)) (-4 *5 (-174))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-630 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) - (-4 *2 (-13 (-443 *5) (-27) (-1232))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1130))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) - (-4 *3 (-569)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) - (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) - (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *3) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) (-4 *3 (-1068 *2))))) + (-12 (-5 *4 (-1 (-1188 *3))) (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) + (-4 *3 (-38 (-421 (-578)))) (-4 *3 (-1080))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-711 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-578)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) - ((*1 *1 *1) (-4 *1 (-313))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) - ((*1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-772))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) - (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-977 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1079)) (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) - (-4 *1 (-1273 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1079)) - (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *5 (-1079)) - (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) - (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-175)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *3 (-665 (-271))) - (-5 *1 (-269)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) - (-14 *5 (-665 (-1206))) (-4 *6 (-465)) (-5 *2 (-1297 *6)) - (-5 *1 (-649 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1290 *3 *2)) - (-4 *2 (-1288 *3))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-712 (-1134))) (-5 *1 (-302))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1273 (-171 *3)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450))))) -(((*1 *1 *1) (-5 *1 (-549)))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -1827 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1273 *4))))) -(((*1 *2) - (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) - (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792))))) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-841 *3)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-4 *2 (-927 *5)) (-5 *1 (-714 *5 *2 *3 *4)) + (-4 *3 (-386 *2)) (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500))))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-443 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032))))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313)))) - ((*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1130)) (-5 *2 (-112)) - (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) - (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232)))))) + (-12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-5 *2 (-666 *5)) + (-5 *1 (-915 *4 *5)) (-4 *5 (-1248))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *1) (-5 *1 (-625)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-450))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) - (-5 *2 (-1202 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) - (-5 *2 (-1202 *3))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-777))))) -(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-130))))) + (-12 (-4 *3 (-570)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-570)) (-4 *5 (-1080)) + (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) + (-4 *3 (-876 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-4 *1 (-387 *3 *4)) + (-4 *4 (-175))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-1212)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-520)) (-5 *3 (-666 (-1212))) (-5 *1 (-1212))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-669 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) + (-5 *1 (-1210)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-666 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) + (-5 *1 (-1210))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| -2671 *4) (|:| -1636 *3) (|:| -4369 *3))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-1095 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| -2671 *3) (|:| -1636 *1) (|:| -4369 *1))) - (-4 *1 (-1273 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-449))))) -(((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) - (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168))))) + (-12 (-4 *4 (-570)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-172 (-229)) (-172 (-229)))) (-5 *4 (-1125 (-229))) + (-5 *5 (-112)) (-5 *2 (-1300)) (-5 *1 (-266))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032)))))) + (-12 (-5 *3 (-578)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1080)) + (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-978 *2 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-272)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481))))) +(((*1 *2 *1) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *3)) - (-4 *3 (-1273 (-420 *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271))))) + (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1188 (-981 *4)) (-1188 (-981 *4)))) + (-5 *1 (-1306 *4)) (-4 *4 (-376))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-599))))) +(((*1 *1 *1) (-5 *1 (-550)))) +(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-432 *3)) (-4 *3 (-570)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-2 (|:| -2800 *4) (|:| -3683 (-578))))) + (-4 *4 (-1274 (-578))) (-5 *2 (-793)) (-5 *1 (-456 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-1298 *2)) (-4 *5 (-319)) + (-4 *6 (-1023 *5)) (-4 *2 (-13 (-423 *6 *7) (-1069 *6))) + (-5 *1 (-427 *5 *6 *7 *2)) (-4 *7 (-1274 *6))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-443 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1122 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-174))))) + (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1274 (-421 *2))) + (-4 *2 (-1274 *4)) (-5 *1 (-354 *3 *4 *2 *5)) + (-4 *3 (-355 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) + (-4 *4 (-1274 (-421 *2))) (-4 *2 (-1274 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-886))) (-5 *2 (-1303)) (-5 *1 (-1169))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-950)) (-4 *5 (-319)) (-4 *3 (-1274 *5)) + (-5 *2 (-2 (|:| |plist| (-666 *3)) (|:| |modulo| *5))) + (-5 *1 (-474 *5 *3)) (-5 *4 (-666 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3579 (-421 *6)) (|:| |coeff| (-421 *6)))) + (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-421 (-578))) + (-5 *1 (-447 *4 *3)) (-4 *3 (-444 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-444 *5)) + (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-1203 (-421 (-578)))) + (-5 *1 (-447 *5 *3))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-131))) + ((*1 *1) + (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) + (-4 *4 (-175)))) + ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) + ((*1 *1) (-5 *1 (-562))) ((*1 *1) (-5 *1 (-563))) + ((*1 *1) (-4 *1 (-748))) ((*1 *1) (-5 *1 (-1207))) + ((*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-950)))) + ((*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-950)))) + ((*1 *1) (-5 *1 (-1253))) ((*1 *1) (-5 *1 (-1254))) + ((*1 *1) (-5 *1 (-1255))) ((*1 *1) (-5 *1 (-1256)))) (((*1 *2 *3) (-12 (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) - (-254 *4 (-420 (-577))))) - (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) - (-5 *1 (-518 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-391)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-933 (-577))) (-5 *4 (-577)) (-5 *2 (-710 *4)) - (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-710 (-577))) (-5 *1 (-1058 *4)) - (-4 *4 (-1079)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-933 (-577)))) (-5 *4 (-577)) - (-5 *2 (-665 (-710 *4))) (-5 *1 (-1058 *5)) (-4 *5 (-1079)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-665 (-577)))) (-5 *2 (-665 (-710 (-577)))) - (-5 *1 (-1058 *4)) (-4 *4 (-1079))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) - (-4 *5 (-1273 *4)) (-5 *2 (-665 (-420 *5))) (-5 *1 (-1046 *4 *5)) - (-5 *3 (-420 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *3 *5 *6 *7)) - (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) - (-4 *7 (-1247)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-5 *2 (-1 *6 *5)) (-5 *1 (-727 *3 *5 *6)) - (-4 *3 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))))) -(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-195))))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1274 *3))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-319)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2847 *1))) + (-4 *1 (-319))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-306 *2)) (-4 *2 (-748)) (-4 *2 (-1248))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1248)) (-5 *2 (-666 *1)) (-4 *1 (-1041 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-578)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-376)) (-4 *2 (-1274 *4)) + (-5 *1 (-951 *4 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) + (-14 *3 (-666 (-1207)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) + (-5 *2 + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) +(((*1 *2 *3) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-575)) (-5 *3 (-578))))) +(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-563)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-792)) (-4 *2 (-1130)) - (-5 *1 (-699 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1131)) + (-5 *1 (-700 *2))))) +(((*1 *1) (-5 *1 (-845)))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1248)))) ((*1 *1 *2) - (-12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (-12 (-5 *2 (-981 (-392))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (-12 (-5 *2 (-421 (-981 (-392)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (-12 (-5 *2 (-328 (-392))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (-12 (-5 *2 (-981 (-578))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (-12 (-5 *2 (-421 (-981 (-578)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (-12 (-5 *2 (-328 (-578))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 *2)) - (-14 *4 (-665 *2)) (-4 *5 (-400)))) + (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 *2)) + (-14 *4 (-666 *2)) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) - (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))))) - ((*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) + (-12 (-5 *2 (-328 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) + (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))))) + ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-981 (-578))))) (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-981 (-392))))) (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-711 (-981 (-578)))) (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-711 (-981 (-392)))) (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-711 (-328 (-578)))) (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-711 (-328 (-392)))) (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-421 (-981 (-578)))) (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-421 (-981 (-392)))) (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-981 (-578))) (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-981 (-392))) (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-328 (-578))) (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-328 (-392))) (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 (-421 (-981 (-578))))) (-4 *1 (-455)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 (-421 (-981 (-392))))) (-4 *1 (-455)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 (-981 (-578)))) (-4 *1 (-455)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 (-981 (-392)))) (-4 *1 (-455)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 (-328 (-578)))) (-4 *1 (-455)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 (-328 (-392)))) (-4 *1 (-455)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) (|:| |mdnia| - (-2 (|:| |fn| (-327 (-228))) - (|:| -1641 (-665 (-1124 (-864 (-228))))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) - (-5 *1 (-790)))) + (-2 (|:| |fn| (-328 (-229))) + (|:| -2246 (-666 (-1125 (-865 (-229))))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) + (-5 *1 (-791)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *1 (-829)))) + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *1 (-830)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) - (|:| |lb| (-665 (-864 (-228)))) - (|:| |cf| (-665 (-327 (-228)))) - (|:| |ub| (-665 (-864 (-228)))))) + (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) + (|:| |lb| (-666 (-865 (-229)))) + (|:| |cf| (-666 (-328 (-229)))) + (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-665 (-327 (-228)))) - (|:| -2199 (-665 (-228))))))) - (-5 *1 (-862)))) + (-2 (|:| |lfn| (-666 (-328 (-229)))) + (|:| -2199 (-666 (-229))))))) + (-5 *1 (-863)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-665 (-327 (-228)))) + (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| - (-665 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-792)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) - (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) - (|:| |tol| (-228)))) - (-5 *1 (-924)))) + (-666 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) + (|:| |grid| (-793)) (|:| |boundaryType| (-578)) + (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) + (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) + (|:| |tol| (-229)))) + (-5 *1 (-925)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *1 (-1006 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1248)))) ((*1 *1 *2) - (-2229 - (-12 (-5 *2 (-980 *3)) - (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) - (-2308 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870))) - (-12 (-5 *2 (-980 *3)) - (-12 (-2308 (-4 *3 (-558))) (-2308 (-4 *3 (-38 (-420 (-577))))) - (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870))) - (-12 (-5 *2 (-980 *3)) - (-12 (-2308 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) - (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870))))) + (-2230 + (-12 (-5 *2 (-981 *3)) + (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) + (-2309 (-4 *3 (-38 (-578)))) (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871))) + (-12 (-5 *2 (-981 *3)) + (-12 (-2309 (-4 *3 (-559))) (-2309 (-4 *3 (-38 (-421 (-578))))) + (-4 *3 (-38 (-578))) (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871))) + (-12 (-5 *2 (-981 *3)) + (-12 (-2309 (-4 *3 (-1023 (-578)))) (-4 *3 (-38 (-421 (-578)))) + (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871))))) ((*1 *1 *2) - (-2229 - (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) - (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) - (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) - (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) + (-2230 + (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) + (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) + (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) + (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) ((*1 *1 *2) - (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-373 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-670 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1079)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) - ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-971 (-228))) (-5 *2 (-228)) (-5 *1 (-1243)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1079))))) + (-12 (-5 *2 (-981 (-421 (-578)))) (-4 *1 (-1096 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-339 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-578)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1248)) (-14 *4 *2)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1274 (-421 *2))) (-5 *2 (-578)) (-5 *1 (-942 *4 *3)) + (-4 *3 (-1274 (-421 *4)))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) + (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-781))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6) + (|:| |c1| (-421 *6)) (|:| |c2| (-421 *6)) (|:| -4209 *6))) + (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-724 *3)) - (-4 *3 (-632 (-549))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1206)) (-5 *2 (-1 (-228) (-228) (-228))) - (-5 *1 (-724 *3)) (-4 *3 (-632 (-549)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) - (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1099 *7 *8 *9 *3 *4)) (-4 *4 (-1101 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *3 (-1095 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1099 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-792)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-814)) - (-4 *9 (-870)) (-4 *3 (-1095 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1175 *7 *8 *9 *3 *4)) (-4 *4 (-1139 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-792)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *3 (-1095 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1175 *6 *7 *8 *3 *4)) (-4 *4 (-1139 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *4))))))) - (-5 *3 (-665 *7)) (-4 *4 (-13 (-318) (-148))) - (-4 *7 (-977 *4 *6 *5)) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1104)))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-378 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1105)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) - (-4 *2 (-708 *3 *4 *5))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-303)))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) - (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) - (|:| |args| (-665 (-885))))) - (-5 *1 (-1206))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-669 *3)) (-4 *3 (-1079)) - (-5 *1 (-735 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-857 *3))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) - (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) - (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-665 *7) (-665 *7))) (-5 *2 (-665 *7)) - (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) - (-4 *6 (-870)) (-5 *1 (-1007 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) - (-5 *1 (-777))))) -(((*1 *1) (-5 *1 (-622)))) + (-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) + (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) + (|:| |args| (-666 (-886))))) + (-5 *1 (-1207))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1122 (-864 *3))) (-4 *3 (-13 (-1232) (-987) (-29 *5))) - (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1122 (-864 *3))) (-5 *5 (-1188)) - (-4 *3 (-13 (-1232) (-987) (-29 *6))) - (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1122 (-864 (-327 *5)))) - (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-420 (-980 *6))) (-5 *4 (-1122 (-864 (-327 *6)))) - (-5 *5 (-1188)) - (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1122 (-864 (-420 (-980 *5))))) (-5 *3 (-420 (-980 *5))) - (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-864 (-327 *5))) (|:| |f2| (-665 (-864 (-327 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1122 (-864 (-420 (-980 *6))))) (-5 *5 (-1188)) - (-5 *3 (-420 (-980 *6))) - (-4 *6 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-3 (|:| |f1| (-864 (-327 *6))) (|:| |f2| (-665 (-864 (-327 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-3 *3 (-665 *3))) (-5 *1 (-441 *5 *3)) - (-4 *3 (-13 (-1232) (-987) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) - (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) - (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) - (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1124 (-864 (-391)))) - (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) - (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-1124 (-864 (-391))))) - (-5 *5 (-391)) (-5 *6 (-1093)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) - (-5 *5 (-1188)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1122 (-864 (-391)))) - (-5 *5 (-1206)) (-5 *2 (-1065)) (-5 *1 (-578)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) - (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-3 (-327 *5) (-665 (-327 *5)))) (-5 *1 (-602 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-761 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)) - (-4 *3 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1206)) (-5 *1 (-980 *3)) (-4 *3 (-38 (-420 (-577)))) - (-4 *3 (-1079)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-4 *2 (-870)) - (-5 *1 (-1156 *3 *2 *4)) (-4 *4 (-977 *3 (-544 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) - (-5 *1 (-1190 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1203 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-38 (-420 (-577)))) - (-4 *3 (-1079)))) - ((*1 *1 *1 *2) - (-2229 - (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) - (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) - (-4 *3 (-38 (-420 (-577)))))) - (-12 (-5 *2 (-1206)) (-4 *1 (-1257 *3)) (-4 *3 (-1079)) - (-12 (|has| *3 (-15 -2948 ((-665 *2) *3))) - (|has| *3 (-15 -3491 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-570) (-149))) (-5 *2 (-666 *3)) + (-5 *1 (-1268 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501))))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *2 (-1303)) + (-5 *1 (-447 *3 *4)) (-4 *4 (-444 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1274 *3)) (-5 *1 (-413 *3 *2)) + (-4 *3 (-13 (-376) (-149)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-950)) (-4 *3 (-376)) + (-14 *4 (-1024 *2 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-2229 - (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) - (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) - (-4 *3 (-38 (-420 (-577)))))) - (-12 (-5 *2 (-1206)) (-4 *1 (-1278 *3)) (-4 *3 (-1079)) - (-12 (|has| *3 (-15 -2948 ((-665 *2) *3))) - (|has| *3 (-15 -3491 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) + (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1274 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1282 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2229 - (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) - (-12 (-4 *3 (-29 (-577))) (-4 *3 (-987)) (-4 *3 (-1232)) - (-4 *3 (-38 (-420 (-577)))))) - (-12 (-5 *2 (-1206)) (-4 *1 (-1288 *3)) (-4 *3 (-1079)) - (-12 (|has| *3 (-15 -2948 ((-665 *2) *3))) - (|has| *3 (-15 -3491 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) + (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) ((*1 *1 *1) - (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079)) (-4 *2 (-38 (-420 (-577)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1079)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1079)) - (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) - ((*1 *1 *1) (-4 *1 (-558))) - ((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-840 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1244 *3)) (-4 *3 (-1247)))) + (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + ((*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + ((*1 *1 *1) (|partial| -4 *1 (-744))) + ((*1 *1 *1) (|partial| -4 *1 (-748))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) + (-4 *2 (-1274 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1080)) + (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) + (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) + ((*1 *1 *1) (-4 *1 (-559))) + ((*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1248)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1245 *3)) (-4 *3 (-1248)))) ((*1 *2 *1) - (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) - (-4 *2 (-1079))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *3 (-980 (-577))) - (-5 *1 (-341)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1122 (-980 (-577)))) (-5 *1 (-341))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1033)) + (-4 *2 (-1080))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-665 - (-2 - (|:| -3171 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (|:| -2753 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-228))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1641 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-572)))) - ((*1 *2 *1) - (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) - (-5 *2 (-665 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-549))))) + (|partial| -12 (-5 *2 (-578)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2))))) +(((*1 *1) (-5 *1 (-229))) ((*1 *1) (-5 *1 (-392)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-272)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-272)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-272))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-666 (-793))) (-5 *1 (-1000 *4 *3)) + (-4 *3 (-1274 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3854 (-420 (-577))) (|:| -3867 (-420 (-577))))) - (-5 *2 (-420 (-577))) (-5 *1 (-1050 *4)) (-4 *4 (-1273 (-577)))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1130)) - (-4 *2 (-1247))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-710 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) - (-5 *7 (-710 (-577))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-774))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1240 *5 *6 *7 *8)) (-4 *5 (-569)) - (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) - (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) - (-4 *3 (-875 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1264 *3)) (-4 *3 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-2 (|:| -2799 *4) (|:| -2776 (-577))))) - (-4 *4 (-1273 (-577))) (-5 *2 (-758 (-792))) (-5 *1 (-455 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-431 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1079)) - (-5 *2 (-758 (-792))) (-5 *1 (-457 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) + (-12 (-5 *2 (-666 (-1203 (-578)))) (-5 *1 (-194)) (-5 *3 (-578))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-432 *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-1080)) (-5 *2 (-666 *6)) (-5 *1 (-458 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1274 (-421 (-578)))) (-5 *1 (-942 *3 *2)) + (-4 *2 (-1274 (-421 *3)))))) +(((*1 *1 *1) (-4 *1 (-1175)))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229))) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-772))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-792)) (-5 *1 (-804 *2)) (-4 *2 (-38 (-420 (-577)))) - (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) - (-5 *1 (-192))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-572))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-814)) - (-4 *3 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *5 (-569)) - (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) + (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-125)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-666 (-306 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-266))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-328 (-229))) (-5 *1 (-278))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408))))) +(((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) + ((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (|has| *1 (-6 -4491)) (-4 *1 (-418)))) + ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950)))) + ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-1188 (-578)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) + (-4 *4 (-175)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-814)) - (-4 *3 - (-13 (-870) - (-10 -8 (-15 -3341 ((-1206) $)) - (-15 -3966 ((-3 $ "failed") (-1206)))))) - (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3)))) + (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)) + (-4 *2 (-444 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *6)) - (-4 *6 - (-13 (-870) - (-10 -8 (-15 -3341 ((-1206) $)) - (-15 -3966 ((-3 $ "failed") (-1206)))))) - (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) - (-4 *2 (-977 (-980 *4) *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) - (-5 *2 - (-3 (|:| |overq| (-1202 (-420 (-577)))) - (|:| |overan| (-1202 (-48))) (|:| -3848 (-112)))) - (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5))))) + (-12 (-5 *3 (-1123 *2)) (-4 *2 (-444 *4)) (-4 *4 (-570)) + (-5 *1 (-160 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-175))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *3 (-666 (-898))) + (-5 *4 (-666 (-950))) (-5 *5 (-666 (-272))) (-5 *1 (-482)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *3 (-666 (-898))) + (-5 *4 (-666 (-950))) (-5 *1 (-482)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-482)))) + ((*1 *1 *1) (-5 *1 (-482)))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-370 *3)) (-4 *3 (-362))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 - (-2 (|:| |solns| (-665 *5)) - (|:| |maps| (-665 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1158 *3 *5)) (-4 *3 (-1273 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-538))))) + (-12 (-5 *3 (-843)) (-5 *4 (-52)) (-5 *2 (-1303)) (-5 *1 (-853))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-914 *4 *5)) (-5 *3 (-914 *4 *6)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-688 *5)) (-5 *1 (-910 *4 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233)))) + ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-631 *3)) (-4 *3 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) - (-5 *2 (-710 (-327 (-228)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-4 *6 (-926 *5)) (-5 *2 (-710 *6)) - (-5 *1 (-713 *5 *6 *3 *4)) (-4 *3 (-385 *6)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-665 (-980 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-665 (-980 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-665 (-980 *3))))) - ((*1 *2) - (-12 (-5 *2 (-665 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 (-466 *4 *5 *6 *7))) (-5 *2 (-665 (-980 *4))) - (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) - (-14 *5 (-949)) (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4)))))) + (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-917 (-578)))) + (-4 *5 (-911 (-578))) + (-4 *5 (-13 (-1069 (-578)) (-466) (-660 (-578)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-581 *5 *3)) (-4 *3 (-648)) + (-4 *3 (-13 (-27) (-1233) (-444 *5)))))) (((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-660 *3 *4)) - (-14 *4 (-665 (-1206)))))) + (-12 + (-5 *2 + (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3)) + (|:| |genIdeal| (-518 *3 *4 *5 *6)))) + (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-116))))) (((*1 *1 *2) - (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) - (-4 *3 (-13 (-417) (-1232))))) - ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-980 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) -(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) -(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-846))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-870)) (-5 *1 (-1217 *3))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) - (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-665 (-792))))) - ((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) - (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-665 (-792)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) - (-5 *2 (-710 *3))))) + (-12 (-5 *2 (-666 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) + (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-666 *1)) (-5 *3 (-666 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) + (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1203 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) + (-5 *2 (-666 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1203 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-981 *1)) (-4 *1 (-27)) (-5 *2 (-666 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *2 (-666 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-570)) (-5 *2 (-666 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-328 (-229))) (-5 *4 (-666 (-1207))) + (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-1188 (-229))) (-5 *1 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) + (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) + (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-328 (-229))) (-5 *2 (-328 (-392))) (-5 *1 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-116))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) - (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) + (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1248)) + (-4 *4 (-386 *2)) (-4 *5 (-386 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) - (-4 *2 (-1247))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) - (-4 *3 (-1130))))) -(((*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-665 *7))) (-4 *1 (-1240 *4 *5 *6 *7)) - (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1054 *3)) - (-4 *3 (-13 (-869) (-375) (-1052))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) - (-4 *3 (-1273 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1098 *2 *3)) (-4 *2 (-13 (-869) (-375))) - (-4 *3 (-1273 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-792)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) + (-4 *2 (-1248))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1080)) (-4 *3 (-1274 *4)) (-4 *2 (-1289 *4)) + (-5 *1 (-1292 *4 *3 *5 *2)) (-4 *5 (-678 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-666 *1)) (-4 *1 (-949))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-328 (-229)))) (-5 *2 (-112)) (-5 *1 (-278)))) + ((*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-112)) (-5 *1 (-278)))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *1 *2) + (-12 (-5 *2 (-657 *3)) (-14 *3 (-666 (-1207))) (-5 *1 (-218 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) - (-4 *4 (-385 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1172 *2 *3)) (-14 *2 (-792)) (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-577))) - (-5 *2 (-710 (-577))) (-5 *1 (-1140))))) + (-12 (-5 *2 (-218 *3)) (-14 *3 (-666 (-1207))) (-5 *1 (-657 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1131)) (-5 *1 (-996 *3))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) + ((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721))))) +(((*1 *2) + (-12 (-4 *4 (-376)) (-5 *2 (-950)) (-5 *1 (-340 *3 *4)) + (-4 *3 (-341 *4)))) + ((*1 *2) + (-12 (-4 *4 (-376)) (-5 *2 (-855 (-950))) (-5 *1 (-340 *3 *4)) + (-4 *3 (-341 *4)))) + ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-950)))) + ((*1 *2) + (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-855 (-950)))))) +(((*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-713 (-1166))) (-5 *1 (-1182))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4500)) (-4 *1 (-502 *3)) - (-4 *3 (-1247))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1079)) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *4)) (-5 *1 (-909 *3 *4 *5)) - (-4 *3 (-1130)) (-4 *5 (-687 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-994 *4)) (-4 *4 (-1130)) (-5 *2 (-1132 *4)) - (-5 *1 (-995 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4501)) (-4 *1 (-503 *3)) + (-4 *3 (-1248))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-871)) (-5 *4 (-666 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-666 *4)))) + (-5 *1 (-1218 *6)) (-5 *5 (-666 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) + (-12 (-5 *3 (-1 (-432 *4) *4)) (-4 *4 (-570)) (-5 *2 (-432 *4)) + (-5 *1 (-433 *4)))) + ((*1 *1 *1) (-5 *1 (-955))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) + ((*1 *1 *1) (-5 *1 (-956))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) + (-5 *4 (-421 (-578))) (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) + (-5 *1 (-1051 *3)) (-4 *3 (-1274 (-578))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) + (-5 *4 (-421 (-578))) (-5 *1 (-1052 *3)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578))))) + (-5 *1 (-1052 *3)) (-4 *3 (-1274 (-421 (-578)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) + (-4 *3 (-1274 *2))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-112)) (-5 *6 (-711 (-229))) + (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-666 (-495 *4 *5))) (-5 *3 (-888 *4)) + (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) + (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) + (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-666 (-631 *3))) + (|:| |vals| (-666 *3)))) + (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5)))))) +(((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1203 (-981 *6))) (-4 *6 (-570)) + (-4 *2 (-978 (-421 (-981 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) + (-4 *5 (-815)) + (-4 *4 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)))))))) +(((*1 *1) (-4 *1 (-362)))) +(((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1125 (-229)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-432 (-1203 *1))) (-5 *1 (-328 *4)) (-5 *3 (-1203 *1)) + (-4 *4 (-466)) (-4 *4 (-570)) (-4 *4 (-1131)))) + ((*1 *2 *3) + (-12 (-4 *1 (-938)) (-5 *2 (-432 (-1203 *1))) (-5 *3 (-1203 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1274 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) + (-5 *1 (-123 *3)) (-4 *3 (-871)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) + (-12 (-5 *2 (-600 *4)) (-4 *4 (-13 (-29 *3) (-1233))) + (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-597 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-600 (-421 (-981 *3)))) + (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *1 (-603 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3086 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1298 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) + (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-666 (-711 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1298 (-1298 *5))) (-4 *5 (-376)) (-4 *5 (-1080)) + (-5 *2 (-666 (-666 (-711 *5)))) (-5 *1 (-1060 *5)) + (-5 *3 (-666 (-711 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-666 *1)) (-4 *1 (-1175)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-666 *1)) (-4 *1 (-1175))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) + (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) + (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 (-1311 *4 *5 *6 *7))) + (-5 *1 (-1311 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-570)) + (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-666 (-1311 *6 *7 *8 *9))) + (-5 *1 (-1311 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-666 (-495 *5 *6))) (-5 *4 (-888 *5)) + (-14 *5 (-666 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) + (-4 *6 (-466)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-495 *5 *6))) (-5 *4 (-888 *5)) + (-14 *5 (-666 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) + (-4 *6 (-466))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1188)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *4 (-1095 *6 *7 *8)) (-5 *2 (-1302)) - (-5 *1 (-797 *6 *7 *8 *4 *5)) (-4 *5 (-1101 *6 *7 *8 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -2671 *3) (|:| |gap| (-792)) (|:| -1636 (-803 *3)) - (|:| -4369 (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) + (-1018 (-421 (-578)) (-888 *3) (-247 *4 (-793)) + (-255 *3 (-421 (-578))))) + (-14 *3 (-666 (-1207))) (-14 *4 (-793)) (-5 *1 (-1017 *3 *4))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-631 *4)) (-5 *6 (-1203 *4)) + (-4 *4 (-13 (-444 *7) (-27) (-1233))) + (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 - (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -1636 *1) - (|:| -4369 *1))) - (-4 *1 (-1095 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-631 *4)) (-5 *6 (-421 (-1203 *4))) + (-4 *4 (-13 (-444 *7) (-27) (-1233))) + (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) (-5 *2 - (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -1636 *1) - (|:| -4369 *1))) - (-4 *1 (-1095 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *5 (-1130))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-776))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1247)) (-5 *2 (-1302))))) -(((*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) - (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-937)) (-4 *5 (-814)) - (-4 *6 (-870)) (-5 *1 (-934 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) - (-4 *5 (-1273 *4)) (-4 *4 (-937)) (-5 *1 (-935 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-665 *5)) (-4 *5 (-870)) (-5 *1 (-1217 *5))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-710 *4)) (-4 *4 (-375)) - (-5 *1 (-688 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-375)) - (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4500)))) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500)))) - (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-665 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) - (-5 *1 (-835 *2 *3)) (-4 *3 (-677 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-574 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2079 (-665 (-885))) (|:| -1658 (-665 (-885))) - (|:| |presup| (-665 (-885))) (|:| -3523 (-665 (-885))) - (|:| |args| (-665 (-885))))) - (-5 *1 (-1206)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-1206))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) - (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) - (-4 *2 (-708 *3 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1130)) (-5 *2 (-112)) - (-5 *1 (-1248 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228))))) - ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-302))) - ((*1 *1) (-5 *1 (-885))) - ((*1 *1) - (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) - (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1115))) - ((*1 *1) - (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34))))) - ((*1 *1) (-5 *1 (-1209))) ((*1 *1) (-5 *1 (-1210)))) -(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1130)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-398 *3))))) + (-2 (|:| -4223 (-666 (-886))) (|:| -2424 (-666 (-886))) + (|:| |presup| (-666 (-886))) (|:| -1506 (-666 (-886))) + (|:| |args| (-666 (-886))))) + (-5 *1 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-666 (-886)))) (-5 *1 (-1207))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-328 *5))) + (-5 *1 (-1160 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-666 (-666 (-328 *5)))) + (-5 *1 (-1160 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1125 (-229))))) + ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1125 (-229)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-666 *3)) (-5 *1 (-1000 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) + (-14 *5 (-1207)) (-5 *2 (-578)) (-5 *1 (-1145 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1274 *9)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-319)) + (-4 *10 (-978 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-666 (-1203 *10))) + (|:| |dterm| + (-666 (-666 (-2 (|:| -3262 (-793)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-666 *6)) (|:| |nlead| (-666 *10)))) + (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1203 *10)) (-5 *4 (-666 *6)) + (-5 *5 (-666 *10))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3648 *3) (|:| -2764 (-793)))) (-5 *1 (-601 *3)) + (-4 *3 (-559))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-174))))) (((*1 *1 *2) - (-12 (-5 *2 (-949)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-375)) (-14 *5 (-1023 *3 *4))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-916 *6))) - (-5 *5 (-1 (-913 *6 *8) *8 (-916 *6) (-913 *6 *8))) (-4 *6 (-1130)) - (-4 *8 (-13 (-1079) (-632 (-916 *6)) (-1068 *7))) - (-5 *2 (-913 *6 *8)) (-4 *7 (-1079)) (-5 *1 (-969 *6 *7 *8))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-1206)) - (-4 *2 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-287 *5 *2))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-950)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-376)) (-14 *5 (-1024 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-711 (-421 (-578)))) (-5 *2 (-666 *4)) (-5 *1 (-801 *4)) + (-4 *4 (-13 (-376) (-870)))))) +(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1298 *1)) (-4 *1 (-380 *3))))) +(((*1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-769))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) + (-5 *7 (-711 (-578))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1125 (-229))))) + ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1125 (-229)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-685 *4 *5))) - (-5 *1 (-645 *4 *5 *6)) (-4 *5 (-13 (-174) (-738 (-420 (-577))))) - (-14 *6 (-949))))) -(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1124 (-228))))) - ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-1124 (-228)))))) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-466)) + (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-666 (-328 (-229)))) (-5 *3 (-229)) (-5 *2 (-112)) + (-5 *1 (-213))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) + (-5 *2 (-666 (-666 (-666 (-972 *3)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) - (-4 *3 (-1130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1170 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) - (-5 *1 (-1171 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-665 (-1170 *3 *4))) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-710 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1273 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-745 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 (-420 (-980 *5)))) (-5 *4 (-1206)) - (-5 *2 (-980 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465)))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 (-420 (-980 *4)))) (-5 *2 (-980 *4)) - (-5 *1 (-303 *4)) (-4 *4 (-465)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 (-171 (-420 (-577))))) - (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *4)) - (-4 *4 (-13 (-375) (-869))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *4 (-1206)) - (-5 *2 (-980 (-171 (-420 (-577))))) (-5 *1 (-785 *5)) - (-4 *5 (-13 (-375) (-869))))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-980 (-420 (-577)))) - (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *4 (-1206)) - (-5 *2 (-980 (-420 (-577)))) (-5 *1 (-800 *5)) - (-4 *5 (-13 (-375) (-869)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-323)) (-5 *1 (-307)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-307)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-1188))) (-5 *3 (-1188)) (-5 *2 (-323)) - (-5 *1 (-307))))) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577)))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) - (-5 *2 (-1065)) (-5 *1 (-770))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-792)) (-5 *1 (-215 *4 *2)) (-14 *4 (-949)) - (-4 *2 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) -(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) + (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-431 *4))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-578)) (-5 *3 (-950)) (-5 *1 (-721)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-376)) (-5 *1 (-1009 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-766 *3)) (-4 *3 (-175))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-324)) (-5 *1 (-308)))) ((*1 *2 *3) - (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) (-5 *2 (-112)) - (-5 *1 (-369 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-324)) (-5 *1 (-308)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-324)) (-5 *1 (-308)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-1189))) (-5 *3 (-1189)) (-5 *2 (-324)) + (-5 *1 (-308))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-666 *2) *2 *2 *2)) (-4 *2 (-1131)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (-5 *1 (-103 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) + (-5 *2 (-2 (|:| -2672 (-578)) (|:| |var| (-631 *1)))) + (-4 *1 (-444 *3))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-950)) + (-4 *2 (-1131))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) +(((*1 *2 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) + (-5 *1 (-463 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-841 *3)) (-4 *3 (-871))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) + (-5 *2 (-578)) (-5 *1 (-1145 *4 *5))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) + (-5 *2 (-1066)) (-5 *1 (-778))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) - ((*1 *1 *1) (-4 *1 (-869))) - ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)) (-4 *2 (-1090)))) - ((*1 *1 *1) (-4 *1 (-1090))) ((*1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-221)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-452)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-1145)))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 *5 *3)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) + (-4 *3 (-168 *6)) (-4 (-981 *6) (-911 *5)) + (-4 *6 (-13 (-911 *5) (-175))) (-5 *1 (-181 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-914 *4 *1)) (-5 *3 (-917 *4)) (-4 *1 (-911 *4)) + (-4 *4 (-1131)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 *5 *6)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) + (-4 *6 (-13 (-1131) (-1069 *3))) (-4 *3 (-911 *5)) + (-5 *1 (-960 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1131)) + (-4 *3 (-13 (-444 *6) (-633 *4) (-911 *5) (-1069 (-631 $)))) + (-5 *4 (-917 *5)) (-4 *6 (-13 (-570) (-911 *5))) + (-5 *1 (-961 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 (-578) *3)) (-5 *4 (-917 (-578))) (-4 *3 (-559)) + (-5 *1 (-962 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 *5 *6)) (-5 *3 (-631 *6)) (-4 *5 (-1131)) + (-4 *6 (-13 (-1131) (-1069 (-631 $)) (-633 *4) (-911 *5))) + (-5 *4 (-917 *5)) (-5 *1 (-963 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-910 *5 *6 *3)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) + (-4 *6 (-911 *5)) (-4 *3 (-688 *6)) (-5 *1 (-964 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-914 *6 *3) *8 (-917 *6) (-914 *6 *3))) + (-4 *8 (-871)) (-5 *2 (-914 *6 *3)) (-5 *4 (-917 *6)) + (-4 *6 (-1131)) (-4 *3 (-13 (-978 *9 *7 *8) (-633 *4))) + (-4 *7 (-815)) (-4 *9 (-13 (-1080) (-911 *6))) + (-5 *1 (-965 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1131)) + (-4 *3 (-13 (-978 *8 *6 *7) (-633 *4))) (-5 *4 (-917 *5)) + (-4 *7 (-911 *5)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *8 (-13 (-1080) (-911 *5))) (-5 *1 (-965 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 *5 *3)) (-4 *5 (-1131)) (-4 *3 (-1023 *6)) + (-4 *6 (-13 (-570) (-911 *5) (-633 *4))) (-5 *4 (-917 *5)) + (-5 *1 (-968 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-914 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-917 *5)) + (-4 *5 (-1131)) (-5 *1 (-969 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-666 (-917 *7))) (-5 *5 (-1 *9 (-666 *9))) + (-5 *6 (-1 (-914 *7 *9) *9 (-917 *7) (-914 *7 *9))) (-4 *7 (-1131)) + (-4 *9 (-13 (-1080) (-633 (-917 *7)) (-1069 *8))) + (-5 *2 (-914 *7 *9)) (-5 *3 (-666 *9)) (-4 *8 (-1080)) + (-5 *1 (-970 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-222)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-453)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1146)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1211))) (-5 *3 (-1211)) (-5 *1 (-1148))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247))))) + (-12 (-5 *2 (-666 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1149))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-174)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1005))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-386 *2)) + (-4 *5 (-386 *2)) (-4 *2 (-1248)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-4 *2 (-1130)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-949)))) + (-12 (-5 *3 (-793)) (-4 *2 (-1131)) (-5 *1 (-216 *4 *2)) + (-14 *4 (-950)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) + (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1248)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3867 *6) (|:| |sol?| (-112))) (-577) - *6)) - (-4 *6 (-375)) (-4 *7 (-1273 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) - (-2 (|:| -1827 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1188)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-271)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549))))) + (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) + (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-420 (-980 (-577))))) (-5 *4 (-665 (-1206))) - (-5 *2 (-665 (-665 *5))) (-5 *1 (-392 *5)) - (-4 *5 (-13 (-869) (-375))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-869) (-375)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1206)) - (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391))))) -(((*1 *2 *2) (-12 (-5 *2 (-1187 (-665 (-949)))) (-5 *1 (-907))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) + (-12 (-5 *4 (-1 (-666 *7) *7 (-1203 *7))) (-5 *5 (-1 (-432 *7) *7)) + (-4 *7 (-1274 *6)) (-4 *6 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-5 *2 (-666 (-2 (|:| |frac| (-421 *7)) (|:| -3505 *3)))) + (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-678 *7)) + (-4 *8 (-678 (-421 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) - (|:| |c2| (-420 *5)) (|:| |deg| (-792)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) + (-666 (-2 (|:| |frac| (-421 *6)) (|:| -3505 (-676 *6 (-421 *6)))))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-421 *6)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-5 *2 (-793)))) + ((*1 *2 *1) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) + (-5 *2 (-793)))) + ((*1 *2 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-748))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1189)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-272)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3) (-12 (-5 *3 (-550)) (-5 *1 (-549 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-550))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-306 *2)) (-4 *2 (-748)) (-4 *2 (-1248))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *2 (-666 (-229))) + (-5 *1 (-482))))) +(((*1 *2) + (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) + ((*1 *1 *1) (|partial| -4 *1 (-744)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) - (-4 *4 (-1273 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) - (-5 *2 - (-2 (|:| |zeros| (-1187 (-228))) (|:| |ones| (-1187 (-228))) - (|:| |singularities| (-1187 (-228))))) - (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1611 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) - (-5 *1 (-1190 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) - (-14 *4 (-1206)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-494 *4 *5)) - (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206)))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) + (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-2 (|:| |goodPols| (-666 *8)) (|:| |badPols| (-666 *8)))) + (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-666 *8))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))) +(((*1 *1) (-5 *1 (-573)))) +(((*1 *1 *1) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-666 (-793)))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-420 *5)) (-4 *4 (-1251)) (-4 *5 (-1273 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1273 *3)))) + (-12 (-5 *3 (-421 *5)) (-4 *4 (-1252)) (-4 *5 (-1274 *4)) + (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1274 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1208 (-420 (-577)))) (-5 *2 (-420 (-577))) - (-5 *1 (-192)))) + (-12 (-5 *3 (-1209 (-421 (-578)))) (-5 *2 (-421 (-578))) + (-5 *1 (-193)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-710 (-327 (-228)))) (-5 *3 (-665 (-1206))) - (-5 *4 (-1297 (-327 (-228)))) (-5 *1 (-207)))) + (-12 (-5 *2 (-711 (-328 (-229)))) (-5 *3 (-666 (-1207))) + (-5 *4 (-1298 (-328 (-229)))) (-5 *1 (-208)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1130)) - (-4 *3 (-1247)) (-5 *1 (-305 *3)))) + (-12 (-5 *2 (-666 (-306 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1131)) + (-4 *3 (-1248)) (-5 *1 (-306 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-320 *2)) (-4 *2 (-1130)) (-4 *2 (-1247)) - (-5 *1 (-305 *2)))) + (-12 (-4 *2 (-321 *2)) (-4 *2 (-1131)) (-4 *2 (-1248)) + (-5 *1 (-306 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) + (-12 (-5 *2 (-116)) (-5 *3 (-1 *1 *1)) (-4 *1 (-314)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-116)) (-5 *3 (-1 *1 (-666 *1))) (-4 *1 (-314)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 (-665 *1)))) - (-4 *1 (-313)))) + (-12 (-5 *2 (-666 (-116))) (-5 *3 (-666 (-1 *1 (-666 *1)))) + (-4 *1 (-314)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-666 (-116))) (-5 *3 (-666 (-1 *1 *1))) (-4 *1 (-314)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-314)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1 *1 (-665 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-666 *1))) (-4 *1 (-314)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 (-665 *1)))) - (-4 *1 (-313)))) + (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-1 *1 (-666 *1)))) + (-4 *1 (-314)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-1 *1 *1))) (-4 *1 (-313)))) + (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-1 *1 *1))) (-4 *1 (-314)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-666 (-306 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-306 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1208 (-420 (-577)))) - (-5 *1 (-321 *2)) (-4 *2 (-38 (-420 (-577)))))) + (-12 (-5 *3 (-1 *2 (-578))) (-5 *4 (-1209 (-421 (-578)))) + (-5 *1 (-322 *2)) (-4 *2 (-38 (-421 (-578)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *1)) (-4 *1 (-386 *4 *5)) - (-4 *4 (-870)) (-4 *5 (-174)))) + (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 *1)) (-4 *1 (-387 *4 *5)) + (-4 *4 (-871)) (-4 *5 (-175)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) + (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-1080)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-792)) (-5 *4 (-1 *1 (-665 *1))) - (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-1079)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-666 *1))) + (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-1080)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) - (-5 *4 (-665 (-1 *1 (-665 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) - (-4 *5 (-1079)))) + (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-793))) + (-5 *4 (-666 (-1 *1 (-666 *1)))) (-4 *1 (-444 *5)) (-4 *5 (-1131)) + (-4 *5 (-1080)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-665 (-792))) - (-5 *4 (-665 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1130)) - (-4 *5 (-1079)))) + (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-666 (-793))) + (-5 *4 (-666 (-1 *1 *1))) (-4 *1 (-444 *5)) (-4 *5 (-1131)) + (-4 *5 (-1080)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-665 (-115))) (-5 *3 (-665 *1)) (-5 *4 (-1206)) - (-4 *1 (-443 *5)) (-4 *5 (-1130)) (-4 *5 (-632 (-549))))) + (-12 (-5 *2 (-666 (-116))) (-5 *3 (-666 *1)) (-5 *4 (-1207)) + (-4 *1 (-444 *5)) (-4 *5 (-1131)) (-4 *5 (-633 (-550))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1206)) (-4 *1 (-443 *4)) (-4 *4 (-1130)) - (-4 *4 (-632 (-549))))) + (-12 (-5 *2 (-116)) (-5 *3 (-1207)) (-4 *1 (-444 *4)) (-4 *4 (-1131)) + (-4 *4 (-633 (-550))))) ((*1 *1 *1) - (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-632 (-549))))) + (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131)) (-4 *2 (-633 (-550))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-1206))) (-4 *1 (-443 *3)) (-4 *3 (-1130)) - (-4 *3 (-632 (-549))))) + (-12 (-5 *2 (-666 (-1207))) (-4 *1 (-444 *3)) (-4 *3 (-1131)) + (-4 *3 (-633 (-550))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)) - (-4 *3 (-632 (-549))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)) + (-4 *3 (-633 (-550))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1247)))) + (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1248)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 *5)) (-4 *1 (-527 *4 *5)) - (-4 *4 (-1130)) (-4 *5 (-1247)))) + (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 *5)) (-4 *1 (-528 *4 *5)) + (-4 *4 (-1131)) (-4 *5 (-1248)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-375)) (-5 *1 (-739 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) (-4 *4 (-569)) - (-5 *1 (-1073 *4)))) + (-12 (-5 *2 (-421 (-981 *4))) (-5 *3 (-1207)) (-4 *4 (-570)) + (-5 *1 (-1074 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-665 (-1206))) (-5 *4 (-665 (-420 (-980 *5)))) - (-5 *2 (-420 (-980 *5))) (-4 *5 (-569)) (-5 *1 (-1073 *5)))) + (-12 (-5 *3 (-666 (-1207))) (-5 *4 (-666 (-421 (-981 *5)))) + (-5 *2 (-421 (-981 *5))) (-4 *5 (-570)) (-5 *1 (-1074 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-5 *2 (-420 (-980 *4))) - (-4 *4 (-569)) (-5 *1 (-1073 *4)))) + (-12 (-5 *3 (-306 (-421 (-981 *4)))) (-5 *2 (-421 (-981 *4))) + (-4 *4 (-570)) (-5 *1 (-1074 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) (-5 *2 (-420 (-980 *4))) - (-4 *4 (-569)) (-5 *1 (-1073 *4)))) + (-12 (-5 *3 (-666 (-306 (-421 (-981 *4))))) (-5 *2 (-421 (-981 *4))) + (-4 *4 (-570)) (-5 *1 (-1074 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1187 *3))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-1093))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) - (-5 *4 (-1 (-228) (-228) (-228) (-228))) - (-5 *2 (-1 (-971 (-228)) (-228) (-228))) (-5 *1 (-718))))) -(((*1 *2 *3) - (-12 (-5 *3 (-980 *5)) (-4 *5 (-1079)) (-5 *2 (-254 *4 *5)) - (-5 *1 (-972 *4 *5)) (-14 *4 (-665 (-1206)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206))))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1188 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1182))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) (-12 (-5 *2 (-186 (-257))) (-5 *1 (-256))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *2 *1) - (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1172 *3 *4)) (-14 *3 (-949)) (-4 *4 (-375)) - (-5 *1 (-1023 *3 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-666 *3)) (|:| |image| (-666 *3)))) + (-5 *1 (-934 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1170)))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-431 *4))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-666 (-631 *2))) (-5 *4 (-666 (-1207))) + (-4 *2 (-13 (-444 (-172 *5)) (-1033) (-1233))) (-4 *5 (-570)) + (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-444 *5) (-1033) (-1233)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-1206)) (-5 *1 (-277))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) + (-12 (-5 *2 (-2 (|:| -1430 *1) (|:| -4487 *1) (|:| |associate| *1))) + (-4 *1 (-570))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1203 *7)) (-5 *3 (-578)) (-4 *7 (-978 *6 *4 *5)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) + (-5 *1 (-333 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-159))) + ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-570))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) -(((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-869)) (-5 *1 (-314 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-173)))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-710 *2)) (-5 *4 (-577)) - (-4 *2 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-465)) (-4 *3 (-870)) (-4 *4 (-814)) - (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-112)) + (-5 *2 (-1066)) (-5 *1 (-767))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1298 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) + (-4 *1 (-746 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1274 *5)) + (-5 *2 (-711 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-632 *2) (-174))) (-5 *2 (-916 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1130)) (-4 *3 (-167 *5)))) + (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-917 *4)) + (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1131)) (-4 *3 (-168 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-1124 (-864 (-391))))) - (-5 *2 (-665 (-1124 (-864 (-228))))) (-5 *1 (-316)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-407)))) + (-12 (-5 *3 (-666 (-1125 (-865 (-392))))) + (-5 *2 (-666 (-1125 (-865 (-229))))) (-5 *1 (-317)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-886)) (-5 *3 (-578)) (-5 *1 (-408)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1273 *3)))) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-423 *3 *4)) + (-4 *4 (-1274 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) - (-5 *2 (-1297 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) + (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) + (-5 *2 (-1298 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-431 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-1298 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) - (-4 *3 (-1130)))) + (-12 (-5 *2 (-432 *1)) (-4 *1 (-444 *3)) (-4 *3 (-570)) + (-4 *3 (-1131)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-476 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549)))) - ((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1247)))) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-477 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-550)))) + ((*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1248)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) + (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1274 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) ((*1 *1 *2) - (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) - (-4 *5 (-632 (-1206))) (-4 *4 (-814)) (-4 *5 (-870)))) + (-12 (-5 *2 (-981 *3)) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) + (-4 *5 (-633 (-1207))) (-4 *4 (-815)) (-4 *5 (-871)))) ((*1 *1 *2) - (-2229 - (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) - (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) - (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) - (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) + (-2230 + (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) + (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) + (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) + (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) ((*1 *1 *2) - (-12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) - (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1101 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) - (-5 *1 (-1099 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-665 *7)) (|:| -4317 *8))) - (-4 *7 (-1095 *4 *5 *6)) (-4 *8 (-1139 *4 *5 *6 *7)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1188)) - (-5 *1 (-1175 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-885)) (-5 *3 (-577)) (-5 *1 (-1227)))) - ((*1 *2 *3) - (-12 (-5 *3 (-801 *4 (-887 *5))) - (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *5 (-665 (-1206))) - (-5 *2 (-801 *4 (-887 *6))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *6 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-801 *4 (-887 *6))) - (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) - (-5 *2 (-980 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *5 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1202 *4)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-1202 (-1054 (-420 *4)))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206))))) + (-12 (-5 *2 (-981 (-421 (-578)))) (-4 *1 (-1096 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) + (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) + (-5 *1 (-1100 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-666 *7)) (|:| -4318 *8))) + (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1140 *4 *5 *6 *7)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) + (-5 *1 (-1176 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1212)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-578)) (-5 *1 (-1228)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-886)) (-5 *3 (-578)) (-5 *1 (-1228)))) + ((*1 *2 *3) + (-12 (-5 *3 (-802 *4 (-888 *5))) + (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *5 (-666 (-1207))) + (-5 *2 (-802 *4 (-888 *6))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *6 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-981 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-981 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-802 *4 (-888 *6))) + (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *6 (-666 (-1207))) + (-5 *2 (-981 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1203 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-1203 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207))))) ((*1 *2 *3) (-12 - (-5 *3 (-1176 *4 (-544 (-887 *6)) (-887 *6) (-801 *4 (-887 *6)))) - (-4 *4 (-13 (-869) (-318) (-148) (-1052))) (-14 *6 (-665 (-1206))) - (-5 *2 (-665 (-801 *4 (-887 *6)))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *5 (-665 (-1206)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211))))) + (-5 *3 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6)))) + (-4 *4 (-13 (-870) (-319) (-149) (-1053))) (-14 *6 (-666 (-1207))) + (-5 *2 (-666 (-802 *4 (-888 *6)))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-666 (-1207)))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569)))) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-251 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-840 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079))))) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-570)) + (-4 *7 (-978 *3 *5 *6)) + (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *8) (|:| |radicand| *8))) + (-5 *1 (-982 *5 *6 *3 *7 *8)) (-5 *4 (-793)) + (-4 *8 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $)))))))) (((*1 *2 *3) - (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)) (-5 *3 (-1188)))) - ((*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-247)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-890 *4 *5 *6 *7)) + (-4 *4 (-1080)) (-14 *5 (-666 (-1207))) (-14 *6 (-666 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) + (-14 *8 (-666 *5)) (-5 *2 (-1303)) + (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-978 *4 *6 *5)) + (-14 *9 (-666 *3)) (-14 *10 *3)))) +(((*1 *2 *3) + (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189)))) + ((*1 *2 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-248)))) + ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1274 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-229)) (-5 *5 (-578)) (-5 *2 (-1243 *3)) + (-5 *1 (-812 *3)) (-4 *3 (-1005)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-112)) + (-5 *1 (-1243 *2)) (-4 *2 (-1005))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *1 (-462 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-112)) - (-5 *1 (-693 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) - (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -3801 *3)))) - (-5 *1 (-219 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *1) (-5 *1 (-1093)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-765 *3)) (-4 *3 (-174))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-665 (-228))) - (-5 *1 (-481))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-889 *4 *5 *6 *7)) - (-4 *4 (-1079)) (-14 *5 (-665 (-1206))) (-14 *6 (-665 *3)) - (-14 *7 *3))) + (|partial| -12 (-4 *3 (-376)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) + (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-1079)) (-4 *5 (-870)) (-4 *6 (-814)) - (-14 *8 (-665 *5)) (-5 *2 (-1302)) - (-5 *1 (-1309 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-977 *4 *6 *5)) - (-14 *9 (-665 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + (|partial| -12 (-4 *4 (-570)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) + (-4 *7 (-1023 *4)) (-4 *2 (-709 *7 *8 *9)) + (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-709 *4 *5 *6)) + (-4 *8 (-386 *7)) (-4 *9 (-386 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) + (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (-4 *2 (-376)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) + (-4 *2 (-709 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1080)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) + ((*1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-1218 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-1163 *4 *2)) + (-4 *2 (-13 (-618 (-578) *4) (-10 -7 (-6 -4500) (-6 -4501)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-871)) (-4 *3 (-1248)) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-618 (-578) *3) (-10 -7 (-6 -4500) (-6 -4501))))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1188 *4)) (-5 *3 (-1 *4 (-578))) (-4 *4 (-1080)) + (-5 *1 (-1191 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-123 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793))))) +(((*1 *1 *1 *1) (-4 *1 (-998)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1231))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) + (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-52))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-116)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *2)) + (-4 *2 (-670 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-116)) (-5 *1 (-858 *2)) (-4 *2 (-1080))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-825 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1232) (-987)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-52))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) - (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) - (-5 *2 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) - (-5 *1 (-358 *4))))) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1170)))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391)))) - (-5 *1 (-824))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-569)) (-5 *1 (-999 *4 *2)) - (-4 *2 (-1273 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4))))) - ((*1 *1 *1) (-5 *1 (-391))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-797 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) + (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) - (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1131)) (-5 *2 (-666 *1)) + (-4 *1 (-444 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) + (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) - (-5 *2 (-792))))) -(((*1 *2 *3) - (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) - (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-290))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-897)))) - ((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *1) (-5 *1 (-131)))) + (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-666 *1)) (-4 *1 (-978 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-666 *3)) + (-5 *1 (-979 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) + (-15 -2530 (*7 $)))))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-981 (-578))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) + ((*1 *2 *3) + (-12 (-5 *3 (-981 (-421 (-578)))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) + ((*1 *2 *3) (-12 (-5 *3 (-981 *1)) (-4 *1 (-1043)) (-5 *2 (-666 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1203 (-578))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1203 (-421 (-578)))) (-5 *2 (-666 *1)) (-4 *1 (-1043)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1203 *1)) (-4 *1 (-1043)) (-5 *2 (-666 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1274 *4)) (-5 *2 (-666 *1)) + (-4 *1 (-1099 *4 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228))))) +(((*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1131))))) (((*1 *1 *2) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) - (-4 *4 (-1130)) (-4 *5 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) - (-5 *2 (-665 (-420 (-980 *4)))) (-5 *1 (-952 *4 *5 *6 *7)) - (-4 *7 (-977 *4 *6 *5))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) - (-4 *6 (-385 *3)) (-5 *1 (-709 *3 *5 *6 *2)) - (-4 *2 (-708 *3 *5 *6))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1130) (-34))) - (-5 *2 (-112)) (-5 *1 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *1 (-599 *2)) (-4 *2 (-1068 *3)) - (-4 *2 (-375)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-648 *4 *2)) - (-4 *2 (-13 (-443 *4) (-1032) (-1232))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-1032) (-1232))) - (-4 *4 (-569)) (-5 *1 (-648 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-987)) (-5 *2 (-1206)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1122 *1)) (-4 *1 (-987))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037)))) + ((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3) + (-12 (-4 *4 (-362)) (-5 *2 (-432 (-1203 (-1203 *4)))) + (-5 *1 (-1246 *4)) (-5 *3 (-1203 (-1203 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1233) (-988)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-133))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-112)) (-5 *1 (-851))))) +(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1248)) (-5 *2 (-793))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1289 *4)) (-5 *1 (-1291 *4 *2)) + (-4 *4 (-38 (-421 (-578))))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1274 (-172 *2)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-665 (-1106 *4 *5 *2))) (-4 *4 (-1130)) - (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) - (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-665 (-1106 *5 *6 *2))) (-5 *4 (-949)) (-4 *5 (-1130)) - (-4 *6 (-13 (-1079) (-910 *5) (-632 (-916 *5)))) - (-4 *2 (-13 (-443 *6) (-910 *5) (-632 (-916 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1079)) (-5 *1 (-918 *2 *3)) (-4 *2 (-1273 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *1 *1 *1) (-4 *1 (-682)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-52))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-665 (-1202 *7))) (-5 *3 (-1202 *7)) - (-4 *7 (-977 *5 *6 *4)) (-4 *5 (-937)) (-4 *6 (-814)) - (-4 *4 (-870)) (-5 *1 (-934 *5 *6 *4 *7))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) - (-4 *2 (-1257 *3))))) + (-12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 (-578)))) + (-5 *2 (-112)) (-5 *1 (-1326 *4))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) - (-5 *3 (-665 (-577)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-447)) (-4 *5 (-1130)) - (-5 *1 (-1136 *5 *4)) (-4 *4 (-443 *5))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) - ((*1 *2 *1) (-12 (-4 *1 (-1090)) (-5 *2 (-577))))) + (-12 (-5 *3 (-1298 *5)) (-4 *5 (-814)) (-5 *2 (-112)) + (-5 *1 (-867 *4 *5)) (-14 *4 (-793))))) +(((*1 *1) (-5 *1 (-132)))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 (-665 *8))) - (-4 *7 (-870)) (-4 *8 (-318)) (-4 *9 (-977 *8 *6 *7)) (-4 *6 (-814)) + (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1274 *3)) (-4 *3 (-1080))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) + (-4 *4 (-362))))) +(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-14 *5 (-666 (-1207))) (-5 *2 (-666 (-666 (-1055 (-421 *4))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-981 *4))) + (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-666 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1094))))) +(((*1 *1 *1 *1) (-4 *1 (-683)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1135)) (-5 *3 (-796)) (-5 *1 (-52))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-570)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) + (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-845)))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1066)) + (-5 *1 (-768))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-376)) + (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-464 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 - (-2 (|:| |upol| (-1202 *8)) (|:| |Lval| (-665 *8)) - (|:| |Lfact| - (-665 (-2 (|:| -2799 (-1202 *8)) (|:| -2182 (-577))))) - (|:| |ctpol| *8))) - (-5 *1 (-763 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1202 *3)) - (-4 *3 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) - (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-420 (-1202 *3))) - (-4 *3 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) - (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) - (-14 *4 (-1206)) (-14 *5 *3)))) -(((*1 *1 *1 *1) (-4 *1 (-682)))) -(((*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1068 (-577))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077)) - (-5 *3 (-577))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *3) + (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6)))) + (-5 *1 (-1009 *6)) (-5 *3 (-711 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1207)) (-5 *3 (-448)) (-4 *5 (-1131)) + (-5 *1 (-1137 *5 *4)) (-4 *4 (-444 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-666 (-1207))) (-4 *5 (-570)) + (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) (-5 *1 (-792 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-570)) + (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) (-5 *1 (-792 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-711 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3198 (-666 *6))) + *7 *6)) + (-4 *6 (-376)) (-4 *7 (-678 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1298 *6) "failed")) + (|:| -3198 (-666 (-1298 *6))))) + (-5 *1 (-835 *6 *7)) (-5 *4 (-1298 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-814)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-870)) - (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1300))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) (-5 *2 - (-2 (|:| |mval| (-710 *4)) (|:| |invmval| (-710 *4)) - (|:| |genIdeal| (-517 *4 *5 *6 *7)))) - (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) + (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) + (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) + (|:| |ub| (-666 (-865 (-229)))))) + (-5 *1 (-278))))) +(((*1 *1 *1 *1) (-4 *1 (-683)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-666 (-1203 *5))) (-5 *3 (-1203 *5)) + (-4 *5 (-168 *4)) (-4 *4 (-559)) (-5 *1 (-151 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-666 *3)) (-4 *3 (-1274 *5)) + (-4 *5 (-1274 *4)) (-4 *4 (-362)) (-5 *1 (-371 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-666 (-1203 (-578)))) (-5 *3 (-1203 (-578))) + (-5 *1 (-586)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-666 (-1203 *1))) (-5 *3 (-1203 *1)) + (-4 *1 (-938))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) + (-5 *2 (-1066)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-793)) (-4 *5 (-570)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-27) (-444 *4))) (-4 *4 (-13 (-570) (-1069 (-578)))) + (-4 *7 (-1274 (-421 *6))) (-5 *1 (-566 *4 *5 *6 *7 *2)) + (-4 *2 (-355 *5 *6 *7))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *1)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1080)) (-5 *1 (-711 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 *4)) (-4 *4 (-1080)) (-4 *1 (-1154 *3 *4 *5 *6)) + (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-871)) (-5 *2 (-666 (-666 *4))) (-5 *1 (-1218 *4)) + (-5 *3 (-666 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846))))) (((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1130)) (-5 *1 (-992 *2 *3)) (-4 *3 (-1130))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-5 *1 (-922 *2 *3)) - (-4 *2 (-1273 *3))))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-950)) (-5 *1 (-1063 *2)) + (-4 *2 (-13 (-1131) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) - ((*1 *1 *1) (|partial| -4 *1 (-743)))) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *1 *2) + (-12 (-5 *2 (-421 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-13 (-376) (-149))) + (-5 *1 (-413 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-2 (|:| -4119 *4) (|:| -1975 (-577))))) - (-4 *4 (-1130)) (-5 *2 (-1 *4)) (-5 *1 (-1047 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) - (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4)))))) + (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) + (-5 *2 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) + (-5 *1 (-359 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) + (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) - (-5 *2 (-885)) (-5 *1 (-32 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-792)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-601 *4)) - (-4 *4 (-361))))) -(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1181))))) + (-12 (-4 *4 (-570)) (-5 *2 (-1203 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *4 (-631 $)) $)) + (-15 -2530 ((-1156 *4 (-631 $)) $)) + (-15 -2411 ($ (-1156 *4 (-631 $)))))))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-52)) (-5 *1 (-851))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1057 (-865 (-578)))) + (-5 *3 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *4)))) (-4 *4 (-1080)) + (-5 *1 (-609 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1298 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1) (-4 *1 (-176))) + ((*1 *1 *1) + (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *1) (-5 *1 (-1300)))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1188 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 + (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) + (|:| |expense| (-392)) (|:| |accuracy| (-392)) + (|:| |intermediateResults| (-392)))) + (-5 *1 (-825))))) +(((*1 *1) (-5 *1 (-482)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-793))) (-5 *3 (-112)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-950)) (-4 *5 (-1080))))) (((*1 *2 *1) (-12 (-5 *2 - (-665 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228))))) - (-5 *1 (-572)))) + (-666 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229))))) + (-5 *1 (-573)))) ((*1 *2 *1) - (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-5 *2 (-665 *3)))) + (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-5 *2 (-666 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-665 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228))))) - (-5 *1 (-824))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-4 *1 (-417)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) + (-666 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229))))) + (-5 *1 (-825))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-578)) (-5 *3 (-950)) (-4 *1 (-418)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-578)) (-4 *1 (-418)))) ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *2 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *2 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-681 *4 *2)) + (-4 *2 (-678 *4))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-831 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-420 *6))) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 (-2 (|:| -2225 (-665 (-420 *6))) (|:| -1670 (-710 *5)))) - (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-831 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-675 *6 (-420 *6))) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 (-2 (|:| -2225 (-665 (-420 *6))) (|:| -1670 (-710 *5)))) - (-5 *1 (-831 *5 *6)) (-5 *4 (-665 (-420 *6)))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) - ((*1 *1 *1) (-12 (-4 *1 (-716 *2)) (-4 *2 (-1130))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3))))) -(((*1 *1 *1) (-4 *1 (-682)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-442 *3 *4)) - (-4 *3 (-443 *4)))) - ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-557 *3)) (-4 *3 (-558)))) - ((*1 *2) (-12 (-4 *1 (-784)) (-5 *2 (-792)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-817 *3 *4)) - (-4 *3 (-818 *4)))) + (-12 (-5 *3 (-666 (-421 (-981 (-172 (-578)))))) + (-5 *2 (-666 (-666 (-306 (-981 (-172 *4)))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-376) (-870))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-306 (-421 (-981 (-172 (-578))))))) + (-5 *2 (-666 (-666 (-306 (-981 (-172 *4)))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-376) (-870))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 (-172 (-578))))) + (-5 *2 (-666 (-306 (-981 (-172 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-376) (-870))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-306 (-421 (-981 (-172 (-578)))))) + (-5 *2 (-666 (-306 (-981 (-172 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-376) (-870)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-291)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-868))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-631 *1)) (-4 *1 (-314))))) +(((*1 *1 *1) (-4 *1 (-683)))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-793)) (-4 *4 (-570)) (-5 *1 (-1000 *4 *2)) + (-4 *2 (-1274 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146))))) +(((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1274 *2)) + (-4 *2 (-175)))) ((*1 *2) - (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-1021 *3 *4)) - (-4 *3 (-1022 *4)))) + (-12 (-4 *4 (-1274 *2)) (-4 *2 (-175)) (-5 *1 (-422 *3 *2 *4)) + (-4 *3 (-423 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-423 *2 *3)) (-4 *3 (-1274 *2)) (-4 *2 (-175)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-792)) (-5 *1 (-1026 *3 *4)) - (-4 *3 (-1027 *4)))) - ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1041 *3)) (-4 *3 (-1042)))) - ((*1 *2) (-12 (-4 *1 (-1079)) (-5 *2 (-792)))) - ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1089 *3)) (-4 *3 (-1090))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) - (-5 *2 (-112)) (-5 *1 (-688 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-112)) - (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *3) - (-12 (-5 *3 (-955)) - (-5 *2 - (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) - (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) - (-5 *2 - (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) - (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) - (-5 *1 (-154)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) - (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) - (-5 *1 (-154)) (-5 *3 (-665 (-971 (-228)))))) + (-12 (-4 *3 (-1274 *2)) (-5 *2 (-578)) (-5 *1 (-790 *3 *4)) + (-4 *4 (-423 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)) (-4 *3 (-175)))) ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) - (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) - (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 (-228))))))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-13 (-569) (-1068 (-577)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 (-171 *4)))))) + (-12 (-4 *2 (-570)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1274 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-175))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-898)) + (-5 *5 (-950)) (-5 *6 (-666 (-272))) (-5 *2 (-1299)) + (-5 *1 (-1302)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-666 (-272))) + (-5 *2 (-1299)) (-5 *1 (-1302))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *4 (-570)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2760 *4))) (-5 *1 (-1000 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-376) (-870))) + (-5 *2 (-666 (-2 (|:| -2636 (-666 *3)) (|:| -3397 *5)))) + (-5 *1 (-184 *5 *3)) (-4 *3 (-1274 (-172 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-376) (-870))) + (-5 *2 (-666 (-2 (|:| -2636 (-666 *3)) (|:| -3397 *4)))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1059 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-666 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1059 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1236 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) -(((*1 *1 *1) (-4 *1 (-647))) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1059 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) -(((*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277))))) + (-12 (-5 *2 (-666 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1059 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-665 (-1241 *5))) - (-5 *1 (-1305 *5)) (-5 *4 (-1241 *5))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-228)) - (-5 *2 - (-2 (|:| |brans| (-665 (-665 (-971 *4)))) - (|:| |xValues| (-1124 *4)) (|:| |yValues| (-1124 *4)))) - (-5 *1 (-154)) (-5 *3 (-665 (-665 (-971 *4))))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4499)) (-4 *1 (-34)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-257)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1001)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3086 (-432 *3)) (|:| |special| (-432 *3)))) + (-5 *1 (-749 *5 *3))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4500)) (-4 *1 (-34)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1002)))) ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-577)))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-578)))) ((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-867))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-665 *3)) (-5 *1 (-989 *3)) (-4 *3 (-558))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-112)) (-5 *1 (-916 *4)) - (-4 *4 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) - (-5 *2 (-665 *4)) (-5 *1 (-1144 *4 *5))))) + (-12 (-5 *2 (-793)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-868))))) (((*1 *2 *3 *1) - (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1209)) (-5 *3 (-1206))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) + (-12 (-4 *4 (-13 (-870) (-376))) (-5 *2 (-112)) (-5 *1 (-1092 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) + (-4 *3 (-1131))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1170)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1298 + (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) + (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2046 (-578)) + (|:| -2264 (-578)) (|:| |spline| (-578)) (|:| -1607 (-578)) + (|:| |axesColor| (-898)) (|:| -3940 (-578)) + (|:| |unitsColor| (-898)) (|:| |showing| (-578))))) + (-5 *1 (-1299))))) +(((*1 *1) (-5 *1 (-625)))) (((*1 *2 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-1166))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1321 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-840 *3)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) + (-12 (-5 *3 (-1189)) (-5 *2 (-666 (-1212))) (-5 *1 (-1167))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1302)) (-5 *1 (-1209)))) + (-12 (-4 *4 (-362)) (-5 *2 (-432 *3)) (-5 *1 (-220 *4 *3)) + (-4 *3 (-1274 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) - (-5 *1 (-1209)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-665 (-1206))) (-5 *3 (-1206)) (-5 *2 (-1302)) - (-5 *1 (-1209))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-562)))))) + (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) + (-4 *3 (-1274 (-578))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-793))) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) + (-4 *3 (-1274 (-578))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-666 (-793))) (-5 *5 (-793)) (-5 *2 (-432 *3)) + (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) + (-4 *3 (-1274 (-578))))) + ((*1 *2 *3) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-1038 *3)) + (-4 *3 (-1274 (-421 (-578)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) + (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *2)) (-4 *2 (-978 *3 *5 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2))))) +(((*1 *1) (-5 *1 (-451)))) +(((*1 *2 *1) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-570)) + (-5 *2 (-1203 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-560)))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1302)) - (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-431 *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-1079)) (-5 *2 (-665 *6)) (-5 *1 (-457 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-687 *5)) (-5 *1 (-909 *4 *5 *6))))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) - (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) - (-5 *2 (-2 (|:| |num| (-710 *5)) (|:| |den| *5)))))) -(((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-949)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-854 (-949))) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) - ((*1 *2) - (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 (-980 *6))) (-4 *6 (-569)) - (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) (-5 *1 (-753 *5 *4 *6 *2)) - (-4 *5 (-814)) - (-4 *4 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)))))))) + (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6)) + (-4 *4 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248))))) (((*1 *2 *3) - (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) - (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) - (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-665 (-1 *4 (-665 *4)))) (-4 *4 (-1130)) - (-5 *1 (-114 *4)))) + (-12 + (-5 *3 + (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) + (-255 *4 (-421 (-578))))) + (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-519 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1130)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-665 (-1 *4 (-665 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1130))))) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))))) + ((*1 *1 *1) (-5 *1 (-392))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1157 *4 *3 *5))) (-4 *4 (-38 (-421 (-578)))) + (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *1 (-1157 *4 *3 *5)) + (-4 *5 (-978 *4 (-545 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1242 *4))) (-5 *3 (-1207)) (-5 *1 (-1242 *4)) + (-4 *4 (-38 (-421 (-578)))) (-4 *4 (-1080))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + (-12 (-5 *2 (-1203 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) + (-4 *3 (-376))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-950)) (-5 *1 (-1132 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-128 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-570)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) - (-4 *2 (-569)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-569))) + (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) + (-4 *2 (-570)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-570))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) - (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-792))) + (|partial| -12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) + (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) (-4 *2 (-570)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-793))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) + (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-570)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) - (-5 *1 (-999 *3 *4)))) + (-12 (-5 *2 (-1298 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-570)) + (-5 *1 (-1000 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) - (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-569)))) + (|partial| -12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) + (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-570)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1 *1) (-4 *1 (-558)))) + (|partial| -12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3) + (-12 (-4 *4 (-376)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) + (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-4 *3 (-570)) (-5 *2 (-793)))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) + (-4 *3 (-709 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-570)) + (-5 *2 (-793))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1298 *4)) (-4 *4 (-431 *3)) (-4 *3 (-319)) + (-4 *3 (-570)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-950)) (-4 *4 (-376)) (-5 *2 (-1298 *1)) + (-4 *1 (-341 *4)))) + ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1298 *1)) (-4 *1 (-341 *3)))) + ((*1 *2) + (-12 (-4 *3 (-175)) (-4 *4 (-1274 *3)) (-5 *2 (-1298 *1)) + (-4 *1 (-423 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) + (-5 *2 (-1298 *6)) (-5 *1 (-427 *3 *4 *5 *6)) + (-4 *6 (-13 (-423 *4 *5) (-1069 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) + (-5 *2 (-1298 *6)) (-5 *1 (-428 *3 *4 *5 *6 *7)) + (-4 *6 (-423 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1298 *1)) (-4 *1 (-431 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1298 (-1298 *4))) (-5 *1 (-542 *4)) + (-4 *4 (-362))))) +(((*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-190))) (-5 *1 (-190))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403))))) +(((*1 *2 *1) + (-12 (-4 *2 (-570)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1274 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-950)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-950)) + (-5 *1 (-542 *4))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-666 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) + (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1008 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) + (-5 *1 (-841 *3)) (-4 *3 (-871)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1298 *5)) (-4 *5 (-814)) (-5 *2 (-112)) + (-5 *1 (-867 *4 *5)) (-14 *4 (-793))))) +(((*1 *2 *3) + (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) + (-5 *2 (-981 *5)) (-5 *1 (-973 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-845)) (-5 *1 (-844))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-898)) (-5 *3 (-666 (-272))) (-5 *1 (-270))))) +(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-2 (|:| |deg| (-793)) (|:| -4385 *5)))) + (-4 *5 (-1274 *4)) (-4 *4 (-362)) (-5 *2 (-666 *5)) + (-5 *1 (-220 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-2 (|:| -2800 *5) (|:| -3683 (-578))))) + (-5 *4 (-578)) (-4 *5 (-1274 *4)) (-5 *2 (-666 *5)) + (-5 *1 (-718 *5))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1271 *4 *5)) (-5 *3 (-666 *5)) (-14 *4 (-1207)) + (-4 *5 (-376)) (-5 *1 (-952 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1297 (-665 *3))) (-4 *4 (-318)) - (-5 *2 (-665 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1273 *4))))) + (-12 (-5 *3 (-666 *5)) (-4 *5 (-376)) (-5 *2 (-1203 *5)) + (-5 *1 (-952 *4 *5)) (-14 *4 (-1207)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-666 *6)) (-5 *4 (-793)) (-4 *6 (-376)) + (-5 *2 (-421 (-981 *6))) (-5 *1 (-1081 *5 *6)) (-14 *5 (-1207))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-432 *2)) (-4 *2 (-319)) (-5 *1 (-943 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-52)) (-5 *1 (-944 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-432 (-981 *6))) (-5 *5 (-1207)) (-5 *3 (-981 *6)) + (-4 *6 (-13 (-319) (-149))) (-5 *2 (-52)) (-5 *1 (-944 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1069 *4)) (-4 *3 (-319)) + (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-4 *6 (-423 *4 *5)) + (-14 *7 (-1298 *6)) (-5 *1 (-428 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1298 *6)) (-4 *6 (-423 *4 *5)) (-4 *4 (-1023 *3)) + (-4 *5 (-1274 *4)) (-4 *3 (-319)) (-5 *1 (-428 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-119 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-578)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-895 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-14 *2 (-578)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-578)) (-14 *3 *2) (-5 *1 (-896 *3 *4)) + (-4 *4 (-893 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-578)) (-5 *1 (-896 *2 *3)) (-4 *3 (-893 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-578)) (-4 *1 (-1260 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-1289 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1260 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1289 *2))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-793)) + (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-578)))))) + (-5 *1 (-253 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-386 *2)) (-4 *2 (-1248)) (-4 *2 (-871)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-386 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) + (-14 *3 (-950)) (-4 *4 (-1080)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-666 (-666 (-972 (-229))))))) + ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-666 (-666 (-972 (-229)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1299)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1300))))) +(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146)))) + ((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146))))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) +(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1188)) (-4 *1 (-402))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-1 (-112) *8))) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-2 (|:| |goodPols| (-665 *8)) (|:| |badPols| (-665 *8)))) - (-5 *1 (-1007 *5 *6 *7 *8)) (-5 *4 (-665 *8))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1206)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-665 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -1827 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1232) (-27) (-443 *8))) - (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3867 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1043 *8 *4))))) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) (((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-5 *2 (-1297 *3)) (-5 *1 (-733 *3 *4)) - (-4 *4 (-1273 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) - (-5 *1 (-1018 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-665 *7)) (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) - (-5 *1 (-1137 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-986 (-1202 *4))) (-5 *1 (-369 *4)) - (-5 *3 (-1202 *4))))) + (-12 (-5 *2 (-666 (-306 *3))) (-5 *1 (-306 *3)) (-4 *3 (-570)) + (-4 *3 (-1248))))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-392)) (-5 *3 (-1189)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-392)) (-5 *3 (-1189)) (-5 *1 (-97))))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-840 *3)) (|:| |rm| (-840 *3)))) - (-5 *1 (-840 *3)) (-4 *3 (-870)))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-38 (-420 (-577)))) - (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1202 (-980 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) - (-5 *2 (-1202 (-980 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) - (-4 *5 (-910 (-577))) - (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) - (-4 *3 (-13 (-27) (-1232) (-443 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1206)) (-5 *4 (-864 *2)) (-4 *2 (-1169)) - (-4 *2 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-632 (-916 (-577)))) (-4 *5 (-910 (-577))) - (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) - (-5 *1 (-580 *5 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-519)) (-5 *2 (-712 (-795))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-795)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-993))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-5 *2 (-1187 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1135)) (-5 *1 (-291))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-5 *1 (-342))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-949))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) + (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-578)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578))))) +(((*1 *2 *3) (-12 (-5 *2 (-116)) (-5 *1 (-115 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-898)))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) (((*1 *2 *3) - (-12 (-5 *3 (-790)) - (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) - (-5 *1 (-578)))) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)) + (-5 *1 (-836 *4 *5)) (-4 *5 (-678 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-790)) (-5 *4 (-1093)) - (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))) (|:| |extra| (-1065)))) - (-5 *1 (-578)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-808)) (-5 *3 (-1093)) - (-5 *4 - (-2 (|:| |fn| (-327 (-228))) - (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 - (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) - (|:| |extra| (-1065)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-808)) (-5 *3 (-1093)) - (-5 *4 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 - (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)) - (|:| |extra| (-1065)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-821)) (-5 *3 (-1093)) - (-5 *4 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-793)) (-4 *5 (-376)) + (-5 *2 (-711 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-678 *5))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-631 *3)) (-5 *5 (-1203 *3)) + (-4 *3 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-600 *3)) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-631 *3)) (-5 *5 (-421 (-1203 *3))) + (-4 *3 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-600 *3)) (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-1271 *5 *4)) (-5 *1 (-1205 *4 *5 *6)) + (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-1271 *5 *4)) (-5 *1 (-1290 *4 *5 *6)) + (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4)))) +(((*1 *1) (-4 *1 (-362))) ((*1 *2 *3) - (-12 (-5 *3 (-829)) + (-12 (-5 *3 (-666 *5)) (-4 *5 (-444 *4)) (-4 *4 (-13 (-570) (-149))) (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))))) - (-5 *1 (-826)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-1093)) - (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))))) - (-5 *1 (-826)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-860)) (-5 *3 (-1093)) - (-5 *4 - (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) - (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-860)) (-5 *3 (-1093)) - (-5 *4 - (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) - (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) - (|:| |ub| (-665 (-864 (-228)))))) - (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-862)) + (-2 (|:| |primelt| *5) (|:| |poly| (-666 (-1203 *5))) + (|:| |prim| (-1203 *5)))) + (-5 *1 (-446 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-570) (-149))) (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))))) - (-5 *1 (-861)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-862)) (-5 *4 (-1093)) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1203 *3)) + (|:| |pol2| (-1203 *3)) (|:| |prim| (-1203 *3)))) + (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-444 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-981 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))))) - (-5 *1 (-861)))) + (-2 (|:| |coef1| (-578)) (|:| |coef2| (-578)) + (|:| |prim| (-1203 *5)))) + (-5 *1 (-989 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-921)) (-5 *3 (-1093)) - (-5 *4 - (-2 (|:| |pde| (-665 (-327 (-228)))) - (|:| |constraints| - (-665 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-792)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) - (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) - (|:| |tol| (-228)))) - (-5 *2 (-2 (|:| -3175 (-391)) (|:| |explanations| (-1188)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-924)) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-666 (-1207))) + (-4 *5 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))))) - (-5 *1 (-923)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-924)) (-5 *4 (-1093)) + (-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 *5))) + (|:| |prim| (-1203 *5)))) + (-5 *1 (-989 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 (-981 *6))) (-5 *4 (-666 (-1207))) (-5 *5 (-1207)) + (-4 *6 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| -3175 (-391)) (|:| -4105 (-1188)) - (|:| |explanations| (-665 (-1188))))) - (-5 *1 (-923))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1298)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1299))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) - (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) - (-5 *4 (-327 (-391))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) - (-5 *4 (-327 (-577))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-171 (-391))))) - (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-577)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-171 (-391))))) - (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-577)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) - (-5 *4 (-327 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) - (-5 *4 (-327 (-720))) (-5 *1 (-341)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 (-980 (-577)))) - (-5 *4 (-327 (-722))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-715)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-720)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-327 (-722)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-715)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-720)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-327 (-722)))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-720))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-722))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-720))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-710 (-722))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-720))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-327 (-722))) (-5 *1 (-341)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *3 (-1188)) (-5 *1 (-341)))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-145))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1079)) (-4 *2 (-1273 *4)) - (-5 *1 (-457 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-420 (-1202 (-327 *5)))) (-5 *3 (-1297 (-327 *5))) - (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1160 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) - (-4 *2 (-870))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1202 (-1202 *5)))) - (-5 *1 (-1245 *5)) (-5 *3 (-1202 (-1202 *5)))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-885)))) -(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1202 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) - (-5 *2 (-1065)) (-5 *1 (-769))))) -(((*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-873))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-112)) (-5 *1 (-850))))) -(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1297 *5)) (-5 *3 (-792)) (-5 *4 (-1150)) (-4 *5 (-361)) - (-5 *1 (-541 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1115))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1130)) - (-4 *3 (-1247)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-792))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-592))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1095 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) (-12 (-5 *3 (-665 (-949))) (-5 *2 (-792)) (-5 *1 (-603))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-665 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-577))))) - (-4 *2 (-569)) (-5 *1 (-431 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-577)) - (|:| -1679 (-665 (-2 (|:| |irr| *4) (|:| -2938 (-577))))))) - (-4 *4 (-1273 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-1 (-1202 (-980 *4)) (-980 *4))) - (-5 *1 (-1305 *4)) (-4 *4 (-375))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) - (-5 *1 (-178 *3))))) + (-2 (|:| -2672 (-666 (-578))) (|:| |poly| (-666 (-1203 *6))) + (|:| |prim| (-1203 *6)))) + (-5 *1 (-989 *6))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) + ((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-721))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-311)))) - ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1188)) (-5 *1 (-316))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1079)) (-4 *3 (-870)) - (-4 *4 (-276 *3)) (-4 *5 (-814))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *6)) (-5 *4 (-665 (-1206))) (-4 *6 (-375)) - (-5 *2 (-665 (-305 (-980 *6)))) (-5 *1 (-551 *5 *6 *7)) - (-4 *5 (-465)) (-4 *7 (-13 (-375) (-869)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1224 *4 *5)) - (-4 *4 (-1130)) (-4 *5 (-1130))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-121 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1254)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-666 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-431 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-578)) (-5 *1 (-248)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-578)) (-5 *1 (-248))))) +(((*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-97))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-314)) (-5 *3 (-1207)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-570)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-459 *3)) (-4 *3 (-1080))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-666 (-1207))))) ((*1 *1 *1) - (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) - (-14 *3 (-665 (-1206))))) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) + (-14 *3 (-666 (-1207))))) ((*1 *1 *1) - (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130)))) + (-12 (-4 *1 (-395 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1131)))) ((*1 *1 *1) - (-12 (-14 *2 (-665 (-1206))) (-4 *3 (-174)) - (-4 *5 (-244 (-3224 *2) (-792))) + (-12 (-14 *2 (-666 (-1207))) (-4 *3 (-175)) + (-4 *5 (-245 (-3226 *2) (-793))) (-14 *6 - (-1 (-112) (-2 (|:| -2085 *4) (|:| -2182 *5)) - (-2 (|:| -2085 *4) (|:| -2182 *5)))) - (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-870)) - (-4 *7 (-977 *3 *5 (-887 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) + (-1 (-112) (-2 (|:| -2087 *4) (|:| -2764 *5)) + (-2 (|:| -2087 *4) (|:| -2764 *5)))) + (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-871)) + (-4 *7 (-978 *3 *5 (-888 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) ((*1 *1 *1) - (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) + (-12 (-4 *2 (-570)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1274 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) ((*1 *1 *1) - (-12 (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) (-4 *2 (-1079)) - (-4 *3 (-747)))) - ((*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *2 (-1080)) + (-4 *3 (-748)))) + ((*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)))) + (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)))) ((*1 *1 *1) - (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867))))) -(((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) - ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-697)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) - (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6)))) + (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868))))) +(((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-666 *5))) (-4 *5 (-1289 *4)) + (-4 *4 (-38 (-421 (-578)))) + (-5 *2 (-1 (-1188 *4) (-666 (-1188 *4)))) (-5 *1 (-1291 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-950)) (|has| *1 (-6 -4491)) (-4 *1 (-418)))) + ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-950)))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-721)))) + ((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-721))))) +(((*1 *1) (-5 *1 (-451)))) +(((*1 *2 *1) (-12 (-4 *1 (-439 *3)) (-4 *3 (-1131)) (-5 *2 (-793))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) ((*1 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-1302)) - (-5 *1 (-1137 *3 *4 *5 *6 *7)) (-4 *7 (-1101 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) - (-5 *1 (-709 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-721 *3)) - (-4 *3 (-318))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720)))) - ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-720))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-375)) (-5 *1 (-658 *3 *4)) - (-14 *4 (-665 (-1206)))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) - (-4 *3 (-1130)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) - (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) - (-5 *1 (-978 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) - (-15 -2528 (*7 $)))))))) + (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-793)) (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) + (-4 *2 (-1274 *3))))) +(((*1 *1) (-5 *1 (-132)))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *2 (-1066)) (-5 *1 (-773))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) - (-4 *3 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404))))) + (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1274 *3)) + (-4 *3 (-13 (-376) (-149) (-1069 (-578)))) (-5 *1 (-582 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-665 (-971 *4))) (-4 *1 (-1164 *4)) (-4 *4 (-1079)) - (-5 *2 (-792))))) + (-12 (-5 *3 (-578)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1131)) + (-4 *2 (-133))))) (((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-977 *3 *4 *5))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(((*1 *1) (-5 *1 (-610)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-665 (-887 *4))) - (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) - (-4 *6 (-465))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3760 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-677 *3)) (-4 *3 (-1079)) (-4 *3 (-375)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-792)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) - (-5 *1 (-680 *5 *2)) (-4 *2 (-677 *5))))) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-978 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) + (-4 *7 (-1274 (-421 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2049 *3))) + (-5 *1 (-576 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) + (-5 *2 + (-2 (|:| |answer| (-421 *6)) (|:| -2049 (-421 *6)) + (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) + (-5 *1 (-577 *5 *6)) (-5 *3 (-421 *6))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) (((*1 *2) - (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) + (-12 (-4 *3 (-570)) (-5 *2 (-666 (-711 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1130)) (-4 *2 (-1130)) - (-5 *1 (-629 *2 *4))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-578))) (-5 *1 (-1078))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) +(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *3) + (-12 (-5 *2 (-432 (-1203 (-578)))) (-5 *1 (-194)) (-5 *3 (-578))))) +(((*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) + ((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) ((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) + (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-666 (-1207))))) ((*1 *2 *1) - (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) - (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) + (-12 (-5 *2 (-328 *3)) (-5 *1 (-227 *3 *4)) + (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-666 (-1207))))) ((*1 *2 *1) - (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-395 *2 *3)) (-4 *3 (-1131)) (-4 *2 (-1080)))) ((*1 *2 *1) - (-12 (-14 *3 (-665 (-1206))) (-4 *5 (-244 (-3224 *3) (-792))) + (-12 (-14 *3 (-666 (-1207))) (-4 *5 (-245 (-3226 *3) (-793))) (-14 *6 - (-1 (-112) (-2 (|:| -2085 *4) (|:| -2182 *5)) - (-2 (|:| -2085 *4) (|:| -2182 *5)))) - (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-870)) - (-4 *7 (-977 *2 *5 (-887 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-873)) (-4 *2 (-102)))) + (-1 (-112) (-2 (|:| -2087 *4) (|:| -2764 *5)) + (-2 (|:| -2087 *4) (|:| -2764 *5)))) + (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-871)) + (-4 *7 (-978 *2 *5 (-888 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-874)) (-4 *2 (-102)))) ((*1 *2 *1) - (-12 (-4 *2 (-569)) (-5 *1 (-641 *2 *3)) (-4 *3 (-1273 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-1079)))) + (-12 (-4 *2 (-570)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1274 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) ((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-870)) - (-4 *3 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) + (-4 *3 (-748)))) + ((*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) ((*1 *2 *1) - (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *3 (-813)) (-4 *4 (-870)) - (-4 *2 (-1079)))) + (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-871)) + (-4 *2 (-1080)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870))))) -(((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) - (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) - (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-674 (-420 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2)) - (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-675 *2 (-420 *2))) (-4 *2 (-1273 *4)) - (-5 *1 (-831 *4 *2)) - (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577)))))))) -(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-720)) (-5 *1 (-316))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1079)) - (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-665 (-710 *6))) (-5 *4 (-112)) (-5 *5 (-577)) - (-5 *2 (-710 *6)) (-5 *1 (-1059 *6)) (-4 *6 (-375)) (-4 *6 (-1079)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 (-710 *4))) (-5 *2 (-710 *4)) (-5 *1 (-1059 *4)) - (-4 *4 (-375)) (-4 *4 (-1079)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-665 (-710 *5))) (-5 *4 (-577)) (-5 *2 (-710 *5)) - (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) - (-5 *2 (-949))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) - (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) + (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871))))) +(((*1 *2 *1) + (-12 (-4 *1 (-717 *3)) (-4 *3 (-1131)) + (-5 *2 (-666 (-2 (|:| -2754 *3) (|:| -4324 (-793)))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401))))) (((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-290))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-4 *5 (-375)) (-5 *2 (-1187 (-1187 (-980 *5)))) - (-5 *1 (-1305 *5)) (-5 *4 (-1187 (-980 *5)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) + (-12 (-4 *2 (-13 (-444 *3) (-1033))) (-5 *1 (-287 *3 *2)) + (-4 *3 (-570))))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-809)) (-5 *2 (-1066)) + (-5 *3 + (-2 (|:| |fn| (-328 (-229))) + (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-809)) (-5 *2 (-1066)) + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) + (-4 *4 (-1131)) (-4 *5 (-1131))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) + (-5 *1 (-463 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291))))) +(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625)))) +(((*1 *2) + (-12 (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) + (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *4 (-1274 *3)) + (-5 *2 + (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-711 *3)))) + (-5 *1 (-363 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1274 (-578))) + (-5 *2 + (-2 (|:| -3198 (-711 (-578))) (|:| |basisDen| (-578)) + (|:| |basisInv| (-711 (-578))))) + (-5 *1 (-790 *3 *4)) (-4 *4 (-423 (-578) *3)))) + ((*1 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 *4)) + (-5 *2 + (-2 (|:| -3198 (-711 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-711 *4)))) + (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 *4)) + (-5 *2 + (-2 (|:| -3198 (-711 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-711 *4)))) + (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-423 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-395 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1131)))) ((*1 *2 *1) - (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) - (-4 *6 (-244 (-3224 *3) (-792))) + (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) + (-4 *6 (-245 (-3226 *3) (-793))) (-14 *7 - (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *6)) - (-2 (|:| -2085 *5) (|:| -2182 *6)))) - (-5 *2 (-734 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-870)) (-4 *8 (-977 *4 *6 (-887 *3))))) + (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *6)) + (-2 (|:| -2087 *5) (|:| -2764 *6)))) + (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-871)) (-4 *8 (-978 *4 *6 (-888 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-747)) (-4 *2 (-870)) (-5 *1 (-756 *3 *2)) - (-4 *3 (-1079)))) + (-12 (-4 *2 (-748)) (-4 *2 (-871)) (-5 *1 (-757 *3 *2)) + (-4 *3 (-1080)))) ((*1 *1 *1) - (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) - (-4 *4 (-870))))) + (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) + (-4 *4 (-871))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-665 (-1206))) - (-5 *2 - (-665 (-1176 *5 (-544 (-887 *6)) (-887 *6) (-801 *5 (-887 *6))))) - (-5 *1 (-646 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-577)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-792)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-814)) (-4 *4 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-870)) - (-5 *1 (-462 *5 *6 *7 *4))))) + (-12 (-4 *7 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-570)) + (-4 *8 (-978 *7 *5 *6)) + (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *3) (|:| |radicand| *3))) + (-5 *1 (-982 *5 *6 *7 *8 *3)) (-5 *4 (-793)) + (-4 *3 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *8)) (-15 -2519 (*8 $)) (-15 -2530 (*8 $)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1274 *4)) (-4 *4 (-1252)) + (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1274 (-421 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-1298 *1)) (-4 *4 (-175)) + (-4 *1 (-380 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-1298 *1)) (-4 *4 (-175)) + (-4 *1 (-383 *4 *5)) (-4 *5 (-1274 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-423 *3 *4)) + (-4 *4 (-1274 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-175)) (-4 *1 (-431 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) - (-5 *1 (-1248 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-5 *2 (-1302)) - (-5 *1 (-1248 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1130)) (-4 *5 (-1130)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-704 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-856 *3)) (-4 *3 (-1130)) (-5 *2 (-55))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-449))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-665 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1273 (-171 (-577)))) (-4 *4 (-13 (-375) (-869))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-665 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) -(((*1 *1 *1) (-4 *1 (-647))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) + (-12 (-5 *3 (-1125 (-865 (-392)))) (-5 *2 (-1125 (-865 (-229)))) + (-5 *1 (-317))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-666 *3)) (-5 *1 (-953 *4 *5 *6 *3)) + (-4 *3 (-978 *4 *6 *5))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-421 (-981 *4))) (-5 *1 (-953 *4 *5 *6 *3)) + (-4 *3 (-978 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-711 *7)) (-4 *7 (-978 *4 *6 *5)) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-711 (-421 (-981 *4)))) + (-5 *1 (-953 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *6 *5)) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-666 (-421 (-981 *4)))) + (-5 *1 (-953 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-570)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1070)) (-5 *3 (-391))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) (-5 *3 (-577)) - (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) - ((*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130))))) + (-12 (-5 *2 (-1 (-392))) (-5 *1 (-1071)) (-5 *3 (-392))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1203 (-578))) (-5 *2 (-578)) (-5 *1 (-971))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1189)) (-5 *1 (-808))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-792)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-793)))) ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-341))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-158))))) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-666 (-666 *4))) (-5 *2 (-666 *4)) (-4 *4 (-319)) + (-5 *1 (-182 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 *8)) + (-5 *4 + (-666 + (-2 (|:| -3198 (-711 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-711 *7))))) + (-5 *5 (-793)) (-4 *8 (-1274 *7)) (-4 *7 (-1274 *6)) (-4 *6 (-362)) + (-5 *2 + (-2 (|:| -3198 (-711 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-711 *7)))) + (-5 *1 (-512 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575))))) +(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) + ((*1 *2 *1) (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131))))) (((*1 *2 *2) - (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1273 *4)) - (-5 *1 (-798 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-949)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) - ((*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-375)) (-4 *2 (-380))))) -(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1299)))) + (-12 (-5 *3 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1251)) - (-4 *6 (-1273 (-420 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-354 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) + (-12 (-5 *3 (-950)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) + (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-1207))) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) + (-5 *2 (-666 (-421 (-981 *4)))) (-5 *1 (-953 *4 *5 *6 *7)) + (-4 *7 (-978 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-950)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-272))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-538))))) +(((*1 *2 *3) + (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-319)) + (-5 *2 (-421 (-432 (-981 *4)))) (-5 *1 (-1073 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1218 (-665 *4))) (-4 *4 (-870)) - (-5 *2 (-665 (-665 *4))) (-5 *1 (-1217 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) + (-12 (-4 *4 (-570)) (-4 *2 (-13 (-444 (-172 *4)) (-1033) (-1233))) + (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-444 *4) (-1033) (-1233)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1289 *4)) (-5 *1 (-1291 *4 *2)) + (-4 *4 (-38 (-421 (-578))))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-792)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-793)))) ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-792))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-710 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793))))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-444 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1301))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-666 *3)) (-5 *6 (-1203 *3)) + (-4 *3 (-13 (-444 *7) (-27) (-1233))) + (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-574 *7 *3 *8)) (-4 *8 (-1131)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-666 *3)) + (-5 *6 (-421 (-1203 *3))) (-4 *3 (-13 (-444 *7) (-27) (-1233))) + (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-574 *7 *3 *8)) (-4 *8 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-570)) (-4 *2 (-1080)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *1)))) + (-4 *1 (-1102 *4 *5 *6 *3))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-578)) (-4 *3 (-175)) (-4 *5 (-386 *3)) + (-4 *6 (-386 *3)) (-5 *1 (-710 *3 *5 *6 *2)) + (-4 *2 (-709 *3 *5 *6))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-666 (-1207))))) + ((*1 *1 *1) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) + (-14 *3 (-666 (-1207)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-1069 (-421 *2)))) (-5 *2 (-578)) + (-5 *1 (-117 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) + (-5 *2 (-666 (-421 (-578)))) (-5 *1 (-1051 *4)) + (-4 *4 (-1274 (-578)))))) (((*1 *2 *2) - (-12 (-4 *3 (-632 (-916 *3))) (-4 *3 (-910 *3)) (-4 *3 (-465)) - (-5 *1 (-1238 *3 *2)) (-4 *2 (-632 (-916 *3))) (-4 *2 (-910 *3)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1302)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-870) - (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 (*2 $)) - (-15 -3060 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-870) - (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 (*2 $)) - (-15 -3060 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-792)) (-5 *2 (-1302))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34)))))) -(((*1 *1 *1) (-4 *1 (-249))) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1274 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2229 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247))))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) + (-2230 (-12 (-5 *1 (-306 *2)) (-4 *2 (-376)) (-4 *2 (-1248))) + (-12 (-5 *1 (-306 *2)) (-4 *2 (-487)) (-4 *2 (-1248))))) + ((*1 *1 *1) (-4 *1 (-487))) + ((*1 *2 *2) (-12 (-5 *2 (-1298 *3)) (-4 *3 (-362)) (-5 *1 (-542 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1232) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) (-4 *5 (-148)) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-327 *5)) - (-5 *1 (-602 *5))))) + ((*1 *1 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-432 *3)) (-4 *3 (-570))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570))))) +(((*1 *1 *1) (-4 *1 (-1175)))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2) - (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) - (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3503 (-665 *9)) (|:| -4317 *4) (|:| |ineq| (-665 *9)))) - (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) - (-4 *4 (-1101 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) - (-4 *8 (-870)) (-4 *9 (-1095 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3503 (-665 *9)) (|:| -4317 *4) (|:| |ineq| (-665 *9)))) - (-5 *1 (-1137 *6 *7 *8 *9 *4)) (-5 *3 (-665 *9)) - (-4 *4 (-1101 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *5 (-380)) - (-5 *2 (-792))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-177))) (-5 *1 (-1115))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) + (-12 (-5 *3 (-666 (-666 (-666 *4)))) (-5 *2 (-666 (-666 *4))) + (-5 *1 (-1218 *4)) (-4 *4 (-871))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1131) (-34))) + (-5 *2 (-112)) (-5 *1 (-1171 *4 *5)) (-4 *4 (-13 (-1131) (-34)))))) +(((*1 *1 *1 *1) (-4 *1 (-998)))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) + (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-915 *4 *3)) + (-4 *3 (-1248)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-870)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) - (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) + (-12 + (-5 *2 + (-666 + (-666 + (-3 (|:| -4107 (-1207)) + (|:| -2956 (-666 (-3 (|:| S (-1207)) (|:| P (-981 (-578)))))))))) + (-5 *1 (-1211))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1274 *4)) + (-5 *2 (-1298 (-666 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-666 *6))))) +(((*1 *2) + (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) + ((*1 *2 *2) + (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-550))))) +(((*1 *1) (-5 *1 (-143)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) + (-5 *2 (-1 *5)) (-5 *1 (-705 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) - (-5 *2 (-665 (-665 (-665 (-792)))))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-759))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-549))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163))))) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-865 (-578))) (-5 *1 (-548)))) + ((*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1211))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1133 (-793))) (-5 *6 (-793)) + (-5 *2 + (-2 (|:| |contp| (-578)) + (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) + (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-703 *2)) (-4 *2 (-1130)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-665 *5) (-665 *5))) (-5 *4 (-577)) - (-5 *2 (-665 *5)) (-5 *1 (-703 *5)) (-4 *5 (-1130))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-665 (-993))) (-5 *1 (-302))))) -(((*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) - ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-710 (-228))) (-5 *6 (-112)) (-5 *7 (-710 (-577))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-774))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1300))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-772))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032)))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-773))))) -(((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) - (-5 *1 (-685 *3 *4)))) + (-12 (-5 *3 (-666 (-229))) (-5 *2 (-1298 (-721))) (-5 *1 (-317))))) +(((*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-572 *3)) (-4 *3 (-559)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-432 *3)) + (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-432 (-1203 *7))) + (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-685 *3 *4)) (-5 *1 (-1317 *3 *4)) - (-4 *3 (-870)) (-4 *4 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) + (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-432 *1)) (-4 *1 (-978 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-420 (-577))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) + (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-466)) (-5 *2 (-432 *3)) + (-5 *1 (-1010 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-432 (-1203 (-421 *7)))) + (-5 *1 (-1202 *4 *5 *6 *7)) (-5 *3 (-1203 (-421 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-432 *1)) (-4 *1 (-1252)))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-432 *3)) (-5 *1 (-1277 *4 *3)) + (-4 *3 (-13 (-1274 *4) (-570) (-10 -8 (-15 -2421 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-14 *5 (-666 (-1207))) + (-5 *2 + (-666 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207)))))) +(((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-578)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-721))))) +(((*1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1301))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-421 (-578))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *6 *3)))) + (-12 (-5 *4 (-306 *3)) (-5 *5 (-421 (-578))) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) - (-5 *5 (-1264 (-420 (-577)))) (-5 *6 (-420 (-577))) - (-4 *8 (-13 (-27) (-1232) (-443 *7))) - (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-421 (-578)))) (-5 *4 (-306 *8)) + (-5 *5 (-1265 (-421 (-578)))) (-5 *6 (-421 (-578))) + (-4 *8 (-13 (-27) (-1233) (-444 *7))) + (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-420 (-577)))) - (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1232) (-443 *8))) - (-4 *8 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *8 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-421 (-578)))) + (-5 *7 (-421 (-578))) (-4 *3 (-13 (-27) (-1233) (-444 *8))) + (-4 *8 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1079)) (-4 *1 (-1280 *4 *3)) - (-4 *3 (-1257 *4))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-814)) - (-4 *3 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *5 (-569)) - (-5 *1 (-753 *4 *3 *5 *2)) (-4 *2 (-977 (-420 (-980 *5)) *4 *3)))) + (-12 (-5 *2 (-421 (-578))) (-4 *4 (-1080)) (-4 *1 (-1281 *4 *3)) + (-4 *3 (-1258 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-319)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-666 *3)) (-5 *5 (-950)) (-4 *3 (-1274 *4)) + (-4 *4 (-319)) (-5 *1 (-474 *4 *3))))) +(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1274 *6)) + (-4 *6 (-13 (-27) (-444 *5))) (-4 *5 (-13 (-570) (-1069 (-578)))) + (-4 *8 (-1274 (-421 *7))) (-5 *2 (-600 *3)) + (-5 *1 (-566 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1207)) (-5 *1 (-600 *2)) (-4 *2 (-1069 *3)) + (-4 *2 (-376)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-376)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-814)) - (-4 *3 - (-13 (-870) - (-10 -8 (-15 -3341 ((-1206) $)) - (-15 -3966 ((-3 $ "failed") (-1206)))))) - (-5 *1 (-1014 *4 *5 *3 *2)) (-4 *2 (-977 (-980 *4) *5 *3)))) + (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-649 *4 *2)) + (-4 *2 (-13 (-444 *4) (-1033) (-1233))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *6)) - (-4 *6 - (-13 (-870) - (-10 -8 (-15 -3341 ((-1206) $)) - (-15 -3966 ((-3 $ "failed") (-1206)))))) - (-4 *4 (-1079)) (-4 *5 (-814)) (-5 *1 (-1014 *4 *5 *6 *2)) - (-4 *2 (-977 (-980 *4) *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *3)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) - (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-462 *5 *6 *7 *3))))) + (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-444 *4) (-1033) (-1233))) + (-4 *4 (-570)) (-5 *1 (-649 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-1207)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-988))))) +(((*1 *2) (-12 (-5 *2 (-865 (-578))) (-5 *1 (-548)))) + ((*1 *1) (-12 (-5 *1 (-865 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1248)) + (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1265 (-578))) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-294 *3)) (-4 *3 (-1248))))) +(((*1 *1 *1 *1) (-4 *1 (-783)))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-981 (-578))) (-5 *3 (-1207)) + (-5 *4 (-1125 (-421 (-578)))) (-5 *1 (-30))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1297 *5)) (-4 *5 (-813)) (-5 *2 (-112)) - (-5 *1 (-866 *4 *5)) (-14 *4 (-792))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-758 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130)))) - ((*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-864 (-577))) (-5 *1 (-547)))) - ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1079) (-659 *4))) - (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-657 *4 *5))))) + (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-666 (-1271 *5 *4))) + (-5 *1 (-1145 *4 *5)) (-5 *3 (-1271 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *4 (-792)) - (-5 *2 (-710 (-228))) (-5 *1 (-277))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1130)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-1130)) (-5 *1 (-670 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) + (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1068 *4) (-659 *4))) - (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *5))))) + (-12 (-5 *4 (-578)) (-4 *5 (-13 (-466) (-1069 *4) (-660 *4))) + (-5 *2 (-52)) (-5 *1 (-327 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) + (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-465) (-1068 *5) (-659 *5))) (-5 *5 (-577)) - (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) + (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-466) (-1069 *5) (-660 *5))) (-5 *5 (-578)) + (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-577))) - (-4 *7 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-578))) (-5 *4 (-306 *7)) (-5 *5 (-1265 (-578))) + (-4 *7 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-577))) - (-4 *3 (-13 (-27) (-1232) (-443 *7))) - (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-578))) + (-4 *3 (-13 (-27) (-1233) (-444 *7))) + (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-577)) (-4 *4 (-1079)) (-4 *1 (-1259 *4 *3)) - (-4 *3 (-1288 *4)))) + (-12 (-5 *2 (-578)) (-4 *4 (-1080)) (-4 *1 (-1260 *4 *3)) + (-4 *3 (-1289 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-792)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1258 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-666 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) + (-5 *2 (-666 (-2 (|:| |poly| *6) (|:| -3505 *3)))) + (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) + (-4 *7 (-678 (-421 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-666 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *6 (-1274 *5)) + (-5 *2 (-666 (-2 (|:| |poly| *6) (|:| -3505 (-676 *6 (-421 *6)))))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-421 *6)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-570))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) + (-14 *6 (-666 (-1207))) (-5 *2 (-666 (-1077 *5 *6))) + (-5 *1 (-647 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)))) (-4 *3 (-570)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-444 *3)) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) + (-15 -2530 ((-1156 *3 (-631 $)) $)) + (-15 -2411 ($ (-1156 *3 (-631 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250))))) +(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) + ((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1298 *4)) (-5 *1 (-542 *4)) + (-4 *4 (-362))))) +(((*1 *2 *3) + (-12 (-4 *4 (-319)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-1208 (-420 (-577)))) - (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1065)) (-5 *1 (-774))))) -(((*1 *1 *1) - (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) - (-4 *2 (-465)))) - ((*1 *1 *1) - (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) - (-4 *4 (-1273 (-420 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)) (-4 *3 (-465)))) - ((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-465)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1193 *3 *2)) - (-4 *2 (-1273 *3))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-665 (-630 *2))) (-5 *4 (-665 (-1206))) - (-4 *2 (-13 (-443 (-171 *5)) (-1032) (-1232))) (-4 *5 (-569)) - (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1032) (-1232)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1232) (-443 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *5 *3)))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3876 (-578)) (|:| -2636 (-666 *3)))) + (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *2 *3) + (-12 (-14 *4 (-666 (-1207))) (-14 *5 (-793)) + (-5 *2 + (-666 + (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) + (-255 *4 (-421 (-578)))))) + (-5 *1 (-519 *4 *5)) + (-5 *3 + (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) + (-255 *4 (-421 (-578)))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-981 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-570)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-570))))) +(((*1 *2 *3) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-575)) (-5 *3 (-578))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-666 (-578))) + (|:| |cols| (-666 (-578))))) + (-5 *4 (-711 *12)) (-5 *5 (-666 (-421 (-981 *9)))) + (-5 *6 (-666 (-666 *12))) (-5 *7 (-793)) (-5 *8 (-578)) + (-4 *9 (-13 (-319) (-149))) (-4 *12 (-978 *9 *11 *10)) + (-4 *10 (-13 (-871) (-633 (-1207)))) (-4 *11 (-815)) + (-5 *2 + (-2 (|:| |eqzro| (-666 *12)) (|:| |neqzro| (-666 *12)) + (|:| |wcond| (-666 (-981 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *9)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *9))))))))) + (-5 *1 (-953 *9 *10 *11 *12))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-444 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-52)) (-5 *1 (-327 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-306 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-792)) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-326 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1232) (-443 *5))) - (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *5 *6)))) + (-12 (-5 *4 (-306 *3)) (-5 *5 (-793)) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-327 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-578))) (-5 *4 (-306 *6)) + (-4 *6 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-792))) - (-4 *7 (-13 (-27) (-1232) (-443 *6))) - (-4 *6 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-578))) (-5 *4 (-306 *7)) (-5 *5 (-1265 (-793))) + (-4 *7 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1206)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-792))) - (-4 *3 (-13 (-27) (-1232) (-443 *7))) - (-4 *7 (-13 (-569) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-52)) - (-5 *1 (-472 *7 *3)))) + (-12 (-5 *4 (-1207)) (-5 *5 (-306 *3)) (-5 *6 (-1265 (-793))) + (-4 *3 (-13 (-27) (-1233) (-444 *7))) + (-4 *7 (-13 (-570) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-52)) + (-5 *1 (-473 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1288 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1289 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-568 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-392)) (-5 *1 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1289 *4)) + (-4 *4 (-38 (-421 (-578)))) (-5 *2 (-1 (-1188 *4) (-1188 *4))) + (-5 *1 (-1291 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-431 *4))))) +(((*1 *1) (-5 *1 (-146)))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *5 (-950)) + (-5 *2 (-1303)) (-5 *1 (-482)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-666 (-972 (-229)))) (-5 *4 (-898)) (-5 *5 (-950)) + (-5 *2 (-1303)) (-5 *1 (-482))))) (((*1 *2 *3) - (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) - (-5 *2 (-112)) (-5 *1 (-1325 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1093))))) + (|partial| -12 (-4 *5 (-1069 (-48))) + (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) + (-5 *2 (-432 (-1203 (-48)))) (-5 *1 (-449 *4 *5 *3)) + (-4 *3 (-1274 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1) (-4 *1 (-570)))) (((*1 *2 *2) - (-12 + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) + (-5 *1 (-179 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-578))))) + (-4 *2 (-13 (-871) (-21)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2421 *3))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) + (-4 *7 (-815)) (-5 *2 - (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) - (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) - (|:| |ub| (-665 (-864 (-228)))))) - (-5 *1 (-277))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1320 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-867))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-1058 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-665 (-710 *3))) (-4 *3 (-1079)) (-5 *1 (-1058 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) - (-5 *2 (-1202 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-127 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1270 *4 *5)) (-5 *3 (-665 *5)) (-14 *4 (-1206)) - (-4 *5 (-375)) (-5 *1 (-951 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *5)) (-4 *5 (-375)) (-5 *2 (-1202 *5)) - (-5 *1 (-951 *4 *5)) (-14 *4 (-1206)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-665 *6)) (-5 *4 (-792)) (-4 *6 (-375)) - (-5 *2 (-420 (-980 *6))) (-5 *1 (-1080 *5 *6)) (-14 *5 (-1206))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720))))) -(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1130)) (-5 *2 (-792))))) -(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1124 (-864 (-391)))) (-5 *2 (-1124 (-864 (-228)))) - (-5 *1 (-316))))) + (-666 + (-2 (|:| |det| *8) (|:| |rows| (-666 (-578))) + (|:| |cols| (-666 (-578)))))) + (-5 *1 (-953 *5 *6 *7 *8))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2) (-12 (-5 *2 (-1177 (-1188))) (-5 *1 (-404))))) + (-12 (-5 *3 (-793)) (-4 *1 (-1274 *4)) (-4 *4 (-1080)) + (-5 *2 (-1298 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-370 *3)) (-4 *3 (-362))))) +(((*1 *2 *3) + (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1203 *4)) + (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-870)))))) +(((*1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-666 (-1 *6 (-666 *6)))) + (-4 *5 (-38 (-421 (-578)))) (-4 *6 (-1289 *5)) (-5 *2 (-666 *6)) + (-5 *1 (-1291 *5 *6))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-845)) (-5 *1 (-844))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) - (-15 -2528 ((-1155 *3 (-630 $)) $)) - (-15 -2410 ($ (-1155 *3 (-630 $)))))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-391)) (-5 *1 (-1093))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-4 *3 (-1130)) - (-5 *2 (-112))))) + (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-710 *4)) (-4 *4 (-375)) (-5 *2 (-1202 *4)) - (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-869)))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *2 (-392)) (-5 *1 (-208))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-1248))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-981 *4))) (-5 *1 (-430 *3 *4)) + (-4 *3 (-431 *4)))) + ((*1 *2) + (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-4 *3 (-376)) + (-5 *2 (-1203 (-981 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1171 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1131) (-34))) (-4 *6 (-13 (-1131) (-34))) + (-5 *2 (-112)) (-5 *1 (-1172 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1274 *5)) + (-5 *1 (-829 *5 *2 *3 *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *3 (-678 *2)) (-4 *6 (-678 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-421 *2))) (-4 *2 (-1274 *5)) + (-5 *1 (-829 *5 *2 *3 *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *3 (-678 *2)) + (-4 *6 (-678 (-421 *2)))))) +(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286))))) (((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| - (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) - (|:| |lb| (-665 (-864 (-228)))) - (|:| |cf| (-665 (-327 (-228)))) - (|:| |ub| (-665 (-864 (-228)))))) + (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) + (|:| |lb| (-666 (-865 (-229)))) + (|:| |cf| (-666 (-328 (-229)))) + (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-665 (-327 (-228)))) - (|:| -2199 (-665 (-228))))))) - (-5 *2 (-665 (-1188))) (-5 *1 (-277))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-760 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1247)) (-5 *2 (-792)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-695 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955))))) + (-2 (|:| |lfn| (-666 (-328 (-229)))) + (|:| -2199 (-666 (-229))))))) + (-5 *2 (-666 (-1189))) (-5 *1 (-278))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) + (-14 *4 (-793)) (-4 *5 (-175))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1080)) (-5 *1 (-1320 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *1 (-1322 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-666 (-1107 *4 *5 *2))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) + (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-666 (-1107 *5 *6 *2))) (-5 *4 (-950)) (-4 *5 (-1131)) + (-4 *6 (-13 (-1080) (-911 *5) (-633 (-917 *5)))) + (-4 *2 (-13 (-444 *6) (-911 *5) (-633 (-917 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-578))) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) + (-2 (|:| -2547 (-711 (-421 (-981 *4)))) + (|:| |vec| (-666 (-421 (-981 *4)))) (|:| -1875 (-793)) + (|:| |rows| (-666 (-578))) (|:| |cols| (-666 (-578))))) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-2 (|:| -2799 (-1202 *6)) (|:| -2182 (-577))))) - (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) - (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1251)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1273 (-420 *4)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1150)) (-4 *4 (-361)) - (-5 *1 (-541 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)) - (-4 *3 (-813))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *1) (-5 *1 (-1298)))) -(((*1 *1) (-5 *1 (-1112)))) + (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *4))))))) + (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-559)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 (-711 *4))) (-4 *4 (-175)) + (-5 *2 (-1298 (-711 (-981 *4)))) (-5 *1 (-192 *4))))) +(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) + ((*1 *1 *1) (-4 *1 (-1175)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-761 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-792)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-793)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-870)) - (-4 *3 (-13 (-174) (-738 (-420 (-577))))) (-14 *4 (-949)))) - ((*1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-870)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079))))) -(((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) - (-5 *1 (-913 *4 *5)) (-4 *5 (-1130)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-916 *5)) (-4 *5 (-1130)) (-5 *2 (-112)) - (-5 *1 (-914 *5 *3)) (-4 *3 (-1247)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) - (-4 *6 (-1247)) (-5 *2 (-112)) (-5 *1 (-914 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1206)) - (-4 *4 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-885))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1080)) (-5 *1 (-919 *2 *3)) (-4 *2 (-1274 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793)))) + ((*1 *1 *1) (-4 *1 (-416)))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) + (-4 *5 (-1274 *4)) + (-5 *2 (-2 (|:| -3579 (-421 *5)) (|:| |coeff| (-421 *5)))) + (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) - (-5 *2 (-665 (-1206))) (-5 *1 (-277)))) + (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) + (-5 *2 (-666 (-1207))) (-5 *1 (-278)))) ((*1 *2 *3) - (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-665 *5)) - (-5 *1 (-332 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1203 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-666 *5)) + (-5 *1 (-333 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-400)))) + (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-401)))) ((*1 *2 *1) - (-12 (-4 *1 (-443 *3)) (-4 *3 (-1130)) (-5 *2 (-665 (-1206))))) + (-12 (-4 *1 (-444 *3)) (-4 *3 (-1131)) (-5 *2 (-666 (-1207))))) ((*1 *2 *1) - (-12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-665 *5)))) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-666 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) - (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *5)) - (-5 *1 (-978 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-666 *5)) + (-5 *1 (-979 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))))) + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-4 *5 (-870)) (-5 *2 (-665 *5)))) + (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-4 *5 (-871)) (-5 *2 (-666 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5)))) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) (-5 *2 (-665 (-1206))) - (-5 *1 (-1073 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1132 *3)) (-5 *1 (-933 *3)) (-4 *3 (-380)) - (-4 *3 (-1130))))) + (-12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) (-5 *2 (-666 (-1207))) + (-5 *1 (-1074 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-821)) - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-1065))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1068 *4)) (-4 *3 (-569))))) + (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-362)) (-5 *2 (-1298 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-938)) + (-5 *2 (-1298 *1))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-666 (-2 (|:| -2800 (-1203 *6)) (|:| -2764 (-578))))) + (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080))))) +(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1248)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3)) + (-4 *3 (-696 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-862)) (-5 *4 (-1093)) (-5 *2 (-1065)) (-5 *1 (-861)))) - ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1065)) (-5 *1 (-861)))) + (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-862)))) + ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-665 (-391))) (-5 *5 (-665 (-864 (-391)))) - (-5 *6 (-665 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1065)) - (-5 *1 (-861)))) + (-12 (-5 *4 (-666 (-392))) (-5 *5 (-666 (-865 (-392)))) + (-5 *6 (-666 (-328 (-392)))) (-5 *3 (-328 (-392))) (-5 *2 (-1066)) + (-5 *1 (-862)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) - (-5 *5 (-665 (-864 (-391)))) (-5 *2 (-1065)) (-5 *1 (-861)))) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-392))) + (-5 *5 (-666 (-865 (-392)))) (-5 *2 (-1066)) (-5 *1 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 (-391))) (-5 *4 (-665 (-391))) (-5 *2 (-1065)) - (-5 *1 (-861)))) + (-12 (-5 *3 (-328 (-392))) (-5 *4 (-666 (-392))) (-5 *2 (-1066)) + (-5 *1 (-862)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-327 (-391)))) (-5 *4 (-665 (-391))) - (-5 *2 (-1065)) (-5 *1 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-665 (-115)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) - (-5 *1 (-343))))) + (-12 (-5 *3 (-666 (-328 (-392)))) (-5 *4 (-666 (-392))) + (-5 *2 (-1066)) (-5 *1 (-862))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1066))))) +(((*1 *1) (-5 *1 (-611)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1229))))) (((*1 *2) - (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) - (-4 *4 (-1273 *3))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) -(((*1 *2 *1) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1004))))) + (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) + (-5 *1 (-344)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-1123 (-981 (-578)))) (-5 *2 (-342)) + (-5 *1 (-344)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) + (-4 *3 (-1131))))) +(((*1 *1) (-5 *1 (-625)))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-52)) (-5 *1 (-1226))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1202 (-420 (-1202 *2)))) (-5 *4 (-630 *2)) - (-4 *2 (-13 (-443 *5) (-27) (-1232))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1130)))) + (-12 (-5 *3 (-1203 (-421 (-1203 *2)))) (-5 *4 (-631 *2)) + (-4 *2 (-13 (-444 *5) (-27) (-1233))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *1 (-574 *5 *2 *6)) (-4 *6 (-1131)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1202 *1)) (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *3 (-870)))) + (-12 (-5 *2 (-1203 *1)) (-4 *1 (-978 *4 *5 *3)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *3 (-871)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1202 *4)) (-4 *4 (-1079)) (-4 *1 (-977 *4 *5 *3)) - (-4 *5 (-814)) (-4 *3 (-870)))) + (-12 (-5 *2 (-1203 *4)) (-4 *4 (-1080)) (-4 *1 (-978 *4 *5 *3)) + (-4 *5 (-815)) (-4 *3 (-871)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-1202 *2))) (-4 *5 (-814)) (-4 *4 (-870)) - (-4 *6 (-1079)) + (-12 (-5 *3 (-421 (-1203 *2))) (-4 *5 (-815)) (-4 *4 (-871)) + (-4 *6 (-1080)) (-4 *2 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) (-15 -2528 (*7 $))))) - (-5 *1 (-978 *5 *4 *6 *7 *2)) (-4 *7 (-977 *6 *5 *4)))) + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) (-15 -2530 (*7 $))))) + (-5 *1 (-979 *5 *4 *6 *7 *2)) (-4 *7 (-978 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-1202 (-420 (-980 *5))))) (-5 *4 (-1206)) - (-5 *2 (-420 (-980 *5))) (-5 *1 (-1073 *5)) (-4 *5 (-569))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1210))))) + (-12 (-5 *3 (-421 (-1203 (-421 (-981 *5))))) (-5 *4 (-1207)) + (-5 *2 (-421 (-981 *5))) (-5 *1 (-1074 *5)) (-4 *5 (-570))))) +(((*1 *2 *1) + (-12 (-5 *2 (-713 (-995 *3))) (-5 *1 (-995 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) + (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1008 *3 *4 *5 *6))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *3 (-665 (-577))) - (-5 *1 (-907))))) + (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *3 (-666 (-272))) + (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-272)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-482))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) + (-5 *7 (-711 (-578))) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-559)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-5 *2 (-665 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) - (-5 *2 (-665 *3)))) + (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-1131)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2764 (-578)))) (-4 *1 (-444 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1187 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 *3)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-747)))) - ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-665 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1288 *3)) (-4 *3 (-1079)) (-5 *2 (-1187 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-917 *3)) (|:| -2764 (-917 *3)))) + (-5 *1 (-917 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) + (-4 *7 (-978 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2764 (-578)))) + (-5 *1 (-979 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) + (-15 -2530 (*7 $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1032) (-1232))) - (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) - (-5 *1 (-613 *4 *5 *2))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-768))))) + (-12 (-5 *3 (-578)) (-4 *4 (-1274 (-421 *3))) (-5 *2 (-950)) + (-5 *1 (-942 *4 *5)) (-4 *5 (-1274 (-421 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-159)))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1043)) (-5 *2 (-886))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-665 (-949))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-949)) - (-4 *2 (-375)) (-14 *5 (-1023 *4 *2)))) + (-12 (-5 *3 (-666 (-950))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-950)) + (-4 *2 (-376)) (-14 *5 (-1024 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-734 *5 *6 *7)) (-4 *5 (-870)) - (-4 *6 (-244 (-3224 *4) (-792))) + (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-871)) + (-4 *6 (-245 (-3226 *4) (-793))) (-14 *7 - (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *6)) - (-2 (|:| -2085 *5) (|:| -2182 *6)))) - (-14 *4 (-665 (-1206))) (-4 *2 (-174)) - (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-977 *2 *6 (-887 *4))))) + (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *6)) + (-2 (|:| -2087 *5) (|:| -2764 *6)))) + (-14 *4 (-666 (-1207))) (-4 *2 (-175)) + (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) (-4 *8 (-978 *2 *6 (-888 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-873)))) + (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) - (-4 *4 (-1273 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079)))) + (-12 (-5 *3 (-578)) (-4 *2 (-570)) (-5 *1 (-642 *2 *4)) + (-4 *4 (-1274 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-756 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-747)))) + (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-748)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) - (-4 *4 (-1079)) (-4 *5 (-870)))) + (-12 (-5 *2 (-666 *5)) (-5 *3 (-666 (-793))) (-4 *1 (-762 *4 *5)) + (-4 *4 (-1080)) (-4 *5 (-871)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) - (-4 *2 (-870)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) + (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) + (-4 *2 (-871)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) - (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) + (-12 (-5 *2 (-666 *6)) (-5 *3 (-666 (-793))) (-4 *1 (-978 *4 *5 *6)) + (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *2 (-870)))) + (-12 (-5 *3 (-793)) (-4 *1 (-978 *4 *5 *2)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *2 (-871)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 *5)) (-4 *1 (-1003 *4 *5 *6)) - (-4 *4 (-1079)) (-4 *5 (-813)) (-4 *6 (-870)))) + (-12 (-5 *2 (-666 *6)) (-5 *3 (-666 *5)) (-4 *1 (-1004 *4 *5 *6)) + (-4 *4 (-1080)) (-4 *5 (-814)) (-4 *6 (-871)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-1003 *4 *3 *2)) (-4 *4 (-1079)) (-4 *3 (-813)) - (-4 *2 (-870))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1273 *4)) (-5 *1 (-830 *4 *2 *3 *5)) - (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) - (-4 *5 (-677 (-420 *2)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 (-864 (-228)))) (-5 *1 (-316))))) + (-12 (-4 *1 (-1004 *4 *3 *2)) (-4 *4 (-1080)) (-4 *3 (-814)) + (-4 *2 (-871))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-793)) (-5 *3 (-972 *5)) (-4 *5 (-1080)) + (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-950)) (-4 *5 (-1080)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) + (-5 *1 (-1195 *4 *5)) (-14 *4 (-950))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *1) (-5 *1 (-520)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1080)) (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) + (-4 *5 (-245 *3 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-666 (-1203 *7))) (-5 *3 (-1203 *7)) + (-4 *7 (-978 *5 *6 *4)) (-4 *5 (-938)) (-4 *6 (-815)) + (-4 *4 (-871)) (-5 *1 (-935 *5 *6 *4 *7))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) + (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-1079)) (-4 *2 (-1273 *5)) - (-5 *1 (-1291 *5 *2 *6 *3)) (-4 *6 (-677 *2)) (-4 *3 (-1288 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-1145))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-994 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-792)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-814)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) - (-4 *4 (-465)) (-4 *6 (-870))))) + (-12 (-5 *3 (-666 (-950))) (-5 *4 (-934 (-578))) + (-5 *2 (-711 (-578))) (-5 *1 (-604)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-950))) (-5 *2 (-666 (-711 (-578)))) + (-5 *1 (-604)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-950))) (-5 *4 (-666 (-934 (-578)))) + (-5 *2 (-666 (-711 (-578)))) (-5 *1 (-604))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-578)) (-4 *4 (-362)) + (-5 *1 (-542 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-777))))) -(((*1 *2 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-578)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1080)) + (-5 *2 (-1298 (-1298 *5))) (-5 *1 (-1060 *5)) (-5 *4 (-1298 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) + ((*1 *2 *1) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-711 *11)) (-5 *4 (-666 (-421 (-981 *8)))) + (-5 *5 (-793)) (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149))) + (-4 *11 (-978 *8 *10 *9)) (-4 *9 (-13 (-871) (-633 (-1207)))) + (-4 *10 (-815)) + (-5 *2 + (-2 + (|:| |rgl| + (-666 + (-2 (|:| |eqzro| (-666 *11)) (|:| |neqzro| (-666 *11)) + (|:| |wcond| (-666 (-981 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *8)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *8)))))))))) + (|:| |rgsz| (-578)))) + (-5 *1 (-953 *8 *9 *10 *11)) (-5 *7 (-578))))) +(((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) + (-5 *2 (-666 (-793))) (-5 *1 (-800 *3 *4 *5 *6 *7)) + (-4 *3 (-1274 *6)) (-4 *7 (-978 *6 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1 *1 *1) (-4 *1 (-314))) ((*1 *1 *1) (-4 *1 (-314)))) (((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-860)) - (-5 *3 - (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) - (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) - (|:| |ub| (-665 (-864 (-228)))))) - (-5 *2 (-1065)))) - ((*1 *2 *3) - (-12 (-4 *1 (-860)) - (-5 *3 - (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) - (-5 *2 (-1065))))) -(((*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1247)) (-5 *2 (-792))))) -(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-130)))))) -(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1216))))) + (|partial| -12 (-4 *1 (-1281 *3 *2)) (-4 *3 (-1080)) + (-4 *2 (-1258 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-578))) (-5 *5 (-1 (-1188 *4))) (-4 *4 (-376)) + (-4 *4 (-1080)) (-5 *2 (-1188 *4)) (-5 *1 (-1191 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 *2))) - (-5 *2 (-916 *3)) (-5 *1 (-1106 *3 *4 *5)) - (-4 *5 (-13 (-443 *4) (-910 *3) (-632 *2)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1079)) - (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) - (-4 *3 (-875 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) - (-5 *1 (-1305 *4)) (-4 *4 (-375))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -1827 (-420 *6)) (|:| |coeff| (-420 *6)))) - (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-4 *2 (-1273 *4)) - (-5 *1 (-950 *4 *2))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-780))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-387 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4500))))))) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 *2))) + (-5 *2 (-917 *3)) (-5 *1 (-1107 *3 *4 *5)) + (-4 *5 (-13 (-444 *4) (-911 *3) (-633 *2)))))) +(((*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-501))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-4 *6 (-911 *5)) (-5 *2 (-910 *5 *6 (-666 *6))) + (-5 *1 (-912 *5 *6 *4)) (-5 *3 (-666 *6)) (-4 *4 (-633 (-917 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-5 *2 (-666 (-306 *3))) (-5 *1 (-912 *5 *3 *4)) + (-4 *3 (-1069 (-1207))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-917 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-5 *2 (-666 (-306 (-981 *3)))) + (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1080)) + (-2309 (-4 *3 (-1069 (-1207)))) (-4 *3 (-911 *5)) + (-4 *4 (-633 (-917 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-5 *2 (-914 *5 *3)) (-5 *1 (-912 *5 *3 *4)) + (-2309 (-4 *3 (-1069 (-1207)))) (-2309 (-4 *3 (-1080))) + (-4 *3 (-911 *5)) (-4 *4 (-633 (-917 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1116))) (-5 *1 (-303))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1057 (-865 (-578)))) (-5 *1 (-609 *3)) (-4 *3 (-1080))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *1 *2) (-12 + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) (-5 *2 - (-2 (|:| |mval| (-710 *3)) (|:| |invmval| (-710 *3)) - (|:| |genIdeal| (-517 *3 *4 *5 *6)))) - (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *1) (-5 *1 (-1302)))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-665 (-494 *4 *5))) (-5 *3 (-887 *4)) - (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-195))))) +(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-130))))) +(((*1 *2 *3) (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) + ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-430 *3 *2)) (-4 *3 (-431 *2)))) + ((*1 *2) (-12 (-4 *1 (-431 *2)) (-4 *2 (-175))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-1310 *4 *5 *6 *7))) - (-5 *1 (-1310 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1095 *6 *7 *8)) (-4 *6 (-569)) - (-4 *7 (-814)) (-4 *8 (-870)) (-5 *2 (-665 (-1310 *6 *7 *8 *9))) - (-5 *1 (-1310 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) - (-5 *2 (-665 (-665 (-665 (-971 *3)))))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-870))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-665 (-792))) (-5 *1 (-999 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) - (-5 *2 (-665 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) - (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-720))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-665 (-630 *3))) - (|:| |vals| (-665 *3)))) - (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) -(((*1 *2 *2) - (-12 + (-12 (-5 *3 (-711 (-328 (-229)))) (-5 *2 - (-1017 (-420 (-577)) (-887 *3) (-246 *4 (-792)) - (-254 *3 (-420 (-577))))) - (-14 *3 (-665 (-1206))) (-14 *4 (-792)) (-5 *1 (-1016 *3 *4))))) + (-2 (|:| |stiffnessFactor| (-392)) (|:| |stabilityFactor| (-392)))) + (-5 *1 (-208))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 *4)))) - (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1130)) (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-4 *7 (-1130)) (-5 *2 (-665 *1)) (-4 *1 (-1133 *3 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-710 (-420 (-577)))) (-5 *2 (-665 *4)) (-5 *1 (-800 *4)) - (-4 *4 (-13 (-375) (-869)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *3 (-577)) - (-5 *2 (-1065)) (-5 *1 (-777))))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-851))))) +(((*1 *1) (-5 *1 (-1303)))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1202 *7)) (-5 *3 (-577)) (-4 *7 (-977 *6 *4 *5)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) - (-5 *1 (-332 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-250 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1079)) - (-5 *1 (-1190 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) - ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) - ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1237 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) + (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-666 *4)) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-1202 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *4 (-630 $)) $)) - (-15 -2528 ((-1155 *4 (-630 $)) $)) - (-15 -2410 ($ (-1155 *4 (-630 $)))))))))) -(((*1 *1) (-5 *1 (-1299)))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-869) (-375))) (-5 *2 (-112)) (-5 *1 (-1091 *4 *3)) - (-4 *3 (-1273 *4))))) + (-12 (-5 *3 (-666 (-2 (|:| -2800 (-1203 *6)) (|:| -2764 (-578))))) + (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-578)) + (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-978 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-578)) (-5 *1 (-1230 *4)) + (-4 *4 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) + (-5 *3 (-666 (-578)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -3714 *4))) (-5 *5 (-793)) + (-4 *4 (-978 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-463 *6 *7 *8 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) - (-254 *4 (-420 (-577))))) - (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) - (-5 *1 (-518 *4 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-103 *3)) (-4 *3 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-792)) - (-4 *3 (-13 (-747) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) - (-5 *1 (-252 *3))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1188)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) + (-666 + (-2 (|:| -1875 (-793)) + (|:| |eqns| + (-666 + (-2 (|:| |det| *7) (|:| |rows| (-666 (-578))) + (|:| |cols| (-666 (-578)))))) + (|:| |fgb| (-666 *7))))) + (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) + (-5 *1 (-953 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-808)) (-5 *2 (-1065)) - (-5 *3 - (-2 (|:| |fn| (-327 (-228))) - (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-808)) (-5 *2 (-1065)) - (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-949)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-271))))) + (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-5 *2 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-844)) (-5 *1 (-843))))) (((*1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) - (-14 *4 (-665 (-1206))))) - ((*1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) - (-14 *4 (-665 (-1206))))) - ((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) + (-12 (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1173 *3 *4)) + (-14 *3 (-793))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 *4)))) + (-5 *1 (-914 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) - (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) - (-4 *2 (-354 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-745 *2 *3)) (-4 *3 (-1273 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1079)) (-14 *3 (-665 (-1206))))) - ((*1 *1 *1) - (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) - (-14 *3 (-665 (-1206)))))) + (-12 (-4 *3 (-1131)) (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131)) + (-4 *7 (-1131)) (-5 *2 (-666 *1)) (-4 *1 (-1134 *3 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) - (-5 *1 (-1217 *4)) (-4 *4 (-870))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) - (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) - (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) - (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) -(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-244 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) -(((*1 *2 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) - (-5 *1 (-178 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843))))) + (-12 (-4 *4 (-466)) + (-5 *2 + (-666 + (-2 (|:| |eigval| (-3 (-421 (-981 *4)) (-1196 (-1207) (-981 *4)))) + (|:| |eigmult| (-793)) + (|:| |eigvec| (-666 (-711 (-421 (-981 *4)))))))) + (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-981 *4))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1274 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3)) + (-4 *3 (-1274 (-421 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-843))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-116)) (-5 *1 (-115 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-578))))) +(((*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) + (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) - (-14 *4 (-792)) (-4 *5 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-1120))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1131) (-34))) + (-4 *2 (-13 (-1131) (-34)))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886))) ((*1 *1 *2) - (-12 (-4 *2 (-1079)) (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-4 *1 (-313)))) -(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) - ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-145))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1130))))) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) + ((*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) +(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-186 (-257))) (-5 *1 (-256))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-956))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) - (-15 -2528 ((-1155 *3 (-630 $)) $)) - (-15 -2410 ($ (-1155 *3 (-630 $)))))))))) + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) + (-15 -2530 ((-1156 *3 (-631 $)) $)) + (-15 -2411 ($ (-1156 *3 (-631 $)))))))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-4 *3 (-927 *5)) (-5 *2 (-711 *3)) + (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-386 *3)) + (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4500))))))) +(((*1 *1) + (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) + (-4 *4 (-175))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1281 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1258 *3)) + (-5 *2 (-421 (-578)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-578)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-432 *2)) (-4 *2 (-570))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-860))) (-5 *1 (-142))))) +(((*1 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1248))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-665 *11)) - (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -4317 *11)))))) - (-5 *6 (-792)) - (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -4317 *11)))) - (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) - (-4 *11 (-1101 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) - (-4 *9 (-870)) (-5 *1 (-1099 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-666 *11)) + (|:| |todo| (-666 (-2 (|:| |val| *3) (|:| -4318 *11)))))) + (-5 *6 (-793)) + (-5 *2 (-666 (-2 (|:| |val| (-666 *10)) (|:| -4318 *11)))) + (-5 *3 (-666 *10)) (-5 *4 (-666 *11)) (-4 *10 (-1096 *7 *8 *9)) + (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) + (-4 *9 (-871)) (-5 *1 (-1100 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-665 *11)) - (|:| |todo| (-665 (-2 (|:| |val| *3) (|:| -4317 *11)))))) - (-5 *6 (-792)) - (-5 *2 (-665 (-2 (|:| |val| (-665 *10)) (|:| -4317 *11)))) - (-5 *3 (-665 *10)) (-5 *4 (-665 *11)) (-4 *10 (-1095 *7 *8 *9)) - (-4 *11 (-1139 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-814)) - (-4 *9 (-870)) (-5 *1 (-1175 *7 *8 *9 *10 *11))))) -(((*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-870)) - (-4 *5 (-814)) (-4 *2 (-276 *4))))) + (-2 (|:| |done| (-666 *11)) + (|:| |todo| (-666 (-2 (|:| |val| *3) (|:| -4318 *11)))))) + (-5 *6 (-793)) + (-5 *2 (-666 (-2 (|:| |val| (-666 *10)) (|:| -4318 *11)))) + (-5 *3 (-666 *10)) (-5 *4 (-666 *11)) (-4 *10 (-1096 *7 *8 *9)) + (-4 *11 (-1140 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) + (-4 *9 (-871)) (-5 *1 (-1176 *7 *8 *9 *10 *11))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-783)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1203 *9)) (-5 *4 (-666 *7)) (-5 *5 (-666 (-666 *8))) + (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) + (-5 *2 + (-2 (|:| |upol| (-1203 *8)) (|:| |Lval| (-666 *8)) + (|:| |Lfact| + (-666 (-2 (|:| -2800 (-1203 *8)) (|:| -2764 (-578))))) + (|:| |ctpol| *8))) + (-5 *1 (-764 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) + (-12 (-4 *4 (-466)) + (-5 *2 + (-666 + (-2 (|:| |eigval| (-3 (-421 (-981 *4)) (-1196 (-1207) (-981 *4)))) + (|:| |geneigvec| (-666 (-711 (-421 (-981 *4)))))))) + (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-981 *4))))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) + (-14 *4 (-666 (-1207))))) + ((*1 *1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) + (-14 *4 (-666 (-1207))))) + ((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) ((*1 *2 *1) - (-12 (-5 *2 (-1297 (-3 (-481) "undefined"))) (-5 *1 (-1298))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-327 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) + (|partial| -12 (-4 *1 (-348 *3 *4 *5 *2)) (-4 *3 (-376)) + (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) + (-4 *2 (-355 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-175)))) + ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1274 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1611 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) + (-12 (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-287 *4 *3)) + (-4 *3 (-13 (-444 *4) (-1033)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-578))))) + (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1319 *5 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-1297 *3)) - (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) + (-12 (-4 *5 (-319)) (-4 *6 (-386 *5)) (-4 *4 (-386 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-1155 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-1151)) (-4 *4 (-362)) + (-5 *1 (-542 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1298 *4)) (-4 *4 (-1248)) (-4 *1 (-245 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-666 (-1298 *4))) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-570)) + (-5 *2 (-666 (-1298 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1002)) (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-1203 *3)) + (-4 *3 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-421 (-1203 *3))) + (-4 *3 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-574 *6 *3 *7)) (-4 *7 (-1131))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-578)) (-5 *2 (-112)) (-5 *1 (-494))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-328 *4)) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1170)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)) + (-4 *3 (-814))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-520)) (-5 *3 (-666 (-994))) (-5 *1 (-303))))) (((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1007 *3 *4 *5 *6)))) + (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-112)) (-4 *7 (-1095 *4 *5 *6)) - (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-1007 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)) + (-4 *2 (-444 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) + ((*1 *1 *1) (-4 *1 (-162)))) +(((*1 *2 *1) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) + (-14 *4 (-1207)) (-14 *5 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) + (-5 *2 (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -1886 *1))) + (-4 *1 (-1096 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -1886 *1))) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))) +(((*1 *2 *1) + (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-871)) + (-4 *5 (-815)) (-4 *2 (-277 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-328 *4)) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-1002))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1248)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-980 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (|partial| -12 (-5 *2 (-981 (-392))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (|partial| -12 (-5 *2 (-421 (-981 (-392)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-391))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (|partial| -12 (-5 *2 (-328 (-392))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-392))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-980 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (|partial| -12 (-5 *2 (-981 (-578))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (|partial| -12 (-5 *2 (-421 (-981 (-578)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) - (-4 *5 (-1068 (-577))) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (|partial| -12 (-5 *2 (-328 (-578))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1069 (-578))) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1206)) (-5 *1 (-351 *3 *4 *5)) - (-14 *3 (-665 *2)) (-14 *4 (-665 *2)) (-4 *5 (-400)))) + (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) + (-14 *3 (-666 *2)) (-14 *4 (-666 *2)) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) - (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-665 (-1206))) - (-14 *4 (-665 (-1206))))) + (|partial| -12 (-5 *2 (-328 *5)) (-4 *5 (-401)) + (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-666 (-1207))) + (-14 *4 (-666 (-1207))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-710 (-420 (-980 (-577))))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-711 (-421 (-981 (-578))))) (-4 *1 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-710 (-420 (-980 (-391))))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-711 (-421 (-981 (-392))))) (-4 *1 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-710 (-980 (-577)))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-711 (-981 (-578)))) (-4 *1 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-710 (-980 (-391)))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-711 (-981 (-392)))) (-4 *1 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-710 (-327 (-577)))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-711 (-328 (-578)))) (-4 *1 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-710 (-327 (-391)))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-711 (-328 (-392)))) (-4 *1 (-397)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-980 (-577)))) (-4 *1 (-409)))) + (|partial| -12 (-5 *2 (-421 (-981 (-578)))) (-4 *1 (-410)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 (-980 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-980 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) + (|partial| -12 (-5 *2 (-421 (-981 (-392)))) (-4 *1 (-410)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-981 (-578))) (-4 *1 (-410)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-981 (-392))) (-4 *1 (-410)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-328 (-578))) (-4 *1 (-410)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-328 (-392))) (-4 *1 (-410)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-577))))) (-4 *1 (-454)))) + (|partial| -12 (-5 *2 (-1298 (-421 (-981 (-578))))) (-4 *1 (-455)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1297 (-420 (-980 (-391))))) (-4 *1 (-454)))) + (|partial| -12 (-5 *2 (-1298 (-421 (-981 (-392))))) (-4 *1 (-455)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1297 (-980 (-577)))) (-4 *1 (-454)))) + (|partial| -12 (-5 *2 (-1298 (-981 (-578)))) (-4 *1 (-455)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1297 (-980 (-391)))) (-4 *1 (-454)))) + (|partial| -12 (-5 *2 (-1298 (-981 (-392)))) (-4 *1 (-455)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1297 (-327 (-577)))) (-4 *1 (-454)))) + (|partial| -12 (-5 *2 (-1298 (-328 (-578)))) (-4 *1 (-455)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1297 (-327 (-391)))) (-4 *1 (-454)))) + (|partial| -12 (-5 *2 (-1298 (-328 (-392)))) (-4 *1 (-455)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1273 *5)) - (-5 *2 (-1202 (-1202 *4))) (-5 *1 (-798 *4 *5 *6 *3 *7)) - (-4 *3 (-1273 *6)) (-14 *7 (-949)))) + (|partial| -12 (-4 *4 (-362)) (-4 *5 (-341 *4)) (-4 *6 (-1274 *5)) + (-5 *2 (-1203 (-1203 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7)) + (-4 *3 (-1274 *6)) (-14 *7 (-950)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *1 (-1006 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1068 *2)) (-4 *2 (-1247)))) + (|partial| -12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *1 (-1007 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1069 *2)) (-4 *2 (-1248)))) ((*1 *1 *2) - (|partial| -2229 - (-12 (-5 *2 (-980 *3)) - (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) - (-2308 (-4 *3 (-38 (-577)))) (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870))) - (-12 (-5 *2 (-980 *3)) - (-12 (-2308 (-4 *3 (-558))) (-2308 (-4 *3 (-38 (-420 (-577))))) - (-4 *3 (-38 (-577))) (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870))) - (-12 (-5 *2 (-980 *3)) - (-12 (-2308 (-4 *3 (-1022 (-577)))) (-4 *3 (-38 (-420 (-577)))) - (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *1 (-1095 *3 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870))))) + (|partial| -2230 + (-12 (-5 *2 (-981 *3)) + (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) + (-2309 (-4 *3 (-38 (-578)))) (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871))) + (-12 (-5 *2 (-981 *3)) + (-12 (-2309 (-4 *3 (-559))) (-2309 (-4 *3 (-38 (-421 (-578))))) + (-4 *3 (-38 (-578))) (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871))) + (-12 (-5 *2 (-981 *3)) + (-12 (-2309 (-4 *3 (-1023 (-578)))) (-4 *3 (-38 (-421 (-578)))) + (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871))))) ((*1 *1 *2) - (|partial| -2229 - (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) - (-12 (-2308 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) - (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))) - (-12 (-5 *2 (-980 (-577))) (-4 *1 (-1095 *3 *4 *5)) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206)))) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) + (|partial| -2230 + (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) + (-12 (-2309 (-4 *3 (-38 (-421 (-578))))) (-4 *3 (-38 (-578))) + (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) + (-12 (-5 *2 (-981 (-578))) (-4 *1 (-1096 *3 *4 *5)) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207)))) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-980 (-420 (-577)))) (-4 *1 (-1095 *3 *4 *5)) - (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-632 (-1206))) - (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870))))) -(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-318))))) -(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-623))) - ((*1 *1) (-5 *1 (-624)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-665 (-980 *3))) (-4 *3 (-465)) - (-5 *1 (-372 *3 *4)) (-14 *4 (-665 (-1206))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-665 (-801 *3 (-887 *4)))) (-4 *3 (-465)) - (-14 *4 (-665 (-1206))) (-5 *1 (-646 *3 *4))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1070))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) - (-5 *2 (-665 (-665 (-971 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) (-4 *4 (-1079)) - (-4 *1 (-1164 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 (-971 *3)))) (-4 *3 (-1079)) - (-4 *1 (-1164 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-112)) - (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-665 (-665 (-971 *4)))) (-5 *3 (-112)) - (-4 *1 (-1164 *4)) (-4 *4 (-1079)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-665 (-665 (-665 *5)))) (-5 *3 (-665 (-173))) - (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-665 (-665 (-971 *5)))) (-5 *3 (-665 (-173))) - (-5 *4 (-173)) (-4 *1 (-1164 *5)) (-4 *5 (-1079))))) -(((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577)))) - ((*1 *1 *1) (-4 *1 (-1032))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1042)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1042)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-949)))) - ((*1 *1 *1) (-4 *1 (-1042)))) + (|partial| -12 (-5 *2 (-981 (-421 (-578)))) (-4 *1 (-1096 *3 *4 *5)) + (-4 *3 (-38 (-421 (-578)))) (-4 *5 (-633 (-1207))) + (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-972 (-229)))) (-5 *1 (-1299))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 (-255 *5 *6))) (-4 *6 (-466)) + (-5 *2 (-255 *5 *6)) (-14 *5 (-666 (-1207))) (-5 *1 (-650 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-432 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319))))) +(((*1 *2 *3) + (-12 (-5 *3 (-711 (-328 (-229)))) (-5 *2 (-392)) (-5 *1 (-208))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-934 *4)) (-4 *4 (-1131)) (-5 *2 (-666 (-793))) + (-5 *1 (-933 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) - (-4 *7 (-814)) + (-12 (-5 *3 (-432 *5)) (-4 *5 (-570)) (-5 *2 - (-665 - (-2 (|:| -1875 (-792)) - (|:| |eqns| - (-665 - (-2 (|:| |det| *8) (|:| |rows| (-665 (-577))) - (|:| |cols| (-665 (-577)))))) - (|:| |fgb| (-665 *8))))) - (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-792))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-251 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) - (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *2 *7)) (-4 *6 (-1079)) - (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-665 *1)) (|has| *1 (-6 -4500)) (-4 *1 (-1040 *3)) - (-4 *3 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1095 *3 *4 *5))))) + (-2 (|:| -2764 (-793)) (|:| -2672 *5) (|:| |radicand| (-666 *5)))) + (-5 *1 (-332 *5)) (-5 *4 (-793)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-578))))) +(((*1 *1 *1) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) + ((*1 *1 *1) (-4 *1 (-1033))) + ((*1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-1043)))) + ((*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-4 *1 (-1043)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-950)))) + ((*1 *1 *1) (-4 *1 (-1043)))) +(((*1 *2 *3) + (-12 (-4 *3 (-1274 *2)) (-4 *2 (-1274 *4)) + (-5 *1 (-1016 *4 *2 *3 *5)) (-4 *4 (-362)) (-4 *5 (-746 *2 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4500)) (-4 *1 (-503 *4)) + (-4 *4 (-1248)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-252 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *3 (-1096 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *3 (-1096 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)))) (-4 *3 (-570)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-444 *3)) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) + (-15 -2530 ((-1156 *3 (-631 $)) $)) + (-15 -2411 ($ (-1156 *3 (-631 $)))))))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -2853 (-666 *7)))) + (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1273 (-48))))) + (-12 (-5 *4 (-666 (-48))) (-5 *2 (-432 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1274 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1274 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) - (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-977 (-48) *6 *5)))) + (-12 (-5 *4 (-666 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) + (-5 *2 (-432 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-978 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-48))) (-4 *5 (-870)) (-4 *6 (-814)) - (-4 *7 (-977 (-48) *6 *5)) (-5 *2 (-431 (-1202 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1202 *7)))) + (-12 (-5 *4 (-666 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) + (-4 *7 (-978 (-48) *6 *5)) (-5 *2 (-432 (-1203 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1203 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1273 (-171 *4))))) + (-12 (-4 *4 (-319)) (-5 *2 (-432 *3)) (-5 *1 (-169 *4 *3)) + (-4 *3 (-1274 (-172 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-432 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) - (-4 *3 (-1273 *4)))) + (-12 (-4 *4 (-362)) (-5 *2 (-432 *3)) (-5 *1 (-220 *4 *3)) + (-4 *3 (-1274 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1273 (-577))))) + (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) + (-4 *3 (-1274 (-578))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-792))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1273 (-577))))) + (-12 (-5 *4 (-666 (-793))) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) + (-4 *3 (-1274 (-578))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-665 (-792))) (-5 *5 (-792)) (-5 *2 (-431 *3)) - (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) + (-12 (-5 *4 (-666 (-793))) (-5 *5 (-793)) (-5 *2 (-432 *3)) + (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-792)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) - (-4 *3 (-1273 (-577))))) + (-12 (-5 *4 (-793)) (-5 *2 (-432 *3)) (-5 *1 (-456 *3)) + (-4 *3 (-1274 (-578))))) ((*1 *2 *3) - (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) - (-5 *3 (-171 (-577))))) + (-12 (-5 *2 (-432 (-172 (-578)))) (-5 *1 (-460)) + (-5 *3 (-172 (-578))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-870) - (-10 -8 (-15 -3341 ((-1206) $)) - (-15 -3966 ((-3 $ "failed") (-1206)))))) - (-4 *5 (-814)) (-4 *7 (-569)) (-5 *2 (-431 *3)) - (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) - (-4 *3 (-977 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1202 *4))) (-5 *1 (-471 *4)) - (-5 *3 (-1202 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) - (-4 *7 (-13 (-375) (-148) (-745 *5 *6))) (-5 *2 (-431 *3)) - (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1273 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) - (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) - (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) - (-4 *3 (-977 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 (-1202 *7)) (-1202 *7))) - (-4 *7 (-13 (-318) (-148))) (-4 *5 (-870)) (-4 *6 (-814)) - (-4 *8 (-977 *7 *6 *5)) (-5 *2 (-431 (-1202 *8))) - (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1202 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-665 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *6 (-1273 *5)) (-5 *2 (-665 (-674 (-420 *6)))) - (-5 *1 (-678 *5 *6)) (-5 *3 (-674 (-420 *6))))) + (-13 (-871) + (-10 -8 (-15 -3343 ((-1207) $)) + (-15 -3967 ((-3 $ "failed") (-1207)))))) + (-4 *5 (-815)) (-4 *7 (-570)) (-5 *2 (-432 *3)) + (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-570)) + (-4 *3 (-978 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-319)) (-5 *2 (-432 (-1203 *4))) (-5 *1 (-472 *4)) + (-5 *3 (-1203 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) + (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-432 *3)) + (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1274 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-432 (-1203 *7)) (-1203 *7))) + (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) + (-5 *2 (-432 *3)) (-5 *1 (-554 *5 *6 *7 *3)) + (-4 *3 (-978 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-432 (-1203 *7)) (-1203 *7))) + (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) + (-4 *8 (-978 *7 *6 *5)) (-5 *2 (-432 (-1203 *8))) + (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1203 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-572 *3)) (-4 *3 (-559)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-666 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *6 (-1274 *5)) (-5 *2 (-666 (-675 (-421 *6)))) + (-5 *1 (-679 *5 *6)) (-5 *3 (-675 (-421 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) - (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5))))) + (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *5 (-1274 *4)) (-5 *2 (-666 (-675 (-421 *5)))) + (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-421 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-840 *4)) (-4 *4 (-870)) (-5 *2 (-665 (-693 *4))) - (-5 *1 (-693 *4)))) + (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-666 (-694 *4))) + (-5 *1 (-694 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-5 *2 (-665 *3)) (-5 *1 (-717 *3)) - (-4 *3 (-1273 *4)))) + (-12 (-5 *4 (-578)) (-5 *2 (-666 *3)) (-5 *1 (-718 *3)) + (-4 *3 (-1274 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) (-5 *2 (-431 *3)) - (-5 *1 (-719 *4 *5 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) + (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-362)) (-5 *2 (-432 *3)) + (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-361)) - (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) - (-5 *1 (-719 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-362)) + (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-432 (-1203 *7))) + (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-814)) + (-12 (-4 *4 (-815)) (-4 *5 - (-13 (-870) - (-10 -8 (-15 -3341 ((-1206) $)) - (-15 -3966 ((-3 $ "failed") (-1206)))))) - (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-751 *4 *5 *6 *3)) - (-4 *3 (-977 (-980 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-814)) - (-4 *5 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) (-4 *6 (-569)) - (-5 *2 (-431 *3)) (-5 *1 (-753 *4 *5 *6 *3)) - (-4 *3 (-977 (-420 (-980 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-13 (-318) (-148))) - (-5 *2 (-431 *3)) (-5 *1 (-754 *4 *5 *6 *3)) - (-4 *3 (-977 (-420 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) - (-5 *2 (-431 *3)) (-5 *1 (-762 *4 *5 *6 *3)) - (-4 *3 (-977 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-870)) (-4 *5 (-814)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-977 *6 *5 *4)) (-5 *2 (-431 (-1202 *7))) - (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1037 *3)) - (-4 *3 (-1273 (-420 (-577)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1071 *3)) - (-4 *3 (-1273 (-420 (-980 (-577))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1273 (-420 (-577)))) - (-4 *5 (-13 (-375) (-148) (-745 (-420 (-577)) *4))) - (-5 *2 (-431 *3)) (-5 *1 (-1109 *4 *5 *3)) (-4 *3 (-1273 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1273 (-420 (-980 (-577))))) - (-4 *5 (-13 (-375) (-148) (-745 (-420 (-980 (-577))) *4))) - (-5 *2 (-431 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-465)) - (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-431 (-1202 (-420 *7)))) - (-5 *1 (-1201 *4 *5 *6 *7)) (-5 *3 (-1202 (-420 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1251)))) - ((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-1262 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-843))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) - (-4 *3 (-1247))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) - (-5 *2 (-2 (|:| -1670 (-710 *4)) (|:| |vec| (-1297 *4)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) - (-5 *2 (-710 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1232) (-443 *3))) - (-14 *4 (-1206)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-4 *2 (-13 (-27) (-1232) (-443 *3) (-10 -8 (-15 -2410 ($ *4))))) - (-4 *4 (-869)) - (-4 *5 - (-13 (-1275 *2 *4) (-375) (-1232) - (-10 -8 (-15 -2030 ($ $)) (-15 -3491 ($ $))))) - (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1013 *5)) - (-14 *7 (-1206))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1068 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) + (-13 (-871) + (-10 -8 (-15 -3343 ((-1207) $)) + (-15 -3967 ((-3 $ "failed") (-1207)))))) + (-4 *6 (-319)) (-5 *2 (-432 *3)) (-5 *1 (-752 *4 *5 *6 *3)) + (-4 *3 (-978 (-981 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) + (-4 *5 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *6 (-570)) + (-5 *2 (-432 *3)) (-5 *1 (-754 *4 *5 *6 *3)) + (-4 *3 (-978 (-421 (-981 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-13 (-319) (-149))) + (-5 *2 (-432 *3)) (-5 *1 (-755 *4 *5 *6 *3)) + (-4 *3 (-978 (-421 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) + (-5 *2 (-432 *3)) (-5 *1 (-763 *4 *5 *6 *3)) + (-4 *3 (-978 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-978 *6 *5 *4)) (-5 *2 (-432 (-1203 *7))) + (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-1038 *3)) + (-4 *3 (-1274 (-421 (-578)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-1072 *3)) + (-4 *3 (-1274 (-421 (-981 (-578))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1274 (-421 (-578)))) + (-4 *5 (-13 (-376) (-149) (-746 (-421 (-578)) *4))) + (-5 *2 (-432 *3)) (-5 *1 (-1110 *4 *5 *3)) (-4 *3 (-1274 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1274 (-421 (-981 (-578))))) + (-4 *5 (-13 (-376) (-149) (-746 (-421 (-981 (-578))) *4))) + (-5 *2 (-432 *3)) (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1274 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-432 (-1203 (-421 *7)))) + (-5 *1 (-1202 *4 *5 *6 *7)) (-5 *3 (-1203 (-421 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-432 *1)) (-4 *1 (-1252)))) + ((*1 *2 *3) + (-12 (-5 *2 (-432 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *1 *1 *1) (-5 *1 (-229))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071)))) + ((*1 *1 *1 *1) (-4 *1 (-1170)))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175))))) +(((*1 *1) (-5 *1 (-1299)))) (((*1 *2 *3) - (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-849) (-1079))) (-5 *2 (-1188)) - (-5 *1 (-847 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-1079))) - (-5 *2 (-1188)) (-5 *1 (-847 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-843)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-849) (-1079))) - (-5 *2 (-1302)) (-5 *1 (-847 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-843)) (-5 *4 (-327 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-849) (-1079))) (-5 *2 (-1302)) (-5 *1 (-847 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-1188)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-849)) (-5 *3 (-112)) (-5 *2 (-1188)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *2 (-1302)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-849)) (-5 *3 (-843)) (-5 *4 (-112)) (-5 *2 (-1302))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1280 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1257 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) - (-4 *3 (-1130))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-665 (-665 (-665 *4)))) (-5 *2 (-665 (-665 *4))) - (-4 *4 (-870)) (-5 *1 (-1217 *4))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) + (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793)))) + (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1274 (-421 *5)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1288 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3867 *6) (|:| |sol?| (-112))) (-577) - *6)) - (-4 *6 (-375)) (-4 *7 (-1273 *6)) - (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) - (-4 *3 (-1273 *4)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) -(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277))))) -(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-50 *2 *3)) (-14 *3 (-665 (-1206))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-665 (-949))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-949)) (-14 *5 (-1023 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) - (-4 *3 (-13 (-1079) (-870))) (-14 *4 (-665 (-1206))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1079)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-641 *2 *4)) - (-4 *4 (-1273 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-729 *2)) (-4 *2 (-1079)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1079)) (-5 *1 (-756 *2 *3)) (-4 *3 (-747)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *5)) (-5 *3 (-665 (-792))) (-4 *1 (-761 *4 *5)) - (-4 *4 (-1079)) (-4 *5 (-870)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *2)) (-4 *4 (-1079)) - (-4 *2 (-870)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-792)) (-4 *1 (-875 *2)) (-4 *2 (-1079)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *6)) (-5 *3 (-665 (-792))) (-4 *1 (-977 *4 *5 *6)) - (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *6 (-870)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-977 *4 *5 *2)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *2 (-870)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-4 *2 (-977 *4 (-544 *5) *5)) - (-5 *1 (-1156 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-870)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-980 *4)) (-5 *1 (-1241 *4)) - (-4 *4 (-1079))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-665 (-2 (|:| |totdeg| (-792)) (|:| -1524 *3)))) - (-5 *4 (-792)) (-4 *3 (-977 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-814)) - (-4 *7 (-870)) (-5 *1 (-462 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-813)))) - ((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) - (-14 *4 (-665 (-1206))))) - ((*1 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) - (-14 *4 (-665 (-1206))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) - (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-285)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 *8)) (-5 *4 (-665 *6)) (-4 *6 (-870)) - (-4 *8 (-977 *7 *5 *6)) (-4 *5 (-814)) (-4 *7 (-1079)) - (-5 *2 (-665 (-792))) (-5 *1 (-332 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-949)))) - ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) - (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-641 *3 *4)) - (-4 *4 (-1273 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-4 *3 (-1079)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *6)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 (-792))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-977 *4 *5 *3)) (-4 *4 (-1079)) (-4 *5 (-814)) - (-4 *3 (-870)) (-5 *2 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1003 *3 *2 *4)) (-4 *3 (-1079)) (-4 *4 (-870)) - (-4 *2 (-813)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1288 *3)) - (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1257 *3)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-854 (-949))))) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-583 *3)) (-4 *3 (-1069 (-578))))) ((*1 *2 *1) - (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-792))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-665 (-665 (-665 *4)))) (-5 *3 (-665 *4)) (-4 *4 (-870)) - (-5 *1 (-1217 *4))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-143)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1188 (-666 (-578)))) (-5 *1 (-908)) (-5 *3 (-578))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-611))) (-5 *1 (-611))))) +(((*1 *1 *1) (-12 (-4 *1 (-1289 *2)) (-4 *2 (-1080))))) +(((*1 *1) (-5 *1 (-1113)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1289 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-774))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-392)) (-5 *1 (-1094))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *5 (-1273 *4)) (-5 *2 (-665 (-674 (-420 *5)))) - (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-420 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-5 *1 (-450))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3))))) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1008 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-376))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4502 "*"))) (-4 *5 (-386 *2)) (-4 *6 (-386 *2)) + (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1274 *2)) + (-4 *4 (-709 *2 *5 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 (-391)) (-5 *1 (-207))))) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-444 *4)) (-4 *4 (-1069 (-578))) + (-4 *4 (-570)) (-5 *2 (-1203 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-1080)) (-4 *1 (-314)) + (-5 *2 (-1203 *1))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-578)) (-5 *6 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) + (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) + (-5 *1 (-810))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448))))) +(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) + ((*1 *1 *1) + (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-871)) + (-4 *3 (-13 (-175) (-739 (-421 (-578))))) (-14 *4 (-950)))) + ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *3)) - (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-4 *7 (-978 *4 *6 *5)) (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-666 *7)) (|:| |n0| (-666 *7)))) + (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-666 *7))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-570)) + (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-1269 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-145))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-578))) (-5 *1 (-1078)) + (-5 *3 (-578))))) +(((*1 *2 *3) (-12 (-5 *3 (-981 (-229))) (-5 *2 (-229)) (-5 *1 (-317))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) + (-4 *4 (-362)) (-5 *2 (-711 *4)) (-5 *1 (-359 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-450)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-450))))) +(((*1 *2 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) + (-5 *2 (-1298 *6)) (-5 *1 (-349 *3 *4 *5 *6)) + (-4 *6 (-355 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-666 (-804 *3))) (-5 *1 (-804 *3)) (-4 *3 (-570)) + (-4 *3 (-1080))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-5 *2 (-2 (|:| -3171 *3) (|:| -2753 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-2 (|:| -2799 *4) (|:| -2776 (-577))))) - (-4 *4 (-1273 (-577))) (-5 *2 (-792)) (-5 *1 (-455 *4))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) - ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-5 *1 (-562))) - ((*1 *1) (-4 *1 (-747))) ((*1 *1) (-5 *1 (-1206))) - ((*1 *1) (-12 (-5 *1 (-1212 *2)) (-14 *2 (-949)))) - ((*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) - ((*1 *1) (-5 *1 (-1252))) ((*1 *1) (-5 *1 (-1253))) - ((*1 *1) (-5 *1 (-1254))) ((*1 *1) (-5 *1 (-1255)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) - (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -4208 *6))) - (-5 *1 (-1046 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-52)) (-5 *1 (-916 *4)) - (-4 *4 (-1130))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-5 *2 (-2 (|:| -3173 *3) (|:| -2754 *4)))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) + (-5 *2 (-1066)) (-5 *1 (-776))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *1) - (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1187 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-176 (-577))) (-5 *1 (-786 *3)) (-4 *3 (-417)))) + (-12 (-5 *2 (-1283 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) + (-14 *4 (-1207)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-578)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-432 *3)) (-4 *3 (-570)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-721)))) ((*1 *2 *1) - (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-894 *3)) (-14 *3 (-577)))) + (-12 (-4 *2 (-1131)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-871)) + (-14 *4 + (-1 (-112) (-2 (|:| -2087 *3) (|:| -2764 *2)) + (-2 (|:| -2087 *3) (|:| -2764 *2))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131)))) ((*1 *2 *1) - (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) - (-5 *1 (-895 *3 *4)) (-4 *4 (-892 *3))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -4242 (-666 (-1207))) (|:| -1685 (-666 (-1207))))) + (-5 *1 (-1250))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-570)) (-4 *2 (-466)) (-5 *1 (-1000 *2 *3)) + (-4 *3 (-1274 *2))))) +(((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) (-5 *1 (-392))) + ((*1 *1) (-5 *1 (-392)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) - (-5 *1 (-270 *2)) (-4 *2 (-1247)))) + (|partial| -12 (-5 *3 (-666 (-272))) (-5 *4 (-1207)) + (-5 *1 (-271 *2)) (-4 *2 (-1248)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-52)) - (-5 *1 (-271))))) -(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1126)))) + (|partial| -12 (-5 *3 (-666 (-272))) (-5 *4 (-1207)) (-5 *2 (-52)) + (-5 *1 (-272))))) +(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1127)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) - ((*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-665 (-630 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1202 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1273 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-426 *3 *2 *4 *5)) - (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1068 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) - (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) - (-14 *6 (-1297 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *5 (-1079)) - (-4 *2 (-13 (-417) (-1068 *5) (-375) (-1232) (-295))) - (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1273 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-630 (-508)))) (-5 *1 (-508)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-508))) (-5 *1 (-508)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-665 (-630 (-508)))) - (-5 *1 (-508)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1202 (-508))) (-5 *3 (-630 (-508))) (-5 *1 (-508)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) - (-5 *1 (-541 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-745 *4 *2)) (-4 *2 (-1273 *4)) - (-5 *1 (-796 *4 *2 *5 *3)) (-4 *3 (-1273 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1090)))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) + (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) + ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-5 *2 (-112)) + (-5 *1 (-914 *4 *5)) (-4 *5 (-1131)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-917 *5)) (-4 *5 (-1131)) (-5 *2 (-112)) + (-5 *1 (-915 *5 *3)) (-4 *3 (-1248)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6)) (-5 *4 (-917 *5)) (-4 *5 (-1131)) + (-4 *6 (-1248)) (-5 *2 (-112)) (-5 *1 (-915 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -9797,3563 +9364,3324 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-228))) + (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1641 + (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-572))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-949)) (-5 *2 (-481)) (-5 *1 (-1298))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) - (-4 *3 (-569)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-854 *3)) (-4 *3 (-558)) - (-4 *3 (-1130)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-864 *3)) (-4 *3 (-558)) - (-4 *3 (-1130)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) - (-5 *2 (-420 (-577))))) + (-5 *1 (-573))))) +(((*1 *1 *1) (-4 *1 (-1091)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-711 *4)) (-5 *3 (-950)) (|has| *4 (-6 (-4502 "*"))) + (-4 *4 (-1080)) (-5 *1 (-1059 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-666 (-711 *4))) (-5 *3 (-950)) + (|has| *4 (-6 (-4502 "*"))) (-4 *4 (-1080)) (-5 *1 (-1059 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) + (-5 *1 (-179 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-666 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *6 (-1274 *5)) + (-5 *2 (-666 (-2 (|:| -1529 *5) (|:| -3505 *3)))) + (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) + (-4 *7 (-678 (-421 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-993 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1038 *3)) - (-4 *3 (-1068 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 *4)))) - (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-318))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) - ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-818 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-558)) (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1027 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) + (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1207)) + (-4 *4 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-571 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) + (-4 *3 (-319)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1008 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) + (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-711 *3)) + (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1038 *3)) (-4 *3 (-1068 (-420 (-577))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) - (-5 *1 (-787 *3 *4)) (-4 *3 (-729 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) - (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) - (-4 *3 (-875 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1006 *4 *5 *3 *6)) (-4 *4 (-1079)) (-4 *5 (-814)) - (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-665 (-228))) (-5 *1 (-206))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-486))) - ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-907)))) - ((*1 *1 *1) (-5 *1 (-1001))) - ((*1 *1 *1) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-665 (-1202 *11))) (-5 *3 (-1202 *11)) - (-5 *4 (-665 *10)) (-5 *5 (-665 *8)) (-5 *6 (-665 (-792))) - (-5 *7 (-1297 (-665 (-1202 *8)))) (-4 *10 (-870)) - (-4 *8 (-318)) (-4 *11 (-977 *8 *9 *10)) (-4 *9 (-814)) - (-5 *1 (-728 *9 *10 *8 *11))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1003 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-4 *5 (-870)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2846 *1))) - (-4 *1 (-875 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-977 *4 *6 *5)) (-4 *4 (-465)) - (-4 *5 (-870)) (-4 *6 (-814)) (-5 *1 (-1017 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1130) (-1068 *5))) - (-4 *5 (-910 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-959 *4 *5 *6))))) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-432 *3)) (-4 *3 (-570)) (-5 *1 (-433 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-884)) (-5 *2 (-713 (-1256))) (-5 *3 (-1256))))) +(((*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319))))) +(((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) (-4 *2 (-1247)) - (-4 *2 (-1130)))) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) (-4 *2 (-1248)) + (-4 *2 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *3)) - (-4 *3 (-1247)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *3)) + (-4 *3 (-1248)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-695 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1248)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) - (-5 *1 (-758 *4)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-578)) (-4 *4 (-1131)) + (-5 *1 (-759 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-578)) (-5 *1 (-759 *2)) (-4 *2 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1172 *4 *2)) (-14 *4 (-949)) - (-4 *2 (-13 (-1079) (-10 -7 (-6 (-4501 "*"))))) - (-5 *1 (-930 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *3)) (-4 *3 (-1139 *5 *6 *7 *8)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-604 *5 *6 *7 *8 *3))))) + (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) (((*1 *2 *2) - (-12 (-5 *2 (-665 (-494 *3 *4))) (-14 *3 (-665 (-1206))) - (-4 *4 (-465)) (-5 *1 (-649 *3 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-112))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1091 (-1054 *3) (-1202 (-1054 *3)))) - (-5 *1 (-1054 *3)) (-4 *3 (-13 (-869) (-375) (-1052)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) + (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1005))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-665 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-666 *3)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) - (-5 *2 (-665 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-803 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-991 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) - (-4 *3 (-1079)) (-4 *2 (-813)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-1202 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-1001)) (-4 *2 (-132)) (-5 *1 (-1208 *3)) (-4 *3 (-569)) - (-4 *3 (-1079)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-1270 *4 *3)) (-14 *4 (-1206)) - (-4 *3 (-1079))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) (-5 *3 (-228)) - (-5 *2 (-1065)) (-5 *1 (-769))))) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) + (-5 *2 (-666 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1002))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3579 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-666 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1274 *7)) + (-5 *3 (-421 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-588 *7 *8))))) +(((*1 *2) + (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) + (-4 *3 (-341 *4)))) + ((*1 *2) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-793))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-666 (-1207))) (|:| |pred| (-52)))) + (-5 *1 (-917 *3)) (-4 *3 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *6)) (-5 *4 (-1206)) (-4 *6 (-443 *5)) - (-4 *5 (-1130)) (-5 *2 (-665 (-630 *6))) (-5 *1 (-586 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-792)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-792))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-588 *5 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-431 *4))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1080))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-328 (-229))) (-5 *2 (-229)) (-5 *1 (-317))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-112)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-666 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-578)) + (-5 *6 + (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392)))) + (-5 *7 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) + (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) + (-5 *1 (-810)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-578)) + (-5 *6 + (-2 (|:| |try| (-392)) (|:| |did| (-392)) (|:| -4061 (-392)))) + (-5 *7 (-1 (-1303) (-1298 *5) (-1298 *5) (-392))) + (-5 *3 (-1298 (-392))) (-5 *5 (-392)) (-5 *2 (-1303)) + (-5 *1 (-810))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1241 *4 *5 *3 *6)) (-4 *4 (-570)) (-4 *5 (-815)) + (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6)) + (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1289 *5)) (-4 *6 (-1274 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1274 (-578)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-553 *4 *2 *5 *6)) + (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-5 *2 (-665 (-2 (|:| -2799 *3) (|:| -2776 *4)))) - (-5 *1 (-717 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1297 (-1131 *3 *4))) (-5 *1 (-1131 *3 *4)) - (-14 *3 (-949)) (-14 *4 (-949))))) -(((*1 *2) - (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) - (-5 *2 (-665 (-665 *4))) (-5 *1 (-353 *3 *4 *5 *6)) - (-4 *3 (-354 *4 *5 *6)))) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-600 *3)) (-5 *1 (-440 *5 *3)) + (-4 *3 (-13 (-1233) (-29 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-2 (|:| |k| (-1207)) (|:| |c| (-1320 *3))))) + (-5 *1 (-1320 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4))))) + (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *6)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)))) + ((*1 *2 *1) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-793))))) +(((*1 *2 *3) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) + (-5 *2 (-981 *5)) (-5 *1 (-973 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-696 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-871)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *1 (-1011 *3)) (-4 *3 (-1080)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-666 *1)) (-5 *3 (-666 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) + (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))) +(((*1 *2 *1) + (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1274 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-665 (-665 *3)))))) -(((*1 *2 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) + (-12 (-4 *2 (-1274 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-893 *3)) (-5 *2 (-578))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) (-5 *3 (-229)) + (-5 *2 (-1066)) (-5 *1 (-771))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)) - (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) - (-5 *2 (-710 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1202 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) - (-5 *1 (-32 *4 *2))))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-773))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) - (-4 *3 (-1247))))) -(((*1 *1 *1) (-5 *1 (-1093)))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *5 (-569)) - (-5 *2 - (-2 (|:| |minor| (-665 (-949))) (|:| -3503 *3) - (|:| |minors| (-665 (-665 (-949)))) (|:| |ops| (-665 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-949)) (-4 *3 (-677 *5))))) -(((*1 *1) (-5 *1 (-610)))) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) + (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) + (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-570))))) (((*1 *1 *2) - (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-577)) (-14 *4 (-792))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 (-665 *6))) (-4 *6 (-977 *3 *5 *4)) - (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-870) (-632 (-1206)))) - (-4 *5 (-814)) (-5 *1 (-952 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1206))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) - (-4 *6 (-1079)) (-5 *2 (-665 (-665 (-710 *6)))) (-5 *1 (-1059 *6)) - (-5 *3 (-665 (-710 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1079)) - (-5 *2 (-665 (-665 (-710 *4)))) (-5 *1 (-1059 *4)) - (-5 *3 (-665 (-710 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) - (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) - (-5 *3 (-665 (-710 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079)) - (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) - (-5 *3 (-665 (-710 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) -(((*1 *1) (-5 *1 (-1115)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2420 *3))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-380))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-710 (-1202 *8))) (-4 *5 (-1079)) (-4 *8 (-1079)) - (-4 *6 (-1273 *5)) (-5 *2 (-710 *6)) (-5 *1 (-514 *5 *6 *7 *8)) - (-4 *7 (-1273 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-142))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-710 (-577))) - (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-778))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3760 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) + (-12 (-5 *2 (-950)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1080)) + (-4 *4 (-1248)))) + ((*1 *1 *2) + (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) + (-4 *5 (-245 (-3226 *3) (-793))) + (-14 *6 + (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *5)) + (-2 (|:| -2087 *2) (|:| -2764 *5)))) + (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-871)) + (-4 *7 (-978 *4 *5 (-888 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1248))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-666 (-1207))) (-4 *2 (-175)) + (-4 *3 (-245 (-3226 *4) (-793))) + (-14 *6 + (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *3)) + (-2 (|:| -2087 *5) (|:| -2764 *3)))) + (-5 *1 (-475 *4 *2 *5 *3 *6 *7)) (-4 *5 (-871)) + (-4 *7 (-978 *2 *3 (-888 *4)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-666 (-291))) (-5 *1 (-291)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-1212))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212))))) +(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1206)) - (-4 *6 (-13 (-318) (-1068 (-577)) (-659 (-577)) (-148))) - (-4 *4 (-13 (-29 *6) (-1232) (-987))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2225 (-665 *4)))) - (-5 *1 (-822 *6 *4 *3)) (-4 *3 (-677 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) - (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *9 (-1095 *6 *7 *8)) - (-5 *2 - (-665 - (-2 (|:| -3503 (-665 *9)) (|:| -4317 *10) (|:| |ineq| (-665 *9))))) - (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-665 *10)) (-5 *5 (-112)) (-4 *10 (-1101 *6 *7 *8 *9)) - (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *9 (-1095 *6 *7 *8)) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-4 *3 (-13 (-27) (-1233) (-444 *6) (-10 -8 (-15 -2411 ($ *7))))) + (-4 *7 (-870)) + (-4 *8 + (-13 (-1276 *3 *7) (-376) (-1233) + (-10 -8 (-15 -2031 ($ $)) (-15 -4371 ($ $))))) (-5 *2 - (-665 - (-2 (|:| -3503 (-665 *9)) (|:| -4317 *10) (|:| |ineq| (-665 *9))))) - (-5 *1 (-1137 *6 *7 *8 *9 *10)) (-5 *3 (-665 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (|has| *1 (-6 -4490)) (-4 *1 (-417)) - (-5 *2 (-949))))) -(((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) - ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) - ((*1 *2 *1) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577)))) - ((*1 *1 *1) (-4 *1 (-1090)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1187 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1247))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) + (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) + (-14 *10 (-1207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-865 *3)) (-4 *3 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-665 *8))) (-5 *3 (-665 *8)) - (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) - (-4 *7 (-870)) (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1079)) - (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1273 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) - (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1079)) - (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-950)) (-4 *5 (-871)) + (-5 *2 (-666 (-694 *5))) (-5 *1 (-694 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-578)) (-5 *1 (-248))))) (((*1 *2 *1) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3) - (-12 (-5 *3 (-955)) + (-12 (-5 *2 - (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) - (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-955)) (-5 *4 (-420 (-577))) + (-666 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-578))))) + (-5 *1 (-432 *3)) (-4 *3 (-570)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-793)) (-4 *3 (-362)) (-4 *5 (-1274 *3)) + (-5 *2 (-666 (-1203 *3))) (-5 *1 (-512 *3 *5 *6)) + (-4 *6 (-1274 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1274 *4)) (-4 *4 (-1252)) + (-4 *6 (-1274 (-421 *5))) (-5 *2 - (-2 (|:| |brans| (-665 (-665 (-971 (-228))))) - (|:| |xValues| (-1124 (-228))) (|:| |yValues| (-1124 (-228))))) - (-5 *1 (-154))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1188) (-1211))) - (-5 *1 (-1211))))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-355 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1298 *5)) (-4 *5 (-13 (-1080) (-660 *4))) + (-4 *4 (-570)) (-5 *2 (-1298 *4)) (-5 *1 (-658 *4 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-631 *3)) (-4 *3 (-13 (-444 *5) (-27) (-1233))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-600 *3)) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-5 *2 (-112)) + (-5 *1 (-370 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1298 (-1298 (-578)))) (-5 *1 (-480))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-666 (-578))) (-5 *3 (-711 (-578))) (-5 *1 (-1141))))) (((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1177 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-375)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| -1636 *1) (|:| -4369 *1))) (-4 *1 (-875 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) - (-5 *2 (-2 (|:| -1636 *3) (|:| -4369 *3))) (-5 *1 (-876 *5 *3)) - (-4 *3 (-875 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-665 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) - (-4 *7 (-1273 *6)) - (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-986 (-792))) (-5 *1 (-344))))) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-1178 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1207)) + (-4 *5 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-328 (-229)))) (-5 *2 (-112)) (-5 *1 (-278))))) +(((*1 *1) (-5 *1 (-143)))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1321 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-870)) - (-4 *2 (-174)))) + (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-871)) + (-4 *2 (-175)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-1315 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-840 *4)) (-4 *1 (-1314 *4 *2)) (-4 *4 (-870)) - (-4 *2 (-1079)))) + (-12 (-5 *3 (-841 *4)) (-4 *1 (-1315 *4 *2)) (-4 *4 (-871)) + (-4 *2 (-1080)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-971 (-228)) (-228) (-228))) - (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1249))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1169)))) -(((*1 *1 *1) (-5 *1 (-228))) - ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1169))) ((*1 *1 *1 *1) (-4 *1 (-1169)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1079)) - (-5 *3 (-420 (-577))) (-5 *1 (-1190 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2420 (-803 *3)) (|:| |coef2| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-2 (|:| -2420 *1) (|:| |coef2| *1))) - (-4 *1 (-1095 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) + (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-450))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248))))) +(((*1 *1) (-5 *1 (-611)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-897)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) + (-5 *1 (-1191 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1066)) + (-5 *1 (-771))))) (((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) - (-5 *2 (-665 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |k| (-917 *3)) (|:| |c| *4)))) - (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-693 *3))) (-5 *1 (-917 *3)) (-4 *3 (-870))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1187 (-1001))) (-5 *1 (-1001))))) + (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301))))) +(((*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-711 (-421 (-981 (-578))))) + (-5 *2 (-666 (-711 (-328 (-578))))) (-5 *1 (-1062)) + (-5 *3 (-328 (-578)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1163 (-228))) (-5 *1 (-263)))) + (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1164 (-229))) (-5 *1 (-264)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) - (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) - (-5 *1 (-267 *6)))) + (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) + (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) + (-5 *1 (-268 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) - (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) - (-5 *1 (-267 *5)))) + (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-392))) + (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) + (-5 *1 (-268 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) - (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-632 (-549)) (-1130))))) + (-12 (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) + (-5 *2 (-1164 (-229))) (-5 *1 (-268 *3)) + (-4 *3 (-13 (-633 (-550)) (-1131))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1163 (-228))) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-632 (-549)) (-1130))))) + (-12 (-5 *4 (-1123 (-392))) (-5 *2 (-1164 (-229))) (-5 *1 (-268 *3)) + (-4 *3 (-13 (-633 (-550)) (-1131))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) - (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) - (-5 *1 (-267 *6)))) + (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) + (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) + (-5 *1 (-268 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) - (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1163 (-228))) - (-5 *1 (-267 *5))))) -(((*1 *1) (-5 *1 (-1115)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-792)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) + (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-392))) + (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1164 (-229))) + (-5 *1 (-268 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34)))))) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) - (-5 *2 (-426 *4 (-420 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-422 *4 *5) (-1068 *4))) - (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-318)) - (-5 *1 (-426 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-776))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-311)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1187 (-228))) (-5 *2 (-665 (-1188))) (-5 *1 (-316))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-710 (-171 (-228)))) - (-5 *2 (-1065)) (-5 *1 (-776))))) + (-12 (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *4 (-570)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2760 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) (((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) - (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-884)))) - ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-884))))) + (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1133 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1133 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1298 *6)) (-5 *4 (-1298 (-578))) (-5 *5 (-578)) + (-4 *6 (-1131)) (-5 *2 (-1 *6)) (-5 *1 (-1048 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1219 (-666 *4))) (-4 *4 (-871)) + (-5 *2 (-666 (-666 *4))) (-5 *1 (-1218 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2)))) + (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *3 (-1274 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-678 *3)) + (-4 *5 (-678 (-421 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1114 *2))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) - (-4 *5 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-665 *7)) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-665 (-305 *7))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-665 (-305 *8))) (-5 *4 (-665 (-115))) (-5 *5 (-305 *8)) - (-5 *6 (-665 *8)) (-4 *8 (-443 *7)) - (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-665 *7)) (-5 *4 (-665 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 (-115))) (-5 *6 (-665 (-305 *8))) - (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) - (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) - (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) - (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) - (-4 *6 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-665 *3)) - (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-632 (-549)))) (-5 *2 (-52)) - (-5 *1 (-328 *7 *3))))) + (-12 (-5 *3 (-421 *5)) + (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) (-4 *5 (-1274 *4)) + (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-678 *5)) (-4 *6 (-678 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-792) *2)) (-5 *4 (-792)) (-4 *2 (-1130)) - (-5 *1 (-699 *2)))) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1203 (-578))) (-5 *3 (-578)) (-4 *1 (-893 *4))))) +(((*1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578))))) ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-792) *3)) (-4 *3 (-1130)) (-5 *1 (-703 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) - ((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) - (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) - (-4 *6 (-354 *3 *4 *5))))) + (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578)))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-999 *2 *3)) - (-4 *3 (-1273 *2))))) + (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-432 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-13 (-466) (-149))) + (-5 *2 (-432 *3)) (-5 *1 (-100 *5 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-992 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-792))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-577)) - (-5 *6 - (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391)))) - (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) - (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) - (-5 *1 (-809)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-577)) - (-5 *6 - (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4060 (-391)))) - (-5 *7 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) - (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) - (-5 *1 (-809))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |k| (-1206)) (|:| |c| (-1319 *3))))) - (-5 *1 (-1319 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-666 (-272))) (-5 *1 (-1300)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1189)) (-5 *1 (-1300)))) + ((*1 *1 *1) (-5 *1 (-1300)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |k| *3) (|:| |c| (-1321 *3 *4))))) - (-5 *1 (-1321 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079))))) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1241 *4 *5 *6 *3)) (-4 *4 (-570)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) + (-4 *4 (-362)) (-5 *2 (-793)) (-5 *1 (-359 *4)))) + ((*1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-364 *3 *4)) (-14 *3 (-950)) + (-14 *4 (-950)))) + ((*1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-4 *3 (-362)) + (-14 *4 + (-3 (-1203 *3) + (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151))))))))) + ((*1 *2) + (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-362)) + (-14 *4 (-950))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-666 (-112))) (-5 *7 (-711 (-229))) + (-5 *8 (-711 (-578))) (-5 *3 (-578)) (-5 *4 (-229)) (-5 *5 (-112)) + (-5 *2 (-1066)) (-5 *1 (-776))))) +(((*1 *2 *3) + (-12 (-5 *3 (-711 (-421 (-981 (-578))))) (-5 *2 (-666 (-328 (-578)))) + (-5 *1 (-1062))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) - (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) - (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1188)) (-5 *3 (-577)) (-5 *1 (-247))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-665 (-577))) (-5 *3 (-710 (-577))) (-5 *1 (-1140))))) + (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1274 *5)) + (-5 *1 (-749 *5 *2)) (-4 *5 (-376))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1202 (-420 (-980 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-577))) (-5 *5 (-577)) - (-4 *6 (-1130)) (-5 *2 (-1 *6)) (-5 *1 (-1047 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *1)) (-4 *1 (-1095 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112)))) + (-12 (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 (-578))))) + (-5 *1 (-374 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) + (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) + (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 (-793))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-5 *2 (-666 (-2 (|:| -2800 *3) (|:| -2764 (-578))))) + (-5 *1 (-432 *3)) (-4 *3 (-570))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-2 (|:| |den| (-578)) (|:| |gcdnum| (-578))))) + (-4 *4 (-1274 (-421 *2))) (-5 *2 (-578)) (-5 *1 (-942 *4 *5)) + (-4 *5 (-1274 (-421 *4)))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6)) + (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1289 *5)) (-4 *6 (-1274 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1290 *5 *6 *7)) (-4 *5 (-376)) + (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1271 *6 *5))) + (-5 *1 (-892 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1290 *5 *6 *7)) (-4 *5 (-376)) + (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1271 *6 *5))) + (-5 *1 (-892 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-242 *3)) + (-4 *3 (-1131)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-242 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) + (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-578)) (-4 *4 (-1131)) + (-5 *1 (-759 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-5 *1 (-759 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-711 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-666 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-570)) (-4 *7 (-815)) + (-4 *8 (-871)) (-5 *1 (-1008 *6 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) + ((*1 *1 *1) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) + ((*1 *1 *1) (-4 *1 (-870))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) + ((*1 *1 *1) (-4 *1 (-1091))) ((*1 *1 *1) (-4 *1 (-1170)))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-1188 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-884)) (-5 *2 (-713 (-563))) (-5 *3 (-563))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -4107 (-1189)))) + (-5 *1 (-844))))) (((*1 *2 *1) - (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) + (-12 (-4 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 - (-2 (|:| -3307 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -3310 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1274 *5)) (-4 *5 (-376)) (-5 *2 - (-2 (|:| |poly| *6) (|:| -3084 (-420 *6)) - (|:| |special| (-420 *6)))) - (-5 *1 (-748 *5 *6)) (-5 *3 (-420 *6)))) + (-2 (|:| |poly| *6) (|:| -3086 (-421 *6)) + (|:| |special| (-421 *6)))) + (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-922 *3 *4)) - (-4 *3 (-1273 *4)))) + (-12 (-4 *4 (-376)) (-5 *2 (-666 *3)) (-5 *1 (-923 *3 *4)) + (-4 *3 (-1274 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-792)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -3854 *3) (|:| -3867 *3))) (-5 *1 (-922 *3 *5)) - (-4 *3 (-1273 *5)))) + (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3855 *3) (|:| -3868 *3))) (-5 *1 (-923 *3 *5)) + (-4 *3 (-1274 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) - (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) + (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) + (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) - (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) + (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) + (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) - (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) + (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) + (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-665 *9)) (-5 *3 (-665 *8)) (-5 *4 (-112)) - (-4 *8 (-1095 *5 *6 *7)) (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-666 *9)) (-5 *3 (-666 *8)) (-5 *4 (-112)) + (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) + (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-319)) (-5 *2 (-432 *3)) + (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-978 *6 *5 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-633 (-917 *3))) (-4 *3 (-911 *3)) (-4 *3 (-466)) + (-5 *1 (-1239 *3 *2)) (-4 *2 (-633 (-917 *3))) (-4 *2 (-911 *3)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2) - (-12 (-4 *3 (-1079)) (-5 *2 (-986 (-733 *3 *4))) (-5 *1 (-733 *3 *4)) - (-4 *4 (-1273 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) - (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079)))) - ((*1 *2 *3) - (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) - (-5 *1 (-709 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4501 "*"))) (-4 *2 (-1079))))) -(((*1 *2 *1) - (-12 (-4 *2 (-977 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2)) - (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) + (|partial| -12 (-4 *3 (-570)) (-4 *3 (-175)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3198 (-666 *1)))) + (-4 *1 (-380 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-467 *3 *4 *5 *6)) + (|:| -3198 (-666 (-467 *3 *4 *5 *6))))) + (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-793)) (-4 *4 (-570)) (-5 *1 (-1000 *4 *2)) + (-4 *2 (-1274 *4))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-264)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1298)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1299)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1298)) (-5 *1 (-263)))) + (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1299)) (-5 *1 (-264)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-901 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1298)) (-5 *1 (-263)))) + (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1299)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-903 (-1 (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-971 (-228)) (-228))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *5 (-665 (-271))) (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *5 (-666 (-272))) (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-906 (-1 (-228) (-228) (-228)))) (-5 *4 (-1124 (-391))) - (-5 *2 (-1299)) (-5 *1 (-263)))) + (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1125 (-392))) + (-5 *2 (-1300)) (-5 *1 (-264)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-1206)) (-5 *5 (-665 (-271))) - (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-870) (-1068 (-577)))) - (-5 *2 (-1298)) (-5 *1 (-264 *6 *7)))) + (-12 (-5 *3 (-306 *7)) (-5 *4 (-1207)) (-5 *5 (-666 (-272))) + (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-871) (-1069 (-578)))) + (-5 *2 (-1299)) (-5 *1 (-265 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1298)) - (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) + (-12 (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1299)) + (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1298)) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-632 (-549)) (-1130))))) + (-12 (-5 *4 (-1123 (-392))) (-5 *2 (-1299)) (-5 *1 (-268 *3)) + (-4 *3 (-13 (-633 (-550)) (-1131))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-901 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) - (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) - (-5 *1 (-267 *6)))) + (-12 (-5 *3 (-902 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) + (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1299)) + (-5 *1 (-268 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-901 *5)) (-5 *4 (-1122 (-391))) - (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1298)) - (-5 *1 (-267 *5)))) + (-12 (-5 *3 (-902 *5)) (-5 *4 (-1123 (-392))) + (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1299)) + (-5 *1 (-268 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-903 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) - (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) - (-5 *1 (-267 *6)))) + (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) + (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) + (-5 *1 (-268 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-903 *5)) (-5 *4 (-1122 (-391))) - (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) - (-5 *1 (-267 *5)))) + (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-392))) + (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) + (-5 *1 (-268 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) (-5 *2 (-1299)) - (-5 *1 (-267 *3)) (-4 *3 (-13 (-632 (-549)) (-1130))))) + (-12 (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) (-5 *2 (-1300)) + (-5 *1 (-268 *3)) (-4 *3 (-13 (-633 (-550)) (-1131))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1122 (-391))) (-5 *2 (-1299)) (-5 *1 (-267 *3)) - (-4 *3 (-13 (-632 (-549)) (-1130))))) + (-12 (-5 *4 (-1123 (-392))) (-5 *2 (-1300)) (-5 *1 (-268 *3)) + (-4 *3 (-13 (-633 (-550)) (-1131))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-906 *6)) (-5 *4 (-1122 (-391))) (-5 *5 (-665 (-271))) - (-4 *6 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) - (-5 *1 (-267 *6)))) + (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-392))) (-5 *5 (-666 (-272))) + (-4 *6 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) + (-5 *1 (-268 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-906 *5)) (-5 *4 (-1122 (-391))) - (-4 *5 (-13 (-632 (-549)) (-1130))) (-5 *2 (-1299)) - (-5 *1 (-267 *5)))) + (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-392))) + (-4 *5 (-13 (-633 (-550)) (-1131))) (-5 *2 (-1300)) + (-5 *1 (-268 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1298)) (-5 *1 (-268)))) + (-12 (-5 *3 (-666 (-229))) (-5 *2 (-1299)) (-5 *1 (-269)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1298)) - (-5 *1 (-268)))) + (-12 (-5 *3 (-666 (-229))) (-5 *4 (-666 (-272))) (-5 *2 (-1299)) + (-5 *1 (-269)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *2 (-1298)) (-5 *1 (-268)))) + (-12 (-5 *3 (-666 (-972 (-229)))) (-5 *2 (-1299)) (-5 *1 (-269)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-665 (-271))) - (-5 *2 (-1298)) (-5 *1 (-268)))) + (-12 (-5 *3 (-666 (-972 (-229)))) (-5 *4 (-666 (-272))) + (-5 *2 (-1299)) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1299)) (-5 *1 (-268)))) + (-12 (-5 *3 (-666 (-229))) (-5 *2 (-1300)) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-665 (-228))) (-5 *4 (-665 (-271))) (-5 *2 (-1299)) - (-5 *1 (-268))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 (-1202 *4))) (-5 *3 (-1202 *4)) - (-4 *4 (-937)) (-5 *1 (-684 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1079))))) -(((*1 *1 *1) (-5 *1 (-1093)))) + (-12 (-5 *3 (-666 (-229))) (-5 *4 (-666 (-272))) (-5 *2 (-1300)) + (-5 *1 (-269))))) +(((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1189))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-847))))) (((*1 *2 *1) - (-12 (-5 *2 (-885)) (-5 *1 (-1187 *3)) (-4 *3 (-1130)) - (-4 *3 (-1247))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *3)) (-4 *3 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *3)) (-4 *3 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) - (-4 *6 (-814)) (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1137 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-792)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-792)) (-4 *5 (-174)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) - (-254 *4 (-420 (-577))))) - (-5 *3 (-665 (-887 *4))) (-14 *4 (-665 (-1206))) (-14 *5 (-792)) - (-5 *1 (-518 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(((*1 *1 *2) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1206))))) + (-12 (-4 *3 (-1080)) (-4 *4 (-1131)) (-5 *2 (-666 *1)) + (-4 *1 (-395 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-748)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-980 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-980 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-174)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-980 *4)) (-4 *4 (-1079)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-980 *5)) (-5 *4 (-949)) (-4 *5 (-1079)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-980 (-171 *4)))) (-4 *4 (-569)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-420 (-980 (-171 *5)))) (-5 *4 (-949)) - (-4 *5 (-569)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-870)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-806 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-870)) - (-4 *4 (-632 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-949)) (-4 *5 (-569)) - (-4 *5 (-870)) (-4 *5 (-632 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-806 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-843))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1206)) (-5 *6 (-665 (-630 *3))) - (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *7))) - (-4 *7 (-13 (-465) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-2 (|:| -1827 *3) (|:| |coeff| *3))) - (-5 *1 (-570 *7 *3))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1131)) + (-4 *3 (-1131))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-578)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-319)) + (-4 *9 (-978 *8 *6 *7)) + (-5 *2 (-2 (|:| -3714 (-1203 *9)) (|:| |polval| (-1203 *8)))) + (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9)) (-5 *4 (-1203 *8))))) +(((*1 *2) + (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) + (-4 *4 (-1274 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1203 *7)) (-4 *7 (-978 *6 *4 *5)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-1203 *6)) + (-5 *1 (-333 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1207)) + (-4 *4 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-589 *4 *2)) + (-4 *2 (-13 (-1233) (-988) (-1170) (-29 *4)))))) +(((*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1207))) (-5 *1 (-1207))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-1133 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1131)) (-5 *2 (-1133 (-666 *4))) (-5 *1 (-933 *4)) + (-5 *3 (-666 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1131)) (-5 *2 (-1133 (-1133 *4))) (-5 *1 (-933 *4)) + (-5 *3 (-1133 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1133 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-777)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) + (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-251 *2)) (-4 *2 (-1248))))) (((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *1) (-5 *1 (-1093)))) + (-12 (-5 *2 (-1188 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) - (-14 *4 (-665 (-1206))))) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-5 *1 (-160 *4 *2)) + (-4 *2 (-444 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1123 *2)) (-4 *2 (-444 *4)) (-4 *4 (-570)) + (-5 *1 (-160 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-793)) (-4 *4 (-1080)) + (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-1274 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-376)) + (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-709 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) - (-14 *4 (-665 (-1206)))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -4081 (-792)) (|:| |period| (-792)))) - (-5 *1 (-1187 *4)) (-4 *4 (-1247)) (-5 *3 (-792))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *3 (-386 *2)) (-4 *4 (-386 *2)) + (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080)))) + ((*1 *2 *3) + (-12 (-4 *4 (-386 *2)) (-4 *5 (-386 *2)) (-4 *2 (-175)) + (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-709 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) + (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4502 "*"))) (-4 *2 (-1080))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-955)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-229))) (-5 *1 (-956)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-570)) (-4 *7 (-815)) + (-4 *8 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2853 (-666 *9)))) + (-5 *3 (-666 *9)) (-4 *1 (-1241 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2853 (-666 *8)))) + (-5 *3 (-666 *8)) (-4 *1 (-1241 *5 *6 *7 *8))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-666 *1)) (-4 *1 (-314)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-1130)) - (-5 *1 (-630 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-665 *11)) (-5 *5 (-665 (-1202 *9))) - (-5 *6 (-665 *9)) (-5 *7 (-665 *12)) (-5 *8 (-665 (-792))) - (-4 *11 (-870)) (-4 *9 (-318)) (-4 *12 (-977 *9 *10 *11)) - (-4 *10 (-814)) (-5 *2 (-665 (-1202 *12))) - (-5 *1 (-728 *10 *11 *9 *12)) (-5 *3 (-1202 *12))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1267 *3 *2)) - (-4 *2 (-1273 *3))))) + (-12 (-5 *2 (-116)) (-5 *3 (-666 *5)) (-5 *4 (-793)) (-4 *5 (-1131)) + (-5 *1 (-631 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-711 (-328 (-578)))) (-5 *1 (-1062))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3868 *6) (|:| |sol?| (-112))) (-578) + *6)) + (-4 *6 (-376)) (-4 *7 (-1274 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) + (-2 (|:| -3579 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) + (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-981 *6))) (-5 *4 (-666 (-1207))) + (-4 *6 (-13 (-570) (-1069 *5))) (-4 *5 (-570)) + (-5 *2 (-666 (-666 (-306 (-421 (-981 *6)))))) (-5 *1 (-1070 *5 *6))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) - (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) + (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1248)) + (-4 *4 (-386 *2)) (-4 *5 (-386 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) - (-4 *3 (-1247)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4501)) (-4 *1 (-121 *3)) + (-4 *3 (-1248)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4500)) (-4 *1 (-120 *3)) - (-4 *3 (-1247)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4501)) (-4 *1 (-121 *3)) + (-4 *3 (-1248)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) - (-4 *2 (-1247)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1206)) (-5 *1 (-650)))) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) + (-4 *2 (-1248)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1207)) (-5 *1 (-651)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1264 (-577))) (|has| *1 (-6 -4500)) (-4 *1 (-672 *2)) - (-4 *2 (-1247)))) + (-12 (-5 *3 (-1265 (-578))) (|has| *1 (-6 -4501)) (-4 *1 (-673 *2)) + (-4 *2 (-1248)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-666 (-578))) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4500)) (-4 *1 (-1040 *2)) - (-4 *2 (-1247)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4501)) (-4 *1 (-1041 *2)) + (-4 *2 (-1248)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1223 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) - (-4 *2 (-1247)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) + (-4 *2 (-1248)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *3)) - (-4 *3 (-1247)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4501)) (-4 *1 (-1286 *3)) + (-4 *3 (-1248)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) - (-4 *2 (-1247))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) + (-4 *2 (-1248))))) (((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *1 (-712 *2)) (-4 *2 (-631 (-885)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1079)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) - (-4 *3 (-1273 *4)) - (-4 *5 (-13 (-417) (-1068 *4) (-375) (-1232) (-295)))))) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-159))) + ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) + (-12 (-4 *2 (-978 *3 *5 *4)) (-5 *1 (-1018 *3 *4 *5 *2)) + (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1187 *4) (-1187 *4))) (-5 *2 (-1187 *4)) - (-5 *1 (-1323 *4)) (-4 *4 (-1247)))) + (-12 (-5 *3 (-1 (-1188 *4) (-1188 *4))) (-5 *2 (-1188 *4)) + (-5 *1 (-1324 *4)) (-4 *4 (-1248)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-665 (-1187 *5)) (-665 (-1187 *5)))) (-5 *4 (-577)) - (-5 *2 (-665 (-1187 *5))) (-5 *1 (-1323 *5)) (-4 *5 (-1247))))) -(((*1 *2 *3) - (-12 (-4 *1 (-937)) (-5 *2 (-431 (-1202 *1))) (-5 *3 (-1202 *1))))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-504))))) + (-12 (-5 *3 (-1 (-666 (-1188 *5)) (-666 (-1188 *5)))) (-5 *4 (-578)) + (-5 *2 (-666 (-1188 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1248))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-361))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-937))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) - (-4 *2 (-1273 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 (-327 (-228)))) - (-5 *2 - (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) - (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) - (-5 *1 (-316))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1162 *4 *2)) - (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4499) (-6 -4500)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-870)) (-4 *3 (-1247)) (-5 *1 (-1162 *3 *2)) - (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4499) (-6 -4500))))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-665 *1)) (-4 *1 (-948))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-870)) (-5 *4 (-665 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-665 *4)))) - (-5 *1 (-1217 *6)) (-5 *5 (-665 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-870)))) - ((*1 *2 *2) - (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1232))) - (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-596 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-599 (-420 (-980 *3)))) - (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *1 (-602 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -3084 *3) (|:| |special| *3))) (-5 *1 (-748 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1297 *5)) (-4 *5 (-375)) (-4 *5 (-1079)) - (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) - (-5 *3 (-665 (-710 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-375)) (-4 *5 (-1079)) - (-5 *2 (-665 (-665 (-710 *5)))) (-5 *1 (-1059 *5)) - (-5 *3 (-665 (-710 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-665 *1)) (-4 *1 (-1174)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-665 *1)) (-4 *1 (-1174))))) + (-12 (-4 *4 (-38 (-421 (-578)))) + (-5 *2 (-2 (|:| -1349 (-1188 *4)) (|:| -1361 (-1188 *4)))) + (-5 *1 (-1193 *4)) (-5 *3 (-1188 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-1248))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1241 *5 *6 *7 *3)) + (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3)) (-4 *3 (-871))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-600 *3)) (-5 *1 (-440 *5 *3)) + (-4 *3 (-13 (-1233) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)) (-149))) + (-5 *2 (-600 (-421 (-981 *5)))) (-5 *1 (-584 *5)) + (-5 *3 (-421 (-981 *5)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-465)) (-4 *4 (-841)) - (-14 *5 (-1206)) (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-665 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-932 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1303)) (-5 *1 (-217 *4)) + (-4 *4 + (-13 (-871) + (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 (*2 $)) + (-15 -2574 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) + (-4 *3 + (-13 (-871) + (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 (*2 $)) + (-15 -2574 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1043))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-665 *7) *7 (-1202 *7))) (-5 *5 (-1 (-431 *7) *7)) - (-4 *7 (-1273 *6)) (-4 *6 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-5 *2 (-665 (-2 (|:| |frac| (-420 *7)) (|:| -3503 *3)))) - (-5 *1 (-830 *6 *7 *3 *8)) (-4 *3 (-677 *7)) - (-4 *8 (-677 (-420 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) + (-12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *3 (-1096 *6 *7 *8)) (-5 *2 - (-665 (-2 (|:| |frac| (-420 *6)) (|:| -3503 (-675 *6 (-420 *6)))))) - (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-420 *6)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3868 *7) (|:| |sol?| (-112))) + (-578) *7)) + (-5 *6 (-666 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1274 *7)) + (-5 *3 (-421 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-588 *7 *8))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) + (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1311 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-666 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) + (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) - (-5 *2 (-1065)) (-5 *1 (-766))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) - (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) - (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) - (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) - (-4 *2 (-708 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-710 *2)) (-4 *2 (-375)) (-4 *2 (-1079)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1153 *2 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) - ((*1 *2 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-1217 *3))))) -(((*1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1230))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-844)) (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) - (-4 *4 (-38 (-420 (-577))))))) -(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) -(((*1 *2) (-12 (-5 *2 (-854 (-577))) (-5 *1 (-547)))) - ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-375)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1056 (-864 (-577)))) - (-5 *3 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1079)) - (-5 *1 (-608 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-420 (-980 (-171 (-577)))))) - (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-869))))) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-1298 (-711 *4))))) + ((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-1298 (-711 *4))) (-5 *1 (-430 *3 *4)) + (-4 *3 (-431 *4)))) + ((*1 *2) + (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-1298 (-711 *3))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-305 (-420 (-980 (-171 (-577))))))) - (-5 *2 (-665 (-665 (-305 (-980 (-171 *4)))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-869))))) + (-12 (-5 *3 (-666 (-1207))) (-4 *5 (-376)) + (-5 *2 (-1298 (-711 (-421 (-981 *5))))) (-5 *1 (-1117 *5)) + (-5 *4 (-711 (-421 (-981 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 (-171 (-577))))) - (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-869))))) + (-12 (-5 *3 (-666 (-1207))) (-4 *5 (-376)) + (-5 *2 (-1298 (-711 (-981 *5)))) (-5 *1 (-1117 *5)) + (-5 *4 (-711 (-981 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-711 *4))) (-4 *4 (-376)) + (-5 *2 (-1298 (-711 *4))) (-5 *1 (-1117 *4))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(((*1 *2) (-12 (-5 *2 (-855 (-578))) (-5 *1 (-548)))) + ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 (-578)) (-5 *1 (-207))))) +(((*1 *2 *1) + (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) + (-4 *3 (-1131))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 (-421 (-981 (-578))))) (-5 *4 (-666 (-1207))) + (-5 *2 (-666 (-666 *5))) (-5 *1 (-393 *5)) + (-4 *5 (-13 (-870) (-376))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-980 (-171 (-577)))))) - (-5 *2 (-665 (-305 (-980 (-171 *4))))) (-5 *1 (-390 *4)) - (-4 *4 (-13 (-375) (-869)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2635 *4))) (-5 *1 (-999 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-949)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-949)) - (-5 *1 (-541 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-2 (|:| |deg| (-792)) (|:| -3801 *5)))) - (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *2 (-665 *5)) - (-5 *1 (-219 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-2 (|:| -2799 *5) (|:| -2776 (-577))))) - (-5 *4 (-577)) (-4 *5 (-1273 *4)) (-5 *2 (-665 *5)) - (-5 *1 (-717 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-135))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) - (-4 *3 (-569)))) - ((*1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-1232)))) + (-12 (-5 *3 (-421 (-981 (-578)))) (-5 *2 (-666 *4)) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-870) (-376)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1204 *4 *5 *6)) - (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1270 *5 *4)) (-5 *1 (-1289 *4 *5 *6)) - (-4 *4 (-1079)) (-14 *5 (-1206)) (-14 *6 *4)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 (-710 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) + (-12 (-4 *1 (-884)) (-5 *2 (-713 (-131))) (-5 *3 (-131))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-666 *1)) (-5 *3 (-666 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) + (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-666 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-666 *1)) + (-4 *1 (-1102 *4 *5 *6 *3))))) +(((*1 *1) (-5 *1 (-143)))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-570)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1274 *2))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-666 (-1203 *4))) (-5 *3 (-1203 *4)) + (-4 *4 (-938)) (-5 *1 (-685 *4))))) (((*1 *2) - (-12 (-4 *2 (-13 (-443 *3) (-1032))) (-5 *1 (-286 *3 *2)) - (-4 *3 (-569))))) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1303))))) (((*1 *2) - (-12 (-4 *3 (-1251)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) - (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *4 (-1273 *3)) - (-5 *2 - (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-710 *3)))) - (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1273 (-577))) + (-12 (-4 *2 (-13 (-444 *3) (-1033))) (-5 *1 (-287 *3 *2)) + (-4 *3 (-570)))) + ((*1 *1) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *1) (-5 *1 (-491))) ((*1 *1) (-4 *1 (-1233)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-793)) (-4 *5 (-570)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1283 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) + (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-392))) (-5 *1 (-1071)) (-5 *3 (-392))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) + (-5 *1 (-317))))) +(((*1 *2 *1) (-12 (-4 *1 (-188)) (-5 *2 (-666 (-112)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| -2225 (-710 (-577))) (|:| |basisDen| (-577)) - (|:| |basisInv| (-710 (-577))))) - (-5 *1 (-789 *3 *4)) (-4 *4 (-422 (-577) *3)))) - ((*1 *2) - (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) + (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) + (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) + (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -2225 (-710 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-710 *4)))) - (-5 *1 (-1015 *3 *4 *5 *6)) (-4 *6 (-745 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-361)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) + (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) + (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) + (-5 *1 (-272)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-578)) (-5 *4 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) + (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) + (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) + (-5 *2 (-1303)) (-5 *1 (-1300)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2225 (-710 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-710 *4)))) - (-5 *1 (-1306 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1202 (-577))) (-5 *2 (-577)) (-5 *1 (-970))))) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -3803 (-229)) + (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) + (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) + (-5 *1 (-1300)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *1 *1) (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131)) (-4 *2 (-1080)))) + ((*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1032) (-1232))) - (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1032) (-1232)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-792)) (-4 *4 (-318)) (-4 *6 (-1273 *4)) - (-5 *2 (-1297 (-665 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-665 *6))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-665 *3)) (-5 *5 (-949)) (-4 *3 (-1273 *4)) - (-4 *4 (-318)) (-5 *1 (-473 *4 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-801 *5 (-887 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) - (-14 *6 (-665 (-1206))) (-5 *2 (-665 (-1076 *5 *6))) - (-5 *1 (-646 *5 *6))))) + (-12 (-5 *3 (-666 (-495 *4 *5))) (-14 *4 (-666 (-1207))) + (-4 *5 (-466)) (-5 *2 (-666 (-255 *4 *5))) (-5 *1 (-650 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-793)) (-5 *3 (-972 *4)) (-4 *1 (-1165 *4)) + (-4 *4 (-1080)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-972 (-229))) (-5 *2 (-1303)) + (-5 *1 (-1300))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *2) (-12 (-5 *2 (-1188 (-666 (-950)))) (-5 *1 (-908))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-971 (-228))) (-5 *4 (-897)) (-5 *5 (-949)) - (-5 *2 (-1302)) (-5 *1 (-481)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-665 (-971 (-228)))) (-5 *4 (-897)) (-5 *5 (-949)) - (-5 *2 (-1302)) (-5 *1 (-481))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-1273 *4)) (-4 *4 (-1079)) - (-5 *2 (-1297 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1273 *5)) - (-5 *1 (-828 *5 *2 *3 *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *3 (-677 *2)) (-4 *6 (-677 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-420 *2))) (-4 *2 (-1273 *5)) - (-5 *1 (-828 *5 *2 *3 *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) (-4 *3 (-677 *2)) - (-4 *6 (-677 (-420 *2)))))) -(((*1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-341))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-1225))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1042)) (-5 *2 (-885))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) + (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-1096 *3 *4 *2)) (-4 *2 (-871)))) ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-1031 *3))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1080))))) +(((*1 *1) (-5 *1 (-451)))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-52)) (-5 *1 (-853))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-318)) - (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3))))) + (-12 (-4 *3 (-1023 *2)) (-4 *4 (-1274 *3)) (-4 *2 (-319)) + (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-423 *3 *4) (-1069 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) + (-12 (-4 *3 (-570)) (-4 *3 (-1131)) (-5 *2 (-1156 *3 (-631 *1))) + (-4 *1 (-444 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-509)))) (-5 *1 (-509)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) - (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) + (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-747) *4)) - (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1115))) (-5 *1 (-302))))) -(((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-665 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-430 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) + (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) + (-5 *1 (-684 *3 *4 *2)) (-4 *3 (-739 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-666 + (-2 (|:| -1875 (-793)) + (|:| |eqns| + (-666 + (-2 (|:| |det| *7) (|:| |rows| (-666 (-578))) + (|:| |cols| (-666 (-578)))))) + (|:| |fgb| (-666 *7))))) + (-4 *7 (-978 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) + (-5 *1 (-953 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-328 (-229))) (-5 *1 (-278))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-1154 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-375) (-869))) (-5 *2 (-431 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1273 (-171 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-1001))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) - (-4 *4 (-1247)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5)) + (|:| |c2| (-421 *5)) (|:| |deg| (-793)))) + (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1274 (-421 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-328 (-229))) (-5 *1 (-213))))) +(((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301)))) + ((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-1301))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-773))))) +(((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) + (|:| |expense| (-392)) (|:| |accuracy| (-392)) + (|:| |intermediateResults| (-392)))) + (-5 *2 (-1066)) (-5 *1 (-317))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) + (-5 *1 (-777))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-319) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-328 *5)) + (-5 *1 (-603 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) - (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) - (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) + (-12 (-4 *3 (-319)) (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) + (-5 *2 (-1298 *6)) (-5 *1 (-427 *3 *4 *5 *6)) + (-4 *6 (-13 (-423 *4 *5) (-1069 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *3 (-1130)) (-5 *2 (-1155 *3 (-630 *1))) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) + (-12 (-4 *3 (-1080)) (-4 *3 (-1131)) (-5 *2 (-1156 *3 (-631 *1))) + (-4 *1 (-444 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1156 (-578) (-631 (-509)))) (-5 *1 (-509)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-639 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-747) *3)))) + (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-640 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-748) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-738 *3)) (-5 *1 (-683 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-747) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-1297 *5))) (-5 *4 (-577)) (-5 *2 (-1297 *5)) - (-5 *1 (-1059 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1079))))) + (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-684 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-748) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2035 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) -(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1299))))) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033)))))) +(((*1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -3198 (-711 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-711 *3)))) + (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-711 *5))) (-5 *4 (-578)) (-4 *5 (-376)) + (-4 *5 (-1080)) (-5 *2 (-112)) (-5 *1 (-1060 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1080)) + (-5 *2 (-112)) (-5 *1 (-1060 *4))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1247)) - (-4 *2 (-1247)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1248)) + (-4 *2 (-1248)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (|has| *1 (-6 -4499)) - (-4 *1 (-152 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1131)) (|has| *1 (-6 -4500)) + (-4 *1 (-153 *2)) (-4 *2 (-1248)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) - (-4 *2 (-1247)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) + (-4 *2 (-1248)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4499)) (-4 *1 (-152 *2)) - (-4 *2 (-1247)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4500)) (-4 *1 (-153 *2)) + (-4 *2 (-1248)))) ((*1 *2 *3) - (-12 (-4 *4 (-1079)) - (-5 *2 (-2 (|:| -1524 (-1202 *4)) (|:| |deg| (-949)))) - (-5 *1 (-224 *4 *5)) (-5 *3 (-1202 *4)) (-4 *5 (-569)))) + (-12 (-4 *4 (-1080)) + (-5 *2 (-2 (|:| -3714 (-1203 *4)) (|:| |deg| (-950)))) + (-5 *1 (-225 *4 *5)) (-5 *3 (-1203 *4)) (-4 *5 (-570)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-792)) - (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-245 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-247 *5 *6)) (-14 *5 (-793)) + (-4 *6 (-1248)) (-4 *2 (-1248)) (-5 *1 (-246 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1274 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (-5 *1 (-328 *2)) (-4 *2 (-570)) (-4 *2 (-1131)))) ((*1 *1 *1) - (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1273 *2)) - (-4 *4 (-1273 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) + (-12 (-4 *1 (-348 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1274 *2)) + (-4 *4 (-1274 (-421 *3))) (-4 *5 (-355 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) - (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1248)) (-4 *2 (-1248)) + (-5 *1 (-384 *5 *4 *2 *6)) (-4 *4 (-386 *5)) (-4 *6 (-386 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) - (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) - ((*1 *1 *1) (-5 *1 (-508))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-437 *5 *4 *2 *6)) (-4 *4 (-439 *5)) (-4 *6 (-439 *2)))) + ((*1 *1 *1) (-5 *1 (-509))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-665 *5)) (-4 *5 (-1247)) - (-4 *2 (-1247)) (-5 *1 (-663 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-666 *5)) (-4 *5 (-1248)) + (-4 *2 (-1248)) (-5 *1 (-664 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1079)) (-4 *2 (-1079)) - (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) - (-4 *9 (-385 *2)) (-5 *1 (-706 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1080)) (-4 *2 (-1080)) + (-4 *6 (-386 *5)) (-4 *7 (-386 *5)) (-4 *8 (-386 *2)) + (-4 *9 (-386 *2)) (-5 *1 (-707 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-709 *5 *6 *7)) (-4 *10 (-709 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3)))) + (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1274 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-375)) - (-4 *3 (-174)) (-4 *1 (-745 *3 *4)))) + (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-376)) + (-4 *3 (-175)) (-4 *1 (-746 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-745 *3 *2)) (-4 *2 (-1273 *3)))) + (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1274 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-986 *5)) (-4 *5 (-1247)) - (-4 *2 (-1247)) (-5 *1 (-985 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-987 *5)) (-4 *5 (-1248)) + (-4 *2 (-1248)) (-5 *1 (-986 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) - (-14 *6 (-665 *2)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) + (-14 *6 (-666 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1079)) (-4 *2 (-1079)) - (-14 *5 (-792)) (-14 *6 (-792)) (-4 *8 (-244 *6 *7)) - (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) - (-5 *1 (-1085 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1083 *5 *6 *7 *8 *9)) (-4 *12 (-1083 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1080)) (-4 *2 (-1080)) + (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) + (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) + (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *12 (-1084 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1187 *5)) (-4 *5 (-1247)) - (-4 *2 (-1247)) (-5 *1 (-1185 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1188 *5)) (-4 *5 (-1248)) + (-4 *2 (-1248)) (-5 *1 (-1186 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1240 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-814)) - (-4 *7 (-870)) (-4 *2 (-1095 *5 *6 *7)))) + (-4 *1 (-1241 *5 *6 *7 *2)) (-4 *5 (-570)) (-4 *6 (-815)) + (-4 *7 (-871)) (-4 *2 (-1096 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) - (-4 *2 (-1247)) (-5 *1 (-1296 *5 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *4 *5 *6 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1202 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-769))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-341))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1298 *5)) (-4 *5 (-1248)) + (-4 *2 (-1248)) (-5 *1 (-1297 *5 *2))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-814)) (-4 *5 (-1079)) (-4 *6 (-977 *5 *4 *2)) - (-4 *2 (-870)) (-5 *1 (-978 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *6)) (-15 -2518 (*6 $)) - (-15 -2528 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-569)) - (-5 *2 (-1206)) (-5 *1 (-1073 *4))))) + (-12 (-5 *2 (-886)) (-5 *1 (-1188 *3)) (-4 *3 (-1131)) + (-4 *3 (-1248))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-578)) (-5 *1 (-1188 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-1 (-112) *8))) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-2 (|:| |goodPols| (-666 *8)) (|:| |badPols| (-666 *8)))) + (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-666 *8))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-777))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710 *6)) (-5 *5 (-1 (-431 (-1202 *6)) (-1202 *6))) - (-4 *6 (-375)) - (-5 *2 - (-665 - (-2 (|:| |outval| *7) (|:| |outmult| (-577)) - (|:| |outvect| (-665 (-710 *7)))))) - (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-869)))))) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-778))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) - (-5 *2 (-112)) (-5 *1 (-1017 *3 *4 *5 *6)) - (-4 *6 (-977 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34)))))) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-578)) (-5 *1 (-500 *4)) + (-4 *4 (-1274 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-146))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-956))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1232))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-1202 (-420 (-1202 *6)))) (-5 *1 (-573 *5 *6 *7)) - (-5 *3 (-1202 *6)) (-4 *7 (-1130)))) + (-12 (-5 *4 (-631 *6)) (-4 *6 (-13 (-444 *5) (-27) (-1233))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-1203 (-421 (-1203 *6)))) (-5 *1 (-574 *5 *6 *7)) + (-5 *3 (-1203 *6)) (-4 *7 (-1131)))) ((*1 *2 *1) - (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) + (-12 (-4 *2 (-1274 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) ((*1 *2 *1) - (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) + (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1274 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1202 *11)) (-5 *6 (-665 *10)) - (-5 *7 (-665 (-792))) (-5 *8 (-665 *11)) (-4 *10 (-870)) - (-4 *11 (-318)) (-4 *9 (-814)) (-4 *5 (-977 *11 *9 *10)) - (-5 *2 (-665 (-1202 *5))) (-5 *1 (-763 *9 *10 *11 *5)) - (-5 *3 (-1202 *5)))) + (|partial| -12 (-5 *4 (-1203 *11)) (-5 *6 (-666 *10)) + (-5 *7 (-666 (-793))) (-5 *8 (-666 *11)) (-4 *10 (-871)) + (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-978 *11 *9 *10)) + (-5 *2 (-666 (-1203 *5))) (-5 *1 (-764 *9 *10 *11 *5)) + (-5 *3 (-1203 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-977 *3 *4 *5)) (-5 *1 (-1064 *3 *4 *5 *2 *6)) - (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-14 *6 (-665 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-665 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) - (-14 *4 (-665 (-1206))) (-4 *5 (-465)) (-5 *1 (-649 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1300))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1188)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1065)) - (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) + (-12 (-4 *2 (-978 *3 *4 *5)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) + (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-14 *6 (-666 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-814))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1241 *2 *3 *4 *5)) (-4 *2 (-570)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) + (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) + (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1138 *5 *6 *7 *8 *3))))) +(((*1 *2) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) - (-5 *1 (-207))))) + (-12 (-5 *3 (-328 (-229))) (-5 *2 (-421 (-578))) (-5 *1 (-317))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-813)) - (-4 *2 (-375)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-228)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) + (-4 *2 (-376)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-229)))) ((*1 *1 *1 *1) - (-2229 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1247))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1247))))) - ((*1 *1 *1 *1) (-4 *1 (-375))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) + (-2230 (-12 (-5 *1 (-306 *2)) (-4 *2 (-376)) (-4 *2 (-1248))) + (-12 (-5 *1 (-306 *2)) (-4 *2 (-487)) (-4 *2 (-1248))))) + ((*1 *1 *1 *1) (-4 *1 (-376))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-392)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-569)) (-4 *3 (-1130)) - (-4 *1 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-486))) + (-12 (-5 *2 (-1156 *3 (-631 *1))) (-4 *3 (-570)) (-4 *3 (-1131)) + (-4 *1 (-444 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-487))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-549))) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-362)) (-5 *1 (-542 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-550))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-639 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-747) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-640 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-748) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-639 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-747) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)) (-4 *2 (-375)))) + (-12 (-4 *4 (-175)) (-5 *1 (-640 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-748) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-653 *2)) (-4 *2 (-175)) (-4 *2 (-376)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-683 *2 *4 *3)) (-4 *2 (-738 *4)) - (-4 *3 (|SubsetCategory| (-747) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-684 *2 *4 *3)) (-4 *2 (-739 *4)) + (-4 *3 (|SubsetCategory| (-748) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-683 *3 *4 *2)) (-4 *3 (-738 *4)) - (-4 *2 (|SubsetCategory| (-747) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-684 *3 *4 *2)) (-4 *3 (-739 *4)) + (-4 *2 (|SubsetCategory| (-748) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-375)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)) (-4 *2 (-376)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-889 *2 *3 *4 *5)) (-4 *2 (-375)) - (-4 *2 (-1079)) (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-792))) - (-14 *5 (-792)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)))) + (|partial| -12 (-5 *1 (-890 *2 *3 *4 *5)) (-4 *2 (-376)) + (-4 *2 (-1080)) (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-793))) + (-14 *5 (-793)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1083 *3 *4 *2 *5 *6)) (-4 *2 (-1079)) - (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-375)))) + (-12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) + (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2)) (-4 *2 (-375)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1079)) (-4 *3 (-870)) - (-4 *4 (-814)) (-14 *6 (-665 *3)) - (-5 *1 (-1309 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-977 *2 *4 *3)) - (-14 *7 (-665 (-792))) (-14 *8 (-792)))) + (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1080)) (-4 *3 (-871)) + (-4 *4 (-815)) (-14 *6 (-666 *3)) + (-5 *1 (-1310 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-978 *2 *4 *3)) + (-14 *7 (-666 (-793))) (-14 *8 (-793)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1079)) - (-4 *3 (-867))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3))))) -(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-624)))) -(((*1 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-949)) (-4 *5 (-870)) - (-5 *2 (-59 (-665 (-693 *5)))) (-5 *1 (-693 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-361)) (-4 *2 (-1079)) (-5 *1 (-733 *2 *3)) - (-4 *3 (-1273 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-986 *3)) (-5 *1 (-1193 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) + (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1080)) + (-4 *3 (-868))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-950)) (-5 *1 (-456 *2)) + (-4 *2 (-1274 (-578))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-950)) (-5 *4 (-793)) (-5 *1 (-456 *2)) + (-4 *2 (-1274 (-578))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-950)) (-5 *4 (-666 (-793))) (-5 *1 (-456 *2)) + (-4 *2 (-1274 (-578))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-950)) (-5 *4 (-666 (-793))) (-5 *5 (-793)) + (-5 *1 (-456 *2)) (-4 *2 (-1274 (-578))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-950)) (-5 *4 (-666 (-793))) (-5 *5 (-793)) + (-5 *6 (-112)) (-5 *1 (-456 *2)) (-4 *2 (-1274 (-578))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-432 *2)) (-4 *2 (-1274 *5)) + (-5 *1 (-458 *5 *2)) (-4 *5 (-1080))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-228) (-228) (-228))) - (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) - (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) - (-5 *1 (-718)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-971 (-228)) (-228) (-228))) (-5 *4 (-1124 (-228))) - (-5 *5 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-718)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1163 (-228))) (-5 *3 (-1 (-971 (-228)) (-228) (-228))) - (-5 *4 (-1124 (-228))) (-5 *5 (-665 (-271))) (-5 *1 (-718))))) + (-12 (-5 *2 (-666 (-52))) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1) (-4 *1 (-145))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-666 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-431 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-642 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3868 *4) (|:| |sol?| (-112))) + (-578) *4)) + (-4 *4 (-376)) (-4 *5 (-1274 *4)) (-5 *1 (-588 *4 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-666 *4)) (-4 *4 (-376)) (-5 *2 (-1298 *4)) + (-5 *1 (-836 *4 *3)) (-4 *3 (-678 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-5 *2 (-112)) + (-5 *1 (-370 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-112)) + (-5 *1 (-542 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) + (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3505 (-666 *9)) (|:| -4318 *4) (|:| |ineq| (-666 *9)))) + (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-666 *9)) + (-4 *4 (-1102 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) + (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3505 (-666 *9)) (|:| -4318 *4) (|:| |ineq| (-666 *9)))) + (-5 *1 (-1138 *6 *7 *8 *9 *4)) (-5 *3 (-666 *9)) + (-4 *4 (-1102 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-543)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-136))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-216 *2)) + (-12 (-5 *1 (-217 *2)) (-4 *2 - (-13 (-870) - (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) - (-15 -3060 ((-1302) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) + (-13 (-871) + (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) + (-15 -2574 ((-1303) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-21)) (-4 *2 (-1248)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) + ((*1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-21))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-21))))) (((*1 *2 *3) - (-12 (-4 *4 (-870)) + (-12 (-4 *4 (-871)) (-5 *2 - (-2 (|:| |f1| (-665 *4)) (|:| |f2| (-665 (-665 (-665 *4)))) - (|:| |f3| (-665 (-665 *4))) (|:| |f4| (-665 (-665 (-665 *4)))))) - (-5 *1 (-1217 *4)) (-5 *3 (-665 (-665 (-665 *4))))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) - (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 *4)))))) - ((*1 *2 *1) - (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-873)) - (-5 *2 (-665 (-896 *4 *3))))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| -2671 *3) (|:| -1475 *4)))) - (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-747)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-5 *2 (-1187 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-870)) (-4 *5 (-814)) - (-4 *6 (-569)) (-4 *7 (-977 *6 *5 *3)) - (-5 *1 (-475 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1068 (-420 (-577))) (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) - (-15 -2528 (*7 $)))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1095 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-185 (-140)))) (-5 *1 (-141))))) + (-2 (|:| |f1| (-666 *4)) (|:| |f2| (-666 (-666 (-666 *4)))) + (|:| |f3| (-666 (-666 *4))) (|:| |f4| (-666 (-666 (-666 *4)))))) + (-5 *1 (-1218 *4)) (-5 *3 (-666 (-666 (-666 *4))))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-172 (-229))) (-5 *3 (-793)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1170)))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228))))) (((*1 *2 *3) - (-12 (-5 *3 (-1188)) (-5 *2 (-665 (-1211))) (-5 *1 (-904))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-777))))) + (-12 (-5 *3 (-1207)) + (-5 *2 + (-2 (|:| |zeros| (-1188 (-229))) (|:| |ones| (-1188 (-229))) + (|:| |singularities| (-1188 (-229))))) + (-5 *1 (-105))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-570) (-149))) + (-5 *2 (-2 (|:| -3855 *3) (|:| -3868 *3))) (-5 *1 (-1268 *4 *3)) + (-4 *3 (-1274 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) + (-12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-551 *3 *2)) + (-4 *2 (-1289 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-4 *4 (-1274 *3)) + (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1289 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-5 *1 (-556 *3 *2)) + (-4 *2 (-1289 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-570) (-149))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-186 (-141)))) (-5 *1 (-142))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-578)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-793)) (-4 *5 (-175)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-578)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-793)) (-4 *5 (-175)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) + (-255 *4 (-421 (-578))))) + (-5 *3 (-666 (-888 *4))) (-14 *4 (-666 (-1207))) (-14 *5 (-793)) + (-5 *1 (-519 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *5 (-381)) + (-5 *2 (-793))))) (((*1 *2 *2) - (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) + (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-444 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) + (-12 (-5 *3 (-1207)) (-5 *2 (-328 (-578))) (-5 *1 (-959))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-216 *2)) + (-12 (-5 *1 (-217 *2)) (-4 *2 - (-13 (-870) - (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) - (-15 -3060 ((-1302) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) + (-13 (-871) + (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) + (-15 -2574 ((-1303) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-25)) (-4 *2 (-1248)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-25)) (-4 *2 (-1248)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-132)))) + (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-133)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *2)) - (-4 *2 (-1273 *3)))) + (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *2)) + (-4 *2 (-1274 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-549))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) + (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-550))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-25))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-25))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-567))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-509))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) + (-5 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *2 (-1303)) + (-5 *1 (-1210)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1207)) + (-5 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) (-5 *2 (-1303)) + (-5 *1 (-1210))))) (((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-710 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) -(((*1 *2) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-105))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-971 *5)) (-5 *3 (-792)) (-4 *5 (-1079)) - (-5 *1 (-1194 *4 *5)) (-14 *4 (-949))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-305 (-854 *3))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-854 *3)) (-5 *1 (-654 *5 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-854 (-980 *5)))) (-4 *5 (-465)) - (-5 *2 (-854 (-420 (-980 *5)))) (-5 *1 (-655 *5)) - (-5 *3 (-420 (-980 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) - (-4 *5 (-465)) (-5 *2 (-854 *3)) (-5 *1 (-655 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-171 (-228)))) - (-5 *2 (-1065)) (-5 *1 (-775))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-1218 *3))))) -(((*1 *1 *1) (-4 *1 (-647))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) + (-12 (-4 *4 (-570)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3232 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-319)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) + (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) - (-4 *5 (-244 (-3224 *3) (-792))) - (-14 *6 - (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *5)) - (-2 (|:| -2085 *2) (|:| -2182 *5)))) - (-4 *2 (-870)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-977 *4 *5 (-887 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1288 *4)) - (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-1 (-1187 *4) (-1187 *4) (-1187 *4))) (-5 *1 (-1290 *4 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-949)) (-4 *5 (-318)) (-4 *3 (-1273 *5)) - (-5 *2 (-2 (|:| |plist| (-665 *3)) (|:| |modulo| *5))) - (-5 *1 (-473 *5 *3)) (-5 *4 (-665 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145))))) -(((*1 *2 *3) - (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1079))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) + (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-178))) (-5 *1 (-1116))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3579 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-376)) (-4 *7 (-1274 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) + (-2 (|:| -3579 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) + (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) + (-4 *3 (-1274 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1252)) (-4 *5 (-1274 *3)) (-4 *6 (-1274 (-421 *5))) + (-5 *2 (-112)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-577)) (-5 *5 (-710 (-228))) (-5 *6 (-696 (-228))) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-771))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) - (-5 *4 (-665 (-949))) (-5 *5 (-665 (-271))) (-5 *1 (-481)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *3 (-665 (-897))) - (-5 *4 (-665 (-949))) (-5 *1 (-481)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) - ((*1 *1 *1) (-5 *1 (-481)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-665 *6)) (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) - (-4 *3 (-569))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1174)) (-5 *2 (-145))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) - (-5 *2 (-1297 (-420 (-577)))) (-5 *1 (-1325 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1079) (-659 (-577)))) - (-5 *2 (-1297 (-577))) (-5 *1 (-1325 *4))))) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))) + (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *3 (-578)) + (-5 *2 (-1066)) (-5 *1 (-778))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531))))) +(((*1 *1 *1) (-4 *1 (-145))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-116)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-116)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) + ((*1 *2 *1) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-1080)) + (-5 *1 (-1191 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-578)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-1080)) + (-14 *4 (-1207)) (-14 *5 *3)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2420 *3))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-792))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) + (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-463 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-172 (-229)))) (-5 *2 (-1066)) + (-5 *1 (-776))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) - (-5 *2 (-391)) (-5 *1 (-277)))) + (|partial| -12 (-5 *3 (-981 (-172 *4))) (-4 *4 (-175)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-981 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-175)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) - (-5 *1 (-769))))) -(((*1 *2) - (-12 (-4 *1 (-361)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *1 *1) - (-12 (-4 *2 (-318)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) - (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1068 *3)))))) + (|partial| -12 (-5 *3 (-981 *4)) (-4 *4 (-1080)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-981 *5)) (-5 *4 (-950)) (-4 *5 (-1080)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-570)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-421 (-981 (-172 *4)))) (-4 *4 (-570)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-421 (-981 (-172 *5)))) (-5 *4 (-950)) + (-4 *5 (-570)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) + (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-328 *4)) (-4 *4 (-570)) (-4 *4 (-871)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-328 *5)) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-871)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) + (-5 *1 (-807 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-328 (-172 *4))) (-4 *4 (-570)) (-4 *4 (-871)) + (-4 *4 (-633 (-392))) (-5 *2 (-172 (-392))) (-5 *1 (-807 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-328 (-172 *5))) (-5 *4 (-950)) (-4 *5 (-570)) + (-4 *5 (-871)) (-4 *5 (-633 (-392))) (-5 *2 (-172 (-392))) + (-5 *1 (-807 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) + (-5 *2 (-2 (|:| |num| (-1298 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531))))) +(((*1 *2 *1) + (-12 (-4 *1 (-386 *3)) (-4 *3 (-1248)) (-4 *3 (-871)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-386 *4)) (-4 *4 (-1248)) + (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1131)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-981 *5)) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5)) + (-5 *1 (-973 *4 *5)) (-14 *4 (-666 (-1207)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-463 *4 *3 *5 *6)) (-4 *6 (-978 *4 *3 *5))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) - (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) + (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1248)) + (-4 *4 (-386 *2)) (-4 *5 (-386 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 (-578)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-386 *2)) + (-4 *5 (-386 *2)) (-4 *2 (-1248)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1248)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-665 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-577)) (-14 *5 (-792)))) + (-12 (-5 *3 (-666 (-578))) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) + (-14 *4 (-578)) (-14 *5 (-793)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-792)))) + (-12 (-5 *3 (-578)) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-793)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-792)))) + (-12 (-5 *3 (-578)) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-793)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-792)))) + (-12 (-5 *3 (-578)) (-4 *2 (-175)) (-5 *1 (-138 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-793)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-577)) - (-14 *4 (-792)))) + (-12 (-4 *2 (-175)) (-5 *1 (-138 *3 *4 *2)) (-14 *3 (-578)) + (-14 *4 (-793)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-251 (-1188))) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4)) (-4 *4 - (-13 (-870) - (-10 -8 (-15 -2435 ((-1188) $ *3)) (-15 -1646 ((-1302) $)) - (-15 -3060 ((-1302) $))))))) + (-13 (-871) + (-10 -8 (-15 -2436 ((-1189) $ *3)) (-15 -1647 ((-1303) $)) + (-15 -2574 ((-1303) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1019)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1020)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-870) - (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 ((-1302) $)) - (-15 -3060 ((-1302) $))))))) + (-13 (-871) + (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 ((-1303) $)) + (-15 -2574 ((-1303) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-792)) (-5 *1 (-251 *4)) (-4 *4 (-870)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-870)))) + (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-871)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-871)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-870)))) + (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-871)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247)))) + (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1248)) (-4 *2 (-1248)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1247)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-665 *1)) (-4 *1 (-313)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1248)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-116)) (-5 *3 (-666 *1)) (-4 *1 (-314)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-116)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1251)) (-4 *3 (-1273 *2)) - (-4 *4 (-1273 (-420 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1188)) (-5 *1 (-515)))) + (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1274 *2)) + (-4 *4 (-1274 (-421 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-516)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-792)) (-5 *1 (-696 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-665 (-577))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) + (-12 (-5 *2 (-666 (-578))) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-665 (-916 *4))) (-5 *1 (-916 *4)) - (-4 *4 (-1130)))) + (-12 (-5 *2 (-116)) (-5 *3 (-666 (-917 *4))) (-5 *1 (-917 *4)) + (-4 *4 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) - (-4 *4 (-1130)))) + (-12 (-5 *3 (-793)) (-5 *2 (-934 *4)) (-5 *1 (-933 *4)) + (-4 *4 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1040 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 "value") (-4 *1 (-1041 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1248)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) (-4 *2 (-1079)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) + (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *2 (-1080)) + (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *2 *6 *7)) - (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1079)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-1130)) - (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) - (-5 *1 (-1106 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) + (-12 (-5 *3 (-578)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) + (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-1130)) - (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) + (-12 (-5 *3 (-950)) (-4 *4 (-1131)) + (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) (-5 *1 (-1107 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1174))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-1206)))) + (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-950)) (-4 *4 (-1131)) + (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) + (-5 *1 (-1108 *4 *5 *2)) + (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1175))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-420 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1079)) - (-4 *2 (-375)))) + (-12 (-5 *3 (-421 *1)) (-4 *1 (-1274 *2)) (-4 *2 (-1080)) + (-4 *2 (-376)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) - (-4 *3 (-569)))) + (-12 (-5 *2 (-421 *1)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)) + (-4 *3 (-570)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1285 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1248)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1285 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1248)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *1) (-4 *1 (-997)))) + (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *1) (-4 *1 (-998)))) (((*1 *2 *1) - (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) - (-5 *2 (-665 (-1106 *3 *4 *5))) (-5 *1 (-1107 *3 *4 *5)) - (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-665 - (-2 - (|:| -3171 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (|:| -2753 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-228))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1641 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-572))))) -(((*1 *2 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-410))))) -(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1130)) (-4 *2 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) - (-4 *3 (-1130))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-241 *3)))) - ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1221 *2)) (-4 *2 (-375))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-152 *3)))) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) + (-5 *2 (-666 (-1107 *3 *4 *5))) (-5 *1 (-1108 *3 *4 *5)) + (-4 *5 (-13 (-444 *4) (-911 *3) (-633 (-917 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-844))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-376)) (-5 *2 (-666 (-1188 *4))) (-5 *1 (-297 *4 *5)) + (-5 *3 (-1188 *4)) (-4 *5 (-1289 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-886))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-578)) (-5 *1 (-1094))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) + ((*1 *1 *1 *1) (-4 *1 (-815)))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-4 *1 (-153 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-665 (-2 (|:| -2182 (-792)) (|:| -4368 *4) (|:| |num| *4)))) - (-4 *4 (-1273 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) + (-5 *2 (-666 (-2 (|:| -2764 (-793)) (|:| -4369 *4) (|:| |num| *4)))) + (-4 *4 (-1274 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-5 *3 (-665 (-980 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) + (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-112)) (-5 *1 (-451)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-5 *3 (-665 (-1206))) (-5 *4 (-112)) (-5 *1 (-450)))) + (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-5 *3 (-666 (-1207))) (-5 *4 (-112)) (-5 *1 (-451)))) ((*1 *2 *1) - (-12 (-5 *2 (-1187 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-1188 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-175)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) - (-4 *4 (-174)))) + (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) + (-4 *4 (-175)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) - (-4 *4 (-174)))) + (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) + (-4 *4 (-175)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-5 *1 (-685 *3 *4)) - (-4 *4 (-174)))) + (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) + (-4 *4 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 (-665 *3)))) (-4 *3 (-1130)) - (-5 *1 (-696 *3)))) + (-12 (-5 *2 (-666 (-666 (-666 *3)))) (-4 *3 (-1131)) + (-5 *1 (-697 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-734 *2 *3 *4)) (-4 *2 (-870)) (-4 *3 (-1130)) + (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-1131)) (-14 *4 - (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *3)) - (-2 (|:| -2085 *2) (|:| -2182 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1148)) (-5 *1 (-859)))) + (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *3)) + (-2 (|:| -2087 *2) (|:| -2764 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1149)) (-5 *1 (-860)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) + (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1248)) (-4 *3 (-1248)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 *4)))) - (-4 *4 (-1130)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 *4)))) + (-4 *4 (-1131)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *5)) (-4 *5 (-13 (-1130) (-34))) - (-5 *2 (-665 (-1170 *3 *5))) (-5 *1 (-1170 *3 *5)) - (-4 *3 (-13 (-1130) (-34))))) + (-12 (-5 *4 (-666 *5)) (-4 *5 (-13 (-1131) (-34))) + (-5 *2 (-666 (-1171 *3 *5))) (-5 *1 (-1171 *3 *5)) + (-4 *3 (-13 (-1131) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-2 (|:| |val| *4) (|:| -4317 *5)))) - (-4 *4 (-13 (-1130) (-34))) (-4 *5 (-13 (-1130) (-34))) - (-5 *2 (-665 (-1170 *4 *5))) (-5 *1 (-1170 *4 *5)))) + (-12 (-5 *3 (-666 (-2 (|:| |val| *4) (|:| -4318 *5)))) + (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) + (-5 *2 (-666 (-1171 *4 *5))) (-5 *1 (-1171 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4317 *4))) - (-4 *3 (-13 (-1130) (-34))) (-4 *4 (-13 (-1130) (-34))) - (-5 *1 (-1170 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4318 *4))) + (-4 *3 (-13 (-1131) (-34))) (-4 *4 (-13 (-1131) (-34))) + (-5 *1 (-1171 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34))))) + (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1170 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-665 *3)) (-4 *3 (-13 (-1130) (-34))) - (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))))) + (-12 (-5 *4 (-666 *3)) (-4 *3 (-13 (-1131) (-34))) + (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1131) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-665 (-1170 *2 *3))) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34))) (-5 *1 (-1171 *2 *3)))) + (-12 (-5 *4 (-666 (-1171 *2 *3))) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))) (-5 *1 (-1172 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-665 (-1171 *2 *3))) (-5 *1 (-1171 *2 *3)) - (-4 *2 (-13 (-1130) (-34))) (-4 *3 (-13 (-1130) (-34))))) + (-12 (-5 *4 (-666 (-1172 *2 *3))) (-5 *1 (-1172 *2 *3)) + (-4 *2 (-13 (-1131) (-34))) (-4 *3 (-13 (-1131) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4)))) + (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1195 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1247)) (-5 *2 (-665 *1)) (-4 *1 (-1040 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) - (-14 *3 (-949)) (-4 *4 (-1079))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) - ((*1 *1 *1 *1) (-4 *1 (-465))) + (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1) (-4 *1 (-1170)))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-466)))) + ((*1 *1 *1 *1) (-4 *1 (-466))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1273 (-577))))) + (-12 (-5 *3 (-666 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1274 (-578))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-717 *2)) (-4 *2 (-1273 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-792))) + (-12 (-5 *3 (-578)) (-5 *1 (-718 *2)) (-4 *2 (-1274 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-793))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-814)) (-4 *4 (-870)) (-4 *5 (-318)) - (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-977 *5 *3 *4)))) + (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) + (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-978 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *6 *4 *5)) - (-5 *1 (-944 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-318)))) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *6 *4 *5)) + (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-319)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1202 *6)) (-4 *6 (-977 *5 *3 *4)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *5 (-318)) (-5 *1 (-944 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1203 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-1202 *7))) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-318)) (-5 *2 (-1202 *7)) (-5 *1 (-944 *4 *5 *6 *7)) - (-4 *7 (-977 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-949))) + (-12 (-5 *3 (-666 (-1203 *7))) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-319)) (-5 *2 (-1203 *7)) (-5 *1 (-945 *4 *5 *6 *7)) + (-4 *7 (-978 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-950))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) - (-4 *2 (-1273 *3)))) + (-12 (-4 *3 (-466)) (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) + (-4 *2 (-1274 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-465))))) -(((*1 *2) - (-12 (-14 *4 (-792)) (-4 *5 (-1247)) (-5 *2 (-135)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-577)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-665 *6)) (-4 *6 (-870)) (-4 *4 (-375)) (-4 *5 (-814)) - (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1079)) (-5 *2 (-949)))) - ((*1 *2) (-12 (-4 *1 (-1304 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-466))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-793))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-950)) (-4 *5 (-1080))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) + (-5 *2 (-666 (-666 (-666 (-793)))))))) (((*1 *2 *3) - (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850)) (-5 *3 (-1188))))) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) + (-4 *4 (-362))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-631 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4))) + (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-288 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-705 *4 *5 *6)) (-4 *4 (-1130))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1036))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-323)) (-5 *1 (-850))))) + (-12 (-5 *3 (-578)) (-5 *2 (-666 (-666 (-229)))) (-5 *1 (-1244))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) + (-5 *4 (-1 (-229) (-229) (-229) (-229))) + (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *1 (-719))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-774))))) (((*1 *1 *2) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-14 *6 (-1297 (-710 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))))) - ((*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-376)) (-14 *6 (-1298 (-711 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))))) + ((*1 *1 *2) (-12 (-5 *2 (-1156 (-578) (-631 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1248)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422 'JINT 'X 'ELAM) (-2422) (-720)))) - (-5 *1 (-61 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423 'JINT 'X 'ELAM) (-2423) (-721)))) + (-5 *1 (-61 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 'XC) (-720)))) - (-5 *1 (-63 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 'XC) (-721)))) + (-5 *1 (-63 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-2422 'X) (-2422) (-720))) (-5 *1 (-64 *3)) - (-14 *3 (-1206)))) + (-12 (-5 *2 (-352 (-2423 'X) (-2423) (-721))) (-5 *1 (-64 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-2422) (-2422 'XC) (-720))) (-5 *1 (-66 *3)) - (-14 *3 (-1206)))) + (-12 (-5 *2 (-352 (-2423) (-2423 'XC) (-721))) (-5 *1 (-66 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422 'X) (-2422 '-2584) (-720)))) - (-5 *1 (-71 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423 'X) (-2423 '-2585) (-721)))) + (-5 *1 (-71 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 'X) (-720)))) - (-5 *1 (-74 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 'X) (-721)))) + (-5 *1 (-74 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422 'X 'EPS) (-2422 '-2584) (-720)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) - (-14 *5 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423 'X 'EPS) (-2423 '-2585) (-721)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) + (-14 *5 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422 'EPS) (-2422 'YA 'YB) (-720)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1206)) (-14 *4 (-1206)) - (-14 *5 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423 'EPS) (-2423 'YA 'YB) (-721)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) + (-14 *5 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-2422) (-2422 'X) (-720))) (-5 *1 (-77 *3)) - (-14 *3 (-1206)))) + (-12 (-5 *2 (-352 (-2423) (-2423 'X) (-721))) (-5 *1 (-77 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-2422) (-2422 'X) (-720))) (-5 *1 (-78 *3)) - (-14 *3 (-1206)))) + (-12 (-5 *2 (-352 (-2423) (-2423 'X) (-721))) (-5 *1 (-78 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 'XC) (-720)))) - (-5 *1 (-79 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 'XC) (-721)))) + (-5 *1 (-79 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422) (-2422 'X) (-720)))) - (-5 *1 (-80 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423) (-2423 'X) (-721)))) + (-5 *1 (-80 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422 'X '-2584) (-2422) (-720)))) - (-5 *1 (-82 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423 'X '-2585) (-2423) (-721)))) + (-5 *1 (-82 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-710 (-351 (-2422 'X '-2584) (-2422) (-720)))) - (-5 *1 (-83 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-711 (-352 (-2423 'X '-2585) (-2423) (-721)))) + (-5 *1 (-83 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-710 (-351 (-2422 'X) (-2422) (-720)))) (-5 *1 (-84 *3)) - (-14 *3 (-1206)))) + (-12 (-5 *2 (-711 (-352 (-2423 'X) (-2423) (-721)))) (-5 *1 (-84 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422 'X) (-2422) (-720)))) - (-5 *1 (-85 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423 'X) (-2423) (-721)))) + (-5 *1 (-85 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-351 (-2422 'X) (-2422 '-2584) (-720)))) - (-5 *1 (-86 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-1298 (-352 (-2423 'X) (-2423 '-2585) (-721)))) + (-5 *1 (-86 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-710 (-351 (-2422 'XL 'XR 'ELAM) (-2422) (-720)))) - (-5 *1 (-87 *3)) (-14 *3 (-1206)))) + (-12 (-5 *2 (-711 (-352 (-2423 'XL 'XR 'ELAM) (-2423) (-721)))) + (-5 *1 (-87 *3)) (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-351 (-2422 'X) (-2422 '-2584) (-720))) (-5 *1 (-89 *3)) - (-14 *3 (-1206)))) + (-12 (-5 *2 (-352 (-2423 'X) (-2423 '-2585) (-721))) (-5 *1 (-89 *3)) + (-14 *3 (-1207)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-577)) (-14 *4 (-792)) (-4 *5 (-174)))) + (-12 (-5 *2 (-666 (-138 *3 *4 *5))) (-5 *1 (-138 *3 *4 *5)) + (-14 *3 (-578)) (-14 *4 (-793)) (-4 *5 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-577)) (-14 *4 (-792)))) + (-12 (-5 *2 (-666 *5)) (-4 *5 (-175)) (-5 *1 (-138 *3 *4 *5)) + (-14 *3 (-578)) (-14 *4 (-793)))) ((*1 *1 *2) - (-12 (-5 *2 (-1172 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) + (-12 (-5 *2 (-1173 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) + (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)))) ((*1 *1 *2) - (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-792)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) + (-12 (-5 *2 (-247 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) + (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)))) ((*1 *2 *3) - (-12 (-5 *3 (-1297 (-710 *4))) (-4 *4 (-174)) - (-5 *2 (-1297 (-710 (-420 (-980 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1298 (-711 *4))) (-4 *4 (-175)) + (-5 *2 (-1298 (-711 (-421 (-981 *4))))) (-5 *1 (-192 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1122 (-327 *4))) - (-4 *4 (-13 (-870) (-569) (-632 (-391)))) (-5 *2 (-1122 (-391))) - (-5 *1 (-266 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-870)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-285)))) + (-12 (-5 *3 (-1123 (-328 *4))) + (-4 *4 (-13 (-871) (-570) (-633 (-392)))) (-5 *2 (-1123 (-392))) + (-5 *1 (-267 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-286)))) ((*1 *2 *1) - (-12 (-4 *2 (-1273 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *2 (-1274 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1282 *4 *5 *6)) (-4 *4 (-13 (-27) (-1232) (-443 *3))) - (-14 *5 (-1206)) (-14 *6 *4) - (-4 *3 (-13 (-1068 (-577)) (-659 (-577)) (-465))) - (-5 *1 (-324 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1283 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-444 *3))) + (-14 *5 (-1207)) (-14 *6 *4) + (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) + (-5 *1 (-325 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-327 *5)) (-5 *1 (-351 *3 *4 *5)) - (-14 *3 (-665 (-1206))) (-14 *4 (-665 (-1206))) (-4 *5 (-400)))) + (-12 (-5 *2 (-328 *5)) (-5 *1 (-352 *3 *4 *5)) + (-14 *3 (-666 (-1207))) (-14 *4 (-666 (-1207))) (-4 *5 (-401)))) ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *3 *4 *2)) - (-4 *3 (-340 *4)))) + (-12 (-4 *4 (-362)) (-4 *2 (-341 *4)) (-5 *1 (-360 *3 *4 *2)) + (-4 *3 (-341 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *2 *4 *3)) - (-4 *3 (-340 *4)))) + (-12 (-4 *4 (-362)) (-4 *2 (-341 *4)) (-5 *1 (-360 *2 *4 *3)) + (-4 *3 (-341 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) - (-5 *2 (-1321 *3 *4)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) + (-5 *2 (-1322 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) - (-5 *2 (-1312 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-870)) (-4 *3 (-174)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) + (-5 *2 (-1313 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) - (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-710 (-720))) (-4 *1 (-395)))) + (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) + (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) - (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-396)))) - ((*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1130)))) + (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) + (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-397)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-397)))) + ((*1 *2 *3) (-12 (-5 *2 (-408)) (-5 *1 (-407 *3)) (-4 *3 (-1131)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) - (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-409)))) + (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) + (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-410)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-410)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-171 (-391))))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-306 (-328 (-172 (-392))))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-306 (-328 (-392)))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-577)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-306 (-328 (-578)))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-328 (-172 (-392)))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-391))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-328 (-392))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-577))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-328 (-578))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-715)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-306 (-328 (-716)))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-720)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-306 (-328 (-721)))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-327 (-722)))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-306 (-328 (-723)))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-715))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-328 (-716))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-720))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-328 (-721))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-327 (-722))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-328 (-723))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) - (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) - (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) + (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) - (-14 *3 (-1206)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-666 (-342))) (-5 *1 (-412 *3 *4 *5 *6)) + (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1206)) - (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-14 *5 (-665 (-1206))) (-14 *6 (-1210)))) + (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) + (-14 *4 (-3 (|:| |fst| (-448)) (|:| -2893 "void"))) + (-14 *5 (-666 (-1207))) (-14 *6 (-1211)))) ((*1 *1 *2) - (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-870) (-21))) - (-5 *1 (-440 *3 *4)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))))) + (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-871) (-21))) + (-5 *1 (-441 *3 *4)) (-4 *3 (-13 (-175) (-38 (-421 (-578))))))) ((*1 *1 *2) - (-12 (-5 *1 (-440 *2 *3)) (-4 *2 (-13 (-174) (-38 (-420 (-577))))) - (-4 *3 (-13 (-870) (-21))))) + (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-578))))) + (-4 *3 (-13 (-871) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-420 (-980 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1130)) - (-4 *1 (-443 *3)))) + (-12 (-5 *2 (-421 (-981 (-421 *3)))) (-4 *3 (-570)) (-4 *3 (-1131)) + (-4 *1 (-444 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-980 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1130)) - (-4 *1 (-443 *3)))) + (-12 (-5 *2 (-981 (-421 *3))) (-4 *3 (-570)) (-4 *3 (-1131)) + (-4 *1 (-444 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1130)) - (-4 *1 (-443 *3)))) + (-12 (-5 *2 (-421 *3)) (-4 *3 (-570)) (-4 *3 (-1131)) + (-4 *1 (-444 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1155 *3 (-630 *1))) (-4 *3 (-1079)) (-4 *3 (-1130)) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-447)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-447)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-447)))) - ((*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-450)))) + (-12 (-5 *2 (-1156 *3 (-631 *1))) (-4 *3 (-1080)) (-4 *3 (-1131)) + (-4 *1 (-444 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-448)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-448)))) + ((*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-451)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) - (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 (-720))) (-4 *1 (-453)))) + (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) + (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1298 (-721))) (-4 *1 (-454)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1210)) (|:| -3995 (-665 (-341))))) - (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-4 *1 (-454)))) + (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -3996 (-666 (-342))))) + (-4 *1 (-455)))) + ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-342))) (-4 *1 (-455)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-420 (-980 *3)))) (-4 *3 (-174)) - (-14 *6 (-1297 (-710 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-14 *4 (-949)) (-14 *5 (-665 (-1206))))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-481)))) + (-12 (-5 *2 (-1298 (-421 (-981 *3)))) (-4 *3 (-175)) + (-14 *6 (-1298 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-14 *4 (-950)) (-14 *5 (-666 (-1207))))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-482)))) + ((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-482)))) ((*1 *1 *2) - (-12 (-5 *2 (-1282 *3 *4 *5)) (-4 *3 (-1079)) (-14 *4 (-1206)) - (-14 *5 *3) (-5 *1 (-487 *3 *4 *5)))) + (-12 (-5 *2 (-1283 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) + (-14 *5 *3) (-5 *1 (-488 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-487 *3 *4 *5)) - (-4 *3 (-1079)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1155 (-577) (-630 (-508)))) (-5 *1 (-508)))) - ((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-515)))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) + (-4 *3 (-1080)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1156 (-578) (-631 (-509)))) (-5 *1 (-509)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-516)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-375)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-517 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-537)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618)))) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-538)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-619)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-765 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1079)))) + (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-1080)))) ((*1 *2 *1) - (-12 (-5 *2 (-1317 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) + (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) ((*1 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949)))) + (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-653 *3 *2)) (-4 *2 (-765 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-698 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) + (-12 (-4 *3 (-175)) (-5 *1 (-654 *3 *2)) (-4 *2 (-766 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) ((*1 *2 *1) - (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-5 *1 (-696 *3)) - (-4 *3 (-1130)))) + (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-5 *1 (-697 *3)) + (-4 *3 (-1131)))) ((*1 *1 *2) - (-12 (-5 *2 (-986 (-986 (-986 *3)))) (-4 *3 (-1130)) - (-5 *1 (-696 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) - ((*1 *1 *2) (-12 (-5 *2 (-1148)) (-5 *1 (-702)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-4 *3 (-1131)) + (-5 *1 (-697 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-703)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1131)))) ((*1 *1 *2) - (-12 (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) - (-4 *2 (-385 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-722))) (-5 *1 (-715)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-720))) (-5 *1 (-715)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-715)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-715)))) - ((*1 *1 *2) (-12 (-5 *2 (-722)) (-5 *1 (-720)))) - ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-720)))) - ((*1 *2 *3) - (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-722))) (-5 *1 (-722)))) - ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731)))) + (-12 (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *2)) (-4 *4 (-386 *3)) + (-4 *2 (-386 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-172 (-392))) (-5 *1 (-716)))) + ((*1 *1 *2) (-12 (-5 *2 (-172 (-723))) (-5 *1 (-716)))) + ((*1 *1 *2) (-12 (-5 *2 (-172 (-721))) (-5 *1 (-716)))) + ((*1 *1 *2) (-12 (-5 *2 (-172 (-578))) (-5 *1 (-716)))) + ((*1 *1 *2) (-12 (-5 *2 (-172 (-392))) (-5 *1 (-716)))) + ((*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721)))) + ((*1 *2 *1) (-12 (-5 *2 (-392)) (-5 *1 (-721)))) + ((*1 *2 *3) + (-12 (-5 *3 (-328 (-578))) (-5 *2 (-328 (-723))) (-5 *1 (-723)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1189)) (-5 *1 (-732)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-2 (|:| -2671 *3) (|:| -1475 *4)))) - (-4 *3 (-1079)) (-4 *4 (-747)) (-5 *1 (-756 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-784)))) + (-12 (-5 *2 (-666 (-2 (|:| -2672 *3) (|:| -1476 *4)))) + (-4 *3 (-1080)) (-4 *4 (-748)) (-5 *1 (-757 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-785)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) (|:| |mdnia| - (-2 (|:| |fn| (-327 (-228))) - (|:| -1641 (-665 (-1124 (-864 (-228))))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) - (-5 *1 (-790)))) + (-2 (|:| |fn| (-328 (-229))) + (|:| -2246 (-666 (-1125 (-865 (-229))))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) + (-5 *1 (-791)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-327 (-228))) - (|:| -1641 (-665 (-1124 (-864 (-228))))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *1 (-790)))) + (-2 (|:| |fn| (-328 (-229))) + (|:| -2246 (-666 (-1125 (-865 (-229))))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *1 (-791)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *1 (-790)))) - ((*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-794 *3)) (-4 *3 (-1247)))) + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *1 (-791)))) + ((*1 *2 *3) (-12 (-5 *2 (-796)) (-5 *1 (-795 *3)) (-4 *3 (-1248)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) (|:| |yinit| (-665 (-228))) - (|:| |intvals| (-665 (-228))) (|:| |g| (-327 (-228))) - (|:| |abserr| (-228)) (|:| |relerr| (-228)))) - (-5 *1 (-829)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-845)))) + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) (|:| |yinit| (-666 (-229))) + (|:| |intvals| (-666 (-229))) (|:| |g| (-328 (-229))) + (|:| |abserr| (-229)) (|:| |relerr| (-229)))) + (-5 *1 (-830)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-846)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) - (|:| |lb| (-665 (-864 (-228)))) - (|:| |cf| (-665 (-327 (-228)))) - (|:| |ub| (-665 (-864 (-228)))))) + (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) + (|:| |lb| (-666 (-865 (-229)))) + (|:| |cf| (-666 (-328 (-229)))) + (|:| |ub| (-666 (-865 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-665 (-327 (-228)))) - (|:| -2199 (-665 (-228))))))) - (-5 *1 (-862)))) + (-2 (|:| |lfn| (-666 (-328 (-229)))) + (|:| -2199 (-666 (-229))))))) + (-5 *1 (-863)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-665 (-327 (-228)))) (|:| -2199 (-665 (-228))))) - (-5 *1 (-862)))) + (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) + (-5 *1 (-863)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-327 (-228))) (|:| -2199 (-665 (-228))) - (|:| |lb| (-665 (-864 (-228)))) (|:| |cf| (-665 (-327 (-228)))) - (|:| |ub| (-665 (-864 (-228)))))) - (-5 *1 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-881)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897)))) - ((*1 *2 *3) - (-12 (-5 *3 (-980 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-898)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-980 (-48)))) (-5 *2 (-327 (-577))) - (-5 *1 (-898)))) - ((*1 *1 *2) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-917 *3)) (-4 *3 (-870)))) + (-2 (|:| |fn| (-328 (-229))) (|:| -2199 (-666 (-229))) + (|:| |lb| (-666 (-865 (-229)))) (|:| |cf| (-666 (-328 (-229)))) + (|:| |ub| (-666 (-865 (-229)))))) + (-5 *1 (-863)))) + ((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-882)))) + ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) + ((*1 *2 *3) + (-12 (-5 *3 (-981 (-48))) (-5 *2 (-328 (-578))) (-5 *1 (-899)))) + ((*1 *2 *3) + (-12 (-5 *3 (-421 (-981 (-48)))) (-5 *2 (-328 (-578))) + (-5 *1 (-899)))) + ((*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-665 (-327 (-228)))) + (-2 (|:| |pde| (-666 (-328 (-229)))) (|:| |constraints| - (-665 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-792)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) - (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) - (|:| |tol| (-228)))) - (-5 *1 (-924)))) + (-666 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) + (|:| |grid| (-793)) (|:| |boundaryType| (-578)) + (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) + (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) + (|:| |tol| (-229)))) + (-5 *1 (-925)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3)))) + (-12 (-5 *2 (-666 (-934 *3))) (-4 *3 (-1131)) (-5 *1 (-933 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) + (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-934 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1130)) (-5 *1 (-933 *3)))) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-934 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-942 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318)))) + (-12 (-5 *2 (-421 (-432 *3))) (-4 *3 (-319)) (-5 *1 (-943 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) ((*1 *2 *3) - (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-947 *4)) - (-4 *4 (-569)))) - ((*1 *2 *3) (-12 (-5 *2 (-1302)) (-5 *1 (-1063 *3)) (-4 *3 (-1247)))) - ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1063 *2)) (-4 *2 (-1247)))) + (-12 (-5 *3 (-491)) (-5 *2 (-328 *4)) (-5 *1 (-948 *4)) + (-4 *4 (-570)))) + ((*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1064 *3)) (-4 *3 (-1248)))) + ((*1 *2 *3) (-12 (-5 *3 (-324)) (-5 *1 (-1064 *2)) (-4 *2 (-1248)))) ((*1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1064 *3 *4 *5 *2 *6)) (-4 *2 (-977 *3 *4 *5)) - (-14 *6 (-665 *2)))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-978 *3 *4 *5)) + (-14 *6 (-666 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-1073 *3)) (-4 *3 (-569)))) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-1074 *3)) (-4 *3 (-570)))) ((*1 *1 *2) - (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) - (-4 *2 (-977 *3 (-544 *4) *4)))) + (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) + (-4 *2 (-978 *3 (-545 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1079)) (-4 *2 (-870)) (-5 *1 (-1156 *3 *2 *4)) - (-4 *4 (-977 *3 (-544 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-885)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1174)))) + (-12 (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4)) + (-4 *4 (-978 *3 (-545 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1175)))) ((*1 *2 *3) - (-12 (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) ((*1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1197 *3 *4 *5)) - (-4 *3 (-1079)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) + (-4 *3 (-1080)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1204 *3 *4 *5)) - (-4 *3 (-1079)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) + (-4 *3 (-1080)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) - (-14 *5 *3) (-5 *1 (-1204 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1205)))) - ((*1 *2 *1) (-12 (-5 *2 (-1219 (-1206) (-450))) (-5 *1 (-1210)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1211)))) - ((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1218 *3)) (-4 *3 (-1130)))) - ((*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1226 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1271 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) + (-14 *5 *3) (-5 *1 (-1205 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-1220 (-1207) (-451))) (-5 *1 (-1211)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-1212)))) + ((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1219 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3) (-12 (-5 *2 (-1228)) (-5 *1 (-1227 *3)) (-4 *3 (-1131)))) ((*1 *1 *2) - (-12 (-5 *2 (-980 *3)) (-4 *3 (-1079)) (-5 *1 (-1241 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1241 *3)) (-4 *3 (-1079)))) + (-12 (-5 *2 (-981 *3)) (-4 *3 (-1080)) (-5 *1 (-1242 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1242 *3)) (-4 *3 (-1080)))) ((*1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1261 *3 *4 *5)) - (-4 *3 (-1079)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1262 *3 *4 *5)) + (-4 *3 (-1080)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) + (-12 (-5 *2 (-1125 *3)) (-4 *3 (-1248)) (-5 *1 (-1265 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1293 *4)) (-14 *4 (-1206)) (-5 *1 (-1289 *3 *4 *5)) - (-4 *3 (-1079)) (-14 *5 *3))) + (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1290 *3 *4 *5)) + (-4 *3 (-1080)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1270 *4 *3)) (-4 *3 (-1079)) (-14 *4 (-1206)) - (-14 *5 *3) (-5 *1 (-1289 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1293 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1298)))) - ((*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1298)) (-5 *1 (-1301)))) + (-12 (-5 *2 (-1271 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) + (-14 *5 *3) (-5 *1 (-1290 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-1299)))) + ((*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1299)) (-5 *1 (-1302)))) ((*1 *1 *2) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) ((*1 *2 *1) - (-12 (-5 *2 (-1321 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-174)))) + (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-175)))) ((*1 *2 *1) - (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1317 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-174)))) + (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-685 *3 *4)) (-4 *3 (-870)) (-4 *4 (-174)) - (-5 *1 (-1317 *3 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1187 *4)) (-5 *3 (-577)) (-4 *4 (-1079)) - (-5 *1 (-1190 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-1289 *3 *4 *5)) (-4 *3 (-1079)) - (-14 *4 (-1206)) (-14 *5 *3)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247))))) + (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) + (-5 *1 (-1318 *3 *4))))) +(((*1 *2) + (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-938)) + (-5 *1 (-471 *3 *4 *2 *5)) (-4 *5 (-978 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-938)) + (-5 *1 (-935 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-938)) (-5 *1 (-936 *2 *3)) (-4 *3 (-1274 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-666 (-1207))) (-4 *2 (-175)) + (-4 *4 (-245 (-3226 *5) (-793))) + (-14 *6 + (-1 (-112) (-2 (|:| -2087 *3) (|:| -2764 *4)) + (-2 (|:| -2087 *3) (|:| -2764 *4)))) + (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-871)) + (-4 *7 (-978 *2 *4 (-888 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *2 (-1302)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-977 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1202 *9)) (-5 *4 (-665 *7)) (-5 *5 (-665 *8)) - (-4 *7 (-870)) (-4 *8 (-1079)) (-4 *9 (-977 *8 *6 *7)) - (-4 *6 (-814)) (-5 *2 (-1202 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-628 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-873)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-931 *3)) (-4 *3 (-1130)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1079)) (-4 *2 (-708 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *3 (-1095 *6 *7 *8)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) - (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) - (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) - (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -4317 *9)))) - (-5 *1 (-1102 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-778))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-465))))) -(((*1 *1 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) - (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-4 *1 (-1083 *4 *5 *6 *7 *2)) (-4 *6 (-1079)) - (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-465)) - (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1007 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-578))) (-5 *1 (-1078))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-420 *6)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) - (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-792)) (-4 *7 (-1273 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-1275 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-813)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1278 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-465)) (-4 *4 (-870)) (-4 *5 (-814)) (-5 *2 (-112)) - (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-112))))) + (-12 (-5 *3 (-675 *4)) (-4 *4 (-355 *5 *6 *7)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *6 (-1274 *5)) (-4 *7 (-1274 (-421 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-828 *5 *6 *7 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-932 *3)) (-4 *3 (-1131)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3) + (-12 (-5 *3 (-981 *5)) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5)) + (-5 *1 (-973 *4 *5)) (-14 *4 (-666 (-1207)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) + (-5 *1 (-770))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-172 (-229))) (-5 *6 (-1189)) + (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-466))))) +(((*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1274 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) - (-4 *4 (-814)) (-4 *5 (-870)) (-5 *1 (-462 *3 *4 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *1 (-709 *4 *5 *6 *2)) - (-4 *2 (-708 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-465)))) - ((*1 *1 *1 *1) (-4 *1 (-465)))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-711 (-421 (-981 (-578))))) + (-5 *2 + (-666 + (-2 (|:| |radval| (-328 (-578))) (|:| |radmult| (-578)) + (|:| |radvect| (-666 (-711 (-328 (-578)))))))) + (-5 *1 (-1062))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) + ((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-481)))) + ((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-956))))) (((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1302)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-391))))) + (-12 (-5 *2 (-666 (-972 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-466)))) + ((*1 *1 *1 *1) (-4 *1 (-466)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-666 (-631 *3))) + (-5 *5 (-631 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *7))) + (-4 *7 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-571 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-666 (-112))) (-5 *5 (-711 (-229))) + (-5 *6 (-711 (-578))) (-5 *7 (-229)) (-5 *3 (-578)) (-5 *2 (-1066)) + (-5 *1 (-776))))) +(((*1 *1 *1 *1) (-5 *1 (-164))) + ((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-164))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) - ((*1 *1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) + ((*1 *1 *1 *1) (-5 *1 (-886))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1056 *3)) (-4 *3 (-1247))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-665 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) - (-5 *1 (-462 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) -(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-843))))) -(((*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-459)) (-5 *3 (-577))))) -(((*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-4 *1 (-743))) - ((*1 *1) (-4 *1 (-747))) - ((*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) - ((*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-870))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1057 *3)) (-4 *3 (-1248))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (-12 (-5 *4 (-666 *5)) (-4 *5 (-1274 *3)) (-4 *3 (-319)) + (-5 *2 (-112)) (-5 *1 (-469 *3 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1069 (-578))) (-4 *1 (-314)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934 *3)) (-4 *3 (-1131))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1080))))) +(((*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-550))) ((*1 *1) (-4 *1 (-744))) + ((*1 *1) (-4 *1 (-748))) + ((*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) + ((*1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871))))) (((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) - (-14 *4 *2)))) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-711 (-578))) (-5 *3 (-666 (-578))) (-5 *1 (-1141))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1134 *3 *4 *5 *6 *7)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) - (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *8 (-1095 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-665 *8)) - (|:| |towers| (-665 (-1057 *5 *6 *7 *8))))) - (-5 *1 (-1057 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *8 (-1095 *5 *6 *7)) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1131)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-666 *5) (-666 *5))) (-5 *4 (-578)) + (-5 *2 (-666 *5)) (-5 *1 (-704 *5)) (-4 *5 (-1131))))) +(((*1 *1) (-5 *1 (-189)))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1248)) (-5 *1 (-185 *3 *2)) + (-4 *2 (-696 *3))))) +(((*1 *2 *3) + (-12 (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *2 - (-2 (|:| |val| (-665 *8)) - (|:| |towers| (-665 (-1176 *5 *6 *7 *8))))) - (-5 *1 (-1176 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-710 (-228))) (-5 *5 (-710 (-577))) (-5 *6 (-228)) - (-5 *3 (-577)) (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *1) - (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) - (-5 *2 (-1202 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3760 *3) (|:| |coef1| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) + (-2 (|:| |glbase| (-666 (-255 *4 *5))) (|:| |glval| (-666 (-578))))) + (-5 *1 (-650 *4 *5)) (-5 *3 (-666 (-255 *4 *5)))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) + (-5 *1 (-770))))) +(((*1 *2) + (-12 (-4 *3 (-570)) (-5 *2 (-666 (-711 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *1 *1) (-4 *1 (-893 *2)))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-549))) - ((*1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130))))) + ((*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-550))) + ((*1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-916 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1130)) - (-4 *5 (-1247)) (-5 *1 (-914 *4 *5)))) + (-12 (-5 *2 (-917 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1131)) + (-4 *5 (-1248)) (-5 *1 (-915 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-916 *4)) (-5 *3 (-665 (-1 (-112) *5))) (-4 *4 (-1130)) - (-4 *5 (-1247)) (-5 *1 (-914 *4 *5)))) + (-12 (-5 *2 (-917 *4)) (-5 *3 (-666 (-1 (-112) *5))) (-4 *4 (-1131)) + (-4 *5 (-1248)) (-5 *1 (-915 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-916 *5)) (-5 *3 (-665 (-1206))) - (-5 *4 (-1 (-112) (-665 *6))) (-4 *5 (-1130)) (-4 *6 (-1247)) - (-5 *1 (-914 *5 *6)))) + (-12 (-5 *2 (-917 *5)) (-5 *3 (-666 (-1207))) + (-5 *4 (-1 (-112) (-666 *6))) (-4 *5 (-1131)) (-4 *6 (-1248)) + (-5 *1 (-915 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1247)) (-4 *4 (-1130)) - (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1248)) (-4 *4 (-1131)) + (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-444 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) (-4 *4 (-1130)) - (-5 *1 (-965 *4 *2 *5)) (-4 *2 (-443 *4)))) + (-12 (-5 *3 (-666 (-1 (-112) *5))) (-4 *5 (-1248)) (-4 *4 (-1131)) + (-5 *1 (-966 *4 *2 *5)) (-4 *2 (-444 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1247)) - (-5 *2 (-327 (-577))) (-5 *1 (-966 *5)))) + (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1248)) + (-5 *2 (-328 (-578))) (-5 *1 (-967 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-665 (-1 (-112) *5))) (-4 *5 (-1247)) - (-5 *2 (-327 (-577))) (-5 *1 (-966 *5)))) + (-12 (-5 *3 (-1207)) (-5 *4 (-666 (-1 (-112) *5))) (-4 *5 (-1248)) + (-5 *2 (-328 (-578))) (-5 *1 (-967 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1 (-112) (-665 *6))) - (-4 *6 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))) (-4 *4 (-1130)) - (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) - (-5 *1 (-1106 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1202 *3)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-385 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) (-4 *2 (-385 *4)) - (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) - (-5 *2 (-710 *4)) (-5 *1 (-714 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *4 (-1022 *3)) (-5 *1 (-1266 *3 *4 *2)) - (-4 *2 (-1273 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-710 *5)) (-4 *5 (-1079)) (-5 *1 (-1084 *3 *4 *5)) - (-14 *3 (-792)) (-14 *4 (-792))))) -(((*1 *1) (-5 *1 (-188)))) + (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-1 (-112) (-666 *6))) + (-4 *6 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) + (-5 *1 (-1107 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-814)) (-4 *3 (-175))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1249 *3)) (-4 *3 (-871)) + (-4 *3 (-1131))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-520)) (-5 *2 (-666 (-994))) (-5 *1 (-303))))) +(((*1 *1) (-5 *1 (-189)))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-1079)) - (-5 *2 (-710 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-4 *6 (-1095 *3 *4 *5)) (-5 *1 (-642 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1101 *3 *4 *5 *6)) (-4 *2 (-1139 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209)))) - ((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-1211) (-792)))) (-5 *1 (-344))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *2 (-1297 (-327 (-391)))) - (-5 *1 (-316))))) + (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1248)) (-4 *3 (-1080)) + (-5 *2 (-711 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-599)) (-5 *1 (-292))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1173 *3 *4)) (-14 *3 (-950)) (-4 *4 (-376)) + (-5 *1 (-1024 *3 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-666 (-272))) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -4301)) (-5 *2 (-112)) (-5 *1 (-635)))) + (-12 (-5 *3 (|[\|\|]| -4303)) (-5 *2 (-112)) (-5 *1 (-636)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3864)) (-5 *2 (-112)) (-5 *1 (-635)))) + (-12 (-5 *3 (|[\|\|]| -3865)) (-5 *2 (-112)) (-5 *1 (-636)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2434)) (-5 *2 (-112)) (-5 *1 (-635)))) + (-12 (-5 *3 (|[\|\|]| -2435)) (-5 *2 (-112)) (-5 *1 (-636)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -4149)) (-5 *2 (-112)) (-5 *1 (-712 *4)) - (-4 *4 (-631 (-885))))) + (-12 (-5 *3 (|[\|\|]| -4151)) (-5 *2 (-112)) (-5 *1 (-713 *4)) + (-4 *4 (-632 (-886))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-631 (-885))) (-5 *2 (-112)) - (-5 *1 (-712 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-886))) (-5 *2 (-112)) + (-5 *1 (-713 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-899)))) + (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-112)) (-5 *1 (-900)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-899)))) + (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)) (-5 *1 (-900)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-578))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1196))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-644))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1126))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1120))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1103))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1000))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-323))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-702))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1145))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1146))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-1307))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1167)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)) (-5 *1 (-1211)))) + (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-112)) (-5 *1 (-1212)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1211)))) + (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)) (-5 *1 (-1212)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1211)))) + (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-112)) (-5 *1 (-1212)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1211))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *5 (-1251)) (-4 *6 (-1273 *5)) - (-4 *7 (-1273 (-420 *6))) (-5 *2 (-665 (-980 *5))) - (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1251)) - (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) (-4 *4 (-375)) - (-5 *2 (-665 (-980 *4)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1165))) (-5 *1 (-692)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1131 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) - (-4 *7 (-870)) (-4 *8 (-1095 *5 *6 *7)) (-5 *2 (-665 *3)) - (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1139 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) - (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) - (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) - (-14 *6 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) - (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *4)) (|:| -2119 (-665 (-980 *4)))))) - (-5 *1 (-1108 *4 *5)) (-5 *3 (-665 (-980 *4))) - (-14 *5 (-665 (-1206))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) - (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) - (-5 *1 (-1108 *5 *6)) (-5 *3 (-665 (-980 *5))) - (-14 *6 (-665 (-1206)))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807))))) -(((*1 *2) - (-12 (-5 *2 (-710 (-938 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-949)) - (-14 *4 (-949)))) - ((*1 *2) - (-12 (-5 *2 (-710 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) - (-14 *4 - (-3 (-1202 *3) - (-1297 (-665 (-2 (|:| -4119 *3) (|:| -2085 (-1150))))))))) - ((*1 *2) - (-12 (-5 *2 (-710 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) - (-14 *4 (-949))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1150)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1027 *2)) (-4 *2 (-174))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1079)) - (-4 *3 (-569)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-569))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3760 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) - (-5 *2 - (-3 (-1202 *4) - (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150))))))) - (-5 *1 (-358 *4)) (-4 *4 (-361))))) + (-12 (-5 *3 (|[\|\|]| (-578))) (-5 *2 (-112)) (-5 *1 (-1212))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-600 *3) *3 (-1207))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1207))) + (-4 *3 (-296)) (-4 *3 (-648)) (-4 *3 (-1069 *4)) (-4 *3 (-444 *7)) + (-5 *4 (-1207)) (-4 *7 (-633 (-917 (-578)))) (-4 *7 (-466)) + (-4 *7 (-911 (-578))) (-4 *7 (-1131)) (-5 *2 (-600 *3)) + (-5 *1 (-587 *7 *3))))) +(((*1 *1) (-5 *1 (-1094)))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-813)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1079)) (-4 *4 (-1130)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1079)))) - ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-641 *3 *4)) - (-4 *4 (-1273 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-747)))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-666 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-408)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1228))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-711 (-229))) (-5 *6 (-112)) (-5 *7 (-711 (-578))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-578)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775))))) +(((*1 *1) (-5 *1 (-189)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-793))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1080)) (-4 *4 (-1274 *3)) (-5 *1 (-166 *3 *4 *2)) + (-4 *2 (-1274 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-125))) + ((*1 *1 *1 *1) (-5 *1 (-1151)))) +(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-466)) (-4 *4 (-1131)) + (-5 *1 (-587 *4 *2)) (-4 *2 (-296)) (-4 *2 (-444 *4))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-570)) (-4 *2 (-175))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) + (-14 *4 (-666 (-1207))))) ((*1 *2 *1) - (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-870)) (-4 *5 (-937)) (-4 *6 (-814)) - (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-431 (-1202 *8))) - (-5 *1 (-934 *5 *6 *7 *8)) (-5 *4 (-1202 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) - (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-792)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-949)))) + (-12 (-5 *2 (-112)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) + (-14 *4 (-666 (-1207)))))) +(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-897 (-950) (-950)))) (-5 *1 (-1002))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-793)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-950)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) - (-4 *4 (-174)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-949)) (-5 *1 (-158)))) + (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) + (-4 *4 (-175)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-159)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232))) - (-5 *1 (-230 *3)))) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233))) + (-5 *1 (-231 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) + (-12 (-5 *1 (-306 *2)) (-4 *2 (-1143)) (-4 *2 (-1248)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-1142)) (-4 *2 (-1247)))) + (-12 (-5 *1 (-306 *2)) (-4 *2 (-1143)) (-4 *2 (-1248)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-133)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1131)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-870)))) + (-12 (-5 *1 (-394 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-395 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) - (-4 *6 (-244 (-3224 *3) (-792))) + (-12 (-14 *3 (-666 (-1207))) (-4 *4 (-175)) + (-4 *6 (-245 (-3226 *3) (-793))) (-14 *7 - (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *6)) - (-2 (|:| -2085 *5) (|:| -2182 *6)))) - (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-870)) - (-4 *2 (-977 *4 *6 (-887 *3))))) + (-1 (-112) (-2 (|:| -2087 *5) (|:| -2764 *6)) + (-2 (|:| -2087 *5) (|:| -2764 *6)))) + (-5 *1 (-475 *3 *4 *5 *6 *7 *2)) (-4 *5 (-871)) + (-4 *2 (-978 *4 *6 (-888 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4)))) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) + (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-549))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1079)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1142)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-870)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-705 *5 *6 *7)))) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-362)) (-5 *1 (-542 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-550))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1143)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-4 *7 (-1131)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-706 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1079)) (-4 *2 (-385 *3)) - (-4 *4 (-385 *3)))) + (-12 (-4 *1 (-709 *3 *2 *4)) (-4 *3 (-1080)) (-4 *2 (-386 *3)) + (-4 *4 (-386 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *2 (-385 *3)))) + (-12 (-4 *1 (-709 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *2 (-386 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-741))) ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-742))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-569)) - (-5 *1 (-999 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1081 *2)) (-4 *2 (-1142)))) - ((*1 *1 *1 *1) (-4 *1 (-1142))) + (-12 (-5 *2 (-1298 *4)) (-4 *4 (-1274 *3)) (-4 *3 (-570)) + (-5 *1 (-1000 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1082 *2)) (-4 *2 (-1143)))) + ((*1 *1 *1 *1) (-4 *1 (-1143))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1153 *3 *4 *2 *5)) (-4 *4 (-1079)) (-4 *2 (-244 *3 *4)) - (-4 *5 (-244 *3 *4)))) + (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *2 (-245 *3 *4)) + (-4 *5 (-245 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1153 *3 *4 *5 *2)) (-4 *4 (-1079)) (-4 *5 (-244 *3 *4)) - (-4 *2 (-244 *3 *4)))) + (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) + (-4 *2 (-245 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-870)) (-5 *1 (-1156 *3 *4 *2)) - (-4 *2 (-977 *3 (-544 *4) *4)))) + (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) + (-4 *2 (-978 *3 (-545 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-971 (-228))) (-5 *3 (-228)) (-5 *1 (-1243)))) + (-12 (-5 *2 (-972 (-229))) (-5 *3 (-229)) (-5 *1 (-1244)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-748)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-747)))) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-748)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-1295 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) + (-12 (-5 *2 (-578)) (-4 *1 (-1296 *3)) (-4 *3 (-1248)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-1315 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1065))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 *3 (-665 *1))) - (-4 *1 (-1101 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *2 (-665 (-665 (-577)))) - (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *6 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-1106 *3 *4 *5))) (-4 *3 (-1130)) - (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) - (-4 *5 (-13 (-443 *4) (-910 *3) (-632 (-916 *3)))) - (-5 *1 (-1107 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-971 (-228))) (-5 *2 (-1302)) (-5 *1 (-481))))) + (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) (((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-549))) (-5 *1 (-549))))) + (-12 (-4 *1 (-1319 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-841 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080))))) (((*1 *2 *1) - (-12 (-4 *1 (-1295 *2)) (-4 *2 (-1247)) (-4 *2 (-1032)) - (-4 *2 (-1079))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-630 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) (-5 *5 (-1202 *2)) - (-4 *2 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-630 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1206))) - (-5 *5 (-420 (-1202 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1130))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-577))) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-569)) (-4 *8 (-977 *7 *5 *6)) - (-5 *2 (-2 (|:| -2182 (-792)) (|:| -2671 *9) (|:| |radicand| *9))) - (-5 *1 (-981 *5 *6 *7 *8 *9)) (-5 *4 (-792)) - (-4 *9 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *8)) (-15 -2518 (*8 $)) (-15 -2528 (*8 $)))))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-502 *3)) (-4 *3 (-1247)) - (-4 *3 (-1130)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-112)) - (-5 *1 (-932 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-949)) (-5 *2 (-112)) (-5 *1 (-1131 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345))))) +(((*1 *1 *1 *1) (-4 *1 (-114))) ((*1 *1 *1 *1) (-5 *1 (-886)))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) - (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1310 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1310 *5 *6 *7 *8))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1202 *1)) (-4 *1 (-1042))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1206)) (-4 *4 (-1079)) (-4 *4 (-1130)) - (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2182 (-577)))) - (-4 *1 (-443 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1079)) (-4 *4 (-1130)) - (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2182 (-577)))) - (-4 *1 (-443 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) - (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2182 (-577)))) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2182 (-792)))) - (-5 *1 (-916 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-2 (|:| |var| *5) (|:| -2182 (-792)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) - (-4 *7 (-977 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2182 (-577)))) - (-5 *1 (-978 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) - (-15 -2528 (*7 $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-870)) (-5 *1 (-497 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1130))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1202 *1)) (-5 *3 (-1206)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1202 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-980 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1206)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 *2)) (-5 *4 (-1206)) (-4 *2 (-443 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-569)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-4 *1 (-1042)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1202 *1)) (-5 *3 (-949)) (-5 *4 (-885)) - (-4 *1 (-1042)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-949)) (-4 *4 (-13 (-869) (-375))) - (-4 *1 (-1098 *4 *2)) (-4 *2 (-1273 *4))))) + (-12 (-5 *2 (-666 (-1107 *3 *4 *5))) (-4 *3 (-1131)) + (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) + (-4 *5 (-13 (-444 *4) (-911 *3) (-633 (-917 *3)))) + (-5 *1 (-1108 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-774))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *9 (-1101 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) - (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1099 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-665 *9)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *9 (-1139 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-814)) - (-4 *7 (-870)) (-5 *2 (-792)) (-5 *1 (-1175 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-710 *3)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) + (-12 (-5 *3 (-3 (-421 (-981 *5)) (-1196 (-1207) (-981 *5)))) + (-4 *5 (-466)) (-5 *2 (-666 (-711 (-421 (-981 *5))))) + (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-981 *5))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) + (-14 *4 *2)))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1240 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-814)) - (-4 *3 (-870)) (-4 *6 (-1095 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -4082 (-793)) (|:| |period| (-793)))) + (-5 *1 (-1188 *4)) (-4 *4 (-1248)) (-5 *3 (-793))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1141)) (-5 *3 (-578))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-773))))) +(((*1 *2 *3) + (-12 (-4 *4 (-815)) + (-4 *5 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *6 (-570)) + (-5 *2 (-2 (|:| -2424 (-981 *6)) (|:| -2662 (-981 *6)))) + (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-978 (-421 (-981 *6)) *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-266))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *2 (-1131)) (-4 *3 (-1131)) + (-4 *4 (-1131)) (-4 *5 (-1131)) (-4 *6 (-1131))))) +(((*1 *1 *1 *1) (-4 *1 (-114))) ((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-950)) (-4 *3 (-1080))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-666 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1080)) + (-5 *1 (-1060 *4))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) (((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-732 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1273 *3)) (-5 *1 (-733 *3 *2)) (-4 *3 (-1079)))) + (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1131)) + (-4 *2 (-871))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-466))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *1 *1) (-4 *1 (-114))) ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-494))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-666 *11)) (-5 *5 (-666 (-1203 *9))) + (-5 *6 (-666 *9)) (-5 *7 (-666 *12)) (-5 *8 (-666 (-793))) + (-4 *11 (-871)) (-4 *9 (-319)) (-4 *12 (-978 *9 *10 *11)) + (-4 *10 (-815)) (-5 *2 (-666 (-1203 *12))) + (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1203 *12))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1141))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-774))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-631 *3)) + (-4 *3 (-13 (-444 *5) (-27) (-1233))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 (-2 (|:| -3579 *3) (|:| |coeff| *3))) + (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-188)) (-5 *2 (-666 (-889)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-278))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-1298 (-711 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-711 *4)) (-4 *5 (-678 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-666 *3)) (-4 *3 (-1248))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-457 *4 *3 *5)) + (-4 *3 (-1274 *4)) + (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-1268 *3 *2)) + (-4 *2 (-1274 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1203 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) + (-5 *1 (-686 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-736 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-665 (-290))) (-5 *1 (-290)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1211))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1232))) - (-4 *5 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1130))))) + (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1318 *3 *4)) + (-4 *3 (-871)) (-4 *4 (-175))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1131)) (-5 *1 (-934 *3))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) + (-5 *1 (-770))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-888)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) -(((*1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1202 (-577))) (-5 *3 (-577)) (-4 *1 (-892 *4))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-362)) (-5 *3 (-578)) (-5 *2 (-1220 (-950) (-793)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) - (-5 *1 (-748 *5 *2)) (-4 *5 (-375))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1216))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3)) (-4 *3 (-1247))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-228)) (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-780))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-776)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) - (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776))))) -(((*1 *2 *2) (-12 (-5 *2 (-710 (-327 (-577)))) (-5 *1 (-1061))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *3 (-1095 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1099 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *7)) (-4 *7 (-871)) + (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) (-5 *2 - (-2 (|:| |done| (-665 *4)) - (|:| |todo| (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))))) - (-5 *1 (-1175 *5 *6 *7 *3 *4)) (-4 *4 (-1139 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-712 (-896 (-994 *3) (-994 *3)))) (-5 *1 (-994 *3)) - (-4 *3 (-1130))))) -(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1188)) (-5 *1 (-731))))) + (-2 (|:| |particular| (-3 (-1298 (-421 *8)) "failed")) + (|:| -3198 (-666 (-1298 (-421 *8)))))) + (-5 *1 (-691 *5 *6 *7 *8))))) +(((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-328 (-392))) (-5 *1 (-317))))) +(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) + ((*1 *1 *1) (-4 *1 (-1175)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-466)) (-4 *4 (-871)) + (-4 *5 (-815)) (-5 *1 (-1018 *3 *4 *5 *6)) (-4 *6 (-978 *3 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032)))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-777))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) - (-5 *2 (-1302)) (-5 *1 (-1209)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) - (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *2 (-1302)) - (-5 *1 (-1209)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1206)) - (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *2 (-1302)) - (-5 *1 (-1209))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1251)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-420 *5))) - (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-665 (-665 (-228)))) (-5 *1 (-1243))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) - (-5 *1 (-769))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-519))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-899))) (-5 *1 (-496))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) - (-5 *1 (-769))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-665 (-271))) (-5 *1 (-269))))) + (-12 (-4 *3 (-570)) (-5 *1 (-160 *3 *2)) (-4 *2 (-444 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-870)) (-5 *1 (-315 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-1079)) (-4 *4 (-1273 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1273 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-520))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-900))) (-5 *1 (-497))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-172 (-229)))) + (-5 *2 (-1066)) (-5 *1 (-776))))) +(((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-886)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-815)) + (-4 *3 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $))))) (-4 *5 (-570)) + (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-978 (-421 (-981 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1080)) (-4 *5 (-815)) + (-4 *3 + (-13 (-871) + (-10 -8 (-15 -3343 ((-1207) $)) + (-15 -3967 ((-3 $ "failed") (-1207)))))) + (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-978 (-981 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-666 *6)) + (-4 *6 + (-13 (-871) + (-10 -8 (-15 -3343 ((-1207) $)) + (-15 -3967 ((-3 $ "failed") (-1207)))))) + (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) + (-4 *2 (-978 (-981 *4) *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-570))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-116)) (-5 *4 (-793)) + (-4 *5 (-13 (-466) (-1069 (-578)))) (-4 *5 (-570)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-444 *5)) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *5 (-631 $)) $)) + (-15 -2530 ((-1156 *5 (-631 $)) $)) + (-15 -2411 ($ (-1156 *5 (-631 $)))))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1318 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-840 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-867)) (-5 *1 (-1320 *3 *2)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228))))) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-174)))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-599)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-666 *5)) (-5 *4 (-578)) (-4 *5 (-870)) (-4 *5 (-376)) + (-5 *2 (-793)) (-5 *1 (-974 *5 *6)) (-4 *6 (-1274 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1206))) (-5 *3 (-1206)) (-5 *1 (-549)))) + (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-1207)) (-5 *1 (-550)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) + (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-550))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) + (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-550))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1206)) (-5 *1 (-725 *3)) (-4 *3 (-632 (-549))))) + (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-550))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-725 *3)) - (-4 *3 (-632 (-549)))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1065)) - (-5 *1 (-769))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885)))) - ((*1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) + (-12 (-5 *4 (-666 (-1207))) (-5 *2 (-1207)) (-5 *1 (-726 *3)) + (-4 *3 (-633 (-550)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-578)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) + (-5 *1 (-463 *5 *6 *7 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-666 *3)) (-4 *3 (-978 *5 *6 *7)) (-4 *5 (-466)) + (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-463 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1080)) (-5 *2 (-1298 *3)) (-5 *1 (-734 *3 *4)) + (-4 *4 (-1274 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1188)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1130)) - (-4 *4 (-1130)))) + (-12 (-5 *3 (-1189)) (-4 *1 (-377 *2 *4)) (-4 *2 (-1131)) + (-4 *4 (-1131)))) ((*1 *1 *2) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1202 *6)) (-4 *6 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-1202 *7)) (-5 *1 (-332 *4 *5 *6 *7)) - (-4 *7 (-977 *6 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) - (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1206)) - (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-665 (-228))) (-5 *1 (-311))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-792)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1) (-5 *1 (-302)))) + (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-711 *2)) (-5 *4 (-578)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *5 (-1274 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-423 *2 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1189)) (-5 *1 (-317))))) +(((*1 *1 *1 *1) (-4 *1 (-559)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448))))) +(((*1 *1) (-5 *1 (-303)))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-665 *6))) - (-5 *1 (-1291 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-1288 *4))))) + (-12 (-4 *4 (-1080)) (-5 *2 (-578)) (-5 *1 (-457 *4 *3 *5)) + (-4 *3 (-1274 *4)) + (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))))) +(((*1 *2 *2) (-12 (-5 *1 (-990 *2)) (-4 *2 (-559))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1298 *5)) (-4 *5 (-814)) (-5 *2 (-112)) + (-5 *1 (-867 *4 *5)) (-14 *4 (-793))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-5 *4 (-981 (-578))) (-5 *2 (-342)) + (-5 *1 (-344))))) +(((*1 *1 *1) + (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) + (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-421 (-578))))) (-5 *1 (-272)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-1125 (-392)))) (-5 *1 (-272))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-792)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) + (-12 (-4 *1 (-938)) (-5 *2 (-432 (-1203 *1))) (-5 *3 (-1203 *1))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-666 *7)) (-5 *5 (-666 (-666 *8))) (-4 *7 (-871)) + (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-978 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-666 (-2 (|:| -2800 (-1203 *9)) (|:| -2764 (-578))))))) + (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1203 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-5 *1 (-759 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1131)))) + ((*1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1131))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) - (-4 *4 (-361)) (-5 *2 (-1302)) (-5 *1 (-541 *4))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) - (-4 *4 (-174))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-1076 *5 *6))) (-5 *1 (-1324 *5 *6 *7)) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-980 *4))) - (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-1076 *4 *5))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-1188)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-768))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-949)) (-5 *1 (-720)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-710 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-375)) (-5 *1 (-1008 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) - (-4 *3 (-167 *6)) (-4 (-980 *6) (-910 *5)) - (-4 *6 (-13 (-910 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-916 *4)) (-4 *1 (-910 *4)) - (-4 *4 (-1130)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) - (-4 *6 (-13 (-1130) (-1068 *3))) (-4 *3 (-910 *5)) - (-5 *1 (-959 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) - (-4 *3 (-13 (-443 *6) (-632 *4) (-910 *5) (-1068 (-630 $)))) - (-5 *4 (-916 *5)) (-4 *6 (-13 (-569) (-910 *5))) - (-5 *1 (-960 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 (-577) *3)) (-5 *4 (-916 (-577))) (-4 *3 (-558)) - (-5 *1 (-961 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1130)) - (-4 *6 (-13 (-1130) (-1068 (-630 $)) (-632 *4) (-910 *5))) - (-5 *4 (-916 *5)) (-5 *1 (-962 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-909 *5 *6 *3)) (-5 *4 (-916 *5)) (-4 *5 (-1130)) - (-4 *6 (-910 *5)) (-4 *3 (-687 *6)) (-5 *1 (-963 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-916 *6) (-913 *6 *3))) - (-4 *8 (-870)) (-5 *2 (-913 *6 *3)) (-5 *4 (-916 *6)) - (-4 *6 (-1130)) (-4 *3 (-13 (-977 *9 *7 *8) (-632 *4))) - (-4 *7 (-814)) (-4 *9 (-13 (-1079) (-910 *6))) - (-5 *1 (-964 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) - (-4 *3 (-13 (-977 *8 *6 *7) (-632 *4))) (-5 *4 (-916 *5)) - (-4 *7 (-910 *5)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *8 (-13 (-1079) (-910 *5))) (-5 *1 (-964 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1130)) (-4 *3 (-1022 *6)) - (-4 *6 (-13 (-569) (-910 *5) (-632 *4))) (-5 *4 (-916 *5)) - (-5 *1 (-967 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-913 *5 (-1206))) (-5 *3 (-1206)) (-5 *4 (-916 *5)) - (-4 *5 (-1130)) (-5 *1 (-968 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-665 (-916 *7))) (-5 *5 (-1 *9 (-665 *9))) - (-5 *6 (-1 (-913 *7 *9) *9 (-916 *7) (-913 *7 *9))) (-4 *7 (-1130)) - (-4 *9 (-13 (-1079) (-632 (-916 *7)) (-1068 *8))) - (-5 *2 (-913 *7 *9)) (-5 *3 (-665 *9)) (-4 *8 (-1079)) - (-5 *1 (-969 *7 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) + (-12 (-5 *3 (-711 *1)) (-5 *4 (-1298 *1)) (-4 *1 (-660 *5)) + (-4 *5 (-1080)) + (-5 *2 (-2 (|:| -2547 (-711 *5)) (|:| |vec| (-1298 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) + (-5 *2 (-711 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-732 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-736 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) (((*1 *2 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) - (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-1203 *6)) (-4 *6 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-1203 *7)) (-5 *1 (-333 *4 *5 *6 *7)) + (-4 *7 (-978 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) - (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4)))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1065)) - (-5 *1 (-767))))) + (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2) + (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578))))) + ((*1 *2 *2) + (-12 (-5 *2 (-950)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-505))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1068 (-577)))) - (-4 *7 (-1273 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) - (-4 *2 (-354 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *1) (-5 *1 (-481)))) + (-12 (-4 *3 (-570)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) + (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 (-112)) (-5 *1 (-312))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -13367,1945 +12695,2424 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1187 (-228))) + (-3 (|:| |str| (-1188 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1641 + (|:| -2246 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-572))))) + (-5 *1 (-573))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1169)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1297 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) - (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-4 *4 (-375)) (-5 *2 (-1297 *1)) - (-4 *1 (-340 *4)))) - ((*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1297 *1)) (-4 *1 (-340 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) - (-4 *1 (-422 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) - (-5 *2 (-1297 *6)) (-5 *1 (-426 *3 *4 *5 *6)) - (-4 *6 (-13 (-422 *4 *5) (-1068 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-318)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) - (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) - (-4 *6 (-422 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1297 *1)) (-4 *1 (-430 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-541 *4)) - (-4 *4 (-361))))) -(((*1 *2 *1) (-12 (-4 *1 (-892 *3)) (-5 *2 (-577))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 *1)) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) - (-14 *3 (-949)) (-4 *4 (-1079)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1189)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-272))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-328 (-229))) (-5 *4 (-1207)) + (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-666 (-229))) (-5 *1 (-195)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-328 (-229))) (-5 *4 (-1207)) + (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-666 (-229))) (-5 *1 (-312))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-666 (-421 (-981 *6)))) + (-5 *3 (-421 (-981 *6))) + (-4 *6 (-13 (-570) (-1069 (-578)) (-149))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-584 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *3) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578)))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-792)) - (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1248)) (-5 *2 (-793)) + (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-132)) - (-5 *2 (-792)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) (-4 *4 (-133)) + (-5 *2 (-793)))) ((*1 *2) - (-12 (-4 *4 (-375)) (-5 *2 (-792)) (-5 *1 (-339 *3 *4)) - (-4 *3 (-340 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-373 *3)) (-4 *3 (-1130)))) - ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) (-5 *2 (-792)))) + (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) + (-4 *3 (-341 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) + ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1131)) (-5 *2 (-793)))) ((*1 *2) - (-12 (-4 *4 (-1130)) (-5 *2 (-792)) (-5 *1 (-437 *3 *4)) - (-4 *3 (-438 *4)))) + (-12 (-4 *4 (-1131)) (-5 *2 (-793)) (-5 *1 (-438 *3 *4)) + (-4 *3 (-439 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) + (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1273 *4)) (-5 *2 (-792)) - (-5 *1 (-744 *3 *4 *5)) (-4 *3 (-745 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1036)))) + (-12 (-4 *4 (-175)) (-4 *5 (-1274 *4)) (-5 *2 (-793)) + (-5 *1 (-745 *3 *4 *5)) (-4 *3 (-746 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1037)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-869) (-375))) (-5 *1 (-1091 *2 *3)) - (-4 *3 (-1273 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-577)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-577)) (-5 *1 (-247))))) -(((*1 *1 *1) (-5 *1 (-1205))) + (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) + (-4 *3 (-1274 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 *5)) (-4 *5 (-13 (-1080) (-660 *4))) + (-4 *4 (-570)) (-5 *2 (-112)) (-5 *1 (-658 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *1 *1) (-5 *1 (-1206))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-792)) (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) - (-4 *2 (-1273 *3))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-768))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-569)) (-4 *2 (-1079)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-999 *3 *2)) (-4 *2 (-1273 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *1)))) - (-4 *1 (-1101 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-997)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1132 (-792))) (-5 *6 (-792)) - (-5 *2 - (-2 (|:| |contp| (-577)) - (|:| -1679 (-665 (-2 (|:| |irr| *3) (|:| -2938 (-577))))))) - (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1247))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *1)) (-4 *1 (-313)))) - ((*1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-599))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-793)) + (-4 *3 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *4 (-1274 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-423 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) + (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1) (|partial| -4 *1 (-147))) ((*1 *1 *1) (-4 *1 (-362))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-147)) (-4 *1 (-938))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1066)) (-5 *1 (-771)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-402)) (-5 *2 (-1066)) (-5 *1 (-771))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-775))))) (((*1 *2 *3) - (-12 (-5 *3 (-971 *2)) (-5 *1 (-1012 *2)) (-4 *2 (-1079))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) - (-4 *2 (-13 (-870) (-21)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1202 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1312 (-1206) *3)) (-4 *3 (-1079)) (-5 *1 (-1319 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1312 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *1 (-1321 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-792)))) - ((*1 *1 *1) (-4 *1 (-415)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228))))) + (-12 (-5 *3 (-666 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-195)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-312)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-317))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *1)) (-4 *1 (-314)))) + ((*1 *1 *1) (-4 *1 (-314))) ((*1 *1 *1) (-5 *1 (-886)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1079)) (-4 *3 (-1130)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2182 (-577)))) (-4 *1 (-443 *3)))) + (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-841 *3)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-916 *3)) (|:| -2182 (-916 *3)))) - (-5 *1 (-916 *3)) (-4 *3 (-1130)))) + (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1274 *6)) + (-4 *6 (-13 (-27) (-444 *5))) (-4 *5 (-13 (-570) (-1069 (-578)))) + (-4 *8 (-1274 (-421 *7))) (-5 *2 (-600 *3)) + (-5 *1 (-566 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-451)))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *1 *1) (|partial| -4 *1 (-1183)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-793)) (-4 *4 (-362)) (-5 *1 (-220 *4 *2)) + (-4 *2 (-1274 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-578)) (-5 *1 (-718 *2)) (-4 *2 (-1274 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1274 *4)) + (-4 *5 (-1274 (-421 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) - (-4 *7 (-977 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2182 (-577)))) - (-5 *1 (-978 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) - (-15 -2528 (*7 $)))))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1249 *2)) + (-4 *2 (-1131)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-871)) + (-5 *1 (-1249 *2))))) (((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)))) - ((*1 *1) (-4 *1 (-1182)))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) - (-5 *1 (-776))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1187 *4))) (-4 *4 (-375)) - (-4 *4 (-1079)) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-792)) (|:| -1524 *4))) (-5 *5 (-792)) - (-4 *4 (-977 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)))) + ((*1 *1) (-4 *1 (-1183)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1080)) (-4 *5 (-1274 *4)) (-5 *2 (-1 *6 (-666 *6))) + (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-1289 *4))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-978 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) + (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-978 *2 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955))))) +(((*1 *2 *3) + (-12 (-5 *2 (-432 (-1203 *1))) (-5 *1 (-328 *4)) (-5 *3 (-1203 *1)) + (-4 *4 (-466)) (-4 *4 (-570)) (-4 *4 (-1131)))) + ((*1 *2 *3) + (-12 (-4 *1 (-938)) (-5 *2 (-432 (-1203 *1))) (-5 *3 (-1203 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-462 *6 *7 *8 *4))))) -(((*1 *2) (-12 (-5 *2 (-932 (-577))) (-5 *1 (-945))))) + (-2 (|:| |additions| (-578)) (|:| |multiplications| (-578)) + (|:| |exponentiations| (-578)) (|:| |functionCalls| (-578)))) + (-5 *1 (-317))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1130)) (-4 *3 (-926 *5)) (-5 *2 (-710 *3)) - (-5 *1 (-713 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4499))))))) + (-12 (-5 *3 (-666 (-328 (-229)))) (-5 *4 (-793)) + (-5 *2 (-711 (-229))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) - (-5 *2 - (-665 - (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) - (|:| |geneigvec| (-665 (-710 (-420 (-980 *4)))))))) - (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-122 *3)) (-4 *3 (-1274 (-578)))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1001)) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-255))))) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) (((*1 *2 *3) - (-12 (-5 *3 (-710 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-980 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *3) - (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-914 *4 *5)) (-4 *5 (-1247)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1196))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1282 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) - (-14 *4 (-1206)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-720)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1130)) (-5 *1 (-734 *3 *2 *4)) (-4 *3 (-870)) - (-14 *4 - (-1 (-112) (-2 (|:| -2085 *3) (|:| -2182 *2)) - (-2 (|:| -2085 *3) (|:| -2182 *2))))))) + (-12 (-4 *4 (-570)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-431 *4))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-776))))) +(((*1 *1) (-5 *1 (-825)))) +(((*1 *2 *3) + (-12 (-5 *3 (-917 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-915 *4 *5)) (-4 *5 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1197))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-792)) (-4 *4 (-361)) - (-5 *1 (-541 *4))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-1163 *4 *2)) + (-4 *2 (-13 (-618 (-578) *4) (-10 -7 (-6 -4500) (-6 -4501)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-871)) (-4 *3 (-1248)) (-5 *1 (-1163 *3 *2)) + (-4 *2 (-13 (-618 (-578) *3) (-10 -7 (-6 -4500) (-6 -4501))))))) +(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) + (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *1 (-374 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-4 *1 (-399 *2)) (-4 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *2 (-1131)) (-5 *1 (-671 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1188)) (-5 *2 (-391)) (-5 *1 (-807))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-665 *7)) (-5 *3 (-577)) (-4 *7 (-977 *4 *5 *6)) - (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-462 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-844)))) -(((*1 *2 *2) - (-12 + (-12 (-5 *3 (-666 (-495 *4 *5))) (-14 *4 (-666 (-1207))) + (-4 *5 (-466)) (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-577)))) - (-4 *4 (-13 (-1273 *3) (-569) (-10 -8 (-15 -2420 ($ $ $))))) - (-4 *3 (-569)) (-5 *1 (-1276 *3 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1246))) (-5 *3 (-1246)) (-5 *1 (-702))))) + (-2 (|:| |gblist| (-666 (-255 *4 *5))) + (|:| |gvlist| (-666 (-578))))) + (-5 *1 (-650 *4 *5))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-796)) (-5 *1 (-116)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-796)) (-5 *1 (-116))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) - (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-5 *2 (-955)) (-5 *1 (-953 *3)) - (-4 *3 (-632 (-549))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-955)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955))))) + (-12 (-5 *3 (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151)))))) + (-4 *4 (-362)) (-5 *2 (-1303)) (-5 *1 (-542 *4))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-666 + (-2 + (|:| -3173 + (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) + (|:| |fn| (-1298 (-328 (-229)))) + (|:| |yinit| (-666 (-229))) (|:| |intvals| (-666 (-229))) + (|:| |g| (-328 (-229))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (|:| -2754 + (-2 (|:| |stiffness| (-392)) (|:| |stability| (-392)) + (|:| |expense| (-392)) (|:| |accuracy| (-392)) + (|:| |intermediateResults| (-392))))))) + (-5 *1 (-825))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-3 (-112) (-665 *1))) - (-4 *1 (-1101 *4 *5 *6 *3))))) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-1131)) (-4 *4 (-1248)) (-5 *2 (-112)) + (-5 *1 (-1188 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-710 *7)) (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *1 (-952 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-466)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-463 *4 *5 *6 *2))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-570)) (-4 *2 (-175))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-793)) (-4 *4 (-362)) (-5 *1 (-220 *4 *2)) + (-4 *2 (-1274 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1253)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-578)) (-4 *1 (-1124 *3)) (-4 *3 (-1248))))) +(((*1 *1 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1131)) (-4 *2 (-381))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-950)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-666 (-666 *7))) + (-5 *1 (-462 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) + (-4 *7 (-871)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-666 (-666 *8))) + (-5 *1 (-462 *5 *6 *7 *8)) (-5 *3 (-666 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-666 (-666 *7))) + (-5 *1 (-462 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) + (-4 *7 (-871)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-666 (-666 *8))) + (-5 *1 (-462 *5 *6 *7 *8)) (-5 *3 (-666 *8))))) (((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-710 (-420 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1320 *2 *3)) (-4 *2 (-1079)) (-4 *3 (-867))))) + (-12 (-4 *1 (-362)) + (-5 *2 (-666 (-2 (|:| -2800 (-578)) (|:| -2764 (-578)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-14 *5 (-665 (-1206))) - (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *4)) (|:| -2119 (-665 (-980 *4)))))) - (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) - (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) - (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *5)) (|:| -2119 (-665 (-980 *5)))))) - (-5 *1 (-1324 *5 *6 *7)) (-5 *3 (-665 (-980 *5))) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) + (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-112)) + (-5 *1 (-694 *4))))) +(((*1 *1) + (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) + (-4 *4 (-175))))) +(((*1 *2 *3) (-12 (-5 *3 (-172 (-578))) (-5 *2 (-112)) (-5 *1 (-460)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-869) (-318) (-148) (-1052))) + (-12 + (-5 *3 + (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) + (-255 *4 (-421 (-578))))) + (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-519 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-990 *3)) (-4 *3 (-559)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-578))))) + (-4 *2 (-13 (-871) (-21)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-666 (-174))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-793)) (-5 *2 (-1 (-392))) (-5 *1 (-1071))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 - (-665 (-2 (|:| -4193 (-1202 *4)) (|:| -2119 (-665 (-980 *4)))))) - (-5 *1 (-1324 *4 *5 *6)) (-5 *3 (-665 (-980 *4))) - (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-1123 *3)) (-4 *3 (-1247))))) + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) (((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-710 *4)))) + (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1233) (-1033))))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-710 *4)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) - (-5 *3 (-577))))) -(((*1 *2 *2) (-12 (-5 *2 (-665 (-327 (-228)))) (-5 *1 (-277))))) -(((*1 *2 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079)))) - ((*1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-458 *3)) (-4 *3 (-1079))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-2 (|:| -4422 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) -(((*1 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-665 (-792))) (-5 *1 (-1300))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) - (-5 *1 (-343))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1 (-391))) (-5 *1 (-1070))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *7 (-1273 *5)) (-4 *4 (-745 *5 *7)) - (-5 *2 (-2 (|:| -1670 (-710 *6)) (|:| |vec| (-1297 *5)))) - (-5 *1 (-832 *5 *6 *7 *4 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| (-112)) (|:| -4317 *4)))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-841)) (-14 *5 (-1206)) (-5 *2 (-665 (-1270 *5 *4))) - (-5 *1 (-1144 *4 *5)) (-5 *3 (-1270 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-91 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1302)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-465))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) + (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1274 (-421 *2))) + (-4 *2 (-1274 *4)) (-5 *1 (-354 *3 *4 *2 *5)) + (-4 *3 (-355 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) + (-4 *4 (-1274 (-421 *2))) (-4 *2 (-1274 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1242 *6)) + (-5 *2 (-1 (-1188 *4) (-1188 *4))) (-5 *1 (-1306 *6)) + (-5 *5 (-1188 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-981 *4))) + (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-1077 *4 *5))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-362)) + (-5 *2 (-666 (-2 (|:| |deg| (-793)) (|:| -4385 *3)))) + (-5 *1 (-220 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1248)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-112)) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-112)) + (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-272))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 *2)) (-4 *2 (-977 (-420 (-980 *6)) *5 *4)) - (-5 *1 (-753 *5 *4 *6 *2)) (-4 *5 (-814)) - (-4 *4 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $))))) - (-4 *6 (-569))))) -(((*1 *2 *1) - (-12 (-5 *2 (-885)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-792)) - (-14 *4 (-792)) (-4 *5 (-174))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1206)) (-5 *6 (-112)) - (-4 *7 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-4 *3 (-13 (-1232) (-987) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-665 (-864 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *7 *3)) (-5 *5 (-864 *3))))) -(((*1 *1) (-5 *1 (-591))) - ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-886)))) - ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-711 (-1203 *8))) (-4 *5 (-1080)) (-4 *8 (-1080)) + (-4 *6 (-1274 *5)) (-5 *2 (-711 *6)) (-5 *1 (-515 *5 *6 *7 *8)) + (-4 *7 (-1274 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) +(((*1 *1) (-5 *1 (-592))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-887)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-887)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-886)))) + (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-887)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1187 *4)) - (-4 *4 (-1130)) (-4 *4 (-1247))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-665 *2))) (-5 *4 (-665 *5)) - (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1288 *5)) - (-5 *1 (-1290 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) - ((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) - (-14 *4 (-577))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) - ((*1 *1 *1) (-4 *1 (-1090)))) -(((*1 *1) (-5 *1 (-621)))) + (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1188 *4)) + (-4 *4 (-1131)) (-4 *4 (-1248))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1323))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) - (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) - (-4 *3 (-354 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) - (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1079)) (-5 *1 (-733 *3 *2)) (-4 *2 (-1273 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1130)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1188)) (-5 *1 (-1228))))) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-1209 (-421 (-578)))) + (-5 *1 (-193))))) +(((*1 *1 *1) (-4 *1 (-1091))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))) (((*1 *2 *1) - (-12 (-4 *2 (-1273 *3)) (-5 *1 (-412 *3 *2)) - (-4 *3 (-13 (-375) (-148)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) -(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) -(((*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-722))) (-5 *1 (-341)))) - ((*1 *1 *2) (-12 (-5 *2 (-327 (-720))) (-5 *1 (-341)))) - ((*1 *1) (-5 *1 (-341)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-971 (-228)) (-971 (-228)))) (-5 *1 (-271)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) - (-5 *2 (-710 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1297 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-710 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-1297 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1273 *4)) (-5 *2 (-710 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) - (-5 *2 (-1297 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) - (-5 *2 (-710 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1297 *3)) (-5 *1 (-658 *3 *4)) (-4 *3 (-375)) - (-14 *4 (-665 (-1206))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1297 *3)) (-5 *1 (-660 *3 *4)) (-4 *3 (-375)) - (-14 *4 (-665 (-1206))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-710 *5))) (-5 *3 (-710 *5)) (-4 *5 (-375)) - (-5 *2 (-1297 *5)) (-5 *1 (-1116 *5))))) + (-12 (-5 *2 (-1188 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-631 *3)) (-5 *5 (-666 *3)) + (-4 *3 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1131))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) - (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-391))) (-5 *1 (-271)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-385 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |num| (-710 *4)) (|:| |den| *4))) - (-5 *1 (-714 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *6 (-1273 *5)) - (-5 *2 (-2 (|:| -3503 *7) (|:| |rh| (-665 (-420 *6))))) - (-5 *1 (-828 *5 *6 *7 *3)) (-5 *4 (-665 (-420 *6))) - (-4 *7 (-677 *6)) (-4 *3 (-677 (-420 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1022 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1266 *4 *5 *3)) - (-4 *3 (-1273 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) - (-4 *3 (-1130))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-710 (-980 *4))) (-5 *1 (-1058 *4)) - (-4 *4 (-1079))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) - (-5 *5 (-1124 (-228))) (-5 *6 (-665 (-271))) (-5 *2 (-1163 (-228))) - (-5 *1 (-718))))) -(((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-792)) (-5 *5 (-665 *3)) (-4 *3 (-318)) (-4 *6 (-870)) - (-4 *7 (-814)) (-5 *2 (-112)) (-5 *1 (-643 *6 *7 *3 *8)) - (-4 *8 (-977 *3 *7 *6))))) + (-12 (-4 *1 (-949)) (-5 *2 (-2 (|:| -2672 (-666 *1)) (|:| -2847 *1))) + (-5 *3 (-666 *1))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-886) (-886) (-886))) (-5 *4 (-578)) (-5 *2 (-886)) + (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1131)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-886)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1080)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-886)))) + ((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-886)) (-5 *1 (-1203 *3)) (-4 *3 (-1080))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-146))) (-5 *1 (-143)))) + ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143))))) +(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-666 (-972 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))) +(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-1001)) (-5 *1 (-1322))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) - (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) - (-4 *5 (-569)) (-5 *2 (-665 (-665 (-980 *5)))) (-5 *1 (-1215 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1297 (-1297 (-577)))) (-5 *3 (-949)) (-5 *1 (-479))))) + (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-172 (-328 *4))) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-444 (-172 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-172 *3)) (-5 *1 (-1237 *4 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-844))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4)) + (-14 *4 (-666 (-1207)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-255 *3 *4)) + (-14 *3 (-666 (-1207))) (-4 *4 (-1080)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-578))) (-14 *3 (-666 (-1207))) + (-5 *1 (-468 *3 *4 *5)) (-4 *4 (-1080)) + (-4 *5 (-245 (-3226 *3) (-793))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-495 *3 *4)) + (-14 *3 (-666 (-1207))) (-4 *4 (-1080))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-375)) + (-12 (-5 *4 (-666 (-888 *5))) (-14 *5 (-666 (-1207))) (-4 *6 (-466)) (-5 *2 - (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) - (|:| |polypart| *6))) - (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-2 (|:| |dpolys| (-666 (-255 *5 *6))) + (|:| |coords| (-666 (-578))))) + (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-666 (-255 *5 *6))) (-4 *7 (-466))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-666 *7)) (-5 *3 (-112)) (-4 *7 (-1096 *4 *5 *6)) + (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-1008 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-865 *4)) (-5 *3 (-631 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1233) (-29 *6))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-228 *6 *4))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-898)) + (-5 *5 (-950)) (-5 *6 (-666 (-272))) (-5 *2 (-482)) (-5 *1 (-1302)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *2 (-482)) + (-5 *1 (-1302)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) (-5 *4 (-666 (-272))) + (-5 *2 (-482)) (-5 *1 (-1302))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1066)) (-5 *1 (-775))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1188 *4)) (-5 *3 (-578)) (-4 *4 (-1080)) + (-5 *1 (-1191 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-578)) (-5 *1 (-1290 *3 *4 *5)) (-4 *3 (-1080)) + (-14 *4 (-1207)) (-14 *5 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-421 (-578))) (-4 *1 (-568 *3)) + (-4 *3 (-13 (-418) (-1233))))) + ((*1 *1 *2) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-568 *2)) (-4 *2 (-13 (-418) (-1233)))))) +(((*1 *2 *3) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-460)) (-5 *3 (-578))))) +(((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) + ((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193)))) + ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1) (-4 *1 (-893 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) + (-4 *4 (-871))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1130) (-34))) (-5 *1 (-1170 *3 *2)) - (-4 *3 (-13 (-1130) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1308))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-665 (-665 (-228)))) (-5 *4 (-228)) - (-5 *2 (-665 (-971 *4))) (-5 *1 (-1243)) (-5 *3 (-971 *4))))) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1248)) (-4 *3 (-1248))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) + (-4 *3 (-319)) (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1008 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-328 (-392)))) (-5 *4 (-666 (-392))) + (-5 *2 (-1066)) (-5 *1 (-862))))) +(((*1 *1 *1) + (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) + (-4 *2 (-466)))) + ((*1 *1 *1) + (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1274 *2)) + (-4 *4 (-1274 (-421 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)) (-4 *3 (-466)))) + ((*1 *1 *1) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-466)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-319)) (-4 *3 (-570)) (-5 *1 (-1194 *3 *2)) + (-4 *2 (-1274 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-266))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-271))) (-5 *4 (-1206)) (-5 *2 (-112)) - (-5 *1 (-271))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3) + (-12 (-5 *3 (-981 (-229))) (-5 *2 (-328 (-392))) (-5 *1 (-317))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *2) (-12 (-5 *2 (-1203 *3)) (-4 *3 (-362)) (-5 *1 (-370 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-578))) + (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-779))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) + (-5 *1 (-712 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))) ((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-743)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-747)) (-5 *2 (-112))))) + (-12 (-4 *2 (-13 (-1131) (-34))) (-5 *1 (-1171 *3 *2)) + (-4 *3 (-13 (-1131) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1309))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 (-933 *3))) (-4 *3 (-1130)) (-5 *1 (-932 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *1 *2) - (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1079) (-870))) - (-5 *1 (-226 *3 *4)) (-14 *4 (-665 (-1206)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1079)) - (-4 *2 (-465)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-1273 (-577))) (-5 *2 (-665 (-577))) - (-5 *1 (-499 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-465)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)) (-4 *3 (-465))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1247)) - (-4 *5 (-1247)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) + (-14 *4 *2)))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *2 (-1066)) + (-5 *1 (-770))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-136))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-421 (-981 (-578))))) + (-5 *2 (-666 (-666 (-306 (-981 *4))))) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-870) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-306 (-421 (-981 (-578)))))) + (-5 *2 (-666 (-666 (-306 (-981 *4))))) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-870) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 (-578)))) (-5 *2 (-666 (-306 (-981 *4)))) + (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-306 (-421 (-981 (-578))))) + (-5 *2 (-666 (-306 (-981 *4)))) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-870) (-376))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-792)) - (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) - (-5 *1 (-245 *6 *7 *5)))) + (|partial| -12 (-5 *5 (-1207)) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-4 *4 (-13 (-29 *6) (-1233) (-988))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3198 (-666 *4)))) + (-5 *1 (-674 *6 *4 *3)) (-4 *3 (-678 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-666 *2)) + (-4 *2 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *1 (-674 *6 *2 *3)) (-4 *3 (-678 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1298 *5) "failed")) + (|:| -3198 (-666 (-1298 *5))))) + (-5 *1 (-689 *5)) (-5 *4 (-1298 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-666 *5))) (-4 *5 (-376)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1298 *5) "failed")) + (|:| -3198 (-666 (-1298 *5))))) + (-5 *1 (-689 *5)) (-5 *4 (-1298 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) + (-5 *2 + (-666 + (-2 (|:| |particular| (-3 (-1298 *5) "failed")) + (|:| -3198 (-666 (-1298 *5)))))) + (-5 *1 (-689 *5)) (-5 *4 (-666 (-1298 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-666 *5))) (-4 *5 (-376)) + (-5 *2 + (-666 + (-2 (|:| |particular| (-3 (-1298 *5) "failed")) + (|:| -3198 (-666 (-1298 *5)))))) + (-5 *1 (-689 *5)) (-5 *4 (-666 (-1298 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) + (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4501)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-690 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) + (-4 *7 (-13 (-386 *5) (-10 -7 (-6 -4501)))) + (-5 *2 + (-666 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3198 (-666 *7))))) + (-5 *1 (-690 *5 *6 *7 *3)) (-5 *4 (-666 *7)) + (-4 *3 (-709 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-666 (-1207))) (-4 *5 (-570)) + (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) (-5 *1 (-792 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-570)) + (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) (-5 *1 (-792 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-116)) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *1 (-794 *5 *2)) (-4 *2 (-13 (-29 *5) (-1233) (-988))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) - (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) + (|partial| -12 (-5 *3 (-711 *7)) (-5 *5 (-1207)) + (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 + (-2 (|:| |particular| (-1298 *7)) (|:| -3198 (-666 (-1298 *7))))) + (-5 *1 (-824 *6 *7)) (-5 *4 (-1298 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-711 *6)) (-5 *4 (-1207)) + (-4 *6 (-13 (-29 *5) (-1233) (-988))) + (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 (-666 (-1298 *6))) (-5 *1 (-824 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) - (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) + (|partial| -12 (-5 *3 (-666 (-306 *7))) (-5 *4 (-666 (-116))) + (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 + (-2 (|:| |particular| (-1298 *7)) (|:| -3198 (-666 (-1298 *7))))) + (-5 *1 (-824 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-665 *6)) (-4 *6 (-1247)) - (-4 *5 (-1247)) (-5 *2 (-665 *5)) (-5 *1 (-663 *6 *5)))) + (|partial| -12 (-5 *3 (-666 *7)) (-5 *4 (-666 (-116))) + (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 + (-2 (|:| |particular| (-1298 *7)) (|:| -3198 (-666 (-1298 *7))))) + (-5 *1 (-824 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-986 *6)) (-4 *6 (-1247)) - (-4 *5 (-1247)) (-5 *2 (-986 *5)) (-5 *1 (-985 *6 *5)))) + (-12 (-5 *3 (-306 *7)) (-5 *4 (-116)) (-5 *5 (-1207)) + (-4 *7 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -3198 (-666 *7))) *7 "failed")) + (-5 *1 (-824 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1187 *6)) (-4 *6 (-1247)) - (-4 *3 (-1247)) (-5 *2 (-1187 *3)) (-5 *1 (-1185 *6 *3)))) + (-12 (-5 *4 (-116)) (-5 *5 (-1207)) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -3198 (-666 *3))) *3 "failed")) + (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1233) (-988))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-306 *2)) (-5 *4 (-116)) (-5 *5 (-666 *2)) + (-4 *2 (-13 (-29 *6) (-1233) (-988))) (-5 *1 (-824 *6 *2)) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-116)) (-5 *4 (-306 *2)) (-5 *5 (-666 *2)) + (-4 *2 (-13 (-29 *6) (-1233) (-988))) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *1 (-824 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1066)) (-5 *1 (-827)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-830)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-827)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1298 (-328 (-392)))) (-5 *4 (-392)) (-5 *5 (-666 *4)) + (-5 *2 (-1066)) (-5 *1 (-827)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1298 (-328 (-392)))) (-5 *4 (-392)) (-5 *5 (-666 *4)) + (-5 *2 (-1066)) (-5 *1 (-827)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1298 (-328 *4))) (-5 *5 (-666 (-392))) + (-5 *6 (-328 (-392))) (-5 *4 (-392)) (-5 *2 (-1066)) (-5 *1 (-827)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1298 (-328 (-392)))) (-5 *4 (-392)) (-5 *5 (-666 *4)) + (-5 *2 (-1066)) (-5 *1 (-827)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1298 (-328 *4))) (-5 *5 (-666 (-392))) + (-5 *6 (-328 (-392))) (-5 *4 (-392)) (-5 *2 (-1066)) (-5 *1 (-827)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1298 (-328 *4))) (-5 *5 (-666 (-392))) + (-5 *6 (-328 (-392))) (-5 *4 (-392)) (-5 *2 (-1066)) (-5 *1 (-827)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) - (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1296 *6 *5))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-665 (-1202 *13))) (-5 *3 (-1202 *13)) - (-5 *4 (-665 *12)) (-5 *5 (-665 *10)) (-5 *6 (-665 *13)) - (-5 *7 (-665 (-665 (-2 (|:| -1926 (-792)) (|:| |pcoef| *13))))) - (-5 *8 (-665 (-792))) (-5 *9 (-1297 (-665 (-1202 *10)))) - (-4 *12 (-870)) (-4 *10 (-318)) (-4 *13 (-977 *10 *11 *12)) - (-4 *11 (-814)) (-5 *1 (-728 *11 *12 *10 *13))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-932 *4)) - (-4 *4 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) -(((*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1068 *2)))) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3198 (-666 *6))) "failed") + *7 *6)) + (-4 *6 (-376)) (-4 *7 (-678 *6)) + (-5 *2 (-2 (|:| |particular| (-1298 *6)) (|:| -3198 (-711 *6)))) + (-5 *1 (-835 *6 *7)) (-5 *3 (-711 *6)) (-5 *4 (-1298 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1066)) (-5 *1 (-924)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-925)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-924)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-793)) (-5 *6 (-666 (-666 (-328 *3)))) (-5 *7 (-1189)) + (-5 *8 (-229)) (-5 *5 (-666 (-328 (-392)))) (-5 *3 (-392)) + (-5 *2 (-1066)) (-5 *1 (-924)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-793)) (-5 *6 (-666 (-666 (-328 *3)))) (-5 *7 (-1189)) + (-5 *5 (-666 (-328 (-392)))) (-5 *3 (-392)) (-5 *2 (-1066)) + (-5 *1 (-924)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-981 (-421 (-578)))) (-5 *2 (-666 (-392))) + (-5 *1 (-1054)) (-5 *4 (-392)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-981 (-578))) (-5 *2 (-666 (-392))) (-5 *1 (-1054)) + (-5 *4 (-392)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1162 *4)) + (-5 *3 (-328 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 (-666 (-306 (-328 *4)))) (-5 *1 (-1162 *4)) + (-5 *3 (-306 (-328 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 (-666 (-306 (-328 *5)))) (-5 *1 (-1162 *5)) + (-5 *3 (-306 (-328 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 (-666 (-306 (-328 *5)))) (-5 *1 (-1162 *5)) + (-5 *3 (-328 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-1207))) + (-4 *5 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *2 (-666 (-666 (-306 (-328 *5))))) (-5 *1 (-1162 *5)) + (-5 *3 (-666 (-306 (-328 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-421 (-981 *5)))) (-5 *4 (-666 (-1207))) + (-4 *5 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) + (-5 *1 (-1216 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-1207))) (-4 *5 (-570)) + (-5 *2 (-666 (-666 (-306 (-421 (-981 *5)))))) (-5 *1 (-1216 *5)) + (-5 *3 (-666 (-306 (-421 (-981 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-421 (-981 *4)))) (-4 *4 (-570)) + (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) (-5 *1 (-1216 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-666 (-666 (-306 (-421 (-981 *4)))))) + (-5 *1 (-1216 *4)) (-5 *3 (-666 (-306 (-421 (-981 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-570)) + (-5 *2 (-666 (-306 (-421 (-981 *5))))) (-5 *1 (-1216 *5)) + (-5 *3 (-421 (-981 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-4 *5 (-570)) + (-5 *2 (-666 (-306 (-421 (-981 *5))))) (-5 *1 (-1216 *5)) + (-5 *3 (-306 (-421 (-981 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-666 (-306 (-421 (-981 *4))))) + (-5 *1 (-1216 *4)) (-5 *3 (-421 (-981 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-666 (-306 (-421 (-981 *4))))) + (-5 *1 (-1216 *4)) (-5 *3 (-306 (-421 (-981 *4))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2035 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-1243 *3)) + (-4 *3 (-1005))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2) (-12 (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *1) (-12 (-5 *2 (-846)) (-5 *1 (-847))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229))))) +(((*1 *2 *3) (-12 (-5 *2 (-578)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *2 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) -(((*1 *1 *2) (-12 (-5 *2 (-949)) (-4 *1 (-380)))) + (-12 (-4 *1 (-1134 *3 *4 *2 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-950)) (-4 *1 (-381)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361)))) + (-12 (-5 *3 (-950)) (-5 *2 (-1298 *4)) (-5 *1 (-542 *4)) + (-4 *4 (-362)))) ((*1 *2 *1) - (-12 (-4 *2 (-870)) (-5 *1 (-734 *2 *3 *4)) (-4 *3 (-1130)) + (-12 (-4 *2 (-871)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1131)) (-14 *4 - (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *3)) - (-2 (|:| -2085 *2) (|:| -2182 *3))))))) + (-1 (-112) (-2 (|:| -2087 *2) (|:| -2764 *3)) + (-2 (|:| -2087 *2) (|:| -2764 *3))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1207)) + (-4 *6 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-4 *4 (-13 (-29 *6) (-1233) (-988))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3198 (-666 *4)))) + (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-678 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1) (-4 *1 (-1170)))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248))))) +(((*1 *1 *1) + (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) + (-4 *4 (-277 *3)) (-4 *5 (-815))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-116) (-116))) (-5 *1 (-116))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-578)) (-5 *1 (-432 *2)) (-4 *2 (-570))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-323)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1001)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1025)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1067)))) + ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1104))))) (((*1 *2 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) - (-5 *1 (-178 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))) - (-5 *2 (-1297 *6)) (-5 *1 (-348 *3 *4 *5 *6)) - (-4 *6 (-354 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-322)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1000)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1024)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1066)))) - ((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1103))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-375) (-148))) - (-5 *2 (-665 (-2 (|:| -2182 (-792)) (|:| -4368 *4) (|:| |num| *4)))) - (-5 *1 (-412 *3 *4)) (-4 *4 (-1273 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-665 (-710 (-327 (-577))))) (-5 *1 (-1061))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) - (-5 *2 (-431 (-1202 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) - (-4 *3 (-1273 *5))))) -(((*1 *2 *1) - (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -2085 *5) (|:| -2182 *2)) - (-2 (|:| -2085 *5) (|:| -2182 *2)))) - (-4 *2 (-244 (-3224 *3) (-792))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-870)) (-4 *7 (-977 *4 *2 (-887 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1090)) (-4 *3 (-1232)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) - (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) - (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1188)) (-5 *1 (-316))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-225 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-4 *1 (-262 *3)))) - ((*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) + (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) + (-5 *1 (-179 *3))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-666 *10)) (-5 *5 (-112)) (-4 *10 (-1102 *6 *7 *8 *9)) + (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *9 (-1096 *6 *7 *8)) + (-5 *2 + (-666 + (-2 (|:| -3505 (-666 *9)) (|:| -4318 *10) (|:| |ineq| (-666 *9))))) + (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-666 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-666 *10)) (-5 *5 (-112)) (-4 *10 (-1102 *6 *7 *8 *9)) + (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *9 (-1096 *6 *7 *8)) + (-5 *2 + (-666 + (-2 (|:| -3505 (-666 *9)) (|:| -4318 *10) (|:| |ineq| (-666 *9))))) + (-5 *1 (-1138 *6 *7 *8 *9 *10)) (-5 *3 (-666 *9))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1188 (-2 (|:| |k| (-578)) (|:| |c| *6)))) + (-5 *4 (-1057 (-865 (-578)))) (-5 *5 (-1207)) (-5 *7 (-421 (-578))) + (-4 *6 (-1080)) (-5 *2 (-886)) (-5 *1 (-609 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-421 *6))) (-5 *4 (-1 (-666 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *6 (-1274 *5)) (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-675 (-421 *7))) (-5 *4 (-1 (-666 *6) *7)) + (-5 *5 (-1 (-432 *7) *7)) + (-4 *6 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *7 (-1274 *6)) (-5 *2 (-666 (-421 *7))) (-5 *1 (-834 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-676 *6 (-421 *6))) (-5 *4 (-1 (-666 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *6 (-1274 *5)) (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-676 *7 (-421 *7))) (-5 *4 (-1 (-666 *6) *7)) + (-5 *5 (-1 (-432 *7) *7)) + (-4 *6 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *7 (-1274 *6)) (-5 *2 (-666 (-421 *7))) (-5 *1 (-834 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 (-421 *5))) (-4 *5 (-1274 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 (-666 (-421 *5))) (-5 *1 (-834 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 (-421 *6))) (-5 *4 (-1 (-432 *6) *6)) + (-4 *6 (-1274 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-676 *5 (-421 *5))) (-4 *5 (-1274 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 (-666 (-421 *5))) (-5 *1 (-834 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-676 *6 (-421 *6))) (-5 *4 (-1 (-432 *6) *6)) + (-4 *6 (-1274 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 (-666 (-421 *6))) (-5 *1 (-834 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 (-1207))) (-4 *6 (-376)) + (-5 *2 (-666 (-306 (-981 *6)))) (-5 *1 (-552 *5 *6 *7)) + (-4 *5 (-466)) (-4 *7 (-13 (-376) (-870)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-666 (-981 *6))) (-5 *4 (-666 (-1207))) (-4 *6 (-466)) + (-5 *2 (-666 (-666 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376)) + (-4 *5 (-13 (-376) (-870)))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1131)) (-4 *2 (-1131))))) +(((*1 *2) + (-12 (-4 *4 (-1252)) (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) + (-5 *2 (-112)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *2 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130))))) -(((*1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-247))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-420 (-980 *4))) (-5 *3 (-1206)) - (-4 *4 (-13 (-569) (-1068 (-577)) (-148))) (-5 *1 (-583 *4))))) + (-12 (-4 *1 (-1134 *3 *2 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-125)))) (((*1 *2 *3) - (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-864 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1001))))) + (-12 (-5 *3 (-578)) (|has| *1 (-6 -4491)) (-4 *1 (-418)) + (-5 *2 (-950))))) +(((*1 *2 *3) + (-12 (-5 *3 (-865 (-392))) (-5 *2 (-865 (-229))) (-5 *1 (-317))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) + (-4 *4 (-1131)) (-4 *5 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-550))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361)))) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) + (-4 *4 (-362)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361)))) - ((*1 *1) (-4 *1 (-380))) - ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1297 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361)))) - ((*1 *1 *1) (-4 *1 (-558))) ((*1 *1) (-4 *1 (-558))) - ((*1 *1 *1) (-5 *1 (-792))) - ((*1 *2 *1) (-12 (-5 *2 (-933 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1130)))) + (-12 (-5 *3 (-950)) (-5 *2 (-1203 *4)) (-5 *1 (-370 *4)) + (-4 *4 (-362)))) + ((*1 *1) (-4 *1 (-381))) + ((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 (-1298 *4)) (-5 *1 (-542 *4)) + (-4 *4 (-362)))) + ((*1 *1 *1) (-4 *1 (-559))) ((*1 *1) (-4 *1 (-559))) + ((*1 *1 *1) (-5 *1 (-793))) + ((*1 *2 *1) (-12 (-5 *2 (-934 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-933 *4)) (-5 *1 (-932 *4)) - (-4 *4 (-1130)))) - ((*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-558)) (-4 *2 (-569))))) + (-12 (-5 *3 (-578)) (-5 *2 (-934 *4)) (-5 *1 (-933 *4)) + (-4 *4 (-1131)))) + ((*1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-559)) (-4 *2 (-570))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-1274 *4)) (-5 *1 (-553 *4 *2 *5 *6)) + (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793)))))) (((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) - ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *1 *1) (-4 *1 (-1169)))) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-871)) (-5 *1 (-1218 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *8 (-1096 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-666 *8)) + (|:| |towers| (-666 (-1058 *5 *6 *7 *8))))) + (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-666 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *8 (-1096 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-666 *8)) + (|:| |towers| (-666 (-1177 *5 *6 *7 *8))))) + (-5 *1 (-1177 *5 *6 *7 *8)) (-5 *3 (-666 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) + (-12 (-5 *3 (-711 *8)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) + (-4 *7 (-815)) + (-5 *2 + (-666 + (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) + (|:| |wcond| (-666 (-981 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) + (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-666 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *8)) (-5 *4 (-666 (-1207))) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) + (-4 *7 (-815)) + (-5 *2 + (-666 + (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) + (|:| |wcond| (-666 (-981 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) + (-5 *1 (-953 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-711 *7)) (-4 *7 (-978 *4 *6 *5)) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) + (-5 *2 + (-666 + (-2 (|:| |eqzro| (-666 *7)) (|:| |neqzro| (-666 *7)) + (|:| |wcond| (-666 (-981 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *4)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *4)))))))))) + (-5 *1 (-953 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-674 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) - (-5 *5 (-1 (-431 *7) *7)) - (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-665 *5) *6)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *6 (-1273 *5)) (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) + (-12 (-5 *3 (-711 *9)) (-5 *5 (-950)) (-4 *9 (-978 *6 *8 *7)) + (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) + (-4 *8 (-815)) + (-5 *2 + (-666 + (-2 (|:| |eqzro| (-666 *9)) (|:| |neqzro| (-666 *9)) + (|:| |wcond| (-666 (-981 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *6)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *6)))))))))) + (-5 *1 (-953 *6 *7 *8 *9)) (-5 *4 (-666 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-675 *7 (-420 *7))) (-5 *4 (-1 (-665 *6) *7)) - (-5 *5 (-1 (-431 *7) *7)) - (-4 *6 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *7 (-1273 *6)) (-5 *2 (-665 (-420 *7))) (-5 *1 (-833 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-674 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-674 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) - (-4 *6 (-1273 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-675 *5 (-420 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 (-665 (-420 *5))) (-5 *1 (-833 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-675 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) - (-4 *6 (-1273 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-5 *2 (-665 (-420 *6))) (-5 *1 (-833 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-549))))) + (-12 (-5 *3 (-711 *9)) (-5 *4 (-666 (-1207))) (-5 *5 (-950)) + (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) + (-5 *2 + (-666 + (-2 (|:| |eqzro| (-666 *9)) (|:| |neqzro| (-666 *9)) + (|:| |wcond| (-666 (-981 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *6)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *6)))))))))) + (-5 *1 (-953 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *8)) (-5 *4 (-950)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) + (-4 *7 (-815)) + (-5 *2 + (-666 + (-2 (|:| |eqzro| (-666 *8)) (|:| |neqzro| (-666 *8)) + (|:| |wcond| (-666 (-981 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1298 (-421 (-981 *5)))) + (|:| -3198 (-666 (-1298 (-421 (-981 *5)))))))))) + (-5 *1 (-953 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-711 *9)) (-5 *4 (-666 *9)) (-5 *5 (-1189)) + (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-578)) + (-5 *1 (-953 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-711 *9)) (-5 *4 (-666 (-1207))) (-5 *5 (-1189)) + (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-578)) + (-5 *1 (-953 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 *8)) (-5 *4 (-1189)) (-4 *8 (-978 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) + (-4 *7 (-815)) (-5 *2 (-578)) (-5 *1 (-953 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-711 *10)) (-5 *4 (-666 *10)) (-5 *5 (-950)) + (-5 *6 (-1189)) (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) + (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-578)) + (-5 *1 (-953 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-711 *10)) (-5 *4 (-666 (-1207))) (-5 *5 (-950)) + (-5 *6 (-1189)) (-4 *10 (-978 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) + (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-578)) + (-5 *1 (-953 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-711 *9)) (-5 *4 (-950)) (-5 *5 (-1189)) + (-4 *9 (-978 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-578)) + (-5 *1 (-953 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-112)) + (-5 *2 (-1066)) (-5 *1 (-775))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-711 (-578))) (-5 *1 (-1141))))) +(((*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-221)))) + ((*1 *2 *1) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-501)))) + ((*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-319)))) + ((*1 *2 *1) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578)))) + ((*1 *1 *1) (-4 *1 (-1091)))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-665 *1)) (-4 *1 (-1095 *3 *4 *5))))) + (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-666 *1)) (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1188 (-229))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2246 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1066)) (-5 *1 (-317))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-578))) (-5 *6 (-229)) + (-5 *3 (-578)) (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *2) + (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-666 + (-2 (|:| |scalar| (-421 (-578))) (|:| |coeff| (-1203 *3)) + (|:| |logand| (-1203 *3))))) + (-5 *1 (-600 *3)) (-4 *3 (-376))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501))))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299))))) +(((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222)))) + ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-172 (-229)))) (-5 *2 (-1066)) + (-5 *1 (-778))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) - (-5 *2 (-1065)) (-5 *1 (-769))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-420 (-1202 (-327 *3)))) (-4 *3 (-569)) - (-5 *1 (-1160 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1150)) (-5 *1 (-542))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-569)) (-4 *2 (-977 *3 *5 *4)) - (-5 *1 (-753 *5 *4 *6 *2)) (-5 *3 (-420 (-980 *6))) (-4 *5 (-814)) - (-4 *4 (-13 (-870) (-10 -8 (-15 -3341 ((-1206) $)))))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-519)) (-5 *2 (-712 (-109))) (-5 *1 (-1115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710 (-171 (-420 (-577))))) (-5 *2 (-665 (-171 *4))) - (-5 *1 (-785 *4)) (-4 *4 (-13 (-375) (-869)))))) -(((*1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-870))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-112)) - (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1065)) (-5 *1 (-777))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1093)) (-5 *3 (-1188))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-870)))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 -2155)))) + (-5 *2 (-1066)) (-5 *1 (-770))))) +(((*1 *1 *1) (-12 (-4 *1 (-386 *2)) (-4 *2 (-1248)) (-4 *2 (-871)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-386 *3)) (-4 *3 (-1248)))) ((*1 *2 *2) - (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) - (-4 *6 (-1095 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2136 *1) (|:| |upper| *1))) - (-4 *1 (-1006 *4 *5 *3 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188))))) + (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) + (-4 *6 (-1096 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3575 *1) (|:| |upper| *1))) + (-4 *1 (-1007 *4 *5 *3 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *2 (-1096 *4 *5 *6)) (-5 *1 (-798 *4 *5 *6 *2 *3)) + (-4 *3 (-1102 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-570)) + (-5 *2 (-1203 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1130)) - (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-701 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) - (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) - (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) - (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) - (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-814)) (-4 *8 (-870)) - (-4 *3 (-1095 *6 *7 *8)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1101 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-2 (|:| |val| (-665 *8)) (|:| -4317 *9)))) - (-5 *5 (-112)) (-4 *8 (-1095 *6 *7 *4)) (-4 *9 (-1101 *6 *7 *4 *8)) - (-4 *6 (-465)) (-4 *7 (-814)) (-4 *4 (-870)) - (-5 *2 (-665 (-2 (|:| |val| *8) (|:| -4317 *9)))) - (-5 *1 (-1138 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1188)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) - (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1131)) + (-4 *6 (-1131)) (-4 *2 (-1131)) (-5 *1 (-702 *5 *6 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-1274 (-172 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-319)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1131)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2196 (-793)) (|:| -1886 (-793)))) + (-5 *1 (-793)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)) (-4 *3 (-175)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-570)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1274 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-175))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1188 *3))) (-5 *1 (-1188 *3)) (-4 *3 (-1248))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-421 (-1203 (-328 *3)))) (-4 *3 (-570)) + (-5 *1 (-1161 *3))))) +(((*1 *2) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) + (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) + (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) - (-4 *4 (-1247)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) + (-4 *4 (-1248)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1248)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) - (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) + (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-375)) (-4 *2 (-926 *3)) (-5 *1 (-599 *2)) - (-5 *3 (-1206)))) + (-12 (-4 *2 (-376)) (-4 *2 (-927 *3)) (-5 *1 (-600 *2)) + (-5 *3 (-1207)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-600 *2)) (-4 *2 (-376)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-886)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) + (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1248)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) - (-4 *4 (-1130)))) + (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 (-793))) (-4 *1 (-929 *4)) + (-4 *4 (-1131)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-666 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1131)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-450)) (-5 *1 (-1210))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)) (-4 *2 (-375)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-680 *4 *2)) - (-4 *2 (-677 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1132 (-1132 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-577)) (-5 *5 (-710 (-228))) - (-5 *2 (-1065)) (-5 *1 (-775))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1274 *3)) (-4 *3 (-1080))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2035 *3) (|:| |coef1| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-578))) (-5 *1 (-286))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-886))) (-5 *1 (-1207))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-666 *8))) (-5 *3 (-666 *8)) + (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) (-4 *6 (-815)) + (-4 *7 (-871)) (-5 *2 (-112)) (-5 *1 (-1008 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) + (-5 *1 (-710 *3 *4 *5 *6)) (-4 *6 (-709 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-722 *3)) + (-4 *3 (-319))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-543))))) (((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *3) - (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1202 (-1202 *4)))) - (-5 *1 (-1245 *4)) (-5 *3 (-1202 (-1202 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) - (-4 *2 (-1288 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-4 *4 (-1273 *3)) - (-4 *5 (-745 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1288 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-380) (-632 (-577)))) (-5 *1 (-555 *3 *2)) - (-4 *2 (-1288 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-13 (-569) (-148))) - (-5 *1 (-1183 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-1298 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-4 *5 (-443 *4)) - (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1273 *5))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-577)) (-5 *5 (-1188)) (-5 *6 (-710 (-228))) - (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-770))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-897))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1065)) (-5 *1 (-769))))) + (-12 (-5 *3 (-666 (-631 *5))) (-4 *4 (-1131)) (-5 *2 (-631 *5)) + (-5 *1 (-587 *4 *5)) (-4 *5 (-444 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) - (-5 *2 (-665 (-665 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) - (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465))))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) + (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-666 (-793))))) + ((*1 *2 *1) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) + (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-666 (-793)))))) +(((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-886))) (-5 *2 (-1303)) (-5 *1 (-1169))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) + (-5 *2 (-865 *4)) (-5 *1 (-325 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1233) (-444 *3))) (-14 *5 (-1207)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1069 (-578)) (-660 (-578)) (-466))) + (-5 *2 (-865 *4)) (-5 *1 (-1284 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1233) (-444 *3))) (-14 *5 (-1207)) + (-14 *6 *4)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1273 (-420 *2))) - (-4 *2 (-1273 *5)) (-5 *1 (-218 *5 *2 *6 *3)) - (-4 *3 (-354 *5 *2 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-391)) (-5 *1 (-1070))))) + (-12 (-5 *2 (-666 (-2 (|:| |val| (-666 *6)) (|:| -4318 *7)))) + (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-666 (-2 (|:| |val| (-666 *6)) (|:| -4318 *7)))) + (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1138 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-172 (-229))) (-5 *5 (-578)) (-5 *6 (-1189)) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) - (-5 *2 (-665 (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5))))) - (-5 *1 (-1008 *5)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5))))) + (-12 (-4 *6 (-570)) (-4 *2 (-978 *3 *5 *4)) + (-5 *1 (-754 *5 *4 *6 *2)) (-5 *3 (-421 (-981 *6))) (-4 *5 (-815)) + (-4 *4 (-13 (-871) (-10 -8 (-15 -3343 ((-1207) $)))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) + (-14 *4 (-666 (-1207)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-711 (-578))) (-5 *5 (-112)) (-5 *7 (-711 (-229))) + (-5 *3 (-578)) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-776))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-575)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1203 (-421 (-578)))) (-5 *1 (-971)) (-5 *3 (-578))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) + (-5 *2 (-711 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-578)) (-5 *3 (-793)) (-5 *1 (-575))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) - (-4 *5 (-13 (-443 *4) (-1032) (-1232))) - (-4 *3 (-13 (-443 (-171 *4)) (-1032) (-1232)))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 (-392)) (-5 *1 (-195))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-374 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *1 (-399 *4)) (-4 *4 (-1131)) (-5 *2 (-793)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-578)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5)) + (-4 *4 (-1131)) (-14 *5 *2)))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-578) "failed") *5)) (-4 *5 (-1080)) + (-5 *2 (-578)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1274 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-578) "failed") *4)) (-4 *4 (-1080)) + (-5 *2 (-578)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-578) "failed") *4)) (-4 *4 (-1080)) + (-5 *2 (-578)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300)))) + ((*1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-1300))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1170 *4 *5)) (-4 *4 (-13 (-1130) (-34))) - (-4 *5 (-13 (-1130) (-34))) (-5 *2 (-112)) (-5 *1 (-1171 *4 *5))))) -(((*1 *1) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1116))))) (((*1 *2 *3) - (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) - (-5 *2 (-980 *5)) (-5 *1 (-972 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1079)) - (-4 *4 (-1247)))) - ((*1 *1 *2) - (-12 (-14 *3 (-665 (-1206))) (-4 *4 (-174)) - (-4 *5 (-244 (-3224 *3) (-792))) - (-14 *6 - (-1 (-112) (-2 (|:| -2085 *2) (|:| -2182 *5)) - (-2 (|:| -2085 *2) (|:| -2182 *5)))) - (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-870)) - (-4 *7 (-977 *4 *5 (-887 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-971 (-228))) (-5 *1 (-1243))))) -(((*1 *2 *1) (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-815)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) + (-5 *2 (-112)) (-5 *1 (-463 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301)))) + ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1301))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1203 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-666 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1188 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-711 (-172 (-421 (-578))))) (-5 *2 (-666 (-172 *4))) + (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1248))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-950)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1203 *1)) + (-4 *1 (-341 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1203 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) + (-4 *2 (-1274 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *4)) (-4 *4 (-362)) (-5 *2 (-1203 *4)) + (-5 *1 (-542 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-4 *4 (-1023 *3)) (-5 *1 (-144 *3 *4 *2)) + (-4 *2 (-386 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) (-4 *2 (-386 *4)) + (-5 *1 (-517 *4 *5 *2 *3)) (-4 *3 (-386 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-570)) + (-5 *2 (-711 *4)) (-5 *1 (-715 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-4 *4 (-1023 *3)) (-5 *1 (-1267 *3 *4 *2)) + (-4 *2 (-1274 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1207)) (-5 *1 (-697 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-570)) (-4 *4 (-1131)) + (-5 *1 (-587 *4 *2)) (-4 *2 (-444 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-570)) + (-4 *3 (-978 *7 *5 *6)) (-5 *2 - (-665 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-577))))) - (-5 *1 (-431 *3)) (-4 *3 (-569)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-792)) (-4 *3 (-361)) (-4 *5 (-1273 *3)) - (-5 *2 (-665 (-1202 *3))) (-5 *1 (-511 *3 *5 *6)) - (-4 *6 (-1273 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232)))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-665 (-112))) (-5 *7 (-710 (-228))) - (-5 *8 (-710 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) - (-5 *2 (-1065)) (-5 *1 (-775))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4499)) (-4 *1 (-241 *3)) - (-4 *3 (-1130)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4499)) (-4 *1 (-241 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-293 *2)) (-4 *2 (-1247)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1247)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-628 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1130)) - (-5 *1 (-758 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-577)) (-5 *1 (-758 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1170 *3 *4)) (-4 *3 (-13 (-1130) (-34))) - (-4 *4 (-13 (-1130) (-34))) (-5 *1 (-1171 *3 *4))))) + (-2 (|:| -2764 (-793)) (|:| -2672 *3) (|:| |radicand| (-666 *3)))) + (-5 *1 (-982 *5 *6 *7 *3 *8)) (-5 *4 (-793)) + (-4 *8 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *3)) (-15 -2519 (*3 $)) (-15 -2530 (*3 $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-1286 *2)) (-4 *2 (-1248))))) +(((*1 *1 *2) + (-12 (-5 *2 (-711 *5)) (-4 *5 (-1080)) (-5 *1 (-1085 *3 *4 *5)) + (-14 *3 (-793)) (-14 *4 (-793))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-972 *4)) (-4 *4 (-1080)) (-5 *1 (-1195 *3 *4)) + (-14 *3 (-950))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-319)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-461 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) + (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-461 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-666 *7)) (-5 *3 (-1189)) (-4 *7 (-978 *4 *5 *6)) + (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) (((*1 *2) - (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2225 (-665 *1)))) - (-4 *1 (-379 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-466 *3 *4 *5 *6)) - (|:| -2225 (-665 (-466 *3 *4 *5 *6))))) - (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1202 *7)) (-4 *7 (-977 *6 *4 *5)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1079)) (-5 *2 (-1202 *6)) - (-5 *1 (-332 *4 *5 *6 *7))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) + (-12 (-5 *2 (-421 (-981 *3))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-2 (|:| -1348 (-1187 *4)) (|:| -1360 (-1187 *4)))) - (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4))))) + (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-432 *3)) + (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-978 *6 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-1297 (-710 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1297 (-710 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) - (-5 *2 (-1297 (-710 (-420 (-980 *5))))) (-5 *1 (-1116 *5)) - (-5 *4 (-710 (-420 (-980 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-1206))) (-4 *5 (-375)) - (-5 *2 (-1297 (-710 (-980 *5)))) (-5 *1 (-1116 *5)) - (-5 *4 (-710 (-980 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-710 *4))) (-4 *4 (-375)) - (-5 *2 (-1297 (-710 *4))) (-5 *1 (-1116 *4))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-792)) (-5 *3 (-971 *4)) (-4 *1 (-1164 *4)) - (-4 *4 (-1079)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-792)) (-5 *4 (-971 (-228))) (-5 *2 (-1302)) - (-5 *1 (-1299))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-52)) (-5 *1 (-852))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) - (-5 *1 (-776))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-577)) (-5 *1 (-1187 *3)) (-4 *3 (-1247)))) + (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) + (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-643 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *2 (-1140 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-1080)) (-4 *4 (-175)))) ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) + (-12 (-4 *1 (-1315 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)) + (-4 *3 (-175))))) +(((*1 *2) + (-12 (-4 *3 (-1252)) (-4 *4 (-1274 *3)) (-4 *5 (-1274 (-421 *4))) + (-5 *2 (-1298 *1)) (-4 *1 (-355 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-421 (-981 *6)) (-1196 (-1207) (-981 *6)))) + (-5 *5 (-793)) (-4 *6 (-466)) (-5 *2 (-666 (-711 (-421 (-981 *6))))) + (-5 *1 (-304 *6)) (-5 *4 (-711 (-421 (-981 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-421 (-981 *5)) (-1196 (-1207) (-981 *5)))) + (|:| |eigmult| (-793)) (|:| |eigvec| (-666 *4)))) + (-4 *5 (-466)) (-5 *2 (-666 (-711 (-421 (-981 *5))))) + (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-981 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-884))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -1827 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-375)) (-4 *7 (-1273 *6)) + (-12 (-5 *3 (-956)) (-5 *2 - (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) - (-2 (|:| -1827 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) - (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1079)) (-4 *3 (-870)) - (-4 *5 (-276 *3)) (-4 *6 (-814)) (-5 *2 (-792)))) - ((*1 *2 *1) - (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-870)) - (-4 *5 (-276 *4)) (-4 *6 (-814)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-870)) (-5 *2 (-792))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-530))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-885))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-674 *4)) (-4 *4 (-354 *5 *6 *7)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)) (-1068 (-420 (-577))))) - (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-420 *6))) + (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) + (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) + (-5 *1 (-155)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-956)) (-5 *4 (-421 (-578))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-827 *5 *6 *7 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-665 (-112))) (-5 *5 (-710 (-228))) - (-5 *6 (-710 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1065)) - (-5 *1 (-775))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-695 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-792)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-870)) - (-4 *3 (-1130))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) -(((*1 *1 *1) (-5 *1 (-885))) + (-2 (|:| |brans| (-666 (-666 (-972 (-229))))) + (|:| |xValues| (-1125 (-229))) (|:| |yValues| (-1125 (-229))))) + (-5 *1 (-155))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1131)) (-5 *2 (-666 *1)) + (-4 *1 (-444 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1188)))) - ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1188)))) - ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1206))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-896 (-949) (-949)))) (-5 *1 (-1001))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-1140)) (-5 *3 (-577))))) + (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) + (-4 *3 (-1131)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-666 *1)) (-4 *1 (-978 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) + (-4 *7 (-978 *6 *4 *5)) (-5 *2 (-666 *3)) + (-5 *1 (-979 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) + (-15 -2530 (*7 $)))))))) +(((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *1) + (-12 (-4 *1 (-1134 *2 *3 *4 *5 *6)) (-4 *3 (-1131)) (-4 *4 (-1131)) + (-4 *5 (-1131)) (-4 *6 (-1131)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189)))) + ((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))) (((*1 *2 *1) - (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1130)) - (-4 *2 (-870))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1140))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-109))) (-5 *1 (-177))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-870)) - (-4 *5 (-814)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-977 *3 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *2) (-12 (-5 *1 (-989 *2)) (-4 *2 (-558))))) + (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) + (-4 *3 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-950)) (-5 *1 (-808))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-109))) (-5 *1 (-178))))) +(((*1 *2) + (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-578) (-229) (-520) (-1189) (-1212))) + (-5 *1 (-1212))))) +(((*1 *2) + (-12 (-4 *3 (-570)) (-5 *2 (-666 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-431 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1248)) (-4 *2 (-871)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-666 (-917 *3))) (-5 *1 (-917 *3)) + (-4 *3 (-1131))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1124 *3)) (-4 *3 (-977 *7 *6 *4)) (-4 *6 (-814)) - (-4 *4 (-870)) (-4 *7 (-569)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) - (-5 *1 (-607 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-814)) (-4 *4 (-870)) (-4 *6 (-569)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) - (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-977 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-885))) ((*1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1) (-5 *1 (-885))) + (-12 (-5 *5 (-1125 *3)) (-4 *3 (-978 *7 *6 *4)) (-4 *6 (-815)) + (-4 *4 (-871)) (-4 *7 (-570)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-578)))) + (-5 *1 (-608 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-570)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-578)))) + (-5 *1 (-608 *5 *4 *6 *3)) (-4 *3 (-978 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1 *1) (-5 *1 (-886))) + ((*1 *1 *1) (-5 *1 (-886))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232))))) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-444 *4) (-162) (-27) (-1233))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1122 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1232))) - (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1198 *4 *2)))) + (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-444 *4) (-162) (-27) (-1233))) + (-4 *4 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1199 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) - (-5 *2 (-420 (-980 *5))) (-5 *1 (-1199 *5)) (-5 *3 (-980 *5)))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)))) + (-5 *2 (-421 (-981 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-981 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)))) - (-5 *2 (-3 (-420 (-980 *5)) (-327 *5))) (-5 *1 (-1199 *5)) - (-5 *3 (-420 (-980 *5))))) + (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-570) (-1069 (-578)))) + (-5 *2 (-3 (-421 (-981 *5)) (-328 *5))) (-5 *1 (-1200 *5)) + (-5 *3 (-421 (-981 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1122 (-980 *5))) (-5 *3 (-980 *5)) - (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 *3)) - (-5 *1 (-1199 *5)))) + (-12 (-5 *4 (-1123 (-981 *5))) (-5 *3 (-981 *5)) + (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-421 *3)) + (-5 *1 (-1200 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1122 (-420 (-980 *5)))) (-5 *3 (-420 (-980 *5))) - (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-3 *3 (-327 *5))) - (-5 *1 (-1199 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-659 *5)) - (-4 *5 (-1079)) - (-5 *2 (-2 (|:| -1670 (-710 *5)) (|:| |vec| (-1297 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 *1)) (-4 *1 (-659 *4)) (-4 *4 (-1079)) - (-5 *2 (-710 *4))))) + (-12 (-5 *4 (-1123 (-421 (-981 *5)))) (-5 *3 (-421 (-981 *5))) + (-4 *5 (-13 (-570) (-1069 (-578)))) (-5 *2 (-3 *3 (-328 *5))) + (-5 *1 (-1200 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1131)) (-4 *2 (-927 *4)) (-5 *1 (-714 *4 *2 *5 *3)) + (-4 *5 (-386 *2)) (-4 *3 (-13 (-386 *4) (-10 -7 (-6 -4500))))))) +(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-897 (-1212) (-793)))) (-5 *1 (-345))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1131)) (-5 *2 (-914 *3 *5)) (-5 *1 (-910 *3 *4 *5)) + (-4 *3 (-1131)) (-4 *5 (-688 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-59 *3)) (-4 *3 (-1248)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-59 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-112)) (-5 *1 (-311))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1130)) (-5 *2 (-913 *3 *5)) (-5 *1 (-909 *3 *4 *5)) - (-4 *3 (-1130)) (-4 *5 (-687 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-710 (-228))) (-5 *4 (-228)) - (-5 *2 (-1065)) (-5 *1 (-774))))) -(((*1 *2 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) - (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34)))))) + (-666 (-2 (|:| -3855 (-421 (-578))) (|:| -3868 (-421 (-578)))))) + (-5 *2 (-666 (-229))) (-5 *1 (-317))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-494 *4 *5))) (-14 *4 (-665 (-1206))) - (-4 *5 (-465)) - (-5 *2 - (-2 (|:| |gblist| (-665 (-254 *4 *5))) - (|:| |gvlist| (-665 (-577))))) - (-5 *1 (-649 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-1130)) (-4 *4 (-1247)) (-5 *2 (-112)) - (-5 *1 (-1187 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) - (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) + (-12 (-4 *1 (-922)) + (-5 *3 + (-2 (|:| |pde| (-666 (-328 (-229)))) + (|:| |constraints| + (-666 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) + (|:| |grid| (-793)) (|:| |boundaryType| (-578)) + (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) + (|:| |f| (-666 (-666 (-328 (-229))))) (|:| |st| (-1189)) + (|:| |tol| (-229)))) + (-5 *2 (-1066))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-376)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) - (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) - (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-665 (-665 *7))) - (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-665 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-814)) - (-4 *7 (-870)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-665 (-665 *8))) - (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-665 *8))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) + (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) + (-4 *3 (-876 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846))))) +(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-291))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-666 *7))) (-4 *1 (-1241 *4 *5 *6 *7)) + (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-971 *3) (-971 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-375) (-1232) (-1032))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 (-420 *2))) - (-4 *2 (-1273 *4)) (-5 *1 (-353 *3 *4 *2 *5)) - (-4 *3 (-354 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1251)) - (-4 *4 (-1273 (-420 *2))) (-4 *2 (-1273 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-949))) (-5 *1 (-1322))))) -(((*1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1225))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-897)) - (-5 *5 (-949)) (-5 *6 (-665 (-271))) (-5 *2 (-481)) (-5 *1 (-1301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *2 (-481)) - (-5 *1 (-1301)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-665 (-971 (-228))))) (-5 *4 (-665 (-271))) - (-5 *2 (-481)) (-5 *1 (-1301))))) + (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *2 (-1298 (-328 (-392)))) + (-5 *1 (-317))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) + (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298)))) + (-12 (-5 *3 (-950)) (-5 *4 (-392)) (-5 *2 (-1303)) (-5 *1 (-1299)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265))))) -(((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) + (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2117 *1) (|:| -4486 *1) (|:| |associate| *1))) - (-4 *1 (-569))))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-666 *6)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-934 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) + (-15 -2530 ((-1156 *3 (-631 $)) $)) + (-15 -2411 ($ (-1156 *3 (-631 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) + (-15 -2530 ((-1156 *3 (-631 $)) $)) + (-15 -2411 ($ (-1156 *3 (-631 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-666 *2)) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *4 (-631 $)) $)) + (-15 -2530 ((-1156 *4 (-631 $)) $)) + (-15 -2411 ($ (-1156 *4 (-631 $))))))) + (-4 *4 (-570)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-666 (-631 *2))) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *4 (-631 $)) $)) + (-15 -2530 ((-1156 *4 (-631 $)) $)) + (-15 -2411 ($ (-1156 *4 (-631 $))))))) + (-4 *4 (-570)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) - (-4 *1 (-745 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1273 *5)) - (-5 *2 (-710 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1298)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-271))) (-5 *1 (-1299))))) + (-12 (-5 *3 (-306 (-421 (-981 *5)))) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-1196 (-666 (-328 *5)) (-666 (-306 (-328 *5))))) + (-5 *1 (-1160 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-981 *5))) (-5 *4 (-1207)) + (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-1196 (-666 (-328 *5)) (-666 (-306 (-328 *5))))) + (-5 *1 (-1160 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-666 *6) "failed") (-578) *6 *6)) (-4 *6 (-376)) + (-4 *7 (-1274 *6)) + (-5 *2 (-2 (|:| |answer| (-600 (-421 *7))) (|:| |a0| *6))) + (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1251)) (-4 *3 (-1273 *4)) - (-4 *5 (-1273 (-420 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-1227))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1076 *4 *5)) (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-14 *5 (-665 (-1206))) (-5 *2 (-665 (-665 (-1054 (-420 *4))))) - (-5 *1 (-1324 *4 *5 *6)) (-14 *6 (-665 (-1206))))) + (-12 (-5 *3 (-666 (-972 *4))) (-4 *1 (-1165 *4)) (-4 *4 (-1080)) + (-5 *2 (-793))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-112)) + (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1066)) (-5 *1 (-778))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1299)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1299)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1300)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-272))) (-5 *1 (-1300))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 (-981 (-578)))) (-5 *4 (-666 (-1207))) + (-5 *2 (-666 (-666 (-392)))) (-5 *1 (-1054)) (-5 *5 (-392)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-14 *5 (-666 (-1207))) (-5 *2 (-666 (-666 (-1055 (-421 *4))))) + (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-666 (-1207))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-980 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-665 (-1054 (-420 *5))))) (-5 *1 (-1324 *5 *6 *7)) - (-14 *6 (-665 (-1206))) (-14 *7 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-980 *4))) - (-4 *4 (-13 (-869) (-318) (-148) (-1052))) - (-5 *2 (-665 (-665 (-1054 (-420 *4))))) (-5 *1 (-1324 *4 *5 *6)) - (-14 *5 (-665 (-1206))) (-14 *6 (-665 (-1206)))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-993))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-949)) (-5 *1 (-1062 *2)) - (-4 *2 (-13 (-1130) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1297 (-792))) (-5 *1 (-696 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-313))))) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-981 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-666 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) + (-14 *6 (-666 (-1207))) (-14 *7 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-981 *4))) + (-4 *4 (-13 (-870) (-319) (-149) (-1053))) + (-5 *2 (-666 (-666 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) + (-14 *5 (-666 (-1207))) (-14 *6 (-666 (-1207)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-421 (-578))) (-5 *1 (-1055 *3)) + (-4 *3 (-13 (-870) (-376) (-1053))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) + (-4 *3 (-1274 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) + (-4 *3 (-1274 *2))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1131))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-793)) (-4 *5 (-570)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-1000 *5 *3)) (-4 *3 (-1274 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-994))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-796))) (-5 *1 (-116))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-392)) (-5 *1 (-97))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-466)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1203 *6)) (-4 *6 (-978 *5 *3 *4)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *5 (-938)) (-5 *1 (-471 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-938))))) +(((*1 *2 *1) (-12 (-5 *2 (-987 (-793))) (-5 *1 (-345))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| -3084 (-431 *3)) (|:| |special| (-431 *3)))) - (-5 *1 (-748 *5 *3))))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-949)) (-5 *1 (-1131 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-665 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1095 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-814)) (-4 *7 (-870)) (-5 *1 (-1007 *5 *6 *7 *8))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-942 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-431 (-980 *6))) (-5 *5 (-1206)) (-5 *3 (-980 *6)) - (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-943 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1130))))) + (-12 (-5 *4 (-112)) (-4 *5 (-362)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -2636 (-666 (-2 (|:| |irr| *3) (|:| -3935 (-578))))))) + (-5 *1 (-220 *5 *3)) (-4 *3 (-1274 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-1094)) (-5 *3 (-1189))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-120 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-665 *5))) (-4 *5 (-1288 *4)) - (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-1 (-1187 *4) (-665 (-1187 *4)))) (-5 *1 (-1290 *4 *5))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *1) - (-12 (-4 *1 (-716 *3)) (-4 *3 (-1130)) - (-5 *2 (-665 (-2 (|:| -2753 *3) (|:| -4323 (-792)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1251)) - (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1273 (-420 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) - (-4 *1 (-379 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-174)) - (-4 *1 (-382 *4 *5)) (-4 *5 (-1273 *4)))) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-578)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-793)) (-4 *5 (-175)))) + ((*1 *1 *1) + (-12 (-5 *1 (-138 *2 *3 *4)) (-14 *2 (-578)) (-14 *3 (-793)) + (-4 *4 (-175)))) + ((*1 *1 *1) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1273 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-1188)) (-5 *1 (-807))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1288 *4)) (-5 *1 (-1290 *4 *2)) - (-4 *4 (-38 (-420 (-577))))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569))))) -(((*1 *2) - (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *2) - (-12 (-5 *2 (-949)) (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1154 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-814)) (-4 *5 (-870)) (-4 *3 (-569))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-703 *3)) (-4 *3 (-1130))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-62 *3)) (-14 *3 (-1206)))) - ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-69 *3)) (-14 *3 (-1206)))) - ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-72 *3)) (-14 *3 (-1206)))) - ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1302)))) - ((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-410)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) - ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168))))) -(((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-285))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1174)))) + (-12 (-4 *3 (-1080)) (-4 *1 (-709 *3 *2 *4)) (-4 *2 (-386 *3)) + (-4 *4 (-386 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1080))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-665 (-2 (|:| -2799 (-1202 *6)) (|:| -2182 (-577))))) - (-4 *6 (-318)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-763 *4 *5 *6 *7)) (-4 *7 (-977 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *3 (-665 (-271))) - (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-481))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-792)) (-5 *3 (-971 *5)) (-4 *5 (-1079)) - (-5 *1 (-1194 *4 *5)) (-14 *4 (-949)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-792))) (-5 *3 (-792)) (-5 *1 (-1194 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1079)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-792))) (-5 *3 (-971 *5)) (-4 *5 (-1079)) - (-5 *1 (-1194 *4 *5)) (-14 *4 (-949))))) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-112)) + (-5 *1 (-1008 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-318)) - (-5 *2 (-665 (-792))) (-5 *1 (-799 *3 *4 *5 *6 *7)) - (-4 *3 (-1273 *6)) (-4 *7 (-977 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-129))))) + (-12 (-5 *3 (-981 *4)) (-4 *4 (-13 (-319) (-149))) + (-4 *2 (-978 *4 *6 *5)) (-5 *1 (-953 *4 *5 *6 *2)) + (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-793)) (-4 *4 (-362)) (-5 *1 (-220 *4 *2)) + (-4 *2 (-1274 *4))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-444 *3) (-1033))) (-5 *1 (-287 *3 *2)) + (-4 *3 (-570))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1207)) + (-4 *5 (-13 (-570) (-1069 (-578)) (-149))) + (-5 *2 + (-2 (|:| -3579 (-421 (-981 *5))) (|:| |coeff| (-421 (-981 *5))))) + (-5 *1 (-584 *5)) (-5 *3 (-421 (-981 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-972 (-229)) (-229) (-229))) + (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-264))))) +(((*1 *1) (-5 *1 (-611)))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)))) (-4 *3 (-570)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-444 *3)) + (-4 *2 + (-13 (-376) (-314) + (-10 -8 (-15 -2519 ((-1156 *3 (-631 $)) $)) + (-15 -2530 ((-1156 *3 (-631 $)) $)) + (-15 -2411 ($ (-1156 *3 (-631 $)))))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) + (-12 (-5 *3 (-666 (-950))) (-5 *4 (-666 (-578))) + (-5 *2 (-711 (-578))) (-5 *1 (-1141))))) (((*1 *2 *3) - (-12 (-4 *4 (-465)) - (-5 *2 - (-665 - (-2 (|:| |eigval| (-3 (-420 (-980 *4)) (-1195 (-1206) (-980 *4)))) - (|:| |eigmult| (-792)) - (|:| |eigvec| (-665 (-710 (-420 (-980 *4)))))))) - (-5 *1 (-303 *4)) (-5 *3 (-710 (-420 (-980 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-702)))) - ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1000)))) - ((*1 *2 *1) (-12 (-5 *2 (-1246)) (-5 *1 (-1103)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211)) (-5 *1 (-1148))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-404))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) + (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1274 *5)) + (-4 *7 (-1274 (-421 *6))) (-5 *2 (-666 (-981 *5))) + (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) + (-4 *5 (-1274 *4)) (-4 *6 (-1274 (-421 *5))) (-4 *4 (-376)) + (-5 *2 (-666 (-981 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-666 *8))) (-5 *3 (-666 *8)) + (-4 *8 (-978 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) + (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-112)) + (-5 *1 (-953 *5 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-981 *6)) (-5 *4 (-1207)) + (-5 *5 (-865 *7)) + (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1203 *6)) (-5 *4 (-865 *6)) + (-4 *6 (-13 (-1233) (-29 *5))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-228 *5 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-792)) (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) + (|partial| -12 (-5 *2 (-666 (-495 *4 *5))) (-5 *3 (-666 (-888 *4))) + (-14 *4 (-666 (-1207))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6)) + (-4 *6 (-466))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-62 *3)) (-14 *3 (-1207)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207)))) + ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-1303)))) + ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-411)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-1169)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-886))) (-5 *2 (-1303)) (-5 *1 (-1169))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-578)) (-5 *1 (-328 *3)) (-4 *3 (-570)) (-4 *3 (-1131))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1080)) (-5 *1 (-1270 *3 *2)) (-4 *2 (-1274 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1141)) (-5 *3 (-578))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-520)) (-5 *3 (-1135)) (-5 *1 (-303))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-175)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1319 *3 *4)) (-4 *3 (-871)) + (-4 *4 (-1080))))) +(((*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1) (-4 *1 (-1170)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-443 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1206)))) - ((*1 *1 *1) (-4 *1 (-161)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) - ((*1 *1 *1 *1) (-4 *1 (-558))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) - ((*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-792))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) - (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-792)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-1079))))) + (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) + (-4 *3 (-670 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-175)) (-4 *2 (-1080))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-4 *7 (-977 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-665 *7)) (|:| |n0| (-665 *7)))) - (-5 *1 (-952 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) + (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2035 *4))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-666 (-666 *7))) + (-5 *1 (-462 *4 *5 *6 *7)) (-5 *3 (-666 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) + (-4 *7 (-871)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-666 (-666 *8))) + (-5 *1 (-462 *5 *6 *7 *8)) (-5 *3 (-666 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-703)))) + ((*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-1001)))) + ((*1 *2 *1) (-12 (-5 *2 (-1247)) (-5 *1 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1149))))) +(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1189)) (-5 *2 (-666 (-713 (-292)))) (-5 *1 (-170))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1166))) (-5 *1 (-693)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-950)) + (-14 *4 (-950))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1131)) (-5 *2 (-914 *3 *4)) (-5 *1 (-910 *3 *4 *5)) + (-4 *3 (-1131)) (-4 *5 (-688 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-995 *4)) (-4 *4 (-1131)) (-5 *2 (-1133 *4)) + (-5 *1 (-996 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-392)) (-5 *1 (-208)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-666 (-392))) (-5 *2 (-392)) (-5 *1 (-208))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-392)))) + ((*1 *1 *1 *1) (-4 *1 (-559))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + ((*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-793))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *1 *1) (-5 *1 (-229))) + ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230)))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-445 *3 *2)) (-4 *2 (-444 *3)))) + ((*1 *1 *1) (-4 *1 (-1170))) ((*1 *1 *1 *1) (-4 *1 (-1170)))) +(((*1 *2 *3) + (-12 (-4 *4 (-362)) (-4 *5 (-341 *4)) (-4 *6 (-1274 *5)) + (-5 *2 (-666 *3)) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1274 *6)) + (-14 *7 (-950))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) + (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-949)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) - ((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) + (-12 (-5 *2 (-950)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1274 *2)) (-4 *2 (-175)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1297 *4)) (-5 *3 (-949)) (-4 *4 (-361)) - (-5 *1 (-541 *4)))) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-950)) (-4 *4 (-362)) + (-5 *1 (-542 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1079))))) -(((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1302)) (-5 *1 (-404)))) - ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-404))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-665 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-569)) - (-4 *3 (-1079))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) + (-4 *5 (-245 *3 *2)) (-4 *2 (-1080))))) +(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) + (-5 *5 (-1125 (-229))) (-5 *6 (-578)) (-5 *2 (-1243 (-955))) + (-5 *1 (-330)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) + (-5 *5 (-1125 (-229))) (-5 *6 (-578)) (-5 *7 (-1189)) + (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) + (-5 *5 (-1125 (-229))) (-5 *6 (-229)) (-5 *7 (-578)) + (-5 *2 (-1243 (-955))) (-5 *1 (-330)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) + (-5 *5 (-1125 (-229))) (-5 *6 (-229)) (-5 *7 (-578)) (-5 *8 (-1189)) + (-5 *2 (-1243 (-955))) (-5 *1 (-330))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-570) (-1069 (-578)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1233) (-444 (-172 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-570) (-1069 (-578)))) + (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 (-172 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-444 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) + (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-666 *3)) + (-5 *1 (-605 *5 *6 *7 *8 *3)) (-4 *3 (-1140 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) + (-5 *1 (-1109 *5 *6)) (-5 *3 (-666 (-981 *5))) + (-14 *6 (-666 (-1207))))) ((*1 *2 *3) - (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) + (-12 (-4 *4 (-13 (-319) (-149))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *4)) (|:| -1453 (-666 (-981 *4)))))) + (-5 *1 (-1109 *4 *5)) (-5 *3 (-666 (-981 *4))) + (-14 *5 (-666 (-1207))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 + (-666 (-2 (|:| -3914 (-1203 *5)) (|:| -1453 (-666 (-981 *5)))))) + (-5 *1 (-1109 *5 *6)) (-5 *3 (-666 (-981 *5))) + (-14 *6 (-666 (-1207)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) + (-5 *2 (-578)) (-5 *1 (-1145 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-792)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) - (-14 *4 *2) (-4 *5 (-174)))) + (-12 (-5 *2 (-793)) (-5 *1 (-138 *3 *4 *5)) (-14 *3 (-578)) + (-14 *4 *2) (-4 *5 (-175)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-949)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-949)))) + (-12 (-4 *4 (-175)) (-5 *2 (-950)) (-5 *1 (-167 *3 *4)) + (-4 *3 (-168 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-950)))) ((*1 *2) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1273 *3)) - (-5 *2 (-949)))) + (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) + (-5 *2 (-950)))) ((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-792)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *4 (-376)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) + (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-709 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-375)) - (-5 *2 (-792)) (-5 *1 (-688 *5)))) + (-12 (-5 *3 (-711 *5)) (-5 *4 (-1298 *5)) (-4 *5 (-376)) + (-5 *2 (-793)) (-5 *1 (-689 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4500)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4500)))) (-5 *2 (-792)) - (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-386 *5) (-10 -7 (-6 -4501)))) + (-4 *4 (-13 (-386 *5) (-10 -7 (-6 -4501)))) (-5 *2 (-793)) + (-5 *1 (-690 *5 *6 *4 *3)) (-4 *3 (-709 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-792)))) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-4 *3 (-570)) (-5 *2 (-793)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-792)) (-5 *1 (-709 *4 *5 *6 *3)) - (-4 *3 (-708 *4 *5 *6)))) + (-12 (-4 *4 (-570)) (-4 *4 (-175)) (-4 *5 (-386 *4)) + (-4 *6 (-386 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) + (-4 *3 (-709 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) - (-5 *2 (-792))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-375)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-587 *5 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) - (-5 *2 (-665 (-2 (|:| -1624 *1) (|:| -2258 (-665 *7))))) - (-5 *3 (-665 *7)) (-4 *1 (-1240 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-710 (-420 (-577)))) - (-5 *2 - (-665 - (-2 (|:| |outval| *4) (|:| |outmult| (-577)) - (|:| |outvect| (-665 (-710 *4)))))) - (-5 *1 (-800 *4)) (-4 *4 (-13 (-375) (-869)))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-949)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-897)) - (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1210))))) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-570)) + (-5 *2 (-793))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-229)) + (-5 *2 (-1066)) (-5 *1 (-771))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1188 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1080)) + (-5 *3 (-421 (-578))) (-5 *1 (-1191 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1030 *3)) (-4 *3 (-175)) (-5 *1 (-821 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-792)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1079)) - (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) + (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-578) (-578))) (-4 *4 (-1080)) + (-4 *1 (-709 *4 *5 *6)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-665 (-885)))) (-5 *1 (-885)))) + (-12 (-5 *2 (-666 (-666 *3))) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-666 (-666 (-886)))) (-5 *1 (-886)))) ((*1 *2 *1) - (-12 (-5 *2 (-1172 *3 *4)) (-5 *1 (-1023 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-375)))) + (-12 (-5 *2 (-1173 *3 *4)) (-5 *1 (-1024 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-376)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 (-665 *5))) (-4 *5 (-1079)) - (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) - (-4 *7 (-244 *3 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-1202 *3)) (-5 *1 (-1221 *3)) - (-4 *3 (-375))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) - ((*1 *1 *1 *1) (-5 *1 (-1252))) ((*1 *1 *1 *1) (-5 *1 (-1253))) - ((*1 *1 *1 *1) (-5 *1 (-1254))) ((*1 *1 *1 *1) (-5 *1 (-1255)))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1202 (-420 (-577)))) (-5 *1 (-970)) (-5 *3 (-577))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1068 (-577)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1232) (-443 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *3)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-577)))) (-4 *5 (-1273 *4)) - (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1045 *4 *5)) (-5 *3 (-420 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) - (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2154)))) - (-5 *2 (-1065)) (-5 *1 (-767))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-1079)) (-5 *2 (-1297 *4)) - (-5 *1 (-1207 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-949)) (-5 *2 (-1297 *3)) (-5 *1 (-1207 *3)) - (-4 *3 (-1079))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (-12 (-5 *2 (-666 (-666 *5))) (-4 *5 (-1080)) + (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1203 *3)) (-4 *3 (-1080)) (-4 *1 (-1274 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-131))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-950)))) + ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254))) + ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256)))) +(((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-1189)) (-5 *1 (-808))))) +(((*1 *2 *3) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-666 (-1207))) (-4 *5 (-1080)) + (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-769))))) +(((*1 *1 *1 *1) (-4 *1 (-487))) ((*1 *1 *1 *1) (-4 *1 (-783)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2421 (-804 *3)) (|:| |coef2| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-2 (|:| -2421 *1) (|:| |coef2| *1))) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-793)) (-4 *6 (-1131)) (-4 *7 (-927 *6)) + (-5 *2 (-711 *7)) (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-386 *7)) + (-4 *4 (-13 (-386 *6) (-10 -7 (-6 -4500))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-678 *3)) (-4 *3 (-1080)) (-4 *3 (-376)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) + (-5 *1 (-681 *5 *2)) (-4 *2 (-678 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-216 4 (-131))) (-5 *1 (-593))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298))))) + (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299))))) (((*1 *1 *2) - (-12 (-5 *2 (-665 (-2 (|:| -3171 (-1206)) (|:| -2753 (-450))))) - (-5 *1 (-1210))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-885)))) - ((*1 *1 *1) (-5 *1 (-885)))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-949)))) - ((*1 *1 *1 *1) (-5 *1 (-1252))) ((*1 *1 *1 *1) (-5 *1 (-1253))) - ((*1 *1 *1 *1) (-5 *1 (-1254))) ((*1 *1 *1 *1) (-5 *1 (-1255)))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1130) (-34))) (-4 *6 (-13 (-1130) (-34))) - (-5 *2 (-112)) (-5 *1 (-1170 *5 *6))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1206)) - (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-640 *4 *2)) (-4 *2 (-13 (-1232) (-987) (-29 *4)))))) + (-12 (-5 *2 (-666 (-2 (|:| -3173 (-1207)) (|:| -2754 (-451))))) + (-5 *1 (-1211))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-665 (-327 (-228)))) - (|:| |constraints| - (-665 - (-2 (|:| |start| (-228)) (|:| |finish| (-228)) - (|:| |grid| (-792)) (|:| |boundaryType| (-577)) - (|:| |dStart| (-710 (-228))) (|:| |dFinish| (-710 (-228)))))) - (|:| |f| (-665 (-665 (-327 (-228))))) (|:| |st| (-1188)) - (|:| |tol| (-228)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-773))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-375)) (-4 *3 (-1079)) - (-5 *1 (-1190 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1247)) (-5 *1 (-184 *3 *2)) (-4 *2 (-695 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1092)))) - ((*1 *1 *2) (-12 (-5 *2 (-1206)) (-5 *1 (-1092))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-702)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1211))) (-5 *1 (-1148))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) - (-5 *1 (-932 *4))))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1 *1) (-5 *1 (-228))) - ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) + (-12 (-4 *4 (-13 (-376) (-870))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2636 (-432 *3)))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-131))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-950)))) + ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254))) + ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256)))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2421 (-804 *3)) (|:| |coef1| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-570)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-2 (|:| -2421 *1) (|:| |coef1| *1))) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-711 (-939 *3))) (-5 *1 (-364 *3 *4)) (-14 *3 (-950)) + (-14 *4 (-950)))) + ((*1 *2) + (-12 (-5 *2 (-711 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-362)) + (-14 *4 + (-3 (-1203 *3) + (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151))))))))) + ((*1 *2) + (-12 (-5 *2 (-711 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-362)) + (-14 *4 (-950))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-578)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-4 *3 (-1131)) + (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *3 (-1096 *6 *7 *8)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 (-2 (|:| |val| (-666 *8)) (|:| -4318 *9)))) + (-5 *5 (-112)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) + (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) + (-5 *2 (-666 (-2 (|:| |val| *8) (|:| -4318 *9)))) + (-5 *1 (-1139 *6 *7 *4 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-703)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1212))) (-5 *1 (-1149))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) - (-5 *2 (-2 (|:| -4321 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) + (-12 (-5 *4 (-666 *3)) (-4 *3 (-1274 *5)) (-4 *5 (-319)) + (-5 *2 (-793)) (-5 *1 (-469 *5 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1189)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *4 (-1096 *6 *7 *8)) (-5 *2 (-1303)) + (-5 *1 (-798 *6 *7 *8 *4 *5)) (-4 *5 (-1102 *6 *7 *8 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-578))))) +(((*1 *1 *1) (-5 *1 (-229))) + ((*1 *1 *1) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *1 *1) (-5 *1 (-392))) ((*1 *1) (-5 *1 (-392)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-570)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-578)) (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-898)) (-5 *3 (-666 (-272))) (-5 *1 (-270))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1189)) (-5 *4 (-172 (-229))) (-5 *5 (-578)) + (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1202 *4)) (-5 *1 (-369 *4)) - (-4 *4 (-361))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *2 (-1065)) (-5 *1 (-772))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-883)) (-5 *3 (-129)) (-5 *2 (-792))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) - (-4 *5 (-13 (-375) (-148) (-1068 (-577)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) - (|:| -4208 *6))) - (-5 *1 (-1045 *5 *6)) (-5 *3 (-420 *6))))) + (|partial| -12 (-5 *3 (-631 *4)) (-4 *4 (-1131)) (-4 *2 (-1131)) + (-5 *1 (-630 *2 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4499)) (-4 *1 (-502 *4)) - (-4 *4 (-1247)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-885))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) + (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) + (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *1)))) + (-4 *1 (-1102 *4 *5 *6 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2672 *3) (|:| |gap| (-793)) (|:| -2196 (-804 *3)) + (|:| -1886 (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) + (-5 *2 + (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -2196 *1) + (|:| -1886 *1))) + (-4 *1 (-1096 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 + (-2 (|:| -2672 *1) (|:| |gap| (-793)) (|:| -2196 *1) + (|:| -1886 *1))) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2 *1) - (-12 (-4 *2 (-1130)) (-5 *1 (-992 *3 *2)) (-4 *3 (-1130))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-559)))))) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) + (-5 *2 (-666 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-2 (|:| |k| (-918 *3)) (|:| |c| *4)))) + (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) + (-4 *4 (-13 (-175) (-739 (-421 (-578))))) (-14 *5 (-950)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 (-694 *3))) (-5 *1 (-918 *3)) (-4 *3 (-871))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-1233 *3))) (-5 *1 (-1233 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1 (-1187 (-980 *4)) (-1187 (-980 *4)))) - (-5 *1 (-1305 *4)) (-4 *4 (-375))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) - (-5 *2 (-710 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-710 *3))))) + (-12 (-4 *1 (-709 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1131))))) (((*1 *1 *2) - (-12 (-5 *2 (-693 *3)) (-4 *3 (-870)) (-4 *1 (-386 *3 *4)) - (-4 *4 (-174))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-420 (-577))) - (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-630 *3)) (-4 *3 (-443 *5)) - (-4 *5 (-13 (-569) (-1068 (-577)))) (-5 *2 (-1202 (-420 (-577)))) - (-5 *1 (-446 *5 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1079) (-870))) - (-14 *3 (-665 (-1206)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-665 *3)) - (-5 *1 (-1267 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *1) (-5 *1 (-228))) ((*1 *1) (-5 *1 (-391)))) -(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1247))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1206)) (-4 *5 (-632 (-916 (-577)))) - (-4 *5 (-910 (-577))) - (-4 *5 (-13 (-1068 (-577)) (-465) (-659 (-577)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-580 *5 *3)) (-4 *3 (-647)) - (-4 *3 (-13 (-27) (-1232) (-443 *5)))))) + (-12 (-5 *2 (-666 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1274 *3)) (-4 *3 (-1080)) + (-4 *3 (-570)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1274 *2)) (-4 *2 (-1080)) (-4 *2 (-570))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) - ((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-710 (-228))) - (-5 *4 (-228)) (-5 *2 (-1065)) (-5 *1 (-776))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) - (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) - (-4 *6 (-465)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-494 *5 *6))) (-5 *4 (-887 *5)) - (-14 *5 (-665 (-1206))) (-5 *2 (-494 *5 *6)) (-5 *1 (-649 *5 *6)) - (-4 *6 (-465))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1131)) (-4 *6 (-1131)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *5 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-886))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-792)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3646 *3) (|:| -2182 (-792)))) (-5 *1 (-600 *3)) - (-4 *3 (-558))))) + (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-923 *2 *4)) + (-4 *2 (-1274 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-451)) (-5 *1 (-1211))))) +(((*1 *1 *1) (-5 *1 (-1094)))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *3)) (-4 *3 (-1095 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) (-4 *4 (-1079)) - (-5 *2 (-2 (|:| |k| (-840 *3)) (|:| |c| *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *1) (-5 *1 (-591)))) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)) + (-5 *1 (-463 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2035 *3) (|:| |coef1| (-804 *3)) (|:| |coef2| (-804 *3)))) + (-5 *1 (-804 *3)) (-4 *3 (-570)) (-4 *3 (-1080))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-578)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) + (-5 *2 (-1066)) (-5 *1 (-777))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) - (-4 *4 (-708 *2 *5 *6))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1174)) (-5 *2 (-1264 (-577)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| *3) (|:| -4317 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-665 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1130))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-665 *2)) (-4 *2 (-1247)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1187 *2)) (-4 *2 (-1247))))) + (-12 (-5 *3 (-793)) (-5 *2 (-1188 (-1002))) (-5 *1 (-1002))))) +(((*1 *2 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-578)) + (-5 *1 (-463 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) + (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) + (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) - (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) - (-5 *1 (-1106 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1130)) (-4 *4 (-13 (-1079) (-910 *3) (-632 (-916 *3)))) - (-5 *1 (-1106 *3 *4 *2)) - (-4 *2 (-13 (-443 *4) (-910 *3) (-632 (-916 *3))))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-955)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-955)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1125 (-229))) + (-5 *1 (-956))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) + (-3 (-1203 *4) + (-1298 (-666 (-2 (|:| -4120 *4) (|:| -2087 (-1151))))))) + (-5 *1 (-359 *4)) (-4 *4 (-362))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-779))))) +(((*1 *1) (-5 *1 (-1116)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-136))))) +(((*1 *2 *3) + (-12 (-5 *3 (-675 (-421 *2))) (-4 *2 (-1274 *4)) (-5 *1 (-832 *4 *2)) + (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-676 *2 (-421 *2))) (-4 *2 (-1274 *4)) + (-5 *1 (-832 *4 *2)) + (-4 *4 (-13 (-376) (-149) (-1069 (-578)) (-1069 (-421 (-578)))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-681 *4 *2)) + (-4 *2 (-678 *4))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1248)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1188 *2)) (-4 *2 (-1248))))) (((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1202 *4)) (-4 *4 (-361)) - (-4 *2 - (-13 (-415) - (-10 -7 (-15 -2410 (*2 *4)) (-15 -2553 ((-949) *2)) - (-15 -2225 ((-1297 *2) (-949))) (-15 -3077 (*2 *2))))) - (-5 *1 (-368 *2 *4))))) + (-12 (-4 *3 (-1080)) (-5 *2 (-666 *1)) (-4 *1 (-1165 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1240 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-670 *3 *4 *5)) (-4 *3 (-1130)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-665 (-1206))) (-4 *4 (-1130)) - (-4 *5 (-13 (-1079) (-910 *4) (-632 (-916 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-443 *5) (-910 *4) (-632 (-916 *4))))))) -(((*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-712 (-592))) (-5 *1 (-592))))) -(((*1 *2 *3) - (-12 (-5 *3 (-420 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-569)) - (-4 *4 (-1079)) (-4 *2 (-1288 *4)) (-5 *1 (-1291 *4 *5 *6 *2)) - (-4 *6 (-677 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-776))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-420 (-577))) - (-4 *4 (-13 (-569) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1232) (-443 *4)))))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-395 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1131)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1) + (-12 (-4 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-1274 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) + (-4 *4 (-748)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-112))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-666 (-1207))) (-4 *4 (-1131)) + (-4 *5 (-13 (-1080) (-911 *4) (-633 (-917 *4)))) + (-5 *1 (-1107 *4 *5 *2)) + (-4 *2 (-13 (-444 *5) (-911 *4) (-633 (-917 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1131)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-917 *3)))) + (-5 *1 (-1107 *3 *4 *2)) + (-4 *2 (-13 (-444 *4) (-911 *3) (-633 (-917 *3))))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1248)) (-5 *2 (-1303))))) +(((*1 *1) (-5 *1 (-451)))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-773))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-793)) (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-559))))) (((*1 *2 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1) (-5 *1 (-650)))) -(((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-842))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-599 *3)) (-4 *3 (-375))))) + (-12 (-5 *2 (-112)) (-5 *1 (-456 *3)) (-4 *3 (-1274 (-578)))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-317))))) +(((*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-871)) (-4 *5 (-938)) (-4 *6 (-815)) + (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-432 (-1203 *8))) + (-5 *1 (-935 *5 *6 *7 *8)) (-5 *4 (-1203 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-938)) (-4 *5 (-1274 *4)) (-5 *2 (-432 (-1203 *5))) + (-5 *1 (-936 *4 *5)) (-5 *3 (-1203 *5))))) +(((*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559))))) (((*1 *2 *3) - (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1273 *4)) - (-5 *2 (-2 (|:| -2129 (-641 *4 *5)) (|:| -2075 (-420 *5)))) - (-5 *1 (-641 *4 *5)) (-5 *3 (-420 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-1194 *3 *4))) (-5 *1 (-1194 *3 *4)) - (-14 *3 (-949)) (-4 *4 (-1079)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-465)) (-4 *3 (-1079)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1273 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-954))))) + (-12 (-5 *3 (-1166)) (-5 *2 (-713 (-292))) (-5 *1 (-170))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-481))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1080)) (-5 *2 (-1203 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) + (-5 *2 (-427 *4 (-421 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1298 *6)) (-4 *6 (-13 (-423 *4 *5) (-1069 *4))) + (-4 *4 (-1023 *3)) (-4 *5 (-1274 *4)) (-4 *3 (-319)) + (-5 *1 (-427 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-376)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1133 (-1133 *3))) (-5 *1 (-933 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *1) (-12 (-5 *2 @@ -15317,3034 +15124,3227 @@ (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-341))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-885)))) - ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-990))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-665 - (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *2)) - (|:| |logand| (-1202 *2))))) - (-5 *4 (-665 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-375)) (-5 *1 (-599 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1068 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-443 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1202 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1079)) (-4 *1 (-313)))) - ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1202 *3)))) - ((*1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1273 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-13 (-869) (-375))) - (-4 *2 (-1273 *3))))) + (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-886)))) + ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-1303)) (-5 *1 (-991))))) +(((*1 *2 *1) (-12 (-4 *1 (-789 *3)) (-4 *3 (-1131)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1066))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-666 (-1203 *7))) (-5 *3 (-1203 *7)) + (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-938)) (-4 *5 (-815)) + (-4 *6 (-871)) (-5 *1 (-935 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-666 (-1203 *5))) (-5 *3 (-1203 *5)) + (-4 *5 (-1274 *4)) (-4 *4 (-938)) (-5 *1 (-936 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)) (-4 *2 (-569))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-840 *3)) (-4 *3 (-870)) (-5 *1 (-693 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-391)) (-5 *1 (-1093))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-665 *6)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-1007 *3 *4 *5 *6))))) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3) + (-12 (-4 *4 (-466)) (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-5 *2 (-666 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) + (-4 *3 (-1096 *4 *5 *6))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) - (-4 *5 (-870)) (-5 *2 (-980 *4)))) + (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) + (-4 *5 (-871)) (-5 *2 (-981 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-761 *4 *5)) (-4 *4 (-1079)) - (-4 *5 (-870)) (-5 *2 (-980 *4)))) + (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) + (-4 *5 (-871)) (-5 *2 (-981 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) - (-5 *2 (-980 *4)))) + (-12 (-5 *3 (-793)) (-4 *1 (-1289 *4)) (-4 *4 (-1080)) + (-5 *2 (-981 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-1288 *4)) (-4 *4 (-1079)) - (-5 *2 (-980 *4))))) + (-12 (-5 *3 (-793)) (-4 *1 (-1289 *4)) (-4 *4 (-1080)) + (-5 *2 (-981 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-112)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-777))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-666 *2)) (-4 *2 (-1131)) (-4 *2 (-1248))))) (((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-723 *4 *5 *6 *7)) - (-4 *4 (-632 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) - (-4 *7 (-1247))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-52)) (-5 *1 (-850))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-504)) (-5 *4 (-982)) (-5 *2 (-712 (-546))) - (-5 *1 (-546)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-982)) (-4 *3 (-1130)) (-5 *2 (-712 *1)) - (-4 *1 (-788 *3))))) + (-12 (-4 *4 (-1080)) + (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) + (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-240)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) + (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) + (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-871))))) (((*1 *2 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-1202 *4)) (-5 *1 (-541 *4)) - (-4 *4 (-361))))) -(((*1 *2) - (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-420 *5))) - (-5 *2 (-792)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792))))) + (-12 (-5 *3 (-666 (-950))) (-5 *2 (-666 (-711 (-578)))) + (-5 *1 (-1141))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 *3 (-666 *1))) + (-4 *1 (-1102 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-392))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1080)) (-5 *2 (-666 *1)) (-4 *1 (-1165 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *2 (-793)) + (-5 *1 (-1195 *4 *5)) (-14 *4 (-950)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) + (-14 *4 (-950)) (-4 *5 (-1080)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) + (-5 *1 (-1195 *4 *5)) (-14 *4 (-950))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-420 (-577)))) - (-5 *2 (-2 (|:| -1477 (-1187 *4)) (|:| -1489 (-1187 *4)))) - (-5 *1 (-1192 *4)) (-5 *3 (-1187 *4))))) + (-12 (-5 *3 (-1188 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-195)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-312)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1188 (-229))) (-5 *2 (-666 (-1189))) (-5 *1 (-317))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-666 (-711 *6))) (-5 *4 (-112)) (-5 *5 (-578)) + (-5 *2 (-711 *6)) (-5 *1 (-1060 *6)) (-4 *6 (-376)) (-4 *6 (-1080)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-666 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1060 *4)) + (-4 *4 (-376)) (-4 *4 (-1080)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-666 (-711 *5))) (-5 *4 (-578)) (-5 *2 (-711 *5)) + (-5 *1 (-1060 *5)) (-4 *5 (-376)) (-4 *5 (-1080))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-1129 *3)))) + ((*1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591)))) + ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-666 (-666 (-666 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-666 *5)) (-4 *5 (-871)) (-5 *1 (-1218 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *2 (-1302)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-420 *5))) (-14 *7 *6)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) - (-5 *2 - (-2 (|:| -4119 *4) (|:| -3395 *4) (|:| |totalpts| (-577)) - (|:| |success| (-112)))) - (-5 *1 (-810)) (-5 *5 (-577))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) - (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1206)) (-5 *5 (-1124 (-228))) (-5 *2 (-955)) - (-5 *1 (-953 *3)) (-4 *3 (-632 (-549))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-954)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-954)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-954)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1124 (-228))) (-5 *1 (-955)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-665 (-1 (-228) (-228)))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1124 (-228))) - (-5 *1 (-955))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2225 (-665 *1)))) - (-4 *1 (-379 *3)))) - ((*1 *2) + (-12 (-5 *3 (-950)) (-5 *2 (-1209 (-421 (-578)))) (-5 *1 (-193))))) +(((*1 *1) (-5 *1 (-592)))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-666 (-631 *6))) (-5 *4 (-1207)) (-5 *2 (-631 *6)) + (-4 *6 (-444 *5)) (-4 *5 (-1131)) (-5 *1 (-587 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1189)) (-5 *4 (-578)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-776))))) +(((*1 *2 *3 *3 *3) (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-466 *3 *4 *5 *6)) - (|:| -2225 (-665 (-466 *3 *4 *5 *6))))) - (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1206)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-665 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -1827 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1232) (-27) (-443 *8))) - (-4 *8 (-13 (-465) (-148) (-1068 *3) (-659 *3))) (-5 *3 (-577)) - (-5 *2 (-665 *4)) (-5 *1 (-1044 *8 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-4 *1 (-1128 *3)))) - ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-1194 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-14 *2 (-949)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-1299))))) -(((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1247))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-949)) (|has| *1 (-6 -4490)) (-4 *1 (-417)))) - ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-949))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |k| (-693 *3)) (|:| |c| *4)))) - (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-870)) - (-4 *4 (-13 (-174) (-738 (-420 (-577))))) (-14 *5 (-949))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792))))) -(((*1 *2 *3) - (-12 (-5 *3 (-710 *2)) (-4 *4 (-1273 *2)) - (-4 *2 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1153 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) - (-4 *5 (-244 *3 *2)) (-4 *2 (-1079))))) + (-4 *4 (-13 (-149) (-27) (-1069 (-578)) (-1069 (-421 (-578))))) + (-4 *5 (-1274 *4)) (-5 *2 (-1203 (-421 *5))) (-5 *1 (-634 *4 *5)) + (-5 *3 (-421 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-432 *6) *6)) (-4 *6 (-1274 *5)) + (-4 *5 (-13 (-149) (-27) (-1069 (-578)) (-1069 (-421 (-578))))) + (-5 *2 (-1203 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-578)) (|has| *1 (-6 -4491)) (-4 *1 (-418)) + (-5 *2 (-950))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *8)) (-4 *8 (-977 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) - (-4 *7 (-814)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 - (-665 - (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) - (|:| |wcond| (-665 (-980 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) - (-5 *1 (-952 *5 *6 *7 *8)) (-5 *4 (-665 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *8)) (-5 *4 (-665 (-1206))) (-4 *8 (-977 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) - (-4 *7 (-814)) - (-5 *2 - (-665 - (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) - (|:| |wcond| (-665 (-980 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) - (-5 *1 (-952 *5 *6 *7 *8)))) + (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) + (-5 *1 (-434 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-444 *5))) + (-14 *6 (-1207)) (-14 *7 *3)))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1298 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376)) + (-5 *1 (-689 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-376)) + (-4 *5 (-13 (-386 *4) (-10 -7 (-6 -4501)))) + (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501)))) + (-5 *1 (-690 *4 *5 *2 *3)) (-4 *3 (-709 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-666 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) + (-5 *1 (-836 *2 *3)) (-4 *3 (-678 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) - (-5 *2 - (-665 - (-2 (|:| |eqzro| (-665 *7)) (|:| |neqzro| (-665 *7)) - (|:| |wcond| (-665 (-980 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *4)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *4)))))))))) - (-5 *1 (-952 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710 *9)) (-5 *5 (-949)) (-4 *9 (-977 *6 *8 *7)) - (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-870) (-632 (-1206)))) - (-4 *8 (-814)) - (-5 *2 - (-665 - (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) - (|:| |wcond| (-665 (-980 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *6)))))))))) - (-5 *1 (-952 *6 *7 *8 *9)) (-5 *4 (-665 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) - (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) - (-5 *2 - (-665 - (-2 (|:| |eqzro| (-665 *9)) (|:| |neqzro| (-665 *9)) - (|:| |wcond| (-665 (-980 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *6)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *6)))))))))) - (-5 *1 (-952 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *8)) (-5 *4 (-949)) (-4 *8 (-977 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) - (-4 *7 (-814)) - (-5 *2 - (-665 - (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) - (|:| |wcond| (-665 (-980 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) - (-5 *1 (-952 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 *9)) (-5 *5 (-1188)) - (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) - (-5 *1 (-952 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710 *9)) (-5 *4 (-665 (-1206))) (-5 *5 (-1188)) - (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) - (-5 *1 (-952 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-710 *8)) (-5 *4 (-1188)) (-4 *8 (-977 *5 *7 *6)) - (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-870) (-632 (-1206)))) - (-4 *7 (-814)) (-5 *2 (-577)) (-5 *1 (-952 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 *10)) (-5 *5 (-949)) - (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) - (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) - (-5 *1 (-952 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-710 *10)) (-5 *4 (-665 (-1206))) (-5 *5 (-949)) - (-5 *6 (-1188)) (-4 *10 (-977 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) - (-4 *8 (-13 (-870) (-632 (-1206)))) (-4 *9 (-814)) (-5 *2 (-577)) - (-5 *1 (-952 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-710 *9)) (-5 *4 (-949)) (-5 *5 (-1188)) - (-4 *9 (-977 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) - (-4 *7 (-13 (-870) (-632 (-1206)))) (-4 *8 (-814)) (-5 *2 (-577)) - (-5 *1 (-952 *6 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *4)) (-5 *1 (-1158 *3 *4)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *2 (-665 *3)) (-5 *1 (-1158 *4 *3)) (-4 *4 (-1273 *3))))) + (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *1 (-1159 *3 *2)) (-4 *3 (-1274 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-666 (-666 (-578)))) + (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-578)) (-4 *7 (-978 *4 *6 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3)) (-4 *3 (-1248)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1248)) + (-14 *4 (-578))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1207)) + (-4 *4 (-13 (-319) (-1069 (-578)) (-660 (-578)) (-149))) + (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-988)))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-665 - (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1202 *3)) - (|:| |logand| (-1202 *3))))) - (-5 *1 (-599 *3)) (-4 *3 (-375))))) + (-12 (-4 *1 (-1260 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1289 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1248)) (-5 *2 (-793)))) + ((*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-793)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1080)) + (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) + (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-631 *3)) (-4 *3 (-1131)))) + ((*1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-886))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1271 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) + (-14 *5 (-1207)) (-5 *2 (-578)) (-5 *1 (-1145 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-112)) (-5 *5 (-711 (-172 (-229)))) + (-5 *2 (-1066)) (-5 *1 (-777))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-375) (-869))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1273 (-171 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-1302)) (-5 *1 (-1168)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-885))) (-5 *2 (-1302)) (-5 *1 (-1168))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-792)) (-5 *1 (-574))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1130))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1206)) (-5 *1 (-696 *3)) (-4 *3 (-1130))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-971 *4)) (-4 *4 (-1079)) (-5 *1 (-1194 *3 *4)) - (-14 *3 (-949))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1247)) (-5 *2 (-792)))) - ((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-792)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1079)) - (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-630 *3)) (-4 *3 (-1130)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-885)))) - ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-885))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1314 *3 *4)) (-4 *3 (-870)) - (-4 *4 (-1079)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1314 *2 *3)) (-4 *2 (-870)) (-4 *3 (-1079)) - (-4 *3 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-949)) (-5 *1 (-807))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-59 *3)) (-4 *3 (-1247)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *6)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-933 *3))) (-5 *1 (-932 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-569)) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-980 *4)) (-4 *4 (-13 (-318) (-148))) - (-4 *2 (-977 *4 *6 *5)) (-5 *1 (-952 *4 *5 *6 *2)) - (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814))))) -(((*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-519)) (-5 *3 (-1134)) (-5 *1 (-302))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130)))) - ((*1 *1 *2) (-12 (-5 *1 (-929 *2)) (-4 *2 (-1130))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-665 (-391))) (-5 *2 (-391)) (-5 *1 (-207))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1270 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1206)) - (-5 *2 (-577)) (-5 *1 (-1144 *4 *5))))) + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-578)) (-4 *3 (-175)) (-4 *5 (-386 *3)) + (-4 *6 (-386 *3)) (-5 *1 (-710 *3 *5 *6 *2)) + (-4 *2 (-709 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-666 (-666 (-972 (-229))))) (-5 *1 (-482))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1131))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1298 *3)) (-4 *3 (-1274 *4)) (-4 *4 (-1252)) + (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1274 (-421 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-665 (-1206))) (-4 *5 (-1079)) - (-5 *2 (-494 *4 *5)) (-5 *1 (-972 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2420 (-803 *3)) (|:| |coef1| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-2 (|:| -2420 *1) (|:| |coef1| *1))) - (-4 *1 (-1095 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-885))))) + (-12 (-4 *4 (-376)) (-5 *2 (-666 *3)) (-5 *1 (-974 *4 *3)) + (-4 *3 (-1274 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 *5))) + (-4 *5 (-376)) (-4 *5 (-570)) (-5 *2 (-1298 *5)) + (-5 *1 (-658 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 *5))) + (-2309 (-4 *5 (-376))) (-4 *5 (-570)) (-5 *2 (-1298 (-421 *5))) + (-5 *1 (-658 *5 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-1079)) (-5 *1 (-1190 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1289 *2 *3 *4)) (-4 *2 (-1079)) (-14 *3 (-1206)) - (-14 *4 *2)))) -(((*1 *1) (-5 *1 (-450)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1165)) (-5 *2 (-712 (-291))) (-5 *1 (-169))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) + (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) (((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-5 *2 (-665 *1)) (-4 *1 (-1164 *3))))) -(((*1 *1) (-5 *1 (-591)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) - (-14 *4 (-577))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-665 (-971 (-228))))) (-5 *1 (-481))))) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-666 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) + (-5 *2 (-112)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-978 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-711 (-421 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-568 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) + (-4 *3 (-1274 *4)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1249 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1131)) (-5 *2 (-112)) + (-5 *1 (-1249 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482))))) (((*1 *2 *3) - (-12 (-5 *3 (-305 (-980 (-577)))) + (-12 (-5 *3 (-306 (-981 (-578)))) (-5 *2 - (-2 (|:| |varOrder| (-665 (-1206))) - (|:| |inhom| (-3 (-665 (-1297 (-792))) "failed")) - (|:| |hom| (-665 (-1297 (-792)))))) - (-5 *1 (-242))))) -(((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-650))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1190 *4)) (-4 *4 (-1079)) - (-5 *3 (-577))))) + (-2 (|:| |varOrder| (-666 (-1207))) + (|:| |inhom| (-3 (-666 (-1298 (-793))) "failed")) + (|:| |hom| (-666 (-1298 (-793)))))) + (-5 *1 (-243))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-666 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-466) (-149) (-1069 (-578)) (-660 (-578)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-571 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1298 (-1207))) (-5 *3 (-1298 (-467 *4 *5 *6 *7))) + (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-950)) + (-14 *6 (-666 (-1207))) (-14 *7 (-1298 (-711 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1207)) (-5 *3 (-1298 (-467 *4 *5 *6 *7))) + (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-950)) + (-14 *6 (-666 *2)) (-14 *7 (-1298 (-711 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1298 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) + (-14 *6 (-1298 (-711 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1298 (-1207))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-175)) (-14 *4 (-950)) (-14 *5 (-666 (-1207))) + (-14 *6 (-1298 (-711 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1207)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) + (-14 *4 (-950)) (-14 *5 (-666 *2)) (-14 *6 (-1298 (-711 *3))))) + ((*1 *1) + (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-950)) + (-14 *4 (-666 (-1207))) (-14 *5 (-1298 (-711 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1188 (-1188 (-981 *5)))) + (-5 *1 (-1306 *5)) (-5 *4 (-1188 (-981 *5)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-174))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-136))))) +(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-578)))) + (-4 *2 (-175))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-577)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-665 (-980 *4))) (-5 *3 (-665 (-1206))) (-4 *4 (-465)) - (-5 *1 (-946 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *6))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *2)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1188 (-578))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) + (-5 *3 (-578))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1264 (-577))) (-4 *1 (-672 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-672 *3)) (-4 *3 (-1247))))) -(((*1 *2 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1130)) (-5 *1 (-995 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-870)) - (-4 *4 (-814)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-977 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1149)))) - ((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-5 *2 (-792))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-665 (-630 *5))) (-5 *3 (-1206)) (-4 *5 (-443 *4)) - (-4 *4 (-1130)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1273 *5)) - (-4 *7 (-1273 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) - (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) - (-5 *1 (-939 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) - (-4 *4 (-1273 (-420 (-577)))) (-4 *5 (-1273 (-420 *4))) - (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-940 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1079)) - (-14 *4 (-665 (-1206))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1247)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1079) (-870))) - (-14 *4 (-665 (-1206))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-698 *3)) (-4 *3 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-870))))) + (-12 (-5 *2 (-1265 (-578))) (-4 *1 (-673 *3)) (-4 *3 (-1248)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-578)) (-4 *1 (-673 *3)) (-4 *3 (-1248))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1206)) (|:| |fn| (-327 (-228))) - (|:| -1641 (-1124 (-864 (-228)))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (-5 *2 (-1187 (-228))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-327 (-228))) (-5 *4 (-665 (-1206))) - (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1297 (-327 (-228)))) (-5 *4 (-665 (-1206))) - (-5 *5 (-1124 (-864 (-228)))) (-5 *2 (-1187 (-228))) (-5 *1 (-311))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-665 (-549)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-591)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-792)) (-4 *2 (-569)) (-5 *1 (-999 *2 *4)) - (-4 *4 (-1273 *2))))) + (-12 (-4 *2 (-376)) (-4 *2 (-870)) (-5 *1 (-974 *2 *3)) + (-4 *3 (-1274 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-885)))) + ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-885))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-578)) (-5 *4 (-432 *2)) (-4 *2 (-978 *7 *5 *6)) + (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-319))))) (((*1 *2 *3) - (-12 (-5 *2 (-1202 (-577))) (-5 *1 (-970)) (-5 *3 (-577))))) -(((*1 *2) - (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) (-4 *4 (-1273 *3)) - (-4 *5 (-1273 (-420 *4))) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3413 (-665 *3)) (|:| -4100 (-665 *3)))) - (-5 *1 (-1248 *3)) (-4 *3 (-1130))))) + (-12 (-4 *4 (-362)) (-5 *2 (-432 (-1203 (-1203 *4)))) + (-5 *1 (-1246 *4)) (-5 *3 (-1203 (-1203 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-711 *2)) (-5 *4 (-793)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -3034 ((-432 $) $))))) + (-4 *5 (-1274 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-423 *2 *5))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-550) (-666 (-550)))) (-5 *1 (-116)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-550) (-666 (-550)))) (-5 *1 (-116)))) + ((*1 *1) (-5 *1 (-592)))) +(((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303))) + ((*1 *1) (-5 *1 (-886))) + ((*1 *1) + (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) + (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1116))) + ((*1 *1) + (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1131) (-34))) + (-4 *3 (-13 (-1131) (-34))))) + ((*1 *1) (-5 *1 (-1210))) ((*1 *1) (-5 *1 (-1211)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-864 (-228)))) (-5 *4 (-228)) (-5 *2 (-665 *4)) - (-5 *1 (-277))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1206)) (-5 *2 (-1210)) (-5 *1 (-1209))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) (((*1 *2 *1) - (-12 (-4 *2 (-729 *3)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1079))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1248)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *2 (-578)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) + (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-578))))) +(((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-723)))) + ((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-723))))) +(((*1 *2 *1) + (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-950)) + (-4 *4 (-1080))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-578) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-551 *3 *2)) + (-4 *2 (-1289 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-4 *4 (-1274 *3)) + (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1289 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-5 *1 (-556 *3 *2)) + (-4 *2 (-1289 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-570) (-149))) + (-5 *1 (-1184 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) - (-5 *2 - (-2 (|:| A (-710 *5)) - (|:| |eqs| - (-665 - (-2 (|:| C (-710 *5)) (|:| |g| (-1297 *5)) (|:| -3503 *6) - (|:| |rh| *5)))))) - (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *5)) (-5 *4 (-1297 *5)) - (-4 *6 (-677 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-375)) (-4 *6 (-677 *5)) - (-5 *2 (-2 (|:| -1670 (-710 *6)) (|:| |vec| (-1297 *5)))) - (-5 *1 (-834 *5 *6)) (-5 *3 (-710 *6)) (-5 *4 (-1297 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-595))))) -(((*1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-630 *4)) (-5 *6 (-1206)) - (-4 *4 (-13 (-443 *7) (-27) (-1232))) - (-4 *7 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) + (-12 (-5 *3 (-666 (-802 *5 (-888 *6)))) (-5 *4 (-112)) (-4 *5 (-466)) + (-14 *6 (-666 (-1207))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2225 (-665 *4)))) - (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1130))))) + (-666 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) + (-5 *1 (-647 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-559)))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1066)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1248))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-570)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1274 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-666 (-981 *4))) (-5 *3 (-666 (-1207))) (-4 *4 (-466)) + (-5 *1 (-947 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1130)) (-5 *1 (-1224 *3 *2)) (-4 *3 (-1130))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1056 *2)) (-4 *2 (-1247))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-465)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2635 *4))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577))))) - ((*1 *2 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-121 *3)) (-4 *3 (-1273 (-577)))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) + (-12 (-5 *3 (-328 (-392))) (-5 *2 (-328 (-229))) (-5 *1 (-317))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-328 (-229))) (-5 *1 (-317)))) ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |num| (-916 *3)) (|:| |den| (-916 *3)))) - (-5 *1 (-916 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 (-577))))) - (-5 *1 (-373 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-4 *1 (-398 *3)) (-4 *3 (-1130)) - (-5 *2 (-665 (-2 (|:| |gen| *3) (|:| -3585 (-792))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-2 (|:| -2799 *3) (|:| -2182 (-577))))) - (-5 *1 (-431 *3)) (-4 *3 (-569))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-1187 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1187 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) -(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-792)))) + (-5 *2 (-2 (|:| |num| (-917 *3)) (|:| |den| (-917 *3)))) + (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-559))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-306 *6)) (-5 *4 (-116)) (-4 *6 (-444 *5)) + (-4 *5 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-306 *7)) (-5 *4 (-116)) (-5 *5 (-666 *7)) + (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-666 (-306 *7))) (-5 *4 (-666 (-116))) (-5 *5 (-306 *7)) + (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-666 (-306 *8))) (-5 *4 (-666 (-116))) (-5 *5 (-306 *8)) + (-5 *6 (-666 *8)) (-4 *8 (-444 *7)) + (-4 *7 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-666 *7)) (-5 *4 (-666 (-116))) (-5 *5 (-306 *7)) + (-4 *7 (-444 *6)) (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 (-116))) (-5 *6 (-666 (-306 *8))) + (-4 *8 (-444 *7)) (-5 *5 (-306 *8)) + (-4 *7 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-306 *5)) (-5 *4 (-116)) (-4 *5 (-444 *6)) + (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-116)) (-5 *5 (-306 *3)) (-4 *3 (-444 *6)) + (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-116)) (-5 *5 (-306 *3)) (-4 *3 (-444 *6)) + (-4 *6 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-116)) (-5 *5 (-306 *3)) (-5 *6 (-666 *3)) + (-4 *3 (-444 *7)) (-4 *7 (-13 (-570) (-633 (-550)))) (-5 *2 (-52)) + (-5 *1 (-329 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-792)) (-4 *1 (-273 *4)) - (-4 *4 (-1247)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) + (-4 *4 (-1248)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1247)))) - ((*1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1248)))) + ((*1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1080)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-920 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) + (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1248)) (-4 *2 (-1248)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 *4)) (-5 *3 (-665 (-792))) (-4 *1 (-928 *4)) - (-4 *4 (-1130)))) + (-12 (-5 *2 (-666 *4)) (-5 *3 (-666 (-793))) (-4 *1 (-929 *4)) + (-4 *4 (-1131)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-792)) (-4 *1 (-928 *2)) (-4 *2 (-1130)))) + (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *1 (-928 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-980 *6))) (-5 *4 (-665 (-1206))) - (-4 *6 (-13 (-569) (-1068 *5))) (-4 *5 (-569)) - (-5 *2 (-665 (-665 (-305 (-420 (-980 *6)))))) (-5 *1 (-1069 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-870))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-97))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-883)) (-5 *2 (-712 (-130))) (-5 *3 (-130))))) + (-12 (-5 *2 (-666 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1131))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-570))))) +(((*1 *1 *2) (-12 (-5 *2 (-421 (-578))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-550))) (-5 *1 (-550))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1131)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-399 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-228))) (-5 *4 (-792)) (-5 *2 (-710 (-228))) - (-5 *1 (-316))))) + (-12 (-5 *4 (-306 (-865 *3))) (-4 *3 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *2 + (-3 (-865 *3) + (-2 (|:| |leftHandLimit| (-3 (-865 *3) "failed")) + (|:| |rightHandLimit| (-3 (-865 *3) "failed"))) + "failed")) + (-5 *1 (-655 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-306 *3)) (-5 *5 (-1189)) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-5 *2 (-865 *3)) (-5 *1 (-655 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-306 (-865 (-981 *5)))) (-4 *5 (-466)) + (-5 *2 + (-3 (-865 (-421 (-981 *5))) + (-2 (|:| |leftHandLimit| (-3 (-865 (-421 (-981 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-865 (-421 (-981 *5))) "failed"))) + "failed")) + (-5 *1 (-656 *5)) (-5 *3 (-421 (-981 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-306 (-421 (-981 *5)))) (-5 *3 (-421 (-981 *5))) + (-4 *5 (-466)) + (-5 *2 + (-3 (-865 *3) + (-2 (|:| |leftHandLimit| (-3 (-865 *3) "failed")) + (|:| |rightHandLimit| (-3 (-865 *3) "failed"))) + "failed")) + (-5 *1 (-656 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-306 (-421 (-981 *6)))) (-5 *5 (-1189)) + (-5 *3 (-421 (-981 *6))) (-4 *6 (-466)) (-5 *2 (-865 *3)) + (-5 *1 (-656 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-374 (-116))) (-4 *2 (-1080)) (-5 *1 (-736 *2 *4)) + (-4 *4 (-670 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-374 (-116))) (-5 *1 (-858 *2)) (-4 *2 (-1080))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-1095 *3 *4 *2)) (-4 *2 (-870)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870))))) -(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-578)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-815)) (-4 *4 (-978 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) + (-5 *1 (-463 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-665 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-13 (-570) (-1069 (-578)))) (-4 *5 (-444 *4)) + (-5 *2 (-432 *3)) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1274 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-956))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-130)) (-5 *2 (-793))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1033)) + (-4 *2 (-1080))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 (-917 *6))) + (-5 *5 (-1 (-914 *6 *8) *8 (-917 *6) (-914 *6 *8))) (-4 *6 (-1131)) + (-4 *8 (-13 (-1080) (-633 (-917 *6)) (-1069 *7))) + (-5 *2 (-914 *6 *8)) (-4 *7 (-1080)) (-5 *1 (-970 *6 *7 *8))))) +(((*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1131)) (-5 *1 (-996 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-871)) + (-4 *4 (-815)) (-5 *1 (-1018 *2 *3 *4 *5)) (-4 *5 (-978 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-328 (-578))) (-5 *1 (-1150)))) + ((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) + (-5 *2 (-2 (|:| -1625 (-666 *6)) (|:| -2259 (-666 *6))))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1131)) + (-5 *1 (-700 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1131)) (-5 *1 (-704 *3))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-148))) - (-5 *2 (-2 (|:| -3854 *3) (|:| -3867 *3))) (-5 *1 (-1267 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1154 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) - (-5 *2 (-665 (-2 (|:| |val| (-665 *3)) (|:| -4317 *4)))) - (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-171 (-228)))) (-5 *2 (-1065)) - (-5 *1 (-775))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-465)) (-4 *3 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-977 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1232))))) - ((*1 *1 *1 *1) (-4 *1 (-814)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-773))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) - ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1079))))) -(((*1 *1 *1) (-4 *1 (-892 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1228))))) -(((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344))))) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) + (-5 *1 (-1249 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-1131)) (-5 *2 (-1303)) + (-5 *1 (-1249 *4))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-578)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) + (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) + (-5 *5 (-1125 (-229))) (-5 *6 (-666 (-272))) (-5 *2 (-1164 (-229))) + (-5 *1 (-719))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-631 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-1203 *2)) + (-4 *2 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *1 (-574 *6 *2 *7)) (-4 *7 (-1131)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-631 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) + (-5 *5 (-421 (-1203 *2))) (-4 *2 (-13 (-444 *6) (-27) (-1233))) + (-4 *6 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *1 (-574 *6 *2 *7)) (-4 *7 (-1131))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-666 (-631 *2))) (-5 *4 (-1207)) + (-4 *2 (-13 (-27) (-1233) (-444 *5))) + (-4 *5 (-13 (-570) (-1069 (-578)) (-660 (-578)))) + (-5 *1 (-288 *5 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-793))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1248)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-386 *4) (-10 -7 (-6 -4501))))))) +(((*1 *1) (-5 *1 (-159))) + ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217))))) +(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-844))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1131)) (-4 *5 (-1131)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) - (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130))))) -(((*1 *2) - (-12 (-5 *2 (-420 (-980 *3))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-949)) - (-14 *5 (-665 (-1206))) (-14 *6 (-1297 (-710 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-1297 (-710 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-710 *4)) (-4 *5 (-677 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-885))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-886))) (-5 *1 (-116)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-886) (-666 (-886)))) (-5 *1 (-116)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-885) (-665 (-885)))) (-5 *1 (-115)))) + (|partial| -12 (-5 *2 (-1 (-886) (-666 (-886)))) (-5 *1 (-116)))) ((*1 *2 *1) - (-12 (-5 *2 (-1302)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-870) - (-10 -8 (-15 -2435 ((-1188) $ (-1206))) (-15 -1646 (*2 $)) - (-15 -3060 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-407)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-515)))) - ((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-731)))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1227)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1302)) (-5 *1 (-1227))))) -(((*1 *2 *3) - (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1219 (-949) (-792)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1297 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1251)) - (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-420 *4)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291))))) -(((*1 *1 *1 *1) (-4 *1 (-558)))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-420 (-577))))) (-5 *1 (-271)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-1124 (-391)))) (-5 *1 (-271))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-375)) (-5 *1 (-787 *2 *3)) (-4 *2 (-729 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-1079)) (-4 *2 (-375))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1206)) (-5 *5 (-665 (-420 (-980 *6)))) - (-5 *3 (-420 (-980 *6))) - (-4 *6 (-13 (-569) (-1068 (-577)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-583 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) - (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) - (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1068 (-577)))) - (-4 *8 (-1273 (-420 *7))) (-5 *2 (-599 *3)) - (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-375)) (-4 *3 (-814)) (-4 *4 (-870)) - (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-977 *2 *3 *4))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-775))))) -(((*1 *1 *2) - (-12 + (-13 (-871) + (-10 -8 (-15 -2436 ((-1189) $ (-1207))) (-15 -1647 (*2 $)) + (-15 -2574 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-408)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-408)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))) + ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-732)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1228)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1228))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-793)) (-4 *5 (-362)) (-4 *6 (-1274 *5)) (-5 *2 - (-665 - (-2 - (|:| -3171 - (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) - (|:| |fn| (-1297 (-327 (-228)))) - (|:| |yinit| (-665 (-228))) (|:| |intvals| (-665 (-228))) - (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) - (|:| |relerr| (-228)))) - (|:| -2753 - (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) - (|:| |expense| (-391)) (|:| |accuracy| (-391)) - (|:| |intermediateResults| (-391))))))) - (-5 *1 (-824))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) - (-4 *2 (-1273 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *3) - (-12 + (-666 + (-2 (|:| -3198 (-711 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-711 *6))))) + (-5 *1 (-512 *5 *6 *7)) (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) - (-254 *4 (-420 (-577))))) - (-14 *4 (-665 (-1206))) (-14 *5 (-792)) (-5 *2 (-112)) - (-5 *1 (-518 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-989 *3)) (-4 *3 (-558)))) - ((*1 *2 *1) (-12 (-4 *1 (-1251)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1247)) (-5 *2 (-112))))) + (-2 (|:| -3198 (-711 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-711 *6)))) + (-4 *7 (-1274 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-570)) + (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-159)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-666 (-631 *5))) (-5 *3 (-1207)) (-4 *5 (-444 *4)) + (-4 *4 (-1131)) (-5 *1 (-587 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-1187 (-577))) (-5 *1 (-1034 *3)) (-14 *3 (-577))))) + (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-631 *3)) (-4 *3 (-1131))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-950)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793))))) +(((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1131)) (-5 *2 (-55))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) + (-5 *2 + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) +(((*1 *1) (-5 *1 (-622)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-421 (-578))) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-570)) (-4 *8 (-978 *7 *5 *6)) + (-5 *2 (-2 (|:| -2764 (-793)) (|:| -2672 *9) (|:| |radicand| *9))) + (-5 *1 (-982 *5 *6 *7 *8 *9)) (-5 *4 (-793)) + (-4 *9 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *8)) (-15 -2519 (*8 $)) (-15 -2530 (*8 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-917 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3) + (-12 (-5 *3 (-349 *5 *6 *7 *8)) (-4 *5 (-444 *4)) (-4 *6 (-1274 *5)) + (-4 *7 (-1274 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *4 (-13 (-570) (-1069 (-578)))) (-5 *2 (-112)) + (-5 *1 (-940 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-349 (-421 (-578)) *4 *5 *6)) + (-4 *4 (-1274 (-421 (-578)))) (-4 *5 (-1274 (-421 *4))) + (-4 *6 (-355 (-421 (-578)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-941 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-392) (-392))) (-5 *4 (-392)) + (-5 *2 + (-2 (|:| -4120 *4) (|:| -3397 *4) (|:| |totalpts| (-578)) + (|:| |success| (-112)))) + (-5 *1 (-811)) (-5 *5 (-578))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-665 *1)) (-4 *1 (-443 *4)) - (-4 *4 (-1130)))) + (-12 (-5 *2 (-1207)) (-5 *3 (-666 *1)) (-4 *1 (-444 *4)) + (-4 *4 (-1131)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130)))) + (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1206)) (-4 *1 (-443 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-665 (-887 *5))) (-14 *5 (-665 (-1206))) (-4 *6 (-465)) - (-5 *2 - (-2 (|:| |dpolys| (-665 (-254 *5 *6))) - (|:| |coords| (-665 (-577))))) - (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-665 (-254 *5 *6))) (-4 *7 (-465))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-710 (-228))) (-5 *4 (-577)) (-5 *2 (-1065)) - (-5 *1 (-769))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1228))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-792))))) + (-12 (-5 *2 (-1207)) (-4 *1 (-444 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-950))) (-5 *2 (-1209 (-421 (-578)))) + (-5 *1 (-193))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-450))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) + (-4 *3 (-1131)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-934 *4)) (-4 *4 (-1131)) (-5 *2 (-112)) + (-5 *1 (-933 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-950)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *4)) (-4 *4 (-871)) (-5 *2 (-666 (-686 *4 *5))) + (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-578))))) + (-14 *6 (-950))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1142)) (-4 *3 (-1130)) (-5 *2 (-665 *1)) - (-4 *1 (-443 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-665 (-916 *3))) (-5 *1 (-916 *3)) - (-4 *3 (-1130)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-665 *1)) (-4 *1 (-977 *3 *4 *5)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) + (-14 *4 (-666 (-1207))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-814)) (-4 *5 (-870)) (-4 *6 (-1079)) - (-4 *7 (-977 *6 *4 *5)) (-5 *2 (-665 *3)) - (-5 *1 (-978 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-375) - (-10 -8 (-15 -2410 ($ *7)) (-15 -2518 (*7 $)) - (-15 -2528 (*7 $)))))))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1248)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) + (-14 *4 (-666 (-1207))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-918 *3)) (-4 *3 (-871))))) +(((*1 *2 *1) (-12 (-5 *2 (-987 (-186 (-141)))) (-5 *1 (-345)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-1247))) (-5 *1 (-619))))) (((*1 *2 *2) - (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) + (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-444 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958))))) -(((*1 *2 *1) (-12 (-5 *2 (-986 (-185 (-140)))) (-5 *1 (-344)))) - ((*1 *2 *1) (-12 (-5 *2 (-665 (-1246))) (-5 *1 (-618))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-132))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-792)) (-4 *1 (-1273 *3)) (-4 *3 (-1079))))) + (-12 (-5 *3 (-1207)) (-5 *2 (-328 (-578))) (-5 *1 (-959))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-116) (-116))) (-5 *1 (-116))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1290 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578)))) + ((*1 *2 *2) + (-12 (-4 *3 (-319)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) + (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1066)) (-5 *1 (-770))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-375)) - (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-5 *1 (-463 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) - (-5 *2 - (-2 (|:| R (-710 *6)) (|:| A (-710 *6)) (|:| |Ainv| (-710 *6)))) - (-5 *1 (-1008 *6)) (-5 *3 (-710 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-569)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-665 (-792))) (-5 *3 (-112)) (-5 *1 (-1194 *4 *5)) - (-14 *4 (-949)) (-4 *5 (-1079))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + (-12 (-5 *2 (-711 *4)) (-5 *3 (-950)) (-4 *4 (-1080)) + (-5 *1 (-1059 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-666 (-711 *4))) (-5 *3 (-950)) (-4 *4 (-1080)) + (-5 *1 (-1059 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-376)) (-4 *4 (-386 *3)) (-4 *5 (-386 *3)) + (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-709 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1297 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1273 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1273 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) - (-4 *3 (-422 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1273 *2)) (-5 *2 (-577)) (-5 *1 (-789 *3 *4)) - (-4 *4 (-422 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)) (-4 *3 (-174)))) + (-12 (-4 *4 (-570)) (-4 *5 (-386 *4)) (-4 *6 (-386 *4)) + (-4 *7 (-1023 *4)) (-4 *2 (-709 *7 *8 *9)) + (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-709 *4 *5 *6)) + (-4 *8 (-386 *7)) (-4 *9 (-386 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2)) (-4 *2 (-319)))) + ((*1 *2 *2) + (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-386 *3)) + (-4 *5 (-386 *3)) (-5 *1 (-710 *3 *4 *5 *2)) + (-4 *2 (-709 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4 *5 *6)) (-4 *4 (-1080)) + (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) + (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1311 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-666 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-570)) + (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) ((*1 *2 *3) - (-12 (-4 *2 (-569)) (-5 *1 (-999 *2 *3)) (-4 *3 (-1273 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1079)) (-4 *2 (-174))))) -(((*1 *2 *1) + (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-312)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1125 (-865 (-229)))) (-5 *2 (-229)) (-5 *1 (-317))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-1297 - (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) - (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -2686 (-577)) - (|:| -2586 (-577)) (|:| |spline| (-577)) (|:| -3712 (-577)) - (|:| |axesColor| (-897)) (|:| -3939 (-577)) - (|:| |unitsColor| (-897)) (|:| |showing| (-577))))) - (-5 *1 (-1298))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1156 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) - (-4 *4 (-1079)) (-4 *3 (-870)) (-5 *1 (-1156 *4 *3 *5)) - (-4 *5 (-977 *4 (-544 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1241 *4))) (-5 *3 (-1206)) (-5 *1 (-1241 *4)) - (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1079))))) -(((*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-712 (-189))) (-5 *1 (-189))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1188)) (-5 *3 (-844)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-665 (-665 (-971 (-228))))))) - ((*1 *2 *1) (-12 (-4 *1 (-1004)) (-5 *2 (-665 (-665 (-971 (-228)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-341))) (-5 *1 (-341))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-375)) (-5 *2 (-710 *4)) - (-5 *1 (-835 *4 *5)) (-4 *5 (-677 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *5)) (-5 *4 (-792)) (-4 *5 (-375)) - (-5 *2 (-710 *5)) (-5 *1 (-835 *5 *6)) (-4 *6 (-677 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1206)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *5 (-228)) - (-5 *2 (-1065)) (-5 *1 (-772))))) -(((*1 *1) (-5 *1 (-623))) ((*1 *1) (-5 *1 (-624)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-1006 *3 *4 *2 *5)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)) (-4 *5 (-1095 *3 *4 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *2 (-420 (-980 *4))) (-5 *1 (-952 *4 *5 *6 *3)) - (-4 *3 (-977 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-710 *7)) (-4 *7 (-977 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *2 (-710 (-420 (-980 *4)))) - (-5 *1 (-952 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *6 *5)) - (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *2 (-665 (-420 (-980 *4)))) - (-5 *1 (-952 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 (-1188 (-229))) (-5 *1 (-195)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-328 (-229))) (-5 *4 (-666 (-1207))) + (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-1188 (-229))) (-5 *1 (-312)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *4 (-666 (-1207))) + (-5 *5 (-1125 (-865 (-229)))) (-5 *2 (-1188 (-229))) (-5 *1 (-312))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-711 (-229))) (-5 *4 (-578)) (-5 *5 (-112)) + (-5 *2 (-1066)) (-5 *1 (-767))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-172 (-229))) (-5 *1 (-230))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-888 *5))) (-14 *5 (-666 (-1207))) (-4 *6 (-466)) + (-5 *2 (-666 (-666 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7)) + (-5 *3 (-666 (-255 *5 *6))) (-4 *7 (-466))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-666 (-172 *4))) (-5 *1 (-157 *3 *4)) + (-4 *3 (-1274 (-172 (-578)))) (-4 *4 (-13 (-376) (-870))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-666 (-172 *4))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-666 (-172 *4))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1274 (-172 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *5 (-1274 *4)) + (-5 *2 (-666 (-2 (|:| |deg| (-793)) (|:| -3505 *5)))) + (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-678 *5)) + (-4 *6 (-678 (-421 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-520)) (-5 *3 (-666 (-994))) (-5 *1 (-109))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1203 *1)) (-4 *1 (-1043))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-578))) (-5 *1 (-317))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-793)) (-4 *2 (-570)) (-5 *1 (-1000 *2 *4)) + (-4 *4 (-1274 *2))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-665 *7)) (|:| |badPols| (-665 *7)))) - (-5 *1 (-1007 *4 *5 *6 *7)) (-5 *3 (-665 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-1210))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1247)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) +(((*1 *2 *3) (-12 (-5 *3 (-392)) (-5 *2 (-229)) (-5 *1 (-1301)))) + ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1301))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1274 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-578))))))) + (-5 *2 (-666 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1274 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-159)))) + ((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) + ((*1 *2 *3) + (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080))))) +(((*1 *1 *1) (-4 *1 (-648))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033) (-1233)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-570) (-149))) (-5 *1 (-551 *3 *2)) + (-4 *2 (-1289 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-4 *4 (-1274 *3)) + (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1289 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-376) (-381) (-633 (-578)))) (-5 *1 (-556 *3 *2)) + (-4 *2 (-1289 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-13 (-570) (-149))) + (-5 *1 (-1184 *3))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1080)) (-4 *4 (-1131)) + (-5 *2 (-2 (|:| |var| (-631 *1)) (|:| -2764 (-578)))) + (-4 *1 (-444 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-116)) (-4 *4 (-1080)) (-4 *4 (-1131)) + (-5 *2 (-2 (|:| |var| (-631 *1)) (|:| -2764 (-578)))) + (-4 *1 (-444 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1131)) + (-5 *2 (-2 (|:| |var| (-631 *1)) (|:| -2764 (-578)))) + (-4 *1 (-444 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-917 *3)) (|:| -2764 (-793)))) + (-5 *1 (-917 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *5 (-871)) (-5 *2 (-2 (|:| |var| *5) (|:| -2764 (-793)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) + (-4 *7 (-978 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2764 (-578)))) + (-5 *1 (-979 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-376) + (-10 -8 (-15 -2411 ($ *7)) (-15 -2519 (*7 $)) + (-15 -2530 (*7 $)))))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4500)) (-4 *1 (-242 *3)) + (-4 *3 (-1131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1248))))) (((*1 *2 *3) - (-12 (-14 *4 (-665 (-1206))) (-14 *5 (-792)) - (-5 *2 - (-665 - (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) - (-254 *4 (-420 (-577)))))) - (-5 *1 (-518 *4 *5)) - (-5 *3 - (-517 (-420 (-577)) (-246 *5 (-792)) (-887 *4) - (-254 *4 (-420 (-577)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2420 *3))) - (-5 *1 (-999 *4 *3)) (-4 *3 (-1273 *4))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-665 *2)) (-4 *2 (-1130)) (-4 *2 (-1247))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1079)) (-5 *1 (-99 *3))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) + (-12 (-5 *2 (-1203 (-578))) (-5 *1 (-971)) (-5 *3 (-578))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-980 (-577))) (-5 *2 (-341)) - (-5 *1 (-343)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-1122 (-980 (-577)))) (-5 *2 (-341)) - (-5 *1 (-343)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-792)) (-5 *1 (-696 *3)) (-4 *3 (-1079)) - (-4 *3 (-1130))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-577)) (-4 *4 (-1273 (-420 *3))) (-5 *2 (-949)) - (-5 *1 (-941 *4 *5)) (-4 *5 (-1273 (-420 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-949))) (-5 *4 (-933 (-577))) - (-5 *2 (-710 (-577))) (-5 *1 (-603)))) + (-12 (-5 *3 (-666 (-666 (-972 (-229))))) + (-5 *2 (-666 (-1125 (-229)))) (-5 *1 (-957))))) +(((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570)) (-4 *2 (-559)))) + ((*1 *1 *1) (-4 *1 (-1091)))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1274 (-172 *2))))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-949))) (-5 *2 (-665 (-710 (-577)))) - (-5 *1 (-603)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-949))) (-5 *4 (-665 (-933 (-577)))) - (-5 *2 (-665 (-710 (-577)))) (-5 *1 (-603))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1130) (-34))) - (-4 *3 (-13 (-1130) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-850))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-780))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-665 - (-2 (|:| -1875 (-792)) - (|:| |eqns| - (-665 - (-2 (|:| |det| *7) (|:| |rows| (-665 (-577))) - (|:| |cols| (-665 (-577)))))) - (|:| |fgb| (-665 *7))))) - (-4 *7 (-977 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) - (-4 *5 (-13 (-870) (-632 (-1206)))) (-4 *6 (-814)) (-5 *2 (-792)) - (-5 *1 (-952 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-13 (-1130) (-34))) - (-4 *2 (-13 (-1130) (-34)))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-792)) - (-4 *4 (-174))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-1079)) (-5 *1 (-711 *3))))) + (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1274 (-172 *2)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1248)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-578))) (-5 *3 (-578)) + (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-781))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-570)) + (-5 *2 (-2 (|:| -2547 (-711 *5)) (|:| |vec| (-1298 (-666 (-950)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-950)) (-4 *3 (-678 *5))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-1171 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1131) (-34))) (-4 *5 (-13 (-1131) (-34))) + (-5 *1 (-1172 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-666 (-1171 *3 *4))) (-4 *3 (-13 (-1131) (-34))) + (-4 *4 (-13 (-1131) (-34))) (-5 *1 (-1172 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-871)) (-5 *1 (-498 *3))))) +(((*1 *2) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-5 *2 (-112))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1079)) (-4 *5 (-814)) (-4 *3 (-870)) - (-5 *2 (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -4369 *1))) - (-4 *1 (-1095 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-2 (|:| -2671 *1) (|:| |gap| (-792)) (|:| -4369 *1))) - (-4 *1 (-1095 *3 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-933 *4)) (-4 *4 (-1130)) (-5 *2 (-665 (-792))) - (-5 *1 (-932 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) - ((*1 *1 *1) (-5 *1 (-1150)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-465) (-1068 (-577)))) (-4 *3 (-569)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) - (-4 *2 - (-13 (-375) (-313) - (-10 -8 (-15 -2518 ((-1155 *3 (-630 $)) $)) - (-15 -2528 ((-1155 *3 (-630 $)) $)) - (-15 -2410 ($ (-1155 *3 (-630 $)))))))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1187 (-665 (-577)))) (-5 *1 (-907)) (-5 *3 (-577))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4501 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1079)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) - (-4 *4 (-708 *2 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-4 *3 (-569)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1101 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *6 (-1095 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-814)) - (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-971 *3)) (-4 *3 (-13 (-375) (-1232) (-1032))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1004))))) + (-12 (-5 *2 (-172 *4)) (-5 *1 (-184 *4 *3)) + (-4 *4 (-13 (-376) (-870))) (-4 *3 (-1274 *2))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| (-112)) (|:| -4318 *4)))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-666 (-1207))) (-5 *3 (-52)) (-5 *1 (-917 *4)) + (-4 *4 (-1131))))) +(((*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-578)))) + ((*1 *1 *1) (-5 *1 (-1151)))) +(((*1 *1) (-5 *1 (-132)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1274 (-421 *2))) + (-4 *2 (-1274 *5)) (-5 *1 (-219 *5 *2 *6 *3)) + (-4 *3 (-355 *5 *2 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-578)) (-5 *1 (-955))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1203 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1203 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-981 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-570)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-570)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1203 *2)) (-5 *4 (-1207)) (-4 *2 (-444 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-570)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-950)) (-4 *1 (-1043)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1203 *1)) (-5 *3 (-950)) (-5 *4 (-886)) + (-4 *1 (-1043)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-950)) (-4 *4 (-13 (-870) (-376))) + (-4 *1 (-1099 *4 *2)) (-4 *2 (-1274 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-175)) (-4 *2 (-1274 *4)) (-5 *1 (-180 *4 *2 *3)) + (-4 *3 (-746 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 (-421 (-981 *5)))) (-5 *4 (-1207)) + (-5 *2 (-981 *5)) (-5 *1 (-304 *5)) (-4 *5 (-466)))) + ((*1 *2 *3) + (-12 (-5 *3 (-711 (-421 (-981 *4)))) (-5 *2 (-981 *4)) + (-5 *1 (-304 *4)) (-4 *4 (-466)))) + ((*1 *2 *1) + (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1274 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-711 (-172 (-421 (-578))))) + (-5 *2 (-981 (-172 (-421 (-578))))) (-5 *1 (-786 *4)) + (-4 *4 (-13 (-376) (-870))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 (-172 (-421 (-578))))) (-5 *4 (-1207)) + (-5 *2 (-981 (-172 (-421 (-578))))) (-5 *1 (-786 *5)) + (-4 *5 (-13 (-376) (-870))))) + ((*1 *2 *3) + (-12 (-5 *3 (-711 (-421 (-578)))) (-5 *2 (-981 (-421 (-578)))) + (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-711 (-421 (-578)))) (-5 *4 (-1207)) + (-5 *2 (-981 (-421 (-578)))) (-5 *1 (-801 *5)) + (-4 *5 (-13 (-376) (-870)))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -1685 (-666 *3)) (|:| -4242 (-666 *3)))) + (-5 *1 (-1249 *3)) (-4 *3 (-1131))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-792)) (-5 *1 (-879 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) - ((*1 *1 *1 *1) (-5 *1 (-1150)))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -2410 ($ *7))))) - (-4 *7 (-869)) - (-4 *8 - (-13 (-1275 *3 *7) (-375) (-1232) - (-10 -8 (-15 -2030 ($ $)) (-15 -3491 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) - (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) - (-14 *10 (-1206))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1188)) (-5 *4 (-1150)) (-5 *2 (-112)) (-5 *1 (-842))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-846)) (-5 *3 (-666 (-1207))) (-5 *1 (-847))))) (((*1 *2 *1) - (-12 (-5 *2 (-1187 (-2 (|:| |k| (-577)) (|:| |c| *3)))) - (-5 *1 (-608 *3)) (-4 *3 (-1079))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-977 *3 *4 *5))))) + (-12 (-5 *2 (-177 (-421 (-578)))) (-5 *1 (-119 *3)) (-14 *3 (-578)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1188 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-177 (-578))) (-5 *1 (-787 *3)) (-4 *3 (-418)))) + ((*1 *2 *1) + (-12 (-5 *2 (-177 (-421 (-578)))) (-5 *1 (-895 *3)) (-14 *3 (-578)))) + ((*1 *2 *1) + (-12 (-14 *3 (-578)) (-5 *2 (-177 (-421 (-578)))) + (-5 *1 (-896 *3 *4)) (-4 *4 (-893 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-578)))) + ((*1 *1 *1 *1) (-5 *1 (-1151)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-392)) (-5 *1 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-666 (-981 *4))) (-5 *3 (-666 (-1207))) (-4 *4 (-466)) + (-5 *1 (-947 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) + (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *8)) (-5 *4 (-666 *9)) (-4 *8 (-1096 *5 *6 *7)) + (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) + (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) + (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-865 (-229)))) (-5 *4 (-229)) (-5 *2 (-666 *4)) + (-5 *1 (-278))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-447)) - (-5 *2 - (-665 - (-3 (|:| -4105 (-1206)) - (|:| -2835 (-665 (-3 (|:| S (-1206)) (|:| P (-980 (-577))))))))) - (-5 *1 (-1210))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) - ((*1 *1 *1 *1) (-5 *1 (-1150)))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) - (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) - (-5 *1 (-809))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1091 (-1054 *4) (-1202 (-1054 *4)))) (-5 *3 (-885)) - (-5 *1 (-1054 *4)) (-4 *4 (-13 (-869) (-375) (-1052)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1188) (-795))) (-5 *1 (-115))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-229)) (-5 *2 (-112)) (-5 *1 (-311 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1125 (-865 (-229)))) (-5 *3 (-229)) (-5 *2 (-112)) + (-5 *1 (-317)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112)) + (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-978 *3 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-631 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-666 (-631 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1203 (-48))) (-5 *3 (-631 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1274 (-172 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-950)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) + ((*1 *2 *1) + (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1274 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1274 *2)) (-4 *2 (-1023 *3)) (-5 *1 (-427 *3 *2 *4 *5)) + (-4 *3 (-319)) (-4 *5 (-13 (-423 *2 *4) (-1069 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1274 *2)) (-4 *2 (-1023 *3)) + (-5 *1 (-428 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-423 *2 *4)) + (-14 *6 (-1298 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-950)) (-4 *5 (-1080)) + (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) + (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1274 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-666 (-631 (-509)))) (-5 *1 (-509)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-631 (-509))) (-5 *1 (-509)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-666 (-631 (-509)))) + (-5 *1 (-509)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1203 (-509))) (-5 *3 (-631 (-509))) (-5 *1 (-509)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1298 *4)) (-5 *3 (-950)) (-4 *4 (-362)) + (-5 *1 (-542 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1274 *4)) + (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1274 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175)))) + ((*1 *1 *1) (-4 *1 (-1091)))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *7)) (-4 *7 (-978 *4 *6 *5)) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) + (-4 *6 (-815)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-112)) + (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-978 *4 *6 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-578)))) + ((*1 *1 *1 *1) (-5 *1 (-1151)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) + (-5 *2 (-666 (-2 (|:| C (-711 *5)) (|:| |g| (-1298 *5))))) + (-5 *1 (-1009 *5)) (-5 *3 (-711 *5)) (-5 *4 (-1298 *5))))) +(((*1 *2) (-12 (-5 *2 (-950)) (-5 *1 (-159))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-327 (-577))) (|:| -2154 (-327 (-391))) - (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1205)))) - (-5 *1 (-1205))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) - (-4 *3 (-385 *4)) (-4 *5 (-385 *4))))) + (-3 (|:| I (-328 (-578))) (|:| -2155 (-328 (-392))) + (|:| CF (-328 (-172 (-392)))) (|:| |switch| (-1206)))) + (-5 *1 (-1206))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1274 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-971 *4)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1248 *3)) (-4 *3 (-1130))))) + (-12 (-4 *4 (-1131)) (-5 *2 (-112)) (-5 *1 (-910 *3 *4 *5)) + (-4 *3 (-1131)) (-4 *5 (-688 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-1131))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) + ((*1 *1 *1) (-4 *1 (-507))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-980 (-577)))) (-5 *1 (-450)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-228))) (-5 *2 (-1134)) - (-5 *1 (-780)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1206)) (-5 *4 (-710 (-577))) (-5 *2 (-1134)) - (-5 *1 (-780))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-386 *2)) (-4 *2 (-1248)))) ((*1 *2 *2) - (-12 (-4 *3 (-1079)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1273 *3)))) + (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1274 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-341))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1206)) - (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2892 "void"))) (-5 *1 (-1209))))) -(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) - ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-255))))) -(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-942 *3)) (-4 *3 (-318))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-577)) (|has| *1 (-6 -4500)) (-4 *1 (-385 *3)) - (-4 *3 (-1247))))) +(((*1 *1 *2) (-12 (-5 *2 (-578)) (-5 *1 (-886))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1203 *4)) (-4 *4 (-362)) (-5 *2 (-987 (-1151))) + (-5 *1 (-359 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-328 (-229))) (-5 *2 (-328 (-421 (-578)))) + (-5 *1 (-317))))) +(((*1 *2 *2) + (-12 (-4 *3 (-362)) (-4 *4 (-341 *3)) (-4 *5 (-1274 *4)) + (-5 *1 (-799 *3 *4 *5 *2 *6)) (-4 *2 (-1274 *5)) (-14 *6 (-950)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-793)) (-4 *1 (-1317 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + ((*1 *1 *1) (-12 (-4 *1 (-1317 *2)) (-4 *2 (-376)) (-4 *2 (-381))))) (((*1 *2 *3) - (-12 (-5 *3 (-1187 (-1187 *4))) (-5 *2 (-1187 *4)) (-5 *1 (-1190 *4)) - (-4 *4 (-1079))))) + (-12 (-4 *4 (-570)) (-5 *2 (-172 *5)) (-5 *1 (-614 *4 *5 *3)) + (-4 *5 (-13 (-444 *4) (-1033) (-1233))) + (-4 *3 (-13 (-444 (-172 *4)) (-1033) (-1233)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-666 (-950))) (-5 *1 (-1132 *3 *4)) (-14 *3 (-950)) + (-14 *4 (-950))))) +(((*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) + ((*1 *2 *1) (-12 (-5 *1 (-186 *2)) (-4 *2 (-188)))) + ((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-666 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) + (-4 *3 (-570))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-518 (-421 (-578)) (-247 *5 (-793)) (-888 *4) + (-255 *4 (-421 (-578))))) + (-14 *4 (-666 (-1207))) (-14 *5 (-793)) (-5 *2 (-112)) + (-5 *1 (-519 *4 *5))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-773))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-704 *4 *5)) (-4 *4 (-1130)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1131)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-705 *4 *5)) (-4 *4 (-1131)))) ((*1 *2 *2) - (-12 (-4 *3 (-1130)) (-5 *1 (-957 *3 *2)) (-4 *2 (-443 *3)))) + (-12 (-4 *3 (-1131)) (-5 *1 (-958 *3 *2)) (-4 *2 (-444 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1206)) (-5 *2 (-327 (-577))) (-5 *1 (-958)))) + (-12 (-5 *3 (-1207)) (-5 *2 (-328 (-578))) (-5 *1 (-959)))) ((*1 *2 *1) - (-12 (-4 *1 (-1314 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1079)))) + (-12 (-4 *1 (-1315 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) ((*1 *2 *1) - (-12 (-4 *2 (-1079)) (-5 *1 (-1320 *2 *3)) (-4 *3 (-867))))) + (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) + ((*1 *1 *1) (-4 *1 (-507))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-950)) (-5 *2 (-482)) (-5 *1 (-1299))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-792)) (-4 *3 (-1079)) (-4 *1 (-708 *3 *4 *5)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-709 *3 *4 *5)) + (-4 *4 (-386 *3)) (-4 *5 (-386 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-792)) (-4 *1 (-1295 *3)) (-4 *3 (-23)) (-4 *3 (-1247))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1297 *4)) (-4 *4 (-361)) (-5 *2 (-1202 *4)) - (-5 *1 (-541 *4))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-271))) (-5 *2 (-1163 (-228))) (-5 *1 (-269)))) - ((*1 *1 *2) (-12 (-5 *2 (-1163 (-228))) (-5 *1 (-271))))) -(((*1 *2 *1) - (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-665 (-665 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *5 (-1079)) - (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-665 (-665 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-665 *3))) (-5 *1 (-1218 *3)) (-4 *3 (-1130))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1095 *3 *4 *2)) (-4 *3 (-1079)) (-4 *4 (-814)) - (-4 *2 (-870)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870))))) + (-12 (-5 *2 (-793)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1248))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-448))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1247))))) + (-12 (-5 *3 (-1171 *4 *5)) (-4 *4 (-13 (-1131) (-34))) + (-4 *5 (-13 (-1131) (-34))) (-5 *2 (-112)) (-5 *1 (-1172 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1248)) (-5 *2 (-793))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-666 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-444 *4) (-1033))) (-4 *4 (-570)) + (-5 *1 (-287 *4 *2))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-392)) (-5 *3 (-666 (-272))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-392)) (-5 *1 (-272))))) (((*1 *2 *1) - (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1079)) (-5 *2 (-665 (-971 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 (-971 *3))) (-4 *3 (-1079)) (-4 *1 (-1164 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-665 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-971 *3))) (-4 *1 (-1164 *3)) (-4 *3 (-1079))))) -(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-375)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-112)) - (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-977 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) - (-4 *3 (-1273 *4)) (-5 *2 (-112))))) + (-12 (-4 *2 (-730 *3)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1080))))) +(((*1 *2 *3) + (-12 (-4 *4 (-871)) (-5 *2 (-1219 (-666 *4))) (-5 *1 (-1218 *4)) + (-5 *3 (-666 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) + ((*1 *1 *1) (-4 *1 (-507))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-954))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) - (-4 *6 (-13 (-375) (-148) (-1068 *4))) (-5 *4 (-577)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3503 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1045 *6 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1188)) - (-5 *3 (-228)) (-5 *2 (-1065)) (-5 *1 (-779))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) + (-5 *2 (-421 (-578))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-432 *3)) (-4 *3 (-559)) + (-4 *3 (-570)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-578))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-819 *3)) (-4 *3 (-175)) (-4 *3 (-559)) + (-5 *2 (-421 (-578))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-855 *3)) (-4 *3 (-559)) + (-4 *3 (-1131)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-865 *3)) (-4 *3 (-559)) + (-4 *3 (-1131)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-559)) + (-5 *2 (-421 (-578))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-421 (-578))) (-5 *1 (-1039 *3)) + (-4 *3 (-1069 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1203 *7)) + (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1274 *5)) + (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1274 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1203 *7)) (-4 *5 (-1080)) + (-4 *7 (-1080)) (-4 *2 (-1274 *5)) (-5 *1 (-515 *5 *2 *6 *7)) + (-4 *6 (-1274 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) + (-4 *4 (-1274 *5)) (-5 *2 (-1203 *7)) (-5 *1 (-515 *5 *4 *6 *7)) + (-4 *6 (-1274 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-666 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) + (-12 (-5 *3 (-578)) (-5 *2 (-1303)) (-5 *1 (-1300)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-792)) (-5 *2 (-420 (-577))) (-5 *1 (-391))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-665 (-1206))) (-5 *2 (-1206)) (-5 *1 (-341))))) + (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *1) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-916 *4)) (-4 *4 (-1130)) (-5 *2 (-665 *5)) - (-5 *1 (-914 *4 *5)) (-4 *5 (-1247))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1124 (-228))) - (-5 *5 (-112)) (-5 *2 (-1299)) (-5 *1 (-265))))) -(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1247))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-318)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2846 *1))) - (-4 *1 (-318))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *1) (-5 *1 (-302)))) + (-12 (-5 *3 (-1189)) + (-4 *4 (-13 (-466) (-1069 (-578)) (-660 (-578)))) (-5 *2 (-112)) + (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1203 *9)) (-5 *4 (-666 *7)) (-4 *7 (-871)) + (-4 *9 (-978 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) + (-5 *2 (-666 (-793))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793))))) +(((*1 *1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781))))) (((*1 *2 *1) - (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-665 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1095 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-814)) - (-4 *4 (-870)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1240 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) - (-4 *5 (-870)) (-4 *2 (-1095 *3 *4 *5))))) + (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-666 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) + (-5 *2 + (-2 (|:| A (-711 *5)) + (|:| |eqs| + (-666 + (-2 (|:| C (-711 *5)) (|:| |g| (-1298 *5)) (|:| -3505 *6) + (|:| |rh| *5)))))) + (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1298 *5)) + (-4 *6 (-678 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-4 *6 (-678 *5)) + (-5 *2 (-2 (|:| -2547 (-711 *6)) (|:| |vec| (-1298 *5)))) + (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1298 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *1 *1) (-4 *1 (-507))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1273 (-420 (-577)))) (-5 *1 (-941 *3 *2)) - (-4 *2 (-1273 (-420 *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-665 (-1188))) (-5 *1 (-407))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1205)) (-5 *1 (-341))))) -(((*1 *2 *3) - (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) -(((*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-712 (-1165))) (-5 *1 (-1181))))) -(((*1 *1) (-4 *1 (-361)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-327 *5))) - (-5 *1 (-1159 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-327 *5)))) - (-5 *1 (-1159 *5))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1188)) (-5 *5 (-710 (-228))) (-5 *6 (-228)) - (-5 *7 (-710 (-577))) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-773))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-665 *2) *2 *2 *2)) (-4 *2 (-1130)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1130)) (-5 *1 (-103 *2))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-376)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2847 *1))) + (-4 *1 (-876 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-709 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-386 *2)) + (-4 *4 (-386 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-665 (-52))) (-5 *1 (-916 *3)) (-4 *3 (-1130))))) + (-12 (-5 *2 (-666 (-2 (|:| |gen| *3) (|:| -3587 *4)))) + (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292))))) +(((*1 *1 *1) (-5 *1 (-1094)))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-339 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1248)) (-5 *1 (-530 *3 *4)) + (-14 *4 (-578))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 (-578)))) + (-5 *2 (-1298 (-421 (-578)))) (-5 *1 (-1326 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1080)) + (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) + (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1274 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-596))))) +(((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-578)))) + ((*1 *2 *1) (-12 (-5 *2 (-578)) (-5 *1 (-934 *3)) (-4 *3 (-1131)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) + (-4 *3 (-1274 *4)) (-5 *2 (-578)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-570) (-1069 *2) (-660 *2) (-466))) + (-5 *2 (-578)) (-5 *1 (-1147 *4 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-865 *3)) + (-4 *3 (-13 (-27) (-1233) (-444 *6))) + (-4 *6 (-13 (-570) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-578)) + (-5 *1 (-1147 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189)) + (-4 *6 (-13 (-570) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-578)) + (-5 *1 (-1147 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-444 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-421 (-981 *4))) (-4 *4 (-466)) (-5 *2 (-578)) + (-5 *1 (-1148 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-865 (-421 (-981 *6)))) + (-5 *3 (-421 (-981 *6))) (-4 *6 (-466)) (-5 *2 (-578)) + (-5 *1 (-1148 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-421 (-981 *6))) (-5 *4 (-1207)) + (-5 *5 (-1189)) (-4 *6 (-466)) (-5 *2 (-578)) (-5 *1 (-1148 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-578)) (-5 *1 (-1230 *3)) (-4 *3 (-1080))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *1 *1) (-4 *1 (-507))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) - ((*1 *1 *1) (|partial| -4 *1 (-743)))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-569))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1077))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-666 *1)) (-4 *1 (-319))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-195))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-1302)) - (-5 *1 (-462 *4 *5 *6 *7))))) + (-12 (-4 *4 (-938)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-432 (-1203 *7))) + (-5 *1 (-935 *4 *5 *6 *7)) (-5 *3 (-1203 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-938)) (-4 *5 (-1274 *4)) (-5 *2 (-432 (-1203 *5))) + (-5 *1 (-936 *4 *5)) (-5 *3 (-1203 *5))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) + (-5 *1 (-777))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-870) (-632 (-1206)))) - (-4 *6 (-814)) (-5 *2 (-665 *3)) (-5 *1 (-952 *4 *5 *6 *3)) - (-4 *3 (-977 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-465)) (-5 *1 (-1238 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1232)))))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1300))))) -(((*1 *1 *1) (-4 *1 (-1174)))) + (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-516))) (-5 *1 (-859))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-666 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-815)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) + (-5 *1 (-463 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-665 (-228))) (-5 *2 (-1297 (-720))) (-5 *1 (-316))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-980 (-577))) (-5 *3 (-1206)) - (-5 *4 (-1124 (-420 (-577)))) (-5 *1 (-30))))) + (|partial| -12 (-5 *3 (-1298 *4)) (-4 *4 (-13 (-1080) (-660 (-578)))) + (-5 *2 (-1298 (-578))) (-5 *1 (-1326 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-934 (-578))) (-5 *4 (-578)) (-5 *2 (-711 *4)) + (-5 *1 (-1059 *5)) (-4 *5 (-1080)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-711 (-578))) (-5 *1 (-1059 *4)) + (-4 *4 (-1080)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-934 (-578)))) (-5 *4 (-578)) + (-5 *2 (-666 (-711 *4))) (-5 *1 (-1059 *5)) (-4 *5 (-1080)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-666 (-578)))) (-5 *2 (-666 (-711 (-578)))) + (-5 *1 (-1059 *4)) (-4 *4 (-1080))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-466) (-1069 (-578)) (-660 (-578)))) + (-4 *3 (-13 (-27) (-1233) (-444 *6) (-10 -8 (-15 -2411 ($ *7))))) + (-4 *7 (-870)) + (-4 *8 + (-13 (-1276 *3 *7) (-376) (-1233) + (-10 -8 (-15 -2031 ($ $)) (-15 -4371 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) + (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) + (-14 *10 (-1207))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-631 *4)) (-5 *6 (-1207)) + (-4 *4 (-13 (-444 *7) (-27) (-1233))) + (-4 *7 (-13 (-466) (-1069 (-578)) (-149) (-660 (-578)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3198 (-666 *4)))) + (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1131))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *1 *1) (-4 *1 (-506))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *1 *1) (-4 *1 (-507))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1855 (-577)) (|:| -1679 (-665 *3)))) - (-5 *1 (-455 *3)) (-4 *3 (-1273 (-577)))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1079)) (-4 *2 (-1130)))) + (-12 (-4 *1 (-395 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1131)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-577)) (-5 *2 (-1187 *3)) (-5 *1 (-1190 *3)) - (-4 *3 (-1079)))) + (-12 (-5 *4 (-578)) (-5 *2 (-1188 *3)) (-5 *1 (-1191 *3)) + (-4 *3 (-1080)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-840 *4)) (-4 *4 (-870)) (-4 *1 (-1314 *4 *3)) - (-4 *3 (-1079))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1288 *4)) - (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1187 *4) (-1187 *4))) - (-5 *1 (-1290 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-665 *3)) - (-4 *3 (-13 (-443 *6) (-27) (-1232))) - (-4 *6 (-13 (-465) (-1068 (-577)) (-148) (-659 (-577)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-665 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1130))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-254 *3 *4)) - (-14 *3 (-665 (-1206))) (-4 *4 (-1079)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-577))) (-14 *3 (-665 (-1206))) - (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1079)) - (-4 *5 (-244 (-3224 *3) (-792))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-665 (-577))) (-5 *1 (-494 *3 *4)) - (-14 *3 (-665 (-1206))) (-4 *4 (-1079))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) + (-12 (-5 *2 (-841 *4)) (-4 *4 (-871)) (-4 *1 (-1315 *4 *3)) + (-4 *3 (-1080))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-570) (-149))) + (-5 *1 (-1268 *4 *2)) (-4 *2 (-1274 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-432 *3)) (-4 *3 (-559)) (-4 *3 (-570)))) + ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-819 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-559)) (-4 *3 (-1131)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-559)) (-4 *3 (-1131)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1028 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1247)))) - ((*1 *1 *1) (-4 *1 (-892 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-1003 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-813)) - (-4 *4 (-870))))) -(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-933 *3)) (-4 *3 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-854 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1130))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1300)))) - ((*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1300))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1039 *3)) (-4 *3 (-1069 (-421 (-578))))))) +(((*1 *2 *3) (-12 (-5 *2 (-432 *3)) (-5 *1 (-572 *3)) (-4 *3 (-559))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-116)) (-5 *3 (-666 (-1 *4 (-666 *4)))) (-4 *4 (-1131)) + (-5 *1 (-115 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-116)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) + (-5 *1 (-115 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-116)) (-5 *2 (-666 (-1 *4 (-666 *4)))) + (-5 *1 (-115 *4)) (-4 *4 (-1131))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-902 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-904 *2)) (-4 *2 (-1248)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-907 *2)) (-4 *2 (-1248))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-578)))) + (-4 *5 (-1274 *4)) (-5 *2 (-666 (-421 *5))) (-5 *1 (-1047 *4 *5)) + (-5 *3 (-421 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-570)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2421 *3))) + (-5 *1 (-1000 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1131)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1131))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) - ((*1 *1 *1) (-4 *1 (-1090)))) -(((*1 *2 *3) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-792)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1079)) - (-4 *2 (-13 (-417) (-1068 *4) (-375) (-1232) (-295))) - (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1273 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-4 *3 (-13 (-27) (-1232) (-443 *6) (-10 -8 (-15 -2410 ($ *7))))) - (-4 *7 (-869)) - (-4 *8 - (-13 (-1275 *3 *7) (-375) (-1232) - (-10 -8 (-15 -2030 ($ $)) (-15 -3491 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1188)) (|:| |prob| (-1188)))))) - (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1188)) (-4 *9 (-1013 *8)) - (-14 *10 (-1206))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) + (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-376)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| -2196 *1) (|:| -1886 *1))) (-4 *1 (-876 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) + (-5 *2 (-2 (|:| -2196 *3) (|:| -1886 *3))) (-5 *1 (-877 *5 *3)) + (-4 *3 (-876 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4501)) (-4 *1 (-386 *2)) (-4 *2 (-1248)))) + ((*1 *1 *1) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) (-5 *2 (-1066)) (-5 *1 (-780))))) +(((*1 *1 *2) (-12 (-5 *2 (-328 (-172 (-392)))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-328 (-578))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-328 (-392))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-328 (-716))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-328 (-723))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-328 (-721))) (-5 *1 (-342)))) + ((*1 *1) (-5 *1 (-342)))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 (-981 *4))) (-4 *4 (-466)) (-5 *2 (-112)) + (-5 *1 (-373 *4 *5)) (-14 *5 (-666 (-1207))))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-802 *4 (-888 *5)))) (-4 *4 (-466)) + (-14 *5 (-666 (-1207))) (-5 *2 (-112)) (-5 *1 (-647 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189))))) +(((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4500)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) - (-4 *2 (-870)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4500)) - (-4 *1 (-385 *3)) (-4 *3 (-1247))))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-955))))) -(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1188))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-843))))) -(((*1 *1) (-5 *1 (-624)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) + (-4 *4 (-871)) (-4 *2 (-466)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *3 (-1096 *4 *5 *6)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *1)))) + (-4 *1 (-1102 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1252))) + ((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-1277 *3 *2)) + (-4 *2 (-13 (-1274 *3) (-570) (-10 -8 (-15 -2421 ($ $ $)))))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1206)) - (-4 *4 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *1 (-588 *4 *2)) - (-4 *2 (-13 (-1232) (-987) (-1169) (-29 *4)))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) - (-5 *1 (-1158 *3 *2)) (-4 *3 (-1273 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-869)) (-4 *4 (-375)) (-5 *2 (-792)) - (-5 *1 (-973 *4 *5)) (-4 *5 (-1273 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1040 *3)) (-4 *3 (-1247)) (-5 *2 (-112)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1007 *4 *5 *3 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) + (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-272)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) + (-5 *2 (-711 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1298 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-711 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-1298 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1274 *4)) (-5 *2 (-1298 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-423 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1274 *4)) (-5 *2 (-711 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-747)) (-4 *2 (-1247))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1247)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2)))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-792)) (-4 *5 (-375)) (-5 *2 (-176 *6)) - (-5 *1 (-890 *5 *4 *6)) (-4 *4 (-1288 *5)) (-4 *6 (-1273 *5))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-577)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1079)) - (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-916 *4)) (-4 *4 (-1130)) (-5 *1 (-913 *4 *3)) - (-4 *3 (-1130))))) + (-12 (-4 *1 (-423 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1274 *3)) + (-5 *2 (-1298 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 *1)) (-4 *1 (-431 *4)) (-4 *4 (-175)) + (-5 *2 (-711 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-5 *2 (-1298 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1298 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) + (-14 *4 (-666 (-1207))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1298 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376)) + (-14 *4 (-666 (-1207))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-666 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376)) + (-5 *2 (-1298 *5)) (-5 *1 (-1117 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-559)))) +(((*1 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-370 *3)) (-4 *3 (-362))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7)) + (-4 *3 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248)) + (-4 *7 (-1248)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6)) + (-4 *3 (-633 (-550))) (-4 *5 (-1248)) (-4 *6 (-1248))))) +(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793))))) +(((*1 *1) (-5 *1 (-623)))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-792)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) - (-4 *2 (-1273 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1188)) - (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) - (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1232) (-29 *4)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2420 (-803 *3)) (|:| |coef1| (-803 *3)) - (|:| |coef2| (-803 *3)))) - (-5 *1 (-803 *3)) (-4 *3 (-569)) (-4 *3 (-1079)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) - (-5 *2 (-2 (|:| -2420 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1095 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) - (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) - (-5 *1 (-809)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1302) (-1297 *5) (-1297 *5) (-391))) - (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1302)) - (-5 *1 (-809))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 (-1202 *5))) (-5 *3 (-1202 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 *3)) (-4 *3 (-1273 *5)) - (-4 *5 (-1273 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 (-1202 (-577)))) (-5 *3 (-1202 (-577))) - (-5 *1 (-585)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-665 (-1202 *1))) (-5 *3 (-1202 *1)) - (-4 *1 (-937))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *1) (-5 *1 (-341)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392)))) + ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-392))))) +(((*1 *2 *1) + (-12 (-4 *1 (-348 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1274 *3)) + (-4 *5 (-1274 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-171 (-327 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-171 *3)) (-5 *1 (-1236 *4 *3)) - (-4 *3 (-13 (-27) (-1232) (-443 *4)))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (-5 *2 (-666 (-229))) (-5 *1 (-207))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-815)) (-4 *6 (-871)) + (-4 *7 (-1096 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-666 *7)) (|:| |badPols| (-666 *7)))) + (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-666 *7))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4500)) (-4 *1 (-503 *3)) (-4 *3 (-1248)) + (-5 *2 (-666 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 *3)) (-5 *1 (-759 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-666 (-453))) (-5 *1 (-889))))) +(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781))))) +(((*1 *1) (-5 *1 (-342)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1315 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) + (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-228))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *1 *1 *1) (-5 *1 (-391))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) + ((*1 *1 *1 *1) (-5 *1 (-392))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1232))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-869)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1098 *4 *3)) (-4 *4 (-13 (-869) (-375))) - (-4 *3 (-1273 *4)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) - (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) - (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2)) (-4 *2 (-318)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-709 *3 *4 *5 *2)) - (-4 *2 (-708 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-710 *3)) (-4 *3 (-318)) (-5 *1 (-721 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1083 *2 *3 *4 *5 *6)) (-4 *4 (-1079)) - (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-934 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) + (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) + ((*1 *1 *1 *1) (-4 *1 (-487))) + ((*1 *1 *1) (-12 (-4 *1 (-819 *2)) (-4 *2 (-175)))) + ((*1 *2 *2) (-12 (-5 *2 (-666 (-950))) (-5 *1 (-908)))) + ((*1 *1 *1) (-5 *1 (-1002))) + ((*1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-175))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1079)) - (-5 *1 (-876 *5 *2)) (-4 *2 (-875 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-375) (-148) (-1068 (-420 (-577))))) - (-4 *5 (-1273 *4)) - (-5 *2 (-665 (-2 (|:| |deg| (-792)) (|:| -3503 *5)))) - (-5 *1 (-830 *4 *5 *3 *6)) (-4 *3 (-677 *5)) - (-4 *6 (-677 (-420 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-338 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1247)) (-5 *1 (-529 *3 *4)) - (-14 *4 (-577))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-665 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-792)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-814)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-870)) - (-5 *1 (-462 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1068 (-577)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-465) (-1068 (-577)) (-659 (-577)))) (-5 *2 (-112)) - (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-27) (-1232) (-443 *4)))))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1080)) + (-5 *1 (-877 *5 *2)) (-4 *2 (-876 *5))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1298 (-666 *3))) (-4 *4 (-319)) + (-5 *2 (-666 *3)) (-5 *1 (-469 *4 *3)) (-4 *3 (-1274 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 (-392))) (-5 *1 (-272)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-570)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-5 *1 (-432 *2)) (-4 *2 (-570))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1303)) (-5 *1 (-853))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1298)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1298)))) + (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1299)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1299)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1299)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-1299)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1188)) (-5 *1 (-1299))))) + (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233))))) (((*1 *2 *3) - (-12 (-4 *1 (-948)) (-5 *2 (-2 (|:| -2671 (-665 *1)) (|:| -2846 *1))) - (-5 *3 (-665 *1))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-666 (-328 (-229)))) (|:| -2199 (-666 (-229))))) + (-5 *2 (-392)) (-5 *1 (-278)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1298 (-328 (-229)))) (-5 *2 (-392)) (-5 *1 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-116))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-792)) (-4 *5 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-999 *5 *3)) (-4 *3 (-1273 *5))))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-116)) (-5 *4 (-666 *2)) (-5 *1 (-115 *2)) + (-4 *2 (-1131)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-116)) (-5 *3 (-1 *4 (-666 *4))) (-4 *4 (-1131)) + (-5 *1 (-115 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-116)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1131)) + (-5 *1 (-115 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-116)) (-5 *2 (-1 *4 (-666 *4))) + (-5 *1 (-115 *4)) (-4 *4 (-1131)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) + (-5 *1 (-736 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-858 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) + (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-666 (-1203 *11))) (-5 *3 (-1203 *11)) + (-5 *4 (-666 *10)) (-5 *5 (-666 *8)) (-5 *6 (-666 (-793))) + (-5 *7 (-1298 (-666 (-1203 *8)))) (-4 *10 (-871)) + (-4 *8 (-319)) (-4 *11 (-978 *8 *9 *10)) (-4 *9 (-815)) + (-5 *1 (-729 *9 *10 *8 *11))))) (((*1 *2 *3) - (-12 (-4 *4 (-937)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-431 (-1202 *7))) - (-5 *1 (-934 *4 *5 *6 *7)) (-5 *3 (-1202 *7)))) + (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) + (-4 *3 (-386 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-937)) (-4 *5 (-1273 *4)) (-5 *2 (-431 (-1202 *5))) - (-5 *1 (-935 *4 *5)) (-5 *3 (-1202 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1079)))) + (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-517 *4 *5 *6 *3)) (-4 *6 (-386 *4)) (-4 *3 (-386 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) - (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) - (-4 *3 (-669 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1079)) (-5 *1 (-735 *2 *3)) - (-4 *3 (-669 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-174)) (-4 *2 (-1079))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-665 - (-2 (|:| |eqzro| (-665 *8)) (|:| |neqzro| (-665 *8)) - (|:| |wcond| (-665 (-980 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *5)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *5)))))))))) - (-5 *4 (-1188)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-977 *5 *7 *6)) - (-4 *6 (-13 (-870) (-632 (-1206)))) (-4 *7 (-814)) (-5 *2 (-577)) - (-5 *1 (-952 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-949)) (-5 *2 (-1208 (-420 (-577)))) (-5 *1 (-192))))) -(((*1 *2 *3) (-12 (-5 *3 (-1206)) (-5 *2 (-1302)) (-5 *1 (-1209)))) - ((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-1209))))) -(((*1 *1 *1 *1) (-4 *1 (-782)))) -(((*1 *2 *3) (-12 (-5 *2 (-665 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) - (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1188)) (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)) (-5 *2 (-1302)) - (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) + (-12 (-5 *3 (-711 *5)) (-4 *5 (-1023 *4)) (-4 *4 (-570)) + (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4))) + (-5 *1 (-715 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-578))))) + (-4 *6 (-1274 *5)) + (-5 *2 (-2 (|:| -3505 *7) (|:| |rh| (-666 (-421 *6))))) + (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-666 (-421 *6))) + (-4 *7 (-678 *6)) (-4 *3 (-678 (-421 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *5 (-1023 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1267 *4 *5 *3)) + (-4 *3 (-1274 *5))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-112)) (-5 *1 (-379 *3 *4)) + (-4 *3 (-380 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-624)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-229)) (-5 *4 (-578)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 G)))) (-5 *2 (-1066)) + (-5 *1 (-770))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1131)) + (-4 *4 (-133)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-374 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1131)) (-5 *1 (-671 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1) (-5 *1 (-592)))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1192 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1192 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1130)) (-5 *2 (-112)) (-5 *1 (-909 *3 *4 *5)) - (-4 *3 (-1130)) (-4 *5 (-687 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1130)) - (-4 *4 (-1130))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-465)) (-4 *4 (-1130)) - (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-420 (-980 *5)) (-1195 (-1206) (-980 *5)))) - (-4 *5 (-465)) (-5 *2 (-665 (-710 (-420 (-980 *5))))) - (-5 *1 (-303 *5)) (-5 *4 (-710 (-420 (-980 *5))))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-481)) (-5 *4 (-949)) (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1202 *1)) (-5 *4 (-1206)) (-4 *1 (-27)) - (-5 *2 (-665 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1202 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-980 *1)) (-4 *1 (-27)) (-5 *2 (-665 *1)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-314)) (-5 *3 (-1207)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-314)) (-5 *3 (-116)) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1206)) (-4 *4 (-569)) (-5 *2 (-665 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-665 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1079)) - (-4 *2 (-1288 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-1299))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1232))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) - ((*1 *1 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-375)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-949)) (-5 *4 (-391)) (-5 *2 (-1302)) (-5 *1 (-1298))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-665 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-792)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-814)) (-4 *6 (-977 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-870)) - (-5 *1 (-462 *4 *3 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) - (-4 *5 (-385 *4)) (-4 *3 (-385 *4))))) + (-12 (-5 *3 (-1207)) (-5 *2 (-112)) (-5 *1 (-631 *4)) + (-4 *4 (-1131)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-116)) (-5 *2 (-112)) (-5 *1 (-631 *4)) (-4 *4 (-1131)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1131)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1131)) (-5 *2 (-112)) (-5 *1 (-912 *5 *3 *4)) + (-4 *3 (-911 *5)) (-4 *4 (-633 (-917 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6)) (-4 *6 (-911 *5)) (-4 *5 (-1131)) + (-5 *2 (-112)) (-5 *1 (-912 *5 *6 *4)) (-4 *4 (-633 (-917 *5)))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 (-1 (-112) *8))) (-4 *8 (-1096 *5 *6 *7)) + (-4 *5 (-570)) (-4 *6 (-815)) (-4 *7 (-871)) + (-5 *2 (-2 (|:| |goodPols| (-666 *8)) (|:| |badPols| (-666 *8)))) + (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-666 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))) +(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1299)))) + ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1248)) (-4 *2 (-1080)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-886))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-972 (-229))) (-5 *2 (-229)) (-5 *1 (-1244)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1248)) (-4 *2 (-1080))))) +(((*1 *2) + (-12 (-4 *1 (-362)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) - ((*1 *1 *1) (-4 *1 (-1235)))) -(((*1 *2) (-12 (-5 *2 (-1302)) (-5 *1 (-824))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-420 (-980 *5))) (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) - (-5 *1 (-1159 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-420 (-980 *4))) (-4 *4 (-13 (-318) (-148))) - (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-420 (-980 *5)))) (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-305 (-327 *5)))) - (-5 *1 (-1159 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-305 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) - (-5 *2 (-665 (-305 (-327 *4)))) (-5 *1 (-1159 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-420 (-980 *5)))) (-5 *4 (-665 (-1206))) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) - (-5 *1 (-1159 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-420 (-980 *4)))) (-4 *4 (-13 (-318) (-148))) - (-5 *2 (-665 (-665 (-305 (-327 *4))))) (-5 *1 (-1159 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-305 (-420 (-980 *5))))) (-5 *4 (-665 (-1206))) - (-4 *5 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *5))))) - (-5 *1 (-1159 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-305 (-420 (-980 *4))))) - (-4 *4 (-13 (-318) (-148))) (-5 *2 (-665 (-665 (-305 (-327 *4))))) - (-5 *1 (-1159 *4))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-631 *3)) (-5 *5 (-1 (-1203 *3) (-1203 *3))) + (-4 *3 (-13 (-27) (-444 *6))) (-4 *6 (-570)) (-5 *2 (-600 *3)) + (-5 *1 (-565 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) + (-4 *5 (-871)) (-5 *2 (-112))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-670 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-23)) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-696 *2)) (-4 *2 (-1079)) (-4 *2 (-1130))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1013 *2)) (-4 *2 (-1232))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1273 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-375) (-869))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1273 (-171 *2)))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1202 *7)) - (-4 *5 (-1079)) (-4 *7 (-1079)) (-4 *2 (-1273 *5)) - (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1273 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1079)) (-4 *3 (-385 *2)) - (-4 *4 (-385 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1068 *4)) (-4 *3 (-318)) - (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-422 *4 *5)) - (-14 *7 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1297 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1022 *3)) - (-4 *5 (-1273 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *1) - (-12 (-5 *2 (-665 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) - (-4 *3 (-1247))))) + (-12 (-5 *1 (-697 *2)) (-4 *2 (-1080)) (-4 *2 (-1131))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1207)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-666 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-666 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3579 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1233) (-27) (-444 *8))) + (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-578)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3868 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1044 *8 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1131))))) +(((*1 *1 *1) + (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-578)))) (-4 *2 (-1080))))) +(((*1 *2) + (-12 + (-5 *2 + (-1298 (-666 (-2 (|:| -4120 (-939 *3)) (|:| -2087 (-1151)))))) + (-5 *1 (-364 *3 *4)) (-14 *3 (-950)) (-14 *4 (-950)))) + ((*1 *2) + (-12 (-5 *2 (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151)))))) + (-5 *1 (-365 *3 *4)) (-4 *3 (-362)) (-14 *4 (-3 (-1203 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1298 (-666 (-2 (|:| -4120 *3) (|:| -2087 (-1151)))))) + (-5 *1 (-366 *3 *4)) (-4 *3 (-362)) (-14 *4 (-950))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-666 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) + (-4 *3 (-570)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *1 (-1008 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *2 (-319)) (-4 *3 (-1023 *2)) (-4 *4 (-1274 *3)) + (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-423 *3 *4) (-1069 *3)))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4502 "*"))) (-4 *5 (-386 *2)) (-4 *6 (-386 *2)) + (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1274 *2)) + (-4 *4 (-709 *2 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) - ((*1 *1 *1) (-4 *1 (-1235)))) -(((*1 *2 *3) - (-12 (-4 *4 (-375)) (-5 *2 (-665 *3)) (-5 *1 (-973 *4 *3)) - (-4 *3 (-1273 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1297 (-1206))) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) - (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) - (-14 *6 (-665 (-1206))) (-14 *7 (-1297 (-710 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1206)) (-5 *3 (-1297 (-466 *4 *5 *6 *7))) - (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-949)) - (-14 *6 (-665 *2)) (-14 *7 (-1297 (-710 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) - (-14 *6 (-1297 (-710 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1297 (-1206))) (-5 *1 (-466 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-949)) (-14 *5 (-665 (-1206))) - (-14 *6 (-1297 (-710 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1206)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-949)) (-14 *5 (-665 *2)) (-14 *6 (-1297 (-710 *3))))) - ((*1 *1) - (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-949)) - (-14 *4 (-665 (-1206))) (-14 *5 (-1297 (-710 *2)))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) +(((*1 *1 *1) (-5 *1 (-886)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-376)) (-4 *3 (-1080)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2847 *1))) + (-4 *1 (-876 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1289 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1251)) (-4 *5 (-1273 *4)) - (-5 *2 (-2 (|:| -2671 (-420 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1273 (-420 *5)))))) + (-12 (-5 *3 (-793)) (-5 *2 (-711 (-981 *4))) (-5 *1 (-1059 *4)) + (-4 *4 (-1080))))) (((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-1130)) (-5 *2 (-665 *1)) - (-4 *1 (-394 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-665 (-756 *3 *4))) (-5 *1 (-756 *3 *4)) (-4 *3 (-1079)) - (-4 *4 (-747)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1079)) (-4 *4 (-814)) (-4 *5 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-977 *3 *4 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-519)) (-5 *3 (-665 (-993))) (-5 *1 (-302))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1188)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-665 (-885))) (-5 *1 (-885))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *1 *1) - (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1079))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-23))))) + (-12 (-4 *3 (-1080)) (-5 *2 (-1298 *3)) (-5 *1 (-734 *3 *4)) + (-4 *4 (-1274 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) + (-5 *2 (-1066)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-666 + (-2 + (|:| -3173 + (-2 (|:| |var| (-1207)) (|:| |fn| (-328 (-229))) + (|:| -2246 (-1125 (-865 (-229)))) (|:| |abserr| (-229)) + (|:| |relerr| (-229)))) + (|:| -2754 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1188 (-229))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2246 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-573))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-1265 (-578)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) - ((*1 *1 *1) (-4 *1 (-1235)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-949)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-743)) (-5 *2 (-792))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-666 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) +(((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-933 (-578))) (-5 *1 (-946)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 (-578))) (-5 *2 (-933 (-578))) (-5 *1 (-946))))) +(((*1 *2 *2) + (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) + (-5 *1 (-1019 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-666 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) + (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) + (-5 *1 (-1138 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-328 (-578))) (-5 *4 (-1 (-229) (-229))) + (-5 *5 (-1125 (-229))) (-5 *6 (-666 (-272))) (-5 *2 (-1164 (-229))) + (-5 *1 (-719))))) +(((*1 *2 *3) + (-12 (-4 *4 (-570)) (-4 *2 (-13 (-444 *4) (-1033) (-1233))) + (-5 *1 (-614 *4 *2 *3)) + (-4 *3 (-13 (-444 (-172 *4)) (-1033) (-1233)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-4 *3 (-1095 *5 *6 *7)) (-5 *2 (-665 *4)) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1101 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-885)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-112)) - (-5 *1 (-1137 *4 *5 *6 *7 *8)) (-4 *8 (-1101 *4 *5 *6 *7))))) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3)) + (-4 *3 (-633 (-550))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229))) + (-5 *1 (-725 *3)) (-4 *3 (-633 (-550)))))) +(((*1 *2 *2) (-12 (-5 *2 (-666 (-1189))) (-5 *1 (-411))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1065)) (-5 *1 (-779))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-710 *11)) (-5 *4 (-665 (-420 (-980 *8)))) - (-5 *5 (-792)) (-5 *6 (-1188)) (-4 *8 (-13 (-318) (-148))) - (-4 *11 (-977 *8 *10 *9)) (-4 *9 (-13 (-870) (-632 (-1206)))) - (-4 *10 (-814)) - (-5 *2 - (-2 - (|:| |rgl| - (-665 - (-2 (|:| |eqzro| (-665 *11)) (|:| |neqzro| (-665 *11)) - (|:| |wcond| (-665 (-980 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1297 (-420 (-980 *8)))) - (|:| -2225 (-665 (-1297 (-420 (-980 *8)))))))))) - (|:| |rgsz| (-577)))) - (-5 *1 (-952 *8 *9 *10 *11)) (-5 *7 (-577))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1056 (-864 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1079))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-710 *2)) (-5 *4 (-792)) - (-4 *2 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *5 (-1273 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1302)) (-5 *1 (-843))))) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 (-666 (-2 (|:| |val| *3) (|:| -4318 *4)))) + (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) - ((*1 *1 *1) (-4 *1 (-1235)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) +(((*1 *2) + (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-356 *3 *4)) (-14 *3 (-950)) + (-14 *4 (-950)))) + ((*1 *2) + (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-357 *3 *4)) (-4 *3 (-362)) + (-14 *4 (-1203 *3)))) + ((*1 *2) + (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-358 *3 *4)) (-4 *3 (-362)) + (-14 *4 (-950))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-978 *4 *6 *5)) (-4 *4 (-466)) + (-4 *5 (-871)) (-4 *6 (-815)) (-5 *1 (-1018 *4 *5 *6 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1273 *3)) - (-4 *3 (-13 (-375) (-148) (-1068 (-577)))) (-5 *1 (-581 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-5 *2 (-1188))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1133 *2 *3 *4 *5 *6)) (-4 *2 (-1130)) (-4 *3 (-1130)) - (-4 *4 (-1130)) (-4 *5 (-1130)) (-4 *6 (-1130))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375))))) + (-12 (-5 *2 (-666 *3)) (-4 *3 (-1274 (-578))) (-5 *1 (-500 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1248)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-1131))))) (((*1 *2 *3) - (-12 (-5 *3 (-1297 (-665 (-2 (|:| -4119 *4) (|:| -2085 (-1150)))))) - (-4 *4 (-361)) (-5 *2 (-710 *4)) (-5 *1 (-358 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-247)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-1188))) (-5 *2 (-1302)) (-5 *1 (-247))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-916 *3)) (-4 *3 (-1130)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-710 *4)) (-5 *3 (-949)) (|has| *4 (-6 (-4501 "*"))) - (-4 *4 (-1079)) (-5 *1 (-1058 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-665 (-710 *4))) (-5 *3 (-949)) - (|has| *4 (-6 (-4501 "*"))) (-4 *4 (-1079)) (-5 *1 (-1058 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-949)) (-5 *2 (-932 (-577))) (-5 *1 (-945)))) + (-12 (-4 *4 (-362)) (-5 *2 (-987 (-1203 *4))) (-5 *1 (-370 *4)) + (-5 *3 (-1203 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-392))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248)))) ((*1 *2 *3) - (-12 (-5 *3 (-665 (-577))) (-5 *2 (-932 (-577))) (-5 *1 (-945))))) + (-12 (-5 *3 (-666 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-793)) (-5 *6 (-112)) (-4 *7 (-466)) (-4 *8 (-815)) + (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1100 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *3 (-1096 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-793)) (-5 *6 (-112)) (-4 *7 (-466)) (-4 *8 (-815)) + (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1176 *7 *8 *9 *3 *4)) (-4 *4 (-1140 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) + (-4 *3 (-1096 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) + (-4 *3 (-1096 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-666 *4)) + (|:| |todo| (-666 (-2 (|:| |val| (-666 *3)) (|:| -4318 *4)))))) + (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-444 *2)) (-4 *2 (-1131)) (-4 *2 (-570)))) + ((*1 *1 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-570))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1241 *3 *4 *5 *6)) (-4 *3 (-570)) (-4 *4 (-815)) + (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-666 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) - ((*1 *1 *1) (-4 *1 (-1235)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6)) (-5 *4 (-666 (-1188 *7))) (-4 *6 (-871)) + (-4 *7 (-978 *5 (-545 *6) *6)) (-4 *5 (-1080)) + (-5 *2 (-1 (-1188 *7) *7)) (-5 *1 (-1157 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-392)) (-5 *2 (-1303)) (-5 *1 (-1300))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1131) (-1069 *5))) + (-4 *5 (-911 *4)) (-4 *4 (-1131)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-960 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-38 (-421 (-578)))) + (-4 *2 (-175))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-793)) (-5 *5 (-666 *3)) (-4 *3 (-319)) (-4 *6 (-871)) + (-4 *7 (-815)) (-5 *2 (-112)) (-5 *1 (-644 *6 *7 *3 *8)) + (-4 *8 (-978 *3 *7 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1182))))) +(((*1 *1 *1) (-4 *1 (-559)))) (((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1194 *3 *4)) (-14 *3 (-949)) - (-4 *4 (-1079))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1057 *5 *6 *7 *8))) (-5 *1 (-1057 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-665 *8)) (-5 *4 (-112)) (-4 *8 (-1095 *5 *6 *7)) - (-4 *5 (-465)) (-4 *6 (-814)) (-4 *7 (-870)) - (-5 *2 (-665 (-1176 *5 *6 *7 *8))) (-5 *1 (-1176 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-552 *4 *2 *5 *6)) - (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-792)))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-577)) (-5 *4 (-710 (-228))) (-5 *2 (-1065)) - (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-712 (-1255)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165)) (-5 *1 (-1181))))) -(((*1 *1 *1) (-4 *1 (-558)))) -(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) -(((*1 *1) (-5 *1 (-610)))) -(((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-665 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-465) (-148))) - (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3))))) + (-12 (-5 *2 (-666 (-578))) (-5 *1 (-1035 *3)) (-14 *3 (-578))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-917 *4)) (-4 *4 (-1131)) (-5 *1 (-914 *4 *3)) + (-4 *3 (-1131))))) +(((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1131))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032))))) + (-12 (-4 *3 (-570)) (-5 *1 (-287 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1288 *3)) - (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1259 *3 *4)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1289 *3)) + (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1260 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1257 *3)) - (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1280 *3 *4)) (-4 *5 (-1013 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-870)))) + (-12 (-4 *3 (-38 (-421 (-578)))) (-4 *4 (-1258 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1281 *3 *4)) (-4 *5 (-1014 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) ((*1 *1 *1) - (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-665 (-1206))) - (-14 *3 (-665 (-1206))) (-4 *4 (-400)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) - (-5 *1 (-1191 *3)))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-666 (-1207))) + (-14 *3 (-666 (-1207))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1187 *3)) (-4 *3 (-38 (-420 (-577)))) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) (-5 *1 (-1192 *3)))) - ((*1 *1 *1) (-4 *1 (-1235)))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) - (-4 *4 (-1273 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-941 *4 *5)) - (-4 *5 (-1273 (-420 *4)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-883)) (-5 *2 (-712 (-562))) (-5 *3 (-562))))) -(((*1 *2 *1) (-12 (-5 *2 (-665 (-1206))) (-5 *1 (-846))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1188 *3)) (-4 *3 (-38 (-421 (-578)))) + (-5 *1 (-1193 *3)))) + ((*1 *1 *1) (-4 *1 (-1236)))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-804 *3)) (|:| |polden| *3) (|:| -2666 (-793)))) + (-5 *1 (-804 *3)) (-4 *3 (-1080)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2666 (-793)))) + (-4 *1 (-1096 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1173 *4 *2)) (-14 *4 (-950)) + (-4 *2 (-13 (-1080) (-10 -7 (-6 (-4502 "*"))))) + (-5 *1 (-931 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3)) (-4 *3 (-1131))))) (((*1 *1) - (-12 (-4 *1 (-417)) (-2308 (|has| *1 (-6 -4490))) - (-2308 (|has| *1 (-6 -4482))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1130)) (-4 *2 (-870)))) - ((*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-870)))) - ((*1 *1) (-4 *1 (-865))) ((*1 *1 *1 *1) (-4 *1 (-873)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *3 (-1130)) (-4 *4 (-1130)) - (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) - (-4 *3 (-379 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) - (-4 *5 (-13 (-318) (-148) (-1068 (-577)) (-659 (-577)))) - (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) - (-4 *3 (-13 (-1232) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1206)) (-4 *5 (-13 (-569) (-1068 (-577)) (-148))) - (-5 *2 (-599 (-420 (-980 *5)))) (-5 *1 (-583 *5)) - (-5 *3 (-420 (-980 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1298)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1188)) (-5 *2 (-1302)) (-5 *1 (-1299))))) + (-12 (-4 *1 (-418)) (-2309 (|has| *1 (-6 -4491))) + (-2309 (|has| *1 (-6 -4483))))) + ((*1 *2 *1) (-12 (-4 *1 (-439 *2)) (-4 *2 (-1131)) (-4 *2 (-871)))) + ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-871)))) + ((*1 *1) (-4 *1 (-866))) ((*1 *1 *1 *1) (-4 *1 (-874)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-291))))) +(((*1 *2 *3) + (-12 (-5 *3 (-666 *2)) (-4 *2 (-444 *4)) (-5 *1 (-160 *4 *2)) + (-4 *4 (-570))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207)) (-5 *2 (-550)) (-5 *1 (-549 *4)) + (-4 *4 (-1248))))) +(((*1 *2 *2) + (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1233)))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-665 (-630 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1130)) - (-5 *1 (-586 *3 *4)))) + (-12 (-5 *2 (-666 (-631 *4))) (-4 *4 (-444 *3)) (-4 *3 (-1131)) + (-5 *1 (-587 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1130))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-665 *1)) (-5 *3 (-665 *7)) (-4 *1 (-1101 *4 *5 *6 *7)) - (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *7 (-1095 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-665 *7)) (-4 *7 (-1095 *4 *5 *6)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-665 *1)) (-4 *1 (-1101 *4 *5 *6 *3)) (-4 *4 (-465)) - (-4 *5 (-814)) (-4 *6 (-870)) (-4 *3 (-1095 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-465)) (-4 *5 (-814)) (-4 *6 (-870)) - (-4 *3 (-1095 *4 *5 *6)) (-5 *2 (-665 *1)) - (-4 *1 (-1101 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-665 (-112)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-665 *3)) (-4 *3 (-1130)) (-5 *1 (-1030 *3))))) -(((*1 *1 *1) (-4 *1 (-647))) + (-12 (-5 *1 (-914 *2 *3)) (-4 *2 (-1131)) (-4 *3 (-1131)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) + (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-666 *3)) (-4 *3 (-1131)) (-4 *1 (-242 *3)))) + ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1131))))) +(((*1 *1 *1) (-4 *1 (-648))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-648 *3 *2)) - (-4 *2 (-13 (-443 *3) (-1032) (-1232)))))) -(((*1 *2 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300)))) - ((*1 *2) (-12 (-5 *2 (-949)) (-5 *1 (-1300))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -2225 (-710 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-710 *3)))) - (-4 *3 (-13 (-318) (-10 -8 (-15 -4240 ((-431 $) $))))) - (-4 *4 (-1273 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-955))))) + (-12 (-4 *3 (-570)) (-5 *1 (-649 *3 *2)) + (-4 *2 (-13 (-444 *3) (-1033) (-1233)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-641 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3867 *4) (|:| |sol?| (-112))) - (-577) *4)) - (-4 *4 (-375)) (-4 *5 (-1273 *4)) (-5 *1 (-587 *4 *5))))) -((-1331 . 732872) (-1332 . 732823) (-1333 . 732577) (-1334 . 732476) - (-1335 . 732344) (-1336 . 732267) (-1337 . 732208) (-1338 . 731585) - (-1339 . 731223) (-1340 . 731079) (-1341 . 730735) (-1342 . 730577) - (-1343 . 730424) (-1344 . 730146) (-1345 . 730086) (-1346 . 730007) - (-1347 . 729828) (-1348 . 729098) (-1349 . 728850) (-1350 . 728755) - (-1351 . 728727) (-1352 . 728675) (-1353 . 728644) (-1354 . 728590) - (-1355 . 728530) (-1356 . 728417) (-1357 . 728272) (-1358 . 727864) - (-1359 . 727768) (-1360 . 727038) (-1361 . 726883) (-1362 . 726626) - (-1363 . 726404) (-1364 . 726259) (-1365 . 726118) (-1366 . 726048) - (-1367 . 725910) (-1368 . 725814) (-1369 . 725673) (-1370 . 725618) - (-1371 . 724941) (-1372 . 724888) (-1373 . 724700) (-1374 . 724612) - (-1375 . 723992) (-1376 . 723904) (-1377 . 723516) (-1378 . 723482) - (-1379 . 723302) (-1380 . 723194) (-1381 . 722629) (-1382 . 722548) - (-1383 . 722462) (-1384 . 722374) (-1385 . 722239) (-1386 . 722157) - (-1387 . 721841) (-1388 . 721675) (-1389 . 720679) (-1390 . 720579) - (-1391 . 720014) (-1392 . 719913) (-1393 . 719550) (-1394 . 719444) - (-1395 . 719246) (-1396 . 719218) (-1397 . 719013) (-1398 . 718946) - (-1399 . 718678) (-1400 . 717455) (-1401 . 717405) (-1402 . 716840) - (-1403 . 716717) (-1404 . 716478) (-1405 . 716199) (-1406 . 716093) - (-1407 . 715996) (-1408 . 715594) (-1409 . 715502) (-1410 . 715309) - (-1411 . 715178) (-1412 . 714969) (-1413 . 714294) (-1414 . 713902) - (-1415 . 713828) (-1416 . 713794) (-1417 . 713675) (-1418 . 713591) - (-1419 . 713143) (-1420 . 712559) (-1421 . 712263) (-1422 . 712103) - (-1423 . 711428) (-1424 . 711376) (-1425 . 711290) (-1426 . 711180) - (-1427 . 710786) (-1428 . 710442) (-1429 . 710203) (-1430 . 710033) - (-1431 . 709804) (-1432 . 709677) (-1433 . 708858) (-1434 . 708610) - (-1435 . 707872) (-1436 . 707777) (-1437 . 707467) (-1438 . 707439) - (-1439 . 707353) (-1440 . 706865) (-1441 . 706503) (-1442 . 706150) - (-1443 . 705987) (-1444 . 705935) (-1445 . 705832) (-1446 . 705269) - (-1447 . 705165) (-1448 . 705041) (-1449 . 704882) (-1450 . 704719) - (-1451 . 704636) (-1452 . 704470) (-1453 . 704340) (-1454 . 704207) - (-1455 . 704009) (-1456 . 703446) (-1457 . 703418) (-1458 . 703346) - (-1459 . 703293) (-1460 . 703241) (-1461 . 703033) (-1462 . 702550) - (-1463 . 702407) (-1464 . 702269) (-1465 . 702168) (-1466 . 701605) - (-1467 . 701489) (-1468 . 701299) (-1469 . 701228) (-1470 . 700909) - (-1471 . 700535) (-1472 . 700169) (-1473 . 700114) (-1474 . 699961) - (-1475 . 699685) (-1476 . 699563) (-1477 . 698887) (-1478 . 698766) - (-1479 . 698682) (-1480 . 698650) (-1481 . 698599) (-1482 . 698503) - (-1483 . 698325) (-1484 . 698165) (-1485 . 698080) (-1486 . 697981) - (-1487 . 697922) (-1488 . 697801) (-1489 . 697125) (-1490 . 697046) - (-1491 . 696863) (-1492 . 696664) (-1493 . 696353) (-1494 . 696325) - (-1495 . 696264) (-1496 . 696212) (-1497 . 696129) (-1498 . 696073) - (-1499 . 696010) (-1500 . 695906) (-1501 . 695230) (-1502 . 695003) - (-1503 . 694926) (-1504 . 694898) (-1505 . 694802) (-1506 . 694589) - (-1507 . 694533) (-1508 . 694387) (-1509 . 694271) (-1510 . 694190) - (-1511 . 693874) (-1512 . 693736) (-1513 . 693392) (-1514 . 693343) - (-1515 . 692779) (-1516 . 692431) (-1517 . 692336) (-1518 . 692265) - (-1519 . 691929) (-1520 . 691829) (-1521 . 691626) (-1522 . 691277) - (-1523 . 691109) (-1524 . 691011) (-1525 . 690804) (-1526 . 690737) - (-1527 . 690173) (-1528 . 689756) (-1529 . 689648) (-1530 . 689544) - (-1531 . 689474) (-1532 . 689319) (-1533 . 689266) (-1534 . 689157) - (-1535 . 689044) (-1536 . 688985) (-1537 . 688930) (-1538 . 688705) - (-1539 . 688445) (-1540 . 687881) (-1541 . 687812) (-1542 . 687713) - (-1543 . 687590) (-1544 . 687418) (-1545 . 687349) (-1546 . 687203) - (-1547 . 687024) (-1548 . 686932) (-1549 . 686751) (-1550 . 686593) - (-1551 . 686030) (-1552 . 685907) (-1553 . 685795) (-1554 . 685668) - (-1555 . 685576) (-1556 . 685446) (-1557 . 684963) (-1558 . 684867) - (-1559 . 684775) (-1560 . 684702) (-1561 . 684635) (-1562 . 684072) - (-1563 . 684000) (-1564 . 683922) (-1565 . 683822) (-1566 . 683541) - (-1567 . 683382) (-1568 . 683196) (-1569 . 683112) (-1570 . 682827) - (-1571 . 682741) (-1572 . 682637) (-1573 . 682304) (-1574 . 682226) - (-1575 . 681663) (-1576 . 681581) (-1577 . 681486) (-1578 . 681378) - (-1579 . 680985) (-1580 . 680936) (-1581 . 680879) (-1582 . 680761) - (-1583 . 680436) (-1584 . 680306) (-1585 . 680002) (-1586 . 679439) - (-1587 . 679390) (-1588 . 679158) (-1589 . 679081) (-1590 . 678951) - (-1591 . 678896) (-1592 . 678611) (-1593 . 678513) (-1594 . 678452) - (-1595 . 678237) (-1596 . 678209) (-1597 . 677646) (-1598 . 677594) - (-1599 . 676987) (-1600 . 676858) (-1601 . 676805) (-1602 . 676677) - (-1603 . 676553) (-1604 . 676303) (-1605 . 676244) (-1606 . 676099) - (-1607 . 676025) (-1608 . 675951) (-1609 . 675636) (-1610 . 675276) - (-1611 . 674573) (-1612 . 674449) (-1613 . 674397) (-1614 . 674216) - (-1615 . 673856) (-1616 . 673769) (-1617 . 673668) (-1618 . 673544) - (-1619 . 673390) (-1620 . 672780) (-1621 . 672708) (-1622 . 672635) - (-1623 . 672581) (-1624 . 672422) (-1625 . 672318) (-1626 . 672246) - (-1627 . 672188) (-1628 . 671938) (-1629 . 671522) (-1630 . 671440) - (-1631 . 671368) (-1632 . 670979) (-1633 . 670876) (-1634 . 670330) - (-1635 . 670223) (-1636 . 669973) (-1637 . 669735) (-1638 . 669520) - (-1639 . 669194) (-1640 . 669041) (-1641 . 668902) (-1642 . 668868) - (-1643 . 668778) (-1644 . 668647) (-1645 . 668563) (-1646 . 667809) - (-1647 . 667685) (-1648 . 667509) (-1649 . 667371) (-1650 . 667319) - (-1651 . 667210) (-1652 . 667157) (-1653 . 667123) (-1654 . 667020) - (-1655 . 666874) (-1656 . 666800) (-1657 . 666672) (-1658 . 666571) - (-1659 . 666424) (-1660 . 666310) (-1661 . 666085) (-1662 . 665955) - (-1663 . 665797) (-1664 . 665699) (-1665 . 665647) (-1666 . 665595) - (-1667 . 665525) (-1668 . 665466) (-1669 . 665244) (-1670 . 665140) - (-1671 . 665061) (-1672 . 665012) (-1673 . 664942) (-1674 . 664746) - (-1675 . 664072) (-1676 . 663989) (-1677 . 663934) (-1678 . 663857) - (-1679 . 663517) (-1680 . 663313) (-1681 . 663158) (-1682 . 662993) - (-1683 . 662933) (-1684 . 662845) (-1685 . 662535) (-1686 . 662504) - (-1687 . 662435) (-1688 . 661963) (-1689 . 661884) (-1690 . 661780) - (-1691 . 661707) (-1692 . 661600) (-1693 . 661484) (-1694 . 661360) - (-1695 . 661283) (-1696 . 661180) (-1697 . 660999) (-1698 . 660485) - (-1699 . 659981) (-1700 . 659554) (-1701 . 659428) (-1702 . 659315) - (-1703 . 658923) (-1704 . 658767) (-1705 . 658694) (-1706 . 658583) - (-1707 . 658337) (-1708 . 658237) (-1709 . 658185) (-1710 . 657968) - (-1711 . 657895) (-1712 . 657731) (-1713 . 657703) (-1714 . 657626) - (-1715 . 657540) (-1716 . 657463) (-1717 . 657435) (-1718 . 657262) - (-1719 . 657183) (-1720 . 657114) (-1721 . 657062) (-1722 . 656985) - (-1723 . 656685) (-1724 . 656555) (-1725 . 656434) (-1726 . 656302) - (-1727 . 656189) (-1728 . 656110) (-1729 . 656039) (-1730 . 655861) - (-1731 . 655680) (-1732 . 655458) (-1733 . 655314) (-1734 . 655246) - (-1735 . 655037) (-1736 . 654609) (-1737 . 654507) (-1738 . 654427) - (-1739 . 654365) (-1740 . 654295) (-1741 . 654150) (-1742 . 654097) - (-1743 . 653995) (-1744 . 653817) (-1745 . 653526) (-1746 . 649366) - (-1747 . 649088) (-1748 . 648980) (-1749 . 648800) (-1750 . 648611) - (-1751 . 648554) (-1752 . 648282) (-1753 . 648153) (-1754 . 647638) - (-1755 . 647545) (-1756 . 647137) (-1757 . 647041) (-1758 . 645861) - (-1759 . 645642) (-1760 . 645483) (-1761 . 645327) (-1762 . 645172) - (-1763 . 644829) (-1764 . 644735) (-1765 . 644543) (-1766 . 644476) - (-1767 . 644311) (-1768 . 643885) (-1769 . 643706) (-1770 . 643629) - (-1771 . 643544) (-1772 . 643431) (-1773 . 642947) (-1774 . 642701) - (-1775 . 642582) (-1776 . 642067) (-1777 . 642015) (-1778 . 641592) - (-1779 . 641473) (-1780 . 641421) (-1781 . 641336) (-1782 . 641236) - (-1783 . 641072) (-1784 . 640962) (-1785 . 640799) (-1786 . 640725) - (-1787 . 640527) (-1788 . 640493) (-1789 . 640382) (-1790 . 640101) - (-1791 . 639875) (-1792 . 639797) (-1793 . 639659) (-1794 . 639440) - (-1795 . 639065) (-1796 . 638907) (-1797 . 638790) (-1798 . 638704) - (-1799 . 638575) (-1800 . 638516) (-1801 . 638373) (-1802 . 638158) - (-1803 . 638091) (-1804 . 637908) (-1805 . 637813) (-1806 . 637785) - (-1807 . 637733) (-1808 . 637607) (-1809 . 637579) (-1810 . 637505) - (-1811 . 637365) (-1812 . 637175) (-1813 . 636854) (-1814 . 636705) - (-1815 . 636412) (-1816 . 636101) (-1817 . 636031) (-1818 . 635974) - (-1819 . 635921) (-1820 . 635807) (-1821 . 635740) (-1822 . 635639) - (-1823 . 635361) (-1824 . 635291) (-1825 . 635195) (-1826 . 635024) - (-1827 . 634969) (-1828 . 634866) (-1829 . 634741) (-1830 . 634656) - (-1831 . 634597) (-1832 . 634545) (-1833 . 634468) (-1834 . 634371) - (-1835 . 634247) (-1836 . 633972) (-1837 . 633916) (-1838 . 633846) - (-1839 . 633712) (-1840 . 633618) (-1841 . 633411) (-1842 . 633214) - (-1843 . 633186) (-1844 . 633082) (-1845 . 632963) (-1846 . 632877) - (-1847 . 632772) (-1848 . 632690) (-1849 . 632591) (-1850 . 632472) - (-1851 . 632044) (-1852 . 631876) (-1853 . 631692) (-1854 . 631470) - (-1855 . 631386) (-1856 . 631284) (-1857 . 631191) (-1858 . 631103) - (-1859 . 630907) (-1860 . 630747) (-1861 . 630556) (-1862 . 630292) - (-1863 . 630225) (-1864 . 630069) (-1865 . 629947) (-1866 . 629725) - (-1867 . 629627) (-1868 . 629041) (-1869 . 628919) (-1870 . 628761) - (-1871 . 628544) (-1872 . 628338) (-1873 . 628180) (-1874 . 628027) - (-1875 . 626777) (-1876 . 626629) (-1877 . 626533) (-1878 . 626429) - (-1879 . 626294) (-1880 . 625868) (-1881 . 625604) (-1882 . 625547) - (-1883 . 625357) (-1884 . 625305) (-1885 . 625241) (-1886 . 624992) - (-1887 . 624733) (-1888 . 624646) (-1889 . 624589) (-1890 . 624530) - (-1891 . 624480) (-1892 . 624220) (-1893 . 623952) (-1894 . 623772) - (-1895 . 623720) (-1896 . 623550) (-1897 . 623183) (-1898 . 622888) - (-1899 . 622627) (-1900 . 622541) (-1901 . 622489) (-1902 . 621938) - (-1903 . 621868) (-1904 . 621796) (-1905 . 621708) (-1906 . 621574) - (-1907 . 621392) (-1908 . 621237) (-1909 . 621164) (-1910 . 621040) - (-1911 . 620972) (-1912 . 620375) (-1913 . 620260) (-1914 . 620166) - (-1915 . 619999) (-1916 . 619916) (-1917 . 619845) (-1918 . 619792) - (-1919 . 619435) (-1920 . 619235) (-1921 . 619131) (-1922 . 619103) - (-1923 . 618935) (-1924 . 618870) (-1925 . 618789) (-1926 . 618678) - (-1927 . 618555) (-1928 . 618527) (-1929 . 617644) (-1930 . 617584) - (-1931 . 617520) (-1932 . 617137) (-1933 . 616897) (-1934 . 616798) - (-1935 . 616639) (-1936 . 616533) (-1937 . 616430) (-1938 . 616378) - (-1939 . 616133) (-1940 . 615766) (-1941 . 615712) (-1942 . 615652) - (-1943 . 615264) (-1944 . 614500) (-1945 . 614386) (-1946 . 614179) - (-1947 . 614074) (-1948 . 613822) (-1949 . 613691) (-1950 . 613569) - (-1951 . 613474) (-1952 . 613264) (-1953 . 613007) (-1954 . 611579) - (-1955 . 611524) (-1956 . 611451) (-1957 . 611352) (-1958 . 611196) - (-1959 . 611100) (-1960 . 611041) (-1961 . 610985) (-1962 . 610890) - (-1963 . 610807) (-1964 . 610733) (-1965 . 610412) (-1966 . 610287) - (-1967 . 610125) (-1968 . 610030) (-1969 . 609843) (-1970 . 609748) - (-1971 . 609455) (-1972 . 609361) (-1973 . 609305) (-1974 . 609252) - (-1975 . 608814) (-1976 . 608484) (-1977 . 608432) (-1978 . 608280) - (-1979 . 608197) (-1980 . 608035) (-1981 . 607919) (-1982 . 607853) - (-1983 . 607652) (-1984 . 607494) (-1985 . 606793) (-1986 . 606698) - (-1987 . 606543) (-1988 . 606415) (-1989 . 606250) (-1990 . 605842) - (-1991 . 605099) (-1992 . 604894) (-1993 . 604839) (-1994 . 604770) - (-1995 . 604687) (-1996 . 604352) (-1997 . 603914) (-1998 . 603787) - (-1999 . 603697) (-2000 . 603552) (-2001 . 603378) (-2002 . 603215) - (-2003 . 603147) (-2004 . 602984) (-2005 . 602912) (-2006 . 602817) - (-2007 . 602618) (-2008 . 602423) (-2009 . 602371) (-2010 . 602152) - (-2011 . 602066) (-2012 . 601744) (-2013 . 601602) (-2014 . 601550) - (-2015 . 601104) (-2016 . 600982) (-2017 . 600930) (-2018 . 600755) - (-2019 . 600688) (-2020 . 600611) (-2021 . 600470) (-2022 . 600403) - (-2023 . 600326) (-2024 . 600241) (-2025 . 600161) (-2026 . 599983) - (-2027 . 599825) (-2028 . 599753) (-2029 . 599580) (-2030 . 598518) - (-2031 . 598398) (-2032 . 597868) (-2033 . 597807) (-2034 . 597740) - (-2035 . 597525) (-2036 . 597145) (-2037 . 597002) (-2038 . 596949) - (-2039 . 596863) (-2040 . 596431) (-2041 . 596349) (-2042 . 596076) - (-2043 . 596024) (-2044 . 595806) (-2045 . 595750) (-2046 . 595716) - (-2047 . 595664) (-2048 . 595591) (-2049 . 595454) (-2050 . 595297) - (-2051 . 595104) (-2052 . 595048) (-2053 . 594948) (-2054 . 594782) - (-2055 . 594648) (-2056 . 594595) (-2057 . 592817) (-2058 . 592602) - (-2059 . 592506) (-2060 . 591883) (-2061 . 591770) (-2062 . 591688) - (-2063 . 591540) (-2064 . 591292) (-2065 . 591147) (-2066 . 591097) - (-2067 . 590959) (-2068 . 590762) (-2069 . 590694) (-2070 . 590302) - (-2071 . 590169) (-2072 . 589885) (-2073 . 589705) (-2074 . 589631) - (-2075 . 589464) (-2076 . 589152) (-2077 . 588992) (-2078 . 588918) - (-2079 . 588884) (-2080 . 588832) (-2081 . 588732) (-2082 . 588637) - (-2083 . 588491) (-2084 . 588405) (-2085 . 588078) (-2086 . 587868) - (-2087 . 587816) (-2088 . 587648) (-2089 . 587227) (-2090 . 586046) - (-2091 . 585664) (-2092 . 585545) (-2093 . 585449) (-2094 . 585366) - (-2095 . 585270) (-2096 . 585175) (-2097 . 584888) (-2098 . 584790) - (-2099 . 584648) (-2100 . 584440) (-2101 . 584193) (-2102 . 584035) - (-2103 . 583813) (-2104 . 583725) (-2105 . 583574) (-2106 . 583404) - (-2107 . 583350) (-2108 . 583251) (-2109 . 583071) (-2110 . 582929) - (-2111 . 582752) (-2112 . 582650) (-2113 . 582570) (-2114 . 582466) - (-2115 . 582371) (-2116 . 581497) (-2117 . 581308) (-2118 . 581093) - (-2119 . 579693) (-2120 . 579316) (-2121 . 579243) (-2122 . 579139) - (-2123 . 579038) (-2124 . 578986) (-2125 . 578934) (-2126 . 578857) - (-2127 . 578771) (-2128 . 578683) (-2129 . 578588) (-2130 . 578460) - (-2131 . 578386) (-2132 . 578306) (-2133 . 578031) (-2134 . 577868) - (-2135 . 577840) (-2136 . 577739) (-2137 . 577581) (-2138 . 577362) - (-2139 . 577269) (-2140 . 577105) (-2141 . 576959) (-2142 . 576601) - (-2143 . 576266) (-2144 . 576153) (-2145 . 575949) (-2146 . 575882) - (-2147 . 575769) (-2148 . 575675) (-2149 . 575602) (-2150 . 575467) - (-2151 . 575073) (-2152 . 574945) (-2153 . 574733) (-2154 . 574655) - (-2155 . 574576) (-2156 . 574521) (-2157 . 574423) (-2158 . 574308) - (-2159 . 574039) (-2160 . 573944) (-2161 . 573807) (-2162 . 573741) - (-2163 . 573641) (-2164 . 573382) (-2165 . 573305) (-2166 . 572003) - (-2167 . 571851) (-2168 . 571763) (-2169 . 571629) (-2170 . 571558) - (-2171 . 571481) (-2172 . 571282) (-2173 . 571121) (-2174 . 570740) - (-2175 . 570652) (-2176 . 570571) (-2177 . 570336) (-2178 . 570308) - (-2179 . 570143) (-2180 . 570063) (-2181 . 569966) (-2182 . 569498) - (-2183 . 569325) (-2184 . 569251) (-2185 . 569090) (-2186 . 569062) - (-2187 . 568940) (-2188 . 568857) (-2189 . 568804) (-2190 . 568709) - (-2191 . 568551) (-2192 . 568309) (-2193 . 568135) (-2194 . 568079) - (-2195 . 567789) (-2196 . 567636) (-2197 . 567487) (-2198 . 567380) - (-2199 . 567255) (-2200 . 566669) (-2201 . 566616) (-2202 . 566532) - (-2203 . 566346) (-2204 . 566260) (-2205 . 566141) (-2206 . 566064) - (-2207 . 565854) (-2208 . 565742) (-2209 . 565586) (-2210 . 565352) - (-2211 . 565318) (-2212 . 564865) (-2213 . 564685) (-2214 . 564542) - (-2215 . 564490) (-2216 . 564383) (-2217 . 564277) (-2218 . 564078) - (-2219 . 563935) (-2220 . 563292) (-2221 . 562356) (-2222 . 562174) - (-2223 . 561636) (-2224 . 561581) (-2225 . 560713) (-2226 . 560654) - (-2227 . 560427) (-2228 . 560375) (-2229 . 560203) (-2230 . 558907) - (-2231 . 558879) (-2232 . 558808) (-2233 . 558569) (-2234 . 558389) - (-2235 . 558361) (-2236 . 558239) (-2237 . 557987) (-2238 . 557901) - (-2239 . 557241) (-12 . 557069) (-2241 . 556887) (-2242 . 556833) - (-2243 . 556784) (-2244 . 554556) (-2245 . 554361) (-2246 . 554229) - (-2247 . 553585) (-2248 . 553490) (-2249 . 553411) (-2250 . 553269) - (-2251 . 553174) (-2252 . 553021) (-2253 . 552993) (-2254 . 552965) - (-2255 . 552798) (-2256 . 552524) (-2257 . 552359) (-2258 . 552185) - (-2259 . 552118) (-2260 . 552050) (-2261 . 551962) (-2262 . 551867) - (-2263 . 551699) (-2264 . 551253) (-2265 . 551189) (-2266 . 551065) - (-2267 . 550994) (-2268 . 550821) (-2269 . 550662) (-2270 . 550583) - (-2271 . 550418) (-2272 . 550345) (-2273 . 550196) (-2274 . 550081) - (-2275 . 549916) (-2276 . 549832) (-2277 . 549716) (-2278 . 549638) - (-2279 . 549497) (-2280 . 549212) (-2281 . 548839) (-2282 . 548720) - (-2283 . 548551) (-2284 . 548444) (-2285 . 548329) (-2286 . 548270) - (-2287 . 548175) (-2288 . 548107) (-2289 . 548004) (-2290 . 547444) - (-2291 . 547374) (-2292 . 547307) (-2293 . 546769) (-2294 . 546719) - (-2295 . 546545) (-2296 . 546474) (-2297 . 546404) (-2298 . 546282) - (-2299 . 546139) (-2300 . 546041) (-2301 . 545982) (-2302 . 545886) - (-2303 . 545679) (-2304 . 545551) (-2305 . 544838) (-2306 . 544626) - (-2307 . 544464) (-2308 . 544405) (-2309 . 544314) (-2310 . 543973) - (-2311 . 543549) (-2312 . 542812) (-2313 . 542750) (-2314 . 542677) - (-2315 . 541599) (-2316 . 541532) (-2317 . 541156) (-2318 . 540840) - (-2319 . 540775) (-2320 . 540437) (-2321 . 540409) (-2322 . 539817) - (-2323 . 539723) (-2324 . 539604) (-2325 . 539516) (-2326 . 539428) - (-2327 . 539285) (-2328 . 539205) (-2329 . 538986) (-2330 . 538780) - (-2331 . 538715) (-2332 . 538508) (-2333 . 538424) (-2334 . 538264) - (-2335 . 538211) (* . 534098) (-2337 . 533781) (-2338 . 533246) - (-2339 . 533080) (-2340 . 532918) (-2341 . 532647) (-2342 . 532582) - (-2343 . 532484) (-2344 . 532417) (-2345 . 532058) (-2346 . 531990) - (-2347 . 531126) (-9 . 531098) (-2349 . 530937) (-2350 . 530854) - (-2351 . 530502) (-2352 . 530338) (-2353 . 530203) (-2354 . 526539) - (-2355 . 526437) (-2356 . 526363) (-2357 . 526173) (-2358 . 525984) - (-2359 . 525885) (-8 . 525857) (-2361 . 525739) (-2362 . 525295) - (-2363 . 525216) (-2364 . 525079) (-2365 . 524991) (-2366 . 523839) - (-2367 . 523668) (-2368 . 523537) (-2369 . 523443) (-2370 . 523269) - (-2371 . 522759) (-7 . 522731) (-2373 . 522458) (-2374 . 522233) - (-2375 . 522096) (-2376 . 521923) (-2377 . 521835) (-2378 . 521588) - (-2379 . 521514) (-2380 . 521461) (-2381 . 521388) (-2382 . 521152) - (-2383 . 520880) (-2384 . 520764) (-2385 . 520711) (-2386 . 520602) - (-2387 . 520449) (-2388 . 520362) (-2389 . 520209) (-2390 . 520068) - (-2391 . 519996) (-2392 . 519690) (-2393 . 519435) (-2394 . 519224) - (-2395 . 519138) (-2396 . 518974) (-2397 . 518722) (-2398 . 518665) - (-2399 . 518552) (-2400 . 518423) (-2401 . 517893) (-2402 . 517735) - (-2403 . 517504) (-2404 . 517406) (-2405 . 517335) (-2406 . 517128) - (-2407 . 516974) (-2408 . 516915) (-2409 . 516697) (-2410 . 498122) - (-2411 . 498051) (-2412 . 497982) (-2413 . 497869) (-2414 . 497800) - (-2415 . 497713) (-2416 . 497573) (-2417 . 497495) (-2418 . 497417) - (-2419 . 496681) (-2420 . 495579) (-2421 . 495394) (-2422 . 492573) - (-2423 . 492495) (-2424 . 492443) (-2425 . 492383) (-2426 . 492309) - (-2427 . 492184) (-2428 . 492025) (-2429 . 491918) (-2430 . 491793) - (-2431 . 491733) (-2432 . 490287) (-2433 . 490084) (-2434 . 490056) - (-2435 . 486056) (-2436 . 485911) (-2437 . 485820) (-2438 . 485649) - (-2439 . 485431) (-2440 . 485344) (-2441 . 485249) (-2442 . 485197) - (-2443 . 485042) (-2444 . 484912) (-2445 . 484775) (-2446 . 484628) - (-2447 . 484518) (-2448 . 484465) (-2449 . 484312) (-2450 . 484147) - (-2451 . 483762) (-2452 . 483555) (-2453 . 483337) (-2454 . 483157) - (-2455 . 483004) (-2456 . 482916) (-2457 . 482806) (-2458 . 482624) - (-2459 . 482398) (-2460 . 482361) (-2461 . 482257) (-2462 . 482090) - (-2463 . 481803) (-2464 . 481671) (-2465 . 481587) (-2466 . 481448) - (-2467 . 480952) (-2468 . 480829) (-2469 . 480772) (-2470 . 480513) - (-2471 . 479327) (-2472 . 479173) (-2473 . 479077) (-2474 . 478874) - (-2475 . 478796) (-2476 . 478730) (-2477 . 478614) (-2478 . 478537) - (-2479 . 478231) (-2480 . 477746) (-2481 . 477718) (-2482 . 477481) - (-2483 . 476299) (-2484 . 475754) (-2485 . 475677) (-2486 . 475385) - (-2487 . 475281) (-2488 . 475183) (-2489 . 475056) (-2490 . 474958) - (-2491 . 474905) (-2492 . 474826) (-2493 . 474760) (-2494 . 472552) - (-2495 . 472193) (-2496 . 472122) (-2497 . 471876) (-2498 . 471761) - (-2499 . 471622) (-2500 . 470780) (-2501 . 470504) (-2502 . 470405) - (-2503 . 470115) (-2504 . 470008) (-2505 . 469530) (-2506 . 469419) - (-2507 . 469319) (-2508 . 469252) (-2509 . 469092) (-2510 . 468943) - (-2511 . 465334) (-2512 . 465233) (-2513 . 465166) (-2514 . 465084) - (-2515 . 464987) (-2516 . 464832) (-2517 . 464777) (-2518 . 464073) - (-2519 . 463949) (-2520 . 463896) (-2521 . 463634) (-2522 . 463423) - (-2523 . 463300) (-2524 . 463166) (-2525 . 463111) (-2526 . 463016) - (-2527 . 462956) (-2528 . 462275) (-2529 . 462029) (-2530 . 461966) - (-2531 . 461898) (-2532 . 461845) (-2533 . 461811) (-2534 . 461408) - (-2535 . 461309) (-2536 . 460982) (-2537 . 460887) (-2538 . 460715) - (-2539 . 460591) (-2540 . 460431) (-2541 . 460288) (-2542 . 460135) - (-2543 . 460058) (-2544 . 459059) (-2545 . 458967) (-2546 . 458865) - (-2547 . 458837) (-2548 . 458565) (-2549 . 458312) (-2550 . 458216) - (-2551 . 458164) (-2552 . 457852) (-2553 . 457708) (-2554 . 457655) - (-2555 . 457549) (-2556 . 457401) (-2557 . 456749) (-2558 . 456601) - (-2559 . 456549) (-2560 . 456408) (-2561 . 456301) (-2562 . 456249) - (-2563 . 456131) (-2564 . 456060) (-2565 . 456002) (-2566 . 455035) - (-2567 . 454916) (-2568 . 454821) (-2569 . 454662) (-2570 . 454088) - (-2571 . 453978) (-2572 . 453871) (-2573 . 453735) (-2574 . 452643) - (-2575 . 452445) (-2576 . 452377) (-2577 . 452081) (-2578 . 451868) - (-2579 . 451682) (-2580 . 451553) (-2581 . 451392) (-2582 . 451339) - (-2583 . 451255) (-2584 . 450986) (-2585 . 450828) (-2586 . 450735) - (-2587 . 450673) (-2588 . 450549) (-2589 . 449245) (-2590 . 449133) - (-2591 . 448802) (-2592 . 448698) (-2593 . 448389) (-2594 . 448226) - (-2595 . 448010) (-2596 . 447981) (-2597 . 447914) (-2598 . 447761) - (-2599 . 447474) (-2600 . 447403) (-2601 . 447315) (-2602 . 447257) - (-2603 . 447205) (-2604 . 445349) (-2605 . 445234) (-2606 . 445074) - (-2607 . 444997) (-2608 . 444557) (-2609 . 444505) (-2610 . 443767) - (-2611 . 443674) (-2612 . 443642) (-2613 . 443583) (-2614 . 443457) - (-2615 . 443336) (-2616 . 443238) (-2617 . 439175) (-2618 . 439108) - (-2619 . 438984) (-2620 . 438460) (-2621 . 438352) (-2622 . 436775) - (-2623 . 436694) (-2624 . 436167) (-2625 . 436026) (-2626 . 435839) - (-2627 . 435749) (-2628 . 435678) (-2629 . 435254) (-2630 . 434998) - (-2631 . 434455) (-2632 . 434296) (-2633 . 434162) (-2634 . 434082) - (-2635 . 433982) (-2636 . 433822) (-2637 . 433770) (-2638 . 433593) - (-2639 . 433478) (-2640 . 433305) (-2641 . 433236) (-2642 . 433183) - (-2643 . 433130) (-2644 . 432940) (-2645 . 432813) (-2646 . 431032) - (-2647 . 430863) (-2648 . 430760) (-2649 . 430705) (-2650 . 430410) - (-2651 . 430260) (-2652 . 430172) (-2653 . 429921) (-2654 . 429778) - (-2655 . 429299) (-2656 . 429141) (-2657 . 429051) (-2658 . 429022) - (-2659 . 426677) (-2660 . 426598) (-2661 . 426516) (-2662 . 426132) - (-2663 . 426053) (-2664 . 425807) (-2665 . 425507) (-2666 . 425384) - (-2667 . 425029) (-2668 . 424814) (-2669 . 424763) (-2670 . 424636) - (-2671 . 424278) (-2672 . 424219) (-2673 . 423976) (-2674 . 423942) - (-2675 . 423656) (-2676 . 423579) (-2677 . 423426) (-2678 . 423028) - (-2679 . 422940) (-2680 . 422761) (-2681 . 422708) (-2682 . 422247) - (-2683 . 422109) (-2684 . 421920) (-2685 . 421837) (-2686 . 421744) - (-2687 . 421393) (-2688 . 421299) (-2689 . 420665) (-2690 . 420413) - (-2691 . 420283) (-2692 . 420129) (-2693 . 419953) (-2694 . 419735) - (-2695 . 419625) (-2696 . 419396) (-2697 . 419301) (-2698 . 419230) - (-2699 . 419158) (-2700 . 419106) (-2701 . 418956) (-2702 . 418927) - (-2703 . 418868) (-2704 . 418191) (-2705 . 418140) (-2706 . 417955) - (-2707 . 417888) (-2708 . 417815) (-2709 . 417699) (-2710 . 417671) - (-2711 . 417432) (-2712 . 417400) (-2713 . 417310) (-2714 . 417208) - (-2715 . 417156) (-2716 . 416823) (-2717 . 416723) (-2718 . 416610) - (-2719 . 416533) (-2720 . 416222) (-2721 . 416114) (-2722 . 415982) - (-2723 . 415867) (-2724 . 415723) (-2725 . 415529) (-2726 . 415031) - (-2727 . 414643) (-2728 . 414366) (-2729 . 414306) (-2730 . 414165) - (-2731 . 414100) (-2732 . 413985) (-2733 . 413775) (-2734 . 413707) - (-2735 . 413570) (-2736 . 412971) (-2737 . 412804) (-2738 . 412659) - (-2739 . 412574) (-2740 . 412430) (-2741 . 412248) (-2742 . 412162) - (-2743 . 411817) (-2744 . 411536) (-2745 . 411294) (-2746 . 411150) - (-2747 . 410739) (-2748 . 410088) (-2749 . 410020) (-2750 . 409877) - (-2751 . 409059) (-2752 . 408988) (-2753 . 407786) (-2754 . 407734) - (-2755 . 405948) (-2756 . 405574) (-2757 . 405351) (-2758 . 404842) - (-2759 . 404738) (-2760 . 404425) (-2761 . 404206) (-2762 . 403672) - (-2763 . 403467) (-2764 . 403396) (-2765 . 403308) (-2766 . 403170) - (-2767 . 402948) (-2768 . 402802) (-2769 . 402510) (-2770 . 402436) - (-2771 . 402343) (-2772 . 402288) (-2773 . 402192) (-2774 . 401983) - (-2775 . 401869) (-2776 . 399754) (-2777 . 399550) (-2778 . 397961) - (-2779 . 397889) (-2780 . 397752) (-2781 . 397700) (-2782 . 397626) - (-2783 . 397573) (-2784 . 397493) (-2785 . 397245) (-2786 . 396965) - (-2787 . 396883) (-2788 . 396745) (-2789 . 396624) (-2790 . 396532) - (-2791 . 396451) (-2792 . 395675) (-2793 . 395479) (-2794 . 395383) - (-2795 . 394875) (-2796 . 394638) (-2797 . 394536) (-2798 . 394484) - (-2799 . 388970) (-2800 . 388854) (-2801 . 388760) (-2802 . 388655) - (-2803 . 388403) (-2804 . 388307) (-2805 . 388255) (-2806 . 388182) - (-2807 . 388129) (-2808 . 387715) (-2809 . 387322) (-2810 . 386515) - (-2811 . 386465) (-2812 . 386437) (-2813 . 386179) (-2814 . 386021) - (-2815 . 385942) (-2816 . 385887) (-2817 . 381343) (-2818 . 381005) - (-2819 . 380830) (-2820 . 380703) (-2821 . 380261) (-2822 . 380099) - (-2823 . 379981) (-2824 . 379924) (-2825 . 379122) (-2826 . 378894) - (-2827 . 378811) (-2828 . 378759) (-2829 . 378564) (-2830 . 378502) - (-2831 . 378270) (-2832 . 378233) (-2833 . 377898) (-2834 . 377845) - (-2835 . 377784) (-2836 . 377661) (-2837 . 377590) (-2838 . 377490) - (-2839 . 377441) (-2840 . 377361) (-2841 . 377202) (-2842 . 376964) - (-2843 . 376865) (-2844 . 376747) (-2845 . 376564) (-2846 . 375953) - (-2847 . 375824) (-2848 . 375772) (-2849 . 375365) (-2850 . 375221) - (-2851 . 375149) (-2852 . 375092) (-2853 . 374994) (-2854 . 374941) - (-2855 . 374800) (-2856 . 374654) (-2857 . 374553) (-2858 . 374479) - (-2859 . 374281) (-2860 . 374167) (-2861 . 374072) (-2862 . 374043) - (-2863 . 373796) (-2864 . 373743) (-2865 . 373706) (-2866 . 373573) - (-2867 . 373457) (-2868 . 373242) (-2869 . 373141) (-2870 . 373058) - (-2871 . 372951) (-2872 . 372590) (-2873 . 372426) (-2874 . 372340) - (-2875 . 372245) (-2876 . 372107) (-2877 . 372019) (-2878 . 371896) - (-2879 . 371607) (-2880 . 371425) (-2881 . 371173) (-2882 . 371074) - (-2883 . 370528) (-2884 . 370461) (-2885 . 370409) (-2886 . 370302) - (-2887 . 370087) (-2888 . 369986) (-2889 . 369934) (-2890 . 369517) - (-2891 . 369378) (-2892 . 369349) (-2893 . 369212) (-2894 . 368976) - (-2895 . 368890) (-2896 . 368825) (-2897 . 368739) (-2898 . 368602) - (-2899 . 368552) (-2900 . 368449) (-2901 . 368246) (-2902 . 368121) - (-2903 . 367835) (-2904 . 367660) (-2905 . 367609) (-2906 . 367550) - (-2907 . 367279) (-2908 . 367222) (-2909 . 367150) (-2910 . 366780) - (-2911 . 366627) (-2912 . 366488) (-2913 . 366359) (-2914 . 366249) - (-2915 . 366070) (-2916 . 365847) (-2917 . 365788) (-2918 . 365716) - (-2919 . 365648) (-2920 . 365503) (-2921 . 365436) (-2922 . 365267) - (-2923 . 365169) (-2924 . 365116) (-2925 . 363485) (-2926 . 363359) - (-2927 . 363185) (-2928 . 363099) (-2929 . 362588) (-2930 . 362491) - (-2931 . 362437) (-2932 . 362382) (-2933 . 362245) (-2934 . 362162) - (-2935 . 361303) (-2936 . 361246) (-2937 . 361196) (-2938 . 361088) - (-2939 . 360990) (-2940 . 360892) (-2941 . 360833) (-2942 . 360780) - (-2943 . 360101) (-2944 . 359984) (-2945 . 359869) (-2946 . 359576) - (-2947 . 359481) (-2948 . 358183) (-2949 . 358088) (-2950 . 358035) - (-2951 . 357940) (-2952 . 357759) (-2953 . 357384) (-2954 . 357352) - (-2955 . 356976) (-2956 . 356867) (-2957 . 356838) (-2958 . 356809) - (-2959 . 356714) (-2960 . 356662) (-2961 . 356565) (-2962 . 356464) - (-2963 . 356437) (-2964 . 356319) (-2965 . 356204) (-2966 . 356001) - (-2967 . 355428) (-2968 . 355310) (-2969 . 355239) (-2970 . 355075) - (-2971 . 354978) (-2972 . 354900) (-2973 . 354501) (-2974 . 354355) - (-2975 . 354259) (-2976 . 354187) (-2977 . 353902) (-2978 . 353844) - (-2979 . 353816) (-2980 . 353743) (-2981 . 353615) (-2982 . 353088) - (-2983 . 352986) (-2984 . 352733) (-2985 . 352664) (-2986 . 352593) - (-2987 . 352494) (-2988 . 352248) (-2989 . 352090) (-2990 . 351700) - (-2991 . 351619) (-2992 . 351546) (-2993 . 351452) (-2994 . 351130) - (-2995 . 350823) (-2996 . 350717) (-2997 . 350621) (-2998 . 350402) - (-2999 . 350345) (-3000 . 350229) (-3001 . 350088) (-3002 . 348322) - (-3003 . 348197) (-3004 . 348141) (-3005 . 348088) (-3006 . 347878) - (-3007 . 347850) (-3008 . 347255) (-3009 . 347084) (-3010 . 346748) - (-3011 . 346651) (-3012 . 346591) (-3013 . 346369) (-3014 . 346175) - (-3015 . 346122) (-3016 . 344667) (-3017 . 344246) (-3018 . 344135) - (-3019 . 343995) (-3020 . 343747) (-3021 . 343618) (-3022 . 343511) - (-3023 . 343378) (-3024 . 343199) (-3025 . 343083) (-3026 . 342888) - (-3027 . 342229) (-3028 . 342143) (-3029 . 340653) (-3030 . 340429) - (-3031 . 340327) (-3032 . 340205) (-3033 . 340087) (-3034 . 339977) - (-3035 . 339876) (-3036 . 339596) (-3037 . 339489) (-3038 . 339410) - (-3039 . 339205) (-3040 . 339121) (-3041 . 339058) (-3042 . 338975) - (-3043 . 338906) (-3044 . 338821) (-3045 . 338723) (-3046 . 338650) - (-3047 . 338459) (-3048 . 338350) (-3049 . 338290) (-3050 . 338132) - (-3051 . 337492) (-3052 . 337398) (-3053 . 337318) (-3054 . 336987) - (-3055 . 336251) (-3056 . 336143) (-3057 . 336070) (-3058 . 335999) - (-3059 . 335940) (-3060 . 335518) (-3061 . 335441) (-3062 . 335099) - (-3063 . 335047) (-3064 . 334862) (-3065 . 334691) (-3066 . 334445) - (-3067 . 334392) (-3068 . 334280) (-3069 . 334117) (-3070 . 334016) - (-3071 . 333988) (-3072 . 333762) (-3073 . 333702) (-3074 . 333650) - (-3075 . 333498) (-3076 . 333427) (-3077 . 333125) (-3078 . 333076) - (-3079 . 333023) (-3080 . 332777) (-3081 . 332649) (-3082 . 332431) - (-3083 . 332254) (-3084 . 332176) (-3085 . 332044) (-3086 . 331657) - (-3087 . 331595) (-3088 . 331526) (-3089 . 331456) (-3090 . 331335) - (-3091 . 331142) (-3092 . 330886) (-3093 . 330816) (-3094 . 330593) - (-3095 . 329948) (-3096 . 329835) (-3097 . 329695) (-3098 . 329642) - (-3099 . 329508) (-3100 . 329375) (-3101 . 329281) (-3102 . 328862) - (-3103 . 328719) (-3104 . 328622) (-3105 . 328555) (-3106 . 328237) - (-3107 . 327845) (-3108 . 327813) (-3109 . 326641) (-3110 . 326394) - (-3111 . 326283) (-3112 . 326189) (-3113 . 325979) (-3114 . 325627) - (-3115 . 325574) (-3116 . 325444) (-3117 . 325264) (-3118 . 325236) - (-3119 . 325112) (-3120 . 324997) (-3121 . 324892) (-3122 . 324834) - (-3123 . 324735) (-3124 . 324127) (-3125 . 323951) (-3126 . 323923) - (-3127 . 323867) (-3128 . 323766) (-3129 . 323661) (-3130 . 323443) - (-3131 . 323146) (-3132 . 322804) (-3133 . 322552) (-3134 . 321416) - (-3135 . 321321) (-3136 . 321208) (-3137 . 321020) (-3138 . 320902) - (-3139 . 320773) (-3140 . 320573) (-3141 . 320545) (-3142 . 320462) - (-3143 . 320362) (-3144 . 320290) (-3145 . 320172) (-3146 . 319801) - (-3147 . 319727) (-3148 . 319656) (-3149 . 319540) (-3150 . 319487) - (-3151 . 319368) (-3152 . 319271) (-3153 . 319135) (-3154 . 319079) - (-3155 . 318963) (-3156 . 318840) (-3157 . 318744) (-3158 . 318658) - (-3159 . 318599) (-3160 . 318531) (-3161 . 318458) (-3162 . 318292) - (-3163 . 318218) (-3164 . 318121) (-3165 . 318065) (-3166 . 317925) - (-3167 . 317830) (-3168 . 317589) (-3169 . 317486) (-3170 . 314705) - (-3171 . 314551) (-3172 . 314441) (-3173 . 314389) (-3174 . 314312) - (-3175 . 311013) (-3176 . 310930) (-3177 . 310856) (-3178 . 310803) - (-3179 . 310702) (-3180 . 310643) (-3181 . 310414) (-3182 . 310228) - (-3183 . 309642) (-3184 . 309513) (-3185 . 309131) (-3186 . 309079) - (-3187 . 308973) (-3188 . 308810) (-3189 . 308705) (-3190 . 308353) - (-3191 . 308251) (-3192 . 307740) (-3193 . 307492) (-3194 . 307433) - (-3195 . 307275) (-3196 . 307130) (-3197 . 306778) (-3198 . 306744) - (-3199 . 306656) (-3200 . 305795) (-3201 . 305467) (-3202 . 305171) - (-3203 . 304960) (-3204 . 304629) (-3205 . 304445) (-3206 . 304299) - (-3207 . 304230) (-3208 . 304093) (-3209 . 303978) (-3210 . 303919) - (-3211 . 303832) (-3212 . 303773) (-3213 . 303696) (-3214 . 303561) - (-3215 . 303281) (-3216 . 302790) (-3217 . 302711) (-3218 . 302630) - (-3219 . 302548) (-3220 . 302424) (-3221 . 302371) (-3222 . 302270) - (-3223 . 302192) (-3224 . 301774) (-3225 . 301556) (-3226 . 301431) - (-3227 . 301365) (-3228 . 301233) (-3229 . 301132) (-3230 . 300565) - (-3231 . 299649) (-3232 . 299621) (-3233 . 299306) (-3234 . 298440) - (-3235 . 298409) (-3236 . 298335) (-3237 . 298209) (-3238 . 298139) - (-3239 . 298048) (-3240 . 297020) (-3241 . 296758) (-3242 . 296163) - (-3243 . 296060) (-3244 . 295966) (-3245 . 295894) (-3246 . 295820) - (-3247 . 295690) (-3248 . 295637) (-3249 . 295582) (-3250 . 295527) - (-3251 . 295436) (-3252 . 295379) (-3253 . 295266) (-3254 . 295211) - (-3255 . 295121) (-3256 . 294955) (-3257 . 294823) (-3258 . 294702) - (-3259 . 294604) (-3260 . 294527) (-3261 . 294449) (-3262 . 294405) - (-3263 . 294151) (-3264 . 294093) (-3265 . 293852) (-3266 . 293714) - (-3267 . 293409) (-3268 . 293332) (-3269 . 293051) (-3270 . 292999) - (-3271 . 292926) (-3272 . 292892) (-3273 . 292775) (-3274 . 292187) - (-3275 . 291821) (-3276 . 291680) (-3277 . 291452) (-3278 . 291332) - (-3279 . 291235) (-3280 . 291147) (-3281 . 291050) (-3282 . 290857) - (-3283 . 290780) (-3284 . 290710) (-3285 . 290676) (-3286 . 290599) - (-3287 . 290437) (-3288 . 290007) (-3289 . 289715) (-3290 . 289658) - (-3291 . 289591) (-3292 . 289289) (-3293 . 288781) (-3294 . 288640) - (-3295 . 288488) (-3296 . 288332) (-3297 . 288114) (-3298 . 288061) - (-3299 . 287945) (-3300 . 287804) (-3301 . 287723) (-3302 . 287695) - (-3303 . 287644) (-3304 . 287517) (-3305 . 287454) (-3306 . 287387) - (-3307 . 287331) (-3308 . 287204) (-3309 . 286622) (-3310 . 286089) - (-3311 . 285870) (-3312 . 285767) (-3313 . 285288) (-3314 . 285143) - (-3315 . 285071) (-3316 . 284998) (-3317 . 284882) (-3318 . 284830) - (-3319 . 284773) (-3320 . 284589) (-3321 . 284362) (-3322 . 284253) - (-3323 . 283873) (-3324 . 283792) (-3325 . 283725) (-3326 . 283625) - (-3327 . 283529) (-3328 . 283456) (-3329 . 283427) (-3330 . 283288) - (-3331 . 283195) (-3332 . 283051) (-3333 . 283000) (-3334 . 282923) - (-3335 . 282751) (-3336 . 282657) (-3337 . 282471) (-3338 . 282298) - (-3339 . 282068) (-3340 . 282015) (-3341 . 278348) (-3342 . 278264) - (-3343 . 278140) (-3344 . 277949) (-3345 . 277868) (-3346 . 277795) - (-3347 . 277623) (-3348 . 277528) (-3349 . 277456) (-3350 . 277389) - (-3351 . 277337) (-3352 . 277224) (-3353 . 277138) (-3354 . 277036) - (-3355 . 276934) (-3356 . 276738) (-3357 . 276566) (-3358 . 276503) - (-3359 . 276376) (-3360 . 276206) (-3361 . 276119) (-3362 . 272169) - (-3363 . 272042) (-3364 . 271824) (-3365 . 271736) (-3366 . 271589) - (-3367 . 271412) (-3368 . 271330) (-3369 . 271229) (-3370 . 271057) - (-3371 . 270757) (-3372 . 270524) (-3373 . 270457) (-3374 . 270266) - (-3375 . 269979) (-3376 . 269859) (-3377 . 269586) (-3378 . 269530) - (-3379 . 269498) (-3380 . 269148) (-3381 . 268716) (-3382 . 268633) - (-3383 . 268346) (-3384 . 268292) (-3385 . 267806) (-3386 . 267711) - (-3387 . 267464) (-3388 . 267345) (-3389 . 267202) (-3390 . 267058) - (-3391 . 267005) (-3392 . 266904) (-3393 . 266659) (-3394 . 266576) - (-3395 . 266267) (-3396 . 266193) (-3397 . 266138) (-3398 . 266082) - (-3399 . 266015) (-3400 . 264930) (-3401 . 264620) (-3402 . 264429) - (-3403 . 264355) (-3404 . 264107) (-3405 . 263988) (-3406 . 263815) - (-3407 . 263744) (-3408 . 263582) (-3409 . 263374) (-3410 . 263110) - (-3411 . 262994) (-3412 . 262872) (-3413 . 262815) (-3414 . 262438) - (-3415 . 262310) (-3416 . 262191) (-3417 . 261930) (-3418 . 261774) - (-3419 . 261496) (-3420 . 260913) (-3421 . 260770) (-3422 . 260654) - (-3423 . 260323) (-3424 . 260268) (-3425 . 260144) (-3426 . 260083) - (-3427 . 260016) (-3428 . 259885) (-3429 . 259745) (-3430 . 259199) - (-3431 . 259000) (-3432 . 258904) (-3433 . 258803) (-3434 . 258236) - (-3435 . 258018) (-3436 . 257934) (-3437 . 257707) (-3438 . 257595) - (-3439 . 257106) (-3440 . 256799) (-3441 . 256620) (-3442 . 256567) - (-3443 . 256468) (-3444 . 256401) (-3445 . 256317) (-3446 . 256283) - (-3447 . 256182) (-3448 . 255950) (-3449 . 255730) (-3450 . 255449) - (-3451 . 255390) (-3452 . 255328) (-3453 . 255267) (-3454 . 255172) - (-3455 . 255089) (-3456 . 255009) (-3457 . 254872) (-3458 . 254820) - (-3459 . 254751) (-3460 . 254668) (-3461 . 254435) (-3462 . 254330) - (-3463 . 253662) (-3464 . 253363) (-3465 . 253310) (-3466 . 253248) - (-3467 . 252992) (-3468 . 252759) (-3469 . 252465) (-3470 . 251806) - (-3471 . 251756) (-3472 . 251659) (-3473 . 251553) (-3474 . 251451) - (-3475 . 251305) (-3476 . 251040) (-3477 . 250968) (-3478 . 250916) - (-3479 . 250630) (-3480 . 250427) (-3481 . 250023) (-3482 . 249815) - (-3483 . 249659) (-3484 . 249606) (-3485 . 248064) (-3486 . 247980) - (-3487 . 247885) (-3488 . 247533) (-3489 . 247365) (-3490 . 246689) - (-3491 . 239746) (-3492 . 239718) (-3493 . 239608) (-3494 . 238850) - (-3495 . 238719) (-3496 . 238646) (-3497 . 238596) (-3498 . 238414) - (-3499 . 238147) (-3500 . 238053) (-3501 . 237490) (-3502 . 237343) - (-3503 . 237133) (-3504 . 236839) (-3505 . 236743) (-3506 . 236676) - (-3507 . 234946) (-3508 . 234712) (-3509 . 234657) (-3510 . 234493) - (-3511 . 234177) (-3512 . 234064) (-3513 . 233694) (-3514 . 228354) - (-3515 . 228287) (-3516 . 228186) (-3517 . 228136) (-3518 . 227824) - (-3519 . 227771) (-3520 . 227592) (-3521 . 227118) (-3522 . 226989) - (-3523 . 226955) (-3524 . 226826) (-3525 . 226628) (-3526 . 226044) - (-3527 . 225949) (-3528 . 225738) (-3529 . 225661) (-3530 . 225546) - (-3531 . 225431) (-3532 . 225286) (-3533 . 225153) (-3534 . 225103) - (-3535 . 225017) (-3536 . 224590) (-3537 . 224538) (-3538 . 224407) - (-3539 . 224205) (-3540 . 223363) (-3541 . 223090) (-3542 . 222909) - (-3543 . 222878) (-3544 . 222826) (-3545 . 222767) (-3546 . 222665) - (-3547 . 222579) (-3548 . 222496) (-3549 . 222397) (-3550 . 222052) - (-3551 . 221849) (-3552 . 221547) (-3553 . 221295) (-3554 . 221185) - (-3555 . 221015) (-3556 . 220927) (-3557 . 220213) (-3558 . 219943) - (-3559 . 219830) (-3560 . 219681) (-3561 . 219567) (-3562 . 219512) - (-3563 . 219453) (-3564 . 219379) (-3565 . 219293) (-3566 . 218768) - (-3567 . 218715) (-3568 . 218662) (-3569 . 218199) (-3570 . 218004) - (-3571 . 217976) (-3572 . 217738) (-3573 . 217396) (-3574 . 217302) - (-3575 . 217222) (-3576 . 217115) (-3577 . 217054) (-3578 . 216798) - (-3579 . 215366) (-3580 . 215251) (-3581 . 215072) (-3582 . 215044) - (-3583 . 214765) (-3584 . 214338) (-3585 . 213137) (-3586 . 212960) - (-3587 . 212625) (-3588 . 212496) (-3589 . 212440) (-3590 . 212280) - (-3591 . 212053) (-3592 . 211900) (-3593 . 211841) (-3594 . 211737) - (-3595 . 211638) (-3596 . 211542) (-3597 . 210832) (-3598 . 210681) - (-3599 . 210653) (-3600 . 210570) (-3601 . 210379) (-3602 . 210260) - (-3603 . 210083) (-3604 . 210013) (-3605 . 209813) (-3606 . 209724) - (-3607 . 209205) (-3608 . 209088) (-3609 . 194856) (-3610 . 194760) - (-3611 . 194580) (-3612 . 194462) (-3613 . 194406) (-3614 . 193820) - (-3615 . 193489) (-3616 . 193388) (-3617 . 192937) (-3618 . 192836) - (-3619 . 191688) (-3620 . 191604) (-3621 . 191527) (-3622 . 191454) - (-3623 . 191118) (-3624 . 191047) (-3625 . 190895) (-3626 . 190738) - (-3627 . 190392) (-3628 . 190342) (-3629 . 190290) (-3630 . 190186) - (-3631 . 190095) (-3632 . 189980) (-3633 . 189878) (-3634 . 189289) - (-3635 . 189216) (-3636 . 188920) (-3637 . 188745) (-3638 . 188692) - (-3639 . 188465) (-3640 . 188437) (-3641 . 188158) (-3642 . 188019) - (-3643 . 187890) (-3644 . 187481) (-3645 . 187023) (-3646 . 186777) - (-3647 . 185707) (-3648 . 185580) (-3649 . 185524) (-3650 . 185306) - (-3651 . 185264) (-3652 . 184721) (-3653 . 184162) (-3654 . 184085) - (-3655 . 183997) (-3656 . 183679) (-3657 . 183583) (-3658 . 183330) - (-3659 . 183182) (-3660 . 183108) (-3661 . 183034) (-3662 . 182961) - (-3663 . 182853) (-3664 . 182294) (-3665 . 182121) (-3666 . 182042) - (-3667 . 181906) (-3668 . 181791) (-3669 . 181701) (-3670 . 181638) - (-3671 . 181525) (-3672 . 181232) (-3673 . 181108) (-3674 . 181054) - (-3675 . 180888) (-3676 . 180835) (-3677 . 180677) (-3678 . 180524) - (-3679 . 180253) (-3680 . 180128) (-3681 . 180076) (-3682 . 179996) - (-3683 . 179776) (-3684 . 179748) (-3685 . 179605) (-3686 . 179523) - (-3687 . 179147) (-3688 . 178981) (-3689 . 178907) (-3690 . 178830) - (-3691 . 178707) (-3692 . 178676) (-3693 . 178426) (-3694 . 178282) - (-3695 . 178208) (-3696 . 177729) (-3697 . 177658) (-3698 . 177457) - (-3699 . 177222) (-3700 . 177101) (-3701 . 176964) (-3702 . 176334) - (-3703 . 176091) (-3704 . 176057) (-3705 . 175937) (-3706 . 175882) - (-3707 . 175828) (-3708 . 175743) (-3709 . 175638) (-3710 . 175453) - (-3711 . 175156) (-3712 . 174902) (-3713 . 174697) (-3714 . 174603) - (-3715 . 174575) (-3716 . 174525) (-3717 . 174340) (-3718 . 174152) - (-3719 . 174085) (-3720 . 173989) (-3721 . 173827) (-3722 . 173533) - (-3723 . 173180) (-3724 . 173099) (-3725 . 172666) (-3726 . 172302) - (-3727 . 171936) (-3728 . 171858) (-3729 . 171774) (-3730 . 171722) - (-3731 . 171584) (-3732 . 171532) (-3733 . 171436) (-3734 . 171306) - (-3735 . 171104) (-3736 . 171076) (-3737 . 170980) (-3738 . 170785) - (-3739 . 170630) (-3740 . 170465) (-3741 . 170299) (-3742 . 170248) - (-3743 . 169802) (-3744 . 169562) (-3745 . 169363) (-3746 . 168996) - (-3747 . 168567) (-3748 . 167797) (-3749 . 167702) (-3750 . 167217) - (-3751 . 166751) (-3752 . 166424) (-3753 . 166341) (-3754 . 166289) - (-3755 . 166173) (-3756 . 166102) (-3757 . 165830) (-3758 . 165400) - (-3759 . 165337) (-3760 . 164950) (-3761 . 164827) (-3762 . 164737) - (-3763 . 164654) (-3764 . 164444) (-3765 . 164388) (-3766 . 154938) - (-3767 . 154537) (-3768 . 154406) (-3769 . 154228) (-3770 . 154011) - (-3771 . 153447) (-3772 . 153369) (-3773 . 153313) (-3774 . 153225) - (-3775 . 153139) (-3776 . 153029) (-3777 . 152790) (-3778 . 152649) - (-3779 . 152561) (-3780 . 152425) (-3781 . 152207) (-3782 . 152077) - (-3783 . 151940) (-3784 . 151731) (-3785 . 151627) (-3786 . 151424) - (-3787 . 151371) (-3788 . 151168) (-3789 . 150997) (-3790 . 150909) - (-3791 . 150813) (-3792 . 150734) (-3793 . 150545) (-3794 . 150353) - (-3795 . 147938) (-3796 . 147807) (-3797 . 147755) (-3798 . 147647) - (-3799 . 147459) (-3800 . 147355) (-3801 . 147258) (-3802 . 147153) - (-3803 . 147025) (-3804 . 146924) (-3805 . 146871) (-3806 . 146843) - (-3807 . 146791) (-3808 . 146661) (-3809 . 146366) (-3810 . 146240) - (-3811 . 146100) (-3812 . 146028) (-3813 . 145945) (-3814 . 145790) - (-3815 . 145708) (-3816 . 145639) (-3817 . 145553) (-3818 . 145525) - (-3819 . 145396) (-3820 . 145253) (-3821 . 145100) (-3822 . 144945) - (-3823 . 144720) (-3824 . 144593) (-3825 . 144501) (-3826 . 144424) - (-3827 . 144343) (-3828 . 144009) (-3829 . 143830) (-3830 . 143728) - (-3831 . 143337) (-3832 . 143150) (-3833 . 142931) (-3834 . 142843) - (-3835 . 142700) (-3836 . 142209) (-3837 . 142024) (-3838 . 141881) - (-3839 . 141728) (-3840 . 141521) (-3841 . 141425) (-3842 . 141267) - (-3843 . 141213) (-3844 . 141145) (-3845 . 140748) (-3846 . 140695) - (-3847 . 140602) (-3848 . 140434) (-3849 . 139617) (-3850 . 139384) - (-3851 . 139241) (-3852 . 139058) (-3853 . 138962) (-3854 . 138624) - (-3855 . 138133) (-3856 . 137975) (-3857 . 137896) (-3858 . 137793) - (-3859 . 137330) (-3860 . 137231) (-3861 . 136690) (-3862 . 136496) - (-3863 . 135269) (-3864 . 135241) (-3865 . 134889) (-3866 . 134557) - (-3867 . 134219) (-3868 . 133616) (-3869 . 133479) (-3870 . 133137) - (-3871 . 133063) (-3872 . 132982) (-3873 . 132929) (-3874 . 132637) - (-3875 . 131879) (-3876 . 131778) (-3877 . 131694) (-3878 . 131558) - (-3879 . 131475) (-3880 . 131387) (-3881 . 131245) (-3882 . 131142) - (-3883 . 131041) (-3884 . 130971) (-3885 . 130916) (-3886 . 130395) - (-3887 . 130297) (-3888 . 130134) (-3889 . 130032) (-3890 . 127776) - (-3891 . 127710) (-3892 . 127519) (-3893 . 127441) (-3894 . 127342) - (-3895 . 127240) (-3896 . 127187) (-3897 . 126933) (-3898 . 126733) - (-3899 . 126696) (-3900 . 126644) (-3901 . 126591) (-3902 . 126373) - (-3903 . 126280) (-3904 . 126127) (-3905 . 126056) (-3906 . 125961) - (-3907 . 125777) (-3908 . 125101) (-3909 . 125073) (-3910 . 125020) - (-3911 . 124950) (-3912 . 124779) (-3913 . 124748) (-3914 . 124653) - (-3915 . 124494) (-3916 . 124409) (-3917 . 124291) (-3918 . 124119) - (-3919 . 123987) (-3920 . 123929) (-3921 . 123791) (-3922 . 123001) - (-3923 . 122849) (-3924 . 122812) (-3925 . 122757) (-3926 . 122671) - (-3927 . 122500) (-3928 . 122440) (-3929 . 122367) (-3930 . 122258) - (-3931 . 121662) (-3932 . 121605) (-3933 . 121430) (-3934 . 121314) - (-3935 . 121265) (-3936 . 121125) (-3937 . 121022) (-3938 . 120921) - (-3939 . 120537) (-3940 . 120458) (-3941 . 120345) (-3942 . 120213) - (-3943 . 120047) (-3944 . 120019) (-3945 . 119804) (-3946 . 119748) - (-3947 . 119576) (-3948 . 119503) (-3949 . 119187) (-3950 . 119029) - (-3951 . 118942) (-3952 . 118859) (-3953 . 118741) (-3954 . 118646) - (-3955 . 118575) (-3956 . 117935) (-3957 . 117593) (-3958 . 117355) - (-3959 . 116395) (-3960 . 116308) (-3961 . 116156) (-3962 . 116072) - (-3963 . 116002) (-3964 . 115871) (-3965 . 115800) (-3966 . 115281) - (-3967 . 115183) (-3968 . 115081) (-3969 . 114757) (-3970 . 114679) - (-3971 . 114596) (-3972 . 114331) (-3973 . 114218) (-3974 . 113979) - (-3975 . 113902) (-3976 . 112981) (-3977 . 112875) (-3978 . 112548) - (-3979 . 112429) (-3980 . 112377) (-3981 . 112179) (-3982 . 112061) - (-3983 . 111848) (-3984 . 111789) (-3985 . 111629) (-3986 . 111562) - (-3987 . 111382) (-3988 . 111239) (-3989 . 111153) (-3990 . 111057) - (-3991 . 111002) (-3992 . 110743) (-3993 . 109992) (-3994 . 109744) - (-3995 . 108563) (-3996 . 108413) (-3997 . 108020) (-3998 . 107967) - (-3999 . 107807) (-4000 . 107597) (-4001 . 107530) (-4002 . 107109) - (-4003 . 106591) (-4004 . 106219) (-4005 . 106116) (-4006 . 105887) - (-4007 . 105779) (-4008 . 105426) (-4009 . 105283) (-4010 . 105214) - (-4011 . 105068) (-4012 . 104775) (-4013 . 103576) (-4014 . 103487) - (-4015 . 103398) (-4016 . 103313) (-4017 . 102984) (-4018 . 102808) - (-4019 . 102776) (-4020 . 102647) (-4021 . 102499) (-4022 . 102386) - (-4023 . 102240) (-4024 . 101122) (-4025 . 101055) (-4026 . 100996) - (-4027 . 100667) (-4028 . 100447) (-4029 . 100377) (-4030 . 100147) - (-4031 . 98085) (-4032 . 98054) (-4033 . 97862) (-4034 . 97830) - (-4035 . 97724) (-4036 . 97650) (-4037 . 97568) (-4038 . 97511) - (-4039 . 97192) (-4040 . 97089) (-4041 . 96995) (-4042 . 96924) - (-4043 . 96851) (-4044 . 96774) (-4045 . 96690) (-4046 . 96273) - (-4047 . 96177) (-4048 . 96103) (-4049 . 95774) (-4050 . 95656) - (-4051 . 95499) (-4052 . 95421) (-4053 . 94667) (-4054 . 94595) - (-4055 . 94511) (-4056 . 94420) (-4057 . 94135) (-4058 . 93908) - (-4059 . 92646) (-4060 . 92590) (-4061 . 92538) (-4062 . 92385) - (-4063 . 92351) (-4064 . 92294) (-4065 . 92153) (-4066 . 92086) - (-4067 . 91711) (-4068 . 91473) (-4069 . 91290) (-4070 . 91165) - (-4071 . 91087) (-4072 . 90926) (-4073 . 89861) (-4074 . 89716) - (-4075 . 89522) (-4076 . 89448) (-4077 . 89350) (-4078 . 89244) - (-4079 . 89191) (-4080 . 88973) (-4081 . 88911) (-4082 . 88841) - (-4083 . 88650) (-4084 . 88492) (-4085 . 88412) (-4086 . 88315) - (-4087 . 88259) (-4088 . 88114) (-4089 . 88034) (-4090 . 87832) - (-4091 . 87667) (-4092 . 87524) (-4093 . 87472) (** . 84477) - (-4095 . 84362) (-4096 . 84137) (-4097 . 83686) (-4098 . 83634) - (-4099 . 83484) (-4100 . 83427) (-4101 . 83304) (-4102 . 83170) - (-4103 . 83084) (-4104 . 82866) (-4105 . 82220) (-4106 . 82191) - (-4107 . 81351) (-4108 . 81265) (-4109 . 81109) (-4110 . 80962) - (-4111 . 80074) (-4112 . 79928) (-4113 . 79857) (-4114 . 79773) - (-4115 . 79181) (-4116 . 79085) (-4117 . 79019) (-4118 . 78748) - (-4119 . 78435) (-4120 . 78327) (-4121 . 78206) (-4122 . 78091) - (-4123 . 78010) (-4124 . 77911) (-4125 . 77575) (-4126 . 77417) - (-4127 . 77125) (-4128 . 77033) (-4129 . 76952) (-4130 . 76884) - (-4131 . 76728) (-4132 . 76603) (-4133 . 76529) (-4134 . 76089) - (-4135 . 76015) (-4136 . 75987) (-4137 . 75915) (-4138 . 75685) - (-4139 . 75615) (-4140 . 75353) (-4141 . 75135) (-4142 . 75058) - (-4143 . 75026) (-4144 . 74820) (-4145 . 74734) (-4146 . 74631) - (-4147 . 74548) (-4148 . 74437) (-4149 . 74378) (-4150 . 74326) - (-4151 . 74156) (-4152 . 73710) (-4153 . 73631) (-4154 . 73430) - (-4155 . 72944) (-4156 . 72805) (-4157 . 72777) (-4158 . 72641) - (-4159 . 72496) (-4160 . 72365) (-4161 . 72282) (-4162 . 71856) - (-4163 . 71774) (-4164 . 71742) (-4165 . 71433) (-4166 . 71039) - (-4167 . 70761) (-4168 . 70446) (-4169 . 70186) (-4170 . 70067) - (-4171 . 70010) (-4172 . 69622) (-4173 . 69569) (-4174 . 69346) - (-4175 . 68466) (-4176 . 68308) (-4177 . 67917) (-4178 . 67862) - (-4179 . 67759) (-4180 . 67472) (-4181 . 67384) (-4182 . 67289) - (-4183 . 67201) (-4184 . 67148) (-4185 . 67097) (-4186 . 66718) - (-4187 . 66630) (-4188 . 66017) (-4189 . 65907) (-4190 . 65666) - (-4191 . 65568) (-4192 . 65294) (-4193 . 64979) (-4194 . 64911) - (-4195 . 64661) (-4196 . 64541) (-4197 . 64114) (-4198 . 63147) - (-4199 . 63073) (-4200 . 62916) (-4201 . 62814) (-4202 . 60846) - (-4203 . 60774) (-4204 . 60716) (-4205 . 60636) (-4206 . 60494) - (-4207 . 60387) (-4208 . 60314) (-4209 . 59903) (-4210 . 59736) - (-4211 . 59232) (-4212 . 59129) (-4213 . 58469) (-4214 . 58383) - (-4215 . 57495) (-4216 . 57396) (-4217 . 57252) (-4218 . 57169) - (-4219 . 57107) (-4220 . 57013) (-4221 . 56846) (-4222 . 56749) - (-4223 . 56607) (-4224 . 56478) (-4225 . 56426) (-4226 . 56176) - (-4227 . 55906) (-4228 . 55847) (-4229 . 55750) (-4230 . 55623) - (-4231 . 55595) (-4232 . 55108) (-4233 . 54893) (-4234 . 54445) - (-4235 . 54063) (-4236 . 53757) (-4237 . 53729) (-4238 . 53095) - (-4239 . 52960) (-4240 . 51686) (-4241 . 51509) (-4242 . 51388) - (-4243 . 51328) (-4244 . 51276) (-4245 . 51223) (-4246 . 51139) - (-4247 . 51042) (-4248 . 50973) (-4249 . 50495) (-4250 . 50444) - (-4251 . 50388) (-4252 . 50309) (-4253 . 50230) (-4254 . 50133) - (-4255 . 49335) (-4256 . 49086) (-4257 . 48806) (-4258 . 48628) - (-4259 . 48561) (-4260 . 48117) (-4261 . 47513) (-4262 . 47419) - (-4263 . 47348) (-4264 . 47293) (-4265 . 47259) (-4266 . 47026) - (-4267 . 46952) (-4268 . 46827) (-4269 . 46586) (-4270 . 46464) - (-4271 . 46316) (-4272 . 46160) (-4273 . 46072) (-4274 . 45969) - (-4275 . 45751) (-4276 . 45673) (-4277 . 45530) (-4278 . 45334) - (-4279 . 45019) (-4280 . 44987) (-4281 . 43770) (-4282 . 43677) - (-4283 . 43649) (-4284 . 43572) (-4285 . 43520) (-4286 . 43369) - (-4287 . 43319) (-4288 . 43041) (-4289 . 42883) (-4290 . 42828) - (-4291 . 42750) (-4292 . 42620) (-4293 . 42507) (-4294 . 42456) - (-4295 . 42078) (-4296 . 41974) (-4297 . 41896) (-4298 . 41790) - (-4299 . 41649) (-4300 . 41339) (-4301 . 41311) (-4302 . 41096) - (-4303 . 40966) (-4304 . 40850) (-4305 . 40694) (-4306 . 40610) - (-4307 . 40164) (-4308 . 40027) (-4309 . 39926) (-4310 . 39676) - (-4311 . 39563) (-4312 . 39509) (-4313 . 39424) (-4314 . 38084) - (-4315 . 38056) (-4316 . 37570) (-4317 . 37508) (-4318 . 37120) - (-4319 . 37039) (-4320 . 36727) (-4321 . 36628) (-4322 . 36534) - (-4323 . 36295) (-4324 . 35759) (-4325 . 35561) (-4326 . 35409) - (-4327 . 35310) (-4328 . 35225) (-4329 . 35153) (-4330 . 35019) - (-4331 . 34840) (-4332 . 34754) (-4333 . 34287) (-4334 . 34206) - (-4335 . 33952) (-4336 . 33842) (-4337 . 33705) (-4338 . 33472) - (-4339 . 33410) (-4340 . 33176) (-4341 . 32945) (-4342 . 32492) - (-4343 . 32319) (-4344 . 32209) (-4345 . 32103) (-4346 . 30805) - (-4347 . 30687) (-4348 . 30604) (-4349 . 30505) (-4350 . 30408) - (-4351 . 30066) (-4352 . 29932) (-4353 . 29767) (-4354 . 29620) - (-4355 . 29561) (-4356 . 29400) (-4357 . 29301) (-4358 . 29194) - (-4359 . 29074) (-4360 . 29009) (-4361 . 28909) (-4362 . 28813) - (-4363 . 28623) (-4364 . 28527) (-4365 . 28462) (-4366 . 26330) - (-4367 . 26066) (-4368 . 25735) (-4369 . 25526) (-4370 . 25334) - (-4371 . 25110) (-4372 . 25018) (-4373 . 24759) (-4374 . 23795) - (-4375 . 23652) (-4376 . 23557) (-4377 . 23429) (-4378 . 23351) - (-4379 . 23235) (-4380 . 23161) (-4381 . 22951) (-4382 . 22524) - (-4383 . 22472) (-4384 . 22051) (-4385 . 21989) (-4386 . 21852) - (-4387 . 21781) (-4388 . 21629) (-4389 . 21564) (-4390 . 21464) - (-4391 . 21378) (-4392 . 21329) (-4393 . 21255) (-4394 . 21096) - (-4395 . 20785) (-4396 . 19618) (-4397 . 19541) (-4398 . 19412) - (-4399 . 19293) (-4400 . 19233) (-4401 . 18849) (-4402 . 18821) - (-4403 . 18772) (-4404 . 18614) (-4405 . 18367) (-4406 . 18333) - (-4407 . 18231) (-4408 . 18076) (-4409 . 17824) (-4410 . 17796) - (-4411 . 17712) (-4412 . 17646) (-4413 . 17419) (-4414 . 16778) - (-4415 . 16648) (-4416 . 16565) (-4417 . 15749) (-4418 . 15681) - (-4419 . 14279) (-4420 . 14199) (-4421 . 13903) (-4422 . 13824) - (-4423 . 13745) (-4424 . 13218) (-4425 . 13086) (-4426 . 12907) - (-4427 . 12775) (-4428 . 12722) (-4429 . 12688) (-4430 . 12463) - (-4431 . 12383) (-4432 . 12268) (-4433 . 12134) (-4434 . 11991) - (-4435 . 11914) (-4436 . 11611) (-4437 . 11414) (-4438 . 11270) - (-4439 . 11214) (-4440 . 11094) (-4441 . 10918) (-4442 . 10628) - (-4443 . 10312) (-4444 . 10121) (-4445 . 9823) (-4446 . 9727) - (-4447 . 6886) (-4448 . 6855) (-4449 . 6679) (-4450 . 6016) - (-4451 . 5884) (-4452 . 5282) (-4453 . 5159) (-4454 . 5087) - (-4455 . 4971) (-4456 . 4524) (-4457 . 4471) (-4458 . 4361) - (-4459 . 3018) (-4460 . 2874) (-4461 . 2769) (-4462 . 2717) - (-4463 . 1844) (-4464 . 1751) (-4465 . 1407) (-4466 . 1327) - (-4467 . 1214) (-4468 . 1106) (-4469 . 1029) (-4470 . 974) - (-4471 . 855) (-4472 . 781) (-4473 . 559) (-4474 . 475) (-4475 . 338) - (-4476 . 270) (-4477 . 218) (-4478 . 148) (-4479 . 30))
\ No newline at end of file + (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1274 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1274 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793))) + (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1274 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-950)) (-5 *1 (-808))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-578)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) + (-5 *2 (-1066)) (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-1323))))) +(((*1 *2) + (-12 (-4 *4 (-175)) (-5 *2 (-1203 (-981 *4))) (-5 *1 (-430 *3 *4)) + (-4 *3 (-431 *4)))) + ((*1 *2) + (-12 (-4 *1 (-431 *3)) (-4 *3 (-175)) (-4 *3 (-376)) + (-5 *2 (-1203 (-981 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1203 (-421 (-981 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) + (-4 *3 (-570)) (-4 *3 (-175)) (-14 *4 (-950)) + (-14 *5 (-666 (-1207))) (-14 *6 (-1298 (-711 *3)))))) +((-1332 . 732744) (-1333 . 732690) (-1334 . 732564) (-1335 . 732496) + (-1336 . 732206) (-1337 . 732074) (-1338 . 731949) (-1339 . 731820) + (-1340 . 731458) (-1341 . 731362) (-1342 . 731270) (-1343 . 731171) + (-1344 . 731119) (-1345 . 730841) (-1346 . 730701) (-1347 . 730564) + (-1348 . 730248) (-1349 . 729518) (-1350 . 729459) (-1351 . 729392) + (-1352 . 729285) (-1353 . 729204) (-1354 . 729173) (-1355 . 729119) + (-1356 . 728939) (-1357 . 728833) (-1358 . 728666) (-1359 . 728594) + (-1360 . 728403) (-1361 . 727673) (-1362 . 727530) (-1363 . 727405) + (-1364 . 725675) (-1365 . 725530) (-1366 . 725462) (-1367 . 725357) + (-1368 . 725215) (-1369 . 725132) (-1370 . 724987) (-1371 . 724689) + (-1372 . 724012) (-1373 . 723797) (-1374 . 723737) (-1375 . 723503) + (-1376 . 723347) (-1377 . 723170) (-1378 . 722818) (-1379 . 722663) + (-1380 . 722578) (-1381 . 722482) (-1382 . 721917) (-1383 . 721850) + (-1384 . 720404) (-1385 . 720349) (-1386 . 720224) (-1387 . 720122) + (-1388 . 720020) (-1389 . 719938) (-1390 . 719794) (-1391 . 719763) + (-1392 . 719198) (-1393 . 719015) (-1394 . 718870) (-1395 . 718706) + (-1396 . 718266) (-1397 . 718180) (-1398 . 718076) (-1399 . 717565) + (-1400 . 717297) (-1401 . 717115) (-1402 . 716939) (-1403 . 716374) + (-1404 . 716279) (-1405 . 716188) (-1406 . 715872) (-1407 . 715766) + (-1408 . 715692) (-1409 . 715597) (-1410 . 715349) (-1411 . 715263) + (-1412 . 715235) (-1413 . 714572) (-1414 . 713897) (-1415 . 713869) + (-1416 . 713499) (-1417 . 713328) (-1418 . 713300) (-1419 . 713142) + (-1420 . 712268) (-1421 . 711923) (-1422 . 711794) (-1423 . 711192) + (-1424 . 710517) (-1425 . 710465) (-1426 . 710247) (-1427 . 710180) + (-1428 . 709786) (-1429 . 709714) (-1430 . 709525) (-1431 . 709380) + (-1432 . 709253) (-1433 . 708972) (-1434 . 708829) (-1435 . 708757) + (-1436 . 708019) (-1437 . 707924) (-1438 . 707798) (-1439 . 707770) + (-1440 . 707720) (-1441 . 707490) (-1442 . 707275) (-1443 . 706923) + (-1444 . 706681) (-1445 . 706528) (-1446 . 706412) (-1447 . 705849) + (-1448 . 705821) (-1449 . 705769) (-1450 . 705457) (-1451 . 705387) + (-1452 . 705353) (-1453 . 703953) (-1454 . 703798) (-1455 . 703654) + (-1456 . 703091) (-1457 . 702644) (-1458 . 702591) (-1459 . 702436) + (-1460 . 702383) (-1461 . 702121) (-1462 . 701744) (-1463 . 701656) + (-1464 . 701431) (-1465 . 701020) (-1466 . 700967) (-1467 . 700404) + (-1468 . 700316) (-1469 . 700185) (-1470 . 700006) (-1471 . 699788) + (-1472 . 699460) (-1473 . 699387) (-1474 . 698736) (-1475 . 698609) + (-1476 . 698333) (-1477 . 698223) (-1478 . 697547) (-1479 . 697237) + (-1480 . 696754) (-1481 . 696280) (-1482 . 696143) (-1483 . 695904) + (-1484 . 695827) (-1485 . 695723) (-1486 . 695427) (-1487 . 695350) + (-1488 . 695282) (-1489 . 694606) (-1490 . 693263) (-1491 . 693194) + (-1492 . 693051) (-1493 . 692922) (-1494 . 692775) (-1495 . 692605) + (-1496 . 692573) (-1497 . 692521) (-1498 . 692378) (-1499 . 692272) + (-1500 . 692191) (-1501 . 692047) (-1502 . 691371) (-1503 . 690899) + (-1504 . 690822) (-1505 . 690769) (-1506 . 690735) (-1507 . 690529) + (-1508 . 690366) (-1509 . 690276) (-1510 . 690124) (-1511 . 690043) + (-1512 . 689709) (-1513 . 689511) (-1514 . 688693) (-1515 . 688129) + (-1516 . 688024) (-1517 . 687945) (-1518 . 687816) (-1519 . 687663) + (-1520 . 687577) (-1521 . 687398) (-1522 . 687327) (-1523 . 687182) + (-1524 . 687130) (-1525 . 687078) (-1526 . 686871) (-1527 . 686800) + (-1528 . 686236) (-1529 . 685819) (-1530 . 685715) (-1531 . 685517) + (-1532 . 685352) (-1533 . 685197) (-1534 . 685094) (-1535 . 684920) + (-1536 . 684618) (-1537 . 684525) (-1538 . 684423) (-1539 . 684371) + (-1540 . 684146) (-1541 . 683582) (-1542 . 683509) (-1543 . 683300) + (-1544 . 683217) (-1545 . 683045) (-1546 . 682996) (-1547 . 682833) + (-1548 . 682741) (-1549 . 682350) (-1550 . 680564) (-1551 . 680220) + (-1552 . 679657) (-1553 . 679550) (-1554 . 679158) (-1555 . 679091) + (-1556 . 678667) (-1557 . 678556) (-1558 . 678503) (-1559 . 678435) + (-1560 . 678248) (-1561 . 678156) (-1562 . 677647) (-1563 . 677567) + (-1564 . 677004) (-1565 . 676888) (-1566 . 675803) (-1567 . 675066) + (-1568 . 675014) (-1569 . 674851) (-1570 . 674633) (-1571 . 674605) + (-1572 . 674519) (-1573 . 674415) (-1574 . 674196) (-1575 . 674083) + (-1576 . 673520) (-1577 . 673396) (-1578 . 673323) (-1579 . 673013) + (-1580 . 672843) (-1581 . 672794) (-1582 . 672617) (-1583 . 672545) + (-1584 . 672340) (-1585 . 672239) (-1586 . 672131) (-1587 . 671568) + (-1588 . 671491) (-1589 . 671300) (-1590 . 670222) (-1591 . 669776) + (-1592 . 669681) (-1593 . 669549) (-1594 . 669372) (-1595 . 669075) + (-1596 . 668959) (-1597 . 668904) (-1598 . 668341) (-1599 . 668237) + (-1600 . 668163) (-1601 . 668096) (-1602 . 668017) (-1603 . 667788) + (-1604 . 667401) (-1605 . 667202) (-1606 . 667087) (-1607 . 666833) + (-1608 . 666714) (-1609 . 666200) (-1610 . 665952) (-1611 . 665576) + (-1612 . 664757) (-1613 . 664556) (-1614 . 664361) (-1615 . 664299) + (-1616 . 664094) (-1617 . 663921) (-1618 . 663847) (-1619 . 663761) + (-1620 . 663607) (-1621 . 663483) (-1622 . 662979) (-1623 . 662806) + (-1624 . 662490) (-1625 . 662331) (-1626 . 662262) (-1627 . 662210) + (-1628 . 662141) (-1629 . 662047) (-1630 . 661631) (-1631 . 661409) + (-1632 . 661321) (-1633 . 660894) (-1634 . 660823) (-1635 . 660485) + (-1636 . 660426) (-1637 . 660398) (-1638 . 660179) (-1639 . 660109) + (-1640 . 660001) (-1641 . 659948) (-1642 . 659864) (-1643 . 659738) + (-1644 . 659710) (-1645 . 659548) (-1646 . 659219) (-1647 . 658465) + (-1648 . 658379) (-1649 . 658258) (-1650 . 658205) (-1651 . 658155) + (-1652 . 658074) (-1653 . 657937) (-1654 . 657824) (-1655 . 657616) + (-1656 . 657024) (-1657 . 656804) (-1658 . 656482) (-1659 . 656289) + (-1660 . 656099) (-1661 . 655914) (-1662 . 655522) (-1663 . 655258) + (-1664 . 655164) (-1665 . 655094) (-1666 . 655042) (-1667 . 654900) + (-1668 . 654644) (-1669 . 654517) (-1670 . 654329) (-1671 . 653031) + (-1672 . 652958) (-1673 . 652836) (-1674 . 652717) (-1675 . 652487) + (-1676 . 651813) (-1677 . 650032) (-1678 . 649962) (-1679 . 649910) + (-1680 . 649843) (-1681 . 649639) (-1682 . 649556) (-1683 . 649445) + (-1684 . 649356) (-1685 . 649299) (-1686 . 649107) (-1687 . 649076) + (-1688 . 648853) (-1689 . 648407) (-1690 . 648354) (-1691 . 648185) + (-1692 . 648089) (-1693 . 647990) (-1694 . 647744) (-1695 . 647656) + (-1696 . 647279) (-1697 . 647247) (-1698 . 647066) (-1699 . 646878) + (-1700 . 646765) (-1701 . 646643) (-1702 . 646481) (-1703 . 646378) + (-1704 . 646281) (-1705 . 646125) (-1706 . 646025) (-1707 . 645897) + (-1708 . 645754) (-1709 . 645648) (-1710 . 645596) (-1711 . 645544) + (-1712 . 645489) (-1713 . 645349) (-1714 . 644353) (-1715 . 644059) + (-1716 . 643717) (-1717 . 643500) (-1718 . 643420) (-1719 . 643159) + (-1720 . 643077) (-1721 . 642829) (-1722 . 642695) (-1723 . 642400) + (-1724 . 642225) (-1725 . 641872) (-1726 . 641772) (-1727 . 641638) + (-1728 . 641525) (-1729 . 641452) (-1730 . 641296) (-1731 . 641077) + (-1732 . 641020) (-1733 . 640925) (-1734 . 640775) (-1735 . 640708) + (-1736 . 640575) (-1737 . 640147) (-1738 . 640066) (-1739 . 639901) + (-1740 . 639737) (-1741 . 639530) (-1742 . 638947) (-1743 . 638628) + (-1744 . 638534) (-1745 . 638101) (-1746 . 637960) (-1747 . 637872) + (-1748 . 637581) (-1749 . 637434) (-1750 . 637406) (-1751 . 637322) + (-1752 . 637179) (-1753 . 637076) (-1754 . 636947) (-1755 . 636880) + (-1756 . 636461) (-1757 . 636210) (-1758 . 635846) (-1759 . 635787) + (-1760 . 635597) (-1761 . 635520) (-1762 . 635404) (-1763 . 635244) + (-1764 . 635150) (-1765 . 634784) (-1766 . 634641) (-1767 . 634564) + (-1768 . 634421) (-1769 . 633995) (-1770 . 633834) (-1771 . 633763) + (-1772 . 633677) (-1773 . 633346) (-1774 . 633293) (-1775 . 633222) + (-1776 . 633103) (-1777 . 632588) (-1778 . 632491) (-1779 . 632406) + (-1780 . 631927) (-1781 . 631849) (-1782 . 631750) (-1783 . 631673) + (-1784 . 631618) (-1785 . 631301) (-1786 . 631228) (-1787 . 631154) + (-1788 . 631087) (-1789 . 631007) (-1790 . 630917) (-1791 . 630833) + (-1792 . 630726) (-1793 . 630698) (-1794 . 630574) (-1795 . 630199) + (-1796 . 629664) (-1797 . 629587) (-1798 . 629470) (-1799 . 629292) + (-1800 . 628974) (-1801 . 628922) (-1802 . 628893) (-1803 . 628773) + (-1804 . 628600) (-1805 . 628434) (-1806 . 628367) (-1807 . 627950) + (-1808 . 627792) (-1809 . 627400) (-1810 . 627262) (-1811 . 627183) + (-1812 . 627118) (-1813 . 627039) (-1814 . 626908) (-1815 . 626746) + (-1816 . 626650) (-1817 . 626512) (-1818 . 626480) (-1819 . 626408) + (-1820 . 626326) (-1821 . 626274) (-1822 . 626174) (-1823 . 626105) + (-1824 . 625965) (-1825 . 625694) (-1826 . 625620) (-1827 . 625447) + (-1828 . 625200) (-1829 . 624816) (-1830 . 624720) (-1831 . 624624) + (-1832 . 624572) (-1833 . 624507) (-1834 . 623961) (-1835 . 623632) + (-1836 . 623521) (-1837 . 623401) (-1838 . 623322) (-1839 . 623192) + (-1840 . 623002) (-1841 . 622805) (-1842 . 622728) (-1843 . 622529) + (-1844 . 622462) (-1845 . 622344) (-1846 . 622225) (-1847 . 621695) + (-1848 . 621601) (-1849 . 621505) (-1850 . 621259) (-1851 . 621163) + (-1852 . 620804) (-1853 . 620504) (-1854 . 620408) (-1855 . 620186) + (-1856 . 620029) (-1857 . 619927) (-1858 . 619834) (-1859 . 619773) + (-1860 . 619563) (-1861 . 619368) (-1862 . 619068) (-1863 . 619003) + (-1864 . 618902) (-1865 . 618772) (-1866 . 618704) (-1867 . 618482) + (-1868 . 618404) (-1869 . 617818) (-1870 . 617751) (-1871 . 617399) + (-1872 . 617244) (-1873 . 617121) (-1874 . 616857) (-1875 . 615607) + (-1876 . 615486) (-1877 . 614622) (-1878 . 614055) (-1879 . 613301) + (-1880 . 613166) (-1881 . 612740) (-1882 . 612687) (-1883 . 612472) + (-1884 . 612307) (-1885 . 611952) (-1886 . 611743) (-1887 . 611494) + (-1888 . 611362) (-1889 . 611144) (-1890 . 610983) (-1891 . 610899) + (-1892 . 610849) (-1893 . 610589) (-1894 . 610209) (-1895 . 610078) + (-1896 . 609912) (-1897 . 609697) (-1898 . 609505) (-1899 . 609426) + (-1900 . 609343) (-1901 . 609259) (-1902 . 609168) (-1903 . 608617) + (-1904 . 608564) (-1905 . 608384) (-1906 . 607938) (-1907 . 607887) + (-1908 . 607663) (-1909 . 607592) (-1910 . 607240) (-1911 . 607128) + (-1912 . 606843) (-1913 . 606757) (-1914 . 606729) (-1915 . 606602) + (-1916 . 606362) (-1917 . 606270) (-1918 . 606167) (-1919 . 605989) + (-1920 . 605825) (-1921 . 605336) (-1922 . 605109) (-1923 . 604985) + (-1924 . 604903) (-1925 . 604704) (-1926 . 604645) (-1927 . 604386) + (-1928 . 604251) (-1929 . 604128) (-1930 . 603946) (-1931 . 603842) + (-1932 . 603535) (-1933 . 602273) (-1934 . 602033) (-1935 . 601760) + (-1936 . 601655) (-1937 . 601412) (-1938 . 601045) (-1939 . 600081) + (-1940 . 599859) (-1941 . 599614) (-1942 . 599512) (-1943 . 599333) + (-1944 . 599281) (-1945 . 599223) (-1946 . 599171) (-1947 . 598885) + (-1948 . 598456) (-1949 . 598313) (-1950 . 598169) (-1951 . 598047) + (-1952 . 597973) (-1953 . 597920) (-1954 . 597767) (-1955 . 596339) + (-1956 . 596240) (-1957 . 596022) (-1958 . 595927) (-1959 . 595774) + (-1960 . 595679) (-1961 . 595620) (-1962 . 595552) (-1963 . 595453) + (-1964 . 595263) (-1965 . 595229) (-1966 . 594908) (-1967 . 594852) + (-1968 . 594244) (-1969 . 593846) (-1970 . 593361) (-1971 . 593233) + (-1972 . 593024) (-1973 . 592835) (-1974 . 592768) (-1975 . 592627) + (-1976 . 592451) (-1977 . 592399) (-1978 . 591933) (-1979 . 591845) + (-1980 . 591767) (-1981 . 591665) (-1982 . 591547) (-1983 . 591463) + (-1984 . 591396) (-1985 . 591368) (-1986 . 591295) (-1987 . 591116) + (-1988 . 590789) (-1989 . 590673) (-1990 . 590593) (-1991 . 590559) + (-1992 . 590115) (-1993 . 589740) (-1994 . 589684) (-1995 . 589547) + (-1996 . 589464) (-1997 . 589411) (-1998 . 589337) (-1999 . 589275) + (-2000 . 589196) (-2001 . 589095) (-2002 . 588857) (-2003 . 588700) + (-2004 . 588599) (-2005 . 588138) (-2006 . 587866) (-2007 . 587656) + (-2008 . 587586) (-2009 . 587366) (-2010 . 587229) (-2011 . 587046) + (-2012 . 586941) (-2013 . 586748) (-2014 . 586610) (-2015 . 586180) + (-2016 . 585753) (-2017 . 585608) (-2018 . 585327) (-2019 . 585239) + (-2020 . 585114) (-2021 . 585037) (-2022 . 584981) (-2023 . 584684) + (-2024 . 584495) (-2025 . 584432) (-2026 . 584380) (-2027 . 584327) + (-2028 . 584268) (-2029 . 584137) (-2030 . 584059) (-2031 . 582997) + (-2032 . 582655) (-2033 . 582555) (-2034 . 582472) (-2035 . 582084) + (-2036 . 581662) (-2037 . 581560) (-2038 . 581417) (-2039 . 581355) + (-2040 . 581261) (-2041 . 581100) (-2042 . 580668) (-2043 . 580502) + (-2044 . 580379) (-2045 . 580127) (-2046 . 580034) (-2047 . 580000) + (-2048 . 579863) (-2049 . 579685) (-2050 . 579590) (-2051 . 579416) + (-2052 . 578351) (-2053 . 578256) (-2054 . 578122) (-2055 . 577771) + (-2056 . 577681) (-2057 . 577529) (-2058 . 573369) (-2059 . 572859) + (-2060 . 572776) (-2061 . 572631) (-2062 . 572008) (-2063 . 571955) + (-2064 . 571842) (-2065 . 571759) (-2066 . 571665) (-2067 . 571600) + (-2068 . 571462) (-2069 . 571189) (-2070 . 571109) (-2071 . 570915) + (-2072 . 570727) (-2073 . 568949) (-2074 . 568739) (-2075 . 568105) + (-2076 . 568005) (-2077 . 567693) (-2078 . 567620) (-2079 . 567483) + (-2080 . 567258) (-2081 . 567184) (-2082 . 567066) (-2083 . 567010) + (-2084 . 566795) (-2085 . 566709) (-2086 . 566457) (-2087 . 566130) + (-2088 . 565920) (-2089 . 565866) (-2090 . 565814) (-2091 . 565677) + (-2092 . 565579) (-2093 . 565450) (-2094 . 565354) (-2095 . 565223) + (-2096 . 555773) (-2097 . 555724) (-2098 . 555620) (-2099 . 555551) + (-2100 . 555378) (-2101 . 555170) (-2102 . 555064) (-2103 . 554933) + (-2104 . 554779) (-2105 . 554705) (-2106 . 554633) (-2107 . 554550) + (-2108 . 554462) (-2109 . 554409) (-2110 . 554357) (-2111 . 553762) + (-2112 . 553584) (-2113 . 553408) (-2114 . 553328) (-2115 . 553169) + (-2116 . 553111) (-2117 . 552792) (-2118 . 552718) (-2119 . 552485) + (-2120 . 552267) (-2121 . 552096) (-2122 . 551729) (-2123 . 551512) + (-2124 . 551294) (-2125 . 550983) (-2126 . 550733) (-2127 . 550359) + (-2128 . 550254) (-2129 . 550201) (-2130 . 549891) (-2131 . 549821) + (-2132 . 549485) (-2133 . 549431) (-2134 . 549321) (-2135 . 548757) + (-2136 . 548647) (-2137 . 548570) (-2138 . 548204) (-2139 . 548122) + (-2140 . 547931) (-2141 . 547834) (-2142 . 547774) (-2143 . 547416) + (-2144 . 547338) (-2145 . 547109) (-2146 . 546980) (-2147 . 546636) + (-2148 . 546581) (-2149 . 546509) (-2150 . 546370) (-2151 . 545726) + (-2152 . 545568) (-2153 . 545180) (-2154 . 544958) (-2155 . 544880) + (-2156 . 544785) (-2157 . 544697) (-2158 . 544578) (-2159 . 544189) + (-2160 . 544094) (-2161 . 544001) (-2162 . 543904) (-2163 . 543140) + (-2164 . 542946) (-2165 . 542860) (-2166 . 542789) (-2167 . 542712) + (-2168 . 542652) (-2169 . 542549) (-2170 . 542470) (-2171 . 542326) + (-2172 . 542270) (-2173 . 542217) (-2174 . 542103) (-2175 . 541719) + (-2176 . 541173) (-2177 . 541031) (-2178 . 540980) (-2179 . 540835) + (-2180 . 540628) (-2181 . 540207) (-2182 . 540151) (-2183 . 539855) + (-2184 . 539682) (-2185 . 539654) (-2186 . 539547) (-2187 . 539452) + (-2188 . 539375) (-2189 . 539295) (-2190 . 539242) (-2191 . 539131) + (-2192 . 539026) (-2193 . 538813) (-2194 . 538595) (-2195 . 538546) + (-2196 . 538296) (-2197 . 538202) (-2198 . 538049) (-2199 . 537924) + (-2200 . 537722) (-2201 . 537470) (-2202 . 537330) (-2203 . 537144) + (-2204 . 537102) (-2205 . 536944) (-2206 . 536916) (-2207 . 536678) + (-2208 . 536505) (-2209 . 536393) (-2210 . 536145) (-2211 . 536014) + (-2212 . 535471) (-2213 . 535342) (-2214 . 535095) (-2215 . 534880) + (-2216 . 534713) (-2217 . 534483) (-2218 . 534413) (-2219 . 534214) + (-2220 . 534119) (-2221 . 533990) (-2222 . 533054) (-2223 . 532893) + (-2224 . 532816) (-2225 . 532782) (-2226 . 532456) (-2227 . 532182) + (-2228 . 532129) (-2229 . 531998) (-2230 . 531826) (-2231 . 530530) + (-2232 . 530320) (-2233 . 530187) (-2234 . 530134) (-2235 . 530046) + (-2236 . 529891) (-2237 . 529738) (-2238 . 529654) (-2239 . 529489) + (-2240 . 529418) (-12 . 529246) (-2242 . 528989) (-2243 . 528810) + (-2244 . 528492) (-2245 . 528408) (-2246 . 528269) (-2247 . 528202) + (-2248 . 528078) (-2249 . 527980) (-2250 . 527864) (-2251 . 527809) + (-2252 . 527651) (-2253 . 527555) (-2254 . 527527) (-2255 . 527475) + (-2256 . 527441) (-2257 . 527373) (-2258 . 527182) (-2259 . 527008) + (-2260 . 526906) (-2261 . 526711) (-2262 . 526638) (-2263 . 526385) + (-2264 . 526292) (-2265 . 525846) (-2266 . 525695) (-2267 . 525605) + (-2268 . 525517) (-2269 . 525436) (-2270 . 525112) (-2271 . 525013) + (-2272 . 524354) (-2273 . 524292) (-2274 . 524144) (-2275 . 524094) + (-2276 . 523979) (-2277 . 523848) (-2278 . 523753) (-2279 . 523680) + (-2280 . 523602) (-2281 . 523514) (-2282 . 523358) (-2283 . 523272) + (-2284 . 523198) (-2285 . 523074) (-2286 . 522796) (-2287 . 522712) + (-2288 . 522617) (-2289 . 522449) (-2290 . 522366) (-2291 . 521978) + (-2292 . 521882) (-2293 . 521658) (-2294 . 521584) (-2295 . 521472) + (-2296 . 521314) (-2297 . 521243) (-2298 . 521173) (-2299 . 521049) + (-2300 . 520977) (-2301 . 520913) (-2302 . 520854) (-2303 . 520589) + (-2304 . 520467) (-2305 . 520411) (-2306 . 520080) (-2307 . 520007) + (-2308 . 519952) (-2309 . 519893) (-2310 . 519717) (-2311 . 519593) + (-2312 . 519526) (-2313 . 519413) (-2314 . 519351) (-2315 . 519233) + (-2316 . 519138) (-2317 . 519034) (-2318 . 518926) (-2319 . 518848) + (-2320 . 518783) (-2321 . 518645) (-2322 . 518593) (-2323 . 518522) + (-2324 . 518283) (-2325 . 518173) (-2326 . 518090) (-2327 . 517927) + (-2328 . 517754) (-2329 . 517561) (-2330 . 517448) (-2331 . 517242) + (-2332 . 517177) (-2333 . 517125) (-2334 . 517012) (-2335 . 516839) + (-2336 . 516762) (* . 512648) (-2338 . 512574) (-2339 . 512473) + (-2340 . 512257) (-2341 . 512178) (-2342 . 512047) (-2343 . 511996) + (-2344 . 511898) (-2345 . 511789) (-2346 . 511630) (-2347 . 511544) + (-2348 . 511438) (-9 . 511410) (-2350 . 511130) (-2351 . 511005) + (-2352 . 510869) (-2353 . 510840) (-2354 . 510462) (-2355 . 506798) + (-2356 . 506745) (-2357 . 506666) (-2358 . 506564) (-2359 . 506512) + (-2360 . 506413) (-8 . 506385) (-2362 . 506306) (-2363 . 506144) + (-2364 . 506029) (-2365 . 505962) (-2366 . 505858) (-2367 . 504706) + (-2368 . 504535) (-2369 . 504501) (-2370 . 504399) (-2371 . 504234) + (-2372 . 504036) (-2373 . 503941) (-7 . 503913) (-2375 . 503708) + (-2376 . 503555) (-2377 . 503465) (-2378 . 503387) (-2379 . 503140) + (-2380 . 503037) (-2381 . 502964) (-2382 . 502768) (-2383 . 502650) + (-2384 . 502378) (-2385 . 502294) (-2386 . 502107) (-2387 . 501820) + (-2388 . 501757) (-2389 . 501670) (-2390 . 501564) (-2391 . 501418) + (-2392 . 501269) (-2393 . 501206) (-2394 . 500993) (-2395 . 500898) + (-2396 . 500815) (-2397 . 500744) (-2398 . 500631) (-2399 . 500490) + (-2400 . 500416) (-2401 . 500251) (-2402 . 500124) (-2403 . 500065) + (-2404 . 499834) (-2405 . 499541) (-2406 . 499456) (-2407 . 499163) + (-2408 . 499075) (-2409 . 499016) (-2410 . 498706) (-2411 . 480131) + (-2412 . 480003) (-2413 . 479833) (-2414 . 479749) (-2415 . 479589) + (-2416 . 479502) (-2417 . 479408) (-2418 . 479310) (-2419 . 479252) + (-2420 . 479128) (-2421 . 478025) (-2422 . 477810) (-2423 . 474989) + (-2424 . 474888) (-2425 . 474772) (-2426 . 474685) (-2427 . 474618) + (-2428 . 474564) (-2429 . 474405) (-2430 . 474349) (-2431 . 474276) + (-2432 . 474146) (-2433 . 474094) (-2434 . 473891) (-2435 . 473863) + (-2436 . 469863) (-2437 . 469716) (-2438 . 469638) (-2439 . 469511) + (-2440 . 469368) (-2441 . 469281) (-2442 . 469090) (-2443 . 469037) + (-2444 . 468871) (-2445 . 467015) (-2446 . 466899) (-2447 . 466785) + (-2448 . 466675) (-2449 . 466534) (-2450 . 466316) (-2451 . 466230) + (-2452 . 465792) (-2453 . 465683) (-2454 . 465523) (-2455 . 465470) + (-2456 . 465314) (-2457 . 465089) (-2458 . 464979) (-2459 . 464694) + (-2460 . 464606) (-2461 . 464510) (-2462 . 464180) (-2463 . 464120) + (-2464 . 464043) (-2465 . 463885) (-2466 . 463801) (-2467 . 463671) + (-2468 . 463523) (-2469 . 463150) (-2470 . 463095) (-2471 . 463043) + (-2472 . 461857) (-2473 . 461703) (-2474 . 461545) (-2475 . 461105) + (-2476 . 460952) (-2477 . 460886) (-2478 . 460440) (-2479 . 460282) + (-2480 . 460105) (-2481 . 459986) (-2482 . 459727) (-2483 . 459490) + (-2484 . 458308) (-2485 . 458156) (-2486 . 457516) (-2487 . 457464) + (-2488 . 457193) (-2489 . 457056) (-2490 . 456838) (-2491 . 456740) + (-2492 . 456571) (-2493 . 456489) (-2494 . 455738) (-2495 . 453530) + (-2496 . 453447) (-2497 . 453353) (-2498 . 452615) (-2499 . 452490) + (-2500 . 452389) (-2501 . 451547) (-2502 . 451498) (-2503 . 451446) + (-2504 . 451345) (-2505 . 451238) (-2506 . 450990) (-2507 . 450879) + (-2508 . 450799) (-2509 . 450637) (-2510 . 450544) (-2511 . 450464) + (-2512 . 446855) (-2513 . 446605) (-2514 . 446359) (-2515 . 446289) + (-2516 . 446174) (-2517 . 445874) (-2518 . 445723) (-2519 . 445019) + (-2520 . 444688) (-2521 . 444572) (-2522 . 444352) (-2523 . 444320) + (-2524 . 444207) (-2525 . 444106) (-2526 . 444047) (-2527 . 443814) + (-2528 . 443755) (-2529 . 443362) (-2530 . 442681) (-2531 . 442615) + (-2532 . 442507) (-2533 . 442479) (-2534 . 442420) (-2535 . 442335) + (-2536 . 442258) (-2537 . 442036) (-2538 . 441941) (-2539 . 441874) + (-2540 . 441821) (-2541 . 441748) (-2542 . 441547) (-2543 . 441404) + (-2544 . 441278) (-2545 . 439938) (-2546 . 439879) (-2547 . 439775) + (-2548 . 439707) (-2549 . 439516) (-2550 . 439355) (-2551 . 439102) + (-2552 . 439031) (-2553 . 438873) (-2554 . 438752) (-2555 . 438669) + (-2556 . 438641) (-2557 . 438018) (-2558 . 437939) (-2559 . 437652) + (-2560 . 437549) (-2561 . 437339) (-2562 . 437232) (-2563 . 437173) + (-2564 . 436472) (-2565 . 436374) (-2566 . 435998) (-2567 . 435512) + (-2568 . 435368) (-2569 . 435319) (-2570 . 435263) (-2571 . 434703) + (-2572 . 434636) (-2573 . 434541) (-2574 . 434119) (-2575 . 434045) + (-2576 . 433978) (-2577 . 433590) (-2578 . 433246) (-2579 . 433176) + (-2580 . 433106) (-2581 . 433074) (-2582 . 432653) (-2583 . 432576) + (-2584 . 432421) (-2585 . 432152) (-2586 . 432075) (-2587 . 431951) + (-2588 . 431870) (-2589 . 431712) (-2590 . 430408) (-2591 . 430212) + (-2592 . 429862) (-2593 . 429795) (-2594 . 429486) (-2595 . 428968) + (-2596 . 428840) (-2597 . 428498) (-2598 . 427974) (-2599 . 427851) + (-2600 . 427539) (-2601 . 427386) (-2602 . 427303) (-2603 . 427220) + (-2604 . 426682) (-2605 . 426310) (-2606 . 426195) (-2607 . 425997) + (-2608 . 425832) (-2609 . 425780) (-2610 . 425672) (-2611 . 425422) + (-2612 . 425323) (-2613 . 425007) (-2614 . 424947) (-2615 . 424892) + (-2616 . 424842) (-2617 . 424788) (-2618 . 420725) (-2619 . 420621) + (-2620 . 420213) (-2621 . 420028) (-2622 . 419884) (-2623 . 418307) + (-2624 . 418213) (-2625 . 418134) (-2626 . 418057) (-2627 . 417883) + (-2628 . 417397) (-2629 . 417168) (-2630 . 416997) (-2631 . 416254) + (-2632 . 416180) (-2633 . 416099) (-2634 . 415563) (-2635 . 415384) + (-2636 . 415044) (-2637 . 414949) (-2638 . 414827) (-2639 . 414719) + (-2640 . 414514) (-2641 . 414461) (-2642 . 413982) (-2643 . 413455) + (-2644 . 413257) (-2645 . 413009) (-2646 . 412854) (-2647 . 412711) + (-2648 . 412464) (-2649 . 412111) (-2650 . 412056) (-2651 . 411944) + (-2652 . 411873) (-2653 . 411732) (-2654 . 411580) (-2655 . 411485) + (-2656 . 411319) (-2657 . 411161) (-2658 . 411042) (-2659 . 410944) + (-2660 . 408599) (-2661 . 408456) (-2662 . 408387) (-2663 . 408286) + (-2664 . 408099) (-2665 . 407898) (-2666 . 407799) (-2667 . 407771) + (-2668 . 407711) (-2669 . 407568) (-2670 . 407472) (-2671 . 407403) + (-2672 . 407045) (-2673 . 407017) (-2674 . 406934) (-2675 . 406699) + (-2676 . 406665) (-2677 . 406588) (-2678 . 406498) (-2679 . 406413) + (-2680 . 406361) (-2681 . 406217) (-2682 . 406010) (-2683 . 405864) + (-2684 . 405638) (-2685 . 405303) (-2686 . 405232) (-2687 . 405111) + (-2688 . 405039) (-2689 . 404556) (-2690 . 404496) (-2691 . 404443) + (-2692 . 404315) (-2693 . 404022) (-2694 . 403962) (-2695 . 403524) + (-2696 . 403387) (-2697 . 402963) (-2698 . 402829) (-2699 . 402716) + (-2700 . 402620) (-2701 . 402496) (-2702 . 402251) (-2703 . 401538) + (-2704 . 400339) (-2705 . 400287) (-2706 . 400160) (-2707 . 399917) + (-2708 . 399661) (-2709 . 399482) (-2710 . 399337) (-2711 . 399264) + (-2712 . 399181) (-2713 . 399022) (-2714 . 398810) (-2715 . 398721) + (-2716 . 398178) (-2717 . 398144) (-2718 . 398058) (-2719 . 397991) + (-2720 . 397583) (-2721 . 397509) (-2722 . 397347) (-2723 . 397258) + (-2724 . 397163) (-2725 . 397005) (-2726 . 396885) (-2727 . 396726) + (-2728 . 396259) (-2729 . 395982) (-2730 . 395910) (-2731 . 395814) + (-2732 . 395759) (-2733 . 395668) (-2734 . 395583) (-2735 . 395488) + (-2736 . 395335) (-2737 . 394736) (-2738 . 394602) (-2739 . 394547) + (-2740 . 394466) (-2741 . 394388) (-2742 . 394233) (-2743 . 394177) + (-2744 . 393836) (-2745 . 393660) (-2746 . 393479) (-2747 . 393331) + (-2748 . 393251) (-2749 . 393197) (-2750 . 392943) (-2751 . 392843) + (-2752 . 392586) (-2753 . 392554) (-2754 . 391352) (-2755 . 390977) + (-2756 . 390881) (-2757 . 390507) (-2758 . 390284) (-2759 . 390199) + (-2760 . 390098) (-2761 . 389988) (-2762 . 389707) (-2763 . 389485) + (-2764 . 389017) (-2765 . 388879) (-2766 . 388750) (-2767 . 388612) + (-2768 . 388508) (-2769 . 388476) (-2770 . 388316) (-2771 . 388211) + (-2772 . 388074) (-2773 . 387933) (-2774 . 387774) (-2775 . 387700) + (-2776 . 387395) (-2777 . 387247) (-2778 . 386983) (-2779 . 386607) + (-2780 . 386555) (-2781 . 386370) (-2782 . 386137) (-2783 . 385951) + (-2784 . 385881) (-2785 . 385720) (-2786 . 385643) (-2787 . 385530) + (-2788 . 385448) (-2789 . 385419) (-2790 . 385362) (-2791 . 385300) + (-2792 . 385216) (-2793 . 385188) (-2794 . 384907) (-2795 . 384761) + (-2796 . 384571) (-2797 . 384542) (-2798 . 384487) (-2799 . 384152) + (-2800 . 378638) (-2801 . 378404) (-2802 . 378119) (-2803 . 378067) + (-2804 . 377945) (-2805 . 376827) (-2806 . 376754) (-2807 . 376659) + (-2808 . 376535) (-2809 . 376483) (-2810 . 376354) (-2811 . 375961) + (-2812 . 375730) (-2813 . 375626) (-2814 . 375543) (-2815 . 375470) + (-2816 . 375310) (-2817 . 375243) (-2818 . 370699) (-2819 . 370564) + (-2820 . 370500) (-2821 . 370448) (-2822 . 370395) (-2823 . 369953) + (-2824 . 369835) (-2825 . 369382) (-2826 . 369049) (-2827 . 368954) + (-2828 . 368837) (-2829 . 368578) (-2830 . 368496) (-2831 . 368234) + (-2832 . 368137) (-2833 . 367910) (-2834 . 367575) (-2835 . 367402) + (-2836 . 367324) (-2837 . 366736) (-2838 . 366578) (-2839 . 366378) + (-2840 . 366321) (-2841 . 366241) (-2842 . 366140) (-2843 . 366053) + (-2844 . 365842) (-2845 . 365689) (-2846 . 365579) (-2847 . 364968) + (-2848 . 364886) (-2849 . 364644) (-2850 . 364278) (-2851 . 364241) + (-2852 . 363439) (-2853 . 363382) (-2854 . 363355) (-2855 . 363298) + (-2856 . 363239) (-2857 . 363116) (-2858 . 363010) (-2859 . 362915) + (-2860 . 362741) (-2861 . 362600) (-2862 . 362372) (-2863 . 362320) + (-2864 . 362261) (-2865 . 362208) (-2866 . 362104) (-2867 . 361986) + (-2868 . 361852) (-2869 . 361637) (-2870 . 361529) (-2871 . 361391) + (-2872 . 361335) (-2873 . 361107) (-2874 . 361024) (-2875 . 360971) + (-2876 . 360916) (-2877 . 360801) (-2878 . 360533) (-2879 . 360244) + (-2880 . 360145) (-2881 . 360093) (-2882 . 359997) (-2883 . 359604) + (-2884 . 359314) (-2885 . 359217) (-2886 . 359165) (-2887 . 359072) + (-2888 . 358869) (-2889 . 358689) (-2890 . 358594) (-2891 . 358498) + (-2892 . 358248) (-2893 . 358219) (-2894 . 358162) (-2895 . 358074) + (-2896 . 357921) (-2897 . 357768) (-2898 . 357573) (-2899 . 357521) + (-2900 . 356948) (-2901 . 356860) (-2902 . 356800) (-2903 . 356090) + (-2904 . 356031) (-2905 . 355856) (-2906 . 355738) (-2907 . 355589) + (-2908 . 355492) (-2909 . 355430) (-2910 . 355359) (-2911 . 355189) + (-2912 . 354569) (-2913 . 354451) (-2914 . 354300) (-2915 . 354054) + (-2916 . 353957) (-2917 . 353632) (-2918 . 353525) (-2919 . 353332) + (-2920 . 353237) (-2921 . 353005) (-2922 . 352977) (-2923 . 352906) + (-2924 . 352539) (-2925 . 350908) (-2926 . 350845) (-2927 . 350718) + (-2928 . 350588) (-2929 . 350002) (-2930 . 349925) (-2931 . 349888) + (-2932 . 349704) (-2933 . 349409) (-2934 . 349245) (-2935 . 349162) + (-2936 . 348303) (-2937 . 348235) (-2938 . 348207) (-2939 . 347903) + (-2940 . 347826) (-2941 . 347773) (-2942 . 347745) (-2943 . 347692) + (-2944 . 347013) (-2945 . 346916) (-2946 . 346863) (-2947 . 346602) + (-2948 . 346411) (-2949 . 345113) (-2950 . 344898) (-2951 . 344845) + (-2952 . 344796) (-2953 . 344712) (-2954 . 344550) (-2955 . 344497) + (-2956 . 344436) (-2957 . 344327) (-2958 . 344249) (-2959 . 344163) + (-2960 . 344044) (-2961 . 344010) (-2962 . 343562) (-2963 . 343330) + (-2964 . 342900) (-2965 . 342714) (-2966 . 342591) (-2967 . 342521) + (-2968 . 342122) (-2969 . 342070) (-2970 . 341667) (-2971 . 341490) + (-2972 . 341108) (-2973 . 341031) (-2974 . 340739) (-2975 . 340653) + (-2976 . 340582) (-2977 . 340411) (-2978 . 340341) (-2979 . 340195) + (-2980 . 340125) (-2981 . 340026) (-2982 . 339720) (-2983 . 339589) + (-2984 . 339470) (-2985 . 339413) (-2986 . 339313) (-2987 . 339282) + (-2988 . 339210) (-2989 . 339114) (-2990 . 338914) (-2991 . 338587) + (-2992 . 338559) (-2993 . 338464) (-2994 . 338409) (-2995 . 338332) + (-2996 . 338265) (-2997 . 338216) (-2998 . 338063) (-2999 . 337968) + (-3000 . 337835) (-3001 . 337747) (-3002 . 337675) (-3003 . 337586) + (-3004 . 335820) (-3005 . 335186) (-3006 . 335112) (-3007 . 334810) + (-3008 . 334525) (-3009 . 334403) (-3010 . 334193) (-3011 . 334034) + (-3012 . 333875) (-3013 . 333590) (-3014 . 333530) (-3015 . 333358) + (-3016 . 333224) (-3017 . 332705) (-3018 . 331250) (-3019 . 331115) + (-3020 . 330994) (-3021 . 330960) (-3022 . 330804) (-3023 . 330706) + (-3024 . 330599) (-3025 . 330091) (-3026 . 330006) (-3027 . 329768) + (-3028 . 329710) (-3029 . 329586) (-3030 . 329404) (-3031 . 327914) + (-3032 . 327797) (-3033 . 327695) (-3034 . 326421) (-3035 . 326337) + (-3036 . 326103) (-3037 . 326042) (-3038 . 325935) (-3039 . 325794) + (-3040 . 325676) (-3041 . 325577) (-3042 . 325549) (-3043 . 325486) + (-3044 . 325331) (-3045 . 325171) (-3046 . 325102) (-3047 . 325006) + (-3048 . 324829) (-3049 . 324657) (-3050 . 324442) (-3051 . 324408) + (-3052 . 324256) (-3053 . 324138) (-3054 . 324106) (-3055 . 324033) + (-3056 . 323960) (-3057 . 323224) (-3058 . 323081) (-3059 . 322901) + (-3060 . 322780) (-3061 . 322597) (-3062 . 322569) (-3063 . 322413) + (-3064 . 321959) (-3065 . 321169) (-3066 . 321118) (-3067 . 320955) + (-3068 . 320709) (-3069 . 320581) (-3070 . 320457) (-3071 . 320304) + (-3072 . 320186) (-3073 . 320126) (-3074 . 319997) (-3075 . 319945) + (-3076 . 319727) (-3077 . 319547) (-3078 . 319395) (-3079 . 319299) + (-3080 . 319171) (-3081 . 318585) (-3082 . 318339) (-3083 . 318271) + (-3084 . 317744) (-3085 . 317667) (-3086 . 317589) (-3087 . 317537) + (-3088 . 317485) (-3089 . 316878) (-3090 . 316825) (-3091 . 316682) + (-3092 . 316645) (-3093 . 316467) (-3094 . 316365) (-3095 . 315768) + (-3096 . 315437) (-3097 . 314792) (-3098 . 313793) (-3099 . 313740) + (-3100 . 313687) (-3101 . 313527) (-3102 . 313398) (-3103 . 313346) + (-3104 . 313230) (-3105 . 312823) (-3106 . 312768) (-3107 . 312676) + (-3108 . 312423) (-3109 . 312308) (-3110 . 311136) (-3111 . 311035) + (-3112 . 310951) (-3113 . 310865) (-3114 . 310812) (-3115 . 310705) + (-3116 . 310624) (-3117 . 310480) (-3118 . 310395) (-3119 . 310293) + (-3120 . 310224) (-3121 . 310130) (-3122 . 309679) (-3123 . 309564) + (-3124 . 309467) (-3125 . 309326) (-3126 . 309198) (-3127 . 309170) + (-3128 . 309063) (-3129 . 308892) (-3130 . 308820) (-3131 . 308749) + (-3132 . 308721) (-3133 . 308503) (-3134 . 308336) (-3135 . 308235) + (-3136 . 307099) (-3137 . 307030) (-3138 . 306975) (-3139 . 306851) + (-3140 . 306800) (-3141 . 306657) (-3142 . 306559) (-3143 . 306499) + (-3144 . 306416) (-3145 . 306317) (-3146 . 305169) (-3147 . 304897) + (-3148 . 304419) (-3149 . 304169) (-3150 . 304042) (-3151 . 303399) + (-3152 . 303326) (-3153 . 303273) (-3154 . 303176) (-3155 . 303105) + (-3156 . 302859) (-3157 . 302775) (-3158 . 302679) (-3159 . 302628) + (-3160 . 302569) (-3161 . 302506) (-3162 . 302324) (-3163 . 302183) + (-3164 . 302074) (-3165 . 301973) (-3166 . 301876) (-3167 . 301718) + (-3168 . 301665) (-3169 . 301613) (-3170 . 301536) (-3171 . 301433) + (-3172 . 301377) (-3173 . 301223) (-3174 . 301078) (-3175 . 301011) + (-3176 . 300473) (-3177 . 300327) (-3178 . 299731) (-3179 . 299368) + (-3180 . 299011) (-3181 . 298621) (-3182 . 298309) (-3183 . 298236) + (-3184 . 298157) (-3185 . 298083) (-3186 . 298028) (-3187 . 297901) + (-3188 . 297785) (-3189 . 297684) (-3190 . 297521) (-3191 . 297440) + (-3192 . 297240) (-3193 . 297096) (-3194 . 297025) (-3195 . 296946) + (-3196 . 296887) (-3197 . 296813) (-3198 . 295945) (-3199 . 295363) + (-3200 . 295289) (-3201 . 295240) (-3202 . 294378) (-3203 . 294305) + (-3204 . 294201) (-3205 . 294148) (-3206 . 293996) (-3207 . 293899) + (-3208 . 293584) (-3209 . 293525) (-3210 . 292992) (-3211 . 292794) + (-3212 . 292654) (-3213 . 292567) (-3214 . 292473) (-3215 . 292445) + (-3216 . 292339) (-3217 . 292182) (-3218 . 291384) (-3219 . 291305) + (-3220 . 291277) (-3221 . 290917) (-3222 . 290698) (-3223 . 290471) + (-3224 . 290368) (-3225 . 290254) (-3226 . 289836) (-3227 . 289668) + (-3228 . 289346) (-3229 . 289000) (-3230 . 288851) (-3231 . 288571) + (-3232 . 287867) (-3233 . 287815) (-3234 . 287711) (-3235 . 287616) + (-3236 . 287515) (-3237 . 287484) (-3238 . 287419) (-3239 . 287112) + (-3240 . 286460) (-3241 . 286410) (-3242 . 286232) (-3243 . 285970) + (-3244 . 285375) (-3245 . 285251) (-3246 . 285223) (-3247 . 284744) + (-3248 . 284665) (-3249 . 284636) (-3250 . 284530) (-3251 . 284449) + (-3252 . 284397) (-3253 . 284249) (-3254 . 284182) (-3255 . 283935) + (-3256 . 283883) (-3257 . 283793) (-3258 . 283648) (-3259 . 283577) + (-3260 . 283464) (-3261 . 283378) (-3262 . 283267) (-3263 . 283171) + (-3264 . 283119) (-3265 . 283015) (-3266 . 282571) (-3267 . 282534) + (-3268 . 282295) (-3269 . 282113) (-3270 . 281947) (-3271 . 281875) + (-3272 . 281803) (-3273 . 281315) (-3274 . 281281) (-3275 . 281062) + (-3276 . 281034) (-3277 . 280893) (-3278 . 280802) (-3279 . 280198) + (-3280 . 280078) (-3281 . 279718) (-3282 . 279645) (-3283 . 279465) + (-3284 . 279437) (-3285 . 279304) (-3286 . 279234) (-3287 . 279200) + (-3288 . 279143) (-3289 . 278260) (-3290 . 278145) (-3291 . 278093) + (-3292 . 277999) (-3293 . 277912) (-3294 . 277884) (-3295 . 277768) + (-3296 . 277652) (-3297 . 277437) (-3298 . 277377) (-3299 . 277261) + (-3300 . 277159) (-3301 . 277041) (-3302 . 276900) (-3303 . 276829) + (-3304 . 276728) (-3305 . 276544) (-3306 . 276422) (-3307 . 276366) + (-3308 . 276265) (-3309 . 276124) (-3310 . 276068) (-3311 . 276004) + (-3312 . 275933) (-3313 . 275344) (-3314 . 275289) (-3315 . 274679) + (-3316 . 274427) (-3317 . 274200) (-3318 . 274028) (-3319 . 273945) + (-3320 . 273893) (-3321 . 273510) (-3322 . 273453) (-3323 . 273328) + (-3324 . 273270) (-3325 . 273197) (-3326 . 273163) (-3327 . 273091) + (-3328 . 273005) (-3329 . 272896) (-3330 . 272823) (-3331 . 272716) + (-3332 . 272660) (-3333 . 272561) (-3334 . 272265) (-3335 . 271298) + (-3336 . 271126) (-3337 . 270893) (-3338 . 270233) (-3339 . 270047) + (-3340 . 269667) (-3341 . 269351) (-3342 . 268990) (-3343 . 265323) + (-3344 . 265270) (-3345 . 265111) (-3346 . 264992) (-3347 . 264939) + (-3348 . 264865) (-3349 . 264693) (-3350 . 264594) (-3351 . 264412) + (-3352 . 264331) (-3353 . 264167) (-3354 . 264009) (-3355 . 263903) + (-3356 . 263693) (-3357 . 263598) (-3358 . 263371) (-3359 . 263246) + (-3360 . 263074) (-3361 . 263015) (-3362 . 262948) (-3363 . 262894) + (-3364 . 258944) (-3365 . 258858) (-3366 . 258771) (-3367 . 258743) + (-3368 . 258640) (-3369 . 258612) (-3370 . 258453) (-3371 . 258212) + (-3372 . 258040) (-3373 . 257919) (-3374 . 257824) (-3375 . 257724) + (-3376 . 257675) (-3377 . 257592) (-3378 . 257472) (-3379 . 257199) + (-3380 . 256920) (-3381 . 256346) (-3382 . 255914) (-3383 . 255792) + (-3384 . 255713) (-3385 . 255426) (-3386 . 253198) (-3387 . 253102) + (-3388 . 252964) (-3389 . 252846) (-3390 . 252631) (-3391 . 252557) + (-3392 . 252418) (-3393 . 252308) (-3394 . 252207) (-3395 . 252059) + (-3396 . 251876) (-3397 . 251567) (-3398 . 251494) (-3399 . 251299) + (-3400 . 251204) (-3401 . 251116) (-3402 . 250976) (-3403 . 250875) + (-3404 . 250768) (-3405 . 250639) (-3406 . 250551) (-3407 . 250432) + (-3408 . 250233) (-3409 . 250101) (-3410 . 250072) (-3411 . 250001) + (-3412 . 249878) (-3413 . 249762) (-3414 . 249710) (-3415 . 249520) + (-3416 . 249111) (-3417 . 248975) (-3418 . 248871) (-3419 . 248752) + (-3420 . 248441) (-3421 . 248163) (-3422 . 247523) (-3423 . 247341) + (-3424 . 247020) (-3425 . 246603) (-3426 . 246145) (-3427 . 245053) + (-3428 . 244835) (-3429 . 244774) (-3430 . 244746) (-3431 . 244535) + (-3432 . 244434) (-3433 . 244182) (-3434 . 243840) (-3435 . 243701) + (-3436 . 243552) (-3437 . 242482) (-3438 . 242284) (-3439 . 242057) + (-3440 . 241979) (-3441 . 241918) (-3442 . 241866) (-3443 . 241535) + (-3444 . 241436) (-3445 . 241198) (-3446 . 241061) (-3447 . 240768) + (-3448 . 240700) (-3449 . 240573) (-3450 . 240341) (-3451 . 240198) + (-3452 . 240146) (-3453 . 240063) (-3454 . 239879) (-3455 . 239818) + (-3456 . 239272) (-3457 . 238312) (-3458 . 238260) (-3459 . 238024) + (-3460 . 237713) (-3461 . 237517) (-3462 . 237461) (-3463 . 237384) + (-3464 . 237238) (-3465 . 237151) (-3466 . 237084) (-3467 . 236998) + (-3468 . 236928) (-3469 . 236842) (-3470 . 236457) (-3471 . 235873) + (-3472 . 235558) (-3473 . 235495) (-3474 . 235426) (-3475 . 235340) + (-3476 . 235288) (-3477 . 235136) (-3478 . 235071) (-3479 . 235014) + (-3480 . 234919) (-3481 . 234712) (-3482 . 234680) (-3483 . 234576) + (-3484 . 234439) (-3485 . 234351) (-3486 . 234267) (-3487 . 234159) + (-3488 . 233948) (-3489 . 233895) (-3490 . 233809) (-3491 . 233591) + (-3492 . 232915) (-3493 . 231698) (-3494 . 231471) (-3495 . 231376) + (-3496 . 231261) (-3497 . 231124) (-3498 . 231047) (-3499 . 230933) + (-3500 . 230753) (-3501 . 230486) (-3502 . 229923) (-3503 . 229830) + (-3504 . 229802) (-3505 . 229592) (-3506 . 229533) (-3507 . 229405) + (-3508 . 229317) (-3509 . 229004) (-3510 . 228954) (-3511 . 228887) + (-3512 . 228734) (-3513 . 228619) (-3514 . 228506) (-3515 . 228343) + (-3516 . 223003) (-3517 . 222975) (-3518 . 222874) (-3519 . 222778) + (-3520 . 222719) (-3521 . 222645) (-3522 . 222426) (-3523 . 222283) + (-3524 . 222182) (-3525 . 222079) (-3526 . 221964) (-3527 . 221876) + (-3528 . 221799) (-3529 . 221716) (-3530 . 221503) (-3531 . 221423) + (-3532 . 221346) (-3533 . 220855) (-3534 . 220321) (-3535 . 220043) + (-3536 . 219840) (-3537 . 219658) (-3538 . 219513) (-3539 . 219378) + (-3540 . 219322) (-3541 . 219270) (-3542 . 218995) (-3543 . 218810) + (-3544 . 218605) (-3545 . 218574) (-3546 . 218504) (-3547 . 218379) + (-3548 . 218246) (-3549 . 218020) (-3550 . 217881) (-3551 . 217735) + (-3552 . 217571) (-3553 . 217291) (-3554 . 217220) (-3555 . 217077) + (-3556 . 216981) (-3557 . 216695) (-3558 . 216645) (-3559 . 216608) + (-3560 . 216580) (-3561 . 216552) (-3562 . 216436) (-3563 . 216283) + (-3564 . 215792) (-3565 . 215704) (-3566 . 215630) (-3567 . 215459) + (-3568 . 215408) (-3569 . 215322) (-3570 . 215218) (-3571 . 215082) + (-3572 . 214766) (-3573 . 214647) (-3574 . 214566) (-3575 . 214465) + (-3576 . 214243) (-3577 . 214147) (-3578 . 214088) (-3579 . 214033) + (-3580 . 213605) (-3581 . 213438) (-3582 . 213354) (-3583 . 213209) + (-3584 . 212930) (-3585 . 212772) (-3586 . 212634) (-3587 . 211433) + (-3588 . 211275) (-3589 . 211193) (-3590 . 211047) (-3591 . 210991) + (-3592 . 210923) (-3593 . 210820) (-3594 . 210548) (-3595 . 210261) + (-3596 . 210130) (-3597 . 209999) (-3598 . 209655) (-3599 . 209436) + (-3600 . 209312) (-3601 . 209020) (-3602 . 208966) (-3603 . 208914) + (-3604 . 208857) (-3605 . 208732) (-3606 . 208530) (-3607 . 208398) + (-3608 . 208315) (-3609 . 208247) (-3610 . 208198) (-3611 . 193966) + (-3612 . 193913) (-3613 . 193820) (-3614 . 193746) (-3615 . 193690) + (-3616 . 193620) (-3617 . 193535) (-3618 . 193463) (-3619 . 192621) + (-3620 . 192537) (-3621 . 192111) (-3622 . 191947) (-3623 . 191599) + (-3624 . 191498) (-3625 . 191162) (-3626 . 191069) (-3627 . 190672) + (-3628 . 190554) (-3629 . 190495) (-3630 . 190125) (-3631 . 189852) + (-3632 . 189713) (-3633 . 189681) (-3634 . 189586) (-3635 . 189531) + (-3636 . 189453) (-3637 . 189307) (-3638 . 189254) (-3639 . 189079) + (-3640 . 189027) (-3641 . 188874) (-3642 . 188693) (-3643 . 188197) + (-3644 . 187888) (-3645 . 187670) (-3646 . 187599) (-3647 . 187264) + (-3648 . 187018) (-3649 . 186925) (-3650 . 186829) (-3651 . 186777) + (-3652 . 186700) (-3653 . 186561) (-3654 . 186438) (-3655 . 185879) + (-3656 . 185485) (-3657 . 185149) (-3658 . 185036) (-3659 . 184911) + (-3660 . 184094) (-3661 . 183885) (-3662 . 183828) (-3663 . 183699) + (-3664 . 183602) (-3665 . 183543) (-3666 . 182984) (-3667 . 182706) + (-3668 . 182606) (-3669 . 182540) (-3670 . 182336) (-3671 . 182103) + (-3672 . 181989) (-3673 . 181865) (-3674 . 181755) (-3675 . 181653) + (-3676 . 181394) (-3677 . 181134) (-3678 . 181002) (-3679 . 180799) + (-3680 . 180656) (-3681 . 180589) (-3682 . 180537) (-3683 . 178422) + (-3684 . 178243) (-3685 . 178157) (-3686 . 178107) (-3687 . 177832) + (-3688 . 177736) (-3689 . 177570) (-3690 . 177451) (-3691 . 177247) + (-3692 . 176898) (-3693 . 176785) (-3694 . 176684) (-3695 . 176653) + (-3696 . 176470) (-3697 . 176347) (-3698 . 176291) (-3699 . 176068) + (-3700 . 175985) (-3701 . 175782) (-3702 . 175725) (-3703 . 175095) + (-3704 . 174927) (-3705 . 174833) (-3706 . 174266) (-3707 . 174170) + (-3708 . 172581) (-3709 . 172511) (-3710 . 172452) (-3711 . 172374) + (-3712 . 172275) (-3713 . 171887) (-3714 . 171789) (-3715 . 171716) + (-3716 . 170800) (-3717 . 170728) (-3718 . 170237) (-3719 . 169875) + (-3720 . 169741) (-3721 . 169669) (-3722 . 169324) (-3723 . 169208) + (-3724 . 169155) (-3725 . 169088) (-3726 . 169060) (-3727 . 168925) + (-3728 . 168767) (-3729 . 168630) (-3730 . 168277) (-3731 . 168183) + (-3732 . 168115) (-3733 . 167912) (-3734 . 167835) (-3735 . 167612) + (-3736 . 167410) (-3737 . 167382) (-3738 . 167274) (-3739 . 166959) + (-3740 . 166565) (-3741 . 166513) (-3742 . 166434) (-3743 . 166383) + (-3744 . 166176) (-3745 . 166031) (-3746 . 165729) (-3747 . 165423) + (-3748 . 164543) (-3749 . 163773) (-3750 . 163699) (-3751 . 163595) + (-3752 . 163467) (-3753 . 162601) (-3754 . 162498) (-3755 . 162446) + (-3756 . 162330) (-3757 . 162259) (-3758 . 162192) (-3759 . 162164) + (-3760 . 161912) (-3761 . 161427) (-3762 . 161269) (-3763 . 161199) + (-3764 . 161125) (-3765 . 160913) (-3766 . 160860) (-3767 . 160397) + (-3768 . 159996) (-3769 . 159827) (-3770 . 159723) (-3771 . 159695) + (-3772 . 159585) (-3773 . 159530) (-3774 . 159451) (-3775 . 159398) + (-3776 . 159299) (-3777 . 159173) (-3778 . 159117) (-3779 . 159037) + (-3780 . 158951) (-3781 . 158853) (-3782 . 158308) (-3783 . 158138) + (-3784 . 158035) (-3785 . 157926) (-3786 . 157856) (-3787 . 157801) + (-3788 . 157260) (-3789 . 157012) (-3790 . 156773) (-3791 . 156720) + (-3792 . 156615) (-3793 . 156527) (-3794 . 156450) (-3795 . 156163) + (-3796 . 156050) (-3797 . 155952) (-3798 . 155861) (-3799 . 155581) + (-3800 . 155387) (-3801 . 155305) (-3802 . 155179) (-3803 . 154900) + (-3804 . 154608) (-3805 . 153894) (-3806 . 153806) (-3807 . 153747) + (-3808 . 152719) (-3809 . 152604) (-3810 . 152466) (-3811 . 152114) + (-3812 . 151940) (-3813 . 151841) (-3814 . 151571) (-3815 . 151467) + (-3816 . 151372) (-3817 . 151303) (-3818 . 151034) (-3819 . 150979) + (-3820 . 150876) (-3821 . 150710) (-3822 . 150378) (-3823 . 150257) + (-3824 . 150171) (-3825 . 150052) (-3826 . 149960) (-3827 . 149847) + (-3828 . 149749) (-3829 . 149661) (-3830 . 149566) (-3831 . 148963) + (-3832 . 148703) (-3833 . 148609) (-3834 . 148479) (-3835 . 148387) + (-3836 . 148320) (-3837 . 147892) (-3838 . 147743) (-3839 . 147232) + (-3840 . 147105) (-3841 . 146898) (-3842 . 146847) (-3843 . 146710) + (-3844 . 146641) (-3845 . 146504) (-3846 . 146432) (-3847 . 145209) + (-3848 . 145128) (-3849 . 144960) (-3850 . 144792) (-3851 . 144695) + (-3852 . 144597) (-3853 . 144483) (-3854 . 144104) (-3855 . 143766) + (-3856 . 143667) (-3857 . 143593) (-3858 . 143527) (-3859 . 142751) + (-3860 . 142409) (-3861 . 142356) (-3862 . 142172) (-3863 . 142118) + (-3864 . 140891) (-3865 . 140863) (-3866 . 140808) (-3867 . 140698) + (-3868 . 140360) (-3869 . 140237) (-3870 . 140106) (-3871 . 140006) + (-3872 . 139932) (-3873 . 139736) (-3874 . 139683) (-3875 . 139628) + (-3876 . 139544) (-3877 . 139465) (-3878 . 139406) (-3879 . 139165) + (-3880 . 139096) (-3881 . 138837) (-3882 . 138784) (-3883 . 138703) + (-3884 . 138607) (-3885 . 138470) (-3886 . 138382) (-3887 . 137861) + (-3888 . 137795) (-3889 . 137709) (-3890 . 137611) (-3891 . 137163) + (-3892 . 137017) (-3893 . 136962) (-3894 . 135660) (-3895 . 135368) + (-3896 . 134860) (-3897 . 134777) (-3898 . 134581) (-3899 . 134222) + (-3900 . 133697) (-3901 . 133423) (-3902 . 132839) (-3903 . 132621) + (-3904 . 132442) (-3905 . 132387) (-3906 . 132235) (-3907 . 131477) + (-3908 . 131240) (-3909 . 130564) (-3910 . 130404) (-3911 . 130347) + (-3912 . 130294) (-3913 . 130223) (-3914 . 129908) (-3915 . 129817) + (-3916 . 129636) (-3917 . 129535) (-3918 . 129447) (-3919 . 129345) + (-3920 . 129213) (-3921 . 129155) (-3922 . 129017) (-3923 . 128826) + (-3924 . 128776) (-3925 . 128530) (-3926 . 128477) (-3927 . 128409) + (-3928 . 128275) (-3929 . 128117) (-3930 . 128065) (-3931 . 128008) + (-3932 . 127924) (-3933 . 127867) (-3934 . 127692) (-3935 . 127584) + (-3936 . 127320) (-3937 . 126857) (-3938 . 126742) (-3939 . 126492) + (-3940 . 126108) (-3941 . 125995) (-3942 . 125872) (-3943 . 125740) + (-3944 . 125669) (-3945 . 125553) (-3946 . 125417) (-3947 . 125350) + (-3948 . 125252) (-3949 . 125057) (-3950 . 124918) (-3951 . 124798) + (-3952 . 124686) (-3953 . 124631) (-3954 . 124554) (-3955 . 124471) + (-3956 . 124377) (-3957 . 124221) (-3958 . 124123) (-3959 . 124095) + (-3960 . 123819) (-3961 . 123745) (-3962 . 123618) (-3963 . 123452) + (-3964 . 123253) (-3965 . 123165) (-3966 . 123060) (-3967 . 122541) + (-3968 . 122482) (-3969 . 122360) (-3970 . 122261) (-3971 . 122023) + (-3972 . 121866) (-3973 . 120945) (-3974 . 120853) (-3975 . 120721) + (-3976 . 120560) (-3977 . 120418) (-3978 . 120166) (-3979 . 119839) + (-3980 . 119720) (-3981 . 119667) (-3982 . 119569) (-3983 . 119279) + (-3984 . 118937) (-3985 . 118835) (-3986 . 118655) (-3987 . 118525) + (-3988 . 118404) (-3989 . 118023) (-3990 . 117927) (-3991 . 117824) + (-3992 . 117707) (-3993 . 117585) (-3994 . 117491) (-3995 . 117384) + (-3996 . 116203) (-3997 . 114235) (-3998 . 113939) (-3999 . 113851) + (-4000 . 113753) (-4001 . 113701) (-4002 . 113600) (-4003 . 113485) + (-4004 . 113327) (-4005 . 113247) (-4006 . 112769) (-4007 . 112697) + (-4008 . 112536) (-4009 . 112455) (-4010 . 112378) (-4011 . 112308) + (-4012 . 112255) (-4013 . 112038) (-4014 . 111745) (-4015 . 111645) + (-4016 . 111538) (-4017 . 111480) (-4018 . 111151) (-4019 . 111073) + (-4020 . 110838) (-4021 . 110424) (-4022 . 110369) (-4023 . 110274) + (-4024 . 110068) (-4025 . 110001) (-4026 . 109940) (-4027 . 109797) + (-4028 . 109753) (-4029 . 109725) (-4030 . 109627) (-4031 . 108820) + (-4032 . 106758) (-4033 . 106727) (-4034 . 106567) (-4035 . 106311) + (-4036 . 106204) (-4037 . 106130) (-4038 . 105965) (-4039 . 105711) + (-4040 . 105548) (-4041 . 105498) (-4042 . 105220) (-4043 . 103788) + (-4044 . 103639) (-4045 . 103228) (-4046 . 103144) (-4047 . 103064) + (-4048 . 103006) (-4049 . 102978) (-4050 . 102876) (-4051 . 102768) + (-4052 . 102653) (-4053 . 102552) (-4054 . 102449) (-4055 . 102377) + (-4056 . 102136) (-4057 . 102039) (-4058 . 101781) (-4059 . 99525) + (-4060 . 99345) (-4061 . 99289) (-4062 . 99222) (-4063 . 99043) + (-4064 . 98383) (-4065 . 98326) (-4066 . 98260) (-4067 . 98102) + (-4068 . 97913) (-4069 . 97885) (-4070 . 97803) (-4071 . 97717) + (-4072 . 97517) (-4073 . 97404) (-4074 . 97325) (-4075 . 97134) + (-4076 . 97077) (-4077 . 96980) (-4078 . 96553) (-4079 . 95665) + (-4080 . 95637) (-4081 . 95555) (-4082 . 95493) (-4083 . 95438) + (-4084 . 95360) (-4085 . 95088) (-4086 . 95008) (-4087 . 94831) + (-4088 . 94676) (-4089 . 94577) (-4090 . 94494) (-4091 . 94442) + (-4092 . 94294) (-4093 . 94195) (-4094 . 93857) (** . 90862) + (-4096 . 90747) (-4097 . 90232) (-4098 . 90088) (-4099 . 89988) + (-4100 . 89740) (-4101 . 89532) (-4102 . 89430) (-4103 . 89255) + (-4104 . 88587) (-4105 . 88494) (-4106 . 88421) (-4107 . 87775) + (-4108 . 87692) (-4109 . 87547) (-4110 . 87475) (-4111 . 87422) + (-4112 . 87294) (-4113 . 87148) (-4114 . 86912) (-4115 . 86504) + (-4116 . 86205) (-4117 . 85613) (-4118 . 85551) (-4119 . 85501) + (-4120 . 85188) (-4121 . 85070) (-4122 . 84816) (-4123 . 84654) + (-4124 . 84558) (-4125 . 84442) (-4126 . 84389) (-4127 . 84295) + (-4128 . 84098) (-4129 . 83727) (-4130 . 82547) (-4131 . 82494) + (-4132 . 82432) (-4133 . 82335) (-4134 . 82261) (-4135 . 82193) + (-4136 . 82119) (-4137 . 82047) (-4138 . 81937) (-4139 . 81718) + (-4140 . 81609) (-4141 . 81353) (-4142 . 81211) (-4143 . 81140) + (-4144 . 80748) (-4145 . 80696) (-4146 . 80457) (-4147 . 80298) + (-4148 . 80065) (-4149 . 79912) (-4150 . 79783) (-4151 . 79724) + (-4152 . 79591) (-4153 . 79475) (-4154 . 79334) (-4155 . 79183) + (-4156 . 78697) (-4157 . 78541) (-4158 . 78388) (-4159 . 78094) + (-4160 . 77810) (-4161 . 77757) (-4162 . 77669) (-4163 . 77640) + (-4164 . 77558) (-4165 . 77403) (-4166 . 77262) (-4167 . 76603) + (-4168 . 76438) (-4169 . 76123) (-4170 . 75943) (-4171 . 75824) + (-4172 . 75765) (-4173 . 75629) (-4174 . 75286) (-4175 . 75236) + (-4176 . 75164) (-4177 . 75021) (-4178 . 74630) (-4179 . 74494) + (-4180 . 74420) (-4181 . 74202) (-4182 . 73525) (-4183 . 73428) + (-4184 . 73334) (-4185 . 73281) (-4186 . 72975) (-4187 . 72923) + (-4188 . 72835) (-4189 . 72222) (-4190 . 72055) (-4191 . 71999) + (-4192 . 71869) (-4193 . 71818) (-4194 . 71626) (-4195 . 71520) + (-4196 . 71265) (-4197 . 71040) (-4198 . 70613) (-4199 . 69646) + (-4200 . 69486) (-4201 . 69370) (-4202 . 69233) (-4203 . 69048) + (-4204 . 68796) (-4205 . 68694) (-4206 . 68483) (-4207 . 68416) + (-4208 . 68336) (-4209 . 68263) (-4210 . 67812) (-4211 . 67645) + (-4212 . 67141) (-4213 . 67067) (-4214 . 66944) (-4215 . 66877) + (-4216 . 66668) (-4217 . 66640) (-4218 . 66475) (-4219 . 66389) + (-4220 . 66243) (-4221 . 66191) (-4222 . 66024) (-4223 . 65990) + (-4224 . 65894) (-4225 . 65821) (-4226 . 65717) (-4227 . 65633) + (-4228 . 65363) (-4229 . 65184) (-4230 . 64919) (-4231 . 64755) + (-4232 . 64604) (-4233 . 64117) (-4234 . 64031) (-4235 . 63979) + (-4236 . 63863) (-4237 . 63660) (-4238 . 63594) (-4239 . 63517) + (-4240 . 63265) (-4241 . 63193) (-4242 . 63136) (-4243 . 63036) + (-4244 . 62977) (-4245 . 62949) (-4246 . 62896) (-4247 . 62669) + (-4248 . 62617) (-4249 . 62532) (-4250 . 62475) (-4251 . 62378) + (-4252 . 62255) (-4253 . 62160) (-4254 . 62092) (-4255 . 61853) + (-4256 . 61650) (-4257 . 61401) (-4258 . 61271) (-4259 . 61158) + (-4260 . 60872) (-4261 . 60759) (-4262 . 60625) (-4263 . 60552) + (-4264 . 60406) (-4265 . 60235) (-4266 . 60203) (-4267 . 60120) + (-4268 . 59718) (-4269 . 59234) (-4270 . 59105) (-4271 . 58902) + (-4272 . 58816) (-4273 . 58660) (-4274 . 58574) (-4275 . 58408) + (-4276 . 58320) (-4277 . 58230) (-4278 . 58162) (-4279 . 57916) + (-4280 . 57512) (-4281 . 56982) (-4282 . 56890) (-4283 . 56672) + (-4284 . 56598) (-4285 . 56546) (-4286 . 56444) (-4287 . 56348) + (-4288 . 56052) (-4289 . 56000) (-4290 . 55842) (-4291 . 55634) + (-4292 . 55605) (-4293 . 55475) (-4294 . 55419) (-4295 . 55251) + (-4296 . 55199) (-4297 . 55120) (-4298 . 55041) (-4299 . 54618) + (-4300 . 54520) (-4301 . 54364) (-4302 . 53524) (-4303 . 53496) + (-4304 . 53075) (-4305 . 52935) (-4306 . 52602) (-4307 . 52413) + (-4308 . 51886) (-4309 . 51767) (-4310 . 51714) (-4311 . 51643) + (-4312 . 51557) (-4313 . 51503) (-4314 . 51408) (-4315 . 50227) + (-4316 . 50127) (-4317 . 49935) (-4318 . 49873) (-4319 . 49741) + (-4320 . 49689) (-4321 . 49482) (-4322 . 47940) (-4323 . 47784) + (-4324 . 47545) (-4325 . 47163) (-4326 . 46922) (-4327 . 46809) + (-4328 . 44394) (-4329 . 44215) (-4330 . 44130) (-4331 . 44046) + (-4332 . 43892) (-4333 . 43745) (-4334 . 43626) (-4335 . 40845) + (-4336 . 40714) (-4337 . 40637) (-4338 . 40505) (-4339 . 40405) + (-4340 . 40310) (-4341 . 40092) (-4342 . 39204) (-4343 . 39094) + (-4344 . 38998) (-4345 . 38687) (-4346 . 38635) (-4347 . 38582) + (-4348 . 38464) (-4349 . 38300) (-4350 . 38229) (-4351 . 37877) + (-4352 . 37806) (-4353 . 37754) (-4354 . 37671) (-4355 . 37563) + (-4356 . 37455) (-4357 . 37421) (-4358 . 37311) (-4359 . 37143) + (-4360 . 37074) (-4361 . 36990) (-4362 . 36894) (-4363 . 36817) + (-4364 . 36685) (-4365 . 36497) (-4366 . 34365) (-4367 . 34140) + (-4368 . 33977) (-4369 . 33646) (-4370 . 33533) (-4371 . 26590) + (-4372 . 26494) (-4373 . 26399) (-4374 . 23100) (-4375 . 22985) + (-4376 . 22881) (-4377 . 22766) (-4378 . 22568) (-4379 . 22499) + (-4380 . 22471) (-4381 . 22405) (-4382 . 22118) (-4383 . 22035) + (-4384 . 21891) (-4385 . 21794) (-4386 . 21732) (-4387 . 21598) + (-4388 . 21527) (-4389 . 21493) (-4390 . 21353) (-4391 . 21243) + (-4392 . 20972) (-4393 . 20898) (-4394 . 20800) (-4395 . 20606) + (-4396 . 20501) (-4397 . 19334) (-4398 . 19191) (-4399 . 19080) + (-4400 . 19002) (-4401 . 18244) (-4402 . 18136) (-4403 . 18083) + (-4404 . 17941) (-4405 . 17813) (-4406 . 17315) (-4407 . 17238) + (-4408 . 17160) (-4409 . 16879) (-4410 . 16777) (-4411 . 16646) + (-4412 . 16525) (-4413 . 16424) (-4414 . 15783) (-4415 . 15536) + (-4416 . 15435) (-4417 . 15047) (-4418 . 14231) (-4419 . 13928) + (-4420 . 12526) (-4421 . 12446) (-4422 . 12220) (-4423 . 12147) + (-4424 . 12068) (-4425 . 11332) (-4426 . 11217) (-4427 . 11059) + (-4428 . 11000) (-4429 . 10947) (-4430 . 10887) (-4431 . 10690) + (-4432 . 10610) (-4433 . 10532) (-4434 . 10482) (-4435 . 10297) + (-4436 . 10216) (-4437 . 9994) (-4438 . 9765) (-4439 . 9737) + (-4440 . 9596) (-4441 . 9430) (-4442 . 9286) (-4443 . 9148) + (-4444 . 8966) (-4445 . 8888) (-4446 . 8789) (-4447 . 8701) + (-4448 . 8515) (-4449 . 5674) (-4450 . 5609) (-4451 . 5557) + (-4452 . 5425) (-4453 . 5369) (-4454 . 5246) (-4455 . 5027) + (-4456 . 4975) (-4457 . 4881) (-4458 . 4545) (-4459 . 3959) + (-4460 . 3808) (-4461 . 3693) (-4462 . 3563) (-4463 . 3443) + (-4464 . 2570) (-4465 . 2412) (-4466 . 2265) (-4467 . 2205) + (-4468 . 2047) (-4469 . 2013) (-4470 . 1936) (-4471 . 1807) + (-4472 . 1637) (-4473 . 1342) (-4474 . 1132) (-4475 . 956) + (-4476 . 870) (-4477 . 576) (-4478 . 502) (-4479 . 210) (-4480 . 30))
\ No newline at end of file |